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Abstract 

This thesis examines the Hansen-Greenberg approach to solving a system of nonlin-

ear equations using interval analysis. Starting with a brief introduction to interval 

mathematics and describing some common iterative procedures; we discuss various 

subalgorithms i.e. the Gauss-Seidel step, the real (noninterval) iteration and the 

elimination by the LU decomposition; that constitute the main algorithm. The 

method is illustrated with several numerical examples. Some procedural changes 

that further improve the efficiency of the algorithm have been included. Alterna-

tive procedures involving secondary iterations and the method of splitting are also 

explored. The thesis concludes with some suggestions for further work. 
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Chapter 1 

Introduction 

1.1 Purpose of Thesis 

The purpose of this thesis is to discuss and analyse some of the basic theoretical 

results pertaining to the solution of systems of nonlinear equations using interval 

mathematics. Although the use of intervals in mathematics dates back at least 100 

years [19], the real interest in the application of interval mathematics to solving a 

system of nonlinear equations was generated by the intriguing publication Interval 

Analysis by R.E. Moore [13] in 1966. Moore, who is now regarded as the "father 

figure" in this area, is credited with extending Newton's method to root finding for a 

system of nonlinear equations using interval mathematics. Since then, several mathe-

maticians e.g. Krawczyk, Hansen, Sengupta, Greenberg, Nickel, Alefeld, Herzberger, 

Neumaier and many others (see references) have made significant contributions to 

the subject. The present work describes the research of Hansen and his colleagues 

Sengupta and Greenberg [5]. Hansen et. el, have made a noteworthy attempt in pre-

senting a single algorithm of great effeciency for solving nonlinear equations. They 

utilize the best features available with regard to preconditioning, and they employ 

a real (noninterval) iteration for obtaining improved results with the Gauss-Seidel 

step and the elimination procedures. Extended interval mathematics [6] is employed 

to obtain bounded solution even if the Jacobian matrix contains zero in one or more 

diagonal elements. Thus, this interval mathematics approach can handle roots of 
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higher multiplicity, which the regular Newton method can not do effectively. It also 

tries to contain the growth in the width of intervals by employing a real iteration to 

locate a "good" point in a box. 

Although, Hansen, Sengupta and Greenberg presented an almost complete set of 

procedures to approximately solve systems of nonlinear equations, the present thesis 

demonstrates with sufficient examples, how some procedural changes can produce 

further improvements to the overall algorithm. Under suitable assumptions, the 

thesis outlines procedures for improving the initial intervals containing a fixpoint, and 

a modified Gauss-Seidel iteration to enhance the relaxation procedure, if necessary. 

We also present an interval iteration for finding good starting intervals, to serve as an 

alternative to the real (noninterval) iteration introduced by Hansen and Greenberg 

[5]. 

Keeping in mind the objective' s of the thesis, the concluding section describes the 

solution of systems of nonlinear equations following different methods. In particular, 

an interval form of Newton's method using a secondary Newton step is developed 

on the lines of the noninterval procedure. This method has some computational 

advantages besides offering " cubic convergence". The effectiveness of the method of 

splitting, when applicable, is also demonstrated. 
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1.2 Outline of Thesis 

The thesis begins with an introductory Chapter on the main purpose of the thesis; 

which is to describe the solution of systems of nonlinear equations using interval 

Newton methods. Nonlinear systems are generally approximated by linear systems 

with the help of the mean value theorem. These linear systems are then solved 

directly or using iterative methods providing one step in an iteration for the nonlinear 

system. If the initial expansion is sufficiently close to a fixpoint then the convergence 

and accuracy of the approximated solution by the iterative procedure is ensured. In 

this thesis the focus is mainly on solving nonlinear equations using some methods 

based on interval analysis. Chapter 1 describes briefly the historical development 

of interval analysis and the interval Newton method as initiated by R.E.Moore [13]. 

Indepth studies of interval mathematics conducted by Alefeld [1], Hansen [4] and 

others generated further interest in this problem. Chapter 2 describes some basic 

results in interval mathematics; which enabled Hansen [5, 6] and his colleagues to deal 

with unbounded intervals. Properties associated with combinations of intervals and 

a brief description of the interval Newton method for root finding are also included 

here for a clear understanding of the ensuing principles. 

The solution of systems of the interval linear equations occuring in the iter-

ation steps is handled best with computers using iterative procedures. Chapter 3, 

therefore contains an account of the basic iterative methods. The methods of Jacobi, 
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Gauss-Seidel and successive overrelaxation (S OR) are employed in most solution pro-

cedures. The Chapter concludes with a brief description of the algebraic techniques, 

matrix operations and associated steps which will lead to approximate solutions of 

nonlinear systems, as illustrated in Chapter 4 with the work of Hansen, Sengupta, 

and Greenberg. The first part of this Chapter contains mainly the contributions of 

Hansen and Sengupta [6]. The preconditioning technique, first used by Hansen [4], 

is introduced here. Krawczyk's [8] successive iteration as well as the Gaussian elimi-

nation operation using extended interval mathematics (due to Hansen-Sengupta) are 

examined. The second part of the Chapter studies the Hansen-Greenberg analysis in 

some detail, starting with the initial Hansen-Sengupta step, and a real iteration. The 

procedure concludes with the elimination iteration. The order in which these steps 

must be carried out such that an efficient Hansen-Greenberg algorithm is obtained is 

discussed. The Chapter concludes with a few illustrations showing the performance 

of the described algorithm. 

We describe some procedural improvements of our own in Chapter 5. The con-

ciseness of the initial starting interval is of outmost importance for any iterative 

procedures associated with interval arithmetics. Accordingly, we first show how the 

initial interval containing a fixpoint can be improved greatly by finding a better 

approximating matrix for the identity matrix using the Hansen-Greenberg precon-

ditioned system. We also introduce the modified Gauss-Seidel step for obtaining an 

improved solution, when necessary. The Chapter 5 concludes with the introduction 

of an interval iteration which may serve as an alternative for the real iteration in the 

Hansen-Greenberg's analysis. 

Chapter 6 deals with the other procedures that may be used effectively for the so-
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lution of nonlinear system of equations using interval analysis. Iterative noninterval 

methods have been used to solve systems of nonlinear equations. Interval techniques 

also exist in which higher derivatives are used. We present a modified Newton's inter-

val method which uses one step of the Newton operator in the successive iterations. 

This iteration involves only the first order derivative in the computations. Besides 

the computational advantages, the method offers cubic convergence. A method for 

solving nonlinear systems of equations by splitting the Jacobian matrix, although 

limited in scope, is also illustrated in the concluding Section. 

Finally Chapter 7 summarizes the significant results of the thesis and also contains 

some suggestions for further research. 



Chapter 2 

Interval Analysis 

2.1 Interval Arithmetic 

The algebraic operations and the terminology of interval arithmetic used in this 

thesis are presented briefly in this section. For a more extensive introduction see for 

example Alefeld and Herzberger [1]. 

The field of real numbers R is denoted by lower case letters x,y,z,. ..A subset of 

of the form 

X = [XI, X21 = {xlxi < x ≤ x2,xi,x2 E Rj 

is called a closed real interval or an interval. The set of all closed intervals X, Y, Z 

in upper case, are members of I. Real numbers x E R may be considered special 

members [x, x] from I. 

Let * E {+, -, , /} be a binary operation on the set of real numbers R, then 

X*Y={z=x*ylxEX,JEY}, 

defines a binary operation on Th. It is assumed that 0 Y in the case of division. 

The operations on intervals X = [x1, x2] and Y = [ui, y2} may be defined as 

follows: 

X+ Y = [x1 + X2Y1+ Y2}, 

6 
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X— Y= [XI -y2,x2-yij, 

X - Y = [min{xiyi, x1y2, X2J1 x2y2}, max{xiyi, x1y2, x2y1, x2y2}], 

X/Y = [x1,x2] [l/Y2,l/yl]. 

If X, Y, Z are members of flf, then it can be shown easily that 

x+ Y= Y+X, 

Y + X = X + Y , (commutativity). 

(X+Y)+Z=X+(Y-i-Z), 

(X. Y) Z = X ( Y. Z), (associativity). 

X ( Y + Z) g X. Y + X Z, (subdistributivity). 

The distributive law is, however, not valid in general. X = [0, 0] and Y = [1, 1] are 

neutral elements with respect to addition and multiplication. 

It should also be noted that RR has no zero divisors and X = [x1, x] with x1 54 X2 

has no inverse elements with respect to + and "•". 

In fact X -  Y = [0, 0] , if X = Y = [x, x] 

and Y= [1, 1], if x = [x, x] and Y= [1/x, 1/x]. 
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2.2 Fundamental Properties 

A fundamental property of interval computations is inclusion monotonicity as de-

scribed by the following: 

Theorem 1 Let Xk, Yk E I, k = 1,2... such that 

Xk g Yk,k = 1,2... 

Then for the operations * E {+, -, •, /}, it follows that 

xi*xjc— Yi*Yj. 

Hence if x E X and y E Y then x * y E X * Y, a property that may be used to 

embed real algorithms in interval algorithms. 

Definition 

If g(v) is a continuous unary operation on R , then 

g(x) = [mm g(x) , max g(x)] , x E X 

defines a corresponding unary operation on Th. 

The unary operations g(x) have the following properties: 

XçYg(X)cg(Y) 

x E X g(x) E g(X). 

We denote the width of an interval [x1, x2] by 
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w([x1, x2]) = x2 - X1. 

The distance between a pair of intervals is defined as the nonnegative function 

d(X,Y) = d([xi,x2], [Y1, Y21) = max(lxi - Y1 1, Ix2 - y21) 

Thus a sequence of intervals A1, A2, ..., A,, , where A = [an, b] , converges to 

the interval A = [a, b] if d(A, A) converges to zero i.e. a -* a and b -+ b. 

We now describe briefly the interval arithmetic relating to matrix operations 

Firstly an interval vector is a vector whose components are intervals X E IR. In 

same manner, an interval matrix is a matrix whose elements are intervals. The prod-

uct of two interval matrices using interval arithmetic is an interval matrix consisting 

of interval elements. The set of interval vectors with ii components and the set of 

interval m x n matrices are denoted respectively by IRn and fli?!'. The mid-point, 

radius, and absolute value of a matrix M G JmXn are understood componentwise 

and denoted by M = midM, p(M) = rad(M) and IMI respectively. An interval 

vector is also called a box in the sequel. 

A linear interval equation AX = b with coefficient matrix A and right hand side 

b is defined as the family of linear equations: 
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where A E A, b E b. The solution set of AX = b is the set S 

S = {.k E IAk = bfor.someA E A,7 E b}. 

The solution set S is bounded if A is regular i.e. if all matrices AE A have rank 

n. A sufficient condition for the regularity of a n x n interval matrix is that A_i 

exists for each A E A. (See Ortega and Reinboldt [17]). 

2.2.1 Extended Interval Arithmetic 

The extended interval arithmetic introduced first by Alefeld [1] and independently 

by Hansen [4] makes the following assertions with regard to the binary operation of 

division. 

Let X = [X1, X2] and  = [yi,y2]. Suppose 0 E Y 

We now define 

x/y= 

[x2/y1, oo), if x2 ≤ 0 and Y2 = 0, 

(—oo) x2/y2] U [x2/y1, +co), if x2 ≤ 0, and Y2 > 0, 

(—oo,x2/y2], if X2 ≤ 0 and Yi = 0, 



CONTENTS 

(—oo, x1/y1) , if x1 ≥ 0 and Y2 = 0, 

(—oo) x1/y1] U [x1/y2, oo), if x1 > 0, y1 < 0 and Y2 > 0, 

[xi/y2,+oo),ifx1 ≥ 0 and y1 = 0, 

(—oo, +oo), if x1 < 0 and x2 > 0-

11 

Some basic operations with the above intervals, useful to our calculations with 

the interval Newton method are: 

xi - [ci, +00) = (-00, Xi - ci], 

xi - (— co, d] = [x - d, oo), 

xi - (—oo, oo) = (—co, oo), 

xi - (—oo, d1} U [ci, +oo)= (—oo, x - c] U [x - d, oo). 

Also 

x + [— ci, cc) = [x - c, co), 

x + (—oo, oo) = (— co, co), 
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x + (—oo, d] = (— oo, x + di), 

Xi, c,d1 € R. 

2.2.2 Combinations of Intervals 

Formulas relating to combinations of intervals may be deduced using interval arith-

metic. Alefeld-Herzberger [1] lists a number of such formulas. 

Some important results in this regard are: 

w([x,y]) = y - x , mid([w,y]) = (x + y)/2, 

w(xX ± yY) = IxIw(X) + ylw(Y), (w = width) 

mid(xX ± yY) = a .mid(X) ±y .mid(Y). 

Also if x, y E R and X = [—x, a,], Y = [yi, Y2] , then 

XY = X max (IyiI, Y21), 

X/Y=X/yi if Y, > 0, 

X/Y=X/y2 if Y2 < 0, 
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w(XY) = 2(x)max(IyiI, Iy2I). 

The usual set theoretic operations of intersection and union are applicable for 

intervals, but these operations can lead to sets that are no longer intervals. 

2.3 Uses of Interval Analysis 

After the seminal work by Moore [13] a large amount of interest was shown in interval 

analysis. After all, it was ideally suited to deal with the roundoff errors in floating 

point computations automatically. This follows from the inclusion monotonicity 

which allows algorithms developed in real arithmetic to be transformed into machine 

interval arithmetic algorithms via the use of a machine interval arithmetic embed-

ding the usual interval arithmetic. When the machine operations are performed on 

intervals then the machine interval arithmetic must be so designed that it rounds 

outwards. For the details of this process see for example Alefeld and Herzberger 

[1]. It is now natural to ask why is interval arithmetic not in universal use since it 

provides guaranteed error bounds. The reason for this is that the simple interval 

arithmetic versions of numerical algorithms provide only very pessimistic results in 

general. If the 7 >< 7 Hubert matrix is inverted using the interval Gaussian inversion 

procedure then the width of the results (using 26 bit mantissa) is of the order 10. 

Research in interval arithmetic therefore focusses on developing methods that are 

taylored to generate narrow intervals. Many of these methods are found in Alefeld 

Herzberger [1] and Ratschek Rokne [20] as well as in the published literature. 



CONTENTS 14 

In this thesis we extensively discuss the extension of the usual Newton's method: 

(n+1) = - (J(x ( ))_' f(x) 

to interval spaces given by the iteration 

y(n+i) = m(X(")) - (J(X()))' f(m(X)) 

with x') = y(n+i) n ( x(°) is given ) (see Moore [13] and also the 

development in the following chapters). 

In this algorithm, only J(X(")) is evaluated for an interval argument as opposed 

to some root finding procedures where the evaluation of f over an interval of nonzero 

width is required. This means that the interval Newton iteration produces sharper 

results in general. It can be shown that the convergence of the method is quadratic 

to a simple root X 

i.e. HX'' - X ≤ -'IX - X 2, n = 0,1,2... 

where -y =constant. 

Convergence also seems to occur for multiple roots, but it can only be linear 

convergence. Newton's method also can not be used to bound multiple roots for if 

0 E J(X) then (J(X)) 1 would be undefined unless the extended interval arithmetic 

approach as described in the previous section is used. 

Notice that the obvious extension 

= - (J(X(Th)))_1 . f(X()) 

would lead to intervals that grow in size in each iteration, supporting the general 

requirement of having to taylor, not just translate the methods to interval spaces. 



Chapter 3 

Solving Systems of Nonlinear Equations 

3.1 The Basic Iterative Methods 

We now consider methods for solving nonlinear equations: 

f(x) = 0 

where f = (f . ..... f)T and f(x) is a nonlinear function of a real vector 

(3.1) 

Using the Mean Value Theorem, we can approximate the system (3:1) at a point 

x with 

Ax = b (3.2) 

where A is an n x n matrix and b is a n x 1 column vector (see the development in 

the sequel). The case of principal interest for the applications is one in which A is 

nonsingular i.e. A 1 exists, then system (3.2) has a unique solution x = A 1b. 

A powerful method for attacking nonlinear and also linear equations is the method 

of successive substitutions or the method of iteration. This procedure originated in 

the writings of Heron of Alexanderia [2] in the second century B.C. in connection 

with the extraction of roots. In modern times Cauchy and Picard [25] have used this 

technique to establish the existence of solutions of differential equations. An abstract 

15 
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formulation of these results as the contraction principle was achieved by Banach [3]. 

A full survey of the application of this principle to theoretical and computational 

problems can be found in the literature. An equation which can be approximated 

with sufficient accuracy can be solved numerically, once the convergence of the se-

quence and approximate error bounds have been established. As an example New-

ton's method for solving scalar algebraic and transcendental equations is well known 

for its simplicity and effectiveness. Ostrowski [18] generalized Newtons's method to 

systems of equations and Kantorovic [11] extended it to the operator equations in 

Banach spaces. The method now provides a powerful tool for theoretical as well as 

numerical investigations of nonlinear operator equations. 

Using the Mean Value linearization repeatedly gives Newton's iteration formula: 

(k+i) = (k) - (f'(x(k))) - 1 . f(x(')), k = 0, 1, 2... (3.3) 

Procedure (3.3) is restricted by the assumption that (f'(x(l)))1 exists for all Ic. 

The advantage to linearization of a nonlinear equation is that the highly developed 

theory and machinery for solving linear equations or inverting linear operators can 

be employed. The concept of iteration proceeds from the idea that, if x(0) is close to 

the actual solution x, then x(1) is possibly closer and the iteration procedure may 

be repeated to obtain successive approximations x(2), ... to xK. Equation (3.3) is 

sometimes written as: 

f'(x')x'1) = f'(x(')) . (k) - (3.4) 

Equation (3.4) has some computational advantages over equation (3.3) since the 

inverse operator is no longer required explicitly. 
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Variants of Newton's Method: 

Many computational methods for the solution of nonlinear operator equations are 

related in some simple way to Newton's method. For example if an approximation 

to (f'(x(k))_l is used then a variant of Newton's method would result. This could 

for example include the computational error in the generation of the exact Newton 

sequence. Perhaps the variant of Newton's method of greatest interest is the modified 

form of Newton's method: 

- [f'(x(°))]' . f(x(k)), k = 0, 1,2... (3.5) 

For this procedure the labor of calculating f'(x(0)) and its inverse is done only 

once, and the fixed point is obtained using the modified Newton operator: 

N(x) = x - [f'(x0))11 f(x). (3.6) 

The price paid for the computational simplicity of the modified form of Newton's 

method is a slower rate of convergence. 

The Basic Iterative Methods: 

We will now discuss briefly the four basic iterative methods, namely the Jacobi, 

Gauss-Seidel, Successive Overrelaxation (SOR), and the Symmetric Successive Over-

relaxation (SSOR) methods. For illustration purposes, we apply these methods to 

the system of linear equations (3.2). One of the simplest iterative methods is that 

of Jacobi. The iterates are given by [17] 
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(k+1) = (1/a1)[b1 - 

3 

aijx(k) ], (3.7) 

where  = 1,2,... and A= [a],a j 0 0. 

If we let D = diag (a11 ,. . . , a,) and B = D - A, then (3.7) may be written as 

= D_lBx(k) + D'b, k = 0, 1... (3.8) 

If we assume that the computations in (3.7) are done sequentially for i = 1,2,. . . n, 

then at the time we are ready to compute ;(k-i-i) the components x1(k+i) (k+1) ,. . . , 

are available and we may compute x/1) using 

= (1/a1)[b - a' - ajx],  . n. 
j=1 

(3.9) 

The procedure (3.9) is called the Gauss-Seidel iteration. If we let A = D + £ + U, 

where L is strictly lower triangular and U is strictly upper triangular part of A, then 

iteration (3.9) may be written as 

(k+,) = —(D + £) 1Ux(k) + (D + L) 1b, k = 0,1,2..... 

Both iterations (3.8) and (3.10) are of the form 

= Gx(k) + d, ic = 0,1,2, 

and 

(3.10) 
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= Gx* + d ) 1ff Ax* = b. 

If A E is an M-matrix and b E Rn,then the Jacobi iterates (3.8) and the 

Gauss-Seidel iterates (3.10) converge to A 1b fr any (°) ( Varga [23] ). 

A modification of the Gauss-Seidel iteration is known as Successive Overrelax-

ation (SOR). In this iteration, the Gauss-Seidel iterate is computed as before 

by 

(1/a){b - ax ' 

but the new value x(k+i) is taken to be 

(k+1) = (k) + ,'. - xi (k) 

aij  (3.11) 

(3.12) 

for some parameter w. If w = 1, then x1) is just the Gauss-Seidel iterate (39) 

The procedure (3.11-3.12) may be written as 

where 

(k+1) = H'  + w(D + wL) 1b, k= 0,1  ... (313) 

II = (D + wL) 1[(1 — w)D — wU]. (3.14) 
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It can be shown that the iterates (3.13) converge for all °) if p(H(,) < 1, and 

hence 0 < w < 2, (w = real). In fact, the SOR iterates (3.12) converge to A'b for 

any and b E Rn, if A E f(''<')is symmetric positive definite and 0 ≤ w ≤ 2. 

(Ostrowski- Reich Theorem [23] ). 

The following result on the convergence of Jacobi, Gauss-Seidel and the SOR 

iterates is particularly useful: 

Theorem 2 If the matrix A is an irreducibly diagonally dominant M matrix and is 

also symmetric positive definite, then the Jacobi and Gauss-Seidel iterates converge 

to the unique solution of the system (3.2) and also, the SOR iterates converge for 

any .o E (0, 2), 

The Symmetric Successive Overrealaxation method (SSOR), (Sheldon[21]), is the 

same as the SOR method except that one computes Y'I2 based on x using a 

(k+i) (k+1/2) forward sweep and then computes x based on x using a backward sweep. 

The forward sweep is the same as the SOR—method; thus the values a/h/2) are 

the same as one would get for using the SOR—method. One then applies the 

SOR—method using the equations in the reverse order to complete the iterative step. 

3.2 Solving Systems of Nonlinear Equations Using I.A. 

We now turn to the main topic of the thesis, the solution of non-linear equations 

using interval analytic techniques. 
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Mathematical Developments 

Let a vector f = (ft, ..., f) of n real, nonlinear functions of a real vector x = 

(x1, ..., x)T be given. We consider Newton-like methods for finding solutions to 

f(x) = 0. Moore [13] first introduced an interval analytic method for finding and 

bounding a solution y which we now develop here. Let the equation to be solved be 

AX) = 0. (3.15) 

Using the Mean Value Theorem and expanding f(x) about y, we obtain 

f(x) = f(y) + J(e)(x - y) 

where x ≤ 6 ≤ y, and where J() is the Jacobian evaluated at a point 6. 

Thus if y is a solution of f, equation (3.16) yields 

- y) = f(x). 

(3.16) 

(3.17) 

If was known then solving (3.17) would yield the solution y for a given X. Since 

is not known approximations have to be used. Replacing 6 by x and iterating yield 

(3.3) or (3.4). 

Moore [13] instead observed that if X is an interval vector containing x and y, 

then 6 E X. Hence the set N of points z satisfying 

AX) (X - z) = f(x) (3.18) 
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where J(X) 2 {J(x)Ix E X} contains y for any x. For simplicity x is taken as the 

mid (X). 

From (3.18), we obtain 

N(X) =mid(X) - (J(X)) 1 f(mid((X)). (3.19) 

where N(X) is called the interval Newton function. (J(X)) -1 is a kind of inverse 

of J(X) in that we require that for all A E J(X), A E A 1 E (J(X))'. 

Choosing x(°), we define the sequence of intervals x('), x2), ... by 

= N(X(v)) n x() (3.20) 

X(I) is given. 

Equations (3.19)-(3.20) represent an interval version of Newton's method. A 

necessary condition for N(X) to be defined by (3.19) is that X must contain at most 

one zero and such a zero be a simple root i.e. not simultaneously a zero of f and 

x E X(0). An interesting result is that if a simple root x E X then x E N(X), 

and if N(X) fl x is empty then X does not contain a zero of f (see [13]). These 

simple properties form the basis of most interval Newton-like methods. 

Hansen [4] pointed out that it is not necessary to find the exact inverse (J(X))', 

as required by Moore's procedure. He multiplied equation (3.18) by an approximate 

inverse B of mid J(X) and applied Gaussian elimination procedure to 

M(X)(x - z) = b (3.21) 

where M(X) = BJ(X), b = Bf(x) and x = mid (X). 
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Krawczyk [8] introduced a variation of the interval Newton method which avoided 

Gaussian elimination of an interval matrix by not attempting a solution of (3.21). 

He in fact computes the box 

If (X) = x - Bf(x) + [I - BJ(X)](X - x). (3.22) 

This box contains every solution of equation (3.18). The equation (3.22) solves 

equation (3.21) approximately for a bound K(X) on the i1h component of the solu-

tion set Z. 

Hansen and Sengupta [6] suggest the iteration 

= n K(x() ), (i = O 1,2...) (3.23) 

with (3.22) to ensure successive convergence. 

Simultaneous iterations for components Ifi computed from 

Ki = xj—b+L1(K_xa)+ELa(Xa —x1) (3.24) 

where b = Bf(x), L = I - 13J(X) and = K fl x,. serve as a major improvement 

to Krawczyk's original procedure. Inspite of the modification, Hansen-Sengupta [6] 

noted that even though box determined by (3.24) bounds the solution set of equation 

(3.21), it is not the smallest such box. Thus Hansen-Sengupta, following a different 

approach, obtained a box, which is generally smaller than If (X). Noticing that the 

matrix M(X) is almost a diagonally dominant matrix resembling the identity, they 

write M(X) as 

M=D+L+U 
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where D, L and U are diagonal, lower triangular and upper triangular matrices re-

spectively. The approximate solution X' of (3.21) may now be obtained as 

Y = x - D-1 [b + L(X' - x) + U(X' - x)], (3.25) 

X'=Ynx. (3.26) 

When a Dii contains zero, Hansen-Sengupta [6] make use of the extended interval 

arithmetic introduced by Alefeld [1] and Kahan [9] as well. The intersections in the 

system (3.26) produce a finite result. 

As mentioned earlier, Hansen and Greenberg [5] have made a noteworthy attempt 

in producing a simple but most efficient algorithm that combines the best features of 

known algorithms. They have utilized the preconditioning, a relaxation procedure, 

a real (noninterval) iteration to speed up the elimination procedure. The extended 

interval mathematics is employed as before to obtain a finite solution. The order in 

which these operations must be performed is important for achieving efficient results. 

The main steps are summarized in the following mathematical procedures: 

A. Preconditioning 

M(X)(x - z) = b 

where M = BJ(X), b = Bf(x), B = mid(J(X)) 1. 

M is an almost diagonally dominant matrix close to unit matrix I. 

B. Hansen-Sengupta Step 

11 = xi - (1/M1)[b + E Mjj(X - 

j=1,joi 
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C. The Real Iteration 

where X(IC) = mid (X(k)). 

Iteration terminates when 

or 

= - Bf(x(')), k = 0, 1, 2... 

I If(x)I I < 2• I If(x')I I 

IIf(x(r))II < io-. 

D. The Elimination Iteration 

- Y) = b, (M = LU) 

Zi = xi - [G - E7+1 U1(x1 - Xj)IlUii 

X := XflZ 

where for Uij and G, we have 

Lg=b, 

and g E G = U(x - Y) which is the box containing the required solution. 



Chapter 4 

The Hansen / Sengupta / Greenberg Analysis 

4.1 The Hansen-Sengupta Method 

In this Chapter, we examine the application of interval mathematics to bound a solu-

tion of a system of nonlinear equations arising from a given vector equation f(x) = 0, 

where 

f(x) = (fi, 
f ,) 2,. 

Each component fi(x), (i = 1,2..., n) is a nonlinear function of a real vector 

Moore[13], the 'father' of interval mathematics is one of the early researchers to 

have discussed this problem using interval analysis. As pointed out in Section 3.2 

he is credited for implementing the interval mathematics into the multidimensional 

Newton's method, thus establishing a new framework for further research. Hansen's 

implementation is more sophisticated and hence it is described here. 

We consider the equation: 

f(x)=0 or fj(x)=0,(i=1,2..n). 

Using the mean value theorem about the point y, we obtain 

(4.1) 

f(x) = f(y) + (x - y)(8/ax)f[y + O(x - y)] (4.2) 

26 
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where Oi E [0, 1]. If y is a solution vector for equation (4. 1), then f(y) = 0 and 

equation (4.2) reduces to 

f  = J()(x - y). 

Here J() is the Jacobian matrix with the elements 

(ô/Ux)f[y + O(x - y)] 

(4.3) 

where = y+O(x - y),Oi E [0, 1]. 

Let x, y E X. Suppose J(X) is the natural interval extension of the matrix J(c) 

and X is the interval containing y. We may write (4.3) as 

J(X)(x - z) = 1(x). (4.4) 

The solution of equation (4.4) is defined as the set 

Y(x,X) = {zIA(x - z) = f(x),A E J(X)}. (4.5) 

The set Y of points . satisfying (4.5) contains y. 

Starting with an initial box X(°), new iterates for the solution are obtained by 

the procedure 

Y'(x('),X(')) (4.6) 

To achieve good results, the intersection is done for a component of y(n+1) as 

soon as it is obtained. 
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4.1.1 Hansen's Preconditioning Technique 

We now return to the solution of (4.4). Hansen [4] was perhaps first to point out 

that equation (4.4) is solved best by multiplying both sides of it with an approxi-

mate inverse of mid (J(X)). This results into a preconditioning of equation (4.4) 

most likely giving rise to a regular system. Let B denote this approximate inverse. 

Multiplying (4.4) with B yields 

M(X)(x - z) = b (4.7) 

where M(X) = BJ(X) and b = Bf(x). The system (4.7) now contains an almost 

diagonally dominant matrix M(X), providing the widths of the Jacobian entries are 

not too large. Such systems are amenable to Gauss-Seidel type iterations because 

of the diagonal dominance. Interval Newton methods differ in their approach for 

solving equation (4.7). They also differ in how the arguments of J(X) are chosen. 

For simplicity the x in (4.7) is taken as the midpoint of X. 

Moore [13] who introduced the first interval Newton method solved equation 

(4.7) by finding a kind of inverse of the interval matrix J(X). This meant that 

an interval matrix [M(X)]-' of equation (4.7) is computed that contains the inverse 

of each noninterval matrix D E M(X). Thus each J(X) had to be nonsingular. 

Some subsequent works, however, no longer make this stipulation. Application of 

extended interval arithmetic coupled with equation (4.6) give a bounded solution. 

This modification is described in the work of Hansen and Sengupta [6] and discussed 

here later. 
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4.1.2 Krawczyk's Successive Iteration 

A variation of the interval Newton's method, which avoids the Gaussian elimination 

for a sharp solution of equation (4.7) is due to Krawczyk [8]. Historical develop-

ment of Krawczyk's successive iteration presented by Hansen and Sengupta [6] was 

included in Section 3.3. Hansen Sengupta have used Krawczyk's successive itera-

tion in conjunction with the Gaussian elimination described in next section. In this 

section, we review Krawczyk's technique in light of Hansen Sengupta's work [6]. 

Krawczyk introduced a box 

K(X) = x - Bf(x) + [I - BJ(X)](X - x) (4.8) 

which contains every solution of (4.4). With this approach, one is solving the 

equation of (4.7) for a bound K(X) on the i1h component of the solution set Y(X). 

Krawczyk [8] showed that if a solution y of (4.3) is contained in a box X, then it is 

also contained in box K(X). But since K(X) may not be contained in X, we use 

the iterative intersections: 

= n K(x(")), n = 0, 1,2... (4.9) 

where the initial box x(°) is known. 

The convergence of the simultaneous iteration is improved, if it is used in a 

successive iteration mode. That is the component Kj(X), (i = 1,2, ...n) is computed 

as demonstrated by Wolfe [24] e.g. 

= xi — b+L(K —xi) (4.10) 
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where 

b=Bf(x), L=I—BJ(X), K=KflX. 

The intersection I< of I<j and X is found as soon as Kj is determined using the 

best currently available values. Each iteration of (4.10) determines a new Krawczyk 

box for bounding the solution of linearized system (4.7), however, it may not be 

the smallest such box as one would expect. To overcome this situation Hansen and 

Sengupta[6] have suggested a different approach for bounding the solution. The box 

containing the solution in their method is generally smaller than K(X). Moreover 

each iteration in Hansen and Sengupta's method produces a greater reduction in the 

current box than does Krawczyk's method. Fewer steps are therefore required for 

the overall numerical convergence. 

4.1.3 Gaussian Elimination Using Extended Interval Mathematics 

Hansen and Sengupta start with the equation (4.7) as proposed by Hansen [4] i.e. 

M(X)(x—z) = b (4.11) 

where M(X) = BJ(X) and b = Bf(x). The matrix M(X) is believed to approxi-

mate closely the identity matrix and therefore normally exhibits diagonal dominance. 

The interval matrix M(X) is now decomposed as the sum 

M(X) = D(X) + L(X) + U(X) 
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where the matrices D, L, and U are the diagonal, lower and upper triangular matri-

ces, respectively. We now consider the i1h equation in system (4.11) and solve it for 

the jth variable, while replace others by their bounding intervals. Successive iteration 

is again employed as in Krawczyk's method. 

The approximate solution X' is obtained from 

Y = x - D 1[b + L(X' - x) -i- U(X' - x)] (4.12) 

and Y = YflX. 

Each component Yj, (i = 1, 2...) is immediately intersected with Xi and the most 

recent value X = Y% fl x. then used for obtaining Y, % ..., . The component 

form of equations (4.12) are: 

M(X—x1)] (4.13) 
j1 

and X" = Yi fl X, (i = 1,2 ... n) where Dii are the diagonal elements of matrix D. 

Hansen and Sengupta are also able to deal with the case in which the Dii might con-

tain zero for one or more values of i. In such a case, the extended interval arithmetic 

is employed to compute Yj. Although the reciprocal of an interval containing a zero 

is the union of two semi-infinite intervals, the intersection of such a set with bounded 

intervals, during successive iterations, produces at most two bounded intervals. The 

method can therefore handle zero slopes which ordinary (noninterval) methods can-

not do. That is, one can find roots of any multiplicity in higher dimensions as well, 

using the extended interval arithmetic described earlier in Section(2.1.1). The iter-
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ation defined by (4.13) can be written in the form: 

y(k) = (k) - (D(k))_1{b(l) + L()(X(k+1) - + U(X(lc) - (4.14) 

x(k+1) = y(k) flx(k),(k = 0,1,2...). 

The following theorem due to Hansen and Sengupta [6] ensures the convergence 

of algorithm (4.14) under appropriate conditions. 

(k) Theorem 3 Let ak (k) = max w(X ),  max (k) -ii, and Yk = max >Ij1,j•i IM I 

each maximum is for i = 1,2, ..n and w(XJ') denotes the width of X. 

If f has a single zero x in x ° and if for some k = 0, 1,2.., the conditions 

/3k ≤ 2/31/2 - 1 and -y ≤ (1 - /9)/2 hold, then X(k) -+ x. 

For sufficiently small w(X(')), the /3k and 'yj are monotonically decreasing with 

k and thus the hypothesis of the theorem are satisfied for any value of k. And 

X') C X(c), while x('') __> X'. 

4.2 The Hansen And Greenberg's Method 

In the following section, we will discuss and analyse the interval Newton method 

for bounding solutions of systems of nonlinear equations, as introduced by Hansen 

and Greenberg [5]. Basically, the method involves three subalgorithms. The first 

is a Gauss-Seidel type step as in Hansen and Sengupta's [6] work presented earlier. 

Secondly, a real ( noninterval ) Newton iteration is used to obtain an improved ap-

proximation for a zero, if one exists. Finally the solution of linearized equations is 
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attempted by performing elimination using the regular LU decomposition of the M 

matrix. Hansen and Greenberg have in fact combined the three known subalgorithms 

used in earlier works into a single algorithm of greater efficiency. In subsequent work 

of the thesis, we will show how some additional steps into the algorithm, can result 

in further improvement of the algorithm for a certain class of problems. 

As shown earlier, we can expand the function f(x) about y using the Mean Value 

theorem and if y is a zero of f, we obtain 

- y) = f(x). (4.15) 

If X is an interval vector containing x and y then the point c € X. Replacing 

J(c) by the matrix J(X), we find that y is contained in the set Z of points z satisfying 

J(X)(x - z) = 1(x). (4.16) 

As noted earlier, the interval Newton methods find an interval vector Y(x, X) 

containing Z, which would satisfy (4.16) i.e. 

Y(x, X) = {zIA(x - z) = f(s), A € X}. (4.17) 

Starting with an initial bound x(°), a new iterate is obtained as 

= Y( ')(x('),X(' )) fl (4.18) 

For improved efficiency, the intersection (4.18) is done for each component of 
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as soon as it is obtained. 

Following the earlier works [4], Hansen and Greenberg multiply (4.16) with the 

approximate inverse of midJ(X). The equation (4.16) then reduces to 

M(X)(x - z) = b (4.19) 

where M = BJ(X), b = Bf(x) and B =[midJ(X)] 1. 

It would be natural to attempt the solution of (4.19) in one step with the exact 

interval arithmetic using Gaussian elimination. However, this method cannot always 

be employed since it is possible that M could contain a singular matrix or that the 

interval growth results in a division by zero. The interval growth during the elimi-

nation process also produces poor results. If the interval growth did not occur, then 

the Gaussian elimination would be preferable to the earlier works of Krawczyk and 

Hansen- Sengupt a, as the present technique offers Z and not just an inclusion for Z. 

Hansen and Greenberg, therefore apply Hansen and Sengupta's Gauss-Seidel step 

and use a real (noninterval) iteration to improve x, to evade growing intervals be-

fore elimination is attempted. Following Wolfe [24], Hansen and Greenberg also use 

inner iterations to reduce the number of times J(X) and therefore M(X) must be 

computed. The real iteration as dscribed in the work below, in fact, serves as an 

inner iteration. Performed repetitively, this inner iteration improves the efficiency of 

the algorithm, since recalculations of M(X) are reduced and the elimination yields 

a more accurate solution. 
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The method of Hansen and Greenberg can be summed up with the following 

procedures: 

4.2.1 Initial Hansen-Sengupta Step 

Performing the Hansen-Sengupta step on (4.19), we obtain 

Yj = x— — x)+ E  M(X—x)]. (4.20) 
j=1 j=i+1 

Since M was obtained by multiplying J(X) with the approximate inverse B of 

midJ(X), M should ideally approximate the identity matrix I. The diagonal el-

ements Mii may, however, contain a zero. If that is the case, then the extended 

interval arithmetic is used to solve the i1h equation of (4.19). Z3 have been replaced 

by X1 in (4.20) for all j 54 i. Thus the interval Yi contains every solution zi in X. 

Calculations are performed first for those i for which 0 and each Xi is replaced 

by X given by 

x; = x - . (4.21) 

If the intersection (4.21) is empty, it means that there is no solution in the box X. 

When the intersection is not empty, the improved values of Xi are used to calculate 

the 's for those i such that 0 E 

Two cases arise 
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1. If both 0 E Mij and 0 E b + M(X - xj), then Y = (—co, oo) , which 
3=1JOi 'j 

serves no useful purpose. 

2. If 0 E Mu and 0 bi+1,o Mij  —xi), then Y consists of two semiinfinite 

intervals which exclude a gap i.e. an open interval. The intersection Yinxi may 

be empty or consist of one or two intervals. The first two cases may be dealt 

with as we did when 0 D Mii. In the third case, where two new intervals arise 

we find the largest gap which would split the box , but save it until the other 

techniques have narrowed it down. This suggests that one should strive for a 

better value of X; an extended interval arithmetic calculations tend to provide 

a wider gap, when x is a poor approximation. Real iteration (noninterval) as 

illustrated below is indeed an attempt to obtain improved approximation. In 

subsequent analysis, the present thesis outlines steps that would further en-

hance the value of such an approximation. 

4.2.2 The Real (Noninterval) Iteration 

If (°) = mid(X(°)) i.e. center of box x(°), then we compute x1) using 

= - Bf(x (')),(k = 0,1,2,...,r). (4.22) 

If x(1) is not in X'), we find the point on the boundary of X'') which is 

on the line connecting x(0 to x(1) and use this as a replacement for This 

process may be stopped when 
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IIf(x)II < 2.IIf(x(r+l))II 

under some norm of f. This improved value of x is used for elimination or Hansen 

and Sengupta's iteration discussed earlier. The real iteration may also be stopped if 

IIf(x("'))II < iO. It should be noted at this point that a generalization of (4.22) 

discussed in Chapter (5) leads to a much improved value of x for a certain class of 

problems, offering a higher efficiency for the overall algorithm. 

4.2.3 The Elimination Iteration 

When an x has been found so that IIf(x)Ij is sufficiently small, the elimination 

method is applied to obtain an " exact" solution in a finite number of arithmetic op-

erations assuming exact arithmetic. Under certain conditions, for example if IIf(x)II 

is very small, the interval arithmetic will also yield acceptable solution. These con-

ditions would apply, especially if the matrix M(X) is very near the identity matrix. 

The matrix M(X) is strongly diagonally dominant and therefore pivoting is no longer 

required in the elimination procedure. However, if X is not small enough, we would 

return to the relaxation procedure described above, before resorting to this elimi-

nation iteration. This elimination procedure ( a Gaussian elimination) adopted by 

Hansen and Greenberg is also described in detail by Ratschek and Rokne [20]. 

We obtain an LU decomposition of the interval matrix M so that 

M ç LU (4.23) 
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where L and U are the interval lower triangular and upper triangular matrices. Equa-

tion (4.19) for the solution set Y containing points z can now be written as 

LU(rc - Y) = b. (4.24) 

Due to inclusion behaviour of matrix M in (4.24), it is clear that no zero of f is 

being lost through the use of (4.24). 

It is possible that the decomposition of M into LU involves a division with an 

interval containing zero. Although the extended interval mathematics could he used 

for this case as well, further manipulation in this direction may weaken the ap-

proximation. It is best therefore to return to the relaxation procedures for a more 

favourable cycle of calculations. 

In order to solve equation (4.24), we first consider the simpler equation 

Lg = b (4.25) 

where g E C U(x - Y) is the box containing the required solution Y. 

The solution of interval equation (4.25) may also lead to a division by an interval 

containing zero, the process may be terminated and routed back to relaxation stage. 

Otherwise, we now proceed with the succeeding equation containing the solution i.e. 

U(x - Y) = G. (4.26) 

Equation (4.26) is now solved for Y using the procedure 
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Zi = xi - [Gi U(x - X)]/U. 
j=i+1 

(4.27) 

where x, z, denote the components of x, and z, and Z is now the box containing 

the solution set Y. 

4.2.4 Order of Steps in Hansen-Greenberg Algorithm 

As noted in the preceding analysis, the solution to equation (4.16) involves a precon-

ditioning, relaxation procedure, and local iteration, concluding with the elimination. 

Even though, we have resource to the extended interval mathematics for possible 

division by a zero, for convergence of results, we would prefer to terminate certain 

procedures with the hope that the increased relaxation and local iterations would 

perhaps produce more favourable results. The application of four main steps namely: 

1. Preconditioning 

2. Relaxation 

3. Local Iteration and 

4. Elimination 

can proceed systematically in the following order: 
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1. Calculate J(X) and the approximate inverse B of the mid J(X). 

2. Apply the preconditioning step to equation (4.16) and obtain 

M(x - Y) = b. Set x = mid (X). 

3. Apply the relaxation procedure i.e. the initial Hansen-Sengupta step to im-

prove X and x by solving M(x - Y) = b. Perform first Hansen-Sengupta step 

for those i such that 0 ? Mij. Then perform a Hansen-Sengupta step for those 

i such that 0 G Mii and save the largest gap for final splitting, as described in 

step (8). 

Thus 

Yi =x—(1/M) [ M(X — x)+ E  M(X — xi)]. (4.28) 
j=1 j=i+1 

x; = x2 . 

where x = mid(X) and Y is the superset of the solution set of equation 

M(x —Y)=b. 

4. Employ the local iteration i.e. the real (noninterval) procedure: 

= Mid(X(°)), 

= (n) Bf(x()) 

to improve x, until x is near the solution i.e. f(x) is sufficiently small. If f(x) 
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is sufficiently small i.e. Hf(x)II < i0 proceed to the elimination step (6). 

5. If IIf(x)II is not sufficiently small, perform a Hansen-Sengupta step for those 

components such that 0 9 M ij. If X has improved significantly set x = mid 

(X) and complete the Hansen-Sengupta step saving the largest gap. 

6. Apply the elimination procedure, i.e. LU decomposition of M for improving 

X. The following possibilities exist. 

a) The elimination process is leading to a significant improvement in the width 

of X which means that the ratio of old box width to the new box width is less 

than 0.9. In this case, the elimination process is applied again with new value 

of X. 

b) The elimination process is not yielding any significant improvement in X, so 

we terminate elimination and proceed to splitting of X as indicated in step (8). 

c) The elimination process encounters a division by an interval containing zero. 

We terminate the elimination and perform simplified relaxation (step 7). 

7. In the simplified relaxation procedure a Yi is computed from (4.28) only if 

0 D Mi,. If X improves significantly we set x := midX and repeat the simpli-

fied relaxation procedure. ( The Yj with 0 E Mii are not calculated again, they 
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were already used to find the gaps). If X does not improve significantly even 

with the simplified relaxation, we will split X as in step (8) below. 

8. The splitting of a box is extended only as a last resort when further improve-

ment by other steps is unlikely. There are two possibilities: 

a) If the largest gap in step (3) occurs in the direction i, the box is split in the 

th direction. 

b) If the gap was obtained from step (7) due to lack of further improvement in 

the width X, we may split X at the mid-point of its largest component. 

All the split boxes are now put on a stack where they wait for further process-

ing. A new iteration is done with the largest box and a check made for the 

termination criteria in step (9). If the stack has no more boxes, that can be 

chosen as a new box then f has no solution in the original box x(°) and the 

algorithm is terminated. 

9. If the termination criteria is not fulfilled, then we must start with a new iter-

ation at step 1. 

4.2.5 Numerical Results 

Example 1 

We now apply Hansen-Greenberg's method to the solution of a nonlinear system 
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considered by Neumaier [16] namely 

fi(x i)x2) = x + 9x1 + x2 — 36 = 0, 

f2(xi,x2) = xi+x+ lOx2 — 3 = 0. 

The algorithm for the interval Newton method, using Hansen-Greenberg analysis 

has been implemented in Fortran by Ratschek and Rokne [20]. The illustration uses 

the following notations: 

the number of interval Jacobian evaluations 

= the number of interval matrix-vector products 

= the number of real value iterations 

= the number of interval LU decomposition procedures 

= the number of interval elimination steps 

= the number of executions of the relaxation procedure for those i with 0 J.VIj 

= the number of executions of relaxation procedure for those i with 0 € Mij 

s = significant improvement factor (when the ratio of the new box width to the 

old box width is smaller than a, then the box is said to have improved significantly 

by the relaxation procedure). 

The algorithm was executed for the above system with three different boxes. The 

significant width improvement factor .s = 0.9; and the procedure is terminated when 

each box on the list has width less than 10-6. The following results are obtained: 
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Box1 ([-4, 4] 
=I I. 
\ [-4, 4]j 

Solution(s) after 1 iteration(s) are 

= 0.3000000119E + 01, Tolerance = 0.1937150955E - 06 

= 0.8566780352E - 07, Tolerance = 0.4408870744E - 06 

f(xi) = 0.2384185819E - 05 

f(s2) = 0.9983778142E - 06 

ni = 1, n2 = 16,n3 = 2,n4 = 0,n5 = 0,n6 = 16,n7 = 0 

([2.5, 3.5] 

Box2= [-2, 2] 

Solution(s) after 1 iteration(s) are 

= 0.300000030E + 01, Tolerance = 0.1490116119E - 07 

= 0.3749835685E - 09, Tolerance= 0.3831625468E - 09 

f(x) = 0.9536743306E - 06 

f( 5 2) = 0.4470348403E - 07 

1,n2 = 2,n3 = 0,'n4 = 1,n5 = 1,n6 = 1777 = 0 

Box3 [2.9, 3.1] 
= 

[—.1, . 1] 

Solution(s) after 1 iteration(s) are 

= 0.3000000030E + 01, Tolerance =0.1490116119E - 07 

= 0.2010322412E - 09, Tolerance = 0.4731546665E - 10 

f(xi) = 0.9536743306E - 06 
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f(x2) = 0.4470348403E - 07 

n1 = 1,n2 = 2,n3 = 0,n4 = 1,n5 = 1,n6 = 1,n7 = 0 

All the three boxes enclose a single zero x (3, o)T as confirmed by Neumaier 

[16] following a different approach. The above example shows the relative frequencies 

of execution of the different components of the algorithm. In particular, the test 

results show a large number of ri2 and n6 steps for Boxi compared with other boxes 

due to a larger width of Boxi. 

Example 2 

Let 

f1(x) = x + x  

f2(x) = X1 - x2. 

Suppose 

[0.5, 1.0] 

[0.5, 1.0] 

Hansen- Greenberg's algorithm yields the following solution 

Wi = 0.7071067914E + 00, Tolerance = 0.3352761269E - 07 

0.7071067914E + 00, Tolerance = 0.3352761269E - 07 

with 

rti=1,n2=4,n3 =1,n4=1,n5=1,n6=3,n7=1. 

As before the significant factor is 0.9 and the tolerance limit is 1.OE - 06. 

Example 3 

Let 

fi(x) = X2 1 - 2x2 + 1, 

f2(x)=xi+2x-3. 
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Suppose 

= 

[0, 2] 

Solution(s) from Hansen-Greenberg's algorithm are: 

= 0.9999999627E + 00, Tolerance= 0.4097819328E 07 

= 0.1000000030E + 01, Tolerance= 0.1303851604E - 06. 

And 

= 0.1000000045E + 01, Tolerance= 0.1490116119E - 07 

= 0.1000000000E + 01, Tolerance= 0.1490116119E - 07. 

With 

= 3, 127 = 14. 

However, choosing 

[0.9, 1.1] 

I. 
[0.9, 1.1] ) 

We obtain the following solution: 

= 0.1000000000E + 01, Tolerance= 0.111758709E - 07 

= 0.1000000000E + 01, Tolerance=0.111758709E - 07. 

With 

1211,1222,fl30,124 1,fl5 1,fl6 1,fl7 0. 

The smaller width for the initial interval results in fewer iterations overall. 
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Chapter 5 

Some Procedural Improvements 

5.1 Improvement of Initial Interval Containing a Fixpoint 

Hansen and Greenberg [5] preconditioned the system 

J(X)(x - Y) = f  

by multiplying it with an approximate inverse of midJ(X), thereby obtaining the 

equation: 

M(X)(x—Y)--b (5.2) 

where M(X) = BJ(X), b = Bf(v), and B = [midJ(X)]'. 

As expected, the matrix M(X) would then become almost diagonally dominant 

matrix containing the unit matrix if the widths of the, elements of J(X) were not' 

too large. An approximate solution of equation (5.2) can be obtained by applying 

the noninterval quasi-Newton iteration: 

(n+1) = (n) - Bf(x()) (5.3) 

where = mid(X(°)). 

The system (5.2) may be now amenable to the Gauss-Seidel iterations due to 

the diagonal dominance of M(X). The detailed procedure described by Hansen and 

Greenberg examined in Chapter 4, nevertheless lead to a more acceptable solution. 

In the following section, we describe an extension of (5.2), in which the matrix 

M(X) is approximated by the unit matrix more closely. This additional condi-
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tioning of the system (5.1) will result in a more exact analysis for the relaxation 

and the elimination procedures. 

We use the following properties for the monotonic inclusion of inverse matrices 

A, setting A = I. See Alefeld and IHerzberger [1]. 

Let L(°) and u°) be two n x n matrices for which L(°) ≥ 0 and L° < I < u(°). 

When the sequences {L(c)} and {U('')}, k = 0, 1, 2 ... oo are calculated according to 

L( 1) = L(k) +(I - L(k)) - 

= U(k) + (I - U(k)) - U(k))VL(k) 

(5.4) 

(5.5) 

then the following statements are valid: 

a) 0 < L(°) < L(k) ≤ L(1+1).. ≤ I.. ≤ U(') ≤ U(') ≤.. ≤ u(°). 

b) Both sequences {L(c)} and {U(')} converge to I iff the spectral radius p(I - 

<1. 

c) If the procedure (5.4-5.5) converges then the quantities 

P-) = IIU" - L(k)H satisfy the relation 

d') ≤ y(d(k))r, ≥ 0, r > 0. 

For briefness, we consider only values of L('') and U 1) for ii = 0. Equations 

(5.4-5.5) are then approximated with 

or 

L( 1) L(k) + (I-  

U(h) + (I - 

(21 - 

(5.6) 

(5.7) 

(5.8) 
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U' (21 - U(c))U(c). 

We write equation (5.2) as 

(5.9) 

([L(° , U °)])(x - Y) = b. (5.10) 

We may further express equation (5.10) into two separate equations as follows: 

- Y)1 = bi, (5.11) 

and 

- = b. (5.12) 

Multiplying both sides of equations (5.11) and (5.12) with (21— L(°)) and (21— U(°)) 

respectively, and using (5.8-5.9), we obtain 

or 

- = (21 - 

- Y) = (21 - 

Equations (5.13-5.14) can be written back into a single equation 

(5.13) 

(5.14) 

({L (1), U(1)])(x - Y)1, = [(21 - L(°) )b1, (21 - U(°) )b] (5.15) 

- Y)1, = [(21 - L° )b1, (21 -  U(0 )b] (5.16) 

where M(1) = ([L(1), U(')]) is a better approximating matrix for I than M(°) = 

([L(°), U(°)]). Accordingly system (5.16) will yield a better approximation for Y than 
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the equations (5.2). The solution to system (5.16) may be obtained by solving the 

noninterval equations 

y(l) (0) —x1 —(21—L(°) )b1, 

y(') = - (21 -  

(5.17) 

(5.18) 

We illustrate our modified procedure with the help of the following examples: 

Example 1 

Let f(fl,f2) = 0, 

where 

f(xj,x2) = —1, (5.19) 

f2(xi,x2) = X2-1. (5,20) 

A fixpoint is clearly x" = (x1, x2) 

Suppose 

Then 

([0.98, 1.18] 

I. \ [0.98, 1.18] 

(1.08\ 

I' 
\ 1.08) 

J(x(°)) - 

(2x1 0 

0 32 
/ 
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J(X(°)) = ([1.962.36] 

midJ(X(°)) = 

[midJ(X(°))}' = 

Therefore 

2.16 0 

0 3.529) ' 

( 0.4629 0 

0 [2.8812,4.1772] 

0 0.2833) 

) 7 

M (0) - [0.9072, 1.0924] 0 ) 
0 [0.8162,1.1834] 

Notice that 

M°J 1 0 

01 

M(°) is thus a diagonally dominant matrix containing the unit matrix as expected. 

Using M(°)(x(°) - Y) = b, we obtain 

Therefore 

Y(I) - I [0.9029, 1.10298] ) 
[0.9064, 1.10643] 

= y(') n = ([o.98 1.10298] 

[0.98, 1.10640] 
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Thus 

1.04149 

1.043215 

is a better approximation for the fixpoint than the In fact 

= 0.1664, 

f2(x ° ,x °) = 0.2597, 

while 

fi(x 1, 4 1)) = 0.084700, 

f2(x', 41)) = 0.135328. 

We now use our procedure (5.8,5.9) to obtain a better approximating matrix 

M(1), for unit matrix I, than the matrix M(°) as used in above computations following 

Hansen-Greenberg [5]. 

Using the relations 

L(1) (21 - 

u(1) (21 - 

we find that M(') = ([L(1), U(')]) 

[0.99138, 0.99146] 0 

0 [0.96621,0.96636] ) 
M(') C M(°). Also comparing M(1) with M(°), we see that M(') is a better 

approximation for the unit matrix than M(°). 

We now compute the approximate values of 1Y,(') and Y4(') using relations (5.17-

5.18). In noninterval arithmetic 

(21—L(°) )b1= 

( 

( 0.084167 ) 
0.087092 
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and 

(21 - U°)b = (0.06990 

0.06007) 

Hence from (5.17) and (5.18), we obtain 

= y(i) = ([y1(:L), y(l)]) = 

and 

This gives 

f1(J 1,J 2) = 0.005940, 

0.019365. 

/ [0.895833, 1.1101] 

[0.892908, 1.11992] 

(1) = (1.002966 

1.006414 ) 

Clearly, the present value of X(') is a better starting value than the X(1) computed 

in the Hansen-Greenberg algorithm. This approach will lead to more accurate results 

with fewer applications of the Hansen-Sengupta steps and Hansen-Greenberg's real 

iterations in the subsequent analysis. 

Example 2 

Let 

f  = 

We take 

so that 

([0.98, 1.18] 

[0, 0.2] ) 

(1.08\ 

I. 
0.1 ) 
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Also 

J(X) 2X1 0 
= 

0 2X2 

Hence M(°) =mid[J(X(°))]' J(X(°)) 

[0.9072,1.0924] 0 / 1 0 
ID 

0 [0,2.0]) 0 i 

Using (5.17-5.18), we obtain 

Hence 

X(1)  ((l),y(1)) = ([0.89586, 

[0,0.2] 

X(') = ( 0.994583 ) 
0.1 

The exact value for fixpoint is 

1.0 x* = 
0.1 

Also 

fi(xi,x2) = —. 01080, 

f2(xi,x2) = 0. 

5.2 Modified Gauss-Seidel Iteration 

Hansen and Greenberg [5] have performed an initial Hansen-Sengupta [6] step to the 

preconditioned equation: 

M(X)(x - Y) = b. (5.21) 
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The solution 

= x— (M)-' [b+M(X —x)+ E  M(X —xi)] (5.22) 
j=i+1 

X=Xn1',(i=1,2, ... ,n) (5.23) 

obtained in this manner is refined with the real iteration before the final elimination. 

The interval mathematics offers good results during elimination, if the approximating 

interval includes the solution precisely. Likewise the real iteration yields sufficiently 

small values of IIf(x)II, if the Gauss-Seidel step results into a better approximating 

interval. In such a case, the Successive Overrelaxation (SOR) Gauss-Seidel procedure 

as outlined in Chapter 3 would be useful. This is described again as follows: 

i-i n 
(1+1) (k)\ (k) (k)\ ç.(k+i) (k) 

=x —x1 )+ M 1(Xf —x1 (5.24) 
j=1 j=i+1 

y(k+1) = [X + w(l1) - X)] n X (5.25) 

and 

= X(k) n y(k+1) (5.26) 

for some parameter w. If w = 1, then X('') is just the Gauss-Seidel iterate (5.22-

5.23). 

It can be established that the iterates (5.24-5.26) converge for all X'(°) if 0 < w < 

2, (w = real) [19]. This may constitute a sufficient convergence requirement for an 

important class of matrices. 

Proof 

Using (5.25) with (5.24) and rearranging, we have 

= + w(D + wL)'(Mx(') - b) (5.27) 
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where 
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I1 = (D + wL) 1[D(1—w) — wU]. (5.28) 

Since L is strictly lower triangular, detD 1=det (D + wL)'. 

Therefore, 

detH = det(D + wL) 1.det{(1 - w)D - wU} 

= deiD*det{(1—w)D — wU} 

= det{(1 —w)I—wD 1U} 

= det{(1 - w)I} 

= (1 —w)', 

since D' U is strictly upper triangular. But det H is the product of the eigenvalues 

of H, hence 

p(H) ≥ Il - wi. 

Kahan's Theorem [10]. 

The iterates (5.24) or (5.25) will converge for all values of if p(H) < 1 i.e. 

0 <w < 2, w is real. 

We deduce an extension of Ostrowski-Reich theorem [18]. 
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Theorem 4 Suppose M E M 1 exists and 0 <w < 2, then the SOR iterates 

(5.2-5..6) converge to x - M 1b, where urn " = x, as k -* 00. 

Proof 

H WX' + w(D + wL) 1(Mx(') - b) 

X' = (D + wL) 1[D(1 - w) - wU]X(k) + w(D + wL)l(Mx(k) - b) 

X*[w(L + D + U)] = wMx - wb 

MX* = M_b 

M( _X*) = b 

—X = M'b. 

Thus X* = - M'b, here urn X(') = X* and urn (') = , as k - 4o0. 

The modified Gauss-Seidel iteration given by (5.24-5.26) can be very helpful, since 

it enables a faster convergence of the iterates. It may be shown that the eigenvalues 

j and Ai for the Jacobian and the SOB. Gauss-Seidel iteration are related by (5.29) 

(A + w - 1)2 = ) iW2[L. (5.29) 

Setting w = 1, we find that 

p(GaussSeidel) = p(Jacobi an)2. 
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Therefore, if p(Jacobian) < 1, so that the Jacobi&n iteration is convergent then 

the asymptotic convergence of the Gauss-Seidel iteration is the square of the con-

vergence of the Jacobian iteration (quadratic convergence). Using the modi-

fied Gauss-Seidel iteration, we may choose the parameter w in such a way that 

p(modified Gauss-Seidel) is minimized and therefore convergence is maximized. The 

SOR Gauss-Seidel iterates should be preferred, where more precise interval inclu-

sions are necessary for performing real iterations and subsequent eliminations in the 

Hansen-Greenberg's algorithm. 

5.3 Interval Iteration-Alternative to Real Iteration 

Hansen and Greenberg [5] have used mean value theorem to reduce a system of 

nonlinear equations f(x) = 0 to 

J(X)(x - z) = AX). (5.30) 

Some earlier development of above equation may be found also in Chapter 3. Mul-

tiplying both sides of equation (5.30) with the approximate inverse of midJ(X), we 

obtain 

M(X)(x - z) = b (5.31) 

where M(X) = BJ(X), b = Bf(x) and B = mid[J(X)] 1. Equation (5.31) may be 

used to obtain the approximate superset 

Y = x - M'b (5.32) 

or 

Y = mid(X) M -1 b. 
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Since M' closely approximates the identity matrix I, we may therefore consider 

the following iteration 

X'1 = {m(X(')) - V(k) b} fl X, (5.33) 

{m(V(')) + V(I - Mm(V('))} fl V(c), (5.34) 

ic ≥ 0, where v° is an interval matrix with the property that M' E V(°), M(X) = 

.BJ(X). The equations (5.33-5.34) above yield the sequences of interval matrices 

and vectors 

x(') 2 x(2) 2 

2 v(') 2 v(2) 2 

The procedure (5.33-5.34) consists of a simultaneous execution of xQ) and V(k). In 

fact a new interval matrix V') is being used for upgrading X 1). 

Let X(°) be an interval vector and let y E x(°) be a zero of the function f(x). 

Let the derivative of f(x) satisfy a Lipschitz condition in x(°). Furthermore let V(°) 

be an interval matrix containing the matrices [M(X)] 1 for each x E X('). For the 

interval evaluation J(X) and therefore M(X) of the Frèchet derivative J(X) the 

condition 

or 

Jd(J(X))II ≤ cHd(X)JI 

Id(M(X))II ≤ ylld(X)Il 

holds for all x c x°) (c, -y are some constants). 



CONTENTS 60 

The interval vectors { x(')}, 0 ≤ lc ≤ oo and the interval matrices {V(')}, 0 ≤ k ≤ 

oo calculated according to (5.33-5.34), then satisfy the following: 

1. Each interval vector X(k), k ≥ 0, contains the zero y. 

2. If all the matrices V E V(°) are nonsingular, then it follows that 

LimitX(c) = y and limit V(c) = M -1(y) , k -+ oo. 

3. Sequence {(X('), V('))}, 0 ≤ k < oo, converge at least quadratically toward 

{(y, M 1(y)}. 

The interval iteration as described above should provide a suitable alternative to 

the real iteration in the Hansen-Greenberg's algorithm. 



Chapter 6 

Other Suggested Procedures 

6.1 Newton's Interval Method With Secondary Iterations 

Newton's method for approximating roots of one nonlinear equation in one variable 

by the iteration 

= () f(x()) (6.1) 
f'(x(n)) 

is well known and may be found in several texts. The extension of this method to 

interral analysis was credited to the work of Moore [13] in previous Chapters. For 

X C [v1, x2] such that f(xi).f(r2) < 0 and m(X) = the midpoint of X, Moore 

defined the interval Newton function N(X) by 

N(X)=m(X) f(m(X))  
F'(X) 

(6.2) 

where F'(X) is the interval extension of f'(x). 

Equation (6.2) provides an interval version of Newton's method, by choosing x(°) 

and defining the sequence of intervals X('), X(2), ... with 

= N(X(')) n 

This procedure has been demonstrated by Moore with the following example 

Let f(x) = X2 —2 = 0, starting with x(°) = [1,2] we obtain 

= m(X(°)) [m(X(°))}2 -  2  
2X(°) 

61 

(6.3) 
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And 

= N(X(°)) n x(°) = [1.375, 1.769] 

In same manner, we obtain 

= [1.41406..., 1.41441..] 

X(3) = [1.414213559.., 1.41213566..]. 

We find in this case that, the interval version of Newton's method gives a rapidly 

contracting sequence of intervals containing the root 21/2. 

Moore [13] has in fact shown that when F'(X) is defined and does not vanish on 

[x1, X2], the interval version of Newton's method as illustrated above is asymptoti-

cally error-squaring, that is to say, there is an interval x(°) C [x1, x2], containing 

the zero y and a positive real number lc such that 

w(X('')) ≤ k(w(X() ))2, (6.4) 

where w denotes the width of the interval. 

The property (6.4) makes the Newton's interval method more appealing due to 

the quadratic convergence of intervals containing the root. The Newton's inter-

val method, however, has some disadvantage especially with the higher dimensions; 

since the computations of F'(x(')), (i.e. J(F(X)) in higher dimensions) involving 

n2 elements can he somewhat more laborous and time consuming. To overcome 

this difficulty, the non-interval Newton methods, (see [22]), have employed iterative 

techniques in which fewer computations of the derivative are required, while better 

approximations for the root are being obtained. In this Section, we have intro-

duced a modification to the Newton's interval method so that the Newton's function 
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N(X()) computed utilizing fewer computations of the derivative. Effectiveness of 

the modified version is also discussed in terms of the convergence. Results of Moore's 

illustration are compared with those of the modified version described below: 

We replace the equations (6.2)-(6.3) by 

:= (6.5) 

N(k,m) (X) := m {N(km_l) (X(k))} F(m(N(k.m_l)(X(k))) 
= 1,2..,p;lc = 0,1,2... F'(X(k)) 

(6.6) 

X(k,m) N(km_1)(X(k)) fl (6.7) 

:= X(k_ 1, ), k ≥ 0 

N (°'°)(X (°)) := rn(X(°)) Fx(°)  

Here x(°) is the interval vector containing the solution of f(x) = 0. 

As before, we let f(x) = X2 
- 2 and X °) = [1, 2]. 

Using relations (6.5-6.10), we obtain 

N (°'°) (X (°) ) = m(X(°)) F(m(X(°))) - [1-375,1.769] = - 

N (°'1)(X (°) ) = m(N(°'°)(X(°))) F(m(N(°'°)(X(°)))) F' (X(°)) = [1.4118652,1.4174804]. 

We find similarly N(°'2)(X(°)) = [1.4140233, 1.4143481]. 

Thus if p = 2 

X(0,2) x(') = N(°'2)(X(°)) n x(°) = [1.4140233, 1.4143481]. 
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The value for x(') obtained by the modified Newton's interval version (6.5-6.10) 

compares with the value for X 3 = [1.414213559, 1.414213566] obtained by Moore 

[13] using the regular iteration process (6.2-6.3). We observe that N(kim)(X(k)) re-

quires p - 1 evaluations of F, but only one evaluation of F. If p = 1, then the 

interval generalization of Newton's method (6.5-6.10) reduces to Newton's method 

as introduced by Moore [13]. 

We now discuss the convergence of our iterated results. We write the fundamental 

equation (6.6) with supressed k as 

N(a) (X) = m{N(1 ) (X) } F(m(N( 1) (X)))  (6.11) 
F'(X) 

Without loss of generality, we can assume that F'(X) > 0 for all X C [x1, x2]. 

There is a positive real number ) such that for yj ≤ y ≤ 1/2, we have 

F'([y1,y2]) = F'(y) + .X[-(y2 - yi), (y - 1/i)]. (6.12) 

For any [1/i, 1/2] containing the zero, 1/, of f such that [y, 1/2] C [x1, x], we have 

from equations (6.5-6.10) and the inclusion monotonicity of interval arithmetic: 

- +  F(()jL' +  
C  

2 F'(y) + )[- (y2 - yl),(y2 Yi)] 

For small Y2 - yi, F'(y) - A(y2 - yi) is positive. Since F'(y) is supposed to be 

positive, we have 

(6.13) 

(6.14) 

< 2.X(y2 - y1)jF(( 1) +  
(F'(y))2 \2(y2 - y)2 
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<  - y1)V' - 

(F'(y))2 - (.\)2(y2 - yi)2 

- - 

For j = 2 = p, we have 

But 

(F'(y))2 

w(N(2) {yi,y2]) R: .X(y2 - - 
(F'(y))2 

(7(1) - .N•(')) - w(i\T(')) 

- - 

(F'(y)2 

≤ k(y2 - y')2 = k(w([yi,y2]))2. 

Hence from (6.5), we have 

where 

w(N(2) [yi,y2]) ≤ .T(i(w([yi,y2]))3 

K1 = AkIF'([(1), 7 (1)]) 

(F'(y))2 

Choosing x° = [yi, y2] to satisfy (6.16), it follows that 

fl x(°)) ≤ Ki(w(X ° ))3. 

(6.16) 
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Defining the sequence of intervals X (') by (6.7), we find 

C X(k) 

and 

w(X')) < w (N(2)(X(k))) < 

If max(p) = m = 2, equations (6.5-6.10) may be written as 

N(k 2)(X(k)) = m (X(k)) - m(U(k)) F[m (X(k)) - m (U(k))] 
F' (X(k)) 

X1 = N(lc2)(X(k)) n 

where 

(6.17) 

(6.18) 

U(k) - F(m (X(c))) 
- 

The iteration (6.17-6.18) represents a modification of the Newton's interval method 

in which a simplified Newton interval step is combined with a Newton interval step. 

Although, the simplified Newton iteration exhibits superlinear convergence only un-

der restrictive conditions, the combined iteration (6.17-6.18) has at least cubic con-

vergence. More generally in the m step method in which rn simplified Newton 

interval steps are taken between each Newton interval step, the corresponding iter-

ation will have convergence of order m + 2. 

We sketch the proof: 

lX(k,2) - x*II ≤ KIIX(lc) - X* 113. 

Then 
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11g(k,3) - 

≤ I IF' (X(J)_hIIIIF(XT(k12)) - F(xr*) - F'(Xr*)(.K(k2) - .g*)II 

+II(FI(XT*) - - .g*)II 

≤ cix(k'2) - X* 112 + C2IIx(k2) - x*II.IIx(k) - x*II 

where C1, C2 and ft are suitable constants. 

Proceeding in this manner, one shows easily that 

IX(km) - X ≤ fLmIjX - (6.19) 

This shows that the higher order iterative processes may be generated in interval 

mathematics by the composition of two lower-order processes in the same manner as 

the noninterval iterative processes. (See Traub [22]). 

Equations (6.17-6.18) are useful in that the higher-order convergence may be 

achieved with only one evaluation of F' and no higher derivatives are required. 

Estimate (6.19) is unimportant from the standpoint of computing actual error bound, 

since even if constant it.,, were known X is not. However equation (6.19) indicates 

how the convergence proceeds to X*, the larger the /Lm, the worse is the convergence. 

We may summarize the advantages of iterating the Newton's interval operator in 

(6.5-6.10) or (6.16-6.17) as follows: 

r 1. [F (X)] -1 is computed only once for any order N(1-- ). 

2. The recursive definition of N(Jc,m) permits its calculation in a simple loop on a 

computer. 
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3. The form of N (km) suggests generalizations to system of equations with [F1(X)]-' 

replaced by [J(X)]-', where J(X) is the Jacobian of the system. 

6.2 Solution By Splitting 

For a special class of problems the equation: 

J(X)(x - Y) = f  (6.20) 

may be solved iteratively by the method of "splitting". Gunter Mayer [12] has 

recently applied the method of splitting, as applicable in noninterval analysis, to the 

solution of interval equations of the type AX = b for cases in which the interval 

matrix A admits a strong splitting in the sense of Varga [23], here b is an interval 

vector and X E Rn . 

Consider the splitting: 

A=M— AI 

where A and M are interval M-matrices [M, M] E IRnxn and 0 ≤ Jv' = [N, N] E 

I><". If A has a feasible splitting M - Al with M' ≥ 0 and .V≥0 then the 

equation AX = b yields a unique fixpoint x". These assumptions form the basis of 

iterative method: 

x(m+1) = IGA[M,Alx(m) + b] 

m = 0,1,2, ... and x (o) is given. 

(6.21) encloses the solution set of Ax = b, i.e. 

{x} :={xlAx = b,A E A,b E b} 

(6.21) 
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The IGA(B, c) denotes the interval vector obtained by the Gaussian algorithm 

[15] applied to B € Gunter has also shown that the spectral radius p(M 1N) ≤ 

1 is an upper bound of the convergence factor a of (6.21). 

Using identical procedure, we may show under similar assumptions i.e. [J(X)] ≥ 

0, J(X) = M - A( with M' ≥ 0 and Al ≥ 0, equation: 

J(X)(x - Y) = f(x) (6.22) 

offers a Newton-like iterative process 

(6.23) 

:= (k) (k) - IGA{(Jk,Jf([(k),(k)] - x(lm_1)) + [f((k)),f((k))]} 

(6.24) 

(k,m) := y (k+1m) (k,m-1) 1 < in (6.25) 

(k+1m) 

(k+1) 

:= (Ic+l), k ≥ 0 

(6.26) 

(6.27) 

where (°) is the interval vector containing the solution of (6.22). Mk - Alk is a 

splitting of Ak according to [23] and {rk} is an appropriate sequence of positive inte-

gers normally increasing monotonically. The spectral radius p(M'N) < 1 ensures 

convergence to the fixed point x'. 

We illustrate the splitting method with the following example: 

Example 

Let f = f(fl,f2) = 0 

where 
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Here 

0.7x1 - 0.5x2 - 0.2, 

f2 —0.5x1 + 0.4x2 + 0-1-

J(X) = M — Af= 

J'(X) ≥ 0, M' ≥ 0 and H ≥ 0. 

We start with 

The equation (6.23) yields 

If rk = 1 

1 0 p 0.3 0.5 

0 1 \ 0.5 0.6 

[0.8, 1.1] 

[0.8, 1.1] 

1 [0.84, 1.08] 
(ll) = 

[0.78, 1.111 

((o,1) = ( 11) fl x (0,0) [0.84, 1.08]=  

[0.8, 1.1] ) 

Similarly we obtain 

= 

and 

/ [0.852, 1.074] 

[0.800, 1.100] 
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((2) [0.852, 1.074] = (1,i) = 

[0.800, 1.100] 

Hence x1 = 0.963, and x2 = 0.950. 

The solution gives 

fi(xi,x2) = —.0009 

f2(xi,x2) = 0.0015. 

Thus, if the matrix J(X) in equation (6.20) satisfies the requirements of strong 

splitting, we may solve the system with the method of splitting as indicated. 



Chapter 7 

Conclusions 

7.1 Significant Results of the Thesis 

This thesis describes the interval analysis approach to solving a system of nonlinear 

equations by the techniques put forth by Hansen, Sengupta and Greenberg [4, 5, 6]. 

The multidimensional interval extension of Newton's method by Moore in the mid 

60's was restricted in practice. Further studies by Krawczyk, Nickel and Neumaier 

[8, 14, 15, 16], following different approaches, also obtained solutions to restricted 

class of problems, thus lacking full generality. Computations involving the solution 

of systems of nonlinear equations, using interval mathematics require careful analy-

sis for devising an efficient algorithm. The present thesis describes the development 

of procedures leading to the main algorithm as proposed by Hansen and Greenberg 

[5]. The Hansen-Greenberg algorithm has resulted from the earlier investigations of 

Hansen and Smith [7], and Hansen and Sengupta [6]. Hansen and Greenberg have 

in fact deduced a single algorithm of greater efficiency, combining the three known 

subalgorithms. The time consuming and expensive task related to the elimination 

procedure is not started until the bounding interval containing a solution is reduced 

significantly as per requirement set for the problem. Division by an interval contain-

ing a zero is avoided as much as possible, and the extended interval arithmetic is used 

only when necessary. The suhalgorithms constituting the main Hansen-Greenberg 

algorithm are: 

72 
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1. The Mean Value linearization of the nonlinear system. 

2. Initial preconditioning of the linearized system. 

3. Hansen-Sengupta Step. 

4. The Real (local/noninterval) iteration. 

5. Gaussian elimination by LU decomposition. 

The preconditioning of linearized system, Hansen-Sengupta step and the real iter-

ation enable the algorithm to obtain a more precise solution with a single application 

of the elimination procedure. The order in which these subalgorithms must be car-

ried out and repeated, when necessary, is important for achieving efficient results. 

The present thesis examines the justification for these procedures; which collectively 

seem to account for a more efficient algorithm. 

The Hansen-Greenberg's method nevertheless offers a more efficient means of 

solving the system of nonlinear equations. But as noted earlier, the algorithm can 

involve extensive use of subalgorithms for narrowing down the widths of intervals 

containing the solution. Such extensive use of the subalgorithms for some problems 

may not produce as efficient results as expected. In this respect, the present thesis 

outlines further procedural changes that can contribute to the efficiency of the main 

algorithm. These procedural extensions are as follows: 

1. The matrix M°) (X) associated with the preconditioned system 

M ° (x - Y) = b 
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can be approximated closer to the unit matrix I as shown in Section 5.1. We 

have, in fact, shown that the new matrix M(1)(X) = ([L('), U(1)]) defined by 

(21 - 

(21 - 

gives better approximating interval ')] for the unit matrix, where 

= - (21 - 

Yu(') = - (21 - u(°))b. 

This new starting interval, bounds the solution more closely as demonstrated 

with examples. 

2. The Gauss-Seidel iteration may be relpaced by the SOR (Successive Overre-

laxation) Gauss-Seidel iteration described in Section 5.2. The real iteration 

yields sufficiently small values of IIf(x)II, if the Gauss-Seidel step results into a 

better approximating interval. Thus the SOR Gauss-Seidel iterates should be 

preferred, where more precise inclusions are necessary for performing real itera-

tions and subsequent eliminations in the Hansen-Greenberg algorithm. Section 

5.2 also derives an extension of the Ostrowski-Reich theorem as it applies in 

interval analysis. 
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3. The Hansen-Greenberg method employs a noninterval quasi-Newton iteration 

x1) = - Bf(x(')) in the main algorithm, to help the relaxation process. 

We have shown in Section 5.3, that, this noninterval iteration may be replaced 

by a pair of interval equations: 

= {m(X(')) - n X ) 

V 1 {m(V('')) + V(c)(I - Mm(V('))} fl V(k) 

k ≥ 0, and T/(°) is an interval matrix with the property that M -1 (X) E v(°). 

This modification will provide us with a procedure confined to the domain of 

interval analysis, besides offering better inclusions. 

4. In Chapter 6.1, we examined the interval Newton's method with secondary 

steps. In particular, Newton's formula containing one Newton step has been 

shown to have at least a cubic convergence. The modified Newton's 

formula uses fewer computations of the first derivative. This fact is common 

knowledge for the noninterval iterations. But we have now established a proof, 

that, it also applies for interval procedures. A numerical example from Moore 

[13] has been chosen to demonstrate the effectiveness of this procedure. 

5. Finally, it has been pointed out in Chapter 6.2 that some systems of the type 

AX = b can be solved by the method of splitting, as shown recently by Mayer 

[12]. We have applied this procedure to solve the system M(X)(x - Y) = 

encountered in our work, in dealing with the nonlinear systems. These meth-
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ods in conjunction with the Hansen-Greenberg approach may provide suitable 

alternatives for better solutions. 

7,2 Suggestions for Further Research 

Future research efforts in the following areas seem to hold promising results. 

I. Use of a better Jacobian matrix. 

The Jacobian interval matrix J(X) is used in the linearized system: 

J(X) (X - y) = f  

where X is the interval containing both x and y. The above equation is further 

conditioned by multiplying it with the inverse of midJ(X). Certain arguments 

in the Jacobian J could be real rather than interval. This argument could as 

well be the point x, about which the function f(x) is expanded. If a real inner 

iteration is used then the improved value of J(X) and, therefore BJ(X), would 

also change. However, obtaining a better Jacobian requires more sophisticated 

analysis and extra programming. Hansen and Greenberg also point out that it 

is some what more efficient to use a better Jacobian than to perform only the 

real iterations. Further work in this direction can improve the algorithm. 

2. Coupling the Splitting Method with the Hansen-Greenberg's Algorithm. 

It is quite possible that the method of splitting as illustrated in Section 6.2 and 

discussed in more detail by G.Mayer [12], can he coupled with the Gaussian 

elimination. Consider the splitting of J(X) = M - N in J(X)(x - Y) = f(x) 

and the iteration: 
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y(k+1) = + M_l[NY(k) - (N + f())], 

= y(k+1) fl xc'. 

The convergence of above iteration depends upon the system being solved 

and the associated splitting. Some times it may be more practical to use the 

splitting technique after the linearized system has been conditioned to 

M(X)(x - Y) = b. 

Splitting the diagonally dominant matrix M(X), (which is also approximating 

closely to the unit matrix), into M0 - I, we obtain 

y(k+1) = M'{IY(') + (Al  - b)}. 

This iteration should provide a convergent sequence for bounding solution. 

Thus the method of splitting can serve an alternative to the LU decomposition 

in the Hansen-Greenberg's method, when appropriate. 

3. Using the Method of Continuation: 

As is well known, many iterative methods will converge to a solution x of 

f(x) = 0, only if the initial approximations are close to The continuation 

method: 

G(t, ) = tf(x) + (1 - 

x(+1) 

may be used as an attempt to obtain sufficiently close starting points. Al-

though many researchers have discussed the numerical continuation approach, 

the feasibility of the numerical continuation process for general systems still 
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remains an open topic of investigation. Further research in this area can prove 

useful in the present investigations. 
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