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This thesis deab with the use of spectral methods for the pst processing of &me 

vector gravity data. In geaerp1 two aspects are discpssed: 1) fiiltering and oombmmg 

airbome measurements for the estimation of pv i ty  distubance vector components witb 

higher accuracy; 2) the downward continuation of aitborne gtavity data to a level smface 

and to an arbitary d a c e  as weL Two spectral methods, na1ne1y input-output sysiem 

theory and fiequency domain Ieast-squares a d m e n t ,  are dïscwed and exarnined for 

filtering and combination pprposes. Numerid d t s  show that, by filtering and 

combining aii three components of airborne gravity vector rather tban filtering one of the 

components alone, the estimation accpfacy wïil be improved approximatdy by 10 percent 

for the vertical component and by 60 percent for the horizontal compoaents within the 

waveiength range h m  10 km to 100 km. In the downward continuation, more stable and 

accurate results for every component cm be expected when it is combineà with other 

components 
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INTRODUCTION 

1. RESEARCH BACKGROUND 

Airborne gravimetry is a very active neld of researçh at the present tirne. However, m a t  

research m this field has been focused on observation techniques d e r  than on post data 

processing (Brozena et al. 1989; Klepsberg et aL, 1989; Knickmeyer, 11990; Schwarz and 

Wei, 1994; Schwarz et al, 1994; Schwarz et al, 1991; Wei and Schwarz, 1994; etc.). In 

addition, few publications deai with the downward continuation of airborne scalar 

gravimetry data (Schwarz, 1973; Forsberg, 1995; Keller, 1995; etc.). Obviously. there is 

stiU a great deai of riesearcb to be done on the p s t  processing of airbome gravimetry 

measurements. especiaUy m the area of airborne vecu>r gravimetry. 

in airbotne vector gravimetry, dl thtee components of the gravity disnirt,ar#.~ vector are 

measared. However, dW accùiracies are not the same. Rïmaxily due to the drift of the 

INS measmement, when the time m e n c y  f demwes, the emr spectra of the 

horizontal components irrnase as l/p, whiie the error spectrma of the vertical component 

increases as ~ f 2  (Colombo. 1990; Schwarz ami Wei, 1994). As a dt, the e m r  in the 

horizontal components is much gnater than the emr m the verticai component 

However. m some appiications such as the determination of the dope of the geoid, the 
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deflections of the vertical are of more concern. In these cases, more accurate defiections 

b m  airborne vector gravimetry are desind For the venical component, higher accuracy 

is also aeeded for vario11~ applications m geodesy, sdid eanh geophysics, and exp10ration 

geophysics (Schwan et al., 1991). W~th the development of wrent observation 

tecbiques, higber meamernent accutacies artninly w be expected On the other han& 

accuracy impmvernent may &O be achieved by m g  and oprimally combining the thRe 

components of the airborne gravity disturbance vector in the pst data processing stage. 

Two major problems have to be overcome in post processing airborne vector gravity dafa 

The Grst problem is filtahg and combination. Because the spectra of the gravity signal 

anci measurement noise are oveàapping, a ater needs to be applied to attenuate the noise. 

Considering that a?l components of the gravity distnrt,atlce veçtor are heady conehted, 

which means that there actuaüy are redundant observations m airborne vector gravimetry, 

better afcittacies for all  of the compoamts can be obtained by combimng hem in an 

optimal way. The second cliilkdty to be overcome m post data piocessing is the 

downward continuation pmblem. Obsenatioas in airborne gravimetry are made ar nying 

altitude. In some applications, the gravity dismrbance wiU be needed on the suface of 

the Earth rather than at flying beight. Thus, the downward continuation problem k o m e s  

an issue to be dealt with. 

In principle, least-squares coliocation, which bas been used in geodesy for d e d e s ,  can be 

used to solve these two problems. In practice, though, the use of least-squares collocation 
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is not advisable. Tb 'Lbe p b h  with ïeast-s~uares coIIocation is the neeû of matm 

inversion. Wben large amounts of data nad to be processed, spch as m airborrPe 

gravimetry, it becomes very kffkient computationally. ûne of the impvements to 

least-squares coIlocation is Yast' coUocatim (HeUer, 1977; Gray, 1977; Eren, 1980; 

Bo- and Barzaghi, 1993). When the obsewations are gridded. their covariance matrix 

wiIl be a Toeplitz matrix, pmvided that the covariance fÙnctiotls of both the gravity signai 

and the measuzement noise depend oniy on the distanceC1sotropic). This ToepIitz matrix 

can be inverteâ by using FFT techuiques. Thus, least-squares coilocation can be appiied in 

a much faster way. Howevet, when the number of obsemations is very large, this method 

di stüI be time conmmimg and hefticht @en 1980). In addition, the two-dimensional 

covariance b t i o n  of the measurement noise in airborne gravimetry is not only dependent 

on the distame but also on direction. Spectral me&& are seen as a faster alternative for 

the p s t  data processing. 

Two spectrai combination techniques, naxnely the multiple input-output technique and the 

necipen~y do& Ieast-squares edjustment method, are considemi as alternatives. A 

multiple-input single-output system is a system that can combine all the input si@ at 

each fnquency (Bendat and Pimol, 1980 and 1986). It employs al1 the power speclcal 

densities (PSDs) of the input sïgaals ami their corresponding noise PSDs to determine the 

optimum sysrem fieqeiry response. When the= is oniy one input signal this multiple- 

hput system becornes a Elter. Alternatively, the mdtipie-input single-output 

system can be considerd as an extension of the Wiener filtering theory. Ln some fiterature 
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(Brown, 1983), bie multiple-input single-output system is called the multiple-input 

Wiener film Its foimal quivalence to stepwise coUocation in the neqiiency domain bas 

been proven by Sam0 and Sideris (1999 and Sideris (1996). The muitiple-input system 

theory bas been used successnilly for the prnessirig of airbotne gradiomefry data by 

Vassiliou (1986). It shoilld also be soitable for the task at hand 

only one of the possible approxiniate solutions in bis research 

9 input signais bas the same PSD modeL This is not the 

However, Vassiliou used 

He assumai that noise m 

case for airbome vector 

gravimetry. Heace, an impiementation method suitable for airborne vector gravimetry Win 

be studied. 

The second spectral combination technique, using the concept of the fkquency domain 

least-sqwm adjustment method, has been discussed in a nurnber of papers (Banaghï et 

al., 1993; Sam0 and Sona, 1995). Its use in airborne vector gravimetry data processing 

was discirssed by Sideris (1996) and Wu and Sideris (1995). In this methoQ the output 

spectnim comsponding to each of the input sigDals is computed first. lben al1 the spectra 

are combined optimally by applying the least-s~uares principIe as m the spatial domaia 

The contributhg weight for each signal is detennined by its noise PSD. Only noise PSDs 

are required for the fkqyency domain least-squares adjwtment method. Neiuier of these 

two specüai combination meth& nqiiire matrix mversion, With the use of the EFï 

aigorithm. they possess high oomputationai efficiency. 
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As the covariiure fimction m Ieast-sqoares collocation, the PSD fimcrfon is aucial to the 

spectral combination meth&. Two-dimensionai noise PSD estimates for airborne vector 

&ravimetty WU k neœsary for the optimal combination of the components of the 

airborne gravity âismôance vector. However, thus far. oniy oaedimensiond noise PSD 

moùels are avaiiable (Wei and Schwan, 1994: Li and Schwan, 1994). Tbeo1~thNy, 

tbere is no anal- way to &rive the two-dimensio~ PSD model fimm a one- 

dimensional PSD mode1 @?anchev, 1971). Ip order to &dveiy mearch the optimal 

combination of the components of the airborne gravity dismrbarife vector, stuàies on how 

to practicaUy estimate two-dimensional noise PSDs for auborne vector gravîmetry are 

UidispeIlSable. 

Besides high computational efnciency, m downward continuation of airborne pvi ty  data, 

the spectral method has another advantage over least-squares collocatioa nie spectral 

downward continuation method uses an anaiyticd approach which is based on Poisson's 

integrai and a series expansion of the graMty hekl. No a priori infornation is quimi for 

this dytical  approach On the other hand, least-squares collocation is a statistical 

approach in which a priori information (7171 the fomi of covariance fimctions) plays a key 

d e .  

Several airborne scalar gravity smveys were caaed out in Greenland, Antartica, and 

Swi~rland (Forsberg and Brozena, 1992; Brozena et al, 1995; Jones et aI, 1995; 

HaîMay and Klingele, 1995). The accpracies of th& resuits are in the range of 3-5 mgal 
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down to wavelengths of 20 km or beaer. Aociaacies of 1-3 mgal over wavelengtbs of 3-5 

km have been acbved m experhents mder favourabîe conditions (Hein7 1995). 

Typically, the eccuraçy of airborne scelar gtavimeay is cunentiy at about 2-3 mgal dom 

to wavelengths of 10 h. So far, no resdts of airborne vector gavimeay have been 

published, aifhough some eqmiments have been carrîed out by the Department of 

Geomatics Engkaing at The University of Calgary. Due to the lack of real data, 

simulated data wiil be used in this research 

The mai. objective of the research described m this thesis is to examine the use of spectral 

techniques in f l l te~g and combiiiation of the airbome gravity disturbance vector 

components and in the downward continuation of these components. Severai practical 

problems, including the estiniation of two-ciimensionai noise PSDs of airbome gravimetxy7 

the impkmentation procedure of the multiple-input system for p s t  prawsing of airbome 

gravity data, and the acamcy impcovement of airbome vector gravimetry with or without 

noise PSD information, etc., will be adrlilp_c.cd 

The thesis consisu of six chapters. In Chapter 2, after introducing some basic concepts m 

signal proceJsing. estimation procedures of the power spectral density of a random signal 

are reviewed. Then the input-output theory, which is the primary spectral combination 
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method used m this research, is oidlined h Chapter 3, the relationship between the 

gmvity distutbarace vector components in the W n c y  domain as weil as the downward 

continuation problem of the gdknts of the anomalous gravity potenfial are disciissed. In 

Chapter 4, some practicai issues reIated to the tase of specd techniques m post 

processing aitbome vector gravity data are consideted, Also m àus chapter, another 

spectrai combmation method, the hquency domah least-squares adjustment rnethod, is 

reviewed. In Chapter 5, numerical tests are conducted to examine the efkctiveness of the 

spectral methods discussed. The results of these tests are presented and analyzed. nnally, 

in Chapter 6, conclusions and reco~~l~llendations are givea 



CHGfTER2 

FITNDGMENTALS OF WECTRAL METHODS AND 

MULTIPLEINPUT SYSTEM 'I'HEORY 

This chapter is a miew of some basic concepts m signal proceshg mxeway for an 

understanding of this thesis. The first two sections are about the definition of power 

specaal density (PSD) and its estimation with fast Foder transform @FI') techniques. 

In Section 3, the concept of the Wiena mter will be inaoducd In Section 4, the 

multiple-input theothemy wiU be outlined. 

2.1 STATIONARY AND ERGODIC RANDOM SIGNALS 

Stationary random Sgnals are commody used m engineering. If the mean vaiw bx(t) of a 

random signal X(t) at time t and the autocorreIation hmction R,(tl,tz) of the same si@ 

at time indices ti and t2 are 

this random signai is wide-sense stationary. Eq (2.1) indicates that the mean value of a 

wide-sense statiouary random signal is constant with respect to time while the 

corresponciing autocorrelation fimaion is only dependent on the intend s between tl and 
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tz , and not on tl auci t2 individrially. Notice that, here, the expectation operator E is 

appiied to all  the samples of the signai X at a pariiciilar timcl- 

Another important concept m signal processiiig is ergodicity. ?bis concept estabIishes the 

foundation for the classical methods of power spectal density estiniatioa As shown m 

Eq. (2.1). to obtain the mean value and the autocorrelation fimction, sample averaging is 

needed. This is rather ciifacult because, iu pactice. often only a single sample is avaiiable. 

'Ihus. it is desirable to estimate all these statisticai quautities from one single sample by 

substituting tirne averaging for sample averaging. The proprty nquiRd to a;ccompiish 

this is ergodicity. 

If a random signai X(t) is stationary and ergodic. its mean value and autocorrelation 

function caa be de- as 

where x(t) is a sample of X(t), and T is the W duration of x(t). When there is a joint 

process of two ergodic random signals X(t) and Y(t). their cross conelation fpaction Rw 

can be defined as 

where y(t) is a sampie of Y(t). 
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The power spectral density (PSD) P, of a -dom signai X(t) is de- as the Fourier 

transfom of the autocorrelation W o n  RR as foilows: 

where o is the cime f k p n c y  and j is the sqm root of -1. These two equations are 

known as the WsneFKhurtchine theorem (Cadzow, 1990). The PSD W o n  is always a 

reai positive fimction. 

Smiilady, the cross power spearal deIlSity (8SD) P, of two jointly stationary random 

sigaals X(t) d Y(t) is denaed as the Fourier transform of their cross correlation fimction 

RFI 

The ergodicity pro- of a random signal not only permits time average àefkitions for 

the mean d u e  and correlation fhctions, but ais0 pemiiu rhe quivalent time average 

definition for the power spectral density h c t i o n s  as follows: 

where superscript * denotes the complex conjiigate. 



2.2 POWER SPECTRAL DEN= ESTIMATION WlTH FET 

PSD esthmion is very important m the application of spectd techniques. Numemus 

modem and classical methods of PSD estimation can be found in s i p l  pmcessiag 

textbooks. Only classicai PSD -on methods wilî be outlinpA m this section for two 

reasons. First, classical methods directiy use the PSD &finition aid are Fourier &onn 

based. FFI' techiques can be used to obtah compational efncieacy. More ùnportantly, 

the second mson ïs k t  classical methods can be easiiy extended fian onedimensional 

cases to multiaimensional cases. For details about digital spectral analysis, see Marple 

(1987). 

Eq. (2.4) and Eq. (2.7) represent two differeat definitions for the power spectral densîty. 

In practice, signals a~ sampled discretely at a hite number of points* If the sampling rate 

1fAT for a signal is constant, the discrete Fourier H o m  can be useci. Eq. (2.4) and 

Eq. (2.1) th& become 

where N is the nmnber of sample points, AT is the sampbg intemal, n is the time index, 

aad k is the f k p n c y  index Sbdady, Eq. (2.6) and Eq. (2.8) for the cross power 

spectral density become 



Co~l~eque~ltly, there are two types of &finition-baseû methods for PSD estimation. 'Ibe 

first type uses Eq. (2.10) and Eq. (2.12) to compme PSD and CPSD directly fmm the data 

sample anâ is callwi the direct method or periodogram. 'Lbis method was proposed by 

Schpster m 1899 (Scbuster, 1900). The second type is the indirect methcul, which must 

first make an estimate of the comlation, and then Fourier U o r m  it to obtain the PSD 

estimate. With the advent of FFï algorithms, the clinct approach has been widely 

accepted. The periodogram is used for al l  the PSD and CPSD estimations in this research. 

Due to the finite Iength of record and the zectangukr wmdow effect, using Eq. (2.10) m a 

d k c t  manner WOU lead to unsatisfactory nxults. 'Ibe standard deviation would be as 

large as the meam To miprove the quality of periodogram, the foilowing two procedures 

are recornmended m elactrcal engineering (Bendat and b o l ,  1986; Caâzow, 1990 and 

Marple, 1987). 

Procedure 1: 

a Compute the spectral density function using the whole mwiadowed sampie. 

b. Compute the autoconelation fimction by talring the inverse FFï of the PSD estimate. 

c. Apply a selected window to the autocorrelation estimate. 
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d Take the FFï of the windowed autocomIation estimate to recompute the smoothed 

autospectral density fimtioa 

e. Adjust the sale frtot for the energy loss due to windowing. 

PrOCBdure 2: 

a Divide the avaïiable data sample hm a nmber of eqaal length segments half 

overiapped to adjacent segments. 

b. Apply a seiected window to each of the segments. 

c. Compute a PSD estimate for each segment with FFL 

d Take the average of al i  the PSD estimates to obtain the srnoothed estimate. 

e. Adjust the scale factor for the energy loss due to windowing. 

These procedures are &O mitable for the cross power spectral density estimation, except 

that two data samples are involved, so the col~esponding farmuiae for samples should be 

used. In practice, some data p~paration steps, such as data standardùation, trend 

removai, etc., would be included. However, these wiU not be ôescriibed hem For &ta&, 

see Bendat and Pies01 (1986). In the case of pi en si on al s p e c m  analysis, the 

formdae are forrmlly the same as giwa m this section. Details cm be found in Dudgeon 

and Memereau (1984) and Marple (1987). 



2.3 THE CONCEPT OF THE WIENER FILTER 

In most practical situations, meamements arc accompanied ôy noise. It is wesary  to 

design a filter to extract the signai out of the measurements. If the power spectral 

demith of the signai d the noise are distniuted in dinerem fkqency ranges, then the 

problem is very simple; we just need a low p a s ,  or a high pas ,  or a band p a s  tilter to 

eiiminate the noise. However, 8 the power spectral &nsities of the signal and the noise 

are overiaping, then the design of a digitai filter to elimmate the noise is more complicaîed. 

This type of problern was first solved by Norbert in the eady 19409 (Wiener, 

1949). The d t i n g  filter is called the Wiener fI1ter- 

Assume the measoftmenB (a@)} are the sum of a de* signal {x(m)) and some noise 

{n(m)l. Also assume that both the signal and the noise are stationary random processes 

and tûeir autocorrelation fiiactions or power spectral densities are boum or can be 

estimated ln tbis case, the problem can be stated as follows: knowing the power spectral 

densities of (x(rn)} and {n(m)}, design a nIta so that if the input of the filter is 

{x(m>cn(m)}, the output {ji(m)}will be as close as possible to (x(m)}. Let h(m) be the 

unknown impulse response function; then the Wiener filter can expressxi as 

w œ 

k(k) = h(k - m)x, (m) = h(m)x, (k - m) 
m+- m- 

The optimal h(m) can be determineci by minimnjng the mean square emr 



The substitution of Eq. (2.13) into Eq. (2.14) yields 

where R, is the autocorrelation h t i o n  of the measmement ~ ( m ) ,  R, is the 

autocomlation fûnction of the signal x(m), d R,, is the cross correclation fimction of 

~ ( m )  and x(m). The optimal h(m) must satisfy 

which i m p b  

If the maâmum rn m Eq. (2.17) is set to a nmte number, then by soiving the equation, a 

Wiener FIR (finite impulse respolise) nIter wiU be obtained. To get a Wienex IIR ( i i t e  

impulse reqonse) filter, apply a Fourier traslsform to Eq. (2.17) and use the definitions of 

power spectral density and cross power spectral density to obtain 
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where EX(@ denotes the fn<ioency nponse of the W w  W nIter, P, is the power 

the measmement and the mie signa 

If we fPrther assinne that the mie signal ad the noise are not correlateci to each other, and 

that P, anà P, are the power spectral densities of the m e  signal and the noise, 

respectiveiy, then Eq. (2.18) bec:omes 

D 

Eq. (2.19) and Eq. (2.20) will be psed later in this research. More thorough material 

about the Wiener Eiiter concept cm be formd in Cadzow (1989) and Wiener (1949). 

2.4 MULTIPLE-INPUT SYSTEM RELATIONSHIPS 

It has been mentioneâ in Chapter 1 that, as an alternative to least square coiiocation, the 

multiple-input singleatput system may be used for the data pnnessing of airbome vector 

gravimetry. This section semes as a review of multiple-input system theory h m  single- 
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input singie-outpm mode1 to mdtiple-input rnult9,ie-output modeL A more &taiied 

discussion can be found in Bendat and -01 (1986). 

As shown m Figure 2.1, we assimie that the hpat signai % of a single-input single-output 

system h is statioaary and is the smn of the m e  signai x and some noise b. The output 

signal y0 of the same system is the jomt effat of the desired signai y and the system noise 

ny- 

Figure 2.1: A single-input agie-output system 

Such a system can be expressed mathemaîicaiiy as 

y = (x+Q*h+n, (2.2 1) 

where * denotes the convolution oprator. In the fiequency domain, Eq. (2.21) becomes 



where each capital letter stands for the Fourier tfaasform of the sequence denored by the 

coxxespondiag lower case letter. The mean square emK of die system is 

The superscript "' in this equation means the conjugate of a cornplex variable. Expanâing 

the temi in brakets and applying the expectation operator to the equatio~t lead to the 

foilowing expression: 

where all the Ps denote the PSDs and CPSDs of the ~e~uences  e q r e s d  by their 

subscript If we assume that or is not correlated with x and y, theD their B S D s  are e q d  

to zero and tiy above equaîion becornes 

The optimal fiequeocy response fimction is the particular H that rnimmUes Pa,, at any 

frequency, i.e., the one that satisfîes 

This leads to the equation 



The optimum H is obtained by 

The m h i d z d  output noise power specaal density is 

Eq. (2.28) wiIl be identical to Eq. (2.19) if the desired output signai is x itseK T b ,  the 

de- system is essentiaily quivalent to the filter. Sideris (1996) showed that 

such a system is &O eqyivalent to least squares collocation under certain conditions. If 

there is no input noise, Le., P,, = O, Eq. (2.28) represents the fresaency fesponse of a 

A two-input singk-output system is illustrated m Figure 2.2, wheie xi and Q are the two 

input signals, hl and h2 are the impulse respomes of the two liaear subsystems, y is the 

system output si& and n is the systim output noise. 'Ilris system is &fkd by the 

foilowing relation in the neqOeacy domain' 



Here again, each capital Ietter stands for the Fourier tmsfonn of the sequence denoted by 

the corresponding Iower case letter. 

Figure 2.2: A two-input single-output system 

'Ibe steps ro obtain the optimum fqyency  responses for the two-input system are the 

same as those for the single-input system. Eq. (2.29) may be rehtten as 

Hence, for any Hl and Hz, the system output noise PSD is 
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'Ihe optimal 6nqpary response M o n s  are de- as the particolrr Hl and Hz tbat 

minimbe Pm at any fiwpmcy over sll possible choices of Hl ami HI. Tbey e l c i  the 

optimum liiiear least s q u a ~ ~  prediction of y from XI auci xz (Bendat and Piersoi, 1986). 

To obtain the optirml ftecpeacy responses Hl anci Hz, it is silfficient to set the following 

partiai derivatives equd to zero: 

The solution to the above equation is given by 



where yu is the coherence fimction. 

The minimi;rPn 
t . .  output noise power spectral &nsity becornes 

Notice that if P ~ ~ P ~ - P ~ ~ = o  or yi2=l, then the input signais xi and xt are lineady 

corrdated and the denominators in Eq. (2.35) and Eq. (2.36) are equal to tero. 'Ibis 

partidar case musf be treated separatdy. Another partîrilar case conesponds to y~z=O, 

wliich indicates that the two inputs are compietely uncorrelateci. Direct use of Eq. (2.35) 

or Eq. (2.36) will give incomect resuits. These two trivial cases are not of interest here, 

however, aithough the components of gravity distubance vector are lioe3lly correlated, 

the actuiû data in airborne vector gravimetcy will be only cornlatecl because of 

the elristance of meamernent noise. For details about these two particular cases, see 

Sidexis (19%) and Bendat and Piers01 (1986). For the same reason, when we diScriss the 

multiple-input model, we only consider the case m which the input si@ are p a m y  

correlated. 



If more fban two input signals exist, the system is a multiple-input system, Figute 2.3 

shows a multiple-input single-output system, A number of q stationary signals xi 

(i=l,2, ...,q) go duough q IirieP system wirh impulse respollse functions hi (i=1,2, ....,q)- 

Then the ootputs of the hear systems are combined togethet to produœ a single output y. 

n represents tbe system noise. 

Figure 2.3: A mdtipe-input single-output system 

The equations for this system in the frequency domain are 



Tbeoretically, by mhbhbg the system output noise PSD P,. we can obtaia the optimum 

fresiiency tesponse fimctions Hi, i=l,2, ...,q. But, as it can be seen h m  Eq. (2.41). the 

whole procedure wiU be cimibersorne if q is a number pater than 2. In addition, very 

luge arnounts of memory will be nquired if a multiple-input system is reaüzed on a 

computer using the above algorithm. Thus. it is not advisable to use this in practice. A 

much casier and more efficient pcoceûure w i l l  be discussed later in Chapter 4. 

The multiple-input muitiple-outpot mode1 repments the g e d  case. Let Xi, i=1,2, ...,p 

stand for the Fourier ~ o m  of the p mput signais. Yb Nk, k=l,2. -..,q are the Fourier 

transfonas of the q output sigaals ami ibeir noise. A multiple-input multip1e-output 

system can be expresJed as 



The above equation hss t&e some fonn as Eq. (2.39). 'Ihis means that the multiple-input 

muitipIe-output system is an assemblage of a number of q multiple-input single-output 

systems. Bendat and Piersol(1986) recommended that it be broken down into multiple- 

input single-output probiems Md solveld by algebraic procedures. 



CNAPTER3 

GRAVITY FIEU) MODELING IN THE FREQUENCY DOMAM 

In this chapter, after a very brief miew of the concept of the gravity dist\itbance, the 

estimation of the PSDs and CPSDs for gravity distubance components is outljned In 

section 3 of rhis chapter, the downward continuation problem of airborne gravity 

disnubmce vecmrs is discussed 

3.1 GRAVITY DISTURBANCE VECTOR AND ITS FOURIER TRANSFORM. 

Assume W is the gravity potential of the actuaî Eanh and U is the gravity potentiai of a 

best fitîing ellipsoid, Le., the nonnal potentuil Then, the anomalous graMty potential T, 

at a point P. is âefîned as the differenœ between W and U at this point @idtanen and 

Moritz, 1%7). That is, 

T(P)=WP) - W) 
The gravity disnubance vector is defined as 



where 9 ami )c are the geodetic Iatituie ami longinmde of P. and r is the dktance h m  the 

mass centre of the Earth to P. 

For local gravity neM modeling, the plaiuu appmrtimation is risilally iniroduœd. A tangent 

plane at P is substitutai for the eiiipboid sudace. Ibe local cartsim coordinate systern is 

de- as fonows: the x-axis points east, the y-axis points north. the z-a& points to the 

zenith to complete a right-handed rectanguk coordinw system In this coordinate 

system, the gravity distarbance vector is expressed as 

nie deflectiom of the vertical (c and q) aad the height anornaly (or the geoid unddation) 



a~ aT n For the sake of convenience, we denote - - and - as T, T, aad Tz, ,.iespeçtiely- ac' ay' dt 

By ushg the weli-known proparies of the twMSimeasional Fotuier tmsfonn, the 

relations between the components of the gmvity disairbance veçtor and the anomaious 

potential in the n#iiiency domain can be obtainai. In planar approximation, they are: 

Ff Txl+=wn 

F{TY}=j2mF(T) 

F { T z 1 = - 2 ~ W  1 

w b  F indicam a F o e  tramforni, u and v are fiesaencies in the x and y âkctions, 

and q=(u2+3)*- nie deMd derivation for these expressions can be found m Sideris 

(1987) and it is bas& on the fact that T is a hannonic functiom 

3.2 PSDs AND CPSDs OF GRAWTY DISTURBANCE COMKBNENTS 

Power spectral &nsity fbnctiom ead cross power spectral &nsity functions of the inputs 

and outputs play a very important role m the implementation of a multiple-input system. 

In this section, all the PSDs and CPSDs of components of the gtavity disturbance vector 

wiil be expressed as fiincrions of the PSD of the anornalots gravity potentiai. 

Accordiag to the PSD definition given by Eq.(2.7), the PSD of the vertical compnent is 



wiLere s is the record lengih. Substitnting Eq. (35) into the above equation yie& 

where Pm is the PSD of the anomalous gravity potential, By using the PSD dennition 

@ven by Eq. (2.7), we assimie that the gravity distufbance signal is a stationary aud 

ergodic random signal By ushg the slpne definition, the PSDs of the two horizontal 

components can be derived. They are 

Similady, with the CPSD defmition expressecl by Eq. (2.8), the CPSDs of the gravity 

disturbance vector components can be obtained as foliows: 

PTxT = 4z2wP, (3.10) 

Pqq = -j418uqpIT (3.11) 

Pk,q ' -j~+Pk (3.12) 

Here, only three CPSD fuactions are given, others can easiiy be obtained by using the 

properties of PSD f~nctions. F O ~  example, [pTaq J = P*, z R - 



30 

Equations (3.7) to (3.12) iadicate that 411 the PSDs and CPSDs are faactions of the PSD 

of the anomalous gmvity potentid. Thus, l the PSD of the anomdous gram potential is 

eaha&à, all the PSDs and BSDs  of the gtaviîy distarbake vector components are 

&termine& Vasdiou and Schwarz (1985). a k  numexidy anaimg pngvity anomalies 

h m  sixteen rriaian areas, recommend the followhg PSD model for the anomalous 

g r a .  potential at medium and high fiequencies: 

where A is a scale factor. 

33 DOWNWARD CONTINUATION OF AIRBORNE GRAVITY DATA 

It is iiecessary for geodetic applications that the airborne gravity measuffments be 

propagated downward to the geoid (for solving Stokes' problem) or to the surface of the 

Earth (for solviag MolodensLy's problem). ïhis irnplies two ciiffernt types of downward 

continuation. One is downward continuation to an eprial beight surface (level surface). 

The other is downward continuation to an azbitrary surface (e.g., the Earth's surface). 

These two types of downward continuation will be dealt with separately in this section. 



As shown m Figure 3.1, if the value of a harmonie M o n  on the d k e  Vp is imown, 

the haunonic m o n  outsi& the d a c e  can be detenained by solving the nrst boimdary 

vaïue probiem of physical geodesy (the Dirichlet pmblem). Furthemore, if the d a c e  is a 

sphere, the &t at point P is given by Poisson's mtegd (HeisLanen and Moritz, 1967): 

where a is the unit sphere correspondent to S. Ail other qoantities are as üIustiated m 

Figure 3.1. 

Figure 3.1: nie DiBchlet problem 



Using auvïiheac coordmates, we can rewrite Eq. (3.14) as 

ûbviousiy, Poisson's integrai can be used clirecuy m the upwafd continuation application. 

It is a convoluton integral and is therefore suitable for treatment by FFï techniques 

(Schwarz et ai., 1990). For the upwprd continuation from one sphecical d a c e  to 

another, we have 

on the sphen with radius R, V, is the haanonic fûnction on the sphere with d u s  r (r > 

R), and K is the integrai b e l  correspondent to l/13. In the fkquency domain_ this 

equation becomes 

F{V,(cp, V )  = CF{K(Q, WP{vP (Q, U h  q,} 

where F denotes the 2-D Fourier CraflSfom 

For downward continuation, te., to obtain VR fhm Vn we have to do deconvolution. It 

can be easily done in the fkquency domain. Fmm Eq. (3.18), we have 



where F' is the 2-D inverse Fourier transfom. 

The kemel of Paisson's integral decie9ses very fht with L For applications in a local area, 

a planar approximation may be introduced. The planar form of Poisson's integral is 

where H is the distance b m  the d k c e  to the point P, and x, y, and z are coordinates in 

the local Carmian coordinave system. Let 

The formula for u p d  continuation h m  one level sutface to another can be Wfitten as 

V&Y) = WGyI * V'(%Y) (3.24) 

Kane1 K has the anaiytîcal spectmm of (BaceweU. 1978) 

F{K(rr Y)} = e -2xHq 



Next, the fonnuia for downward continuation from one level d i m e  to another is 

obtained: 

iv,(x, y)} = e2*~{~(x,  Y)) (3.27) 

Eq. (3.26) and Eq. (3.27) are very simple. 1t Win be show in the following chapter that 

they cm be readüy used m a multiple-input system to combine gravimetxy data on severai 

different Ievel sPrfaces. 

Heighî (m) Fmquency (cycleslkm) 

Figure 3.2: Change of downward continuation kernel with height and fkequency 
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It shouid be pomted out that, in Eq. (3.27). for aay q > O, H > O, the downward 

continuation kernel e2- wiU be greater than unity and wiU increase with both q 

and H, as shown in Figure 3.2. This implies that downward continuation is 

instable, especiaily at high frequencies. Hence, in the downward continuation of 

airborne observations, the conuol of high fkequency noise i s  a cnticd issue. 

So far, we have obtairied all exp&om for upwazd and downward continuation of a 

harmonic fiiactio~~ The w o n  is: can they be applied to the continuation of the gravity 

disturôaace vector components? To answer this, we need to see if the components of the 

gnvity disturbance vector ye b o n i c  fiuictions. h m  rhe theory of physicd geodesy, 

we hiow that the momalous graviry potential is a h o n i c  h t i o n  outsi& the Earth (if 

the m a s  of the atmosphere is negle*ed). Tbat is 

AT=O (3.28) 

where A denotes the Laplace operator. TalMg the vertical component as an example, 

Changing the order of the partial detivatiye and the Laplace operator in the above 

equation. we obtain 

Thus, Tz is a hannonic functim. Using the same principles, it can be proven that the other 

two componenu of the @ty disturbance vector cm fan, aü the gradients, or derivatives, 
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of the anomalous gmïty potemiai) are hamonic fpactiolls. This conclusion is baseà on 

the harmonic property of the anomaious gravity pote& T&is means that the mass of the 

topograpby has to be taken into considemion, as w& 

3.3.2 Downward Co~~tinuation ta the Sarface of the Earth 

wth the m n c y  domain convolution and deconvolution techniques, as shown in the 

previous section, Poisson's htegrai can be easily iised m the downward or upward 

- continuation of aitbome graviinetry data one level surface to another. If values on 

the Earth's itreguïar stuf'ace are needed, additional procedures should be considered. As 

shown in Figure 3.3, a Taylor sajes srpansion may be used to obtain values on the 

Earth's d a c e  h m  values on the chosen level d a c e .  

Earth' s 
Surface (2) 

Chosen Level 

Geoid 

Figure 3.3: Continuation fiom a chosen level sudace to the Earth's $dace 



The Taylor expsion is 

where the fnnction V(x,y,z) codd be any of the gravity vector components. This quation 

holds oaly when al1 the partial &rivatives of V(x,y,z) are continuous. If the chosen levei 

surface is intersected with the t~pography~ as shown in Fi- 3.3, the topographie masses 

must have been removed in advance. 

The derivatives m Eq. (3.31) riequire veq  large intepticm computations at each point for 

the space domain m e W  (Moritz,1980). However, this can be avoided by usïng the 

spectrai method (Sideris, 1987). The Fourier CranSform of the P vertical derivative of any 

gravimetric harmoaic fiiirction V(x,y) is given by 

Notiœ that F{V(x,y)) can be obtained with the methods discussed m the previous saction, 

which can be built into the multiple-input system or other n.eqUency domain combination 

methods. mus, the ? denvative of V(x,y) c m  be cornpated vwy easily as a by-pduct 

of those combination methods. 

Choosing an optimal a will help to reduœ die higher order term effect in Eq. (3.31). a 

should be chosen in such a way tbat (z-a) bas a minimum variatioa Hence, z i ~  should be 
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the mean value of t This implies tbat a remove-restoze procedure of the topography wiil 

be involved Spectral rnethods for the computatiom of Main effm on a level smtaa 

and the Earth's sudace have becorne well-reseasched over the past decade (Parker 1972; 

Sideris 1984,1990; Fonberg 1985; Sideris and Tziavos 1988; TPavos et aL 1988). 

In most cases, the computation of the first-onier term in Eq. (3.31) shouid be enough. 

The consideration of the second-order t ~ m  might be nee&d if the &ravity field is 

exaemely rugged 

The procedure for downward continuation of the airborne gravity disnubance vector is: 

1. Remove the topography effect from the gtavity vector at fiight level; 

2. Downward continue aU gtavity componcnts to the average topographie height; 

3. Pmpagate the components to the Earth's irreguliu SPCface with Eq. (331); 

4. Restore the topography effat at each point on the E h ' s  surface. 



cHAmER4 

PROCESSING OF AIRBORNE VECTOR GRAVïïY DATA 

~SPEeTRACTE:CHNIQUEs 

This chapter de& with some practiical aspects of spectral techniques used for akhme 

gravity data processbg. The fïrst section is a numerical investigation into the two- 

dimensional noise PSI) of airborne gravimeay. Speciai consideration is given to the e f k t  

of the flight route pattern. Li the second section, the implementation of the multipleinput 

single-output systern for airbome vmor gravimetry is discussed. A procedure is pmposed 

to duce the cornputer memory reqiiirement as weii as the computationd wok In the 

thitd section, the nequeacY domain least-squares adjwtment method is briefly inttoduced 

and examinai for its use m airbotne vector gravity data processing. M y ,  m the fourth 

section, some specïai cases regardhg the combination of gravity data at different kvel 

surfaces and acc~acy irnpvements of airbome gravity data when no error PSD 

information i s  available are bisc9ssed 
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4.1 ANALYSIS OF TWO-DIMENSIONAL NOISE PSD OF AIRBORNE 

GRAVIlMETRY 

In thcr section, an ensting one-dmnensional noise PSD model of airbome vector 

gravïmetry will be briefS. describled first Thea a nmexicai appmach for estimahg two- 

dimension PSD fiom the one-dimensional PSD mode1 will be outliried and used to d y z e  

twodimensional noise PSD of airborne vector gravimeay. 

4.1.1 One-Ilhasionai N o k  PSDs of Airborne Vector Gmvimetry 

There are three diffkent types of airbome pvimetry system: i> Dampeâ two-axes 

piatform system, e.g., Lacoste & Romberg &ait gravity meter system; ii> Schuler-tuned 

three axes platform system; iii, Seapdown iiiertial navigation system@ein, 1995). Emr 

models used in this research are only suitable fot the tiiird type of system. For other types 

of systems, merent emr modeis shodd be considered. 

The onexlimensioaal(1-D) noise PSD models for INS and GPS can be f o d  m Schwarz 

et al (1994) and Schwarz anû Wei (1994). Tbey are given directly here. For &tails, 

these two papers shouid be consuited. The 1-D noise PSD mode1 for INS m d  

specinc foice m the horizontal cimneis is 
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where b: is the PSD of the constant acceleromeaer bias, d i  is the PSD of gyro daft. 4 is 

the variance of accelemmetet coIond mise, Qa is the PSD of white noise, u\ is the 

Schiiler fkeqpency, and a is the inverse of the corrdation time of accelerometer colored 

noise, 

in the 1-D error PSD rn-1 of the vertical channel, the constant accelerometer bias term 

and the gyro Qift term becorne negligible so that the mode1 cm be Wnüen as 

The 1-D emr mode1 for GPS measund acceleration is provided by Schwarz and Wei 

(1994) as follows: 

where a: is the variance of the comlated GPS position errors, b, is the inverse of the 

comlation the, and Q, is the PSD of tbe white noise in GPS positioning. 

The 1-D error PSD of airborne gravity data is the smn of the PSDs of the INS measuied 

Specinc em>r and the GPS measured acceleration error- For the horiw,ntal channei, we 

have 



For the vercical channel, we have 

h Eq. (4.4) and Eq44.9, each texm corresponds to a particrilar ermr source- There is no 

cross PSD tenn m these two equations. This mepis that the assumption has been mode 

that the enor sources arr not comlated to each other. Due to pirnaft dymmics, this 

assumption is not mie, espeçially m the high h p e a c y  band. But, considering that the 

simulation Smay wii l  be restricted to geodetic appiication where relatively low fkquencies 

of the gravity Sgnd have to be estimated, the assumption may not a&M nnal d t s  

Sgnifhntly. For the s a k  of simpiicit, these simple PSD models wili be used in this 

research, 

Table 4.1: Parameter Values Used for Noise PSD Modeis 

Value 

IO rngaVJ& 

10-~ de@JIE 

10 mgal 

i rngaV4K 
2 h  

0.03 m 

0-005 m 

1OOO sec 
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The parameter values for the PSD models useà m diis m h  an taken h m  Schwarz et 

al (1994) and Schwarz and Wei (1994). They are kted in Table 4.1. 

Figure 4.1 shows the 1-D errot PSDs of the horizontal components and the vertical 

component of the airborne p . t y  disaubaace vector within the f h q ~ n c y  band h m  

5x10~ H2 to 1xl0-~ fi. The ne<imry band conesponds to the wavelength range h m  

11 1.11 Imi to 0.56 Imi if the aircraft velocity is assumed to be 200 Irmm. 

Figure 4.1: 1-D noise PSD of aitbome vector gravimetry 

4.1.2 Estimate Two-Dimendonai Noise PSD W1th a Nmœricd Approseb 

Twodimensional(2-D) noise PSD mfomiation is iiidispeosable for the impkrnentation of 

the multiple-input system for airborne vector pvimetry. However, a general amdyricai 2- 
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D noise PSD modei for airborne gravimetry cannot be deriveci b a s e  the fomi of such a 

mode1 wouiû be stiongly aff6cled by the fiight mute pattern. in tbis section, the 2-D mise 

PSD for a typicPl pattern, ie. one m which the night mutes are p a d k l  lines, wîîî be 

e x a m i n e d n ~ y ~ t h t b e m e t h o d s ~ m Q e p t u 2 .  T w o s p e c i a l ~ w i û b e  

considemi. In case (l), the area is covered by a n u m k  of independent flights. In case 

(2), the area is covereà by a single fligbt. These two cases an iiiustrated in Figure 4.2. 

Figirre 4.2: Illustration of the two cases: (1) Ana is covered by a nurnber of independent 

flights in the same direction; (2) Area is covered by a singie ûight 

To estimate the 2-D noise PSDs, noise for each case illustrated in Figure 4.2 is simuïated 

using the spectral scaling technique* As illustrated in Figure 4.3, the spectral scaling 

technique consists of two parts. One is a random noise generator anci the other is a low 

pass Eilter used for scaiîng the PSD of the output to the desired one. Because of its 

function, this low p a s  nIter will be called the power spectrai density shaping mtet. 



Noise 
(shaping the PSD) Wlth Desired PSD 

F i p  4.3: Noise simiilation by specomn scaüng tec-pe 

The design of the power spectral density shapïng filter is simple. Assume that x(t) is the 

noise series generated by the =dom noise generator, gg,(t) is the impulse response 

function of the atm to be designed and y(t) is the output of the filter. In the neqiiency 

domain we have 

Y(@) = G,(a)X(a (4-6) 

where P, and P, are the power spectral densities of x(t) and y(t). U d y ,  PP, and P, are 

considered to be known. By choosing any OF that sarisfies Eq. (4.7), we can obtain the 

d t i n g  power spectral density shapmg filter. 

For that each term m Eq. (4.4) and Eq. (45) is the PSD of an independent error source, 

each type of emrs cm be simuiateà separately and added togethet to the total emr of 
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airbom gavimetry. AsJDmmg that the raidom noise generatot generates a white noise 

sequence with d t y  PSD, then Eq. (4-7) becornes 

Pm@, = G,(o}G;(w (4.8) 

Thus the G a )  fwictions for the noise simuhion of the vertical chanael can be deàved by 

applying Eq. (4.8) to each temi in Eq. (45). The d t s  are as foIlows. 

Rom Eq. (4.4) , the G a )  fkxtions for the horizontal chameh can be obtairied as 

follows: 

G,(W = 



Details for the spectmm scpling technique can be f o d  in Smith (1987). 

The noise components for the sjrnPlated gtavity data have been generated one fiight at a 

time. It shouid be noted that the random noise grnerator must use a Mit seed for each 

flight and for each type of enors. Oihawise, the sirnulatecl noise will be cordaîecL 

Figure 4.4 shows the noise simulatPd for case (1). 'Ihe aircraft velocity is set to be 2ûû 

imim The coverage of the area is 600 km x 600 km. The intends for both dong and 

aaoss the fligbt he! are 5 km, which implies 90 sec averaging time. 

(a) Noise in the vertical channel Tz 



km O -0 
km 

(b) Noise io die horiu,ntd chirnael Ti 

Figue 4.4: Simulated noise before high-pas nItering 

(a) Noise in the vertical channe1 Tz 



(b) Noise in the horizontal cbsniiel Tx 

As shown in Figure 4.4 (b), low fixxpscy noise dominates the enor behaviour m the 

horizontal channeIs. The emr mge m this case is bigger than 350 mgaL 'Ibis is too big 

for any type of applications. Fommately, in each application, the main intenst is m 

si@ m a certain band. Ia geodesy, for hstance, the gravity signal m the wavelength 

range of 10 lan to 100 hn is of major con- nowadays. 'ihe longer wavelength signal 

has been solved with good accmacy by gravity models. For this reason, numerical test in 

this thesis will be concentratecl on improving the gravity signal in rhis piutkular range, Le. 

10 km to 100 hn. Thus a hi@-pass nha ïs appüed to the simnlated noise sequences to 

obtain noises with wavelengcbs b m  10 km to 100 km. The resdts are iliustrated in 

Figure 4.5. However, it should be pointed out that m areas with sparse terrestrial gravity 
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observations, longe wavekngth signal pvided by gravity models are not very diable. In 

these areas, gravïv signal with waveiength 1onger aie0 100 km may need to be & t e  

airborae gravimetry as w d l .  

AssirmEg that the aircraft velocity is 200 hh, the IO km to 100 km wavelength range 

corresponds to a fkquency range of 0.556 x 10j to 0.556 x 104. For cornparison. the 

onedimensional enw PSD in this f h p e l b c y  ange is shown in Figure 4.6. 

Figue 4.6: 1-D enor PSD of aitborne vector gravimetry in the interested fiequency range 



(a) Noise PSD of the vertical component 

(b) Noise PSD of the horizontal components 

Figure 4.7: Noise PSDs of the airborne vector gravmiew for case (1) 



(a) Noise PSD of the vertical componeat 

(b) Noise PSD of the horizontal compomnts 

Figme 4.8: Noise PSDs of the airborne vector gavimeûy for case (2) 
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After the noise simuiafïons have been done, the PSI) estimation method discussed m 

chapter 2 can be applied Figure 4.7 shows the results for case (1). Noises for case (2) 

can be sïmiilnred m the same way. 'Ibe aror PSD resuits for case (2) are shoum in Figure 

4.8. 

In Egure 4.7 and Figure 4.8. it k apparent that the shapes of the 2-D PSDs are mainly due 

to the flight Iiae directioa In the aeqPeimcy cornponent corresponding to the dong-track 

direction, the 2-D PSDs behaMot very simikIy to the 1-D PSD. In the fiequency 

cornponent comsponding to the cross-track direction, die 2-D PSDs have white noise 

behavior. The expected comiation between the lines (Le. the none-white noise behavior 

in the cross aack direction) for case (2) has not ken shown m Figure 4.8. The reason is 

that ody noise with wavelengths less than 100 km has been simukd, and this malres the 

co~~elation between the liiies too weak to be detected by the algorithm used here for 2-D 

PSD estimation. 

Obviously, the= is anofber fligùt route pattern that bas to be metioned. That is the cross- 

over pattern as illuSttated in Figure 49. 

Figure 49: Cross-over flight route pattern 
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Cross-over fiight patterns aie typPcally iwd for controIIing constant biases and hear emr 

trends. However, as qiajned eadier m this section, a band-pas filter would be applied 

to the airborne gravity mearmements for most applications, such as tbe case in this 

research. As a dt, low hquency sigiuils and noises includhg constant bisses and lirieat 

trends Win be mmoved h m  the raw data To deal with the cross-over flight pattern 

problem with the spectral techniques, it is suggested that the cross-over pattern be 

decomposed into two pmllel flight h e  patterp as shown in Figure 4.10. nie two data 

sets obtained, then, cm be @y processed and combined with the mdtiple-input system 

techniques disciissad m this thesis. If the low neqUency contents have not been removeci, 

an additio~liil procedm may be needed to remove or duce the constant biases and lùiear 

mnds before the decomposition. 

Figure 4.10: The decomposed cross-over £light pattern 
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The discpssion m this section pmvides a usehl 2-D PSD estimation procedure for 

aitbome gcavimetry. In Raüty, the pattern cf the f a t  liiies wodd be neitfier as show11 m 

case (1) nor as shown in case (2), but the noise sequence for each Dight can always be 

simuïated and put togetha for the 243 PSD estimation, providecl bat the one-dimensional 

PSD m&Is aze available. 

4.2 IMPLEMENTATXON OF A MULTIPLE-INPUT SYSTEM 

FOR AIRBORNE VECTOR GRAVIMETRY 

As mentioned in Section 4 of Chapter 2, the diiect detennination of the optimum 

freqrency responses of a multiple-input singk-output systwi becorne very compkated 

when the number of the input signais is greater than 2. In auboniie vecun gravimetry, the 

number of input signais couici be three. However, if thete are other types of observation 

to be c o m b i  such as measurements nOm gradiometry and aitimetry, this nurnber would 

be much @er. in this section, a stepwise pcocedure is proposeci to make the realization 

easier and to duce the cornputer memory quirement, Tbis stepwise procedure 

repeatedly uses two-input singie-output systems. Thus. the two-input system for 

gravimeay data processing will be d i s c d  £ira 

if no noise existp, the coherence fanction betwew any cwo of the gravity field quantities 

(swh as the anomalous gravity potential, the components of the gravity disturbance 
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vector, and the hi* orda gradients of the anomalous gmity potential) XI aid xz wiiî be 

equal to one because aü of fhese gcaMty neld quantities are bmdy  c01zelatPrl with each 

ocher. Thatis 

(4. IO) 

where Pl2 is the B S D  of XI and x ~ ,  and PU and Pz are PSDs of xi and x2, ~e~pectively. 

The muitiple-input theory can not be appüed to this case. As a matter of hct, no 

combination wdl be requited. h pnctice, however, observations wiU aIways be 

cmtaminated by noise. Assmne that the noise is additive ancl there is no correlation 

between signal and noise and no correIation between mise sequemes. 'Iben the 

observations of XI and xz can be written as x, = x, + n, , xg = x, + n, . Th& PSDs and 

CPSD can be wxitten as 

The cohetence function between the two obse~ations is 

This coherence function will always be iess th;m 1 and greater tban mm. Hence, Eq. 

(2.35) and Eq. (2.36) can be us& here as shown below: 



These equations are quivalent to 

When there is no second input signal, Le. P n d ,  Eq. (4.14) reduces to Eq. (2.28) wbich is 

the optimum fresuency mqonse for the sine-input system A more detded discussion 

Ca.  be f o d  in Sideris (1996). 

Figure 4.6: A multiple-input systern Ralizad by repeatedly using two-input systems 
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When the number of mputs is moie tban two, a stepwise procedure for the realization of 

the system is recommexrled. First, a meinput system is used to combine two of the input 

signais. Then, another two-input system is iised to combine the output of the first two- 

input sysom and the third input signai. After that, if there is a fourth input, a third two- 

input system can be employed to combine the fourth input with the output of the second 

two-input system- In this maniur, any number of mput si@ can be combined to obtain 

one output Thus, a multiple-inpiit sing.Ie-output systern can be implemented by 

repearedly usïng the two-input single-ouîput systems. Essentially, only two-input system 

need to be di&. 'Ibis rnalres the reaiization of a multiple-input sysiem much S m p k  

In addition, the cornputer memory reqiiiriement is grearly reduced because only two hputs 

wiü be processeci at one tune. The implementation procedure proposed is illusbated m 

Figure 4.6. 

Consider a three-input single~utput system as an example. For thc first two inputs, we 

have 

Y' = X,H, + &H, (4- 15) 

where HI and Hz can be cornputeci with Eq. (4.14). The e m r  PSD of Y' is piven by 

Then the third input and Y' can be combined by another two-input system as follow~: 
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whereYH is the optimal eahuïon of the spectrmn of the àesired output signai Y m this 

case. H: and R; isgiMlby 

This the-input single-output system Win be ared in the pmessing of airborne vector 

The concept of the neqPency domain least-squares adjutment method can be fou i  in 

Barzaghi et al. (1993). Sanso d SOM (1995), and Sideris (1996). UnlilriG the multiple- 

input system theory, which determines the optimum system frwiuency response by 

employing all the PSDs of the input signais and their correspondhg ermr PSDs, the 

fresriency domain ieast-s~uares adjutment methocl assumes that the system fhquency 

response functions are deteiminiscic anci are laiowxi in advance. In ibis method, first, the 



output spema corzesponding to each of the inpat signais are computed by multiplying the 

known freqaerry nespo~l~e W o n s  with the spectra of the mput gignals. Tizen, the 

optimal estimation of the desired output spectra û obtained accordhg o the least-squares 

adjusmient method wilI  be caaed lm-squares âdjiimiient or simply LSA in brief. 

Assume that x, and x, are obsewations of xl and xz, nspectively, that their noises are 

s aad nz and are not correlated, and that the signal to be estimated is y. In the fresuency 

dornain, the spectra of y comsponding to each of the observations can be unitien as 

where the fiequency response fiincrions Hl and Hi aze considered pedectly known. The 

T d é r i a g  least-scpm principle to the spectral domain, the optimal estbation of Y is 

denned as the weighted average of Y' and Y'. The weight assigned for each spectra is the 

inverse of its enor PSD. nius 

1 1 



By substituthg Eq. (4.20) into Eq. (4.21), we get 

Similady, when there are k e e  or more obsenrations, the optimal estimation of y and its 

error PSD expression can be obtained as foiIows: 

Eq. (4.24) and Eq. (4.25) can be easily expand for the general case, for example, when 

k observations exist: 



The known fkquency xesponse Wons ,  Le. HI. Hz...-. are chosen as the fresuency 

responses of t&e ideal single-input single-output system. These ideal nrqiiency respooases 

for airborne vator gravimetry can be obsained by ushg the PSD and CPSD dations 

given in Section 3.2. For example. assume that the input signais are Tm Ty, and TzT Le. di 

the components of the gravity distprbaace vector- The output s i p i  is the vertical 

component TzT and the ideal fkapncy respouses Win be 

From Eq. (4.28) to Eq. (4.30). it can be seen that no prior infonaatîon about the gravity 

field is ne& if the ideal fresaency respome h t i o n s  of the single-input singie-output 

systems are used as the k n m  fkquency response functïons m the least-squares 

adjutment method. AIl the ideal fcecrirency cesponse fimctions used m this iesearch for 

the data processing in airborne vector gravimetry are btod in Table 4.2. 



Table 4.2: List of IdePl Fhapncy Respoases Used for The Airborne Vector Gravimetry 

Data PnNessing 



The muitipk-input singie-output system and the least-s~uares a d i i e n t  methocl can be 

m m e d  to combine observations made on dinerent levd surfaces and to give results at 

any altitude. This means that the methods wii l  possess Mt-in fiinctions to deal with the 

downward and upwad continuation pmblems. 

In Section 3.3, the analyiical kemels for upward and domward continuation in the 

neqUency domain have been discussed. For upward continuation, we have 

2 r c a G 7  Ku = e- 

For downward continuation, we bave 

Kd =e  2riiJXF 

where. m Eq. (4.31) and Eg. (4.32), H is the elevation dineremce between the two level 

surfaces. Notice that the ody diifference berween these two keniek is the sip of the 

exponent. This sign differenœ can be taken cam of by using the height ( the z coordinate) 

Mereuce benveen the two h l  sadaces instead of the absolute distance. Assuming that 

the height of the measmmient sudace is hl and the height of the destination d a c e  is hz, 

we obtain 



Obviousiy, in the case of upward continuaticm (k > hi), K w i i i  be equal to IG. In contrast, 

m the case of downward continuation (hz c hi), K wiil equaI IG. knce ,  K can be called 

the continuation kerneL 

To builâ the continuation obility iato a multiple-mpit system or a least-squares adjustment 

solution, we need to consider not only the continuation of the input signais but the 

continuation of the input noise PSDs as weiL These two types of continuation can be 

done very easily in the fkquency domaie Multiplying an inpt signal by its c o ~ i a d i n g  

continuation Itemel, we get the signal at the destination altitu&. To obtain the 

continuation of an input noise PSD, we only need to multiply it by the square of the 

corresponding continuation kemL The expressions are as foïlows: 

where Xi' is the continuation of the input signal &, Prq is the continuation of the the input 

noise PSD Pm,, , and & is computed by Eq. (4.33) according &O the beight of Xi and the 

height of Xf . In case thaî Ri is used as a kernel for dowaward continuation, the iastability 

discussed m Section 3.3.1 should be noticed. W~th Eq. (4.33) to Eq. (4.35). we can 

readily biiüd the continuation ability into a multiple-input system or a least-squares 

adjustment solution so that it will be able to c o m b e  observations at different levek. 



To impve  the a o ~ a ~ y  m airûorae vector gravimetry without noise PSD information, 

we have to exploit the following two facts : 

1. The vertical component i s  much more aociirare than the horizontal compents 

2. The PSDs of the horiu,ntal gtavity components can be determineci h m  the PSD of 

the vertical component 

Thus, if is the PSD of the meamments of the vertical component, we have 

ut- 
pZr, = pJz 

PqTx and PqT, are not the PSDs ofthe m e  si@ of the horizontal components because 

- 
P,, is contaminated by the measurement noise. However, because the noise lwel is 

much lower in the vertical chriimel and u and v m Eq. (4.36) are genaally less than q (so 

that the power of the noise will be attenuated), PqTs and P,T, can be treated as 

reasonable esrimates of the tme PSDs of the horizontal components m dùs case. 

Thetefore, we can improve the horizontal components with the Wiener filter: 
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where and &., are the PSDs of the observations of the two horizontal cornponents. 

FPnher improvements for all three components can be achieved with the least-qwes 

adjusmient me- if their noises are not comtatPd with each other. The reason is tbat 

ody the magnitude spectra are used m the Wiena tilters and so the noise could be 

reduced by ayeraging due to tbek d o m  pbases. Because detded information on the 

noise PSDs is not available, we have assumed that the aoairecies of ai i  three components 

are the same after the application of the Wiener tllter in Eq. (4.37). Eq. (4.26) then 

becornes 

whenz Xie , i=i,23..+ couici be the spectra of the vertical component obsemation or the 

spectra of any of the horizontal components obtained with Eq. (4.37), and? could be the 

Mproved spectra of any composent of the gravity distarbance vector. 



CHAPTER 5 

NUMERICAL TESTS AND ANALYSIS 

In this chapter, after an introdnction to the data simulation, results of the 

numerical tests are shown and aaalyzed. The tests are focused on getting 

accurate resuits nom &borne observations using spectral methods with or 

withoot measurement noise PSD information. The tests also investigate some 

aspects of downward continuation of airborne gravimeuy data to a level surface 

aad to the surface of the Earth. Some cornparison between different processing 

methods is ais0 done. Fin-, the accoracy of geoid determination using airborne 

gravity data is inves tig ated. 

5.1 DATA SIMULATION 

Airbome vecior gravimetry measwements are sirnulatecl in this section. First a 

local gravity field is modeled with a two-layer point mass model. Then the noise 

for each charme1 of airborne vector gravimetry is simulated and added CO the 

corresponding component of the simulated gravity disturbance vector. 
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The point mass model has k e n  widely used ia local anomalous granty field 

modeling (Forsberg, 1984; Vassilion, 1985 and 1986). The basic idea of this 

model is that the anomalous gravity field can be generated (or modeled) by one or 

several anomalous point mass layers under and pardel to the Earth's sudace. In 

practice, most of the tirne, these anomaious point mass layers are computed fiom 

the existing gravity anomalies or disturbances by using a deconvolution 

procedure. If the known gravity disturbances are gridded, spectral techniques can 

be used to greatly alleviate the computation load. The mathematical models 

needed for the gravity field sirnuiadon using the point mass model are given 

directly here in the space domain and in the fkequency domain. Details can be 

foand in Forsberg (1984) and Vassilioo (1986). 

The same local coordinate system introduced in Chapter 3 is used in the following 

description. Assuming the anomalous masses on one layer at depth d, the gravity 

disturbance at a point P (xp, y ,  zp) c m  be expressed as 

where G is the Newton's gravitational constant, Xi, yj are the coordinates of the 

point mass p(xi, yj) and M, N are the number of points in the x a d  y directions 

respectively. The right-band side of this equation is a two-dimeasional 

convolution. With the use of the two-dimensional discrete Fourier transform, al1 
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gravity disturbances in the comsponding grid at an dtitude can be computed at 

the same W. Eq. (5.1) in the fiequency domain becomes 

As mentioned in Chapter 3, the Fourier traasfom of the kernel function has an 

analytical expression. Eq. (5.2) can thus be rewritten as 

To obtain the anomalous point masses fkom the existing gravity disturbance data. 

we inven Eq. (5.3) as 

The expressions for the two horizontal components generated by the anomalous 

masses of a single layet are given by 



The local g r a m  field used in this reseanh is simulated on a 5 km x 5 km gnd. 

The total coverage is 600 x 600 kd. Generally, a low fiequency signai will be 

more accurately simuiated by a deep point mass Iayer and high fkequency signal 

will be more accurately simuiated by a shaiiow point mass layer. To be more 

realistic, a mdti-kyer model shopld be used to account for signais in different 

frequency ranges (Forsberg, 1984). A two-iayet model is used to simulate the 

gravity signals in the wavelength range of 10 km to 100 km which is the 

. wavelength range selected for this research. Thus, the acnial simalation 

procedure starts with high pass fiiteriag the hown gravity disturbance data to 

fiiter out the signals with wavelengths longer than 100 km, which is equivalent to 

removing the low fiequency signal by subtracting an erroriess global gravity fieid 

model Then the residaal is m e r  split into taro data sets. One contains signals 

with wavelengths shoner than 30 lm. The other contains signals in the 

wavelength range of 30 km to 100 he Mer that, a point mass layer buried 10 

km below the geoid is generated using the first data set with Eq. (5.4). And 

another point mass iayer boried 30 km below the geoid is generated using the the 

second second data set. Finaiiy, the gravity field components at any altitude can 

be computed with the formalae given. A check of nsults shows no discrepancies 

between the input b o w n  gravity disturbances and those simulated. This, 

however, does not mean that the actual gravity field has been reproduced by the 



two-layes model, especially at other height Ievels. What can be expected is that 

the simuiated gravity field wouid be close to the actual gravity field. By using the 

generated point masses to compute ali the three components of the gravity 

disturbance vector ai different levels. a consistent gravity fieid can be obtained to 

work with. Table 5.1 lists the statistics of the components of the simuiated 

gravity disturbance vectot on the zero height level surface. The graphic 

presentations of these components are shown in Figures 5.1. 5.2. and 5.3, 

respectively. The signai PSD estimates are ülustrated in Figure 5.4. 

Noise in airborne vector gravimetry data is simalafed with the spectrum scaling 

technique which has been discussed in Section 4.1. The whole ana i s  assumed to 

have been surveyed by a number of parailel fiîghts, foiiowing case (1) discussed in 

Section 4.1 . The simulated noise for the vertical chamel and the two horizontal 

channels are show in Figures 5.5, 5.6, 5.7. Their statistics are given in Table 

5.2. The noise PSDs are shown in Figure 4.7 in Section 4.1.2. 

Table 5.1: Statistics of the Simulated Gravity Vector Components 

Gravity Vectot Component 
B 

Tt (mga 

Tx (mgal) 

Ty (mgal) 

Min 

-54.2 

-53.4 

-75.0 

Mean 

0.00 

0.00 

0.00 

Max 

88.0 

39.0 

52.3 

RMS 

11.98 
I 

7.70 
i 

9.11 



Figure 5.1: Graphic presentation of simdated t 

Figure 5.2: Graphic presentation of simdated Tx 



Figure 5.3: Graphic presentation of simalated Ty 

(a) Signal PSD of Tt 



(b) Signal PSD of Tx 

(c) Signai PSD of Ty 

Figure 5 -4: Signal PSDs of simulated gravity disturbance vector components 



Table 5.2: Statistrs of the Simulated Airborne Vectot Gravimetry Noise 
C 

Channel Min Max Mean Std. Dev. 

Tz (mgal) -8-6 5.5 O- 19 2.16 

Tx (mgal) -19.4 14.8 O. 13 4-96 

-18.0 18.5 -0.10 4.8 1 

Figure 5.5: Graphic pnsentation of the simulated noise for Tr 



Figure 5.6: Graphic presentation of the simulated noise for TI 

Figure 5.7: Graphic presentation of the simulated noise for Ty 



5.2 ACCURACY IMPROVEMENT WITH NOISE PSD INFORMATION 

The effectiveness of spectral methods in irnproving the accuracy of the airborne 

gravity disturbance vector is tested in this and the following sections. In this 

section, we assume that the noise PSDs for a l l  the channels of airborne vector 

gravimetry are availabIe. Zero padding is used in al1 namerical computations in 

this thesis to acount for the circrilar convolution effect. To avoid edge effects due 

to the limited coverage, in this section as well as in following sections. all the 

cornparisons of the estimated signais and the m e  signals are done in an inner area 

- that is 50 km inside the borders of the total area. 

Usually, only the one-dimensional noise PSDs are available. Before the multiple- 

input single-output system can be implemented, ail the required two-dimensionai 

noise PSDs must be estimated. Generdiy, there is no analyrical way to derive the 

two-dimensional PSD mode1 fiom the one-dimensional PSD modei. Instead, the 

numericd estimation method proposed in Section 4.1 WU be used. 

Using the stepwise procedure, software has been written in which the realized 

multiple-input system can take as many as ten types of gravity field quantities 

(including the anomalous potenrial and aiî of its fkst and second order gradients) 

as its inputs and give any one of these quantities as its output. In the case of 

airbome vector gravimetry, the maximum number of input signals is three. When 
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there is o d y  one input signal, the single-input single-output system gives the same 

results as the two-dimensional Wiener £ilter- 

Table 5.3: Accatacy Cornparison of DBerent Combinations With Multiple-Input 

Single-Output S ystem 

Output Signal Input Signais Max Min Std. Dev. 
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Table 5.3 shows the accufacies of the resiilts for dinerent input combinations for 

each component of the gravity disturbance vector. AU the estimations are done at 

flight level ie., no downward continuation is made. A significant improvement 

for every component is seen after the Wiener filtering. Addhg other components, 

additional improvements for the venicai component Tz and the two horizontai 

components Tx, Ty are dinerent. The M e r  improvement for Ts is much less 

than those for T, and Tp Moreover, the best resuits for Tx and Ty have 

signincantiy higber accuracy than the best resalt for Tz- The reason for that can 

easily be illustrated in the fiequency domain. Most of the the. ri and v are less 

than q=(u2 + ?)ln. When Tx aodlor Ty are used to improve the nsuits of TI, the 

noise in Tx and T, will be amplined by a factor of qlu or qlv in each frequency. In 

this case, the system will be more dependent on the measurements of Tz. Thus, 

less improvement will be seen. In contrast. when Tz is used to improve the two 

horizontal components, the noise in Tz will be attenuated by a factor of d q  or vlq. 

This means that Tx or Ty WU get a set of much more accurate measurements. The 

measurements will be even more accurate than the original measurements of Tz. 

This explains why the mal resuits for Tx and Ty are better than the results for Tz. 

To give a perspective view of how the multiple-input system works to improve the 

results, surface maps of the errors are plo tted in the total area. Figure 5.8 shows 

the error in Tr f i e r  Wiener filtering (Le., when the input is only Tg). Figure 5.9 

displays the error in Tz estimated by combinuig T. with T, and T,. Errors in the 
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estimations of Tr are presented to show the improvement in the horizontal 

components. Shown in Figure 5.10 are the errors in Tx after Wiener fiitering. 

Errors in T. esthated from T, 1, and Ty together are shown in Figure 5.1 1. 

Figure 5.8: Error in Tz after Wiener filtering 

Figure 5.9: Error in Tz estimated by combining TI with T, Ty 



Figure 5.10: Error in Tx after Wiener filtering 

Figure 5.11: Error in Tx estimated by combining T. with Tzv T, 
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Cornparhg Figure 5.8 with Figure 5.5 and Figoce 5.10 with Figure 5.6, we can see 

improvement in both the border and inner areas. By comparing Figures 5.8, 5.9 

and Figures 5.10. 5.11 to examine the effect of other inputs, it is seen that higher 

accaracies are obtained in the innet area wbile accuracies are lower toward the 

borders. The reason for this trend is that, in the single input case, no prediction 

for one signal nom O ther types of signals is use& while in the multiple input case, 

such a prediction is necessary. These predictions, which are weU-known in 

physicd geodesy, require a large area of coverage depending on the wavelength 

range of the signal to be recovered. Thus, it is the prediction between signals that 

causes the accuracy degradation in the border area This is the price to be paid 

when higher accwacy is desired in the inoer area. As expected, it is also seen that 

the high fkequency noise is reduced by the input signal combination. 

Obviously, another approach can be used in the case that the one-dimensional 

noise PSDs are known. Fist,  a one-dimensional Wiener filter can be applied to 

each fiight trajectory. Then, the combinations can be made by employing the 

least-squares adjusment rnethod in the two-dimensional fkequency domain. To 

evaluate thû approach, the fist step is to compare the resuits from the one- 

dimensional Wiener filter with the results fkorn the single-input single-output 

system system (te. the two-dimensional Wiener filter). Table 5.4 indicates the 

accuracies of the results using one-dimensional Wiener fiiters. 



Table 5.4: Accwacies of Granty Vector Components After Wiener Filtering 

Along Trahtories 

Cornparhg the numbers in Table 5.4 with their corresponding results fkom the 

inpat-output system in Table 5.3, we c m  see that the one-dimensional Wiener 

filtering gives less accurate resdts aithough some improvements can be expected. 

The possible reason is that fewer meamements are used in one-nimensional 

Wiener filtering. Because the two-dimensional filtering has this advantage, it is 

important to estimate the two-dimensional noise PSDs with numerical methods 

such as the one proposed in Section 4.1 of this thesis. 

5.3 ACCURACY IMPROVEMENT WITHOUT NOISE PSD INFORMATION 

When noise PSDs are not available, the multiple-input system can not be 

implemented. The procedure discussed in Section 4.4.2 should be applied. The 

Mean 

0.02 

-0.05 

0.0 1 

- 

Max 

6.7 

9.8 

11.0 

Gravity Vector Components 

Tz (mgai) 

Tx (mgal) 

Ty (mgal) 

Std- Dev. 

1.83 

2.34 

3.00 

Min 

-6.0 

-9.7 

-12.4 



fïrst stage of this procedure is to improve the horizontal component measurements 

using the vertical component measurement. This stage begins with approximating 

the signal PSDs of TI and Ty using the meastuements of Tz. Then the PSDs of the 

T.9 Ty measwements are estimated. After that, the imptoved estimates of T x  and 

T, can be obtained wit$ Eq. (4.37). The whole idea ù based on the fact tbat the 

measurements in the vertical chamel are mach more accurate than the 

observations in the horizontal channeis and the signals in all of those channels are 

linearly correlated. Shown h Table 5 3  are the accuracies of the improved Ti and 

Ty- Cornparhg Table 5.5 with Tabie 5.2, we cm see that the standard deviations 

- of the errors become half of their previous values. The resalts have nearly the 

same accuracy level as the Tt measarements, 

Table 5.5: Accuracies of the Horizontal Components Improved with the PSD of 

Vertical Component Meascirements 

The second stage of the procedure is to improve the vertical component with the 

estimations of Tx and Ty fiom the first stage. As discussed in Section 4.4.2. this is 

theoretically possible. The statistics shown in Table 5.5 indicate that the same 

accuracy assumption in the fkequency domain least-squares adjusunent mode1 Eq. 

Gravity Vector Component 

fx (m@) 

T y  (mgal) 

Max 

10.0 

10.9 

Mm 

-8-3 

- 10.5 

Mean 

-0.27 

0.0 1 

Std. Dev. 
1 

2.62 

2.95 
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(4.38) ù more or Iess redistic. As expected, and shown in Table 5.6, accunicy 

gains for every component have been obtained by combining them with the 

fkequency domain lem-squares adjiistment technique. EIere again, the accuracy 

gain for the vertical component is much less than the gains for the horizontal 

components. The reason for this is the same as given in Section 5.2. 

Table 5.6: Furthet Acciiracy Improvement With Frequency Domain Least-squares 

Output Signal 
T 

Max Mean Std. Dev. 



5.4 COMPARISON OF COMBINATEON METHODS 

Ln this section, the two spectral methods, namely the multiple-input single-output 

system and the fiequency domain leut-squares adjustment, are compared first. 

Then, the multiple-input system is compared with least-squares collocation. Due 

to PC memory limitations and the long computation tune wociated with 

collocation, this cornparison wül be conducted only in the case of single input. 

AU the computations in this section are done under the assumption that 

measurement noise PSDs are kaown. 

In Table 5.7, the results Irom the multiple-input system and the least-squares 

adjustment are shown. Because the least-squares adjustment method requires two 

or more input signals, there are no results for this method in the single input case. 

Lnstead, statistics of the simulated measurement noise are given in bold. It can be 

seen that, while both methods are very effective in reducing the noise in theîr 

outputs. the miiltiple-input system gives better results than the Ieast-squares 

adjustment method in al1 cases. This is because, as seen in the theoretical 

discussion, the multiple system has two basic functions: nist, filtering every input 

signal, and then, combining them optimally. On the other hand, the least-squares 

adjustment method only performs the weighted averaging of the input signals in 

the fkequency domain. Hence, the effectiveness of the Ieast-squares adjustment 



Table 5.7: Cornparison of the Moltiple-Input System and Frequency Domain LSA 

M-input S ystem Frequency Domain LS A - 
Max - 
5.5 

- 
Min 

- 
Min Output Signal Input Signais Max - 

4.8 

Std. Dev. Std. Dev. 
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method will be very much dependent on whether (or how much) the noise 

seqoences in the input signais are correlated with each other. If they are M y  

correlated and alî the inputs are at same accuracy levei, improved resiilts wiU not 

be obtained with the least-squares adjusunent method. Ti, the case where the 

input noises are M y  conehted and ai i  the inputs ate not at the same accuracy 

level, the accuracy gain of the finai resdt will be due only to the inputs with 

higher accuracies because the random pme property of noise can not be used. 

Howevet, better results c m  always be expected with the multiple-input system 

due to its filtering function. 

Ftom Table 5.7, we also see smaller improvement in Tz and larger improvement T, 

and Ty from the lem-squares adjustment method, especially when Tz is used as an 

input. These are again due to the higher accuracy of Tz measurements and the 

relations between the vertical component and the horizontal components of the 

gravity dbturbance vector as discussed in the previous section of this chapter. 

To compare the multiple-input system with least squares coliocation, resalts for 

all components in the single input case are also computed with coilocation. 

Obviously, collocation can not use aU the data. Only the data in the 40 km x 40 

km sub-area around the computation point are used. However, the empirical 

covariances for signals and noise are estimated by employing the data in the whole 

area. The size of the sub-area is determined by the correlation length of the 
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vertical component. From Figure 5.12, we c m  see that the applied sub-uea size 

is selected as a iittle bit latger than tMce the correlation length. 

Table 5.8 shows the accuracks of resdts f3om both the muitiple-input system and 

least-squares coliocation. We can see that they are comparable. Coiîocation 

gives less accurate results because only the data in the smaU sub-area were used. 

On the other hand, because the correlation length is very short. see Figure 12, the 

error committed by using data in the sub-area ody is pro bably very small, 

Figure 5-12: The empirical covariance function of the vertical component Tz 



Table 5.8: Cornparison of the 

Collocation in the Case 
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Mdtiple-Input system and Least-Squares 

of a Single Input Signal 

5.5 DOWNWARD CONTINUATION OF AIRBORNE GRAVlTY DATA 

There are two subsections in this section, Subsection 1 shows the resuits of the 

downward continuation from one level surface to another. Spectrai methods are 

used to examine the effects of di&rrent input combinations on the noise control in 

downward continuation. In Subsection 2, the use of spectral methods in the 

downward continuation of airborne gravimetry data to the Earth's naturd surface 

is tested. Resdts fkom the spectral method and collocation are compared. 
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5.5.1 D o w n w d  Continuation of Aiiborne Data to a Level Sadace 

The downward continuation of airborne gravity data £kom night level to another 

level surface is simpk. As discussed in Chapter 4, this function can be built hto 

the muitiple-input system and the fiequency domain lest-squares adjosment 

program. Thus, the height effect and the input combination effect in downward 

continuation can be readily examined at the same tirne. Thtee fiight heights, 

namely, 500, 1000, and 1500 meter, were chosen for the numerical tests. Noises 

are the same as used before. Two situations are considered, In situation (a), the 

- noise PSDs are knowe In situation (b), the noise PSDs are not kaown. 

Figure 5.13: The effecu of downward continuation height and input data type 

combination on the accuracy of Tz (noise PSDs known) 



Figure 5-14: The effects of downward continuation height and input data type 

combination on the accuracy of T x  (noise PSDs known) 

Figure 5.15: The effects of downward continuation height and input data type 

combination on the accuracy of Ty (noise PSDs known) 
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Figures 5.13 to 5.15 show the effect of downward continuation as a ftnction of 

height and the effect of input combination for each component ii, situation (a). 

Plotted are errot standard deviations of the reslihs versas the height change for 

each input combhatioa AU the resdts are computed by the multipbinput system 

because the PSDs of the input noises are known. Accordkg to these figures, we 

can say that in generai, more input signals lead to a more accurate and more stable 

downward continuation and that the accuracy of the downward contmuation 

decreases as the height increases. Again, as seen in Section 5.2, by Ïnvolving 

other components, the improvement in the vertical component is less obvious than 

those for the horizontal components and much mote accurate resdts can be 

obtained for the horizontal components when the observations. of the vertical 

component are used. The reason for this is same as given before. 

For situation (b), in which the noise PSDs are not known, a two stage procedure 

should be used in order to get higher accuracy. As we did in Section 5.3 and 

discussed in Section 4.4.2, in the fkst stage the horizontal components are 

improved by using the PSDs estimated £kom the measurements of the vertical 

component. Then, in the second stage, the combinations are made and the results 

are downwatd continued to the zero height surface. Results are shown in Figures 

5.16 IO 5.18. 



From Figures 5.16 to 5.18. the same concIusions cm be dtawn as Erom Figures 

5.13 to 5.15. By comparing the two situations, we cm see that the height effect 

is weaker in situation (a). That is because the noise is better controlled in two 

ways: Eltering and combination when the noise PSDs are known, and the only way 

to control noise level is combination when the noise PSDs are not available. In 

situation (b), a significant improvement can &O be seen in the vertical component 

when horizontal components are hvolved. That is because the accuracy of the Tz 

input is relatively low in this case. 

Figure 5.16: The effects of downward continuation height and input data type 

combination on the accuracy of Tz (noise PSDs anknown) 



Figure 5.17: The effects of downward continuation height and input data type 

combination on the accuracy of Tx (noise PSDs unknown) 

Figure 5.18: The effects of downward continuation height and input data type 

combination on the accuracy of T, (noise PSDs unknown) 
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5.5.2 Downwad Continuation of Airborne Data to the Surface of the Earth 

These experiments are intended &O evaiuate the performance of the FFT method 

for the downward continuation to an arbitrary surfiace such as the Earth's sutface. 

The arbitrary surface generated for this test is shown in Figure 5.19. It is a rather 

rugged surface wûh a height variation from 1 0  meters to about 4000 meters. 

The reference gravity disturbance vahe at each surface grid point is computed 

from the point mass model by the integral method. These gravity disturbance 

values are very accurate and shouià be considered as error fkee. The flight level îs 

chosen just above the highest point of the surface with the alritude of 4000 

meters. The gravity disturbance at each correspondmg grid point is also 

computed fiom the point mass modeL Because the anomaly masses of the point 

mass model are buried below the geoid, there is no mass above the geoid. la 

practice, topographie effect shouid always have k e n  removed before the 

downward continuation. Kt can be done în this case since a digitai terrain model 

must be known in order to conduct such a downward continuation. 

The first experiment is designed to test the effectiveness of the FFl' method. No 

noise is added to the components on the fiight level surface. Results of the FFT 

method are compared with resuits nom Ieast-squares collocation. Table 5.9 

shows the accuracies of collocation. Again, in the coilocation, only the data in 
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the 40 Lm x 40 km sub-ma around the computation point are used. But this 

tirne, the analytical covariance functions need to be employed. 

Figure 5.19: The graphic presentation of the generated arbiuary surface 

Table 5.9: Accuracy of Downward Continuation Wirh Collocation (noise fiee) 

Std. Dev. 

0.007 

0.024 

0.023 

Gravity Component 

Tt 

T x  

TY 

Min 

-0.055 

-0.134 

-0.083 

Max 

0.064 

0.099 

0.095 

Mean 

-0.001 

0.000 

0.000 



Table 5.10: Accuracy of Downward Continuation With FFT (Noise Free) 
- - 

Gravity 

Component 

Order of 

Taylor Series 
Min Std, Dev. 

The results from the FFT method are listed in Table 5.10. As discussed in chapter 

3, the FFI' method û based on a Taylor expansion. The results for differeat series 

of order up to 3 are given in the table to see the effect of the expansion order. As 

can be seen. both methods are very accurate. The standard deviation of the 

numerical enors is less than 0.05 mgaL This smaii nwnber for the collocation 
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may be due to a number of factors such as the Iimited amoant of data used, the 

bias in the covariance fwictions, etc, The FFT method also has the same error 

sources, but the resuits rue still accunue enough to indicate the effect of the order 

used in the Taylor expansion. Basically, the higher the expansion order used, the 

more accurate the results obtained. The extent of the imptovement will depend on 

the high fiequency content of the gram field. However, this P true only in the 

noise fkee case. When noise exists. the higher order derivatives in Taylor 

expansion will also amplify high firequency noises. 

To see how sensitive the methods are to noise, simulated noise is added to the 

vertical component and then the downward continuations with both collocation 

and the FFï method are conducted. Again, for the FFï method, the order of the 

Taylor series is chosen to be 1, 2. and then 3 respectively. Table 5.1 1 shows the 

results when the noise covariance or PSD fuaction is not used in coliocatioa and 

the method to do the noise fiîtering, Le., pure downward continuation, Table 

5.12 gives the results for the case that noise filtering is hvovled in the downward 

continuation. Noises in the results of di&rent methods for the pure downward 

continuation are illustrated in Figures 5.20 to 5.22 to give an intuitive 

compatison. 
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Table 5.1 1: Cornparison of and Coilocation in Downward Continuation of Tz 

When Noise Exists (Filter Not Applied) 

Std. Dev. Method 

Collocation 

FFT 

Table 5.12: Cornparison of Fm and Coilocation in Downward Continuation of Tz 

When Noise Exists (Filter Applied) 

Otdet of 
Taylor Series 

1 

2 

3 

Ordet of 
Taylor Series 

Min Max Mean 

Min 

-14.387 

-8.840 

- 1 1,340 

- 12.90 

Method 

Max 

15.935 

1 1,030 

13,900 

15,050 

Std. Dev. 



Figure 5.20: Noise in Tz after the downward continuation using coliocation 

Figure 5.21: Noise in Tz after the downward continuation usiag the FFT method 

with 1st  order Taylor series 



Figure 5.22: Noise in Tr after the downward continuation using the FFI' method 

with 3rd order Taylor series 

As shown in Table 5.11, the FFï 

accurate results than collocation. 

order Taylor expansion is more 

method is less sensitive to noise and gives more 

We also see that the FFï methid using a higher 

sensitive to noise. From Table 5.12, similar 

conclusion can be drawn. In the mean tirne, it has been seen in the noise free case 

that the higher order expansion has a better capability of dealhg with high 

fkequency signals. Thus, the higher order terms in Taylor expansion have effects 

on both high fiequency signais and noises. 
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Nevertheless, the nice thing with the FFT method is that it offers another way to 

control the noise level, or more precisely, to make a compromise between deoliog 

with very high fkequency signais and controllmg the noise ieveL The practical 

operation for thu should be Metent nom location to location according to the 

roughness of the gtavity W. For instance, for the Tr signal used in this 

research, if we can stand a 0.02 mgal modelîing error for the signal and choose a 

first-order Taylor series, the output noise level wül be 0.8 mgal lower compared 

with the case when the third-order Taylor expansion is tised. 

5.6 GEOID DETERMINATION USING AIRBORNE VECTOR 

GRAVIMETRY DATA 

Airborne gravimetry has many potentiai applications in geodesy and geophysics. 

In geodesy, for instance. geoid determination has been a subject of study for a 

long time. With the advent of GPS techniques, it has become even more 

attractive. If the geoid undulation is determined precisely, the orthornettic height 

can be derived by differential GPS instead of spirit leveiing. Airbome gravimetry 

provides a very efficient tool for the acquisition of local high resolution gtavity 

data which is crucial to precise geoid computation. 
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The rnuitiple-input single-output systern is used to compute the local geoid with 

simuiated airborne vector gravimetry data. The goal of this test is to hvestigate 

how precise the geoid woold be in the wavelength range from 10 km to 100 km 

and how the two horizontal components would Muence geoid determinatioa 

The flight height is chosen to be 1OOO meters. Measurement noise is the same as 

simulated in Section 5.1 and al i  the noise PSDs are assumed to be known- 

Because the vertical component Tt is mon precisely measiued, it is included in 

every input signal combination. The respuing accuracy for each combination is 

given in Table 5.13. 

Table 5.13 indicates that, under the above assumption, the relative geoid in the 

wavelength range from 10 km to 100 km as determined nom airborne gravity data 

is within a one cm level of accuracy. Combining either one or both of the 

horizontal components with the vertical component cannot help to give bt ter  

accuracy and may even make the resuits worse. This is due to the highet low 

frequency energy in their noise. Figure 5.23 shows the enors in the geoid 

detennined by using Tz done. Figure 5.24 shows the error in the geoid computed 

by combiaing Tr with Tx and Ty. By cornparhg these two figures, we can see 

more variation in the inner area and bigger peaks in the border ana in Figure 5.24 

than in Figure 5.23. indicating bigger low frequency errors in the geoid computed 

by combiaiag Tz with Tx and T,. Thos, scalar gnMmetry should be used for geoid 

determination. 



Table 5.13: Accuracks of the Geoid Detehed  With the Mdtipie-Input System 

Using DBerent Input Combinations. in metres 

Mis Max Mean Std. Dev. 

Figure 5.23: Error in the geoid determined by using Tz alone 



Figure 5.24: Error in the geoid determined by cornbiniag Tz. T., and Ty 

5.7 EFFECT OF GRAVITY FIELD ON FILTERING RESULTS 

Tests in this section are given to investigate the impact of the roughness of the 

gravity field on spectrai methods. In addtion to the gravity field (Field #2 in 

following tables) used in praeeding test, two other local gravity field are 

simulated. As shown in Table 5.14, Field tl is mach mon rugged than the 

gravity field used before (Field #2) and Field #3 is signiticantly smoother than 

Field #2. Noise for all the components remain the same. 



Table 5.14: Statistics of the Tb.ree SimaWù Local Gravity ndd9 

Table 5.15: Cornparison of Acamcies of W~ner Filtering d t s  

b M t y  

Cornponent 

Tz 

Tx 

TY 

As indîcated in the theoretical discussion, a multiple-input single-output putm fht uses 

Wiener tilters to fiber each input &ta set and cben combines ail the filtered mults to 

obtain the system output Table 5.15 compares the accuracks of the îïltmhg 

nsaltr. It is seen that the mughness of the gravity field has a strong e&ct on the Wieaa 

filterhg results. nie more rugged the gravity field is, the less accurate a~ the 

Field#l 

a 

19.62 

11.67 

14.14 

Field #2 

-89.6 

-88.4 

-129.8 

-54.2 

-53.5 

-74.3 

M, 

1573 

73.3 

98.0 

FieId #3 

-243 

M i n -  

88.0 

38.6 

51.7 

a 

11.99 

7-68 

9.08 

M i n U a x  

25.8 

a 

5.57 

3.73 

4.13 

-17.2 

-24-9 

14.0 

16.7 
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fïkmults. IhaIlcases,Fiek€#3hasthebest~ts- Thereasoncanbeseenfriomthe 

freclueacy response of a Wieacr nIter. W h  the signai to noise ratio is larger, 

conesponding to the aise of more mgged g r a .  hld. Wieiier fiua gives more 

confidence for the mpat data set so that its e86ectiveness m redUCiIIg noises in the input 

data set wiU be affected, Table 5.16 shows the accuracks for &Us obtabd fiom 

mdtipIe-input sinpie-output system, Al1 three componentp of each field iue useci as inputs. 

As expected, the noise is m e r  feduced. But stî& the mon: neld obtains the les  

accurate results. 

Table 5.16: Cornparison of Ammcies of Results Frnn Multiple-hput System 

Frequency domain least-s~uares adjusmient method is &O applied to the three different 

nelds. The obtained accuracies an show m Table 5.17. The e fk t  of the gravity field 

mughness can clealy be seen. nie same conclusion as in the input-oatput system case 

can be drawm here. nie reason can be tbat the mnger gravity neld signal cm more 
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mgged gtovity neld) woold make coaclation between input data sets stronger so that the 

effectiveness of the least-quares adjusment is miuced. 

Noise level of input data sets Win certahiy afkct the results of spectral methods. To see 

tha?, fîrst, three dinerait noise sets are a&kd to the vertical component Tz of Field #2. 

Then, the W~ner oher is appkd to the tbffe obtained data sets. Aawacies of the mults 

are compered in Table 5.18. As expecmï, higber noise levd for a certain pvity neld wiü 

cause less accurate resuits. 

Table 5.18: Effet of Noise Level on W i w r  Filtering Resuits 



CONCLUSIONS AND RECOMMENDATIONS 

The advantage of FFT based specopl techniqpes over other techniques is their 

computational 'Ibis thesis &ais with the use of spectral mediods for the post 

pmcessing of airborne vectot gravity &ta. L geaerP1, nvo aspects of post processing 

airborne vector gravity data have been discussed: 1) the £iit;iering and combination of 

airbom meamements to improve theh itccPracies; 2) the downward continuation of 

airborne gravity data Based on the theoretical discussions and the experimental results 

presented in this papet, the following conclusions can be Qawn: 

'Ibe multipk-input single-output system as weIl as the hxpency domain least-squares 

a d m e n t  xnetùthod can be imphented usîng a stepwise procedure so that they wiU 

allow the combination of as many input ~~ as q u i i e d  with a constant amount of 

cornputer memory. 

When measmement noise PSDs are avaiiabie, both speceal methods dimissed in this 

thesis can be used to combine the obsenrations of d i n i t  components to o b h  

beaer accutacies. Because the multiple-iaput single-output system possesse~ both 

fîltemig and optimal combination fiinctions, it d y  yieIâs more accurate d t s  than 

the freciacncy domain ieast-squares adjustment method which only averages the 

spectra h m  the input signals acconling to the weights determined fiom their noise 

PSDs. 
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3. Wbien meamment noise PSDs are not avaiiabie, usïng the -ts of the 

veaical component to approxhaly estime the PSDs of the horizontal component 

4gmk and then &g Wieiwr filtering techniqoes ecm k g  the mise level m the 

horizontal compoaem measmements dom to the same noise M as in the &cal 

component measurements. Beaa aceiiracy for the vaticll component and fardier 

impmvements for the horizontal components cian be achWcd by combining the 

veaica component with the pviousiy improved horizontal components ushg the 

fkquency domain least-s~~ares adment  techniques. The mukiple-input single- 

output system cannot be implemented without noise PSD information. 

4. Using two-dimensioaal filterlag has ken pmven to be more effective m rrdPQng the 

measmement noise than Usmg one-dnnensional filtering. Thus, it is recommended that 

twdimensional noise PSDs be estimared and twodbensional filtering be used 

wheaever practically possible. 

5. U W y ,  only one-dimensional noise PSDs for airbrae vector gravimetry can be 

obtaiiied through symm dibration and analysis. Generally spealring, &te is no 

analyticai way to derive a two-dimensionai PSD noai its onedimensional cornterpart. 

N m M  tests in this thesis have shown that the fonn of two-dimensional PSDs for 

airborne gmvimetry are strongly afEiected by the flight mute pattem. The method for 

obtainmg twdimensionat PSDs fiom one-ditriensionai PSDs used in dùs rese~rch 

should also be suitable for pncticai use. 
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6. DownwPid continuation of an air bon^ gravity 0omponen.t b m  one level siirfact to 

motber is as simpk as mpitipiymg the Fourier ttansfonn of the component by an 

exponentiai function in the fireqiiary damain. Thus, the fmïcton can be vay W y  

buüt imo any speceal data pocuJing mediod for eirbome gravimeoy. 

7. Introduchg a ~aylor &ries expansion will aüow the use of spectral methods for the 

downward continuation of airborne gravimetry data to an lrbitrary SZlLface, e.g, the 

Earth's d a c e ,  with high computational efficiewzy. 'Ibis method does not n a d  @or 

mfmnation about the g r a .  neld. Besides, the spectd method provides an 

additional way to control the ampli£ication of high fkquency noise* 

8. In the downward continuation of a i t b o ~  gravity data, more stable and accurate 

results for evey composent can be expeçted when it is combined with other 

componeno, especially for the horizontal components when the verticai component is 

imrolved m their downward continuations. This condusion applies both when noise 

PSDs are avaïîable ami when tbey are unavailable. 

9. Accotding to the limited tests presented here, using the verrical component of the 

airborne gravity vector alone, tbe resultant gavimetrjc geoid could have an acciiracy 

of better than 1 cm m the wavelength range fiom 10 km to 100 lan, for a gravity field 

with moderate variations. CombiMng the horizontal components with the vercical 

component rather than ushg the verticai component aione woold not impmve the 

geoid d t s  due to the higher low fieqency noise m the hotizontal channeb of 



1O.Themu~ofgtavityMddœs haveanimpMonthedts ofthe qectd 

filtering and combination methods. The numerjcal tests indicate that noise is more 

effdvely duced when the gravity field is smoother. Ihus, it is suggested that the 

remove-restore technique be used to xemove the signai contents whicb are known or 

can be computed with good a ~ ~ l c y  h m  other data sotuces, e-g., topgraphic 

effits, h m  the measuxements before f i lmg and combination and =tore it 

afterwards. 

11. W1th the capabiiity to deal with large amount of data efficiently, spectral methods are 

&O suitable for processiag and eombining data h m  different obsemation 

mhniques(ewg.. terzestnal observation, gradiorneay. altimetry) on dinerem b e l  

s9$;icesw Fortber research on this issue is recornmended 

12. Since data used in this researçh is restricted in the wavelength range of 10 km to 100 

km. problems caused by constant bïases and lineat e m  tiends m obsavations have 

not been coasidered. Numeacal investigation on this aspect is s o g g d .  
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