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ABSTRACT

This thesis deals with the use of spectral methods for the post processing of airborme
vector gravity data. In general, two aspects are discussed: 1) filtering and combining
airborne measurements for the estimation of gravity disturbance vector components with
higher accuracy; 2) the downward continuation of airborne gravity data to a level surface
and to an arbitrary surface as well. Two spectral methods, namely input-output system
theory and frequency domain least-squares adjustment, are discussed and examined for
filtering and combination purposes. Numerical results show that, by filtering and
combining all three components of airborne gravity vector rather than filtering one of the
components alone, the estimation accuracy will be improved approximately by 10 percent
for the vertical component and by 60 percent for the horizontal components within the
wavelength range from 10 km to 100 km. In the downward continuation, more stable and
accurate results for every component can be expected when it is combined with other

components
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

Airborne gravimetry is a very active field of research at the present time. However, most
research in this field has been focused on observation techniques rather than on post data
processing (Brozena et al., 1989; Kleusberg et al., 1989; Knickmeyer, 1990; Schwarz and
_ Wel, 1994; Schwarz et al., 1994; Schwarz et al., 1991; Wei and Schwarz, 1994; etc.). In
addition, few publications deal with the downward continuation of airborne scalar
gravimetry data (Schwarz, 1973; Forsberg, 1995; Keller, 1995; etc.). Obviously, there is
still a great deal of research to be done on the post processing of airborne gravimetry

measurements, especially in the area of airborne vector gravimetry.

In airborne vector gravimetry, all three components of the gravity disturbance vector are
measured. However, their accuracies are not the same. Primarily due to the drift of the
INS measurements, when the time frequency f decreases, the error spectra of the
horizontal components increase as 1/f*, while the error spectrum of the vertical component
increases as 1/f* (Colombo, 1990; Schwarz and Wei, 1994). As a result, the error in the
horizontal components is much greater than the error in the vertical component.

However, in some applications such as the determination of the slope of the geoid, the
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deflections of the vertical are of more concern. In these cases, more accurate deflections
from airborne vector gravimetry are desired. For the vertical component, higher accuracy
is also needed for various applications in geodesy, solid earth geophysics, and exploration
geophysics (Schwarz et al., 1991). With the development of current observation
techniques, higher measurement accuracies certainly can be expected. On the other hand,
accuracy improvement may also be achieved by filtering and optimally combining the three

components of the airborne gravity disturbance vector in the post data processing stage.

Two major problems have to be overcome in post processing airborne vector gravity data.
The first problem is filtering and combination. Because the spectra of the gravity signal
and measurement noise are overlapping, a filter needs to be applied to attenuate the noise.
Considering that all components of the gravity disturbance vector are linearly correlated,
which means that there acwally are redundant observations in airborne vector gravimetry,
better accuracies for all of the components can be obtained by combining them in an
optimal way. The second difficulty to be overcome in post data processing is the
downward continuation problem. Observations in airborne gravimetry are made at flying
altitude. In some applications, the gravity disturbance will be needed on the surface of
the Earth rather than at flying height. Thus, the downward continuation problem becomes

an issue to be dealt with.

In principle, least-squares collocation, which has been used in geodesy for decades, can be

used to solve these two problems. In practice, though, the use of least-squares collocation
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is not advisable. The main problem with least-squares collocation is the need of matrix
inversion. When large amounts of data need to be processed, such as in airbome
gravimetry, it becomes very inefficient computationally. One of the improvements to
least-squares collocation is ‘fast’ collocation (Heller, 1977; Gray, 1977; Eren, 1980;
Bottoni and Barzaghi, 1993). When the observations are gridded, their covariance matrix
will be a Toeplitz matrix, provided that the covariance functions of both the gravity signal
and the measurement noise depend only on the distance(isotropic). This Toeplitz matrix
can be inverted by using FFT techniques. Thus, least-squares collocation can be applied in
a much faster way. However, when the number of observations is very large, this method
will still be time consuming and inefficient (Eren, 1980). In addition, the two-dimensional
covariance function of the measurement noise in airborne gravimetry is not only dependent
on the distance but also on direction. Spectral methods are seen as a faster alternative for

the post data processing.

Two spectral combination techniques, namely the multiple input-output technique and the
frequency domain least-squares adjustment method, are considered as alternatives. A
multiple-input single-output system is a system that can combine all the input signals at
each frequency (Bendat and Piersol, 1980 and 1986). It employs all the power spectral
densities (PSDs) of the input signals and their corresponding noise PSDs to determine the
optimum system frequency response. When there is only one input signal, this multiple-
input system becomes a Wiener filter. Altemnatively, the multiple-input single-output

system can be considered as an extension of the Wiener filtering theory. In some literature



4
(Brown, 1983), the multiple-input single-output system is called the multiple-input
Wiener filter. Its formal equivalence to stepwise collocation in the frequency domain has
been proven by Sanso and Sideris (1995) and Sideris (1996). The multiple-input system
theory has been used successfully for the processing of airborne gradiometry data by
Vassiliou (1986). It should also be suitable for the task at hand. However, Vassiliou used
only one of the possible approximate solutions in his research. He assumed that noise in
all input signals has the same PSD model. This is not the case for airbome vector
gravimetry. Hence, an implementation method suitable for airborne vector gravimetry will

be studied.

The second spectral combination technique, using the concept of the frequency domain
least-squares adjustment method, has been discussed in a2 number of papers (Barzaghi et
al., 1993; Sanso and Sona, 1995). Its use in airborne vector gravimetry data processing
was discussed by Sideris (1996) and Wu and Sideris (1995). In this method, the output
spectrum co&esponding to each of the input signals is computed first. Then all the spectra
are combined optimally by applying the least-squares principle as in the spatial domain.
The contributing weight for each signal is determined by its noise PSD. Only noise PSDs
are required for the frequency domain least-squares adjustment method. Neither of these
two spectral combination methods require matrix inversion. With the use of the FFT

algorithm, they possess high computational efficiency.
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As the covariance function in least-squares collocation, the PSD function is crucial to the
spectral combination methods. Two-dimensional noise PSD estimates for airborne vector
gravimetry will be necessary for the optimal combination of the components of the
airbome gravity disturbance vector. However, thus far, only one-dimensional noise PSD
models are available (Wei and Schwarz, 1994; Li and Schwarz, 1994). Theoretically,
there is no analytical way to derive the two-dimensional PSD model from a one-
dimensional PSD model (Panchev, 1971). In order to effectively research the optimal
combination of the components of the airborne gravity disturbance vector, studies on how
to practically estimate two-dimensional noise PSDs for airborne vector gravimetry are

indispensable.

Besides high computational efficiency, in downward continuation of airborne gravity data,
the spectral method has another advantage over least-squares collocation. The spectral
downward continuation method uses an analytical approach which is based on Poisson’s
integral and a series expansion of the gravity field. No a priori information is required for
this analytical approach. On the other hand, least-squares collocation is a statistical
approach in which a priori information (in the form of covariance functions) plays a key

role.

Several airborne scalar gravity surveys were carried out in Greenland, Antartica, and
Switzerland (Forsberg and Brozena, 1992; Brozena et al, 1995; Jones et al, 1995;

Halliday and Klingele, 1995). The accuracies of their results are in the range of 3-5 mgal
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down to wavelengths of 20 km or better. Accuracies of 1-3 mgal over wavelengths of 3-5
km have been achieved in experiments under favourable conditions (Hein, 1995).
Typically, the accuracy of airborne scalar gravimetry is currently at about 2-3 mgal down
to wavelengths of 10 km. So far, no results of airborne vector gravimetry have been
published, although some experiments have been carried out by the Department of
Geomatics Engineering at The University of Calgary. Due to the lack of real data,

simulated data will be used in this research.

1.2 THESIS OUTLINE

The main objective of the research described in this thesis is to examine the use of spectral
techniques in filtering and combination of the airborne gravity disturbance vector
components and in the downward continuation of these components. Several practical
problems, including the estimation of two-dimensional noise PSDs of airborne gravimetry,
the implementation procedure of the multiple-input system for post processing of airbome
gravity data, and the accuracy improvement of airborne vector gravimetry with or without

noise PSD information, etc., will be addressed.

The thesis consists of six chapters. In Chapter 2, after introducing some basic concepts in
signal processing, estimation procedures of the power spectral density of a random signal

are reviewed. Then the input-output theory, which is the primary spectral combination



7
method used in this research, is outlined. In Chapter 3, the relationship between the
gravity disturbance vector components in the frequency domain as well as the downward
continuation problem of the gradients of the anomalous gravity potential are discussed. In
Chapter 4, some practical issues related to the use of spectral techniques in post
processing airborne vector gravity data are considered. Also in this chapter, another
spectral combination method, the frequency domain least-squares adjustment method, is
reviewed. In Chapter 5, numerical tests are conducted to examine the effectiveness of the
spectral methods discussed. The results of these tests are presented and analyzed. Finally,

in Chapter 6, conclusions and recommendations are given.



CHAPTER 2
FUNDAMENTALS OF SPECTRAL METHODS AND
MULTIPLE-INPUT SYSTEM THEORY

This chapter is a review of some basic concepts in signal processing necessary for an
understanding of this thesis. The first two sections are about the definition of power
spectral density (PSD) and its estimation with fast Fourier transform (FFT) techniques.
In Section 3, the concept of the Wiener filter will be introduced. In Section 4, the

multiple-input theory will be outlined.

2.1 STATIONARY AND ERGODIC RANDOM SIGNALS

Stationary random signals are commonly used in engineering. If the mean value p(t) of a
random signal X(t) at time t and the autocorrelation function Rx(ts,t2) of the same signal
at time indices t, and t; are

K, (t) = EfX(®)}=const=p_
R, (t,,t,) = E{X(t))X(t,)} = EX()X(t + )} = R . (%)

.1)

this random signal is wide-sense stationary. Eq. (2.1) indicates that the mean value of a
wide-sense stationary random signal is constant with respect to time while the

corresponding autocorrelation function is only dependent on the interval T between t; and
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t2,and notont, and t; individually. Notice that, here, the expectation operator E is
applied to all the samples of the signal X at a particular time.

Another important concept in signal processing is ergodicity. This concept establishes the
foundation for the classical methods of power spectral density estimation. As shown in
Eg. (2.1), to obtain the mean value and the autocorrelation function, sample averaging is
needed. This is rather difficult because, in practice, often only a single sample is available.
Thus, it is desirable to estimate all these statistical quantities from one single sample by
substituting time averaging for sample averaging. The property required to accomplish

this is ergodicity.

If a random signal X(t) is stationary and ergodic, its mean value and autocorrelation

function can be defined as

. LT
K= _{_IEE .rx(t) dt
2.2)

R,= r;lml%j:x(t):u:(t +1T)dt

where x(t) is a sample of X(t), and T is the half duration of x(t). When there is a joint

process of two ergodic random signals X(t) and Y(t), their cross correlation function R,y

can be defined as
.1 1
R, = %‘_{‘.‘. 2_T __rx(t)y(t +7)dt 2.3)

where y(t) is a sample of Y(t).
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The power spectral density (PSD) Px: of a random signal X(t) is defined as the Fourier

transform of the autocorrelation function R as follows:
- -J'“
P.@=[_R.me dt 2.4

1 = joxt
R_(1) =Ej_‘1>“(m) e do .5

where ® is the time frequency and j is the square root of -1. These two equations are
known as the Wiener-Khintchine theorem (Cadzow, 1990). The PSD function is always a

real positive function.

Similarly, the cross power spectral density (CPSD) Py, of two jointly stationary random
signals X(t) and Y(t) is defined as the Fourier transform of their cross correlation function

Ry
B,@=[ R e dt 2.6)

The ergodicity property of a random signal not only permits time average definitions for
the mean value and correlation functions, but also permits the equivalent time average

definition for the power spectral density functions as follows:

e 2

P, (@) =lim—|| x®¢ @7
B o

B, (@) = 'r;--zlf [ xo e"'dt] [ [yo e.mdt] 2.8)

where superscript * denotes the complex conjugate.
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22 POWER SPECTRAL DENSITY ESTIMATION WITH FFT

PSD estimation is very important in the application of spectral techniques. Numerous
modem and classical methods of PSD estimation can be found in signal processing
textbooks. Only classical PSD estimation methods will be outlined in this section for two
reasons. First, classical methods directly use the PSD definition and are Fourier transform
based. FFT techniques can be used to obtain computational efficiency. More importantly,
the second reason is that classical methods can be easily extended from one-dimensional
cases to multi-dimensional cases. For details about digital spectral analysis, see Marple

(1987).

Eq. (2.4) and Eq. (2.7) represent two different definitions for the power spectral density.
In practice, signals are sampled discretely at a finite number of points. If the sampling rate
1/AT for a signal is constant, the discrete Fourier transform can be used. Eq. (2.4) and

Eq. (2.7) then become

No1 sitn
P.(k)=ATY R (n)e ¥ 29)
a=0
1 N=1 it
P, (k) =mATZx(n) e ¥ (2.10)
a=0

where N is the number of sample points, AT is the sampling interval, n is the time index,
and k is the frequency index. Similarily, Eq. (2.6) and Eq. (2.8) for the cross power

spectral density become
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N-1 =j2%kn
P,(k)=ATY R, (n)e ¥ (2.11)
=0
1 N-1 2w T  Na item
P, (k) =—[AT2x(n) e ¥ ][ATZy(n) e ™ ] 2.12)
NAT| & <

Consequently, there are two types of definition-based methods for PSD estimation. The
first type uses Eq. (2.10) and Eq. (2.12) to compute PSD and CPSD directly from the data
sample and is called the direct method or periodogram. This method was proposed by
Schuster in 1899 (Schuster, 1900). The second type is the indirect method, which must
first make an estimate of the correlation, and then Fourier transform it to obtain the PSD
estimate. With the advent of FFT algorithms, the direct approach has been widely

accepted. The periodogram is used for all the PSD and CPSD estimations in this research.

Due to the finite length of record and the rectangular window effect, using Eq. (2.10)in a
direct manner would lead to unsatisfactory results. The standard deviation would be as
large as the mean. To improve the quality of periodogram, the following two procedures

are recommended in electrical engineering (Bendat and Piersol, 1986; Cadzow, 1990 and

Marple, 1987).

Procedure 1:
a. Compute the spectral density function using the whole unwindowed sample.
b. Compute the autocorrelation function by taking the inverse FFT of the PSD estimate.

c. Apply a selected window to the autocorrelation estimate.
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d. Take the FFT of the windowed autocorrelation estimate to recompute the smoothed
autospectral density function.

e. Adjust the scale factor for the energy loss due to windowing.

Procedure 2:
a. Divide the available data sample into a number of equal length segments half
overlapped to adjacent segments.
b. Apply a selected window to each of the segments.
c. Compute a PSD estimate for each segment with FFT.
d. Take the average of all the PSD estimates to obtain the smoothed estimate.

e. Adjust the scale factor for the energy loss due to windowing.

These procedures are also suitable for the cross power spectral density estimation, except
that two data samples are involved, so the corresponding formulae for samples should be
used. In practice, some data preparation steps, such as data standardization, trend
removal, etc., would be included. However, these will not be described here. For details,
see Bendat and Piersol (1986). In the case of two-dimensional spectrum analysis, the
formulae are formally the same as given in this section. Details can be found in Dudgeon

and Mersereau (1984) and Marple (1987).
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2.3 THE CONCEPT OF THE WIENER FILTER

In most practical situations, measurements are accompanied by noise. It is necessary to
design a filter to extract the signal out of the measurements. If the power spectral
densities of the signal and the noise are distributed in different frequency ranges, then the
problem is very simple; we just need a low pass, or a high pass, or a band pass filter to
eliminate the noise. However, if the power spectral densities of the signal and the noise
are overlaping, then the design of a digital filter to eliminate the noise is more complicated.
This type of problem was first solved by Norbert Wiener in the early 1940s (Wiener,

1949). The resulting filter is called the Wiener filter.

Assume the measurements {Xo(m)} are the sum of a desired signal {x(m)} and some noise
{n(m)}. Also assume that both the signal and the noise are stationary random processes
and their autocorrelation functions or power spectral densities are known or can be
estimated. In this case, the problem can be stated as follows: knowing the power spectral
densities of {x(m)} and {n(m)}, design a filter so that if the input of the filter is

{x(m)+n(m)}, the output {X(m)}will be as close as possible to {x(m)}. Let h(m) be the

unknown impulse response function; then the Wiener filter can expressed as
(k)= Y h(k-m)x,(m)= Y h(m)x,(k-m) (2.13)

The optimal h(m) can be determined by minimizing the mean square error

e = E[(%(m) ~ x(m))? ] (2-14)
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The substitution of Eq. (2.13) into Eq. (2.14) yields

e= E[( 3 h(m)x, (k- m) - x(k) iha)xo(k-l)-x(k)]]

M= [ —ae

= 2 ih(m)h(l)ﬁ[xoﬂi"‘m)xo(k-l)]-Zz.:h(l)E[xo(k-l)x(k)]+E[x2(k)] (2.15)
| &2

MEees [x—es

=¥ Y hmb@R, (m-D-23 hOR,,1H+R_(0)

me=es |=we £ T2

where R, ., is the autocorrelation function of the measurement xo(m), Rq is the
autocorrelation function of the signal x(m), and R, , is the cross correclation function of

Xo(m) and x(m). The optimal h(m) must satisfy

§°§= 2.16)
which implies
3 h@m)R, . (m-k) =R, ) @.17)

If the maximum m in Eq. (2.17) is set to a finite number, then by solving the equation, a
Wiener FIR (finite impulse response) filter will be obtained. To get a Wiener IIR (infinite
impulse response) filter, apply a Fourier transform to Eq. (2.17) and use the definitions of
power spectral density and cross power spectral density to obtain

H(w) = -P—‘-"—' (2.18)
|
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where H(w) denotes the frequency reponse of the Wiener IR filter, P, , is the power
spectral density of the measurements, and P, , is the cross power spectral density between

the measurement and the true signal.

If we further assume that the true signal and the noise are not correlated to each other, and
that P and P, are the power spectral densities of the true signal and the noise,
respectively, then Eq. (2.18) becomes

Pn
P, +P

H(o) = (2.19)

H(w) = .l:‘ﬁ._“ (2.20)

Eq. (2.19) and Eq. (2.20) will be used later in this research. More thorough material

about the Wiener filter concept can be found in Cadzow (1989) and Wiener (1949).
24 MULTIPLE-INPUT SYSTEM RELATIONSHIPS
It has been mentioned in Chapter 1 that, as an alternative to least square collocation, the

multiple-input single-output system may be used for the data processing of airborne vector

gravimetry. This section serves as a review of multiple-input system theory from single-
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input single-output model to multiple-input multiple-output model. A more detailed

discussion can be found in Bendat and Piersol (1986).

2.4.1 Single-Input Single-Output Model

As shown in Figure 2.1, we assume that the input signal x, of a single-input single-output
system h is stationary and is the sum of the true signal x and some noise n,. The output
signal yo of the same system is the joint effect of the desired signal y and the system noise

ny.

Ny ny
X Xo h Yo y
Figure 2.1: A single-input single-output system
Such a system can be expressed mathematically as
y=&+n,h+n, (2:21)

where * denotes the convolution oprator. In the frequency domain, Eq. (2.21) becomes
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Y=X+N, )H+N, (222)

where each capital letter stands for the Fourier transform of the sequence denoted by the

corresponding lower case letter. The mean square error of the system is
E[N;N, ] = E[[Y ~ X+ N B[ [Y - + N )H]] 2.23)

The superscript *” in this equation means the conjugate of a complex variable. Expanding
the term in brakets and applying the expectation operator to the equation lead to the

following expression:

P,, =P, -HP,-HP, -H'P,+HHP,+H'HP, ~H'P,, +H'HP,, +H'HP, ,

2.29)
where all the Ps denote the PSDs and CPSDs of the sequences expressed by their

subscript. If we assume that n, is not correlated with x and y, then their CPSDs are equal

to zero and the above equation becomes

P, =P, -HP, -HP +HHP,_ + H'HP, (2.25)
The optimal frequency response function is the particular H that minimizes P, , at any
frequency, i.e., the one that satisfies

o, 0 (2.26)
oH' .

This leads to the equation
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~P,, +HP, +P,, )=0 2.27)

The optimurn H is obtained by

He—Tto (2.28)
P,+P

The minimized output noise power spectral density is

P,, =P,~HE,+P,, H _ (2:29)

Eq. (2.28) will be identical to Eq. (2.19) if the desired output signal is x itself. Thus, the
defined system is essentially equivalent to the Wiener filter. Sideris (1996) showed that
such a system is also equivalent to least squares collocation under certain conditions. If

there is no input noise, ie., P, , =0, Eq. (2.28) represents the frequency response of a

ideal single-input single-output system.

24.2 Two-Input Single-Output Model

A two-input single-output system is illustrated in Figure 2.2, where x; and x; are the two
input signals, h; and h, are the impulse responses of the two linear subsystems, y is the
system output signal, and n is the system output noise. This system is defined by the

following relation in the frequency domain:
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Y=HX, +HX,+N (2.30)

Here again, each capital letter stands for the Fourier transform of the sequence denoted by

the corresponding lower case letter.

Figure 2.2: A two-input single-output system

The steps to obtain the optimum frequency responses for the two-input system are the

same as those for the single-input system. Eq. (2.29) may be rewritten as
N=Y-HX, ~HX, (2.31)
Hence, for any H, and H,, the system output noise PSD is
.. =E[N'N]
=P ~HpP, -HP,~HP +HHP, +HHP,-HP, +HHP, +HHP,

2.32)
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The optimal frequency response functions are defined as the particular H; and H, that
minimize P at any frequency over all possible choices of H; and H,. They yield the

optimum linear least squares prediction of y from x; and x, (Bendat and Piersol, 1986).

To obtain the optimal frequency responses H; and H,, it is sufficient to set the following

partial derivatives equal to zero:

Q|
o

L
o

(2.33)

QU

Q)
SAEY

This leads to

-P, +HR, +H,P, =0
(2.34)

The solution to the above equation is given by

T In 12
Pupzz "Iplzl

1

(2.35)
- P,P, 2~ PuP yl

2 Pupzz -|P12|2

or

Pl (1 - P12P2y J
- 7 Pzzply

H =
' Pu(l"Yfz)
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sz(l - P, 21P1y ]
H2 = Pupzy (2.36)
Py(1-7)
where Y1, is the coherence function.
2

2 Ipul ’

=18 2.37
"5, &
The minimized output noise power spectral density becomes
P, =P, -IHIlz P, +HH,P, + ;HP, —|H2|2P22 (2.38)

Notice that if Py;P»-IPii>=0 or Yi.=1, then the input signals x, and x, are linearly
correlated and the denominators in Eq. (2.35) and Eq. (2.36) are equal to zero. This
particular case must be treated separately. Another particular case corresponds to ¥;2=0,
which indicates that the two inputs are completely uncorrelated. Direct use of Eq. (2.35)
or Eq. (2.36) will give incorrect results. These two trivial cases are not of interest here,
however, although the components of gravity disturbance vector are linearly correlated,
the actual data in airborne vector gravimetry will be only partially correlated because of
the existance of measurement noise. For details about these two particular cases, see
Sideris (1996) and Bendat and Piersol (1986). For the same reason, when we discuss the
multiple-input model, we only consider the case in which the input signals are partially

correlated.
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2.4.3 Mulitiple-Input Single-Output Model

If more than two input signals exist, the system is a multiple-input system. Figure 2.3
shows a multiple-input single-output system. A number of q stationary signals x;
(i=1,2,...,q) go through q linear systems with impulse response functions h; (i=1,2,....9).
Then the outputs of the linear systems are combined together to produce a single output y.

n represents the system noise.

S
~ ':.l. ~ y
b R ) by $ PP L L

................

Figure 2.3: A multiple-input single-output system

The equations for this system in the frequency domain are

q
Y=Y HX +N (2.39)

i=l



24

q
N=Y-~YHX, (2.40)

il

P,= E[N'N]

<ol (x- g (v

i=l i=]

Theoretically, by minimizing the system output noise PSD P, we can obtain the optimum
frequency response functions H;, i=1,2,....g. But, as it can be seen from Eq. (2.41), the
whole procedure will be cumbersome if q is a number greater than 2. In addition, very
large amounts of memory will be required if a2 multiple-input system is realized on a
computer usiﬁg the above algorithm. Thus, it is not advisable to use this in practice. A

much easier and more efficient procedure will be discussed later in Chapter 4.

2.4.4 Multiple-Input Multiple-Output Model

The multiple-input multiple-output model represents the general case. Let X, i=l,2,...,.p
stand for the Fourier transforms of the p input signals. Yy, Ny, k=1,2,...,q are the Fourier
transforms of the q output signals and their noise. A multiple-input multiple-output
system can be expressed as

Y, H, H, - H;[IX] [N

\:z - H§y2 nyz prz x:z + If?. (2.42)

Y, Hln Hy - Hm X, N,

q
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The first matrix on the right hand side is the system frequency response matrix. This
equation is equivalent to the following algebraic expression

P
Y, =) H X +N, k=12,....q (2.43)

i=1

The above equation has the same form as Eq. (2.39). This means that the multiple-input
multiple-output system is an assemblage of a number of q multiple-input single-output
systems. Bendat and Piersol (1986) recommended that it be broken down into multiple-

input single-output problems and solveld by algebraic procedures.
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CHAPTER 3
GRAVITY FIELD MODELING IN THE FREQUENCY DOMAIN

In this chapter, after a very brief review of the concept of the gravity disturbance, the
estimation of the PSDs and CPSDs for gravity disturbance components is outlined. In
Section 3 of this chapter, the downward continuation problem of airborne gravity

disturbance vectors is discussed.

3.1 GRAVITY DISTURBANCE VECTOR AND ITS FOURIER TRANSFORM

Assume W is the gravity potential of the actual Earth and U is the gravity potential of a
best fitting ellipsoid, i.e., the normal potential. Then, the anomalous gravity potential T,
at a point P, is defined as the difference between W and U at this point (Heiskanen and

Moritz, 1967). Thatis,
TE)=W(P) - U(P) 3.1
The gravity disturbance vector is defined as

( 10T )
r o
1 4T

rcosQ oA 32

. dr )
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where @ and A are the geodetic latitude and longitude of P, and r is the distance from the

mass centre of the Earth to P.

For local gravity field modeling, the planar approximation is usually introduced. A tangent
plane at P is substituted for the ellipsoid surface. The local Cartesian coordinate system is
defined as follows: the x-axis points east, the y-axis points north, the z-axis points to the
zenith to complete a right-handed rectangular coordinate system. In this coordinate

system, the gravity disturbance vector is expressed as

(aT)

(3.3)

&
ER{ER

¥

The deflections of the vertical (§ and 1) and the height anomaly (or the geoid undulation)

{ are linked to the anomalous gravity potential by

N=———— (34
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For the sake of convenience, we denote %’5, %, and % as T,, T,, and T, respectively.

By using the well-known properties of the two-dimensional Fourier transform, the
relations between the components of the gravity disturbance vector and the anomalous
potential in the frequency domain can be obtained. In planar approximation, they are:
F{T:}=j2ruF(T}

F{T,}=j2rvF(T} 3.5)
F(T.}=-2rqF{T}

where F indicates a Fourier transform, u and v are frequencies in the x and y directions,
and g=(u*+v*)"?. The detailed derivation for these expressions can be found in Sideris

(1987) and it is based on the fact that T is a harmonic function.

3.2 PSDs AND CPSDs OF GRAVITY DISTURBANCE COMPONENTS

Power spectral density functions and cross power spectral density functions of the inputs
and outputs play a very important role in the implementation of a multiple-input system.
In this section, all the PSDs and CPSDs of components of the gravity disturbance vector

will be expressed as functions of the PSD of the anomalous gravity potential.

According to the PSD definition given by Eq.(2.7), the PSD of the vertical component is

Pes, = tim o [F{L.}] F{L.} (3.6)



29

where s is the record length. Substituting Eq. (3.5) into the above equation yields

Py, = im[-2naF{T}] F{-2xqT}

== S
= 47°q" i [F{TITF{T} (3.7)
= 41°q°Pyr
where Pyt is the PSD of the anomalous gravity potential. By using the PSD definition
given by Eq. (2.7), we assume that the gravity disturbance signal is a stationary and
ergodic random signal. By using the same definition, the PSDs of the two horizontal

components can be derived. They are

Py =4%°0’Ppp (3.8)

Py =4n'V'Pr (3.9

Similarly, with the CPSD definition expressed by Eg. (2.8), the CPSDs of the gravity

disturbance vector components can be obtained as follows:

Ppy =4%’uvPy (3.10)
Py =—jAr’uqPp (3.11)
Pry, =-jnvqPr (3.12)

Here, only three CPSD functions are given, others can easily be obtained by using the

properties of PSD functions. For example, [P,-J:]' =Py -
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Equations (3.7) to (3.12) indicate that all the PSDs and CPSDs are functions of the PSD
of the anomalous gravity potential. Thus, if the PSD of the anomalous gravity potential is
estimated, all the PSDs and CPSDs of the gravity distarbance vector components are
determined. Vassiliou and Schwarz (1985), after numerically analyzing gravity anomalies
from sixteen Canadian areas, recommend the following PSD model for the anomalous

gravity potential at medium and high frequencies:

Prr =~ (3.13)

where A is a scale factor.

3.3 DOWNWARD CONTINUATION OF AIRBORNE GRAVITY DATA

It is necessary for geodetic applications that the airborne gravity measurements be
propagated downward to the geoid (for solving Stokes’ problem) or to the surface of the
Earth (for solving Molodensky's problem). This implies two different types of downward
continuation. One is downward continuation to an equal height surface (level surface).
The other is downward continuation to an arbitrary surface (e.g., the Earth’s surface).

These two types of downward continuation will be dealt with separately in this section.
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3.3.1 Downward Continuation to a Level Surface

As shown in Figure 3.1, if the value of a harmonic function on the surface Vy is known,
the harmonic function outside the surface can be determined by solving the first boundary
value problem of physical geodesy (the Dirichlet problem). Furthermore, if the surface is a

sphere, the result at point P is given by Poisson’s integral (Heiskanen and Moritz, 1967):

_R@*-R¥ ¢ 1
Ve == I‘j 7 Vado (3.14)

1=(R*+r’ -2chosqr)';' (3.15)

where o is the unit sphere correspondent to S. All other quantities are as illustrated in

Figure 3.1.

Figure 3.1: The Dirichlet problem
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Using curvilinear coordinates, we can rewrite Eq. (3.14) as
V.0 A RE-RY el g

p(‘pp, p) - TI;[F [(¢1 )mmm (3.16)
Obviously, Poisson’s integral can be used directly in the upward continuation application.

It is a convolution integral and is therefore suitable for treatment by FFT techniques

(Schwarz et al., 1990). For the upward continuation from one spherical surface to

another, we have

V,(9.A) = C[K(@,A) * (Vy (¢,A)sin 9)] (3.17)
R(r* -R?) i . : i

where C= " * denotes the convolution operator, Vr is the harmonic function

on the sphere with radius R, V; is the harmonic function on the sphere with radius r (r >
R), and K is the integral kernel correspondent to 1/I. In the frequency domain, this
equation becomes

F{V.(0.A)} = CF{K(@, M) }F{V; (9.\)sin 9} (3.18)

where F denotes the 2-D Fourier transform.

For downward continuation, i.e., to obtain Vg from V,, we have to do deconvolution. It

can be easily done in the frequency domain. From Eq. (3.18), we have

1 F{v.(e.M)}
3.19
C F{K(p.M)} G

F{Vp(¢.A)sing}=
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or

_ 1 L [F{V.eM}
Vr(@.A) = Cano F {F{K@, o} (3.20)

where F! is the 2-D inverse Fourier transform.

The kemel of Poisson’s integral decreases very fast with 1. For applications in a local area,

a planar approximation may be introduced. The planar form of Poisson’s integral is

1 zZ-2
V,(Xp, =5 P V, 3.21
PCxe-ye) I I S ~x) -y, +z-2)) )y G20

or

1 577 Vr (X, y)dxdy 3.22)

K (x,,y,):--—” (x-x) + (¥ -y,) +H)

where H is the distance from the surface to the point P, and x, y, and z are coordinates in

the local Cartesian coordinate system. Let

K(x.y) =— H (3.23)

2 (x+y* +H’)’ﬁ

The formula for upward continuation from one level surface to another can be written as
V.(x,y) = K(x,y) * Ve (x,¥) (3.24)
Kernel K has the analytical spectrum of (Bracewell, 1978)

F{K(x.y)} =e—27Hq (3.25)
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where g=(u® + v’)i.

Hence, in the frequency domain, Eq. (3.24) becomes

F{V,(x,y)} = e 2"HAF{V, (x,y)} (3.26)
Next, the formula for downward continuation from one level surface to another is
obtained:

F{Va(x,y)} = 2™F{V,(x,y)} (3.27)
Eq. (3.26) and Eq. (3.27) are very simple. It will be shown in the following chapter that

they can be readily used in a multiple-input system to combine gravimetry data on several

different level surfaces.

8

Kernel Value
5

B

"]

B,

Height (m) 00 Frequency (cycles/km)

Figure 3.2: Change of downward continuation kernel with height and frequency
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It should be pointed out that, in Eq. (3.27), for any q > 0, H > 0, the downward
continuation kemel ¢2™H4 will be greater than unity and will increase with both q
and H, as shown in Figure 3.2. This implies that downward continuation is
instable, especially at high frequencies. Hence, in the downward continuation of
airborne observations, the control of high frequency noise is a critical issue.
So far, we have obtained all expressions for upward and downward continuation of a
barmonic function. The question is: can they be applied to the continuation of the gravity
disturbance vector components? To answer this, we need to see if the components of the
gravity disturbance vector are harmonic functions. From the theory of physical geodesy,
we know that the anomalous gravity potential is a harmonic function outside the Earth Gf
the mass of the atmosphere is neglected). That is
AT =0 (3.28)

where A denotes the Laplace operator. Taking the vertical component as an example,

aT
= Al — 3.29
AT, A(az) (3.29)

Changing the order of the partial derivative and the Laplace operator in the above

equation, we obtain

J
=—(AT)=0 3.30
AT, az( ) ( )

Thus, T; is a harmonic function. Using the same principles, it can be proven that the other

two components of the gravity disturbance vector (in fact, all the gradients, or derivatives,
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of the anomalous gravity potential) are harmonic functions. This conclusion is based on
the harmonic property of the anomalous gravity potential. This means that the mass of the
topography has to be taken into consideration, as well.

3.3.2 Downward Continuation to the Surface of the Earth

With the frequency domain convolution and deconvolution techniques, as shown in the
previous section, Poisson’s integral can be easily used in the downward or upward
- continuation of airborne gravimetry data from one level surface to another. If values on
the Earth’s irregular surface are needed, additional procedures should be considered. As
shown in Figure 3.3, a Taylor series expansion may be used to obtain values on the

Earth’s surface from values on the chosen level surface.

Earth’s
Surface (z)
Chosen Level
Surface (z = zo)
Geoid

Figure 3.3: Continuation from a chosen level surface to the Earth’s surface
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The Taylor expansion is

aV(x,y.z,)

V(x,y,2) = V(x,Y.2,) + (2~ 2Z,) >

3.31)

1 2 9Vxy.z) 1 3 VLY. Z)
TR Ty TR T

where the function V(x,y,z) could be any of the gravity vector components. This equation
holds only when all the partial derivatives of V(x,y,z) are continuous. If the chosen level
surface is intersected with the topography, as shown in Figure 3.3, the topographic masses

must have been removed in advance.

The derivatives in Eq. (3.31) require very large integration computations at each point for
the space domain method (Moritz,1980). However, this can be avoided by using the
spectral method (Sideris, 1987). The Fourier transform of the r® vertical derivative of any
gravimetric harmonic function V(x,y) is given by

F{Q'%(z—’f:—’ﬂ}=(~zuq)'l={vcx,y)} (3.32)

Notice that F{V(x,y)} can be obtained with the methods discussed in the previous section,
which can be built into the multiple-input system or other frequency domain combination
methods. Thus, the r® derivative of V(x,y) can be computed very easily as a by-product

of those combination methods.

Choosing an optimal z, will help to reduce the higher order term effect in Eq. (3.31). 2z

should be chosen in such a way that (z-zp) has a minimum variation. Hence, z, should be
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the mean value of z. This implies that a remove-restore procedure of the topography will
be involved. Spectral methods for the computations of terrain effects on a level surface
and the Earth’s surface have become well-researched over the past decade (Parker 1972;

Sideris 1984, 1990; Forsberg 1985; Sideris and Tziavos 1988; Tziavos et al. 1988).

In most cases, the computation of the first-order term in Eq. (3.31) should be enough.
The consideration of the second-order termm might be needed if the gravity field is

extremely rugged.

The procedure for downward continuation of the airborne gravity disturbance vector is:
1. Remove the topography effect from the gravity vector at flight level;

2. Downward continue all gravity components to the average topographic height;

3. Propagate the components to the Earth’s irregular surface with Eq. (3.31);

4. Restore the topography effect at each point on the Earth’s surface.
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CHAPTER 4

PROCESSING OF AIRBORNE VECTOR GRAVITY DATA
WITH SPECTRAL TECHNIQUES

This chapter deals with some practical aspects of spectral techniques used for airborne
gravity data processing. The first section is a numerical investigation into the two-
dimensional noise PSD of airbomne gravimetry. Special consideration is given to the effect
of the flight route pattern. In the second section, the implementation of the multiple-input
single-output system for airborne vector gravimetry is discussed. A procedure is proposed
to reduce the computer memory requirement as well as the computational work. In the
third section, the frequency domain least-squares adjustment method is briefly introduced
and examined for its use in airborne vector gravity data processing. Finally, in the fourth
section, some special cases regarding the combination of gravity data at different level
surfaces and accuracy improvements of airborne gravity data when no error PSD

information is available are discussed.
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GRAVIMETRY

In this section, an existing one-dimensional noise PSD model of airborne vector
gravimetry will be briefly describled first. Then a numerical approach for estimating two-
dimension PSD from the one-dimensional PSD model will be outlined and used to analyze

two-dimensional noise PSD of airborne vector gravimetry.

4.1.1 One-Dimensional Noise PSDs of Airborne Vector Gravimetry

There are three different types of airborne gravimetry system: i> Damped two-axes
platform system, e.g., Lacoste & Romberg sea/air gravity meter system; ii> Schuler-tuned
three axes platform system; iii> Strapdown inertial navigation system(Hein, 1995). Error
models used in this research are only suitable for the third type of system. For other types

of systems, different error models should be considered.

The one-dimensional (1-D) noise PSD models for INS and GPS can be found in Schwarz
et al. (1994) and Schwarz and Wei (1994). They are given directly here. For details,
these two papers should be consulted. The 1-D noise PSD model for INS measured

specific force in the horizontal channels is

Bl e, 8 g, 2
Py () = R o7~ bl + T a+ AT c2+Q, 4.1)
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whereb? is the PSD of the constant accelerometer bias, d is the PSD of gyro drift, 67 is
the variance of accelerometer colored noise, Q, is the PSD of white noise, a is the

Schuler frequency, and B, is the inverse of the correlation time of accelerometer colored

noise.

In the 1-D error PSD model of the vertical channel, the constant accelerometer bias term

and the gyro drift term become negligible so that the model can be written as

28
P, = g2+ 4.2
() o +p Q “4.2)
The 1-D error model for GPS measured acceleration is provided by Schwarz and Wei
(1994) as follows:

ﬂ

At =0 +'Q, 4.3)

P (@)= o*

where 6?2 is the variance of the correlated GPS position errors, B, is the inverse of the

correlation time, and Q is the PSD of the white noise in GPS positioning.

The 1-D error PSD of airborne gravity data is the sum of the PSDs of the INS measured
specific error and the GPS measured acceleration error. For the horizontal channel, we

have

2
P, (@) = —E—rd? + 22 ol +Q, +0' ——t50] +0'Q, 4.9)

2 242 8 2 2
(0 —a;) o +B;

I3
Bl
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For the vertical channel, we have

P (@)= -(;)%E’E-cf +Q, Ho‘(o’if-'ﬁoi +0°Q, 4.5)

In Eq. (4.4) and Eq.(4.5), each term corresponds to a particular error source. There is no
cross PSD term in these two equations. This means that the assumption has been made
that the error sources are not correlated to each other. Due to aircraft dynamics, this
assumption is not true, especially in the high frequency band. But, considering that the
simulation study will be restricted to geodetic application where relatively low frequencies
of the gravity signal have to be estimated, the assumption may not affect final results
significantly. For the sake of simplicit, these simple PSD models will be used in this

research.

Table 4.1: Parameter Values Used for Noise PSD Models

Parameter Value
ba 10 mgal/VHz
d, 102 deg/i/ Az
Ca 10 mgal
Q 1 mgal/JHz
1/8. 2h
G, 0.03m
Q. 0.005 m
1/8, 1000 sec
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The parameter values for the PSD models used in this research are taken from Schwarz et

al. (1994) and Schwarz and Wei (1994). They are listed in Table 4.1.

Figure 4.1 shows the 1-D error PSDs of the horizontal components and the vertical
component of the airborne gravity disturbance vector within the frequency band from
5x10* Hz to 1x10™ Hz. ‘The frequency band corresponds to the wavelength range from

111.11 km to 0.56 km if the aircraft velocity is assumed to be 200 km/h.

2 g EuogtPSD(g.]nzénl) g g

2 8 8 8 8 8 8 8 =

g 8 8 &8 8 § 8 8

Lad * @ - D e
Frequency (Hz)

Figure 4.1: 1-D noise PSD of airborne vector gravimetry

4.1.2 Estimate Two-Dimensional Noise PSD With a Numerical Approach

Two-dimensional (2-D) noise PSD information is indispensable for the implementation of

the multiple-input system for airbome vector gravimetry. However, a general analytical 2-
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D noise PSD model for airborne gravimetry cannot be derived because the form of such a
model would be strongly affected by the flight route pattern. In this section, the 2-D noise
PSD for a typical pattern, ie. one in which the flight routes are parallel lines, will be
examined numerically with the methods discussed in Chapter 2. Two special cases will be
considered. In case (1), the area is covered by a number of independent flights. In case

(2), the area is covered by a single flight. These two cases are illustrated in Figure 4.2.

/-\ --'-\\

s
.
pa S

Case (1) Case (2)

Figure 4.2: Nllustration of the two cases: (1) Area is covered by a number of independent

flights in the same direction; (2) Area is covered by a single flight

To estimate the 2-D noise PSDs, noise for each case illustrated in Figure 4.2 is simulated
using the spectral scaling technique. As illustrated in Figure 4.3, the spectral scaling
technique consists of two parts. One is a random noise generator and the other is a low
pass filter used for scaling the PSD of the output to the desired one. Because of its

function, this low pass filter will be called the power spectral density shaping filter.
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i Low Pass Filter
Random Noise W No%se
Generator (shaping the PSD) With Desired PSD

Figure 4.3: Noise simulation by spectrum scaling technique

The design of the power spectral density shaping filter is simple. Assume that x(t) is the
noise series generated by the random noise generator, gn(t) is the impulse response
function of thé filter to be designed and y(t) is the output of the filter. In the frequency

domain we have
Y(@) =G, (@)X(w) (4.6)

where X(w), G, (®), Y(w) are the Fourier transform of x(t), gux(t), y(t), respectively.

Then we also have
P, ()= Gn((o)G;,(m)Pn(m) @.7

where Px and Py, are the power spectral densities of x(t) and y(t). Usually, Py and Py, are
considered to be known. By choosing any Gy that satisfies Eq. (4.7), we can obtain the
resulting power spectral density shaping filter.

For that each term in Eq. (4.4) and Eq. (4.5) is the PSD of an independent error source,

each type of errors can be simulated separately and added together to the total error of
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airborne gravimetry. Assuming that the random noise generator generates a white noise

sequence with unity PSD, then Eq. (4.7) becomes
P (@)= G,.(CD)G;,(CD) (4.8)

Thus the Gyx(@) functions for the noise simulation of the vertical channel can be derived by

applying Eq. (4.8) to each term in Eq. (4.5). The results are as follows.

28,
jo+B, i

JQ,
G, (@) = (4.9)
2 v2B, s

jo+B, .

| o

From Eq. (4.4) , the Gyn(®) functions for the horizontal channels can be obtained as

(0]

follows:

G (@) = (4.10)
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Details for the spectrum scaling technique can be found in Smith (1987).

The noise components for the simulated gravity data have been generated one flight at a
time. It should be noted that the random noise generator must use a different seed for each
flight and for each type of errors. Otherwise, the simulated noise will be correlated.
Figure 4.4 shows the noise simulated for case (1). The aircraft velocity is set to be 200
km/h. The coverage of the area is 600 km x 600 km. The intervals for both along and

across the flight line are 5 km, which implies 90 sec averaging time.

(a) Noise in the vertical channel T,



mgal

(b) Noise in the horizontal channel T,

Figure 4.4: Simulated noise before high-pass filtering

mgal

(a) Noise in the vertical channel T,
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(b) Noise in the horizontal channel T,

Figure 4.5: Simulated noise after high-pass filtering

As shown in Figure 4.4 (b), low frequency noise dominates the error behaviour in the
horizontal channels. The error range in this case is bigger than 350 mgal. This is too big
for any type of applications. Fortunately, in each application, the main interest is in
signals in a centain band. In geodesy, for instance, the gravity signal in the wavelength
range of 10 km to 100 km is of major concem nowadays. The longer wavelength signal
has been solved with good accuracy by gravity models. For this reason, numerical test in
this thesis will be concentrated on improving the gravity signal in this particular range, i.e.
10 km to 100 km. Thus a high-pass filter is applied to the simulated noise sequences to
obtain noises with wavelengths from 10 km to 100 km. The results are illustrated in

Figure 4.5. However, it should be pointed out that in areas with sparse terrestrial gravity
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observations, longe wavelength signal provided by gravity models are not very reliable. In
these areas, gravity signal with wavelength longer than 100 km may need to be determined

airbomne gravimetry as well.

Assuming that the aircraft velocity is 200 km/h, the 10 km to 100 km wavelength range
corresponds to a frequency range of 0.556 x 10° ? t0 0.556 x 10*. For comparison, the

one-dimensional error PSD in this frequency range is shown in Figure 4.6.

60
Vertical
50 ~ messes=r Horizootal
\

2 30 2 .'s..
5 ) B T,
5 m N w05 kel

10 |

0 ) 1 L L L i

556E-04  2.22E-03 389E-03  5.56E-03

Frequency (Hz)

Figure 4.6: 1-D error PSD of airborne vector gravimetry in the interested frequency range
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cycles/km cycles’km

(a) Noise PSD of the vertical component

cycles/km cycles/km

(b) Noise PSD of the horizontal components

Figure 4.7: Noise PSDs of the airborne vector gravimetry for case (1)
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cycles/km cycles/km

(a) Noise PSD of the vertical component

0.1 . ]
cycles/km 01 cycles/km

(b) Noise PSD of the horizontal components

Figure 4.8: Noise PSDs of the airborne vector gravimetry for case (2)
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After the noise simulations have been done, the PSD estimation method discussed m
chapter 2 can be applied. Figure 4.7 shows the results for case (1). Noises for case (2)
can be simulated in the same way. The error PSD results for case (2) are shown in Figure

4.8.

In Figure 4.7 and Figure 4.8, it is apparent that the shapes of the 2-D PSDs are mainly due
to the flight line direction. In the frequency component comresponding to the along-track
direction, the 2-D PSDs behavior very similarly to the 1-D PSD. In the frequency
component corresponding to the cross-track direction, the 2-D PSDs have white noise
behavior. The expected correlation between the lines (i.e. the none-white noise behavior
in the cross track direction) for case (2) has not been shown in Figure 4.8. The reason is
that only noise with wavelengths less than 100 km has been simulated, and this makes the
correlation between the lines too weak to be detected by the algorithm used here for 2-D

PSD estimation.

Obviously, there is another flight route pattern that has to be metioned. That is the cross-

over pattern as illustrated in Figure 4.9.

Figure 4.9: Cross-over flight route pattern
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Cross-over flight patterns are typically used for controlling constant biases and linear error
trends. However, as explained earlier in this section, a band-pass filter would be applied
to the airborne gravity measurements for most applications, such as the case in this
research. As a result, low frequency signals and noises including constant biases and linear
trends will be removed from the raw data. To deal with the cross-over flight pattern
problem with the spectral techmiques, it is suggested that the cross-over pattern be
decomposed into two parallel flight line patterns as shown in Figure 4.10. The two data
sets obtained, then, can be easily processed and combined with the multiple-input system
techniques discussed in this thesis. If the low frequency contents have not been removed,
an additional procedure may be needed to remove or reduce the constant biases and linear

trends before the decomposition.

.
v

sese este
.
.

Figure 4.10: The decomposed cross-over flight pattern
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The discussion in this section provides a useful 2-D PSD estimation procedure for
airborne gravimetry. In reality, the pattern of the flight lines would be neither as shown in
case (1) nor as shown in case (2), but the noise sequence for each flight can always be
simulated and put together for the 2-D PSD estimation, provided that the one-dimensional

PSD models are available.

42 STEPWISE IMPLEMENTATION OF A MULTIPLE-INPUT SYSTEM

FOR AIRBORNE VECTOR GRAVIMETRY

As mentioned in Section 4 of Chapter 2, the direct determination of the optimum
frequency responses of a multiple-input single-output system become very complicated
when the number of the input signals is greater than 2. In airborne vector gravimetry, the
number of input signals could be three. However, if there are other types of observation
to be combined, such as measurements from gradiometry and altimetry, this number would
be much larger. In this section, a stepwise procedure is proposed to make the realization
easier and to reduce the computer memory requirement. This stepwise procedure
repeatedly uses two-input single-output systems. Thus, the two-input system for

gravimetry data processing will be discussed first.

If no noise exists, the coherence function between any two of the gravity field quantities

(such as the anomalous gravity potential, the components of the gravity disturbance



56
vector, and the higher order gradients of the anomalous gravity potential) x; and x, will be
equal to one because all of these gravity field quantities are linearly correlated with each

other. Thatis
P
2 12
= =1 4.10
le Pl 1P ( )

where Py, is the CPSD of x, and x;, and P, and P», are PSDs of x; and x,, respectively.

The multiple-input theory can not be applied to this case. As a matter of fact, no
combination will be required. In practice, however, observations will always be
contaminated by noise. Assume that the noise is additive and there is no comelation
between signal and noise and no correlation between noise sequences. Then the

observations of x, and x; can be written as x, =x, +n,,X, =X,+n,. Their PSDs and

CPSD can be written as
P1,1., =P, +Pn.n,
PZ.Z, = P22 + Pn;n, (4-11)
P1,2. =P,
The coherence function between the two observations is
2

P P.[

Yia, = Bal | @.12)

PPz  (Bu+PB, )P2+P.,.,)

This coherence function will always be less than 1 and greater than zero. Hence, Eq.

(2.35) and Eq. (2.36) can be used here as shown below:



-1 4y
- B, 1- P, (P22 +PB,., ) PR,
' Pll +P 5,8y 1- 112.2.

-1 ~
- FE’ ‘1-1%5(?11 4.!21'1) E‘y‘&:
E22.+.I:3lg l'-JYiiz.

2

These equations are equivalent to

Ply P22 + P-zn,

H, = P P
P, + P, 1- 1 pr]

Pll + Pl:,nl P22 +Pn;nz

l——Pn

H - sz Pll +Pn;n.

2 P, P.
Pn + Plglz 1_ 11 22

P, +P,, P, +P,

| Pt V)
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4.13)

(4.14)

When there is no second input signal, i.e. P»=0, Eq. (4.14) reduces to Eq. (2.28) which is

the optimum frequency response for the single-input system. A more detailed discussion

can be found in Sideris (1996).

Figure 4.6: A multiple-input system realized by repeatedly using two-input systems
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When the number of inputs is more than two, a stepwise procedure for the realization of
the system is recommended. First, a two-input system is used to combine two of the input
signals. Then, another two-input system is used to combine the output of the first two-
input system and the third input signal. After that, if there is a fourth input, a third two-
input system can be employed to combine the fourth input with the output of the second
two-input system. In this manner, any number of input signals can be combined to obtain
one output signal. Thus, a multiple-input single-output system can be implemented by
repeatedly using the two-input single-output systems. Essentially, only two-input systems
need to be realized. This makes the realization of a multiple-input system much simpler.
In addition, the computer memory requirement is greatly reduced because only two inputs
will be processed at one time. The implementation procedure proposed is illustrated in

Figure 4.6.

Consider a three-input single-output system as an example. For the first two inputs, we

have

Y =XH, +XH, @.15)
where H; and H, can be computed with Eq. (4.14). The error PSD of Y’ is given by

P,y =[H['R,,,, +[H[P,,,, .16)
Then the third input and Y’ can be combined by another two-input system as follows:

Y’ =YH, +X,H, @.17)
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where Y” is the optimal estimation of the spectrum of the desired output signal Y in this

case. H] and H; is given by

- Py
=P P, +P,,
P, +P,, P, P,

P_+P, P,+P

ByAy

Py
P. P_+P..

H, =—2 s (4.18)
P +P,,, 1~ Py Py

P +P,, P;+P

8303

This three-input single-output system will be used in the processing of airborne vector

gravity data.

4.3 FREQUENCY DOMAIN LEAST-SQUARES ADJUSTMENT

The concept of the frequency domain least-squares adjustment method can be found in
Barzaghi et al. (1993), Sanso and Sona (1995), and Sideris (1996). Unlike the muitiple-
input system theory, which determines the optimum system frequency response by
employing all the PSDs of the input signals and their corresponding error PSDs, the
frequency domain least-squares adjustment method assumes that the system frequency

response functions are deterministic and are known in advance. In this method, first, the
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output spectra corresponding to each of the input signals are computed by multiplying the
known frequency response functions with the spectra of the input signals. Then, the
optimal estimation of the desired output spectra is obtained according to the least-squares
principle. From the remainder of this thesis the frequency domain least-squares

adjustment method will be called least-squares adjustment or simply LSA in brief.

Assume that x, and x, are observations of x; and x;, respectively, that their noises are

n; and m; and are not correlated, and that the signal to be estimated is y. In the frequency

domain, the spectra of y corresponding to each of the observations can be written as
Y= HX,

4.19)
Y2 =HX,
where the frequency response functions H; and H, are considered perfectly known. The
PSD:s of the errors in Y' and Y are given by
P 2, = HZP,

810y

P :,n, = ngnzuz

4.20)

Transfering least-squares principle to the spectral domain, the optimal estimation of Y is
defined as the weighted average of Y' and Y2. The weight assigned for each spectra is the

inverse of its error PSD. Thus

1 1
pd Pnlll Pzn
Y=——"5 Y+ 1“"1 Y? 4.21)
-l-Pz Pl + 3
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By substituting Eq. (4.20) into Eq. (4.21), we get

A HZP p Y\
Y= (1 +Eﬂﬂ.J HX, +(l +.E+I:.ELJ HX, 4.22)
'zl: 1% a0,
The error PSD of Y is expressed by
P, = (H RS, +HEL, ) (4.23)

Similarly, when there are three or more observations, the optimal estimation of y and its

error PSD expression can be obtained as follows:

\-1

. (. HP,, HP, HP. HP, Y
Y= 1+H§P“+H2P“ HX, + 1+H§P==+H2P“ H,X,

\. | 9109 a303 J | 110 n3by

) 1 (4.24)

HXP,, HP, }'
+ 1 ﬂ.gl; LILEY H

L H’P“ HZP, .. | s,

P, = (HEL, +H7E, +HPL ) (4.25)

Eq. (4.24) and Eq. (4.25) can be easily expanded for the general case, for example, when

k observations exist:
'S, ( Hzpu n Han n Hzp 8, \‘l
Y=+ H X,
\ H Pu,nz H Pn,n, HkPn.n. J '
(HZP HP. K _ HP,)
H gty L | gX (4.26)

|HiP,,,  HP,, “HE,, HP,, |

HP, ., HP HZP -
FRRER e + Byl IS ByBy +1| HX
(H’P HZP THLP, ol

ByBy Oyby
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P, =(H B, + BB, +HPL ++H7R ) @27

The known frequency response functions, ie. H;, Hs,..., are chosen as the frequency
responses of the ideal single-input single-output system. These ideal frequency responses
for airbome vector gravimetry can be obtained by using the PSD and CPSD relations
given in Section 3.2. For example, assume that the input signals are T,, T,, and T, i.e. all
the components of the gravity disturbance vector. The output signal is the vertical

component T, and the ideal frequency responses will be

P. -j4n*ugP, .
H, Pr.r, = :mzu‘:g v =_.J% (4.28)
T.T, ™

_ P'r,'r, _ —j4nvqPp =—j q

H, = = 4.29

z Py  4TVPy v 4.29)
P,

m,=Fn g 4.30)

From Eq. (4.28) to Eq. (4.30), it can be seen that no prior information about the gravity
field is needed if the ideal frequency response functions of the single-input single-output
systems are used as the known frequency response functions in the least-squares
adjustment method. All the ideal frequency response functions used in this research for

the data processing in airborne vector gravimetry are listed in Table 4.2.
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Table 4.2: List of Ideal Frequency Responses Used for The Airtbome Vector Gravimetry

Data Processing
Output Signal Input Signal Frequency Response

Tx -jg/u

T: T, -jg/v
T: 1
Tx 1

Tx Ty uv
T. -juq
Tx v/u

Ty Ty 1
T. -iviq
T: -j/(21u)

T Ty -j/(2rv)
T: -1/(2rq)




44 SOME PRACTICAL CONSIDERATIONS

4.4.1 Combining observations at different levels

The multiple-input single-output system and the least-squares adjustment method can be
modified to combine observations made on different level surfaces and to give results at
any altitude. This means that the methods will possess built-in functions to deal with the

downward and upward continuation problems.

In Section 3.3, the analytical kernels for upward and downward continuation in the

frequency domain have been discussed. For upward continuation, we have
Ku = e—ZSB udev? (4'31)

For downward continuation, we have

K, =i 4.32)

where, in Eq. (4.31) and Eq. (4.32), H is the elevation difference between the two level
surfaces. Notice that the only difference between these two kemels is the sign of the
exponent. This sign difference can be taken care of by using the height ( the z coordinate)
difference between the two level surfaces instead of the absolute distance. Assuming that
the height of the measurement surface is h; and the height of the destination surface is h,,

we obtain
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K = g2eth-bari™s 433)

Obviously, in the case of upward continuation (hz > h;), K will be equal to K,. In contrast,
in the case of downward continuation (h: < h;), K will equal Kq. Hence, K can be called

the continuation kernel.

To build the continuation ability into a multiple-input system or a least-squares adjustment
solution, we need to conmsider not only the continuation of the input signals but the
continuation of the input noise PSDs as well. These two types of continuation can be
done very easily in the frequency domain. Multiplying an input signal by its corresponding
continuation kernel, we get the signal at the destination altiude. To obtain the
continuation of an input noise PSD, we only need to multiply it by the square of the

corresponding continuation kernel. The expressions are as follows:
X =X.K (4.34)
B =R K (4.35)

where X7 is the continuation of the input signal X;, P;, is the continuation of the the input

noise PSD P,

o, » and K is computed by Eq. (4.33) according to the height of X; and the
height of X:. In case that K; is used as a kemel for downward continuation, the instability
discussed in Section 3.3.1 should be noticed. With Eq. (4.33) to Eq. (4.35), we can
readily build the continuation ability into a multiple-input system or a least-squares

adjustment solution so that it will be able to combine observations at different levels.



4.4.2 Accurscy Improvement Without Noise PSD Information

To improve the accuracy in airborne vector gravimetry without noise PSD information,
we have to exploit the following two facts :
1. The vertical component is much more accurate than the horizontal components.

2. The PSDs of the horizontal gravity components can be determined from the PSD of
the vertical component.

Thus, if ﬁm; is the PSD of the measurements of the vertical component, we have

Py, P LT,

(4.36)

Pry =Py

.n~|<h -n =,

Py, and Pr; are not the PSDs of the true signals of the horizontal components because

P;; is contaminated by the measurement noise. However, because the noise level is

much lower in the vertical channel and u and v in Eq. (4.36) are generally less than q (so

that the power of the noise will be attenuated), Pr; and Pr; can be treated as

reasonable estimates of the true PSDs of the horizontal components in this case.

Therefore, we can improve the horizontal components with the Wiener filter:

e R et

g 4

1= F"{%{:—F{Ty_ }} F“{; : F{T, }}

4.37)
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where Py and P;; are the PSDs of the observations of the two horizontal components.

Further improvements for all three components can be achieved with the least-squares
adjustment method if their noises are not correlated with each other. The reason is that
only the magnitude spectra are used in the Wiener filters and so the noise could be
reduced by averaging due to their random phases. Because detailed information on the
noise PSDs is not available, we have assumed that the accuracies of all three components
are the same after the application of the Wiener filter in Eq. (4.37). Eq. (4.26) then
becomes

. 2 2 2\t
Y= (1+-E—;-+%;—+-+—I—;;- H X,
2 3 k/

2 2 2\
{Hz +1+ H; + --I-E% H.X, (4.38)

2 2 2 -1
BB B Ve
H H; H,_,

where X , i=1,2,3..k could be the spectra of the vertical component observation or the

spectra of any of the horizontal components obtained with Eq. (4.37), and Y could be the

improved spectra of any component of the gravity disturbance vector.
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CHAPTER 5

NUMERICAL TESTS AND ANALYSIS

In this chapter, after an introduction to the data simulation, results of the
numerical tests are shown and analyzed. The tests are focused on getting
accurate results from airborne observatiqns using spectral methods with or
without measurement noise PSD information. The tests also investigate some
aspects of downward continuation of airborne gravimetry data to a level surface
and to the surface of the Earth. Some comparison between different processing
methods is also done. Finally, the accuracy of geoid determination using airborne

gravity data is investigated.

5.1 DATA SIMULATION

Airborne vector gravimetry measurements are simulated in this section. First a
local gravity field is modeled with a two-layer point mass model. Then the noise
for each channel of airborne vector gravimetry is simulated and added to the

corresponding component of the simulated gravity disturbance vector.
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The point mass model has been widely used in local anomalous gravity field
modeling (Forsberg, 1984; Vassiliou, 1985 and 1986). The basic idea of this
model is that the anomalous gravity field can be generated (or modeled) by one or
several anomalous point mass layers under and parallel to the Earth’s surface. In
practice, most of the time, these anomalous point mass layers are computed from
the existing gravity anomalies or disturbances by using a deconvolution
procedure. If the known gravity disturbances are gridded, spectral techniques can
be used to greatly alleviate the computation load. The mathematical models
needed for the gravity field simulation using the point mass model are given
directly here in the space domain and in the frequency domain. Details can be

found in Forsberg (1984) and Vassiliou (1986).

The same local coordinate system introduced in Chapter 3 is used in the following
description. Assuming the anomalous masses on one layer at depth d, the gravity

disturbance at a point P (x;, yp, Zp) can be expressed as

d+z,

M N
88(x,.¥,:2) =G Y,

p(x;.y;) G-1)
i=l =l [(xi __,x")2 +(yj - yl,)2 +(d + zp)zrz

where G is the Newton’s gravitational constant, x;, y; are the coordinates of the
point mass p(xi, y;) and M, N are the number of points in the x and y directions
respectively. The right-hand side of this equation is a two-dimensional

convolution. With the use of the two-dimensional discrete Fourier transform, all
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gravity disturbances in the corresponding grid at an altitude z, can be computed at

the same time. Eq. (5.1) in the frequency domain becomes

8g(x,y,2,) =GF'{F dtze ey} (5.2)

[Jvtz +y +(d+ z,,)lly2

As mentioned in Chapter 3, the Fourier transform of the kernel function has an

analytical expression. Eq. (5.2) can thus be rewritten as
8g(x.y.2,) = GF2me = Efp(x,y)}} (5.3)

To obtain the anomalous point masses from the existing gravity disturbance data,

we invert Eq. (5.3) as
p(x,y) = 5{;. F! {e""““"’F{ag(x, Y’zo)}} (5.4)

The expressions for the two horizontal components generated by the anomalous

masses of a single layer are given by

M N K-"XP
T,(X,.¥,.2,) =G, Y, : = P(X:.Y;) (5.5)
T ) i) +@ea)

T, (X, Y, Z,) =GF"{j%?e""““‘“l’-‘{p(x,y)}} (5.6)

M N -
T,(x,.¥,,2,) =GY. 3, .2 % p(x;,¥;) G.7
pYIp*p izl j=l [(x‘ "XP)Z +(yj -yp)2 +(d+ zp)zrn
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T,(x,y,2) = GF‘{j%l"le""‘“"’F{p(x, y)}} (5-8)

The local gravity field used in this research is simulated on 2 § km x 5 km grid.
The total coverage is 600 x 600 km®>. Generally, a low frequency signal will be
more accurately simulated by a deep point mass layer and high frequency signal
will be more accuratel); simulated by a shallow point mass layer. To be more
realistic, a multi-layer model should be used to account for signals in different
frequency ranges (Forsberg, 1984). A two-layer model is used to simulate the
gravity signals in the wavelength range of 10 km to 100 km which is the
. wavelength range selected for this research. Thus, the actual simulation
procedure starts with high pass filtering the known gravity disturbance data to
filter out the signals with wavelengths longer than 100 km, which is equivalent to
removing the low frequency signal by subtracting an errorless global gravity field
model. Then the residual is further split into two data sets. One contains signals
with wavelengths shorter than 30 km. The other contains signals in the
wavelength range of 30 km to 100 km. After that, a point mass layer buried 10
km below the geoid is generated using the first data set with Eq. (5.4). And
another point mass layer buried 30 km below the geoid is generated using the the
second second data set. Finally, the gravity field components at any altitude can
be computed with the formulae given. A check of results shows no discrepancies
between the input known gravity disturbances and those simulated. This,

however, does not mean that the actual gravity field has been reproduced by the
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two-layer model, especially at other height levels. What can be expected is that
the simulated gravity field would be close to the actual gravity field. By using the
generated point masses to compute all the three components of the gravity
disturbance vector at different levels, a consistent gravity field can be obtained to
work with. Table 5.1 lists the statistics of the components of the simulated
gravity disturbance vector on the zero height level surface. The graphic
presentations of these components are shown in Figures 5.1, 5.2, and 5.3,

respectively. The signal PSD estimates are illustrated in Figure 5.4.

Noise in airborne vector gravimetry data is simulated with the spectrum scaling
technique which has been discussed in Section 4.1. The whole area is assumed to
have been surveyed by a number of parallel flights, following case (1) discussed in
Section 4.1. The simulated noise for the vertical channel and the two horizontal
channels are shown in Figures 5.5, 5.6, 5.7. Their statistics are given in Table

5.2. The noise PSDs are shown in Figure 4.7 in Section 4.1.2.

Table 5.1: Statistics of the Simulated Gravity Vector Components

Gravity Vector Component | Min Max Mean RMS

T. (mgal) -54.2 88.0 0.00 11.98

Tx (mgal) -53.4 39.0 0.00 7.70

T, (mgal) -75.0 | 523 | 0.00 9.11
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Figure 5.1: Graphic presentation of simulated T.

Figure 5.2: Graphic presentation of simulated Tx



Figure 5.3: Graphic presentation of simulated T,
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.1
cycles/km 0 0.1 cycles/km

(a) Signal PSD of T.
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(b) Signal PSD of Tx
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(c) Signal PSD of Ty

Figure 5.4: Signal PSDs of simulated gravity disturbance vector components



Table 5.2: Statistics of the Simulated Airborne Vector Gravimetry Noise

Channel Min Max Mean Std. Dev.
T. (mgal) -8.6 55 0.19 2.16
Tx (mgal) -19.4 14.8 0.13 4.96
T, (mgal) -18.0 18.5 -0.10 4.81

Figure 5.5: Graphic presentation of the simulated noise for T,
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Figure 5.6: Graphic presentation of the simulated noise for Ty

Figure 5.7: Graphic presentation of the simulated noise for T,
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5.2 ACCURACY IMPROVEMENT WITH NOISE PSD INFORMATION

The effectiveness of spectral methods in improving the accuracy of the airborne
gravity disturbance vector is tested in this and the following sections. In this
section, we assume that the noise PSDs for all the channels of airborne vector
gravimetry are available. Zero padding is used in all numerical computations in
this thesis to acount for the circular convolution effect. To avoid edge effects due
to the limited coverage, in this section as well as in following sections, all the
comparisons of the estimated signals and the true signals are done in an inner area

that is S0 km inside the borders of the total area.

Usually, only the one-dimensional noise PSDs are available. Before the multiple-
input single-output system can be implemented, all the required two-dimensional
noise PSDs must be estimated. Generally, there is no analytical way to derive the
two-dimensional PSD model from the one-dimensional PSD model. Instead, the

numerical estimation method proposed in Section 4.1 will be used.

Using the stepwise procedure, software has been written in which the realized
multiple-input system can take as many as ten types of gravity field quantities
(including the anomalous potential and all of its first and second order gradients)
as its inputs and give any one of these quantities as its output. In the case of

airborne vector gravimetry, the maximum number of input signals is three. When
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there is only one input signal, the single-input single-output system gives the same

results as the two-dimensional Wiener filter.

Table 5.3: Accuracy Comparison of Different Combinations With Multiple-Input
Single-Output System

Output Signal | Input Signals Min Max Mean | Std. Dev.
T. -4.5 4.8 0.01 1.28
T. T, Tx -4.6 44 -0.00 1.18
(mgal) T. T, -4.8 53 0.01 1.20
T, T: Ty -4.5 4.5 0.01 1.14
T -6.5 6.9 0.00 1.81
Tx T, T; -3.0 2.8 0.00 0.73
(mgal) T, Ty -5.6 5.1 0.00 1.41
T, T. Ty -2.7 3.0 0.00 0.72
T, -1.9 6.7 0.00 2.02
T, T, T, -3.2 33 0.00 0.83
(mgal) T, T, -6.8 5.6 0.01 1.63
Ty T. Tx -3.2 3.0 0.00 0.81
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Table 5.3 shows the accuracies of the results for different input combinations for
each component of the gravity disturbance vector. All the estimations are done at
flight level, ie., no downward continuation is made. A significant improvement
for every component is seen after the Wiener filtering. Adding other components,
additional improvements for the vertical component T, and the two horizontal
components T,, T, are different. The further improvement for T, is much less
than those for T and T,. Moreover, the best results for Ty and T, have
significantly higher accuracy than the best result for T,. The reason for that can
easily be illustrated in the frequency domain. Most of the time, u and v are less
than q=(u® + v¥)'2%. When Tx and/or T, are used to improve the results of T;, the
noise in T, and T, will be amplified by a factor of q/u or gq/v in each frequency. In
this case, the system will be more dependent on the measurements of T,. Thus,
less improvement will be seen. In contrast, when T, is used to improve the two
horizontal components, the noise in T, will be attenuated by a factor of u/q or v/q.
This means that T, or T, will get a set of much more accurate measurements. The
measurements will be even more accurate than the original measurements of T,.

This explains why the final results for T and T, are better than the results for T..

To give a perspective view of how the multiple-input system works to improve the
results, surface maps of the errors are plotted in the total area. Figure 5.8 shows
the error in T, after Wiener filtering (i.e., when the input is only T,). Figure 5.9

displays the error in T, estimated by combining T, with Tx and T,. Errors in the
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estimations of Tx are presented to show the improvement in the horizontal
components. Shown in Figure 5.10 are the errors in T after Wiener filtering.

Errors in T, estimated from T,, T, and T, together are shown in Figure 5.11.

Figure 5.8: Error in T, after Wiener filtering

UL

Figure 5.9: Error in T, estimated by combining T, with T,, T,
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Figure 5.10: Error in T, after Wiener filtering

Figure 5.11: Error in T, estimated by combining T, with T, T,
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Comparing Figure 5.8 with Figure 5.5 and Figure 5.10 with Figure 5.6, we can see
improvement in both the border and inner areas. By comparing Figures 5.8, 5.9
and Figures 5.10, 5.11 to examine the effect of other inputs, it is seen that higher
accuracies are obtained in the inner area while accuracies are lower toward the
borders. The reason for this trend is that, in the single input case, no prediction
for one signal from other types of signals is used, while in the multiple input case,
such a prediction is necessary. These predictions, which are well-known in
physical geodesy, require a large area of coverage depending on the wavelength
range of the signal to be recovered. Thus, it is the prediction between signals that
causes the accuracy degradation in the border area. This is the price to be paid
when higher accuracy is desired in the inner area. As expected, it is also seen that

the high frequency noise is reduced by the input signal combination.

Obviously, another approach can be used in the case that the one-dimensional
noise PSDs are known. First, a one-dimensional Wiener filter can be applied to
each flight trajectory. Then, the combinations can be made by employing the
least-squares adjustment method in the two-dimensional frequency domain. To
evaluate this approach, the first step is to compare the results from the one-
dimensional Wiener filter with the results from the single-input single-output
system system (i.e. the two-dimensional Wiener filter). Table 5.4 indicates the

accuracies of the results using one-dimensional Wiener filters.



Table 5.4: Accuracies of Gravity Vector Components After Wiener Filtering
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Along Trajectories
Gravity Vector Components Min Max Mean Std. Dev.
T. (mgal) -6.0 6.7 0.02 1.83
T: (mgal) -9.7 9.8 -0.05 234
T, (mgal) -12.4 11.0 0.01 3.00

Comparing the numbers in Table 5.4 with their corresponding results from the

input-output system in Table 5.3, we can see that the one-dimensional Wiener

filtering gives less accurate results although some improvements can be expected.

The possible reason is that fewer measurements are used in one-dimensional

Wiener filtering. Because the two-dimensional filtering has this advantage, it is

important to estimate the two-dimensional noise PSDs with numerical methods

such as the one proposed in Section 4.1 of this thesis.

5.3 ACCURACY IMPROVEMENT WITHOUT NOISE PSD INFORMATION

When noise PSDs are not available, the multiple-input system can not be

implemented. The procedure discussed in Section 4.4.2 should be applied. The
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first stage of this procedure is to improve the horizontal component measurements
using the vertical component measurement. This stage begins with approximating
the signal PSDs of T, and T, using the measurements of T,. Then the PSDs of the
T., T, measurements are estimated. After that, the improved estimates of T and
T, can be obtained with Eq. (4.37). The whole idea is based on the fact that the
measurements in the vertical channel are much more accurate than the
observations in the horizontal channels and the signals in all of those channels are
linearly correlated. Shown in Table 5.5 are the accuracies of the improved T, and
T,. Comparing Table 5.5 with Table 5.2, we can see that the standard deviations
of the errors become half of their previous values. The results have nearly the

same accuracy level as the T, measurements.

Table 5.5: Accuracies of the Horizontal Components Improved with the PSD of

Vertical Component Measurements

Gravity Vector Component Min Max Mean Std. Dev.
Tx (mgal) -8.3 10.0 -0.27 2.62
T, (mgal) -10.5 10.9 0.01 2.95

The second stage of the procedure is to improve the vertical component with the
estimations of T, and T, from the first stage. As discussed in Section 4.4.2, this is
theoretically possible. The statistics shown in Table 5.5 indicate that the same

accuracy assumption in the frequency domain least-squares adjustment model Eq.
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(4.38) is more or less realistic. As expected, and shown in Table 5.6, accuracy
gains for every component have been obtained by combining them with the
frequency domain least-squares adjustment technique. Here again, the accuracy
gain for the vertical component is much less than the gains for the horizontal

components. The reason for this is the same as given in Section 5.2.

Table 5.6: Further Accuracy Improvement With Frequency Domain Least-squares

Adjustment

Output Signal | Input Signals Min Max Mean Std. Dev.

T. -8.6 5.5 0.19 2.16

T, T. Tx -6.5 6.1 -0.06 1.95

(mgal) T, Ty -6.6 8.0 -0.11 2.04

T, Tx Ty -7.1 7.2 -0.09 1.92

T -8.3 10.0 -0.27 2.62

Tx T: T, -4.8 4.6 -0.06 1.37

(mgal) T Ty -7.0 8.1 -0.09 2.12

T.T. Ty -5.0 4.6 -0.05 1.31

Ty -10.5 10.9 0.01 2.95

T, T, T, -5.6 5.5 0.02 1.45

(mgal) Ty Tx -8.9 9.1 0.01 2.44

T, T, T« -5.1 5.4 0.02 1.40
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5.4 COMPARISON OF COMBINATION METHODS

In this section, the two spectral methods, namely the multiple-input single-output
system and the frequency domain least-squares adjustment, are compared first.
Then, the multiple-input system is compared with least-squares collocation. Due
to PC memory limitations and the long computation time associated with
collocation, this comparison will be conducted only in the case of single input.
All the computations in this section are done under the assumption that

measurement noise PSDs are known.

In Table 5.7, the results from the multiple-input system and the least-squares
adjustment are shown. Because the least-squares adjustment method requires two
or more input signals, there are no results for this method in the single input case.
Instead, statistics of the simulated measurement noise are given in bold. It can be
seen that, while both methods are very effective in reducing the noise in their
outputs, the multiple-input system gives better results than the least-squares
adjustment method in all cases. This is because, as seen in the theoretical
discussion, the multiple system has two basic functions: first, filtering every input
signal, and then, combining them optimaily. On the other hand, the least-squares
adjustment method only performs the weighted averaging of the input signals in

the frequency domain. Hence, the effectiveness of the least-squares adjustment
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Table 5.7: Comparison of the Multiple-Input System and Frequency Domain LSA

M-input System Frequency Domain LSA

Output Signal | Input Signals | g | Max | Sed. Dev.| Min | Max | Std. Dev.
T. 45|48 | 128 | .86 | 5.5 2.16
T. T: T« -46 | 44 | 118 | 57| 57 1.75
(mgal) T. T, 48|53} 120 | 56| 6.9 1.84
T, T:T, |45|45| 114 | 51|54 149
Tx 65(69} 181 |[.194|148| 496
T, T: T: 30|28 073 | 41| 41 1.12
(mgal) T« Ty 56|51 141 | 87| 79 2.32
T.T.T, |-27(30| 072 | .43 | 36 1.02
T, 79 67| 202 |.180(18.5| 4.81
T, Ty T: 32133 | 083 | .45 43 1.29
T, Tx 68|56 1.63 |-103{120{ 3.4
T, T.T. [-3-2|30] 081 | 45| 40 1.18
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method will be very much dependent on whether (or how much) the noise
sequences in the input signals are correlated with each other. If they are fully
correlated and all the inputs are at same accuracy level, improved results will not
be obtained with the least-squares adjustment method. In the case where the
input noises are fully correlated and all the inputs are not at the same accuracy
level, the accuracy gain of the final result will be due only to the inputs with
higher accuracies because the random phase property of noise can not be used.
However, better results can always be expected with the multiple-input system

due to its filtering function.

From Table 5.7, we also see smaller improvement in T, and larger improvement T,
and T, from the least-squares adjustment method, especially when T is used as an
input. These are again due to the higher accuracy of T, measurements and the
relations between the vertical component and the horizontal components of the

gravity disturbance vector as discussed in the previous section of this chapter.

To compare the multiple-input system with least squares collocation, resulits for
all components in the single input case are also computed with collocation.
Obviously, collocation can not use all the data. Only the data in the 40 km x 40
km sub-area around the computation point are used. However, the empirical
covariances for signals and noise are estimated by employing the data in the whole

area. The size of the sub-area is determined by the correlation length of the
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vertical component. From Figure 5.12, we can see that the applied sub-area size

is selected as a little bit larger than twice the correlation length.

Table 5.8 shows the accuracies of results from both the multiple-input system and
least-squares collocation. We can see that they are comparable. Collocation
gives less accurate results because only the data in the small sub-area were used.
On the other hand, because the correlation length is very short, see Figure 12, the

error committed by using data in the sub-area only is probably very small.
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Figure 5.12: The empirical covariance function of the vertical component T,
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Table 5.8: Comparison of the Multiple-Input system and Least-Squares

Collocation in the Case of a Single Input Signal

Gravity Vector Mutltiple-Input System Collocation

Component Min Max c Min Max c
T. (mgal) 45 | 48 1.28 | -6.5 6.1 1.76
T (mgal) -6.5 6.9 1.81 | -16.2 | 12.4 2.52
Ty, (mgal) -1.9 6.7 2.02 | -16.2 | 109 2.99

5.5 DOWNWARD CONTINUATION OF AIRBORNE GRAVITY DATA

There are two subsections in this section. Subsection 1 shows the results of the

downward continuation from one level surface to another. Spectral methods are

used to examine the effects of different input combinations on the noise control in

downward continuation.

In Subsection 2, the use of spectral methods in the

downward continuation of airborne gravimetry data to the Earth’s natural surface

is tested. Results from the spectral method and collocation are compared.
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5.5.1 Downward Continuation of Airborne Data to a Level Surface

The downward continuation of airborne gravity data from flight level to another
level surface is simple. As discussed in Chapter 4, this function can be built into
the multiple-input system and the frequency domain least-squares adjustment
program. Thus, the height effect and the input combination effect in downward
continuation can be readily examined at the same time. Three flight heights,
namely, 500, 1000, and 1500 meter, were chosen for the numerical tests. Noises
are the same as used before. Two situations are considered. In situation (a), the

- noise PSDs are known. In situation (b), the noise PSDs are not known.
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Figure 5.13: The effects of downward continuation height and input data type

combination on the accuracy of T, (noise PSDs known)
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Figure 5.15: The effects of downward continuation height and input data type

combination on the accuracy of T, (noise PSDs known)
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Figures 5.13 to 5.15 show the effect of downward continuation as a function of
height and the effect of input combination for each component in situation (a).
Plotted are error standard deviations of the results versus the height change for
each input combination. All the results are computed by the multiple-input system
because the PSDs of the input noises are known. According to these figures, we
can say that in general, more input signals lead to a more accurate and more stable
downward continuation and that the accuracy of the downward continuation
decreases as the height increases. Again, as seen in Section 5.2, by involving
other componeats, the improvement in the vertical component is less obvious than
those for the horizontal components and much more accurate results can be
obtained for the horizontal components when the observations of the vertical

component are used. The reason for this is same as given before.

For situation (b), in which the noise PSDs are not known, a two stage procedure
should be used in order to get higher accuracy. As we did in Section 5.3 and
discussed in Section 4.4.2, in the first stage the horizontal components are
improved by using the PSDs estimated from the measurements of the vertical
component. Then, in the second stage, the combinations are made and the results
are downward continued to the zero height surface. Results are shown in Figures

5.16 t0 5.18.
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From Figures 5.16 to 5.18, the same conclusions can be drawn as from Figures
5.13 to 5.15. By comparing the two situations, we can see that the height effect
is weaker in situation (a). That is because the noise is better controlled in two
ways: filtering and combination when the noise PSDs are known, and the only way
to control noise level is combination when the noise PSDs are not available. In
situation (b), a significant improvement can also be seen in the vertical component
when horizontal components are involved. That is because the accuracy of the T,

input is relatively low in this case.
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Figure 5.16: The effects of downward continuation height and input data type

combination on the accuracy of T, (noise PSDs unknown)
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5.5.2 Downward Continuation of Airborne Data to the Surface of the Earth

These experiments are intended to evaluate the performance of the FFT method
for the downward continuation to an arbitrary surface such as the Earth’s surface.
The arbitrary surface generated for this test is shown in Figure 5.19. It is a rather
rugged surface with a height variation from 1000 meters to about 4000 meters.
The reference gravity disturbance value at each surface grid point is computed
from the point mass model by the integral method. These gravity disturbance
values are very accurate and should be considered as error free. The flight level is
chosen just above the highest point of the surface with the altitude of 4000
meters. The gravity disturbance at each corresponding grid point is also
computed from the point mass model. Because the anomaly masses of the point
mass model are buried below the geoid, there is no mass above the geoid. In
practice, topographic effect should always have been removed before the
downward continuation. It can be done in this case since a digital terrain model

must be known in order to conduct such a downward continuation.

The first experiment is designed to test the effectiveness of the FFT method. No
noise is added to the components on the flight level surface. Results of the FFT
method are compared with results from least-squares collocation. Table 5.9

shows the accuracies of collocation. Again, in the collocation, only the data in
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the 40 km x 40 km sub-area around the computation point are used. But this

time, the analytical covariance functions need to be employed.
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Figure 5.19: The graphic presentation of the generated arbitrary surface

Table 5.9: Accuracy of Downward Continuation With Collocation (noise free)

Gravity Component Min Max Mean Std. Dev.
T. -0.055 0.064 -0.001 0.007
Tx -0.134 0.099 0.000 0.024
T, -0.083 0.095 0.000 0.023
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Table 5.10: Accuracy of Downward Continuation With FFT (Noise Free)

Gravity Order of
Component | Taylor Series Min Max Mean | Std. Dev.
1 -0.415 0.761 0.001 0.023
T: | 2 -0.079 0.053 0.000 0.004
3 -0.027 0.028 0.000 0.003
1 -0.176 0.272 0.000 0.026
Tx 2 -0.102 0.098 0.000 0.024
3 -0.102 0.098 0.000 0.024
1 -0.316 0.351 0.000 0.026
Ty 2 -0.088 0.092 0.000 0.022
3 -0.088 0.092 0.000 0.022

The results from the FFT method are listed in Table 5.10. As discussed in chapter
3, the FFT method is based on a Taylor expansion. The results for different series
of order up to 3 are given in the table to see the effect of the expansion order. As
can be seen, both methods are very accurate. The standard deviation of the

numerical errors is less than 0.05 mgal. This small number for the collocation
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may be due to a number of factors such as the limited amount of data used, the
bias in the covariance functions, etc. The FFT method also has the same error
sources, but the results are still accurate enough to indicate the effect of the order
used in the Taylor expansion. Basically, the higher the expansion order used, the
more accurate the results obtained. The extent of the improvement will depend on
the high frequency content of the gravity field. However, this is true only in the
noise free case. When noise exists, the higher order derivatives in Taylor

expansion will also amplify high frequency noises.

To see how sensitive the methods are to noise, simulated noise is added to the
vertical component and then the downward continuations with both collocation
and the FFT method are conducted. Again, for the FFT method, the order of the
Taylor series is chosen to be 1, 2, and then 3 respectively. Table 5.11 shows the
results when the noise covariance or PSD function is not used in collocation and
the FFT method to do the noise filtering, i.e., pure downward continuation. Table
5.12 gives the results for the case that noise filtering is invovled in the downward
continuation. Noises in the results of different methods for the pure downward
continuation are illustrated in Figures 5.20 to 5.22 to give an intuitive

comparison.
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Table 5.11: Comparison of FFT and Collocation in Downward Continuation of T,

When Noise Exists (Filter Not Applied)

Order of

Method Taylor Series Min Max Mean | Std. Dev.
Collocation -14.387 15.935 -0.129 4.895
1 -8.840 11.030 -0.137 3.761
FFT 2 -11.340 13.900 -0.117 4.454
3 -12.90 15.050 -0.115 4.678

Table 5.12: Comparisor of FFT and Collocation in Downward Continuation of T,

When Noise Exists (Filter Applied)

Order of

Method Taylor Series Min Max Mean | Std. Dev.
Collocation -12.981 11.97§ -0.143 3.051
1 -7.520 7.870 -0.014 2.057
FFT 2 -8.550 9.630 0.003 2.317
3 -8.820 10.350 0.004 2.396




102

Figure 5.21: Noise in T, after the downward continuation using the FFT method

with 1st order Taylor series
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Figure 5.22: Noise in T, after the downward continuation using the FFT method

with 3rd order Taylor series

As shown in Table §5.11, the FFT method is less sensitive to noise and gives more
accurate results than collocation. We also see that the FFT method using a higher
order Taylor expansion is more sensitive to noise. From Table 5.12, similar
conclusion can be drawn. In the mean time, it has been seen in the noise free case
that the higher order expansion has a better capability of dealing with high
frequency signals. Thus, the higher order terms in Taylor expansion have effects

on both high frequency signals and noises.
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Nevertheless, the nice thing with the FFT method is that it offers another way to
control the noise level, or more precisely, to make a compromise between dealing
with very high frequency signals and controlling the noise level. The practical
operation for this should be different from location to location according to the
roughness of the gravity field. For instance, for the T. signal used in this
research, if we can stand a 0.02 mgal modelling error for the signal and choose a
first-order Taylor series, the output noise level will be 0.8 mgal lower compared

with the case when the third-order Taylor expansion is used.

5.6 GEOID DETERMINATION USING AIRBORNE VECTOR

GRAVIMETRY DATA

Airborne gravimetry has many potential applications in geodesy and geophysics.
In geodesy, for instance, geoid determination has been a subject of study for a
long time. With the advent of GPS techniques, it has become even more
attractive. If the geoid undulation is determined precisely, the orthometric height
can be derived by differential GPS instead of spirit leveling. Airborne gravimetry
provides a very efficient tool for the acquisition of local high resolution gravity

data which is crucial to precise geoid computation.
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The multiple-input single-output system is used to compute the local geoid with
simulated airborne vector gravimetry data. The goal of this test is to investigate
how precise the geoid would be in the wavelength range from 10 km to 100 km
and how the two horizontal components would influence geoid determination.
The flight height is chosen to be 1000 meters. Measurement noise is the same as
simulated in Section 5.1 and all the noise PSDs are assumed to be known.
Because the vertical component T, is more precisely measured, it is included in
every input signal combination. The resulting accuracy for each combination is

given in Table 5.13.

Table 5.13 indicates that, under the above assumption, the relative geoid in the
wavelength range from 10 km to 100 km as determined from airborne gravity data
is within a one cm level of accuracy. Combining either one or both of the
horizontal components with the vertical component cannot help to give better
accuracy and may even make the results worse. This is due to the higher low
frequency energy in their noise. Figure 5.23 shows the errors in the geoid
determined by using T, alone. Figure 5.24 shows the error in the geoid computed
by combining T, with T, and T,., By comparing these two figures, we can see
more variation in the inner area and bigger peaks in the border area in Figure 5.24
than in Figure 5.23, indicating bigger low frequency errors in the geoid computed
by combining T, with Tx and T,. Thus, scalar gravimetry should be used for geoid

determination.
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Table 5.13: Accuracies of the Geoid Determined With the Multiple-Input System

Using Different Input Combinations, in metres

Output Signal | Input Signals Min Max Mean Std. Dev.
T -0.020 | 0.019 | 0.000 0.005
g T: Tx -0.024 | 0.026 | 0.000 0.007
(m) T. T, -0.033 | 0.026 | 0.000 0.008
T. Tx Ty -0.024 | 0.021 | 0.000 0.006
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Figure 5.23: Error in the geoid determined by using T, alone
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Figure 5.24: Error in the geoid determined by combining T, Tx, and T,

5.7 EFFECT OF GRAVITY FIELD ON FILTERING RESULTS

Tests in this section are given to investigate the impact of the roughness of the
gravity field on spectral methods. In addtion to the gravity field (Field #2 in
following tables) used in preceeding test, two other local gravity field are
simulated. As shown in Table 5.14, Field #1 is much more rugged than the
gravity field used before (Field #2) and Field #3 is significantly smoother than

Field #2. Noise for all the components remain the same.



Table 5.14: Statistics of the Three Simulated Local Gravity Fields
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Gravity Field #1 Field #2 Field #3
Component | pn | Max | ¢ [ Min [Max | ¢ | M [Max| o
T; -80.6 | 1573 | 19.62] -54.2 | 88.0 | 11.99] -243} 258 | 5.57
Tx -884 | 733 | 1167 -535| 386 | 768 | -17.2 | 140 | 3.73
T, -129.8| 98.0 | 14.14] -743 | 51.7 | 9.08 | -249 ] 16.7 | 4.13
Table 5.15: Comparison of Accuracies of Wiener Filtering results
Gravity Field #1 Field #2 | Field #3
Component | ngn | Max | 6 | Min [ Max | o l Mn |Max | o
T, -5.9 7.0 1.89 | 45 48 128 | 22 | 1.7 | 053
Tx -86 | 105 | 257 | 6.5 69 181 | -35 | 33 | 0.86
Ty -108 | 106 | 3.03 | -79 6.7 202§ 32 | 29 | 0.87

As indicated in the theoretical discussion, a multiple-input single-output system first uses

Wiener filters to filter each input data set and then combines all the filtered results to

obtain the system output. Table 5.15 compares the accuracies of the Wiener filtering

results. It is seen that the roughness of the gravity field has a strong effect on the Wiener

filtering results. The more rugged the gravity field is, the less accurate are the Wiener
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filter results. In all cases, Field #3 has the best results. The reason can be seen from the
frequency response of a Wiener filer. When the signal to noise ratio is larger,
corresponding to the case of more rugged gravity field, Wiener filter gives more
confidence for the input data set so that its effectiveness in reducing noises in the input
data set will be affected. Table 5.16 shows the accuracies for all fields obtained from
multiple-input single-output system. All three components of each field are used as inputs.
As expected, the noise is further reduced. But still, the more rugged field obtains the less

accurate results.

Table 5.16: Comparison of Accuracies of Results From Multiple-Input System

Gravity Field #1 Field #2 Field #3
Component | nn | Max [ ¢ | Mn [ Max | ¢ | Min [Max| o
T, 1] 63 | 164]| 45| a5 | 115] 22| 14 | 050
T. - | 83| 81 |180] 27| 30 |072] 13| 13| 037
T, 23| 119|255 33| 30 | 081 -1.5 | 14 | 034

Frequency domain least-squares adjustment method is also applied to the three different
fields. The obtained accuracies are shown in Table 5.17. The effect of the gravity field
roughness can clearly be seen. The same conclusion as in the input-output system case

can be drawn here. The reason can be that the stronger gravity field signal (in more
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rugged gravity field) would make correlation between input data sets stronger so that the

effectiveness of the least-squares adjustment is reduced.

Table 5.17: Comparison of Accuracies of Results From Frequency Domain LSA

Gravity Field #1 Field #2 Field #3
Component | ey | Max | ¢ | Min [ Max | o | Min [ Max| o

T, 58| 69 | 172 51| 54 | 150 46| 55| 14

T, 97| 85 [197] 43| 35 | 13| 35| 32 | 095

T, a24| 112 | 266 | 45 | 40 | 118 | 36 | 37 | 106

Noise level of input data sets will certainly affect the results of spectral methods. To see

that, first, three different noise sets are added to the vertical component T, of Field #2.

Then, the Wiener filter is applied to the three obtained data sets. Accuracies of the results

are compared in Table 5.18. As expected, higher noise level for a certain gravity field will

cause less accurate results.

Table 5.18: Effect of Noise Level on Wiener Filtering Results

Noise in Noise Level #1 Noise Level #2 Noise Level #3
T Mn |[Mxx | ¢ | Mn [Mx| o | Mn [Max| o

Before Filtering| -17.2 | 11 | 434 | 86 | 55 | 217 | 43 | 275 | 1.09

AfterFiltering | -68 | 79 | 191 | 45 | 48 | 128} 28 | 3.1 | 079
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The advantage of FFT based spectral techniques over other techniques is their
computational efficiency. This thesis deals with the use of spectral methods for the post
processing of airborne vector gravity data. In general, two aspects of post processing
airbome vector gravity data have been discussed: 1) the filtering and combination of
airborne measurements to improve their accuracies; 2) the downward continuation of
airborne gravity data. Based on the theoretical discussions and the experimental results

presented in this paper, the following conclusions can be drawn:

1. The multiple-input single-output system as well as the frequency domain least-squares
adjustment method can be implemented using a stepwise procedure so that they will
allow the combination of as many input signals as required with a constant amount of

computer memory.

2. When measurement noise PSDs are available, both spectral methods discussed in this
thesis can be used to combine the observations of different components to obtain
better accuracies. Because the multiple-input single-output system possesses both
filtering and optimal combination functions, it usually yields more accurate results than
the frequency domain least-squares adjustment method which only averages the
spectra from the input signals according to the weights determined from their noise

PSDs.
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3. When measurement noise PSDs are not available, using the measurements of the
vertical component to approximately estimate the PSDs of the horizontal component
signals and then using Wiener filtering techniques can bring the noise level in the
horizontal component measurements down to the same noise level as in the vertical
component measurements. Better accuracy for the vertical component and further
improvements for the horizontal components can be achieved by combining the
vertical component with the previously improved horizontal components using the
frequency domain least-squares adjustment techniques. The multiple-input single-

output system cannot be implemented without noise PSD information.

4. Using two-dimensional filtering has been proven to be more effective in reducing the
measurement noise than using one-dimensional filtering. Thus, it is recommended that
two~dimensional noise PSDs be estimated and two-dimensional filtering be used

whenever practically possible.

5. Usually, only one-dimensional noise PSDs for airborne vector gravimetry can be
obtained through system calibration and analysis. Generally speaking, there is no
analytical way to derive a two-dimensional PSD from its one-dimensional counterpart.
Numerical tests in this thesis have shown that the form of two-dimensional PSDs for
airborne gravimetry are strongly affected by the flight route patterns. The method for
obtaining two-dimensional PSDs from one-dimensional PSDs used in this research

should also be suitable for practical use.
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. Downward continuation of an airborne gravity component from one level surface to
another is as simple as multiplying the Fourier transform of the component by an
exponential function in the frequency domain. Thus, the function can be very easily

built into any spectral data processing method for aitborne gravimetry.

. Introducing a Taylor series expansion will allow the use of spectral methods for the
downward continuation of airborne gravimetry data to an arbitrary surface, e.g., the
Earth’s surface, with high computational efficiency. This method does not need prior
information about the gravity field. Besides, the spectral method provides an

additional way to control the amplification of high frequency noise.

. In the downward continuation of airborne gravity data, more stable and accurate
results for every component can be expected when it is combined with other
components, especially for the horizontal components when the vertical component is
involved in their downward continuations. This conclusion applies both when noise

PSDs are available and when they are unavailable.

. According to the limited tests presented here, using the vertical component of the
airborne gravity vector alone, the resultant gravimetric geoid could have an accuracy
of better than 1 cm in the wavelength range from 10 km to 100 km, for a gravity field
with moderate variations. Combining the horizontal components with the vertical
component rather than using the vertical component alone would not improve the

geoid results due to the higher low frequency noise in the horizontal channels of



L Lol A s o U AL A

114
airborne gravimetry. Hence, for geoid determination, the use of scalar gravimetry is

recommended.

10. The roughness of gravity field does have an impact on the results of the spectral
filtering and combination methods. The numerical tests indicate that noise is more
effectively reduced when the gravity field is smoother. Thus, it is suggested that the
remove-restore technique be used to remove the signal contents which are known or
can be computed with good accuracy from other data sources, e.g., topographic
effects, from the measurements before filtering and combination and restore it

afterwards.

11. With the capability to deal with large amount of data efficiently, spectral methods are
also suitable for processing and combining data from different observation
techniques(e.g., terrestrial observation, gradiometry, altimetry) on different level

surfaces. Further research on this issue is recommended.

12. Since data used in this research is restricted in the wavelength range of 10 km to 100
km, problems caused by constant biases and linear error trends in observations have

not been considered. Numerical investigation on this aspect is suggested.
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