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Abstract

The issue of borehole instability as seen in shale formation drilling is a major

problem currently facing the industry. In recent years, deep exploration and more

intensive development of hard and brittle shale gas reservoirs has shown that borehole

instability is a widely occurring issue present in this type of strata. Because of the

high frequency of catastrophic failures that accompany drilling in shale, this is an

important technical problem to be solved. Furthermore, as a result of the recent shale

gas revolution in North America, there has been a focus on integrated innovations and

the development of multi-disciplinary fields and multiple technologies related to

exploitation of this resource.

As part of this ongoing multi-disciplinary approach, the advanced development

concept known as geological engineering integration has been put forward. Rooted in

the study of geodynamics and aimed at the problem of borehole instability in shale

formations, this study explores and develops concepts related to geomechanics,

including well location optimization, well trajectory optimization, pre-drilling

formation pressure prediction and well wall stability prediction techniques. The

meticulous modeling of 3D geomechanics is of great significance to the study of

regional borehole stability in a shale formation. Therefore, a geomechanical modeling

method for shale formations and its field application in Indonesia's Oilfield A is

demonstrated in this thesis. As part of this modeling, a detailed study on the physical,

chemical, and mechanical properties of shale in Oilfield A is carried out by laboratory

mineral analysis, electron microscopy, cation exchange capacity and rock mechanics
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parameters. These experimental results form the cornerstone of the 3D geomechanical

modeling of Indonesia's Oilfield A.

Leveraging the Petrel software platform, the 3D geomechanical modeling method

and principles of a shale formation are introduced in detail. Through a series of core

tests, well logging data and seismic inversion data, the mechanical parameters of

Oilfield A are described in depth, and the spatial distributions of important parameters

such as 3D elastic modulus, 3D Poisson’s ratio and 3D pore pressure in this oilfield

are established. 3D geomechanical models of heterogeneity, porosity and elastoplastic

features are also established.

Using the finite element method, the 3D stress distributions and 3D safe density

windows of Oilfield A are also calculated. By establishing a 3D fine geomechanical

model, various attributes are extracted along the borehole trajectory of well A-10, and

a prediction of borehole stability is carried out. The drilling fluid density windows and

well depth structure are also recommended, indicating the type and approximate depth

of possible downhole complications.

The numerical results of the minimum in-situ stress present in Indonesia's

Oilfield A are calibrated by LOT (leaking of test) data. Importantly, the relative errors

that exist between LOT data and the minimum in-situ stress are small, and the

maximum relative error is only 0.02. The drilling period of well A-10 is 28 days.

Compared with the average drilling period of 55 days in Oilfield A, the drilling period

is shortened by 49 days as a result of the modeling studied. Importantly, no complex

accidents occur in the drilling process.
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Through direct or indirect validations of all established 3D pore pressure,

collapse pressure, rupture pressure, in situ-stress and other models, both a confident

geomechanical model and a density window model are finally determined. The results

show that the geomechanical model can accurately reflect the magnitude and

heterogeneity of in-situ stress in a shale formation and can effectively solve the

problem of regional borehole stability found in this formation.
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CHAPTER I. Introduction

1.1. Research Background and Significance

Drilling accounts for 50% - 80%[1] of oil and gas exploration and development

costs, while the waste caused by borehole instability accounts for as much as 10% -

20%[2] of the total drilling cost. This means that, globally, the annual costs associated

with borehole instability are 5% - 16% of the total costs of oil and gas exploration and

development. There are numerous reasons for this wastage. Borehole instability

affects both a drilling speed and logging and cementing quality. Moreover, it can also

make it difficult, if not impossible, to reach a target formation, thereby affecting the

outcome of exploration. It is, therefore, crucial to study key technologies that will

maintain borehole stability and not only reduce the cost of oilfield exploration and

development but also improve economic efficiency.

Sedimentary rocks are the main geological objects of oil and gas drilling, and

more than 70% of these sedimentary rocks are shale strata. According to statistics,

90% of borehole instability problems appear in shale strata, in which deep, hard and

brittle shale accounts for approximately two-thirds of the issues, and shallow, soft

shale accounts for another third[3]. Hard, brittle shale not only has a higher frequency

of borehole instability, but the degree of that instability is often more serious. It has

been found in an actual drilling process that drilling hard brittle shale formations

usually produces a large number of borehole collapse blocks, and leads to frequent
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leaks in a drilling fluid and extremely difficult treatment operations. In serious cases,

a borehole is scrapped entirely, causing great harm to the overall drilling operation. In

southern Argentina, as well as the southern Arabian Gulf, Japan and the Middle East,

hard brittle shale is found in deep strata, and downhole there are frequently complex

situations which can seriously restrict a drilling process. For example, in southern

Argentina's Cretaceous shale formation, natural fractures develop as drilling

commences, well walls may collapse during the process, and an expansion rate of

some well sections reaches as high as 100%. Because of this serious downhole

complexity, the average drilling non-production time exceeds the design time by 75%,

greatly increasing overall drilling costs[4].

These types of problems have been encountered in strong tectonic movement

zones such as the Junggar Basin, Qaidam Basin, Tarim Basin, Yumen Oilfield, and in

the Northeast Sichuan Basin in western China. For example, drilling in the Junggar

Basin has involved frequent issues of well leakage, collapse, drilling jam and other

complex problems, highlighting an issue where a well diameter expansion rate is

often as high as 50%[5]. Similarly, in the Beibu Gulf Basin, the Weizhou 12-1

oilfield’s Wei 2 section is made up of hard brittle shale with a thickness around

100-150 m. During directional well drilling in this stratum, borehole collapse is a

serious problem as the complexity underground leads to a situation in which well

blocking frequently occurs[6].

With rapid developments in the world’s economy, the global demand for oil and

gas resources has increased greatly, and the crisis of energy supply and demand is
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increasing day by day. The development of unconventional energy sources, such as

shale gas, has gradually been put on the agenda to alleviate the current energy crisis.

Indeed, global shale gas resources are abundant and have broad development

prospects. The shortage of oil and gas resources has accelerated the exploration

process of shale gas in the world. However, serious accidents involving borehole

collapse often occur in hard brittle shale strata, which not only affects effectiveness,

but also has an important impact on subsequent cementing quality and fracturing

operations. In short, it has become a significant bottleneck restricting shale gas

exploration and development[7-11].

In recent years, large-scale development of unconventional oil and gas sources in

the United States has met with huge success. As a result, there has been widespread

adoption of integrated innovation and development of both multi-disciplinary and

multi-technology integrations. This has further established an integrated technical

flow in which geological engineering and geomechanics are a key technological link

[12-15].

Geomechanics plays an important role in drilling engineering applications such

as: pre-drilling engineering preparation; pre-drilling geological design; real-time

tracking of positive drilling and optimization of drilling management; support of

positive drilling geological guidance tracking; analysis and optimization of complex

conditions of drilling; and casing and borehole integrity analysis. Indeed, well

location optimization, well trajectory optimization, pre-drilling formation pressure
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prediction and well wall stability prediction techniques are all informed by

geomechanics.

For the integration of geological engineering, it is necessary to carry out

geological modeling, numerical simulation of in-situ stress, and 3D visual display[16]

of modeling and simulation results. Among these, crustal stress is the fundamental

force that causes shear and tensile failure of borehole rock, and the magnitude of

crustal stress directly affects both the collapse and rupture pressure of the surrounding

strata. A crustal stress modeling theory[17] was originated at Stanford University in the

United States. Its main idea is to accurately find the size and direction of crustal stress

(i.e., overburden pressure, minimum horizontal principal stress, and maximum

horizontal principal stress), formation pore pressure, and rock mechanical properties

(mainly including rock uniaxial compressive strength, an internal friction coefficient,

Poisson’s ratio, a porous elastic coefficient, and an elastic modulus). On the basis of

fine structural modeling, both 3D geomechanical finite element modeling technology

and large-scale parallel computing technology are used to complete final calculations.

Through the production of a meticulous 3D geomechanical model, various attributes

are then extracted along the design borehole trajectory, and the prediction of borehole

stability is carried out. In addition, a drilling fluid density window is recommended to

indicate the type and approximate depth of potentially complex downhole scenarios.

Therefore, 3D stress modeling is of great significance when studying borehole

stability in a regional shale formation.
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1.2. Introduction of crustal stress

1.2.1. Basic concept of crustal stress

Changes in the rotation speed of the Earth are impacted by celestial bodies.

These changes, within and outside the Earth, cause uneven amounts of stress in

different parts of the crust. This stress is further affected by extrusion - stretching and

twisting, respectively - which promotes the deformation of rock strata in the crust. At

the same time, rock formations also produce a force against deformation known as

crustal stress. This stress is produced internally and acts on a unit area of the crust.

[18-21]. Crustal stress is an objective reality, which is caused by buried depth, lithology,

pore pressure, rock structure and a structural model. Because the focus of oil and gas

exploration and development is the rock and fluids in a given strata, the crustal stress

impacting rock and fluids is the key to studying related engineering problems[22].

1.2.2. Causes of crustal stress

The causes of crustal stress[23-24] are complex. The formation of crustal stress is

mainly related to various dynamic processes of the Earth, including: plate boundary

compression, mantle thermal convection, Earth's own internal stress, gravity, Earth’s

rotation, magma immersion and uneven expansion of the crust. In addition, uneven

temperature, water pressure gradients, surface erosion or other physical and chemical

changes can also cause a corresponding stress field. Among them, tectonic and

self-gravity stress fields are the main components of Earth's present stress field.

Nowadays, the state of crustal stress is mainly controlled by recent tectonic movement,
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but it is also related to historical tectonic movement. For billions of years, the Earth

has experienced numerous tectonic movements, large and small, and the stress fields

of each tectonic movement have been superimposed, towed and reformed many times.

In addition, a stress field is also affected by many other factors, resulting in the

complexity and variability of the stress state.

1.2.3. Influencing factors of crustal stress

A distribution of crustal stress found in the deep mass of crustal rock is complex

and changeable[25-26]. The root cause of this phenomenon lies in the multi-source and

multi-factor influences of crustal stress, but is mainly determined by rock mass weight,

geological tectonic movement and denudation. An earth stress field in a given rock

mass is a complex stress field within a 3D space. Its size and distribution are affected

by many factors, which also brings great influence and uncertainty to the

measurement of earth’s stress field.

(1) Influence of rock mass weight

The stress present in a rock mass is equal to the weight of the overlying rock

mass. The results show that a distribution of crustal stress is basically the same in the

deepest part of the earth. However, in the study of initial crustal stress, it is found that

the formation factors of stress in a field of rock mass are numerous, and denudation is

difficult to reasonably consider. In conventional inversion analysis, only the weight of

rock mass and the movement of geological structures are usually considered.

(2) Influence of topography and denudation on crustal stress
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The influence of topography and geomorphology on crustal stress is complex,

and denudation also has significant influence on crustal stress. Before denudation

occurs, there is a certain amount of vertical stress and horizontal stress present in the

rock mass. After denudation, the vertical stress decreases, but much of the stress has

no time to release and still retains the original amount of stress. However, the

horizontal stress is minimally released and is basically retained as the original stress

quantity, which leads to the existence of a much larger stress value in the rock mass

than the deadweight stress caused by the existing formation’s thickness.

(3) Influence of tectonic movement on crustal stress

From the point of view of energy, crustal stress is actually a process of energy

accumulation and release. Because the magnitude of crustal stress in rock is limited

by the rock’s strength, it can be said that in the same geological structure, the

magnitude of crustal stress is a function of lithologic factors. Rock masses with great

elastic strength are beneficial to the accumulation of crustal stress, so earthquakes and

rock bursts occur easily in these parts, while plastic rock mass is not conducive to the

accumulation of stress because of its easy deformation.

(5) Influence of water and temperature on crustal stress

Groundwater has a significant influence on the scale of crustal stress present in a

given rock mass. The rock mass contains joints, fissures and other disconnected layers.

These fissures often contain water, and the existence of this groundwater causes water

pressure to build up within rock pores. This pressure, along with the stress present in

the rock skeleton, constitutes the crustal stress of the overall rock mass. Temperature
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also has an important influence on crustal stress, and this is mainly reflected in a

geothermal gradient and the local temperature of a rock mass. Because of the

geothermal stress caused by geothermal gradients, the temperature stress field of a

rock mass is a static pressure field, which can be algebraically superimposed with the

weight of the stress field. If the local conditions of cold and heat in a rock mass are

uneven, it will produce shrinkage and expansion. This then causes the rock mass to

produce crustal stress.

1.2.4. Distribution of crustal stress

(1) Crustal stress is a stress field with relative stability and is a function of time

and space.

The magnitude and direction of the three principal stresses vary with space and

time, thus creating a non-uniform stress field[27-28]. A spatial variation of crustal stress

is obvious from a small scale, but for a region as a whole, it is not. For example, in

Northern China, the main compressive stress from east to west is near the northwest.

In some areas where earthquakes are active, the magnitude and direction of crustal

stress change with time, which is also very obvious. Before an earthquake occurs,

there is a stage of stress accumulation in which a stress value increases continuously.

When an earthquake strikes, the concentrated stress is released, and there is both a

sudden and large decrease in the overall stress value. The direction of principal stress

will change greatly when the earthquake occurs, and then return to its initial state for a

period of time.
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(2) The measured vertical stress is basically equal to the weight of the overlying

strata.

Hoek and Brown[29] summarized a pattern of measured vertical stress with a

depth of H. According to their findings, the measured vertical stress increases linearly

within a range of 2500-2700m. If the buried depth is less than 1000 m, the measured

value may be very different from the predicted value, some of which may be five

times different. Therefore, this equation can be used to estimate the mean value of all

stress measurements, but it must not be used to obtain the exact value at any particular

position.

(3) The maximum horizontal principal stress and the minimum horizontal

principal stress also increase linearly with depth.

The maximum horizontal principal stress and the minimum horizontal principal

stress generally differ greatly, showing strong directionality. The above distribution

pattern of crustal stress will also be affected by topography, surface erosion,

weathering, rock mass structure characteristics, rock mass mechanical properties,

temperature, groundwater and other factors, especially the disturbance of topography

and faults.

1.3. Study on measurement method of crustal stress value and direction

The crustal stress present in a given rock mass is the most basic and important

engineering load when it comes to rock mass engineering. It is one of the initial

conditions necessary for numerical calculations of engineering issues in a rock mass
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and the basic factor for analyzing the failure and displacement characteristics of a

rock mass. In general, the direction and approximate stress values of earth’s modern

stress field can be obtained through geology, seismology and surveying methods.

These direct measurement methods[30] include hydraulic fracturing and the Kaiser

effect of acoustic emission. The regional geological background and various

influencing factors should be analyzed to determine the reliability of a measured value;

otherwise, the quality of the measured value will be greatly reduced. Understanding

the influence of factors related to crustal stress measurements and the importance of

reliability in the analysis exceeds a measurement itself to some extent. An uncertain

measurement value is meaningless and can even become misleading.

1.3.1. The Kaiser effect of acoustic emission in the measurement of crustal stress

Compared with both traditional stress relief and hydraulic fracturing methods,

the Kaiser effect of rock acoustic emission has the advantages of fast speed, low cost

and fewer limitations, which is convenient for a large number of tests that seek a

regional law of a crustal stress change. Therefore, this method is a promising one for

measuring crustal stress. However, despite these advantages, there are still many

problems in a measurement of crustal stress using the Kaiser effect, among which the

most important problem is how to determine the direction of crustal stress. Before,

engineers used the Kaiser effect to measure original rock stress by a range of 180°.

This meant that they needed more samples and testing workloads, which has high cost.

At the same time, due to the action of multi-period tectonic movements, the structure
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of a rock mass can change, and the magnitude and direction of tectonic stress or

original rock stress in a region can be seen to have changed quantitatively and

qualitatively. In the past, however, the Kaiser effects were measured in the horizontal

or vertical direction, so it was possible that none of the samples were in the direction

of the principal stress. The results of these tests were a partial force of the earth stress

field, which is different from the true original rock stress value, and even further away.

Because of these reasons, the application of the Kaiser effect in measuring the original

rock stress cannot, in practice, be brought into full play. Presently, there are attempts

to push the acoustic emission technology to a new practical stage. The main results

are as follows: through field directional coring technology, 3D stress, i.e., the

magnitude and direction of the three principal stresses, is measured indoor, and the

accuracy of the principal stress values is further improved. The Kaiser effect then

measures the crustal stress of a rock mass based on the acoustic emission effect of the

rock’s material. But in fact, only the maximum stress value of the historical rock mass

is measured, which means that it can only be used as an auxiliary means of a borehole

stress measurement.

1.3.2. Measurement of crustal stress by hydraulic fracturing

Hydraulic fracturing uses two expandable rubber packers several meters apart to

seal a section of a borehole at a known depth. The borehole is then pressurized by a

pumping fluid, and a relationship curve of fluid pressure with time is recorded. The

theoretical basis of this method is to assume that the rock mass is linearly elastic,
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isotropic and impermeable, and that one principal stress direction of the rock mass is

parallel to the borehole axis. Therefore, a recording curve can be analyzed and

calculated, the magnitude of the two principal stress values in the plane perpendicular

to the borehole axis can be obtained, and the azimuth of the two principal stresses can

be seen by the azimuth of a crack. When the borehole is vertical, the principal stress

along the borehole axis is calculated according to the weight of the overlying strata.

Hydraulic fracturing is one of the most effective and widely used methods for

crustal stress measurement. This method can directly measure crustal stress, and its

results are in a large range of average stress. It can also be measured in wells at depths

of thousands of meters and helps in obtaining complementary data alongside acoustic

emission. Compared with other methods, hydraulic fracturing has a big defect; that is,

the direction of principal stress is not very accurate. However, it has the advantages of

simple equipment, convenient operation, continuous or repeated testing at any depth,

fast measuring speed, an intuitive measuring value and a large representative value.

Therefore, this method has been paid more and more attention and popularized,

leading to its global application as an advanced method for directly measuring deep

hole stress.

1.3.3. Determination of direction of crustal stress by borehole collapse

Since the 1970s, many scholars have found that rock caving often occurs in deep

drilling, and the long axis direction of an elliptical cross section is often the same at

different depths of the same drilling. In underground roadways, this caving
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phenomenon is also found. The long axis direction of an caving ellipse is parallel to

the minimum horizontal principal stress direction. According to this phenomenon, a

drilling collapse method has been developed for determining crustal stress. As shown

in Figure 1.1, the long axis direction of the shaft wall caving ellipse is always

consistent with the direction of the minimum horizontal main crustal stress. That is,

perpendicular to the direction of the maximum horizontal crustal stress, the direction

of crustal stress can be determined by using the shaft wall caving ellipse. At present,

the most commonly used instruments for measuring a borehole ellipse are: ultrasonic

downhole measuring instruments and a four-arm formation inclination logging

instrument.

Fig. 1.1. Borehole caving ellipse

1.4. Study on 3D calculations of crustal stress

In the process of oil and gas field exploration and development, it is difficult to

carry out crustal stress field monitoring for a whole oil and gas field area, which, in

turn, significantly increases development costs. In order to extend from limited stress

measurements to a regional range, structural stress field analysis and numerical
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simulation calculations are needed. The traditional 3D crustal stress modeling method

is to calculate the crustal stress data of a single well based on logging data and seismic

data, and then use interpolation algorithms to form the whole oilfield stress field.

Importantly, this method cannot reflect the influence of formation heterogeneity and a

dip angle on a distribution of crustal stress [31]. Hashimoto et al. (2006), Zeng et al.

(2013), Jiu et al. (2013), Guo et al. (2016) and Liu et al. (2017) successfully simulated

3D stress fields of their study areas using a methodology known as the finite element

stress analysis method[32-36]. However, a single finite element analysis software

package cannot establish a detailed 3D geological model which reflects reservoir

heterogeneity. To address this deficiency, Liu et al. (2016) developed a series of

algorithms to realize the bidirectional conversion of both the Petrel software platform

and ANSYS software platform. Firstly, they used Petrel to establish a 3D

heterogeneous geological model for a target area, and then imported the 3D geological

model into the ANSYS software platform. Finally, they simulated 3D ground stress in

the target area using the finite element method[37]. At present, the mainstream

geological modeling software such as Petrel and Jewel Suite has developed to a more

mature state. In addition to completing traditional 3D geological modeling, a

meticulous 3D geomechanical model for a research area can be achieved by filling in

a new geomechanical module.

Petrel[38] is a large integrated software platform developed by Schlumberger, and

it is also a platform for the integrated work of reservoir exploration, development, and

post-processing. It achieves the integration of reservoir engineering, which includes
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phase modeling, physical attribute modeling, data processing analysis, and mesh

simplification. Petrel takes a geological model as the center, and then runs through the

whole process from seismic interpretation to reservoir numerical simulation and to oil

and gas exploitation. Against the background of more and more complex oil and gas

reservoir development environments, Petrel has established an open and shared

environment that allows geological, seismic, logging, reservoir, drilling, and data

management in order to share knowledge and achievements across many fields. This

platform now has a leading position in the field of oil exploration and development.

Petrel’s modeling uses a combination of structural modeling and multi-point

modeling and, more importantly, a model also features automatic updating. On the

display, it uses 3D visualization technology to put forward interpretations of

stratigraphic information. In the treatment of formation fractures, it uses fracture

system analysis technology and fracture system automatic extraction technology.

Petrel not only has a beautiful interface, and it is also easy to operate and contains

complete and more advanced functions than other similar tools. This advanced

technology, convenient interface, complete development process, convenient data

processing method, appealing graphic display, and the fusion of knowledge across

various disciplines and specialties allow users across many disciplines to interact

freely, and have created a very monopolistic technical advantage.

Among these many advantages, a geomechanical model can quickly generate a

high-quality hexahedral finite element mesh, endow each finite element node with

different material parameters, fully consider the influence of faults and natural cracks
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on crustal stress, and describe the heterogeneity of the whole research area perfectly.

3D stress in this model is calculated using the finite element method. Geomechanical

modeling can also directly inherit the results of other geological models, including

stratigraphic occurrence, fault development and fracture zone distribution, so that the

results of geomechanical calculations reflect the characteristics of under-crustal stress

more truthfully.

At the same time, single well rock mechanical parameters calculated by logging,

core and test data can be directly used to establish the unit properties around a

borehole, and may also be used for quality control of a 3D geomechanical model.

Indeed, seismic data and information about a geological structure are used to

interpolate between wells to ensure the reliability of geomechanical parameters in a

3D space. From a geomechanics module to modeling, and calculations to results

analysis, all operations can be completed using the Petrel platform. The models and

results can be controlled and displayed in a 3D window. Petrel provides rich and

convenient 3D attribute display functions, including along the IJK unit number

display, along any section display, joint well section display, and interpretation

window display.

In addition, the Jewel Suite platform[39] by Baker Hughes is a software program

which integrates regional analysis, reservoir analysis and engineering applications.

The Jewel Suite subsurface modeling software has the function of formation contrast

structure modeling, which realizes 3D spatial joint well profiles, small formation

adjustments, and construction models. It has 2D/3D data displays and interpretations,
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2D/3D level automatic tracking, interpretations of results quality control, attribute

extraction, information interpretations and other functions. It can also realize the

goal-based modeling method and sequential Gaussian modeling method, and can

carry out well location design and optimization functions including 3D spatial well

location design, trajectory optimization and precision assurance. This technology also

includes data preprocessing, capacity prediction, residual oil research, fracture

diversion capacity evaluation and capacity prediction ability. The Jewel Suite

GeoMechanics module can make use of structural models. It uses data from 1D

crustal stress models to establish a model with complex geological conditions. It also

takes into account the influence of faults and quickly establishes a 3D static crustal

stress model combined with seismic attributes. The Jewel Suite reservoir modeling

software can also be combined with the Dassault Systems powerful finite element

mechanical simulator and Abaqus finite element analysis software. The Abaqus

software simulates nonlinear stress, large deformation, compaction and settlement of

oil and gas reservoirs in production by proved algorithms. The synthetic Jewel Suite

3D geomechanical software system enables users to quickly establish efficient digital

simulations to support parameter studies and help determine uncertainties in reservoir

development models. A larger full-field 3D reservoir view is condensed into an easily

manageable, high-resolution geomechanical simulation map.

Beijing Wanggetiandi Software Technology Corporation has a set of comparative

modeling SDK (Software Development Kit) software, which has an algorithm

library[40] suitable for complex geological structure modeling. The core of the
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algorithm is to use triangulation and optimization techniques. These techniques enable

users to generate ideal and fine 3D models based on original data, and then

automatically judge faults and relationships between strata. In addition, geologists

often have different views and opinions, so the software also takes into account the

understanding of geologists in the modeling process. In this way, it more accurately

describes the actual situation of strata.

The company also has a crustal stress simulation calculation module. Its

principal use is the numerical simulation method to calculate the magnitude and

direction of crustal stress and its spatial distribution state in a certain period. This

module can also predict the direction of artificial fractures and analyze the stability of

artificial fractures. The main functions include: calculating the petrophysical property

parameters including density, Young’s modulus, Poisson’s ratio, friction coefficients,

tensile strength and shear strength. It also has the option to perform numerical

interpolatiosn and model a 3D display. The module can show the setting of complex

mechanical boundary conditions, including a normal phase constraint and an arbitrary

direction constraint. 2D and 3D displays are optional and include the calculation

results. Finally, it is useful for outputting high-resolution documents.

Hengtaiaipujituan Corporation also makes comprehensive use of geological,

drilling, and seismic data as well as other data based on the development of geological

modeling. The difference is that this company uses a fast corner grid partition

algorithm, plus 3D visualization technology. These techniques make the computation

and presentation of massive grids a reality.
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The GeoTalk software developed by Hengtai Aipu Company[41] can use

geological, drilling and logging data to establish geological models and mechanical

models, and use 3D finite difference numerical simulation methods to simulate the

crustal stress in a study area. However, the software uses a curved sheet as a

mechanical model used in reservoir structure simulation, which cannot truly reflect

the structural changes of strata.

1.5. The main research objectives and methods

The main contents of this thesis are as follows:

(1) Experimental study on physical, chemical and mechanical characteristics of a

shale stratum, including mineral analysis, electron microscope scanning, cation

exchange capacity and the mechanical parameters of shale in the study area.

(2) 3D geomechanical modeling of the shale stratum.

Using the Petrel software platform, Indonesia’s Oilfield A is selected. Through a

series of core tests, well logging data and seismic inversion data, the mechanical

parameters of the shale formation present in Oilfield A are described in detail, and a

spatial distribution of important parameters such as a 3D elastic modulus, a 3D

Poisson ratio and 3D pore pressure are established. By using the finite element

numerical simulation method, a 3D stress distribution and a 3D safe density window

for Indonesia’s Oilfield A are also calculated.

(3) Providing comprehensive analysis and technical countermeasures for well

A-10 in Indonesia’s Oilfield A.
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Drilling engineering preparation before drilling: Based on a meticulously

calculated 3D geomechanical model, a prediction of borehole stability is carried out

along a design borehole trajectory. Furthermore, the drilling fluid density window and

casing design are optimized, the potential drilling complex conditions (leakage and

drilling jam) are analyzed, and warnings are made regarding risky well sections.

Real-time tracking and drilling management optimization: Using the latest

drilling data, the 3D geomechanical model for a single well and two platforms is

updated, the model’s accuracy and prediction accuracy are improved dynamically, and

the drilling fluid density window is adjusted and optimized in time. Combined with

real-time drilling parameters and logging data, complex events in the drilling process

are analyzed, and the corresponding optimization measures are put forward to

improve drilling time and reduce risk.

(4) Model calibration.

LOT (leaking of test) data from Oilfield A, including complex conditions during

drilling, drilling and completion data, and well A-10’s data, is used to validate the

established geomechanical model and safety the density window model.
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CHAPTER II. Physical and Chemical Characteristics and

Mechanical Characteristics of Shale Rock

Because of the widespread occurrence and high frequency of catastrophic issues

related to borehole instability, hard brittle shale[42] has become the focus of borehole

stability research. In recent years, due to deep exploration and development of shale

gas resources, borehole instability found in this kind of strata has become an

important technical problem to be solved. When drilling hard brittle shale in a field,

serious borehole collapse often occurs, resulting in a large amount of hard shale debris

that may result in drilling blockages, the burial of drilling tools or complete borehole

abandonment, all of which lead to huge economic losses. In conclusion, the existence

of these problems is mainly due to the lack of in-depth understanding of mechanisms

related to borehole instability and the influencing factors of shale. In order to study

the mechanisms in shale that lead to borehole instability, the mechanical

characteristics of hard brittle shale must be studied, and the physical and chemical

properties of hard brittle shale must be fully understood.

The study of shale’s physical and chemical properties is the basis for the study of

borehole stability. Mud shale contains a large amount of hydrated clay minerals,

which can react with water. The water absorption process and reaction process of

shale are very complex, so the mechanism must be studied and expounded from the

microscopic point of view. At the same time, shale has a complex internal structure,

showing strong anisotropy, and most shale shows low porosity and low permeability.

The above characteristics of shale determine the complex physical and chemical
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reactions between shale and a drilling fluid. The material energy exchange and

transfer between shale and the drilling fluid is a coupling process. The physical

properties and structural characteristics of shale determine a water absorption process

of shale. Water absorption can lead to changes in shale’s physical properties and

structure at any time. Therefore, only by fully studying the material composition,

structural characteristics and mechanical properties of shale can the stability of shale

boreholes be studied accurately and effectively.

2.1. Classification of clay minerals and shale

Clay shale is composed of clay mineral[43] and other minerals, but the main cause

of shale’s complex hydration is the abundance of clay minerals contained within.

Because clay minerals can be transformed, the properties of shale vary greatly. Mud

shale is a clastic sedimentary rock composed of non-clay minerals, crystalline clay

minerals and amorphous clay minerals. Among them, non-clay minerals mainly

include quartz, feldspar, calcite, and dolomite. The crystalline clay minerals mainly

include montmorillonite, illite, chlorite, kaolinite, montmorillonite-illite mixed layer,

and chlorite-montmorillonite mixed layer. In summary, the main component affecting

shale stability is clay minerals.

2.1.1. Clay mineral

Clay minerals belong to silicate minerals, which are composed of silica

tetrahedra and aluminum-oxygen octahedra. These crystals form the basic minerals of

clay - montmorillonite, illite, kaolinite and chlorite, through different 2D
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arrangements. Among them, montmorillonite has the strongest hydration property,

while kaolinite has stable physical properties.

Kaolinite’s crystal layer is adjacent to or stacked between O and OH or layers of

the kaolinite structure. The main connection force is a hydrogen bond between

hydroxyl and oxygen atoms, which closely connects an adjacent crystal layer and

prevents the entry of water molecules. There is almost no cation exchange on a

surface. On the other hand, interlayers of montmorillonite structures are O and O, and

the connection force between these crystal layers is mainly the van der Waals force. In

this structure, the interlayer connection is very weak, and water molecules and

exchangeable cations can easily enter a crystal layer. Therefore, its cation exchange

capacity is very large, about 70 - 130mg/100g dry soil.

Illite and montmorillonite are the same 2:1 structural units, but potassium ions

are embedded in a hexagonal structure between silica tetrahedron layers to form

strong bonds and prevent water molecules from entering the crystal layers. The cation

exchange capacity of illite is also lower than that of montmorillonite, which is

10-40mg/100g dry soil. The structure of chlorite is similar to that of illite. Compared

with illite, there is one extra brucite octahedron in two silica tetrahedra. Since the

Mg2+ displacing Al3+ counteracts the positive charge loss caused by the Al3+

displacing Si4+, the chlorite interlayers are mainly hydrogen bonds formed on an

octahedron of magnesium hydroxide, so chlorite generally does not have expansibility.

The structures of kaolinite, montmorillonite and illite are shown in Figure 2.1.
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Fig. 2.1 Clay mineral micorstructure diagrams

The morphologies of montmorillonite, illite, kaolinite and chlorite in a

microscopic state are different (Figure 2.2). Montmorillonite is flaky, connected in a

honeycomb pattern, and its pore edge shape is that of a lotus leaf or petal. Illite, on the

other hand, is leaf-like and silky and is attached to a surface of particles or filled in

intergranular pores. Microcrystals, such as flakes, divide pores into many small pores,

increasing the degree of detour. Filaments are easily washed away by water, blocking

both pores and throats and reducing both porosity and permeability. Contrastingly,

kaolinite is shaped much like a book-page. It is worm-like or accordion-like, and

mostly exists in intergranular pores in the form of pore filling. Its intergranular

structure is relatively loose, and easily moves with a fluid under the scour of the fluid,

thus blocking and dividing pores, and roars, especially in small roars. This makes
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kaolinite very influential and it is an important quick-sensitive mineral. Finally,

chlorite possesses a hairy globular shape. It is rose-like and pointed leaf-like, making

it so the acicular chlorite is generally attached to a surface of pore particles, and the

rose-like, hairy globular chlorites are generally present in pores as fillers. The content

of iron ion in authigenic chlorite is rich and has strong acid sensitivity.

Fig. 2.2. Microstructure photos of common clay minerals

2.1.2. Classification of shale rocks

Mud shale is the most common formation mineral found during drilling, and at

least 75% of sedimentary basins are mud shale. Mud shale contains clay, quartz,

feldspar, mica, pyrite, organic matter and other minerals, among which the clay and

quartz content is high. The microstructure characteristics of shale are shown in Figure
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2.3.

Fig. 2.3. Microstructure diagram of shale

The content of clay minerals in mud shale is determined by a sedimentary

environment and sedimentary history. In the process of mud shale diagenesis, clay

minerals are transformed through complex physical and chemical processes, which

leads to changes in mud shale properties. The mud shale then can be seen as a

transition mineral from mudstone to shale, which has the hydration property of

mudstone and the hard brittle property of shale. The mud shale properties mainly

formed by compaction are closer to mudstone, and the cementation between mineral

particles is less. This means that it is easy to destroy when exposed to an natural

environment or water, leading to a decrease in overall strength. Mud shale, with its

strong compaction and cementation, is closer to shale, which has high strength and

weak hydration. The physicochemical properties and relative mineral contents of

these two types of mud shale are shown in Table 2.1[44].
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Table 2.1 The classification and physical property parameters of shale

Broad

heading

Subdivision Main physical and chemical properties

Clay mineral

content

Expansivity (%) CEC

(mmol/100g dry

soil)

Recovery

rate (%)

Soft

Mud shale

High expansion

Disperse mud

shale

Large S, some I >30 >22 <20

Easy to expand

Easily dispersed

mud shale

Rich S, large I,

some C

5~30 10~22 20~30

Hard brittle

Mud shale

Middle Inflation

Middle dispersed

mud shale

Large S/I and I,

some C

14~20 2~18 30~60

Not easy to

expand

Expansion and

dispersion mud

shale

Medium I, large

I/S, some C

7~14 3~12 60~90

Low expansion

Weakly dispersed

mud shale

Large I, medium

K and C

<5 1~8 >90

It can be seen that the classification essence of mud shale reflects the diagenetic

process of mud shale. The more mature the mud shale is, the greater the change of its

properties than the initial state. According to the process of mineral diagenesis, mud

shale can also be divided into six categories[45]:

(1) Mud shale contains a large amount of montmorillonite, which means there is

minimal hardness, with both high expansion and dispersion;

(2) Most of the montmorillonite in mud shale has been converted into an

illite-montmorillonite mineral mixture or simply illite. In this case, the hardness is

increased, and the expansibility and dispersion are decreased;

(3) Collapsed hard mud shale, which does not contain pure montmorillonite, has

been transformed into illite or an illite-montmorillonite mineral mixture. There may
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be micro fractures in the shale;

(4) Collapsible hard mud shale, in which the clay mineral content in the shale is

about 20-40%, while the rest is quartz and feldspar. Most of the clay minerals are

illite and chlorite and, therefore, have poor expansion and dispersion;

(5) Very hard, brittle mud shale, which has micro-fractures in its interior. After a

fluid invades the fractures, the strength of a fracture surface decreases and the

fractures along the fracture surface occurs;

(6) Crushing mud shale, which has internal cracks and good connectivity. Water

molecules easily enter these cracks, resulting in mud shale damage.

The first and second types of mud shale have strong homogeneity, easy

hydration and expansion, which leads to a decrease in its own strength. Compared

with the first two types of mud shale, the third to fifth types of mud shale have higher

strength and a lower degree of hydration and softening. Influenced by diagenesis,

micro-fractures develop internally, which form channels through which water seeps

into the inner mud shale. The formation of the sixth type of mud shale requires strong

tectonic movement, and the distribution of this type is not universal. Affected by the

conditions required for mineral transformation[46-47], the third - fifth types of mud

shale are generally buried deep and are brittle. Boreholes are prone to collapse under

the combined action of mechanics and chemistry where these types are present. It is

one of the most common but complex lithologies found in a drilling process.

Furthermore, the third - fifth types of mud shale contain hydrated mineral

montmorillonite (in an illite-montmorillonite mixture) and a large number of



40

microcracks develop internally. In order to maintain the stability of a mud shale

borehole, we must consider these characteristics of mud shale and make

corresponding measures.

2.2. Clay mineral composition

Different clay minerals have different physical and chemical properties. The

relative content of clay minerals determines the physical and chemical properties of

mud shale. The order of water absorption and expansion of each clay mineral is as

follows: montmorillonite > illite > kaolinite > chlorite. Therefore, to understand the

physical and chemical characteristics of hard brittle mud shale, it is necessary to

determine the relative content of various clay minerals found in hard brittle shale.

2.2.1. X ray diffraction technology

The most widely used method to determine shale mineral composition is X ray

diffraction technology[48]. The principle underlying this technique is that each material

component has its own characteristic diffraction pattern, and the diffraction intensity

is proportional to its content (not strictly established). In a mixture, the diffraction

pattern of each material component is independent of the existence of other material

components. That is, the diffraction pattern of a sample is composed of the diffraction

patterns of each component substance in the sample. This is the basis for quantitative

analysis of X ray diffraction. When testing, samples with a particle size of less than

10μm and less than 2μm should be extracted by a water suspension separation method

or centrifugal separation according to the Stokes settlement theorem in hydrostatics. A
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sample with a particle size of less than 10μm is used to determine the total relative

content of clay minerals in the original rock. Clay mineral samples with a particle size

of less than 2μm are used to determine the relative content of each clay mineral in the

total amount of clay minerals. Figure 2.4 is a physical diagram of polycrystalline X

ray diffractometer.

Fig. 2.4 The diagram of polycrystalline X ray diffraction instrument

2.2.2. Experimental results of mineral composition

In this thesis, mud shale drilling samples (Figure 2.5) from well A-1 in

Indonesia’s Oilfield A were analyzed and the relative content of clay minerals present

in the samples was determined by polycrystalline x-ray diffractometer (Figure 2.4).

The experimental samples contain mud shale from the Cisubuh, Parigi, and Cibulakan

Atas formations.

The rock analysis results from the shale x-ray diffraction are shown in Tables 2.2
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and 2.3. As seen, the Cisubuh formation has the highest clay mineral content, up to

30.6%, followed by the Parigi formation at 22.3%. Finally, the Cibulakan Atas

formation was the lowest at 15.3%. In general, the clay content present in these three

formations is not high, but all of them contain montmorillonite, which means that the

formations all possess strong water absorption expansion. The content of

montmorillonite in the Parigi formation was the highest - up to 8.0% - followed by the

Cisubuh formation at 6.6%, and finally the Cibulakan Atas formation at 4.2%. In

terms of actual drilling, the Cisubuh formation represents a serious section of

borehole instability. Large quantities of hard mudstone debris are produced as a result

of collapse during a drilling process.

Fig. 2.5 Some shale drilling debris samples from well A-1 of Indonesia Oilfield A
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Table 2.2 XRD test of Indonesia Oilfield A well A-1

Formation Depth, m

Clay Mineral, %
Total Mineral Clay

%kaolinite%
Illite

%

Smectite

%

Chlorite

%

Cisubuh

450-455 9.19 4.88 10.73 4.19 29

510-515 7.55 8.16 3.81 1.62 21.1

570-575 5.8 7.21 11.01 3.54 27.6

630-635 9.64 4.42 7.98 6.14 28.2

690-695 8.75 7.62 9.2 3.39 29

750-755 7.19 7 9.66 4.83 28.7

810-815 7.8 8.41 6.88 7.48 30.6

930-935 0.8 0.78 1.31 0.83 3.7

990-995 7.61 2.58 6.6 6.05 22.8

1050-1055 1.95 0.89 2.31 1.51 6.7

1110-1115 2.29 2.52 4.98 3.16 13

1150-1155 4.71 2.98 4.9 3.71 16.3

Parigi

1270-1275 4.2 4.18 6.46 2.75 17.6

1330-1335 2.91 3.05 4.98 2.96 13.9

1390-1395 4.59 4.04 9.95 5.7 24.3

1430-1435 8.43 4.42 10.65 8.2 31.7

Cibulakan Atas

1550-1555 3.92 3.67 4.75 3.09 15.4

1610-1615 8.21 3.31 7.08 6.21 24.8

1660-1665 7.19 3.47 3.1 2.49 16.2

1710-1715 3.88 3.7 4.81 2.94 15.3

1810-1815 3.71 3.63 4.4 2.74 14.5

1970-1975 3.87 3.24 4.04 3.12 14.3

2030-2035 4.77 5.64 3.42 1.02 14.9

2090-2095 8.82 6.6 5.19 3.12 23.7
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2150-2155 11.26 3.1 1.05 1.05 16.4

Table 2.3 Mean clay mineral content of cuttings from Indonesia Oilfield A well A-1 well

Formation
Depth

m

Total Clay

%

Kaolinite

%

Illite

%

Smectite

%

Average Average Trend Average Trend Average Trend

Cisubuh 450-1225 22.9% 6.1% 4.8 6.6

Parigi 1230-1455 22.3% 5.0% 3.9 8.0

Cibulakan

Atas
1470-2155 15.3% 6.2% 4.0 4.2

2.3. Characteristics of clay mineral structure

In analyzing the borehole stability of mud shale, it is apparent that the cracks

present in the rock are not the cause of instability, but rather they induce some

physical or mechanical processes and physicochemical processes on s surface of a

borehole, which ultimately reduces the resistance of the rock. Therefore, in order to

study borehole instability found in hard brittle mud shale, it is necessary to analyze

the mud shale’s internal microstructure.

The historical and geological factors of fracture formation in rock mainly include

the gravity settlement and compaction process, physical and chemical reactions, and

finally water loss caused by a pressure increase. The composition, structure, state and

properties of mudstone are mainly determined by the stages and conditions of its

diagenesis process, while gravity subsidence and geochemical processes play a vital

role in diagenesis. The physical and chemical reactions of sediments in diagenesis are

gradually replaced by gravity compaction. Then, the granules of mud shale are
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gradually transformed into flake structures and further align to form a certain

directional sedimentary body. Moreover, due to a further increase in the particle

contact number and area, mud shale begins to consolidate and harden[49]. In addition

to high temperature and pressure in deep strata, mud shale dehydration, a decrease in

water content, an increase in brittleness, and both shrinkage and structural extrusion

result in the development of microcracks in hard brittle mud shale.

Generally, a microstructure in mud shale is analyzed by electron microscope

scanning, and the width, density, roughness and filling[50] of a fracture surface can be

determined by electron microscope scanning. For the purpose of studying the crack

opening degree in hard brittle mud shale, this thesis has carried on electron

microscope scanning experiments for the hard brittle mud shale obtained from

Oilfield A. Four groups of rock blocks are numbered as rock samples 1-4,

respectively, as shown in Figures 2.6 to 2.7. According to the analysis results, the

samples are compact, but there is a hole seam between the grains, and the width of the

hole seam is about 5-10 μm. Some samples are filled with calcite between mud.

Where illite-montmorillonite is mixed, layers or flakes appear, and the planal

structure and intergranular pore joints are conducive to drilling fluid seepage. All of

these circumstances ultimately have adverse effects on borehole stability.
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Fig. 2.6 Hard brittle shale blocks of Indonesia Oilfield A

Fig. 2.7(a) Scanning electron microscopic image of the shale sample numbered 1

Fig. 2.7(b) Scanning electron microscopic image of the shale sample numbered 2
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Fig. 2.7(c) Scanning electron microscopic image of the shale sample numbered 3

Fig. 2.7(d) Scanning electron microscopic image of the shale sample numbered 4

2.4. Hydrating properties of mud shale

In production practice, it is recognized that both the density and performance of a

drilling fluid will have a great impact on borehole stability, which, as discussed, is

mainly caused by the complex physical and chemical effects of the mud shale’s

contact with the drilling fluid. The sensitivity of different types of mud shale to a

drilling fluid is different, and the influence on borehole stability changes with it.

Therefore, it is necessary to recognize the physical and chemical properties of hard
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brittle mud shale, including its hydration and expansion. Hydration expansion of mud

shale is usually measured by cation exchange capacity (CEC). CEC values reflect the

water absorption capacity of mud shale. Greater CEC indicates easier hydration. CEC

is also associated with clay dispersion and increases with clay dispersion. Using the

methylene blue method, a CEC value of shale was determined.

2.4.1. Methylene blue method

To begin, the mud shale samples processed by 100 mesh screens are dried at

105±3℃ for 4h. 100g of dry rock powder are picked, and distilled water is added to a

total volume of 200mL. High-speed stirring then takes place for 15 minutes on a

five-axis mixer. Using a needle-free syringe to measure 2.0mL, the mud magma

solution is shaken into a conical bottle containing 10mL of water. 15mL of 3% a

hydrogen peroxide solution is added. 0.5mL 2.5mol/L sulfuric acid solution is then

boiled slowly for 10 min (not dry) and then diluted to 50mL with water. 0.5mL

0.01mol/L of methylene blue solution is added to the conical bottle each time and

rotated for 30s. When in a solid suspension state, a drop of liquid is taken with a

stirring rod and placed on a piece of filter paper. When the dye shows a blue ring

around the dyed solid, the titration end point is reached, and when the blue ring

expands outward from the spot, the conical bottle is then rotated for 2 min. Another

drop is placed on the filter paper. If the blue ring is still obvious, then it has reached

the end. The CEC is ultimately calculated from the volume of consumed methylene

blue solution.
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2.4.2. Experimental results

The mud shale cuttings from well A-1 in Indonesia’s Oilfield A were selected as

experimental samples. The results are shown in Figure 2.8. The CEC value of the

Cisubuh formation is the highest, up to 20.5meg/100gram, with an average

16meg/100gram. The next is the Parigi formation, with an average of 11meg/100gram.

The last is the Cibulakan Atas formation, with an average of 8meg/100gram. The

CEC values of Cisubuh and Parigi range from 11 meg/100g to 20.5meg/100g, which

indicates that shale in Cisubuh has the ability to absorb water, hydrate, and expand. If

it is exposed to drilling mud for a long time, the borehole is more likely to collapse.

The Cibulakan Atas formation, with 3<CEC<10, belongs to hard mud shale with a

moderate dispersion and spalling trend. The results show that the mud shale in the

entire well section has weak hydration or non-hydration properties, but because of its

hard brittleness, its micro fractures are relatively developed.



50

Fig. 2.8 CEC values of mud shale in well A-1

2.5. Mechanical properties of mud shale rocks

The deformation characteristic of rock is an important mechanical characteristic.

It refers to a change in the shape and size of rock under the influence of physical

factors. In a sense, the deformation of rock will directly affect normal engineering

practices. If there is enough understanding of the law of rock deformation

characteristics, the correct mathematical expressions can be used to first describe

these deformation characteristics. These expressions can then be further used to

calculate deformation produced under external loads, which, in turn, allows us to
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better evaluate the rock’s stability[51].

The deformation characteristics of rocks can usually be obtained from the

stress-strain curves recorded during laboratory tests. A stress-strain curve of rock

reflects the corresponding strain law at various stress levels. Figure 2.9 shows a

typical rock stress-strain curve under uniaxial compression. According to the change

in the shape of a stress-strain curve, the deformation of rock can be divided into the

following stages:

(1) OA Stage: Usually called the compaction stage, it is characterized by the

concave shape of a stress-strain curve. That is, the increment of strain decreases with

a corresponding increase in stress. The main reason for this characteristic is the

closure of micro-fractures in the rock under an external force.

(2) AB Stage: This is an elastic stage in which a stress-strain curve is basically a

straight line. The deformation can be restored after unloading, and the stress value

corresponding to point B is called a ratio limit.

(3) BC Stage: This is a nonlinear elastic stage in which a stress-strain

relationship is no longer a straight-line relationship, but it still belongs to the elastic

stage. Before point C, the stress-strain relationship after unloading returns to the

original state according to the original path. The stress value corresponding to point C

is called yield stress.

(4) CD Stage: This is a plastic stage. When the stress value exceeds point C

(yield stress), the stress-strain curve becomes concave with an increase in stress. This

clearly shows the phenomenon of strain increasing, and it is at this stage that the rock
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produces irreversible plastic deformation. The stress value corresponding to point D is

called the peak strength. For hard rock, the plastic deformation appears very small,

and this stage may not even exist.

(5) DE Stage: This is the post-peak stress-strain curve. Here, rock failure occurs

after the peak strength (D), but the rock still has a certain residual strength.

Fig. 2.9 Representative rock stress-strain curve

According to a stress-strain relationship of rock, its mechanical properties can be

divided into elasticity and plasticity. Elasticity means that in a certain range of stress,

the rock is deformed by external forces, and after removing the external forces, the

rock is restored. Plasticity, on the other hand, refers to the phenomena in which stress

exceeds the yield stress and deformation can continue without causing the rock to

fracture. After removing the external forces, the rock can no longer be completely

restored to its original form.

In addition, according to a relationship between rock deformation and failure,

rock properties can be divided into brittleness and ductility. Brittleness refers to the

property in which the deformation of rock results in breakage over a small period of



53

time. Conversely, ductility refers to the property in which the object can withstand

large degrees of deformation without losing its bearing capacity. The ductility and

brittleness of the material are divided according to: (1) the total strain before failure

and (2) the slope drop of a negative slope on a full stress-strain curve. The total strain

before failure is small, the steep negative slope is brittle, and vice versa.

In engineering, the total strain greater than 5% is classified as a ductile material,

and lower than 5% will be classified as a brittle material. Heard[52] (1963) divided

rocks into three categories, with 3% and 5% as limits: If the total strain is less than

3%, it is brittle rock; if the total strain is 3%~5%, it is semi-brittle rock; finally, the

total strain greater than 5% is classified as ductile rock. The ductility and brittleness

of rock are relative characteristics, and both can be transformed into each other under

certain conditions. For example, normal temperature and atmospheric pressure on

brittle rock can lead to high ductility when exposed to both high temperature and

pressure.

Because a core taken from a site is irregular in shape and cannot be directly used

in experiments, it needs to be processed indoor. During the processing of a core

column, the two ends of a cylindrical specimen are smooth and polished, so that the

aspect ratio of the rock sample is 1.8 - 2.0.

2.5.1. Uniaxial and triaxial compressive strength tests

A three-axis strength test device used is produced by the American MTS

Company. The structure diagram is shown in Figure 2.10.
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Fig. 2.10 Rock triaxial test apparatus

The device consists of five main parts: a high temperature and high pressure

triaxial chamber, a confining pressure system, an axial pressure system, a heating and

constant temperature system, and finally a data acquisition and control system. The

design index of the triaxial chamber is confined to 200MPa pressure, which can

accommodate 50mm diameter rock samples. The internal design of the autoclave can

compensate for the confining pressure of the system during the loading process, and

the top force of the plunger produced by the confining pressure can be offset by itself.

Therefore, the longitudinal pressure of the machine on a rock sample is equal to the

differential stress of the rock sample in a triaxial experiment, with a convenient

operation system. Both the confining and axial pressure of the triaxial chamber are

controlled by an electro-hydraulic servo. The axial, transverse strain and axial load of

a rock sample are measured by the sensor installed in the autoclave. A data signal is
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transmitted to TESTSTAR an automatic acquisition control system, which

accomplishes several functions including automatic data acquisition, storage,

processing and the drawing of stress-strain curves.

2.5.2. Test results of uniaxial and triaxial compressive strength

As has been discussed, the core under study in this thesis is made up of mud

shale from Indonesia’s Oilfield A, and the coring depth of the sample is

approximately 1302-1312m. The cores before and after uniaxial and triaxial

compressive strength tests are shown in Figure 2.11 and Figure 2.12. Likewise, the

uniaxial and triaxial stress-strain curves are shown in Figure 2.13 and Figure 2.14. It

is found that the failure modes of mud shale mainly relate to splitting failures and

single shear failures. Under uniaxial compression, splitting failures are the primary

form of failure, but single shear failures occur mainly under triaxial compression.

The experimental results show that the uniaxial compressive strength of the core

is 6-35MPa. Under confining pressure, the compressive strength of the core increases,

and the total compressive strength is above 40 MPa under a corresponding 10-30 MPa

confining pressure. The elastic modulus under uniaxial conditions is 2-10GPa, and

Poisson’s ratio is about 0.20-0.27. The test core, whether under uniaxial or triaxial

conditions, shows that the rock’s stress decreases rapidly after exceeding the peak

strength, which indicates that the rock has strong brittleness characteristics. In

addition, with an increase in confining pressure, the failure strength of the test core

also increases, and the deformation characteristics of the rock show the transition
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from brittleness to plasticity under low confining pressure.

Fig. 2.11 Uniaxial compressive strength test cores: (a) before the test and (b) after the test

Fig. 2.12 Three-axis compressive strength test core: (a) before the test and (b) after the test
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Fig. 2.13 Stress-strain plot for UCS test of mud shale

Fig. 2.14 Stress-strain plot for multi stage triaxial test of mud shale

2.5.3. Mol-Coulomb analysis

The compressive strength of rock will change with a corresponding change in

confining pressure. Using the Mohr-Coulomb strength criterion, a linear variation of

compressive strength under an increase in confining pressure can be approximated.

Using the compressive strength data of several different confining pressures, two

important parameters for the compressive shear failure of the characteristic rock can
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be calculated: cohesion and an internal friction angle. The Mohr-Coulomb criterion

expressed by the principal stress is:
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In the formula:

C: Cohesive strength, MPa;

φ: Internal friction angle, radian;

σ1: Maximum principal stress, MPa;

σ3: Minimum principal stress, MPa.

Based on the experimental results which showed the rock’s compressive strength

at different confining pressures and at similar depths, the cohesion and internal

friction angle can thus be calculated using the Mohr-Coulomb criterion. According to

the Mohr-Coulomb criterion, shale cohesion is between 2-9MPa, the internal friction

angle is about 41°, and the shear failure resistance is poor.

2.5.4. Tensile strength tests

Tensile strength is one of the most important indexes of rock mechanical

properties. When it comes to rock materials, it is difficult to load tensile stress directly

on an axis, so an indirect method is generally used to measure tensile strength in

indoor experiments. In this thesis, the indirect tensile strength of rock samples is

accomplished through a rock splitting method, also known as the Brazil splitting

method. This method is recommended by the Laboratory Committee of the

International Rock Society and is used to determine the tensile strength of rock
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samples. According to the Brazilian splitting experiments, disc-shaped rock samples,

about 25mm in diameter and about 10 mm in thickness, are used. About 10mm of a

rock sample is then intercepted from one end on the basis of the processed

compressive strength of the experimental rock samples for the Brazilian splitting

experiment. It can be proven by the elastic theory that the tensile strength of the

cylindrical specimen, when split under radial tensile stress, is determined by the

following formula:

2 u
t

PS
Dt

 (2-2)

In the formula:

Pu: Load during specimen failure, N;

D: Diameter of cylinder specimen, m;

t: Thickness of cylinder specimen, m.

Based on the mud shale core from Indonesia’s Oilfield A, the tensile strength

tests for the three rock samples obtained through the Brazilian disk splitting method

were completed. The photos of the rock samples before and after the experimental

failure are shown in Figure 2.15, and the experimental data and tensile strength

calculation results are shown in Table 2.4. The tensile strength is basically between

0.5-3MPa. Compared with the uniaxial compressive strength data, it is found that the

uniaxial compressive strength is about 12 times that of the tensile strength.
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Fig. 2.15 Tensile strength experiment: (a) before the test and (b) after the test

Table 2.4 Experimental data on tensile strength of shale

No. Diameter (mm) Thickness (mm) Failing load (N) Tensile strength (MPa)

1 25.13 12.41 1247 2.55

2 25.24 13.88 263 0.48

3 25.17 14.44 1700 2.98

2.5.5. Establishment of an empirical model for finding formation elastic

parameters from logging data

Using multipole array acoustic logging (XMAC) a longitudinal wave time

difference (DTCO) and a shear wave time difference (DTSM) in the Cisubuh, Parigi,

Cibulakan Atas and the MMC formations in Oilfield A are obtained. Through formula

(2-3) and formula (2-4), the longitudinal wave velocity Vp and the shear wave velocity

Vs are calculated. Based on an intersection diagram, a relationship between the two is

obtained. As shown in Figure 2-16, the relationship between Vp and Vs is fitted in

formula (2-3).
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P 304800 /V DTCO (2-3)

S 304800 /V DTSM (2-4)

P
S 2035.2ln 14793VV   (2-5)

where DTCO is a longitudinal time difference, us/ft; DTSM is a transverse wave

difference, us/ft; Vp is the longitudinal wave velocity, m/s; Vs is the transverse wave

velocity, m/s.

Fig. 2.16 The intersection diagram of longitudinal wave velocity Vp and shear wave velocity Vs

A relationship between the dynamic elastic parameters and the longitudinal and

wave equations and a relationship between the dynamic elastic parameters and the

longitudinal velocity can be deduced:
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where

Ed: Dynamic modulus of elasticity, GPa;

μd: Dynamic Poisson’s ratio;

ρ: Density, g/cm3.
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As determined by the longitudinal and transverse wave velocities, the dynamic

elastic modulus and dynamic Poisson’s ratio reflect the mechanical properties of a

formation under instantaneous loading, which is not consistent with the static load of

the formation. Therefore, it is necessary to establish a correlation between the

dynamic and static parameters to further obtain the static parameters. The static elastic

modulus and Poisson’s ratio can be obtained by an indoor rock mechanics experiment,

and a conversion relationship can then be seen by comparing the dynamic and static

elastic parameters. A comparison between the static deformation parameters obtained

by an uniaxial compressive strength experiment and the dynamic parameters obtained

by acoustic velocity calculations is shown in Figures 2.17 and 2.18. According to the

experimental results, the empirical formulas for the conversion of static and static

parameters obtained by fitting the experimental results are as follows:

0.3386 2.3983s dE E  (2-8)

0.4498  + 0.0881s d  (2-9)

where

Es: Static elastic modulus, GPa;

μs: Static Poisson’s ratio.
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Fig. 2.17 Comparison of dynamic and static elastic modulus and fitting formula

Fig. 2.18 Comparison of dynamic and static Poisson’s ratio and its fitting formula

2.6. Chapter conclusions

1. The mineral composition, microstructure, hydration and expansion

characteristics of mud shale found in Indonesia’s Oilfield A were analyzed by X ray

diffraction, electron microscope scanning and methylene blue experiments.

The experimental samples contain rock material from the Cisubuh, Parigi, and

Cibulakan Atas formations. The Cisubuh formation has the highest clay mineral
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content, up to 30.6%, followed by the Parigi formation at 22.3%, and finally the

Cibulakan Atas formation at 15.3%. In general, the clay content of all three

formations is not especially high, but all of them contain montmorillonite, which

means that the formations have strong water absorption and expansion properties. The

content of montmorillonite in the Parigi formation was the highest at 8.0%, followed

by the Cisubuh formation at 6.6%, and finally the Cibulakan Atas formation at 4.2%.

The mud shale found in Oilfield A is relatively dense, but there are hole seams

between the grains, with a width of about 5-10 μm. Some samples are filled with

calcite between muds, and an illite-montmorillonite mixture is either layered or flaky.

Both the layered structure and intergranular hole joints are conducive to drilling fluid

seepage and thus have adverse effects on borehole stability.

The Cisubuh mud shale has a certain ability to absorb and expand. If this mud

shale is exposed to drilling mud for a long time, a borehole is more likely to collapse.

The Cibulakan atas formation, with 3<CEC<10, belongs to a hard mud shale with

moderate dispersion and spalling trends. The mud shale in the whole well section,

therefore, has weak hydration or non-hydration properties, but because of its hard

brittleness, micro fractures are relatively developed.

2. The experimental results show that the uniaxial compressive strength of the

core is between 6-35MPa. Under confining pressure, the compressive strength of the

core increases, leading to a compressive strength above 40 MPa when under

10-30MPa of confining pressure. The elastic modulus under uniaxial conditions is

2-10GPa, and Poisson’s ratio is about 0.20-0.27. According to the Mohr-Coulomb
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criterion, shale cohesion is between 2-9MPa, the internal friction angle is about 41°,

and shear failure resistance is poor. Compared with uniaxial compressive strength

data, it is found that the uniaxial compressive strength is about 12 times that of the

tensile strength.

Under uniaxial compression, splitting failure frequently occurs, while single

shear failure occurs mainly under triaxial compression. The experimental results show

that the uniaxial compressive strength of the core is between 6-35MPa. Under

confining pressure, the compressive strength of the core increases, and the

compressive strength is above 40 MPa when under 10-30 MPa of confining pressure.

The elastic modulus under uniaxial conditions is 2-10GPa, and Poisson’s ratio is

about 0.20-0.27. The test core, whether under uniaxial or triaxial conditions, shows

that the rock stress decreases rapidly after exceeding its peak strength, which indicates

that the rock has strong brittleness characteristics. In addition, with an increase in

confining pressure, the failure strength of the test core increases, and the deformation

characteristics of the rock show a transition from brittleness to plasticity under low

confining pressure.
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CHAPTER III. Study on 3D Geomechanics Modeling Methods

for Mud Shale Formations

Borehole collapse or rupture is a physical phenomenon caused by crustal stress

exceeding the corresponding rock strength. Borehole stability analysis or design

calculates the changing crustal stress conditions near a well and compares these

conditions with the rock’s strength. This requires a structural geomechanical model.

Using a micro fracture test or DFIT (diagnostic fracture injection test), crustal stress

and pore pressure in a study area can be accurately measured. A small amount of

measured data can then be obtained to constrain the established geomechanical

models. A complicating factor in this is the reality that pore pressure measurements in

shale are usually difficult to obtain. However, an accurate calculation of crustal stress

can also correct the pore pressure data obtained by drilling data.

Through a series of core tests, well logging data and seismic inversion data, the

mechanical parameters in the study area are described in detail. Spatial distributions

of the 3D elastic modulus, Poisson’s ratio and pore pressure in the target oilfield are

established. A 3D geomechanical model with heterogeneity, porosity and

elastoplasticity is also established. Adding to this, a 3D stress distribution and a 3D

safety density window for the target oilfield are also calculated using the finite

element method. Through LOT data from the drilling well, the complex conditions of

the drilling process and the data obtained through drilling completion, the

geomechanical model is validated. Finally, the well location arrangement, trajectory

optimization, casing design and drilling completion management in the study area are
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managed by the 3D crustal stress model and density window model. The flowchart is

shown in Figure 3.1.

Fig. 3.1 Flowchart of integrated geological engineering technology

3.1. Modeling process

This work is based on the Petrel software platform, and the entire modeling

process is shown in Figure 3.2. Firstly, based on the interpretation of seismic data, a

tectonic surface of the study area is obtained, and a geological model which can truly

reflect the structural changes is generated. Then, a 3D elastic modulus, 3D Poisson’s

ratio and other 3D heterogeneous material properties are established, and ultimately a

3D pore pressure model is generated. By assembling the 3D geomechanical model

and using the heterogeneous-pore-elastic-plastic model to calculate the 3D crustal

stress, a 3D crustal stress distribution is finally obtained, and limited measured values

are used to control the 3D crustal stress results.
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Fig. 3.2 Flowchart of 3D crustal stress modeling

3.2. 3D geomechanical model

Compared with the research area, the drilling data is still relatively minimal. In

order to obtain the fine 3D mechanical parameter model and the 3D pore pressure

model, it is necessary to use interpolated data from the existing wells. However, the

mud shale stratum belongs to heterogeneous strata. Conventional linear interpolation

and sliding average interpolation, therefore, cannot produce an accurate 3D

mechanical model. Because the rock’s mechanical parameters are mainly controlled

by lithofacies factors, mechanical modeling must be carried out under the constraints

of indoor test results by means of logging and seismic inversion data.

Both a meticulous 3D longitudinal wave velocity and a 3D shear wave velocity

are obtained at the core of various 3D rock mechanical parameters modeling. It is

necessary to make full use of logging data and seismic data to carry out 3D

geomechanical modeling. Therefore, the 3D seismic interval velocity body in the
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study area is obtained by seismic wave inversion. Based on the Kriging interpolation

method[53], the well-drilled interval velocity (Vp) data in the model area is interpolated

in 3D. The meticulous 3D interval velocity model in the study area is then obtained by

using the 3D seismic interval velocity to constrain the interpolation results. Next, 3D

rock mechanics parameters and 3D pore pressures are obtained by various empirical

formulas. A 3D stress distribution in the target oilfield is calculated by the finite

element method.

3.2.1. Kriging interpolation methods

By using the Kriging interpolation method, a 3D interval velocity in the study

area is obtained, and then a 3D distribution of various mechanical parameters is

calculated. Kriging is a random simulation method of geostatistics, which generates a

continuous normal distribution through an iterative method. It is based on a variable

estimation of a variation function, which takes into account a spatial distribution

position relationship between sampling points and the structural information between

variables. The Kriging method was first established by the South African mining

engineer D.G. Krige in view of the characteristics of gold grade combined with

geological estimation. It was then perfected by French mathematician Georges

Matheron to form a complete theoretical system. Based on the idea of geostatistics,

the Kriging method calls an attribute of a continuous change in space a "regional

variable", and uses both a covariance function and a semi-variant function to describe

a variation law of the regional variable. A mathematical model from the Kriging
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interpolation is as follows: the Kriging method is a local estimation method, which

usually uses a set of measured data and its corresponding spatial structure information

to obtain a 3D spatial distribution of attributes. For a heterogeneous texture stratum it

has excellent modeling accuracy. The principle of the algorithm is as follows:

A trend control model is:

)()]([ 10 uyaauZE  (3-1)

where y(u) is a secondary variable, and it reflects a spatial trend of Z variables

(corresponding to two parameter a0 and a1). Letter u indicates data points of

coordinates.

A Kriging estimate:
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Among them, μ( ) is the Lagrange parameter and CR( ) is the residual covariance

function.

The principle of finding a 3D interval velocity is as follows: Based on the

drilling VP data as the main variable, a 3D seismic interval velocity is taken as the

secondary variable. Using the spatial structure information provided by a variogram

model to solve the Kriging equation set, we calculate the weighting coefficient

)(uKT
 . The weighted linear estimate is then carried out to obtain a required 3D
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interval velocity value, or the estimated value )(* uZKT .

3.2.2. 3D pore pressure

Formation pore pressure refers to the pressure of a rock’s pore fluid. As a

geological parameter, pore pressure plays an important role in oil and gas exploration,

drilling engineering, and oil and gas development. As far as drilling engineering is

concerned, pore pressure is an essential and important parameter to realize rapid, safe

and economical drilling, so accurate prediction of pore pressure is crucial. During

drilling, the DC index (a drilling pressure index corrected by a drilling fluid density)

method, the mechanical specific energy method and real-time monitoring can be used.

Drilling Stem Test (DST) technology can also be used to measure formation pore

pressure in situ during drilling. However, the measurement data for a whole well is

inconsecutive. Thus, pore pressure can instead be continuously estimated based on

petrophysical data such as P-wave propagation time.

In drilling practice, the actual formation pressure is greater or less than the

hydrostatic column pressure, i.e., the abnormal pressure phenomenon. The formation

pressure exceeding the normal formation hydrostatic pressure is called abnormal high

pressure, while the formation pressure that is below the normal formation hydrostatic

pressure is called abnormal low pressure. Abnormal pressure is a global phenomenon

and has been found in many basins in the world. In the global investigation of

hydrocarbon resources on land and at sea, abnormal formation pore pressure has been

encountered. Abnormal pressure can occur in shallow depths underground, only a few
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hundred meters, or more than 6000 meters deep. It can also exist in

mudstone-sandstone series or in block evaporite-carbonate sections. In terms of an

geological age, the formations that often demonstrate this abnormal pressure

encompass the Pleistocene to Cambrian epochs.

At present, the formation mechanisms responsible for abnormal formation

pressure are classified as follows:

(1) Variation of a pore volume of rock: vertical load (under compaction); lateral

structural loading; secondary cementation;

(2) Change of a pore fluid volume: temperature change; mineral transformation;

hydrocarbon generation; hydrocarbon thermal degradation; fluid (mainly gas

transport);

(3) Fluid pressure (hydrodynamic head pressure) variation and fluid flow:

osmotic action; fluid pressure head; oilfield exploitation; permafrost environment;

relative density differences (e.g., between gas and oil).

3.2.2.1. Formation mechanism of abnormal high pressure in strata

Formation pore pressure refers to the pressure of a rock pore fluid. As a

geological parameter, pore pressure plays an important role in oil and gas exploration,

drilling engineering and oil and gas development. At present, the accepted pressure

forming mechanisms can be divided into two categories: under compaction and

non-under compaction. Under compaction means that in the process of formation

compaction, the fluid will be intercepted in pores because of a fast deposition speed
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and poor formation permeability, thus supporting a part of the increasing vertical load

forming mode. This method accords with a loading curve.

Non-under compaction usually includes a pore fluid volume change, a fluid

pressure change, fluid flow, formation tectonic movement and fluid density difference.

In this case, the two mechanisms of a pore volume change - fluid pressure change and

fluid flow - accord with an unloading curve. The classification of the above pressure

forming mechanism is shown in Table 3.1.

1. Volume change of a pore fluid

The volume change of a pore fluid can be divided into a ground temperature rise,

mineral transformation, hydrocarbon generation and fluid migration.

The increase in ground temperature: An increase in temperature alongside an

increase in buried depth makes the expansion of pore water larger than that of rock

(the coefficient of thermal expansion of water is greater than that of rock). If pore

water cannot escape due to the existence of a fluid barrier, the pore pressure will

increase.

Mineral conversion: When minerals are converted into sediments, side water is

released, a fluid volume increases, and abnormal high pressure is produced, such as

montmorillonite dehydration, and gypsum conversion to anhydrite dehydration. The

transformation of montmorillonite and illite is the main example of this

transformation. The deposited montmorillonite adsorbs free water between grains and

results in bound water between clay layers. When the local temperature reaches about

123 degrees centigrade, the lattice of a clay structure breaks down. The interlayer
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bound water of montmorillonite is excluded and becomes free water - a process

known as the dehydration of montmorillonite - and the corresponding buried depth is

referred to as the dehydration depth of montmorillonite. The bound water released

into pores expands and its volume far exceeds the volume reduced by the lattice

destruction. If the drainage is smooth, the formation is further compacted and the pore

pressure is hydrostatic. If the formation is closed, the formation pore pressure above

the hydrostatic pressure will be produced. If there is potassium ion, more specifically

adsorption potassium ion, the montmorillonite will transform to illite.

Hydrocarbon generation and fluid transport: During a gradual buried depth

process, a reaction involved in converting organic matter into hydrocarbons also

produces an increase in fluid volume, resulting in overpressure in a single pressure

storage box. Many studies have shown that the fractures of overpressure associated

with hydrocarbon generation are the mechanism of hydrocarbon migration from

source rock to porous, high permeability reservoir rock. Methane generation, in

particular, has been cited as the cause of overpressure generation in many reservoirs.

Gas is typically associated with abnormal pressure, which is further characterized by

gas saturation. When the organic matter in the source rock or the oil entering the

reservoir is converted to methane, a considerable volume increase is caused. These

volume increases can produce strong ultrahigh pressure under closed well conditions.

2. Fluid pressure change and fluid flow

This kind of non-compaction pressure forming mechanism mainly includes

osmotic action and fluid pressure head.
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Osmosis: Osmosis is the migration of water with lower salinity to higher salinity

through a semi-osmosis diaphragm. As long as the salt concentration on both sides of

clay or shale varies significantly, the clay or shale acts as a semi-permeable

membrane and produces osmotic pressure. The osmotic pressure difference is

proportional to a concentration difference. Therefore, the greater the concentration

difference, the greater the osmotic pressure difference. Because of this, concentration

flow can produce high pressure in a closed area. The abnormal high pressure caused

by osmosis is much smaller than that caused by compaction and hydrothermal action.

Fluid pressure head: Under the condition of self-flow or because of the existence

of a permeable channel between a shallow layer and a deeper high-pressure layer, the

pore pressure can be higher than the normal value. This situation is often encountered

when drilling at the foot of a mountain.

3. Stratigraphic tectonic movement

Stratigraphic tectonic movements include formation uplift, structural shear stress

and tectonic crustal stress loading.

Stratigraphic uplift: Because of the movement of strata, the deep strata are raised

to a shallower depth, which leads to abnormal formation pressure in this part of the

strata. During the formation of this pressure, the pressure of overlying strata decreases

due to the stripping of the upper strata, which makes the strata unload and accord with

an unloading curve.

Structural crustal stress loading: A pore structure can also withstand triaxial

stress, but the situation of "shear stress strengthening, pore collapse" also occurs.
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Especially in inverse or translational faults, vertical stress is not the maximum

principal stress, and horizontal stress should always be considered. When the point of

extreme failure is reached, the pore collapse leads to abnormal high pressure.

Structural shear stress: Structural shear stress also leads to shear failure in a pore

space, which, in turn, leads to stress applied in the remaining dense pores and fluids,

resulting in abnormal high pressure.

4. Difference in fluid density

A difference in hydrocarbon density, especially between water and gas, can

produce abnormal pressure on top of hydrocarbon aggregation. The longer the

hydrocarbon column, the greater the difference between the density of hydrocarbons

and the surrounding water, and the greater the overpressure. Generally speaking,

buoyancy differences can cause pressure to rise to hundreds psi order of magnitude.
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Table 3.1 Abnormal High Pressure Compression Mechanisms

Abnormal High Pressure Mechanism

Complianc

e with

unloading

curve

Wave

Speed Log
Density log

Change of pore

volume of rock
Disequilibrium compaction No Reduce Reduce

Volume change of

pore fluid

earth temperature increase

Yes Reduce
Not reduce or slightly

elevate

Mineral conversion

Hydrocarbon generation

Fluid (mainly gas) migration

Fluid pressure

variation
Osmosis

Yes Reduce Not reduce

fluid-flow Fluid pressure head

Stratigraphic tectonic

movement

Formation uplift Yes Reduce Not reduce

Structural shear stress
No

Porosity is basically constant, not

reflectedStructural stress loading

Difference in fluid

density
Difference in fluid density No

Porosity is basically constant, not

reflected

3.2.2.2. Analysis of formation compression mechanism

The pore pressure prediction models commonly used are summarized and

analyzed, as shown in Table 3.2. Different prediction models have their scope of

application, and appropriate models should be selected for pore pressure prediction

according to the formation of abnormal high pressure.
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Table 3.2 Prediction of formation pore pressure

Abnormal High-Pressure Mechanism Prediction model

Change of pore

volume of rock
Disequilibrium compaction

Vertical

method
Bryant; Alixant & Desbrandes

Horizontal

Law
Eaton

Other

methods
Simple method; Holbrook; Drauo; Bowers

Volume change of

pore fluid

Increase in temperature

Bowers

Mineral conversion

Hydrocarbon generation

Fluid (mainly gas) migration

Fluid pressure

variation
Osmosis

Fluid-flow Fluid pressure head

Stratigraphic tectonic

movement

Formation uplift

Structural shear stress

Analysis with geological condition
Structural stress loading

Difference in fluid

density
Difference in fluid density

As shown, Figure 3.3 shows a relationship between acoustic delay and density

logging of abnormal high pressure caused by loading. Because the loading accords

with the rock loading law, the variation degree of acoustic delay and density is

consistent. Figure 3.4 shows a relationship between acoustic delay and density

logging caused by unloading. The sound velocity decreases greatly while density

decreases slightly. An acoustic velocity reflects the conduction property of a rock,

which, in turn, is affected by connection pores. The process of unloading results in an
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increase in connection pores, so the acoustic velocity decreases. However, a bulk

density reflects the rock volume property, which is affected by closed pores, and the

elastic recovery of the closed pores is very small after unloading.

Fig. 3.3 Discrimination of Formation Mechanism of Loading Abnormal High Pressure

Fig. 3.4 Discriminating the Formation Mechanism of Unload Abnormal High pressure
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3.2.2.3. Calculation method of pore pressure

The Eaton method is one of the most widely used quantitative methods in pore

pressure prediction. Based on Eaton’s experience and theoretical analysis in the Gulf

of Mexico, a relationship between formation pore pressure and logging parameters

has been established. It is, therefore, suitable for abnormal high pressure caused by

mudstone under compaction. The most commonly used methods are the acoustic

delay method and the interval velocity method.

(1) Acoustic delay method:

x

O

N
N DT

DTPPOBGOBGPP ))((  (3-4)

(2) Interval velocity method:

n

N

O
N V
VPPOBGOBGPP ))((  (3-5)

where

PP: Pore pressure, MPa;

OBG: Overburden pressure, MPa;

PPN: Hydrostatic column pressure, MPa;

DTN, DTo: Normal compacted mudstone acoustic delay and acoustic delay of

mudstone determined by logging, respectively;

VN, Vo: Velocities of mudstone formation determined by normal compaction,

logging or earthquake, respectively;

n: Eaton index, determined by regional laws or actual drilling data.

In addition, Bowers’ method is to determine the vertical effective stress by an
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acoustic velocity and empirical parameters, and then subtract the vertical effective

stress from the overlying strata pressure to obtain the pore pressure. This method can

be used to predict pore pressure caused by unbalanced compaction or other

mechanisms.

The prediction of abnormal high pressure caused by unbalanced compaction

requires only two empirical parameters. These two empirical parameters can be

determined by compaction trend analysis or the adjacent well data.

The abnormal pressure caused by other mechanisms requires more information

and additional empirical parameters. In this case, the vertical effective stress in a

sediment will be lower than a previous value in the past and in the so-called

"unloading" state. It is important to know the historical maximum effective stress

value σmax in the sediment. Furthermore, the "unloading" velocity effective stress state

of the deposition layer is established and is specified by the unloading parameter U.

σmax is calculated from the normal compaction reaction and the user specified value

νmax. U values are determined by an empirical value, while νmax is the speed when

unloading occurs.

vdmax is the "maximum velocity depth", i.e., the depth when unloading occurs,

and depth is the total depth.

If unloading does not occur at depthd v max , then

depth
A
DTDT

OBGPP
Bml )/1(

66

)

1010

(


 (3-6)

If unloading occurs at depthd v max , then the pore pressure is
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depth
A
DTDT

OBGPP
BUmlU )/(

66

)1(
max )

1010

()(





(3-7)

and )/1(

6

min

6

max )

1010

( Bml

A
DTDT


 (3-8)

where

mlDT is the corresponding acoustic delay;

A, B, and U are empirical values.

3.2.2.4. 3D pore pressure calculation method

First, an accurate 3D seismic velocity body is obtained by high-precision

inversion before or after stacking. Then, based on the prediction of pore pressure in a

single well, the 3D pore pressure prediction is realized through either the Eaton or

Bowers method with a seismic interval velocity as the constraint condition. The

accuracy of the 3D pore pressure prediction depends on the accuracy of the seismic

interval velocity. The calculation process is shown in Figure 3.5.
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Fig. 3.5 Calculation Method of 3D Pore Pressure

3.2.3. 3D genus model

Attaining an accurate prediction of geomechanical parameters is essential to

making accurate predictions about drilling wall stability. At present, the data used to

predict geomechanical parameters primarily includes information such as a seismic

interval velocity, logging data and measured data with drilling. For mud shale, the

geomechanical parameters used to analyze borehole stability mainly include overlying

rock pressure, pore pressure, horizontal crustal stress, formation strength parameters,

collapse pressure, and rupture pressure.

To calculate the strength parameters of given strata, a series of rock specimens

undergo acoustic wave measurements. Using empirical formulas, the results show that

a wave velocity in rocks with high compressive strength is also significant.

Leveraging Schlumberger's MECHPRO logging method, the mathematical relations



84

between uniaxial compressive strength and dynamic Young’s modulus of sedimentary

rocks Ed are established by experiments conducted by Deer and Miller (1966) as

follows:

cldcld VEVEUCS  008.0)1(0045.0 (3-9)

where

clV : Mud content of sandstone;

dE : Dynamic Young’s modulus of sandstone, MPa.

The results from a large number of rock mechanical parameters show that the

uniaxial compressive strength of rock is generally 8-15 times its tensile strength, so

the tensile strength of rock St can be calculated by the following formula:

12/]008.0)1(0045.0[ vldcldt VEVES  (3-10)

where

St: Tensile strength of rock, MPa.

Coates (1980,1981) presented an empirical relationship between cohesion C and

uniaxial compressive strength c of sedimentary rocks:

)78.01()
1
1)(21( 422

clp
d

d
d VVAC 




 

 (3-11)

where

A: Constant, depending on the conditions derived from the formula and the unit

of calculations used. Under international units, for tertiary mudstone, A is generally

5.44.

Then we calculate the internal friction angle φ by an empirical formula:

Cba * (3-12)
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100
)1(

)1(2)3(
2

2






HK
KPCK phH

b


 (3-13)

]180/14159.3*)2/45tan[( K (3-14)

 f V P P t
1 2 /
1

Q P P S H   


  
          

(3-15)

where

b is the collapse pressure gradient, SG;

H is the maximum horizontal in-situ stress, MPa;

h is the minimum horizontal in-situ stresses, MPa;

C is cohesion, MPa;

 is a Biot coefficient;

pP is the pore pressure, MPa;

H is the depth of a well, m;

 is the angle of internal friction, degree;

f is the fracture pressure gradient, SG;

Q is a tectonic stress coefficient;

V is the overburden pressure, MPa;

 is Poisson’s ratio;

tS is the tensile strength, MPa;

UCS is the compressive strength, MPa;

KBAba ,,,, are the conversion factors.
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3.2.4. 3D Crustal Stress Modeling

An underground rock mass is a complex, heterogeneous, anisotropic and

nonlinear elastoplastic material. However, the finite element method[54-56] can solve

the problem of a stress distribution among heterogeneous, pore and elastoplastic

bodies. That is, known crustal stress measurement points (or other reliable methods of

crustal stress values) can be put through stress simulations to calculate the whole area

of the crustal stress field. This is accomplished, firstly, by gathering the results of a

regional geological survey, after which a geomechanical model of the whole study

area can be established. By constantly changing the mode and size of boundary forces,

the calculated values of tectonic principal stresses (including size and direction) at

some specific points in the calculation area can be fitted to the best values of crustal

stress at measuring points. The resulting stress-deformation field is the simulation of

the present stress-deformation field in the study area.

3.2.4.1. Moore Coulombian elastoplastic guidelines

In this thesis, the Coulomb elastoplastic deformation criterion[57-58] is used to

describe the rock deformation state in the study area.

The shear yield surface function of the Moore-Kulun criterion is as follows:

sin
tan cos sin sin / 3
cF J p 
   

  
        

(3-16)

sin sin= sin cos cos
3

F p J c       
 

(3-17)

where C is the cohesive force, φ is the angle of internal friction, and θ is the stress
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Lode angle.

The flow rule Q is given by the same equation, but the internal friction angle φ in

the formula is replaced by the shear expansion angle ψ.

Hardening/softening is the cohesive force due to plastic deformation:

d
0 pc c HE  (3-18)

where 0c is the initial cohesive force, H is a hardening/softening parameter, E is

the elastic modulus, and d
p is the equivalent plastic strain.

1/22 2 2 2 2 2
x y z xy yz zxd

p

2
3

     


        
  

(3-19)

where zyx  ,, is positive strain while zxyzxy  ,, is shear strain.

Figure 3.6 shows a relationship between the mohr Coulomb yield and plastic

potential functions in a p-J space. F and Q are functions of the stress Lode angle,

internal friction angle and shear expansion angle, respectively.

Fig. 3.6 Mohr Coulomb yield and plastic potential functions in p-J space

Figure 3.7 shows the yield and plastic potential surfaces on a partial plane.
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Fig. 3.7 Molar Coulomb yield and plastic potential functions on partial plane

3.2.4.2. Finite element stress field simulation

The finite element method is a numerical technique to solve the problem of a

partial differential equation. The domain of interest is locally discretized by small

areas of arbitrary shape called finite elements. Therefore, a continuous physical

problem is transformed into a discrete finite element problem with unknown node

values. A global matrix is obtained by summing the element equations, which are then

solved by using numerical linear algebra. Stress and strain are calculated using the

joint values and shape functions at the integral (Gaussian) points within each finite

element.

The principle of minimum potential energy is used in which: Total Potential

energy (E) = Strain energy (W) - work done by applied loads (L). The displacement

field with the minimum potential energy can be found. We consider an arbitrary finite

element:

0E W L        (3-20)
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   1
2

T

Vol

W dVol     (3-21)

       T T

Vol Srf

L d F dVol d T dSrf        (3-22)

where F is the body strength and T is the boundary traction.

The shape function [N] and node displacement di can be used to determine the

displacement inside each finite element:

    id N d   (3-23)

Strain can be found from compatibility equations and nodal displacements:

    = iB d  (3-24)

where [B] is the derivatives of [N].

    = D   (3-25)

We consider the potential energy in an element. Using constitutive equations

eliminates stress:

            1
2

T T T

Vol Vol Srf

E D dVol d F dVol d T dSrf             (3-26)

Also, by the compatibility equation and shape functions and using node values instead

of displacement changes, we have

             1
2

T TT T

n n n
Vol Vol

E d B D B d dVol d N F dVol       

     TT

n
Srf

d N T dSrf   (3-27)

The minimum potential energy gives the equilibrium equation for each finite element:

                0T T TT

n n
Vol Vol Srf

E d B D B d dVol N F dVol N T dSrf
 

         
  
  
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(3-28)

This can be written as:

    E Enk d f   (3-29)

      T
E

Vol

k B D B dVol  (3-30)

         T T
E

Vol Srf

f N F dVol N T dSrf      (3-31)

Each element equilibrium system is assembled into a whole equilibrium system.

In order to solve the general geometry, the elements must be able to adopt a

general shape. For this purpose, the elements of a simple shape are used in our

systems. Then a relationship is established between the local and global coordinates

of each element. The same shape functions for displacement field interpolation are

used to specify the relationship between the global coordinate system and the local

coordinate system. These elements are then referred to as iso-parametric:

    id N d (3-32)

    ix N x (3-33)

Shape functions [N] are specified in local coordinates, as shown in Figure 3.8.

Fig. 3.8 Gauss Point Local Axes
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Not only shape functions and also their derivatives in the compatibility matrix [B]

are required:

 

0 0

0 0

0 0

0

0

0

i

i

i

i i

i i

i i

N
x

N
y

N
zB

N N
y x

N N
z y

N N
z x

 
 

 
  

 
 

      
  

  
   

  

(3-34)

The derivative can be transformed from a local coordinate system to a global

coordinate system by the partial differential rule:

=

x y z
x x

x y z J
y y

x y z
z z

   

   

   

           
                   
                              
           

                 

(3-35)

where J is the Jacobian determinant. The inverse of J is used to calculate the

derivatives in the global coordinate according to the need of matrix [B]:

1

x

J
y

z









  
      
          
  

      

(3-36)

The Jacobian determinant is also used to transform an integral from a global

coordinate system to a local coordinate system:

1 1 1
1 1 1detdxdydz J d d d        (3-37)
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In the general case of iso-parametric elements, the integrals of the expression of

the stiffness matrix and load vector cannot be performed using analytic methods.

Instead, the stiffness matrix and load vectors are typically numerically evaluated using

Gaussian orthogonality on a quadrilateral region. In the 3D case, the Gauss quadrature

formula of a volume integral is:

   1 1 1
-1 -1 -1

1 1 1
, , , ,

n n n

i j k i j k
i j k

f d d d ww w f        
  

   (3-38)

where kji www ,, are the weighted coefficients, kji  ,, are the coordinate

positions of each element within the element (abscissa), and n typical values are 1,2

and 3. The evaluation values of stress and strain can also be calculated at these

Gaussian points.

3.2.4.3. Boundary condition

The solution of mechanical problems should satisfy the equilibrium, geometric

and physical equations. At the same time, a boundary condition should be satisfied on

the boundary. Thus, a correct boundary condition is a very important link in

mechanical analysis. The simulation of the horizontal stress field is affected by the

weight of the overlying strata, pore pressure and tectonic action. Structural stress is

mainly realized by applying reasonable boundary conditions, but different boundary

conditions will have a significant impact on the calculation results. In this thesis, the

strain boundary condition is adopted, and the bottom surface of the model is simply

the supported constraint, while the gravity and side boundary displacements are

applied simultaneously. By constantly adjusting the lateral boundary displacement,
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the crustal stress simulation results can converge to the measured values of crustal

stress, as shown in Figure 3.9.

Fig. 3.9 Boundary Load Method

3.3. Chapter summary

This section introduces 3D geomechanical modeling in detail and the working

principle in mud shale strata. A 3D geomechanical model with heterogeneity, porosity

and elastoplastic is established. The deformation characteristics of shale rock are

described by using the Moore Coulomb elastoplastic criterion. As well, both a 3D

stress distribution and a 3D safe density window of the shale formation are calculated

by the finite element method.

Specific modeling processes include: A. Study area geological model

construction; B. Using the Kriging interpolation method and coupling seismic interval

velocity data to obtain a 3D interval velocity in the study area, the core algorithm

principle of Kriging interpolation method is introduced in detail; C. A series of

empirical formulas are used to calculate 3D pore pressure and 3D distributions of
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various mechanical parameters; D. Assembly of heterogeneous geomechanical models;

E. The deformation state of shale is described by applying the Morkulun elastoplastic

criterion; F. The finite element method is used to calculate a 3D stress distribution in

mud shale strata, and the core algorithm principle of the finite element method is

introduced in detail.

The method provided in this thesis includes the construction and validation of the

geomechanical model and simulates the actual 3D stress distribution as far as possible.

By using the LOT data provided by the drilled wells, the conditions during the drilling

process, the drilling completion data, and the actual drilling conditions of the planned

wells in the future, it is possible to continuously validate both the established

geomechanical model and the safety density window model. To solve the problem of

borehole instability in a mud shale formation, a set of integrated

geological-engineering technical schemes is also provided.
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CHAPTER IV. 3D Geomechanical Modeling of Indonesia's

Oilfield A

4.1. The complexity of drilling and completion in Indonesia's Oil Field A

By the end of 2019, Indonesia’s Oilfield A saw a total of nine straight wells and

directional wells drilled and completed. The statistics of drilling conditions in the

block showed that complex drilling conditions led to a number of issues such as

collapse and well leakage and, even more problematically, the borehole itself was

scrapped many times, resulting in large economic losses. On average, drilling takes a

total of 55 days, while the maximum drilling period is 123 days. Obviously, any time

when mud shale collapse leads to borehole instability there is significant downtime in

the drilling schedule, and in some cases, side drilling becomes necessary. This puts

unnecessary pressure on staff and deprives them of opportunities for other

optimizations. For many important reasons, including safety, fast drilling, and an

overall reduction in complex accidents, it is suggested that borehole stability

management and drilling optimization should be studied carefully.

4.2. Site stress magnitude and direction

4.2.1. Leak off test (LOT)

A leak off test is conducted by injecting a small flow of a high-pressure fluid into

the test section (the flow rate is generally less than 100L/min) until the formation

ruptures and the pump is stopped. Then multiple fracture extension and closure tests
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are conducted to obtain reliable and repeatable fracture closure pressures (LOT),

resulting in the horizontal minimum principal stress (LOT value). Part of the drilled

well in this block has carried out ground breaking experiments. Thus, a small amount

of LOT data is already obtained (Figure 4.1).

Fig. 4.1 Hydraulic fracturing test curve

4.2.2. Direction of minimum crustal stress

The azimuth of the borehole rupture comes from the FMI diagram of Well A-4.

The borehole rupture can be identified in the vertical direction near a depth of 1417m

to 1383m. The minimum horizontal stress direction is about 110±5°NW-SE, as shown

in Figure 4.2.
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Fig. 4.2 Minimum stress direction

4.3. Geomechanical modeling of Oilfield A

The physical, chemical, and mechanical characteristics of mud shale in

Indonesia’s Oilfield A need to be clarified, and are used to calibrate the 3D

geomechanical modeling results in Chapter III. To facilitate this discussion, Chapter II

of this these has carried out a detailed experimental study on the various properties of

shale in the different strata of Oilfield A.
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4.3.1. 3D geomechanical model

Using the Petrel software platform’s geomechanical module, a geomechanical

grid of Indonesia's Oilfield A is generated. As shown in Figures 4.3 and 4.4, the

modeling area of the A block in Indonesia is 77km2. The Z direction of the workspace

is 0m to 28448m. But the formation grid below 3100m is sparsely treated, focusing

primarily on the vertical region of 0-2500m. The distribution of strata from top to

bottom is as follows: the Cisubuh formation, Parigi formation, Cibulakan Atas

formation and finally, the MMC formation. The total number of finite elements is

1,576,810. Obviously, this is a huge model that requires a lot of human input and

support from computer hardware.

Fig. 4.3. Indonesia Oilfield A work area
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Fig. 4.4 3D geological model of Indonesia Oilfield A

4.3.2. 3D pore pressure of Indonesia Oilfield A

4.3.2.1. Pressure mechanism analysis

Based on engineering analysis, the pressure formation mechanism of shale in

Oilfield A is then predicted. The intersections of the acoustic delay density of wells

A-4 and A-9 at the Cisubuh and Cibulakan Atas formations are drawn, respectively.

Well A-9 is under compacted at the Cibusuh formation as shown in Figure 4.5, while

Well A-4 is shown to be in a normal compaction state. Therefore, it can be assumed

that abnormal pressure of under compaction may be present in some blocks of the

Cisubuh formation in Oilfield A. Accordingly, this thesis uses the Eaton formula to

estimate pore pressure in Oilfield A. This also coincides with instances of serious

collapse experienced in this well section during drilling. Generally, the higher the pore

pressure, the higher the collapse pressure.
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Fig. 4.5 Density and acoustic delay intersections of wells A-4 and A-9

4.3.3.2. 3D pore pressure results

Figure 4.6 shows the results of intermediate variables and 3D pore pressure in

the overall calculations of 3D pore pressure. The 3D geological model of Oilfield A

includes the Cisubuh, Parigi, Cibulakan Atas and MMC formations. The 3D seismic

interval velocity is obtained by inverting the seismic wave data, ranging from

1752m/s to 6584m/s. The 3D interval velocity is interpolated by the Kriging

interpolation method, which combines both the drilled interval and the seismic

interval velocities. The numerical range is 1648m/s to 6130m/s. The results show that

the seismic interval velocity is consistent with the 3D interval velocity of Oilfield A in

different strata, but the 3D interval velocity is more precise. The 3D visualization of

the pore pressure distribution in Oilfield A is then calculated. The 3D pore pressure is

0MPa to 56.72MPa, and the 3D pore pressure gradient is 0.97SG to 1.23SG. Where

the Cisubuh and Parigi formations have high pressure zones, the figure shows yellow

and red, and the maximum pore pressure is up to 1.23G. The Cibulakan Atas and

MMC formations contain normal pressure gradients.
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Fig. 4.6 Calculation procedure and results of 3D pore pressure

The figures above demonstrate instances where: (a) the 3D seismic interval

velocity ranges from 1752m/s to 6584m/s; (b) the 3D interval velocity ranges from

1648m/s to 6130m/s; (c) the 3D pore pressure gradient ranges from 0.97SG to 1.23SG;

and (d) the 3D pore pressure ranges from 0MPa to 56.72MPa.

4.3.3. Results of 3D Genuine

Through a combination of logging data, laboratory lithology test results and a

series of empirical formulas, mechanical parameters such as Young’s modulus,

Poisson’s ratio, the compressive strength, tensile strength, cohesion and internal

friction angle of Oilfield A are calculated. The results are shown in Figure 4.7.
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Fig .4.7 3D genus distribution of Indonesia Oilfield A

These graphs show where: (a) the 3D Young’s modulus ranges from 0.64GPa to

15.30GPa; (b) the 3D Poisson’s ratio ranges from 0.18 to 0.28; (c) the 3D internal

friction angle ranges from 33.81° to 45.49°; (d) the 3D cohesion ranges from

0.10MPa to 30.69MPa; (e) the 3D compressive strength ranges from 0.50MPa to

88.75MPa; and finally, (f) the 3D tensile strength ranges from 0.02MPa to 7.91MPa.

4.3.4. Calculations of 3D crustal stress

The crustal stress distribution of Oilfield A is calculated using the finite element

method based on the Petrel software platform’s geomechanical module. Figure 4.8

shows the final calculation results of the 3D maximum horizontal stress, the 3D

minimum horizontal stress and the 3D vertical stress. Based on these results, it can be

seen that the maximum horizontal stress ranges from 6.90MPa to 49.17MPa. The

minimum horizontal stress ranges from 6.17Mpa to 43.33MPa. Finally, the

overburden pressure ranges from 7.38MPa to 54.88MPa. Overall, overburden
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pressure >max horizontal stress >min horizontal stress, which indicates that

Indonesia’s Oilfield A belongs to the control range of positive faults.

The calculated results of the minimum crustal stress present in Oilfield A are

calibrated using the LOT data of the drilled oil field. The results are shown in Table

4.1. It is found that the LOT value and minimum crustal stress calculations have

relatively small errors, and the maximum relative error is only 0.02. However, due to

the relatively limited amount of data used for these calibrations, the model must be

continuously validated and optimized in future drilling and completion processes.

Fig. 4.8 Calculation of 3D crustal stress

The figures presented above demonstrate where: (a) the maximum horizontal stress
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ranges from 6.90MPa to 49.17MPa; (b) the minimum horizontal stress ranges from

6.17MPa to 43.33MPa; and (c) the overburden pressure ranges from 7.38MPa to

54.88MPa.

Table 4.1 Calibration of Minimum Crustal Stress Calculation Model

Well Well-type

Measured

Depth

m

Total

Vertical

Depth

m

LOT

SG

LOT

MPa

Min

horizontal

stress

Mpa

Relative

error

%

A-2 vertical well 1274 1274 1.68 21.00 20.42 0.02

A-4
directional

well
1383 1383 1.70 23.06 22.84 0.02

A-7
directional

well
1625 1500 1.68 24.72 24.54 0.01

A-8
directional

well
1730 1633 1.71 27.39 27.45 0.01

A-9
directional

well
1425 1105 1.74 18.86 18.52 0.01

4.3.5. Security Density Window Results

An important step in geomechanical modeling is to determine the optimal mud

pressure for safe drilling through a calculated 3D crustal stress model. Whether the

calculated density window is credible or not also indirectly verifies whether the

calculation model of crustal stress is reliable. Successful design of mud pressure

should effectively avoid borehole rupture or borehole instability during drilling. As

such, the collapse pressure and rupture pressure are calculated by the empirical

formula listed in Section 2.5.5. The results are shown in Figure 4.9. In general, the

collapse pressure gradient ranges from 0.6SG to 1.47SG. However, the Cisubuh

formation collapse pressure is a bit high, up to 1.47SG. The MMC reservoir formation
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is stable although there is still some collapse risk due to shale development in some

well sections. The fracture pressure gradient ranges from 1.71SG to 2.02SG. In

addition, the calculated security density window can be viewed in 3D. For any

planned well location in the working area, the corresponding security density window

can be quickly given as long as the coordinate position is established. Thus, it can

intuitively and efficiently guide drilling and completion in the work areas of Oilfield

A.

Fig. 4.9 Calculation results of 3D security density window.

The graphs above illustrate where: (a) the collapse pressure gradient ranges from

0.6SG to 1.47SG and (b) the fracture pressure gradient ranges from 1.71MPa to

2.02MPa.

4.4. Field Application

Well A-10 is a developed directional well, with a maximum well deviation of

20.28°, and the target formation is the MMC reservoir stratum. Based on the

calculated 3D crustal stress and 3D safety density window, the drilling design of Well

A-10 is optimized. As such, Well A-10 adopts a four-section structure. Data from Well
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A-10 was extracted from the 3D density window model, as shown in Figure 4.10.

In terms of actual drilling, the first section used 26-inch drill bits to 349m, while

the second section used 17.5-inch drill bits to 1474m, thereby drilling through the

Parigi formation. The collapse pressure calculated by the model was 1.24SG to

1.35SG, the rupture pressure was 1.78SG to 2.00SG, and the pore pressure was up to

1.23SG. The drilling fluid density was calculated at 1.35SG to 1.56SG. In summary,

the drilling process was smooth. The background gas was 1-50 and 80-120 units, and

the gas reached its total peak content at 200-370 units in the shale's sandstone layers.

The pore pressure of this section was monitored in real time through the mechanical

specific energy method (Majidi et al.,2017), and the calculated results showed up to

1.33SG. Interestingly, the pore pressure calculated by the mechanical specific energy

method was larger than the pore pressure data provided by the 3D model of Oilfield A.

However, the results of both calculations showed that there was high pressure in the

middle and lower formations of the Cisubuh and Parigi.

The third section used 12.25-inch drill bit to 1973m, reaching the top of the

MMC reservoir formation. The collapse pressure was 0.80SG to 1.35SG, and the

rupture pressure was 1.90SG to 2.02SG. The pore pressure was found to be at a

normal pressure gradient, and the drilling fluid density was 1.40SG to 1.41SG. This

section was also drilled smoothly. The background gas was from 15-30 units and

60-100 units, while the total gas content peaked at 200-520 units in the sandstone

formation.

The fourth and final section used an 8-inch drill bit to open the MMC reservoir,



107

at which point the drilling continued to the borehole bottom, finished at a drilling

depth of 2084m. The collapse pressure calculated by the model was 0.80SG to

1.24SG, and the rupture pressure was 1.89SG to 1.91SG. Pore pressure was found to

be at a normal pressure gradient, and the drilling fluid density was 1.10SG. The

calculated values of collapse pressure in some of the well sections were large and

were likely developed mud shale. In all, the drilling process was smooth. The

background gas was 20-60 units, and the total gas content peaked at 100-800 units in

the sandstone layers.

From the actual drilling data gathered from well A-10, the collapse pressure and

rupture pressure calculated by the 3D model have been verified. At the same time,

there is a direct correspondence between the maximum crustal stress, the minimum

crustal stress and the collapse pressure, so the 3D safe density window calculation

model is also used to constrain the minimum crustal stress and the maximum crustal

stress calculation model. Well A-10 was drilled on October 6th, 2020 and completed

on November 2nd, 2020. The drilling cycle was 28 days, compared to an average

55-day drilling period in the remainder of Oilfield A. The drilling cycle was shortened

by 49% and there were no complex accidents in the drilling process. In summary, the

established 3D pore pressure, collapse pressure, rupture pressure, crustal stress and

other models were verified. A confident geomechanical model and density window

model have finally been determined.
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Fig. 4.10 A-10 Safe Drilling Density Window

4.5. Chapter Summary

1. Based on a series of core tests, well logging data and seismic inversion data,

the mechanical parameters of Oilfield A in Indonesia have been described in detail.

The 3D heterogeneous mechanical parameter distribution and 3D pore pressure

distribution of Oilfield A have been established. In total, the 3D pore pressure ranged

from 0MPa to 56.72MPa, while the 3D pore pressure gradient ranged from 0.97SG to

1.23SG. Where the Cisubuh and Parigi formations have been shown to possess high

pressure zones, the Cibulakan Atas and MMC formations have normal pressure

gradients.

2. Using the finite element method, the 3D stress distribution has been obtained
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by using the heterogeneous pore elastic-plastic model. The results show that the

maximum horizontal stress ranges from 6.90MPa to 49.17MPa, and the minimum

horizontal stress ranges from 6.17MPa to 43.33MPa. Overburden pressure, on the

other hand, ranges from 7.38MPa to 54.88MPa. Overall, overburden pressure > max

horizontal stress > min horizontal stress, and Indonesia's Oilfield A belongs to the

control range of positive faults.

3. The results of the minimum crustal stress calculations of Oilfield A have been

calibrated using LOT data from the drilled oil field. The LOT value and minimum

crustal stress calculation results have shown relatively few errors, and the maximum

relative error is only 0.02. The minimum horizontal stress direction is about

110±5°NW-SE.

4. 3D collapse pressure and 3D rupture pressure have been calculated by the

empirical formula. The calculated 3D safety density window has been visualized, and

the collapse pressure gradient has been shown to range from 0.6SG to 1.47SG. The

results show that the Cisubuh formation has the highest collapse pressure of up to

1.47SG. While the MMC reservoir formation is relatively stable, there is still some

collapse risk due to shale development in other well sections. The fracture pressure

gradient has been shown to range from 1.71MPa to 2.02MPa.

5. From planned well A-10’s actual drilling data, both the collapse and rupture

pressure calculated by the 3D model have been verified. Therefore, both a confident

geomechanical model and a density window model have finally been determined.
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CHAPTER V. CONCLUSIONS AND FUTURE WORK

A detailed study on the physical, chemical and mechanical properties of mud

shale in Indonesia’s Oilfield A was carried out through laboratory mineral analysis,

electron microscopy, cation exchange capacity and the parameters of rock mechanics.

Experimental results were the cornerstone of the eventual 3D geomechanical

modeling performed for Oilfield A. Based on the Petrel software platform, a set of 3D

geomechanical modeling methods and principles of shale were introduced in detail. A

complete 3D geomechanical model was, therefore, produced, which was successfully

applied in field drilling. The main conclusions of this thesis are as follows:

(1). According to the physical and chemical characteristics of the mud shale

formation in Indonesia’s Oilfield A, the collapse risk of shale in the different strata

was obtained.

The experimental samples were taken from the Cisubuh, Parigi and Cibulakan

Atas formations of Oilfield A. The content of clay found in these three formations was

not considered high; however, all three formations contained montmorillonite, which

indicated that these formations all have strong water absorption and expansion

characteristics.

The mud shale found in Oilfield A is relatively dense, but there are fractures in

grains, which have a width of about 5-10 μm. Some samples were filled with calcite

and layered or flaky mixtures of illite-montmorillonite. The layered structure and

intergranular pore joints of these minerals were shown to increase drilling fluid

seepage and, therefore, lead to adverse effects on wellbore stability. Mud shale from
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the Cisubuh formation was shown to have a certain ability to absorb and expand. If

exposed to drilling mud over a long period of time, boreholes in this formation are

more likely to collapse. The Cibulakan atas formation, on the other hand, belongs to

hard mud shale with moderate dispersion and spalling trends. Because of its hard

brittleness, micro fractures are relatively well-developed in this formation.

(2). Through studying the mechanical characteristics of mud shale in the Cisubuh

formation, the mud shale’s mechanical parameters were obtained. The experimental

results were then used to produce 3D geomechanical modeling and calibrations.

The experimental results showed that the uniaxial compressive strength of the

core sample was between 6-35MPa. Under confining pressure, the core compressive

strength increases. In total, the compressive strength was above 40MPa under

10-30MPa confining pressure. In addition, the elastic modulus was about 2-10GPa

under uniaxial conditions, and Poisson’s ratio was about 0.20-0.27. According to the

Mohr-Coulomb criterion, the cohesive force of shale is between 2MPa to 9MPa.

Additionally, the internal friction angle is approximately 41°, and the ability to resist

shear failure is poor. Overall, the tensile strength is between 0.5-3MPa. Compared

with the uniaxial compressive strength data, it is found that the uniaxial compressive

strength is about 12 times that of the tensile strength.

The failure modes of mud shale are primarily due to splitting failures and single

shear failures. Under uniaxial compression, splitting failure occurs most consistently,

and single shear failure occurs mainly under triaxial compression. The rock shows

strong brittleness. In addition, with an increase in confining pressure, the failure
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strength of the test core increases, and the deformation characteristics of the rock

show a transition from brittleness to plasticity under low confining pressure.

(3). Through the introduction of 3D geomechanical modeling and principles of

the shale formation, the scientific nature and effectiveness of 3D geomechanical

modeling of shale have been expounded.

3D geomechanical modeling and working principles of the mud shale formation

were introduced in detail by establishing heterogeneity and porosity. The elastoplastic

3D geomechanical model, therefore, completes the calculations of the 3D stress

distribution and the 3D safe density window of the shale strata under study.

(4). A complete 3D geomechanical model of Indonesia's Oilfield A was obtained

through 3D crustal stress distribution and the 3D security density window.

Through a series of core tests, well logging data, seismic inversion data, the

mechanical parameters of Indonesia's Oilfield A were described in detail. As a result,

the 3D heterogeneous mechanical parameter distribution and 3D pore pressure

distribution were established. The 3D pore pressure was found to range from 0MPa to

56.72MPa, and the 3D pore pressure gradient was found to range from 0.97SG to

1.23SG. Where the Cisubuh and Parigi formations have high pressure zones, the

Cibulakan Atas and MMC formations possess normal pressure gradients.

Using the finite element method, the 3D stress distribution was obtained using

the heterogeneous pore elastic-plastic model. As a result, it was shown that the max

horizontal stress ranged from 6.90MPa to 49.17MPa, while the min horizontal stress

ranged from 6.17MPa to 43.33MPa. The overburden pressure ranged from 7.38MPa
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to 54.88MPa. Overall, overburden pressure>max horizontal stress >min horizontal

stress, and it was determined that Oilfield A belonged to the control range of positive

faults.

Both the 3D collapse and 3D rupture pressures of Oilfield A were calculated by

empirical formulas. Furthermore, the 3D safety density window was visualized. As a

result, it was shown that the collapse pressure gradient ranged from 0.6SG to 1.47SG.

The Cisubuh formation was shown to have the highest collapse pressure, up to

1.47SG. Meanwhile, it was determined that the MMC reservoir formation was stable

although there remains some collapse risk due to shale development in certain well

sections. The fracture pressure gradient was shown to range from 1.71MPa to

2.02MPa.

(5). Comprehensive analysis of wellbore stability and technical countermeasures

for planned well A-10 in was provided.

Engineering preparation before drilling: Based on the calculated values for 3D

crustal stress and the 3D safety density window, the drilling design of well A-10 was

optimized. Indeed, the design took into account the fact that both the Cisubuh and

Parigi formations’ mud shale collapse pressure was high, while the mud shale collapse

pressure in the Cibulakan Atas formation was slightly lower. By designing different

casing structures, the Cisubuh, Parigi and Cibulakan Atas strata were separated. As a

result, well A-10 underwent a four-section structure.

Real-time tracking and drilling management optimization: During drilling, pore

pressure in the Cisubuh and Parigi formations was monitored in real time by a
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mechanical specific energy method. The calculated results were up to 1.33SG. The

pore pressure calculated by the mechanical specific energy method was larger than the

pressure provided by the 3D model of Oilfield A. However, the results of both

calculations show that there is high pressure in the middle lower sections of both the

Cisubuh and Parigi formations.

(6). Model calibration.

The calculated results of the minimum crustal stress present in Oilfield A were

calibrated using the LOT data from the drilled oil field. Both the LOT value and

minimum crustal stress calculations showed relatively few errors, and the maximum

relative error was only 0.02. The minimum horizontal stress direction was about

110±5°NW-SE.

Compared to an average drilling period of 55 days in Oilfield A, Well A-10’s

drilling cycle was 28 days, thereby shortening the drilling cycle by 49%. There were

no records of complex accidents throughout the drilling process. In this way, the

established 3D pore pressure, collapse pressure, rupture pressure, crustal stress and

other models were verified. A confident geomechanical model and a density window

model were finally determined.

In summary, the modeling method provided in this thesis makes full use of core

tests, drilled logging data, and seismic inversion data. A complete construction and

verification of the geomechanical model was provided, and a simulation of the 3D

stress distribution law of mud shale formations was shown as accurately as possible.

By using LOT data from drilling, accounting for complex conditions during the
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drilling process, the drilling completion data, and the actual drilling conditions of

planned wells in the future, the established geomechanical model and safety density

window model have been continuously verified. Therefore, in order to solve the

problem of wellbore instability in mud shale formations, a set of integrated geological

engineering techniques have been provided.

All the experimental, modeling and simulation studies in this thesis have been

applied to Indonesia's Oilfield A. The future work will be to extend them to other oil

and gas fields in the world.
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