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Abstract

The Euler top is a rigid body fixed at its centre of mass and free to rotate without
external torques. Its angular momentum in the space frame is constant. In this thesis,
there are several herpolhode graphs that compare and contrast various configurations
of the Euler top. In addition, an important identity is found that relates the angle of
rotation of the body around the angular momentum vector and the angle swept by
the herpolhode. An explanation for the phenomenon is provided that uses the fact
that the motion takes place on a torus embedded in the SO(8) group of rotations.
This explanation is then confirmed by numerical simulations.

The rattleback is a spinning top that reverses the direction of motion on its own.
Depending on its moments of inertia and shape, it can reverse one or more times or it
can spin a,'t an axis other than the vertical. The equations of mot:lon are linearized énd:
parameter ranges are found such that the rattleback exhibits quélitatively different
behaviours. These parameters are then used in numerical simulations that confirm
the predictions of the linearized equations of motion. The numerical simulations
also indicate that a spin reversal occurs precisely when the wobbling angle is at its

maximum - something that has been observed in real rattlebacks.
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Chapter 1

Euler Top

1.1 Introduction

The Euler top is a rigid body that is ﬁxe& at its centre of mass and is free to move
without external torques.’ The equations of motion were first derived by Euler in 1758
[9]. In 1834, Poinsot [23] showed how the motion of the Euler top can be represented
as an ellipsoid fixed at its centre of mass and rolling on a plane. The curve traced
by the point of contact on the ellipsoid is called the polhode. The curve traced by
the point of contact on the plane is called the herpolhode. In his paper, Poinsot drew
a graph of a herpolhode with inflection points - which happens when the Euler top
is not physically realizable. For a physically realizable Euler top, the herpolhode is
always locally convex and has no inflection points. One of the earliest pictures of
a realistic herpolhode was shown by Routh [24] in 1884. In 1886, Da'rboux [8] was
probably the first f,o prove that a realistic herpolhode has no inflection points, and
another article on the matter was published by Lecornu [16] in 1906. In 1966 Arnold
[1] published an article that treated the Euler top problem using Lie groups. In 1991,
'Moptgomery [21] published a paper that found a relationship between the proje‘ction
angle ¥ and the herpolhode angle £. In 1993 I;evi [17] published an article related
to the Euler top. In his book Cushman [7] corrected a slight error in Arnold’s and
Montgomery’s calculations and claimed that the change in angle ¥ over a period 7

equals the angle ¢ swept by the herpolhode after every other maximum of its radius



- a conclusion that was very close to the actual truth. The author of this thesis, in
collaboration with L. Bates and R. Cushman, has further clarified previous results,
notably by finding the relationship between the angle 1) and the herpolhode angle ¢
for all possible cases. It turns out that for certain conditions, Cushman’s identity
found in [7] is valid while for other conditions, there is a difference of 2 between

the two sides of Cushman’s identity.

1.2 Definitions

A rigid body is a system of point masses such that the distance between every two
points is constant. The mass of the rigid body measures the quantity of matter
present in it, while the Uoluﬁe measures the space that the rigid body occupies.
Define z'-y'-z' coordinate system fixed in the body. The moment of iﬁertz’a Tty

about the z'-y' plane and the moment of inertia about the '-axis are defined as:

Ly = [Jy(z? +y”?)dm

Im/ = fV m/2dm

(1.1)

where dm is an infinitesimal mass element and V is the volume of the rigid body.

The moment of inertia tensor is the 3 x 3 matrix:

(‘ Iml - wlyl -_ wlzl
I=| Iy, I, - Ly (1.2)
i _ wlzl bt ylzl Izl

Since this matrix is symmetric, it is diagonalizable by an orthogonal transformation.
Therefore every rigid body has three mutually orthogonal principal azes along which

the inertia matrix is diagonal. These axes meet at the centre of mass of the body.



From now on, we will assume that z'-y’-2' coordinate system coincides with the three
principal axes of the body. An Euler top is a rigid body that is fixed at its centre
of mass and is free to rotate without external torques acting on it. For example,
the rotational motion of the Earth has some similarities with the motion of an ideal
Euler top. To describe the motion of the body mathematically, choose two coordinate
“frames: one that is fixed in space (the space frame) and one that is fixed in the body
(the body frame). Choose the three coordinatera,xes of the body frame to coincide
with the tflree principal axes. Let I;, I and I3 be the three principal moments
- of inertia (about the z'-, y'- and z'-axes in the body frame, respectively). In every
instant, there is an angular 'uelocz"ty vector [wy,ws,ws] in the body frame that changes
with time. wi,ws and ws are the instantaneous angular velocities about z'-y'- and
#'-axes respectively in the body frame. Each rotation can be represented by a 3 x
3 orthogonal matrix with determinant 1. The matrix must be orthogonal since the
body is rigid and does not deform. The detérminant of the matrix must equal +1

since the motion is continuous. Let A be such a matrix.

aq b1 C1
A= as by ¢y

az bz c3

All such matrices form the SO(3) group of rotations. Let ¢ be the time elapsed since

the beginning of motion. The map ¢ — A(¢) describes the motion of the body.



Body Frame

Space Frame

Figure 1.1: Rotational Motion of a Rigid Body .

The space frame z-y-z is fixed in space. The body frame z'-y'-z' is fixed in the body
and rotates with the body. ',y and 2’ are the three principal axes. The moment of
inertia around 2’ is I3, around ¢’ is I, and around 2’ is I5. The instantaneous
angular velocity around ' is wy, around ¥’ is wy and around 2’ is ws.

1.3 Initial Conditions

One way to parametrize the matrix A(z) is in terms of the Euler angles 8 (angle of
nutation), ¢ (angle of precession) and 7 (angle of spin). Graumann [11] has shown
all differen_t possibilities that can arise but for the purposes of this thesis the reader
can refer to the following Figure 1.2. If the initial orientation of the rigid body is

given in terms of its Euler angles (4,1, ) then the initial matrix A(0) can be found



Original Spin Aids
~

Euler Angle of Nutation

Euler Angle of Precession

Figure 1.2: Euler angles

by using the following identities (see [11]):

.a; = cosfcos¢costy — sin Psinp,
ay = cosfsin¢cost + cospsiny,
ag = —sinfcosy,
by = —cosfcos¢siny — sin ¢ cosp,
by = —cosfsingsini + cos ¢ cosp, (1.3)
bs = sinfsiny,
¢, = sinfcosg,
co = sinfsing,
¢z = cosé.

Once we know the initial orientation of the body, we must apply Newton’s second
law to see how the motion changes with time. This will be accomplished in the next

section, but for now it is important to know that the angular momentum in the space



frame remains constant (due to the lack of external torques). Choose the z axis of
“the space frame to coincide with the constant anglular momentum. If, in addition to
- the three Euler angles, the magnitude L of the constant angular momentum vector
L in the space frame is also known, then the initial w; and ¢ are determined from

the formulas:
wy = %L

Wy; = -3—,
’ 2 (1.4)

wy = 9k

¥; = arctan Z—f
The angle ¥ is the angle between the projection of [a;, az, as) onto the z-y plane and
the z-axis in the space .frame. Call this aﬁgle the projection angle. It measures the
amount of rotation of the body around the angular mon;entum vector L in space
frame. Many authors have shown (see, for example, [7]) that the four variables
w1,ws, ws and ¥ are necessary and sufficient to parametrize the rotation matrix A(¢).
Therefore, knowing [wy, we, ws] and ¢ as funétions of tinzle is sufficient to reconstruct
the motion of the Euler top. Thus, four initial conditions are always needed for

describing the motion of the Euler top: either (wy,ws,ws,?) or ($,,8, L).

1.4 FEuler-Arnol’d Equations
Let L equal the dngular momentum vector of the body in the space frame:

L= A(t) * [I]_wl, Iz&)z, I3LL)3]T (15)



<al,02,a3>

ammasrtrerresrreanenas T

Figure 1.3: Geometrical Representation of ¢
The angle ¥: The angle between the projection of [ay, ag, az] onto the z-y plane and
the z-axis in the space frame

The absence of external torques means that the angular momentum L of the body

in the space frame remains constant:

dL
— =0 1.6
The z-axis in the space frame has been chosen so that its positive direction coincides
with the positive direction of vector L. Let 1 equal the angular momentum of the

body in the body frame:
1= [Ilwl, Izwz, I3w3] (17)

Converting from space frame to body frame coordinates and using the Coriolis The-

orem, equation (1.6) then becomes:

dl
Et' =1x [wl,wz,CU3] (18)



Expanding this vector equation, we get the differential equations that govern the

motion of the Euler Top ( the Euler equations):

Ly = (I~ Iz)waws,
Izd)g = (Ig — Il)w1w3,~ (19)
I3d)3 = (Il - Iz)wlw2.

These three equations can be solved explicitly by using Jacobian elliptic functions
sn,cn and dn (see, for example, [27],[7]). Let I be the second largest moment of

inertia. Then the solution for wy can be expressed using the formula:
wy = Qasn(n(t — ¢)|k) (1.10)

where
(o = Amplitude of wy(t)
n = Time scale coefficient
" ¢ = Time shift coefficient
k = Modulus of Jacobian elliptic functions.
Each of the Jacobian elliptic functions is periodic. When the Buler equations are
;olved, two of the three elliptic functions (sn and cn) have the same period which we
will call 7, while the period of the third one (dn) is 7. The period 7 of sn and cn

can be found with the formula:

T = %K(k) : : (1.11)

. C e o dt
where K (k) is the complete elliptic integral K (k) = [7? by eyt
By themselves, the three Euler equations (1.9) are not sufficient to parametrize the

rotation matrix A(t). When a fourth equation for ¥ is added to the three Euler



. equations, the new system of four equations is called the Euler-Arnol’d equations.
This system then is necessary and sufficient to parametrize A(¢). Shown below is

the fourth equation of the Euler-Arnol’d equations (see [7] for derivation):

5 _ D + Twd)
L2 — [Zw?

(1.12)

The equation for 4 is valid as long as I is the second largest moment of inertia. The

energy £ is an important integral of the Euler equations (1.9):

E = = (Lw? + Lw? + Izw?) (1.13)

N =

- The rotation matrix is computed from the solutions of the Euler-Arnol’d equations

as follows (for derivation, see [7]):

ap b1 ¢

At)= | az by co

as b3 Cs
— Diw
a3 = I
— Jws
b3 - L
— law3
C3 = =55

ap = 4/1—a2cosd,
ay = 4/1—a3sind, T (1.14)

b — __08bzcos+cssind

1 4/1—a2 !
bz — cgcosI—agbssind
4/1-a2 !

g = — ascg cos¥—ba sing

—a? )
1—ag

co = — bg cos9+4-agcs sind )

4/ l—ag
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These equations are valid as long as ag 7 0 (or equivalently, w; # 0). The case when

wy = 0 is trivial.

1.5 Herpolhode

1.5.1 Mathematical Analysis

Poinsot [23] showed that the motion of the Euler top can be represented as an ellip-
soid fixed at the centre of mass of the Euler top and rolling on a plane perpendicular
to the constant angular momentum vector L. This plane is called the invariable plane
II. The curve traced by the point of contact of the rolling ellipsoid on the invari-
able plane is called the herpolhode. Its parametric representation can be obtained
when the solution [wi,ws,ws] of the Buler equations is transformed to space frame
coordinates. Call this-vector [zx,yn,2s]). This is the angular velocity of the body in

the space frame. Here is how the z,(¢) and yp(t) coordinates of the herpolhode are
Herpolhode
Invariable i
Plane !

/
/
L V

Figure 1.4: Invariable Plane and Herpolhode

computed (see [7] for derivation):
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- _ (wl—w—;a) cos 9—(cswa—bsws) sin g
h — 3

Vil
. __ (cawa—bsws) °°s"9+(w1_‘2§#) sind (1.15)
Y = i .

Here E is the total energy of the Euler Top (1.13). The remaining'varia,bles can
be computed from (1.9),(1.12) and (1.14).
If the rotation matrix A(t) is known, then the coordinates of the herpolhode can

be computed using the following formulas:

Ty, = Qwy -+ blw2 + C w3 (1 16)

Yn = Qgwy + bows + cows

The path of the herpolhode always remains in an annular region between two
circles Cpyin and Cippoep. As fhe time ¢ increases, the herpolhode follows a locally
convex curve (when the 3 principal moments_o'f inertia have physically realizable
values) that alternately touches Cpniy and Copgs- Let Tmin D€ the radius of C;m,-n and
Tmaz b€ the radius of Cqe. Cushman and Bates [7] have shown how to calculate

Tmin A0 Tge. If I3.> Iy > I3 then 7., is calculated to be:

: 2 [ L2 L? '
If I < Iy < I3 then 7y, is calculated to be:
2 [, L2 L?
wo = 4] (— — B)(E — = 1.18

When I? — 21, F = 0, the modulus & (and the parameter m = k?) of the Jacobian
elliptic functions equals one. 7, depends on the sign of L? — 21, F and on whether
Ii >1,> I3 or [y < I < Is.

Let Iy > I, > I. If L* — 2L, E > 0, the formula for 7, is (see [7] for derivation):

92 [I2 L?
Tmin = f\/(ﬁ — E)(E - o (1.19)
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If I? — 2I,E < 0, then 7., is given by:

2 L2 L?
i = 24 (2~ BB~ (1.20)

Now let I < I < I5. If L* =21, F > 0, the formula for 7,4, is (see [7] for derivation):

2 [ L? L?
min = =4 (= — E)(E — 21
" L\/ o, ~ PE o) (1.21)
If [? — 21, F < 0, then 7, is given by:
2 | L? L?
min = T4 (557 — — - 22
r L\/(2I2 E)E 5T, (1.22)

Cushman and Bates (7] further prove that the time it takes for the herpolhode to
reach Cpqe twice equals the period 7 of two of the three Jacobi elliptic functions that
are the solutions to the Buler equations (1.9). In addition, numerical experiments

suggest that the time between two successive maximums of the herpolhode radius is

ol

1.5.2 Computing the Herpolhode Coordinates

Let £ be the angle swept by the herpolhode after time ¢, and £(0) = 0. Numerically,
this angle can be computed as follows. Let R(t) = r(t)? = z4(£)? + y»(£)?. Since the
computer prograrﬁ computes discrete points, it is not always possible to determine
whether 7(t) = Tpqs. Moreover, the very time when this happens can be missed
due to the step size. Thus, another approach is taken. Note that all the relative
maximums of R(t) coincide with its absolute maximum (that is, when the herpolhode

moves toward Cras it never starts going back to Cipp, before reaching Crnee first).
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(Likewise, the relative minimums of R(t) coincide with its absolute minimum but
this is not important from computational viewpoint). The computer program tracks
3 consecutive herpolhode points at a'time. Let R(t) at each of these poinf;s be equal
to Ry = R(t),Ry; = R(t — dt) and Ry = R(t — 2dt) where dt is an infinitesimal
change in time ¢. Therefore R; ”leads” Whilé Rg 7trails”. When R; > Rs > Rs
the herpolhode is moving toward the outer circle. At the time when R reaches its
maximum, Ky > R; and Ry > R3. It is at this time that the herpolhode is tangent
to the outer circle and the coordinates are recorded. Afterwards, several logical
true/false switches determine whether the herpolhode touches the outer circle again
(in which case nothing is recorded) and then once again (in which casé the tiie
and coordinates are recorded). The angle swept by the herpolhode is recorded from
the very beginning and at each time step this angle increases by the approp‘riate

amount d€ as determined by the two leading points (Zn1, yp1) and (Tpe, Ynz): dé =

arccos Tp1Tho+Yr1Yh2
AT DICREN

1.5.3 The Herpolhode: Numerical Examples

Shown below are several graphs that can help us understand the motion of the Euler
top. There are four cases to be considered:

1. Iy > Iy > I3 and L2 — 2L,E < 0

2. Iy >I,> I and I? — 2I,bE > 0

3. <y < and I? -2LE <0

4 L<L<Iy and L2 —2L,E >0

For each of these cases, there are three graphs:

‘1. Herpolhode. Note that the motion in all herpolhode graphs is counterclockwise.
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The time that it takes the herpolhode to reach the outer circlé twice is found.

2. |wi,ws,ws] as functions of time. Obviously, the solutions are the Jacobian elliptic
functions sn, cn and dn. ’i‘he period 7 of two of them equals the time it takes the
herpolhode to reach the outer circle twice.

3. Herpolhode angle £ and projection angle ¥ as functions of time. In two cases,
the two graphs almost overlap and the difference (£(t3) — £(¢1)) — (9(7) — ¥(0)) is
zero. In the other two cases the two graphs show different trends and this difference

is +=27.



15

Herpolhode
0.8 & sTART
A
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3.272000
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9.958000
> 00.0 39.525822
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-0.2 - 5.686000
-26.565678
0.4 32.849084
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Figure 1.5: Herpolhode
Parameters:

Principal moments of inertia: Iy = 4,1, = 2.2, I3 = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: § = 15,¢ = 0,9 = 10
Output:

First time when herpolhode radius reaches its maximum: #; = 3.272
Angle swept by herpolhode from ¢ = 0 to t = #;: ¢ (t1)=12.960146 radians
Angle ¢ when ¢ = t;: 9(¢;)=16.250130 radians
Third time when herpolhode radius reaches its maximum: #; = 9.958
Angle swept by herpolhode from ¢ = 0 to ¢t = t3: £(t3)=39.525822 radians
Angle ¥ when t = t5: 9(¢3)=49.099224 radians
Period of Jacobian elliptic functions = #3 — t; = 6.686
Change in herpolhode angle from ¢; to ¢3 = £(t3) — £(;)= 26.565678 radians

' Change in ¥ from #; to t3 = ¥(t3) — 9(t;)= 32.849094 radians
Difference between change in ¢ and change in herpolhode angle = 6.283417 = 27
Value of L2 — 21, E = -6.406595
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Jacobian ELLiptic Functions
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Figure 1.6: Jacobi Elliptic Functions vs. Time
Parameters:

Principal moments of inertia: [y =4,1, = 2.2,I; = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: § = 15,¢ = 0,9 = 10
Calculation of the period 7 of sn and cn:

= | [-D)(I2-2DE)
ko= (I:—I:)(211E_?LZ) = 0.561

n = )/(Iz—I32(2I1E‘—L2) — 1.031 (1.23)

I I I3
r = LK(k)= 6685



Herpolhode Angle and Projection Angle
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Figure 1.7: Herpolhode Angle ¢ and Projection Angle ¥ as Functions of Time
Parameters:
Principal moments of inertia: [y = 4,1, = 2.2, I3 = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: § = 15,¢ = 0,4 = 10
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Herpolhode
1.2 ® staRT
Lol A FIRST MAX
] 2,322000
0.7 11.048027
T 11.233678
0.5
0.2 M rHIRD MAX
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> 0.0+ 33.971615
0.2 34.157978
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Figure 1.8: Herpolhode
Parameters:
Principal moments of inertia: Iy = 4,1, = 2.2, I3 = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: 8 = 40,¢ = 0,7 = 10
Output:
First time when herpolhode radius reaches its maximum: #; = 2.322
Angle swept by herpolhode from t = 0 to ¢ = ¢;: £(¢;)=11.048027 radians
' Angle ¥ when ¢ = #;: 9(t;)=11.233678 radians
Third time when herpolhode radius reaches its maximum: 3 = 7.148
Angle swept by herpolhode from t = 0 to ¢ = t3: £(t3)=33.971615 radians
Angle ¥ when ¢ = t3: 9(t3)=34.157978 radians
Period of Jacobian elliptic functions = t3 —t; = 4.826
Change in herpolhode angle from ¢; to t3 = £(t3) — &(4)= 22.923590 radians
Change in ¥ from ¢; to t3 = ¥(¢3) — ¥(t1)= 22.924301 radians
Difference between change in 9 and change in herpolhode angle= 0.000712
Value of L? — 2I,F = 12.164030
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Jacobtan Elliptic Functions
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Figure 1.9: Jacobi Elliptic Functions vs. Time
Parameters:

Principal moments of inertia: Iy = 4,1, =2.2,[3 = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 40,¢ = 0,79 =10
Calculation of the period 7 of sn and cn:

To—I3)(2[1 E—L2
ko= Ezf—fig&zl_% E; = (0.574

%K(k) = 4824

T

i
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Herpolhode fAngle and Projection fingle
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Herpolhode Angle ¢ and Projection Angle ¥ as Functions of Time
Parameters:
Principal moments of inertia: [} = 4,1, = 2.2,I3 =2
Angular momentum in the space frame: L = 10 -
Initial Euler frame: 6 = 40,¢ = 0,4 = 10
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Figure 1.11: Herpolhode
Parameters:

Principal moments of inertia: I} = 2,1, = 3,I; = 4.8
Angular momentum in the space frame: I, = 2
Initial Euler frame: § = 45,¢ = 0,74 = 10

" Output:

First time when herpolhode radius reaches its maximum: #; = 0.426
Angle swept by herpolhode from ¢ = 0 to ¢ = #: £(¢1)=0.283923 radians
Angle ¢ when t = t;: 9(t;)=0.422922 radians
Third time when herpolhode radius reaches its maximum: ¢; = 28.978001
Angle swept by herpolhode from ¢ = 0 to ¢ = t5: ¢(t3)=16.859516 radians
Angle ¥ when ¢ = t3: ¥(t3)=16.998795 radians
Period of Jacobian elliptic functions = t3 — ¢; = 28.552
Change in herpolhode angle from ¢; to t3 = £(t3) — £(#;)= 16.575594 radians
Change in ¥ from t; to ¢t3 = ¥(t3) — 9(t1)= 16.575872 radians
Difference between change in 9 and change in herpolhode angle = 0.000279

' Value of L? — 21, E = -0.219846 :

21
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Figure 1.12: Jacobi Elliptic Functions vs. Time
Parameters:

Principal moments of inertia: I} = 2,1, = 3,13 = 4.8
Angular momentum in the space frame: [ = 2
Initial Euler frame: 6 = 45,¢ = 0,9 = 10
Calculation of the period 7 of sn and cn:

ko= \/K——X——M-Iz L-3LE) _ () gg]

(Iz—Il)(ZfaE—Lz)
n = (JB=RGREL _ 309
T = 2K(k)=28.553

22
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Figure 1.13: Herpolhode Angle £ and Projection Angle 9 as Functions of Time

Parameters:

Principal moments of inertia: [; = 2,1, = 3,13 = 4.8

Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 45,¢ = 0,9 = 10
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Herpolhode
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Figure 1.14: Herpolhode
Parameters:

Principal moments of inertia: Iy = 2,1, = 3,13 = 4.8
Angular momentum in the space frame: L = 2
Initial Buler frame: 8 = 15,¢ = 20,4 = 30
Output:

First time when herpolhode radius reaches its maximum: ¢;-= 0.978
Angle swept by herpolhode from ¢ = 0 to ¢t = #;: £(t1)=0.657706 radians
Angle ¥ when ¢ = t1: ¥(t;)=1.296771 radians
Third time when herpolhode radius reaches its maximum: ¢; = 18.285999
Angle swept by herpolhode from ¢ = 0 to ¢ = ¢3: £(¢3)=14.449825 radians

Angle 9 when t = ¢5: 9(¢3)=8.805639 radians -
Period of Jacobian elliptic functions = 3 — ¢; =.17.308001
Change in herpolhode angle from #; to t3 = &(t3) — £(¢1)= 13.792119 radians
( Change in ¥ from #; to t3 = J(t3) — P¥(¢1)= 7.508868 radians
Difference between change in ¥ and change in herpolhode angle = -6.283251 = -2
Value of L? — 21, E = 1.299038
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Jacobian ELliptic Functlons
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‘Figure 1.15: Jacobi Elliptic Functions vs. Time
Parameters:

Principal moments of inertia: Iy = 2,1, = 3,13 = 4.8
Angular momentum in the space frame: L = 2
Initial Euler frame: 6 = 15, ¢ = 20, = 30

Calculation of the period 7 of sn and cn: -

= [{=l)QLE-L%) _
ko= (Iz—I;)(L;_zIIE) 0. 285

T = LK(k)=17.308



26

Herpolhode fngls and Projection Angle
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Figure 1.16: Herpolhode Angle ¢ and Projection Angle ¢ as Functions of Time
Parameters:
Principal moments of inertia: Iy = 2,I, =3, I; = 4.8
_Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 15, ¢ = 20,1 = 30
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1.5.4 Discussion of the Numerical Examples

According to Montgomery [21], the difference 9(7) — ¥(0) equals the angle swept by
the herpolhode between two successive maximums of its radius. However, according
to Cushman [7], it is the angle swept by the herpolhode between every other maxi-
mum §(t3) —€(t1) that equals 9(7) —9(0) (where ¢; is the time of first maximum, #; is
the time of third maximum and ¢ is the herpolhode angle swept since the beginning
of motion). The numerical experiments in the previous section suggest that this is

"not always the case depending on the moments of inertia and the initial conditions:

L I1 > Iy > I3 and I? — 21, F < 0 (see Figures 1.5,1.6,1.7)
In this case, {(t3) — &(t1) = 9(7) — 9(0) — 2«

2. Iy > I, > Iy and L? — 2I,F > 0 (see Figures 1.8,1.9,1.10)

In this case, {(t3) — £(t1) = 9(7) — 9(0)

3. L <Iy<Iyand [? - 2I,F < 0 (see Figures 1.11,1.12,1.13)
In this case, {(t3) — £(t1) = 9(7) — ¥(0)

4. I <Ip < I3 and L* — 2I,E > 0 (see Figures 1.14,1.15,1.16)
In this case, £(ts) — &(t1) = 9¥(r) — 9(0) + 2nr
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L. Bates and R. Cushman, in several conversations with the author, have suggested
an explanation for the observed phenomena which will be discussed in the next

section.

1.6 Solid Ball Model

1.6.1 Mathematical Analysis

"To better visualize how the rotations change in time, the solid ball model is used.
To describe a rotation A(t), one needs an axis of rotation and an angle of rotation,
noting tﬂat a rotation of 7 radians is ideintical'to a rotation of —7r radians. The axis
of rotation can be represented by a 3-dimensional unit vector [ry, 73, 73]. When this
unit vector is mulfiplied by the angle of rotation (, a new vector is obtained that has
a magnitude between 0 and 7. Hence each element of SO(3) can be represented as a
3-dimensional point in a ”solid ball” of radius . Topologically, every two opposite
points of the boundary of the solid ball are identiﬁed. Suppose that at a given time

t, we have computed the rotation matrix A(¢). Then the 3-dimensional point of the
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solid ball model is computed as follows (for derivation, see [7]):

trace(A) = ay+by+cs,
C = arccos traceng)—l)

T = %asi—_n‘%,
T ERG (1.27)
ry = %ZS-;-TI%)
T, = 7,
Yr = T2C7
Zr = 7"3C.

Here [ry,72,73] is a vector of norm 1 which specifies the direction of the axis of
rotation, while ¢ indicates the amount of rotation about that axis which can be
between 0 and 7. Thus, the point [z, ¥, zT] completely describes the instantaneous

rotation ét.a time ¢.

1.6.2 Explanation of the Herpolhode Results

While the Solid Ball model describes the motion of the Euler top, this does not mean
that the motion would pass through every point of SO(3). The configuration space
is the tangent bundle T'SO(3) which is a 6-dimensional manifold diffeomorphic to
R3 x SO(3). L = constant is an invariant submanifold in TSO(3) (meaning that if
. the motion started along this submanifold, it would stay there). This submanifold
is 3-dimensional and has the topology of SO(3). The energy E is also constant.
Therefore the level set {E = constant N L = constant} is a 2-dimensional subman-
ifold ir;abedded in SO(3). It is along this invariant submanifold that the motion of

the Euler top takes place. This 2-dimensional manifold is compact and orientable,
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therefore it can be represented as a sphere with 2_;x handles where ’x is the Euler
characteristic of the surface. Since F > 0, the vector field along this manifold is
nonvanishing. Hence the Euler characteristic ¥ of the surface must be zero and so
the surface must be a torus imbedded in SO(3). If the torus is defined abstractly as
the points of a square with opposite sides identified, one cannot distinguish between
the two circles C; and Cy that form the basis of the torus. So the information that
the torus is imbedded in SO(3) is important becaﬁse it allows one to distinguish

between lattitude and longitude, as the next two figures illustrate.

Figure 1.17: Longitudinal circle along the torus
This circle is not the boundary of a disk in a solid torus imbedded in SO(3) and
cannot be continuously deformed to a point

Figure 1.18: Lattitudinal circle along the torus
. This circle is the boundary of a disk in a solid torus imbedded in SO(3) and can be
continuously deformed to a point

Depending on the sign of the value of L? — 2, F and depending on whether
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Iy > I, > Iz or [; < I, < I5, the motion along the torus can be longitudinal or

lattitudinal.

Figure 1.19: Longitudinal motion along the torus

S

Figure 1.20: Lattitudinal motion along the torus

Recall that £(t) equals the angle that the herpolhode has swept after time t.
Case 1: I} > I, > I
1.1: [? — 2, E < 0 (see Figures 1.21,1.22,1.23,1.5,1.6,1.7)

In this case, the motion along the torus is longitudinal and the angle £(%) lags behind

B(t) so that {(¢s) — £(t1) = F(T) — 9(0) — 2.

1.2: L? — 2L,E > 0 (see Figures 1.24,1.25,1.26,1.8,1.9,1.10)

In this case, the motion along the torus is lattitudinal and £(t3) —£(¢1) = 9(r) —(0).

Case 2: I1 < Ih < I



32

2.1: I? — 21, E < 0 (see Figures 1.27,1.28,1.29,1.11,1.12,1.13)

In this case, the motion along the torus is lattitudinal and &(t3) — €£(t1) = 9(1) —9(0).

2.2: I? — 2IL,E > 0 (see Figures 1.30,1.31,1.32,1.14,1.15,1.16)
In this case, the motion along the torus is longitudinal and the angle £(¢) moves

ahead of ¥(t) so that £(t3) — £(¢1) = ¥(7) — 9(0) + 2.

1.6.3 The Torus: Numerical Examples

Shown below are sevéral plots of the pro jections of the torus on the coordinate planes
after some time has elapsed for different parameters. In these numerical simulations,
the torus actually looks like a cylinder. Since it is imbedded in the solid ball SO(3)
of radius m, a point on the cylinder that is 7 units away from the origin is identical
to the diametrically opposite point - hence what looks like a cylinder is actually a

torus. Note the difference between longitudinal and lattitudinal motions.



Torus Projection on X-Y Plane
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Figure 1.21: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: [y = 4,1, =2.2,[3 =2
Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 15,9 = 0,4 = 10



Torus Projection on X-Z Plane
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Figure 1.22: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: Iy = 4,1, = 2.2,I; = 2
Angular momentum in the space frame: L = 10
Initial Buler frame: 6 = 15,¢ = 0,9 = 10
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Torus Projection on Y-Z Plane
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Figure 1.23: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: [; = 4,1, =2.2,[3 =2
Angular momentum in the space frame: L = 10
Initial Euler frame: 6 =.15,¢ = 0,9 = 10
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Torus Projection on X-Y PLane
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Figure 1.24: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: [y = 4,1, =2.2,I3 =2
Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 40,¢ = 0,% = 10



Torus Projection on X-Z Plane
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Figure 1.25: Solid Ball Model for the Euler Top
Parameters: ,
Principal moments of inertia: [; = 4,1, =2.2,13 =2
Angular momentum in the space frame: L = 10
Initial Euler frame: 6 = 40,¢ = 0,9 = 10
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Torus Projection on Y~Z PlLane

Figure 1.26: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: Iy = 4,1, =2.2,I3 = 2
Angular momentum in the space frame: L = 10
Initial Euler frame: 8 = 40,¢ = 0,4 = 10
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Torus Projection on X=Y Plane
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Figure 1.27: Solid Ball Model for the Euler Top
. Parameters:
Principal moments of inertia: I; = 2,1, = 3,13 = 4.8
Angular momentum in the space frame: L =2
Initial Euler frame: 6 = 45,¢ = 0,4 = 10
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Torus Projection on X-Z Plane
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Figure 1.28: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: [y = 2,1l = 3,13 = 4.8
Angular momentum in the space frame: L = 2
Initial Euler frame: 6 = 45,¢ = 0,4 = 10
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Torus Projection on Y-Z PlLane
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Figure 1.29: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: Iy = 2,1, = 3,[3 = 4.8
Angular momentum in the space frame: L = 2
Initial Buler frame: 8 = 45,¢ = 0,9 = 10
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Torus Projection on X-Y Plane

-2.0- S "

~3.0 .

Figure 1.30: Solid Ball Model for the Euler Top
Parameters:
Principal moments of inertia: [y = 2,1 = 3,13 = 4.8
Angular momentum in the space frame: L =2
Initial Euler frame: 8 = 15, ¢ = 20,4 = 30
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Torus Projection on X-Z Plane
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Figure 1.31: Solid Ball Model for the Euler Top
' Parameters:
Principal moments of inertia: [y = 2,1, = 3,13 = 4.8
Angular momentum in the space frame: L = 2
Initial Euler frame: 6 = 15,¢ = 20,7 = 30
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Torus Projection on Y-Z Plane
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Figure 1.32: Solid Ball Model for the Euler Top
_ Parameters:
Principal moments of inertia: I; = 2, = 3, I3 = 4.8
Angular momentum in the space frame: L = 2
Initial Euler frame: § = 15, ¢ = 20,9 = 30
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Chapter 2

Equations for a Rigid Body Rolling on the Plane

2.1 General Equations

The variables necessary to describe the motion of a rolling rigid body on the plane
are [ul,u2,u3,w1,w2,@3]. Here w;,ws and ws are the magnitudes of the angular
velocities about the three principal axes z/,9' and 2’ respectively. wu;, us and us are
the components of a unit vector that determines the point of contact between tirle
rigid body and the plane. When energy dissipation and slipping are ignored and
using Newton’s second law, the equations of motion of a rolling rigid body on the

plane are derived to be (see for example ( [6], [13]) for derivation):

U = uXw
(2.1)

T+ Msx (wxs) = Msx($xw)+Msx(wxs)xw+Mgsxu+ (Iw) Xw
where
I = Moment of inertia diagonal matrix
M = Mass of rigid body
g = Downward Acceleration due to Gravity
s = Inverse of th'e Gauss map (3-dimentional vector [z,y, 2] that is a function of
[ug, ug, us] arici depends on the shape of the rigid body.)

The differential equations for u are:

'U:]_ = Uz — Ugly
p = Ugy — U3 (2.2)
Uy = UiWs — Ui
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The equations for the angular velocities [wi,ws,ws] are more complicated and it
is useful to store intermediate values. The vector s(u) = [z,y, 2] is a function of
[u1,u2,us]. The physical meaning of the vector [z,y,2] is that it is the ”path”
followed by the point of contact along the surface of the rigid body when no rotations
or translations are accounted for. The left hand side Iw + Ms X (w x s) of (2.1) is

T where T is the matrix:

Iy + My? + M2? —Mzy —Mzz
T = —~Mzy I+ Mz®+ Mz —Myz (2.3)
~Mzz —Myz I3 +Ma:2+My2‘

The inverse of matrix T is:

Iolg 4 JoRgy + IsRez + Mz?R Mazy(Is + R) Mzz(Ip + R)
e
o Mazy(Is + R) II3 + It Rey + IsRy. + My?R Myz(Iy + R) (2.4
Mazz(Iz + R) Myz(I1 + R) IiIz 4+ I1Ryz + IoRyy + M22R)
where
D = Inlady 4+ M((I1l2(22 + y2) + InIa(e? -+ 22) + Toda(y? + 22)) + M(I122 + Ioy? + I322)R
R = M@ +y% 427
Rey = -IM-(“:2 + y2) (2.5)
Ry = M(z2 -} z2)
Ry = M(y? + 2?)

Now we’ll compute the terms of the right hand side of equation (2.1). The term

Tw X w is:

[(Iz - I3)LU2&)3, (.[3 — Il)w1w3, (Il - Iz)w1CU2] , | (26)

The term Mgs X u equals:

[Mgyus — Mgzug, M gzuy — Mgzug, M gzus — Mgyu) (2.7) '
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The term Ms X (w X s) X w equals:

M (ywp?z — wasy® — Ywiws® + 2wi1we + wawez?® — 2ws%y)

M (2ws?z — waw 2% — 2wew1y + Bwewsy + wWiwsT? — Tw1%2) (2.8)

M (zwr 2y — wiwox? — Twswsz + Ywawi 2 + wewry? — ywsz)
The three terms above can be added Ms X (w X 8) X w+ Mgs X u+Iw X w and

we get:

2 — 2ws?y + gyus — gzug) + (Io — Is)waws '

M (yw2?z — wowzy? — ywiws + 2wiWeT + Wawe2

M (zw3?z — wawy 2% — 2waw1y + Twawsy + wiwsz? — zwi %z + gzuy — gzus) + (I — [1)wiws

M (zw1y — wiwsa? — Bwawsz + Ywswi Z -+ waw1y? — ywaz + gzug — gyur) + (I — I)wiws
(2.9)
Finally, we must compute the term Ms X (§ X w) of the right hand side of equation

2.1).

The term Ms X (3 X w) then equals:

| M{y(ws — gun) — 2w — b))

M (z(yws — Zws) — z(Zws — Ywy)) . (2.10)

I M(z(2w; — Zws) - y(Yws — Zws)) |

Equation (2.1) can be written in matrix form as Tw = S where the 3-dimensional
vector S is:

M(ywzzz — wawsy? — ywiwsz + 2Zwiwat + wawez® — zws2y 4+ gyug — gzuz) + (I2 ~ I3)wowsg + M(y(dws — gwy) — z(2wy — 2wz))
M(2w32e — wawy 22 — zZwaw1y + swowsy + wiwgz? — sw 2z + gruy — gzug) + (I3 — Iy)wiws + M(2(Jws — fw2) — z(dwz — Jwi))

M(zwi?y — wiwpa? — swswaz + ywswiz + wawiy? — ywaa + gzuz — gyur) + (11 — Ip)wiws + M(z(iwy — dws) — y(jws — 2ws))
(2.11)

Finally equation (2.1) can be written as w = T71S where 77! is (2.4) and S is
(2.11). Note that this equation is valid for any rigid body rolling on the plane. The
vectors [z,y, 2] and [Z,y; 2] depend on [ug, us, us] and are determined by the shape

of the body.
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2.2 Examples of Rolling Rigid Bodies

2.2.1 Sphere

Assume the centre of mass of the sphere coincides with its geometric centre. In this

case, the inverse Gauss map is the identity map: )

r = U T = ’U;]_
zZ = ug’ z = ’U:3

If the sphere is homogeneous (uniform mass distribution) or symmetric (spheri-
cally symmetric mass distribution) the three principal moments of inertia are equal.
In this case, Graumann [11] has developed the following equations in terms of Euler

angles.

© = R(vgcos¢+vysinfsing)

Y = R(vgsing — vysinf cos¢)
é = Vg
b= o
_ i (2.13)
Vo= vy
’U'g = —VgVp sin @
'U.qS — v (vy ;:IJ% cosd)
?f¢ — Y (vg S—iz% cos9)

Another example is the Chaplygin sphere which has its centre of mass at its
- geometric centre, but the three principal moments of inertia are not equal. In this
case, too, Graumann [11] has found the differential equations in terms of Euler

angles parametrization. Unfortunately, these equations are several pages long and
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seem unsuitable for stability analysis or numerical computer program.

2.2.2 Disk

- For reference, these are the equations for a rolling disk in terms of Euler angles

derived by Graumann [11] *

£ = R(cos@sinbvg — cosfsin gy + sin uy)

Y = R(sin¢sin vy — cosf cos vy — cos puy)

0 = (7

¢ = vy '

(2.14)

Y o= vy

. Avﬁ> cos @ sinf—MgR cos 9—(G+MR2).(’U¢ “+vg cos O)vg sin &
Yo = AFMER?

. vp(Cluytvg cos 8)—2Avy cos b)
Uy = Asiné

. (CH+MR%)vgvgsin g __ g cos 8C (uytvg cos 8)—2Avg cos @
Uy = CHME? - Asin0

2.2.3 Rattleback

Let the body fixed reference frame be centred at the centre of mass of the rattleback,
with the three axes coinciding vﬁth the three principal'moments of inertia. This
~ configuration has been used by almost all authors (for example, [26],[6],[13]). Let
the positive z-axis be vertically upward. Assume that the surface of the rattleback

is parabolic with equation:

1 1
z = '2-0‘11132 + 0122y + 50’22?/2 —h ‘ (215)

1There is a typographical error on page 135 of [11]. The denominator of the equation for vy
should be Asin @ as it is here, instead of A + MR?




50

//////////////////////

Figure 2.1: Rattleback Spinning on the Plane

Reference
Frame

Here 011092 — 02, > 0, oy1 > b, 022 > 0 since the surface is convex. In addition,
h > 0. For example if 041 = 0.24, 015 = 0.12,099 = 0.56, h = 1.0 then the surface of
the rattleback in three dimensions looks as displa&ed in Figure2.2. The upward unit
normal [u1, U2, u3] at any point (z,y,z) on the surface is given by the formula:

[—o112 — 012y, —0107 — 092y, 1] (2,16)

u=
\/1 + (011% + 0129)? + (0127 + 0299)?

Therefore

UL = —(011w+012y)u3 (2.17)

Uy = —(012% + o92y)us

Solving these equations for z and y, we get s(u) which is the inverse of the Gauss

map:
— —0’2. 2% +o'§ 2U2
z = (o11022—0%, )us
— o12U1—011U

vy = (011022—0%,)us (2'18)

o22uf —2012u1us 01103
2(0‘110’22—0‘%2)'&%
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Figure 2.2: The Shape of the Rattleback

Now we can also find [&,, 2]: The vector § can be computed in the following way:.

oo (usws—usws) | o12{uswi~uiws) (oa2u1—0c12us ) (vaws —uswy)
— +

r = (o11022—07,)us (o11022—0%,)ug 011022—0%,)us
j = o12(uaws—usws) _ o1 (uswi—uiws) + (g11u2—010u1) (Urwe —ugwy ) (2.19)
(o11022—0%,)us (o110220—0%, )us 01102202, Jul )

. =' Ul 4 U2,
z u3$ usy



Chapter 3

Rattleback

3.1 Historical Perspective

3.1.1 Definitions

A rattleback is a spinning top that has the unusual property of reversing the direction
of spin on its own. As it spiris, it begins to rattle then miraculously starts spinning
in the opposite direction - hence the name rattleback. Some rattlebacks reverse their
~ spin directioﬁ several times. Other rattlebacks, if spun in the unstable direction,
reverse the direction of motion once, then continue spinning in the stable direction. If
spun in the stable direction, however, they do not reverse their spin. Such rattlebacks
are said to exhibit a spin bias in one directiofi. The first known rattlebacks were
found by archaelogists when digging in ancient Celtic ruins ([25],[11]). That is why
a rattleback is sometimes called a Celtic stone. Another name for a rattleback that

is mentioned in the literature occasionally is a wobblestone.

3.1.2 Popular Articles

In 1979, Walker [25] published a popular article about the rattleback. This article
had very little mathematics but tried to explain why the rattleback reverses its spin.
In 1985, Boardman [5] wrote an article that describes in detail how to make a rat-

tleback. The article begins with a poem dedicated to the rattleback:
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Behold the mysterious celt,
With a property that amuses.
One way it will spin,

The other way it refuses.

3.1.3 Scientific Articles

The first rigorous mathematical model of the rattleback was developed by G.T.Walker
in 1896 [26]. The model ignored the effects of slipping and friction. In his article,
Walker proved that stable motion in one direction is possible without energy dissipa-
tion by using a method similér to modern-day linearization and eigenvalue analysis.
The two equilibrium poinfs that he found have been named the Walker equilibria.
Subsequent authors ([15], [6], [13]) also lineariéed the equations of the rattleback
about the Walker equilibiria and analyzed the stability of the dynamical system. A
portion of this thesis also takes this approach and examines the signs of the real
parts of the eigenvalues. In addition, Walker’s prediction of stable motion in one
direction for some parameters is confirmed by numerical experiments done in this
thesis. Chronologically, the next paper on the rattleback was written by Herglotz
.in 1941, and is mentioned by Magnus [18] and Astapov [4] but there is no other
information where this article can be found. In 1974, Magnus [20] w;vrote a short ar-
ticle where he had a diagram with stable and unstable regions in the ws-h parameter
space. In 1980, Astapov [4] developed a model of the rattleback with the following
assumptions: no energy dissipation, elliptic paraboloid shape. In his arti-cle, the
body fixed frame was along the 3 axes of symmetry of the paraboloid while the

moment of inertia matrix was not diagonal. Only one other article ([14]) assumes
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thiL;: configuration. In all other articles (as well as in this thesis) the body fixed
frame is along the three principle moments of inertia while the paraboloid is rotated.
Astapov [4] then linearized the equations, used Routh-Hurwitz criteria and derived a.
stability diagram in the ws — h space similar to the one in the article of Magnus [20].
Chronologically, the next paper on the rattleback was written by Kane and Levinson
[14] in 1982. The rattleback shape was assumed to be ellipsoid and friction was
taken into account. The paper describes how to write a computer program for the
rattleback and gives several numerical examples. Kane and Levinson demonstrated
numerically that without energy dissipation, infinitely many reversals occur while
Wifh energy dissipation there is only one reversal. However, as this thesis and many
articles ([26], [6], [15], [13]) have demonstrated, for some parameters there can be
only one reversal even when energy is conserved. In 1985, Karapetyan [15] proved
that for certain rattlebacks, as the energy increases a Hopf bifﬁrcation occurs and one
of the two Walker equilibria becomes stable. In this thesis, numerical experiments
will confirm the occurrence of Hopf bifurcation for some parémeters as predicted by
Karapetyan [15]. In 1986, Bondi [6] wrote a comprehensive article on the rattleback.
He did not assume energy dissipation to be present and the rattleback shape was
assumed to be an elliptic paraboloid. He linearized the equations of motion and drew
an important stability diagram where he classified the rattlebacks into Type 1 and
Type 2 rattlebacks (later authors ila,ve named the third region of the Bondi diagram
a "Type 0” rattleback). Bondi [6] proved the following:

A Type 0 rattleback exhibits multiple reversals and the wobbling motion is always
unstable. The eigenvalues corresponding to both Walker equilibria have positive real

parts regardless of the energy. The author of this thesis gives a numerical example of
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& Type 0 rattleback. Such a rattleback has been observed. A Type 1 rattleback can
exhibit two distinct types of behaviour, depending on its initial spin (energy). For
lower energies, it reverses direction many times and the wobbling motion is always
unstable (Zone 0 behaviour). For higher energies, it reverses direction once and the
wobbling motion decays to zero. In this thesis, several numerical experiments show
all the possibilities that can arise for a ’I“ype 1 rattleback (see also similar graphs
in [10]). Bondi [6] did not elaborate much on the Type 2 case, but future authors
([10],[18]) have studied this type in more detail. According to them, there are several
possibilities depending on the energy. If the energy is low, the wobbling motion is
unstable for both Walker equilibria. If the energy is between two critical values, at
most one reversal occurs after which the wobbling motion decays and one of the two
Walker equilibria is stable. For high energies, one reversal occurs aftér which the
wobbling motion decays toward an axis different than the vertical axis. New equi-
libria appear and their stability has not yet been studied in full. The author of this
thesis gives some numerical examples that can provide a hint ébout the complexity
of the Type 2 rattleback behaviour. In 1988, an article by Garcia and Hubbart [10]
appeared where they summarized previous research, ran several numerical simula-
tions and even compared the results with an actual rattleback. It seems that they
were the first to plot numerically the motion of a rattleback that spins about an
axis other than the vertical (and so there is a new stable equilibrium point while the
Walker equilibrium is unstable - indiéating the possibility of a pitchfork bifurcation
which was later mentioned also by Hermans [13]). In this thesis, the author too
has plotted numerically such motion about a tilted axis. According to Garcia and

Hubbart [10], previous researchers have tried to explain the rattleback phenomena,
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in two ways. G.T. Walker [26], Bondi [6] and others have argued that spin reversal
can be explained solely by the intrinsic inertial and geometric properties of the rat-
tleback while ignoring the effects of slipping or dissipation - a view shared by the
author of this thesis as well. On the other hand, Kane and Levinson [14] have ar-
gued that energy dissipation must be taken into account in order to fully explain the
behaviour of the rattleback. In 1994, Graumann [11] wrote a Masters thesis about
the rattleback. He demonstrated theoretically how the rattleback equations can be’
written in tefms of Euler angles. Hermans [13] in his Ph.D. thesis in 1995 linéarized
the equations of motion about the Walker equilibria (something that has also been
done in this thesis) and predicted that not only Hopf but also pitchfork bifurcations
are possible. The numerical work in this thesis ha:s indeed shown the presence of

pitchfork. bifurcations for some parameter values.

3.2 Linearization about the Walker equilibrium

Given a system of differential equations, an equilibirium point is a solution for Which
the vector field vanishes. For the rattleback, an important equilibrium point is
the Walker equilibrium: [uy,us, us,wy,ws,ws) = [0,0,1,0,0,ws]. Physically, it corre-
sponds to the rattleback rotating with constant angular velocity ws about the vertical
axis with point of contact [z,y,2] = [0,0,—h]. Strictly speaking, when the rattle-
back is moving there are actually two Walker equilibria corresponding to angular
velocities tws. ' An equilibrium is asymptotically stable if a solution close to it

approaches it as t — oo. Such an equilibrium is also called a sink. An equilibrium

1When the rattleback is at rest there is of course only one Walker equilibrium corresponding to
wg = 0.
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is unstable if a solution close to it does not remain close to it for all time. When a
rattleback reverses its direction of spin, this means that the Walker equilibrium is
unstable for that direction. In order to determine the local stability properties of
the Walker equilibrium, we must linearize the nonlinear equations of motion.

The matrix T (2.4) evaluated at the Walker equilibrium is:

(I + M2~ 0 0
0 (L+Mz22™" 0 ' (3.1)
. -1
_ 0 0 L™ |

For linearization [I,0]0,77"] (a 6 X 6 matrix where I is the identity 3 x 3
matrix) must be multiplied by the gradient of the vector three-dimensional vector S
(2.11) with respect to the 6 variables [uy, ug, us, wy, we, ws), evaluated at the Walker

equilibrium (a 6 X 6 matrix). The 6 x 6 matrix for the overall system before

multiplication by matrix [I, 0]0,7""] then is:

0 w3 0 0 -1 0
—l3 0 0 1 0 0
0 0 0 0 0 0
. (3.2)
Mg (2hw§ +g) d42 0 ___12_3_Mho(;_ L d45 0
ds1 —M212 (0hw? +g) 0O dsq Mhegaws
i 0 0 0 0 0 0 ]
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where
6§ = 01109 — 0%2
%;/I'(hwg(022 — 0y1) — 9011 + ghd)
d45 = Mh2w3 -+ (I2 - I3)LU3 _ ——tha‘;. & (33)

o
»
Il

ds1 = (hwi(o9s = o11) + goes — ghd)
d54 = '—Mhz(.U3 -+ (Ig — I]_)wg + M—’}%M
The product of [I,0[0, 7] (a 6 x 6 matrix where I is the identity 3 x 3 matrix)

with the matrix (3.2) (a 6 x 6 matrix) then equals a 6 x 6 matrix:

( 0 . - W3 0 -1 ]

0 0
—ws3 0 0 1 0 0
0 0 0 0 0 0
Moa(2hust+e) A (34)
W daz 0 _a(IIfM‘g‘cﬁ ) das 0
MU‘ (Zh 2+ T1oW.
ds1 _——_ST—J(IIZ-f-]\;h )g) 0 dsg '6M(I 2h+Mh3) -0
i 0 0 0 0 0 0 |
. where ,
. d _ M(wi(os2—011)—go11+ghd)
42 = 6(T1+Mh?)
d — Mh2w36+(Iz—I3)w36--Mh022w3
45 S(I1+Mh2) (3.5)
d _ M(hwg (022 —0'11)+90'22—gh6)
51 = §(I2+Mh32)
d - —Mh2w35+(I3 ~—IYwszd+Mhoyiws
54 = 6(I2-FMA2)

While this appears to be a 6-dimensional vector field, in reality it is restricted
to 5% x R® (since due to the rolling constraint [uy,us, us] is a unit vector and so an

element of the 2-sphere S2). This is the reason why there are zeros along the sixth



row and the third column. The characteristic polynomial is:

-2 w3
—Ww3 -
0 0

Mo'12!2houza +g)
S(Iy +DThE) daz

0 0

where

dsg =

Moy (2hwi+
ds1 o S dss

0 0 -1 0
0 1 0 0
= 0 0 0
0 _thg%_ Y d 0
(11 +Mh%) 45
Mhajow
) JZIQ'th%) - )\ 0
0 0 0 -\
M(hw?(oa2—011)—go11+ghd)
S(L+MMR2)
Mh2w36+(12—I3)w36—Mh0'22w3
§(Ti+Mh2)
M (hw?(oag—011)+gon—ghs)
(T2 MR2)
—Mh2wsS+(Ia—I1 )wsd-+Mhoiiws
~ 5(Ia+Mh2)

Expansion of the determinant along the third and sixth rows yields:

-

_ws

Moy (2hwl+g)
3 11+ MAZ)

AZ

where

dzga =
dgg =
dyg =

dgs =

w3

T

da2

0
1

_ _Mhojaw Y
61I1+Mh%i

-1
0

daq

Moy2(2hwi-4g)
da1 T 6 (I +MR2) da3

Mh
_J(Iz-ngh'g‘) - A

M(hw?(oa2~011)—go11-+ghd)
S(I1-+MA2)
Mh2w3d+(Ia—I3)ws6—Mhogaws
d(I1+Mh?)
M(hw2(o22—011)+go2—ghd)
- 6(I24-Mh?)
~Mh2ws -+ (I3—J1 Y)wsd+Mhoiyws
§(I2+Mh?)
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(3.6)

(3.7)

(38)

- (3.9)

There are two eigenvalues equal to zero. The reason for the first one has been

explained - the vector field is restricted to S? x R3. The second eigenvalue zero

occurs because there are infinitely many equilibria along the line [0, 0, 1,0, 0, ws] for

all real w3. The other four eigenvalues are the roots of a fourth-order polynomial.
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3.2.1 Low Energy Analysis (w3 = 0)

For simplicity, let us first consider the case when ws = 0. Physically this means that

the rattleback is not moving. The 4 by 4 determinant (3.8) then becomes:

- 0 0 -1
0 - 1 0
=0 (3.10)
Moizg M(—go11+9hs) -\ 0
ST+ MA?) 3T +MR?)
M(goa2—ghé) _  Moiag 0 =\
5(12+Mh2) §(Io+Mh2?)

M —_ Mg(—o114hd) _. Mg(o22—hé) _ Mgo
Now let A = “Tz_l%-)-, B = 75?11_*_}\2-}7’2) , C= 6(.3'2-:_12\4%2) and D = —5—(3_%2—) Then

the characteristic equation is:
M+ (C—B)X+AD—-CB=0 (3.11)

Using the notation of Hermans [13] page 62, this equation can be written in the

following way: 2

M+ 79202+ =0 (3.12)
with
— Mg((12+Mh2)(%‘L"‘h)'F(Il—I—Mhz)(-"%—h))
T = T F AT 0 179) (3.13)
— M32g2A
T4 = TR (T, 1 0h2)
. where
o11 O22 0192
A=(5—hl5 -0~ (5 3.14
(G =W~ = () 14

2There is a typographical error in equation (8.10) of Hermans [13]: the sign in front of v, must
be positive.
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3.2.2 High Energy Analysis (w3 # 0)
The determinant (3.8) can be written as follows:
—'—)\ w3 0 -1
—ws —A 1 0
Aws? + B Cws? 4+ D Ews—X\  Fuws

GCL)32 +H Iw32 +J KCL)3 ng —A

When expanded, the determinant becomes equal to:
M+ (—E - L)wsX® + (-C + BEL+ G — FK + 1)w} + (H — D))X2+
(-4+AK+CL—-EG—-FI~I—FE—L)w+ (=B +BK + DL — EH — FJ — J))ws\
+(AI + AL — CG ~ OK + EI + BL — FG — FK)wi-+
(AJ+BI+BL—CH - DG~ DK + EJ — FH)w? + (BJ — DH)

Using the notation of Hermans [13] on page 74, this can be written as follows:

P = X+ a1 2 + a2X® + azA + ay x (3.15)
—Mhoiz(li—I
ar = 5(I1+MZ;§EI:+AZ)}L2)"‘U3
P T P (3.16)
as = wia
s = Qaw§+ Baw? + 74
where ,
__ Us=D)(I3—I1)+(MR)? A—Mh((I—I3) (222 —h)+ (11 —Ts) (T —h))
e = (T MR (T 72
By = Mg((I3—I2) (T2 —h)-+(I3—I1 ) (L —h)+2MhA)
4 7 (L FMR2)(T+MR2)
= ag+1
> ' (3.17)
= M((Is+MR) (L —h) (T M2 (22 b))
T2 = -+ MEZ) (T +IR2)
— M252A
V4 = GAMR) GARD)

A = (F-h)(F-h)— ()
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Besides Hermans [13], Karapetyan [15] has also arrived at this result.

3.2.3 Bifurcations

The characteristic equation (3.15) has four roots and since the coefficients are real,
all complex roots must be conjugate pairs. The signs of the real parts of the roots
yield information about the local stabiiity properties of the Walker equilibrium. If
all roots have negative real parts, then the Walker equilibrjum is locally stable. If at
least one root has a positive real pért, then the Walker equilibrium is locally unstable.
Besides the signs of the positive real parts, it is also important to know how the roots
m;)ve in the complex plane as the parameters change. If a change in parameters
causes a pair of complex roots to cross the imaginary axis with nonzero velocity,
then a Hopf bifurcation occurs. If before the Hopf bifurcation the equilibrium was
unstable (some roots were with positive real parts), after the Hopf bifurcation it
becomes stable (all roots are with negative real parts). A pitchfork bifurcation can
occur when all roots have negative real parts, and after a parameter change, a real
root crosses the imaginary axis at the origin and becomes positive. In this case,
the Walker equilibrium becomes unstable and two new equilibria appear (they are
locally stable at least initially). More information on the theory of bifurcations can
be found in [12]. “

Applying the Routh-Hurwitz c.riteria to the characteristic equation (3.15) , we see
that necessary and sufficient conditions for all roots to be in the left complex half-

plane (that is, for one Walker equilibrium to be stable) are:

ay > 0,a3 > 0,a4 > 0,a3(a1as — ag) — aay > 0 (3.18)
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Or, assuming Iy > Ip:

ws <0
0w} + Paws + 44 > 0 (3.19)

(72 — Ba)wi —v4>0 -

The inequalities (3.19) can be combined as:
w(ogw +9) > (o — B)w — . > 0 (3.20)

where w = w? > 0. -

Graphically, condition (3.20) can be displayed as a parabola P(w) = w(agw + s)
and a line Q(w) = (72 — Ba)w — 74 in the w-f(w) plane. Whenever the line is above
the w-axis and below the parabola, the Walker equilibrium [0,0,1,0,0, —ws] is stable;
in all other cases it is unstable. If the line Q(w) is never betweeri the w-axis and the
parabola P(w), both Walker equilibria are unstable regardless of the energy (Type
0 rattleback). When the slope of the line (v, — ;) is positive, a Hopf bifurcation
is possible when the line crosses the w-axis (Type 1 rattleback). Afterwards, it
can cross the parabola once (Type 24 rattleback) or twice (Type 2B rattleback)
depending on the graph of the paiabola in which case pitchfork bifurcations leading

to new equilibria arise.

3.3 Numerical Simulations

While Bondi [6] classifies rattlebacks according to their shapes, Hermans [13] classifies
" them according to energy and moments of inertia. An overall review of types of
rattlebacks and their behaviours is presented below. Slipping and friction are ignored.

All numerical simulations used the following parameters: M = 1LL,h=1,g=1. The
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time step size was chosen to be 0.001 for most cases. In the numerical simulations’
that follow,' two important angles are graphed as functions of time: the spin angle T’
and the wobble angle 7. The spin angle measures how much the rattleback has spun
around the body fixed vertical axis. When the spin angle reaches local maximum
or minimum, this means that the rattleback reverses its dirgction of motion. The
spin angle is computed using the following formula: I‘ = EL‘;:_“:Q—’;%“—’I- This formula was
derived from a similar formula in [14]. The wobble angle measures the angle between
the absolute vertical axis and the body ﬁxed ve_rtical axis. It is between 0 and 90
degrees. Note that when the wobble angle is maximum, a spin reversal occurs. This
is co;lﬁrmed by the numerical simulations in the subsequent pages. The wobble anéle
can be computed as follows (see also [14]): 7 = arccosus. At the beginning of the
discussion of each type of rattleback, there is a diagram based on Bondi’s model [6].
Instead of Iy, Iy, I3, 011, 012, 022, M, h, g Bondi uses new parameters that are derived
from the shape of the rattleback and the moments of inertia. These parameters are

o, B,7,0,®,¥. Bondi then comlﬁuted k and /s, the signs of which determine the type
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of the rattleback. Bondi’s parameters are computed using the following equations:

o = HLEMR2 .
Mh?
ﬁ —  D+Mh?
— T Mh?
Y = i3
0 = %(0'11-1-022-*-\/(011 ~ 022)? + 407,) (3.21)
@ = %(0‘11'{'0’22— \/(0’11 —0'22)2+40'%2)
— g11—022
v A/ (o11—022)2+402,
o = 1—0.5(a+ﬂ—27)(®+§>)+(a—gég—y)@@—o.s(a—ﬁ)(@—«1>)\1/
[
o= 2—(0+8)—(a+B—)(0+2—20%)
a0

We have included these values as well for reference with each diagram and the reader

can refer to Bondi’s article [6] for more detailed explanation.

3.3.1 Type 0 Rattleback

1. E=FE,m
The rattleback is not inoving. There is only one equilibrium point:

[0,0,1,0,0,0].

2. E> Epn

The rattleback has two equilibrium points: [0,0,1,0,0, +ws] These are the Walker
equilibria. They are both unstable. The rattleback reverses direction infinitely many
times (unless of course the initial conditions are exactly at the Walker equilibrium in
which case the rattleback never reverses its direction). Multiple reversals have been
observed in real rattlebacks. A sample set of parameter values that would yield a

Type 0 rattleback are: [y = 4,1, = 1,I; = 3.5,09; = 0.25,012 = 0.05,095 = 0.25
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Bondi DiLagram
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Figure 3.1: Type 0 Rattleback: Bondi Diagram

Parameters:

M = 1,h = l,g = 1,,[1 = 4:, .[2 = 1,I3 = 3.5,0‘11 = 0.25,0’12 = 0.05,0'22 = (0.25

Bondi Parameters:

©=03,8=02,¥=0,a=5/8=2,7=35k=1442, 1= 0.283

(In this case the slope of the line Q(w) is negative and the equilibria are always

unstable). The following graphs show how the spin angle and wobble angle change

with time for a Type 0 rattleback with the above parameters:



Spin fingle as a Function of Time
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: Figure 3.2: Type 0 Rattleback: Spin Angle vs. Time
Parameters: M =1,h=1,g=1,I; =4,I, = 1,I; = 3.5, 011 = 0.25, 535 =
005, 092 = 025, tstep = 0.005
Initial conditions: u; = 0.05,uy = 0,ws =0,ws = 0,w3 = 0.5
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WobblLe fingle as a Function of Time

45.0 1 ! L (] 1 ] ] - I 1 ] 1

40.0

N \] [ (&
o ul o n
(@]
L

Wobble fAngle [degrees)
o

10.

T ' '1.. : T
0.0 50.0 100.0 i50.0 200.0 250.0 300.0

" Time [seconds]

Figure 3.3: Type 0 Rattleback: Wobble Angle vs. Time
Parameters M=1,h=1,9=1,1=4,I=1,I=35,01; = 025,015 =
0.05, 092 = 0.25, t5ep = 0.005
Initial conditions: u; = 0.05,us = 0,w; = 0,ws = 0,ws = 0.5
Note: There are two frequencies: a high frequency and a low beat frequency of the
local maximums. A spin reversal occurs at time when there is a local maximum of
the low beat frequency (see Figure 3.2).



3.3.2 Type 1 Rattleback

BondiL Dlagram

— T & T T T I 7 T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.4: Type 1 Rattleback: Bondi Diagram
Parameters:
M=1,h=1,g=1,fl 4: I2—1 13—35 0'11—024: 0'12—012 0'22—056
Bondi Parameters:
©=06,2=02V=-08a=5L=27=35x= 1.008, 1 = —0.633

1. B = By
The rattleback is not moving. There is only, one equilibrium point:

[0,0,1,0,0,0].
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2. Bpin < BE< Eg
The rattleback has two equilibrium points: [0,0,1,0,0, 4ws] These are the Walker

equilibria. They are both unstable.

3. E> FEy
At é high enough energy, one of the two Walker equilibria becomes stable. Its
eigenvalues cross tﬁe imaginary axis and a Hopf bifurcation occurs. Thefe are still
two Walker equilibria [0, 0, 1,0, 0, =ws], but one of them is stable. The other Walker
equilibrium is still unstable and will remain so. Now the ra,ti;leback exhibits a bias in
one direction. If spun in the unstable direction, it will change direction on its own.
Walker [26] described this behaviour in one of the earliest papers on the rattleback.
He thus proved that stable motion is possible without friction or dissipation. Some
sample parameter values that would yield a Type 1 rattleback are: Iy = 4,1, =
3,15 = 2,011 = 0.25,015 = 0.05, 092 = 0.25. Other parameter values: [y = 4,I, =
1,13 = 3.5,011 = 0.24, 013 = 0.12, 095 = 0.56. The following graph shows the relative

positions of line @(w) and parabola P(w) in this case:
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Type 1 Rattleback
Relative Posltions of Line and Parabola

/ -
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1.5 /
1.0
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_l'o,o.o'ofl 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
w372
Figure 3.5: Type 1 Rattleback: Routh-Hurwitz Stability Criteria
Graphs of Parabola P(w) and Line Q(w)
Parameters:
M = 1, h= l,g = 1,I1 = 4;,_[2 = 1,I3 = 3.5,0’11 = 024, 019 = 012, O92 = 0.56
Hopf Bifurcation: wz = —0.6488856842

It is evident from this figure that a change in stability occurs when ws = —0.6488856842.
The following graph shows how the eigenvalues of the characteristic equation changé

when ws changes from -0.5 to -0.6488856842 to -1:
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Etgenvalues
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Figure 3.6: Type 1 Rattleback: Eigenvalues Crossing the Imaginary Axis
Parameters:
M= 1, h = 1,g = 1,]1 = 4, Ig = 1,]3 = 3.5,0’11 = 024, 012 = 012, 099 = 0.56
Hopf Bifurcation: ws = —0.6488856842 .
Note: A pair of eigenvalues with negative real parts cannot be seen in each of the
. graphs due to the scale chosen.
Left Graph: ws = —0.5, eigenvalues:—0.077 % 1.4924, +0.002 = 0.5521
- Middle Graph: ws = —0.6488856842, eigenvalues:—0.097 & 1.565%, 0 = 0.649;
Right Graph: ws = —1, eigenvalues:—0.14 & 1.7833, —0.01 & 0.9143

It is evident that depending on the initial spin, the Type 1 rattleback can exhibit
two qualitatively different behaviours. For small .spin,_the Walker equilibria are
unstable and the wobbling motion increases with time. Numerical simulations did
detect 'an increase in the wobbling motion; however, even for large values of time

elapsed at most one reversal was observed. Therefore, the numerical simulations
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suggest that as ¢ — oo the rattleback spins in the stable direction while wobbling
forever. Shown below are numerical simulations that demonstrate the instability of

the Walker equilibria for small initial spin. For similar numerical experiments, see

also [10].
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Figure 3.7: Type 1 Rattleback, ws = —0.5
Parameters: M=1,h=1,g=1,I1 = 4,,[2 = 1, I3 = 35, 11 = 024:, O12 = 0:12, T99 =

0.56, ttep = 0.001
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Wobble Angle as a Function of Time
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Figure 3.8: Type 1 Rattleback, ws = —0.5
Parameters: M=1,h=1,g=1,I; =4, = 1,13 = 3.5,01; = 0.24, 015 = 0.12, 09y =
0.56, tsep = 0.001
Initial Conditions: u; = 0.05,uy = 0,w; = 0,w; = 0,ws = —0.5
Note: Even though the wobbling motion appears to be unstable, after a long
numerical simulation it eventually leveled off while the spin angle did not reverse.
This may indicate that while locally the equilibrium is unstable, globally the orbit
does not end at the other equilibrium and the rattleback wobbles with a
: near-constant amplitude
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Type 1 Rattleback

Hobble Angle (degrees!

- S T
.0 150.0 200.
Time [secondsl

Figure 3.9: Type. 1 Rattleback
Graph of solution of linearized equation: y = 4]e®%0% cos 552t
Recall from Figure 3.6 that a +0.002 + 0.5524 is a pair of eigenvalues corresponding
to the parameters given in Figure 3.8. Therefore, this figure is very similar to
Figure 3.8
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Spin Angle as a Function of Time
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Figure 3.10: Type 1 Rattleback,ws = 0.5
Parameters: M=1,h=1,g=1,I1 = 4,1, = 1,13 = 3.5,041 = 0.24, 015 = 0.12, 099 =
0.56, Z5ep = 0.001
Initial Conditions: u; = 0.05,uy = 0;w; = 0,wy = 0,w3 = 0.5
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Wobble fingle as a Function of Time
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Figure 3.11: Type 1 Rattleback, ws = 0.5
Parameters: M=1h=1,g=1,I; =4,I, = 1,13 = 3.5,011 = 0.24, 015 = 0.12, 099 =
0.56, tgsep = 0.001 g .
Initial Conditions: u; = 0.05,u3 = 0,w; = 0,wy = 0,ws = 0.5

However, for high initial spin a Hopf bifurcation occurs and one of the two Walker
equilibria becomes stable. The rattleback exhibits a spin bias in one direction and

when it starts moving in that direction, the wobbling decays:
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Figure 3.12: Type 1 Rattleback, wz = —1.2
Parameters: M=1h=1,g=1,I; =4, = 1,I; = 3.5,01; = 0.24, 015 = 0.12, 095 =
0.56, tsep = 0.001

Initial Conditions: uy = 0.05,us = 0,w; = 0,wy = 0, w; = —1.2
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Hobble fAingle as a Function of Time
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Figure 3.13: Type 1 Rattleback, ws = —1.2
Parameters: M=1,h_=1,g=1,.[1 4: Iz =1 I3 = 3. 5 O11 = 0.24 0’12 =0.12 0'22 =
0. 56 y tstep = 0.001 _
Imtlal Conditions: u; = 0.05,us = 0,w; = 0,wy = 0,ws = —1.2
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' Figure 3.14: Type 1 Rattleback,w; = 1.2
Parameters: M=1,h=1,g=1,y =4,I, =1,I; = 3.5,001 = 0.24, 040 = 0.12, 0gp =

0.56, tezep = 0.001
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Wobble fingle as a Function of Time
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Figure 3.15: Type 1 Rattleback, ws = 1.2
Parameters: M=1,h=1,g=1,Iy = 4,1, = 1,13 = 3.5,015 = 0.24, 015 = 0.12, 099 =
0.56, ts1ep = 0.001
Initial Cenditions: u; = 0.05,u2 = 0,w; = 0,ws = 0,ws = 1.2



3.8.3 Type 2 Rattleback

BondlL Dlagram

0.14 L
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Figure 3.16: Type 2A Rattleback: Bondi Diagram
Parameters:
M= l,h = 1,g = 1,]1 = 4, Iz = 3,I3 = 2, 11 = 024:, 019 = 0.12,0‘22 = (.56
Bondi Parameters:
©=06,2=02VY=-08a=5F=4,7=2=—0.050, = —1.133

1. F = E’min
The rattleback is not moving. There is only one equilibrium point:

[0,0,1,0,0,0].
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2. Bpin < E< By
The rattleback has two equilibrium points: [0,0,1,0,0, +ws] These are the Walker

equilibria. They are both unstable.

3. Eg < E< Ep,

One of the two Walker equilibria becomes stable. Its eigenvalues cross the imag-
inar& axis and a Hopf bifurcation occurs. There are still two Walker equilibria.
[0,0,1,0,0, 4ws], but one of them is stable. The rattleback exhibits a bias in one

direction, as is evident from the following numerical simulations.
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Spin Angle as a Function of Time

-3000.0

—8000.0- \\\\\\\\\\\\\\\\\
-9000.0 | \\\\\\\\\
-12000.0 | ' \;\\\\\\\

-15000.0 T T T T T
0.0 100.0 200.0 300.0 400.0 500.0
Time [seconds]

Spin Angle [degrees]

Figure 3.17: Type 2A Rattleback, ws = ~0.5
Parameters:
M=1h=1,g=1,I; = 4,I, = 3, I3 = 2,093 = 0.24, 05 = 0.12, 093 = 0.56, tzep = 0.001
Initial Conditions: u; = 0.05,uy = 0,w; = 0,ws = 0, w3z = —0.5
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HWobble Angle as a Function of Time

5-0 2 1 1 ] (] ) 1 1 1

4.0 4 L

Wobble fingle [degrees]

i

T
400.0 500.0

i

1 * T T
200.0 300.0
Time [sseconds]

. i
0.0 100.0

Figure 3.18: Type 2A Rattleback, ws = —0.5
Parameters: , :
M=1,h=1,g=1,[1 = 4,.[2 = 3, I3 = 2, 011 = 024;, 019 = 012, J99 = O.56,t3tep = (0.001
Initial Conditions: u; = 0.05,u2 = 0,w; = 0,w; = O,w3 = —0.5
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Figure 3.19: Type 2A Rattleback,w; = 0.5

Parameters:

87

M=1h=1,g=1,1; =4,I; = 3,3 = 2,091 = 0,24, 075 = 0.12, 099 = 0.56, 1 = 0.001

Initial Conditions: u; = 0.05,us = 0,w; = 0,ws = 0, w3 = 0.5
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HWobble fingle as a Function of Time
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Figure 3.20: Type 2A Rattleback, ws = 0.5
Parameters:
M=1,h=1,g=1,f1 = 4, I2 = 3,.[3 = 2, g1 = 024, J19 = 012, O99 = O.56,tstep = 0.001
Initial Conditions: u; = 0.05,us = 0,w; = 0,wy = 0,ws = 0.5
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4. Bp, < E < Ep,

When the energy is above Ep,, two eigenvalues of the one stable Walker equilibrium
are both real and negative. One of these eigenvalues crosses the imaginary axis at the
origin, and a pitchfork bifurcation occurs. Four new equilibria appear in addition
to the two Walker equilibria. Both Walker equilibria are now unstable. Of the
four new equilibria, two are stable and the other two are unstable. The rattleback
exhibits bias in one direction and spins at an axis other than the vertical. For some |
rattlebacks, no further bifurcations of the Walker equilibrium occur. The following

graph displays the relative positions of line Q(w) and parabola P(w) in this case:
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Type 2 Rattleback
Relotive Posltlons of Line and Parabola
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Figure 3.21: Type 2 Rattleback: Routh-Hurwitz Stability Criteria
Graphs of Parabola P(w) and Line Q(w)
Parameters: M=1h=1,g=1I; = 4,1, = 3,13 = 2,011 = 0.24, 015 = 0.12, 093 = 0.56
Hopf bifurcation: w3z = —0.3429971703
Pitchfork bifurcation: ws = —1.214417405

The following eigenvalue graphs demonstrate numerically that the pitchfork bi-

furcation at wz = —1.214417405:
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Etgenvalues
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Figure 3.22: Type 2 Rattleback: Eigenvalues for 3 different ws
These three graphs from left to right demonstrate the following numerical values:
Leftmost graph: ws = —1.213,eigenvalues: —0.008,—0.0273, —0.013 & 1.585¢
Middle graph: ws = —1.214417405,eigenvalues: 0, —0.036, —0.013 & 1.5863
Rightmost graph: ws = —1.215 ,eigenvalues: +0.002, —0.038, —0.013 = 1.583;

The following numerical simulations show how the rattleback behaves for different

initial spins.
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Spin fAngle as a Function of Time
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Figure 3.23: Type 2A Rattleback, ws = —1.5
Parameters:
M=1,h'=1,g=1,.[1 = 4:, I2 = 3,.[3 = 2, 011 = 024, O19 = 012, 099 = 0.56,t$tep = 0.001
Initial Conditions: u; = 0.05,uy = 0,w; = 0,wp = 0,ws = —1.5
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Wobble fingle as a Function of Time
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Figure 3.24: Type 2A Rattleback, ws = —1.5
. Parameters:
M=1,h=1,g=1,.[1 = 4:, Ig = 3,I3 = 2, o111 = 024, J19 = 012, O99 = O.56,7_fstep = 0.001
Initial Conditions: u; = 0.05,u2 = 0,w; = 0,ws = 0,ws = —1.5
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Figure 3.25: Type 2A Rattleback,ws = 1.5

Parameters:
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M=1,h=1,g=1,11 = 4, .[2 = 3,_[3 = 2, 011 = 024:, 012 = 012, 099 = '0-56,tstep = 0.001
Initial Conditions: u; = 0.05,us = 0,w; = 0,wy = 0,ws = 1.5
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Wobble Angls as a Function of Time
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Figure 3.26: Type 2A Rattleback, ws = 1.5
: Parameters:
M=1,h=1,g=1,[l = 4:, I2 = 3,[3 = 2,0’11'= 024;, 019 = 012, 099 = O.56,tstep = (.001
Initial Conditions: u; = 0.05,u = 0,w; = 0,wq = 0, w5 = —1.5
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Other possible parameters for Type 2A rattleback are: I; = 40,1, = 10,13 =
35,0’11 = 0.24:,0'12 = 012, Og9 = 0.56. Or: _[1 = 40,.[2 = 10,.[3 = 35,0’11 = 0.25,0'12 =
005, 099 = 0.25.

5. B> Ep,

At an even higher energy (F > Ep,), a new pitchfork bifurcation occurs for some
values of the parameters and now there are a total of ten equilibria. Example:
Iy = 50,1, = 40,13 = 20,011 = 0.24,015 = 0.12,095 = 0.56,%5 = 0.3, 4 = —0.001.
Note that in this last example,the rattleback would be in ” Type 1” region of Bondi’s
diagram which is clearly not the case. The following graph displays the relative

‘ positions of line and parabola in this case:



Figﬁre 3.27: Type 2B Rattleback
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Figure 3.28: Type 2B Rattleback
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3.4 Calculation of the Rotation Matrix A(t) and Translation

Vector v(t) for the Rattleback

Solution’ of the differential equations for [uy,us,us] and [wy,ws,ws] would not be

sufficient to find the exact motion of the rattleback. At any moment of time, the

rattleback’s position can be described by its orientation in space (given by a 3 x

3 orthogonal matrix A(t)) and a translation of its centre of mass (given by a 3-

dimensional vector v(t)). The matrix A(t) satisfies the following equation:

0 —ws
A=A ws 0
| —w2 wy
Let the components of A(t) be:
— ar b
A(t) =1 as b
az b3

Wo

0

C1
Co

C3

]

(3.22)

(3.23)
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The components of A(t) can be found as follows:

dl = bl(l)3 — Cile
Gy = byws — Cotuy
Ci3 = b3(.d3 — Cglsg
61 = Cwy — G1s
62 = Coli — GQoWs . (324)
63 = Cgwy — ags
Cfl = a1y — b1w1
dz = Qoly — b.zwl
(f3 = QO3wy — b3w1

Now let the translation vector be [v1, vs,v3]. Its components can be found as follows:

’U'l = —MT— bly — 12
Uy = —Q9X — bzy — CoZ (325)
'ljg = —Qagxr — b3y — C3Z

Here [z, y, #] is the inverse of the Gauss map, depending on [uy, ug, us] In conclusion a,
complete set of differential equations for the rattleback consists of 18 equations to be
solved simultaneously: find [u;, ﬁz, ug], (w1, wg, ws], A(t) (9 equations) and [v1,vs, vs)].
Then if the rest position of a point on the rattlebéck is  (q1,¢2,43), its position

(p1,p2,p3) after time ¢ can be found using the equations:

P = aq+bige+ g+ v ,
P2 = agqr + bags + cogs + s - (3.26)
Ps = a3q1+ bags + c3q3 + U3



Chapter 4

Conclusion

4.1 New Results for the Euler Top

Somewhat surprisingly, thi;'s thesis has demonstrated that even for a centuries-old
problem such as the Euler top there are new mathematical identities to be discovered.
In collaboration with L. Bates .and R. Cushman, the author of this thesis has found
that the difference (£(¢3) — £(¢1)) — (9(7) — 9(0)) can equal 0,27 or —27-depending
on the parameters chosen. An explanation for.the phenomenon is provided in this
thesis. The explanation is based on a subtle observation about how the motion takes

place on a torus imbedded in SO(3).

4.2 New Results for the Rattleback

Here is a summary of the new results for the rattleback that have been discovered
in this thesis:

o There are more numerical simulations and graphs than in all previous rattleback
papers combined.

e The fumerical simulations indicate that for a Type 0 rattleback, spin reversal
occurs at the time of the local maximum of the lower Beat frequency of the \;vobble
angle.

e For Type 1 rattleback, when the energy is low the numerical simulations show that
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the rattleback does not reverse infinitely many times, as Bondi [6] or Garcia and
Hubbart [10] imply. When the rattleback starts moving in the stable spin direction,
the local maximums of the wobble angle asymptotically approach some constant
angle. In practice, this means that for low energies a Type 1 rattleback spins in the
stable direction while wobbling forever.

e Hermans [13] describes rattlebacks with two or ten equilibria, depending on the
relative positions of the line and parabola that emerge from the Routh-Hurwitz
stability criteria. In this thesis, a new configuration is found that yields siz equilibria.
A rattleback with six equilibria is called Type 2A rattleback, to distinguish it from

a rattleback with ten equilibria - Type 2B rattleback.
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Appendix A
Computer Program for the Euler Top

The computer program that ran the simulations was written in FORTRAN 90 and
is supplied in this appendix. There are two files to be compiled and linked:
”euler.f90” (code lines from PROGRAM EULER to END PROGRAM EULER)
?subroutines.f90” (code lines from MODULE SUBROUTINES to END MODULE
SUBROUTINES).

On most machines, compiling and linking can be accomplished with commands sim-
ilar to the following:

90 subroutines.f90 euler.fo0

This compiles and links the ﬁles, then creates an executable file. On UNIX ma-
chines the name of the executable file is ”a.out”. The input variable;s and ini-
tial conditions are entered in a separate text file ”data” in the following order:
L, L, I3, L, 6;, i, s, dt,ty. Once the nine numbers for file "data” are entered with
spaces. between theﬁl, executing the file ”a.out” produces two output files: ”outputl”
and ”output2”. The file outputl has 12 columns: £, wy, wy, ws, ¥, £,7,Zh, Yn,Tr, Ur, Zr.
Here t is time, [wy, wa, ws] are the components of the instantaneous angular velocity in
‘the rotating frame (the solutions of the Euler equations). 1 is the proje.ction angle.
§ is the angle swept by the herpolhode and r is its radius at a time t. [zh, yn] are
the coordinates of the herpolhode points, while [z,,y,, 2,] are the 3-D coordinates of
the rotation using the solid ball model. These quantities can then be plotted using a

standard graphics package. For example, here are the commands used in MATLAB
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to produce a herpolhode graph:

>> load(’outputl’);
>> x=outputl(:,8);
.>> y=outputl(:,9);

>> plot(x,y)

The file output2 has the following entries: ty,&(t1),9(t1), ts, &(¢3), ¥(ts), 7 = &3 —
- 1, €(ts) — €(t1), 9(ts) — B(t), (ts) ~9(t) — ((ts) — £(t1)), L — 2L, E. The numbers

in this exact order can be seen to the right of each herpolhode graph in this thesis.



The lines on this page should be written in file ”euler.f90”. .

PROGRAM EULER
USE SUBROUTINES

IMPLICIT NONE

OPEN (UNTT=100, FTLE="data’)

READ(100,%) A,B,C,L,THETAO,PHIO,PSIO,H,TF

CLOSE (UNIT=100)

CALL INITIAL

T=0.0D0

OPEN (UNIT=210,FILE=’outputl’)

OPEN (UNIT=220,FILE=’ output2’)

DO WHILE (T.LE.TF)

CALL RUNGE

CALL HERPOLHODE

CALL SO3

WRITE(210,310) T,Wi,W2,w3?TﬁETA1,THETA_HERPOLHODE,&
RADIUS, HERPOLHODELD, HERPOLHODE2D, R1, R2, R3'
ENDDO

WRITE(220,%) Ti,H1,TH1,T3,H3,TH3,DT,DH,DTH,DIFF,L1
310 FORMAT(12(F6.3,2X))

END PROGRAM EULER.
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All the lines from here on should be written in a file ”subroutines.f90”.

MODULE SUBROUTINES
IMPLICIT NONE

REAL(8) ,PUBLIC:: T,H,A,B,C,L,THETAO,PHIO,PSIO,AL,A2,A3,&
B1,B2,B3,C1,C2,C3, THETAL, W1, W2, W3, PI, HERPOLHODELD , &
HERPOLHODE2D , THETA_HERPOLHODE, RADIUS , DELTAL , XPOINTL , &
YPOINT1,XPOINT2,YPOINT2,XPOINT3, YPOINT3 ,R1,R2,R3, &
THETA2,TF,E,T1,T3,H1,H3,TH, TH3, DT, DH, DTH, DIFF, L1, &
RMAX , RMIN ' '
REAL(4) ,PUBLIC:: VECTOR114,VECTOR124,VECTOR214,%
VECTOR224
LOGICAL,PUBLIC: : TIME_TO_EXIT=.FALSE. SWITCHi=.TRUE.,&
SWITCH2=.FALSE. ,DELTA1SWITCH=.FALSE. &
DELTAO1SWITCH=.FALSE.
"REAL(8) ,PRIVATE: : WiDOT1,WiDOT2,W1DOT3,W1DOT4,W2D0T1,W2D0T2, W2DOTS, &
W2DOT4,W3DOT1, W3DOT2, W3DOT3, W3DOT4, &
THETA1DOT1 , THETA1DOT2, THETA1DOT3 , THETA1DOT4

CONTAINS

FUNCTION WiDOT(W1,W2,W3)
REAL(8) WiDOT,Wi,W2,W3

W1iDOT=(B-C) *W2*W3/A
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END FUNCTION WiDOT

FUNCTION W2DOT(W1,W2,W3)
REAL(8) W2DOT,Wi,W2,W3
W2D0T=(C~A) *WixW3/B

END FUNCTION W2DOT

FUNCTION W3DOT(W1i,W2,W3)
REAL(8) W3DOT,W1,W2,W3
W3DOT=(A-B) *W1%W2/C

END FUNCTION W3DOT

FUNCTION THETA1DOT(Wi,W2,W3)

REAL(8) THETA1DOT,W1,W2,W3

IF ((L**2-(A*W1)*%2) .NE.Q) THEN

THETA1DOT=Lx* (B*¥W2%*2+CxW3%%2) / (L#*2—~ (A*xW1) *%2)
ELSE |

TIME_TO_EXIT=.TRUE.

ENDIF

END FUNCTION THETA1DOT

SUBROUTINE RUNGE
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! Fourth order Runge-Kutta solver of the diffefential

! equations defined in MODULE FUNCTIONS.

! INPUT VARIABLES:

| REAL(8) H (STEPSIZE)

! INPUT/OUTPUT VARIABLES (UPDATED IN THE SUBROUTINE) :

I REAL(8) T,Wl,W2,W3,THETAL1,A1,A2,A3,B1,B2,B3,C1,C2,C3
! All the above variables are defined as REAL(8) ,PUBLIC

| in MODULE VARIABLES1.

! stk stk sk sk stk skt sk ok sk sk skok sk sk sk sk stesk skesk kst sk stk s sk skesk sk sk sk sk sk sk sk sk sk sk e st ok sk sk sk sk st ok sk ok sk ok

W1DOT1=H+W1DOT (W1, W2,W3)
W2DOT1=H+W2DOT (W1, W2, W3)

W3DOT1=H*W3DOT (W1,W2,W3)
THETA1DOT1=H*THETA1DOT (W1, W2, W3)
W1DOT2=H*W1DOT (W1+0. 5DO*W1DOTL, W2+0 . 5DO*W2DOTL, &
W3+0 . 5DO*W3DOT1)
W2DOT2=H*W2DOT (W1+0. 5DO*WADOT1 , W2+0 . 5DO+H2DOTL , &
W3+0.5D0*W3DOT1)
W3DOT2=H#W3DOT (W1+0 . 5DO*WiDOT1 , W2+0 . 5DO*W2DOTY , &
W3+0 . 5D0*W3DOT1) |
THETA1DOT2=H*THETA1DOT (W1+0 . 5DO*W1DOT1 , W2+0 . 5DO*W2DOTY , &

W3+0.5D0*W3DOT1)
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W1DOT3=H*W1DOT (W1+0.5D0*W1D0OT2,W2+0 .5D0*W2D0T2, &
W3+0 . 5D0*W3DOT2)

W2D0T3=H*W2D0T (W1+0.5D0*W1D0OT2,W2+0 . 5DO*W2D0T2, &
W3+0.5D0*W3D0T2) |
W3DOT3=H+W3DOT (W1+0.5D0*W1D0OT2,W2+0 . 5DO*W2D0T2, &
W3+0.5D0*W3DOT2)

THETA1DOT3=H+THETA1DOT (W1+0.5D0*W1D0T2, W2+0 . 5DO*W2D0T2, &
W3+0.5D0*W3D0T2)

W1DOT4=H*W1DOT (W1+W1DOT3,W2+W2D0OT3, W3+W3DOT3) -
W2D0T4=H#W2DOT (W1+W1DOT3,W2+W2D0T3, W3+W3DOT3)
W3DOT4=H*W3DOT (W1+W1DOT3,W2+W2D0T3, W3+W3DOT3)

. THETA1DOT4=H*THETA1DOT (W1+W1DOT3,W2+W2D0OT3, W3+W3DOT3)

T=T+H
Wi=Wi+(W1DOT1+2.0DO*W1DOT2+2.0DO*W1DOT3+W1iD0OT4) /6.0D0
W2=W2+(W2D0T1+2.0D0O*W2D0T2+2 . 0DO*W2D0T3+W2D0OT4) /6. 0DO
W3=W3+(W3DOT1+2. 0DO*W3DOT2+2 . 0DO*W3DOT3+W3DOT4) /6 .0DO
THETA1=THETA1+(THETA1DOT1+2.0DO*THETA1DOT2+2.0D0*&

THETA1DOT3+THETA1D0OT4)/6.0D0

A3=A%W1/L
B3=BxW2/L
C3=C*W3/L

A1=(DSQRT (1-A3%%2))*DCOS (THETA1)
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A2=(DSQRT (1-A3*%2) ) *DSIN(THETA1)

B1=-(A3+*B3*DCOS (THETA1)+C3*DSIN(THETA1)) /DSQRT (1-A3*%2)
B2=(C3*DCOS (THETA1)-A3+B3*DSIN(THETA1) ) /DSQRT (1-A3%%2)
C1=-(A3*C3+DCOS (THETA1) ~B3*DSIN(THETA1)) /DSQRT (1-A3%%2)

C2=-(B3*DCOS (THETA1) +A3%C3*DSIN (THETA1) ) /DSQRT (1~A3%*2)
END SUBROUTINE RUNGE

SUBROUTINE HERPOLHODE

!**********#**************************************f************'
!
! Using the output from SUBROUTINE RUNGE and SUBROUTINE ROTATE,

! SUBROUTINE HERPOLHODE does the following:

11 Computes the new 2-D point of the herpolhode curve

I x-coordinate HERPOLHODE1D HERPOLHODE1

HERPOLHODE2D = HERPOLHODE2

! y—coordinate

1 2. Updates the angle of the new vector relative to the

! starting vector (this angle is equal to THETA_HERPOLHODE)

I 3. Finds the 2 péints when the radius of the herpolhode

' is a maximum (with 1 maximum between theé 2 points skipped)
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! First point: (VECTOR114,VECTOR124)

I Second point: (VECTOR214,VECTOR224)

!

! 4. Finds the angle (DELTA1) between the 2 points
I

D skeosfeokesfe sk s e sk sfooiske e ok stesfe sk st s sk s skl s sk sfesfe sk sk sk sk s sk sk s sk sk sfookske s sk sk ok sk s ok sk s sk st sk sk stk ek ok

REAL(8) RPOINT1,RPOINT2,RPOINT3

IFINDING THE HERPOLHODE COORDINATES FROM ROTATION MATRIX
HERPOLHODE1D=A1%W1+B1*xW2+C1*W3
HERPOLHODE2D=A2*W1+B2*W2+C2*W3

IEND EINDING THE HERPOLHODE COORDINATES FROM ROTATION MATRIX
RADIUS=SQRT (HERPOLHODE1D#**2+HERPOLHODE2D**2)
XPOINT3=XPOINT2

YPOINT3=YPOINT2

XPOINT2=XPOINT1

YPOINT2=YPOINT1

XPOINT1=HERPOLHODE1D

YPOINT1=HERPOLHODE2D

IF (((XPOINT1#*2+YPOINT1%#2)* (XPOINT2%*2+YPOINT2%*2) ) .NE.0) &
THETA_HERPOLHODE=THETA_HERPOLHODE+DACOS ( (XPOINT1*&
XPOINT2+YPOINT1#YPOINT2) /DSQRT ( (XPOINT1#*2+YPOINT1%%2) *&

(XPOINT2#*2+YPOINT2%%2)))
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IF (SWITCH1.OR.SWITCH2) THEN
RPOINT1=XPOINT1%*2+YPOINT1%*2
RPOINT2=XPOINT2%*2+YPOINT2%%2
RPOINT3=XPOINT3**2+YPOINT3%*2

IF ((RPOINT2.GT.RPOINT1).AND. (RPOINT2.GT.RPOINT3)) THEN
IF(SWITCH1.AND. (.NOT.SWITCH2)) THEN

VECTOR114=XPOINT2

VECTOR124=YPOINT2

T1=T
H1=THETA_HERPOLHODE

TH1=THETA1

bELTAOiSWITCH=.TRUE.

ENDIF

IF (SWITCH1.AND.SWITCH2) THEN

SWITCH1=.FALSE.

SWITCH2=.FALSE.

VECTOR214=XPOINT2

vECTDR224=YPDINT2
DELTA1=ACUS((VECTORl14*VECTOR214+VECTDR124*VEC&OR224)/&

SQRT ((VECTOR114**2+VECTOR124#%2) * (VECTOR214%*2+VECTOR224%%2) ) )

T3=T
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H3=THETA_HERPOLHODE

TH3=THETA1

DT=T3-T1

DH=H3-H1

DTH=TH3-TH1

DIFF=DTH-DH

DELTAlSWITCH=!TRUE.

ENDIF

IF ((.NDT.SWITCHi).AND.SWITCH2) THEN
SWITCH1=.TRUE.

SWITCH2=.TRUE.

ENDIF

IF (SWITCH1.AND.(.NOT.SWITCH2)) THEN
SWITCH1=.FALSE.

SWITCH2=.TRUE.

ENDIF

ENDIF

ENDIF

END SUBROUTINE HERPOLHODE

SUBROUTINE S03

D skestesfeskeske ek sk oo skesk sk skeske stk skeok sk sk sk skesksi s s s ok sk sk o skook sk o sk ok st sk sk s sk skeok sk s ok sk sk sk s ok sk o sk sk sk ok



! Using the output of SUBROUTINE ROTATE, SUBROUTINE SO3
! calculates the point (R1,R2,R3) and angle (THETA2) that
! is equivalent to the matrix of rotation, according to

! the solid ball model.

! seskeokesteokoskok sk ok stk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sksksk sk stk s sk sk s sk st ok sk sk sk sk sk ok sk sk sk sk ok

REAL(8) TRACE

TRACE=A1+B2+(C3
THETA2=DAC0S (0.5D0* (TRACE-1.0D0))
R1=THETA2x* (B3-C2)/(2.0DO*DSIN(THETA2))
R2=THETA2%(C1-A3)/(2.0DO*DSIN(THETA2))
R3=THETA2+% (A2-B1)/(2.0DO*DSIN(THETA2))

END SUBROUTINE S03

SUBROUTINE INITIAL
IINPUT: A,B,C,L,THETAO,PHIO,PSIO,
I0UTPUT: A1,A2,A3,B1,B2,BB,Ci,CQ,CS,Wi,W2,W3,THETA1 AT T=0

I0UTPUT: E,L1,RMIN,RMAX

PT=4 .0DO*DATAN (1 .0DO)
THETAO=(PI/180.0D0) *THETAQ
PHTO=(PI/180.0D0)*PHIO

PSIO=(PI/180.0D0)*PSIO

117



118

A1=DCOS (THETAO) *DCOS (PHIO) *DCOS (PSI0) -DSIN(PHIO) *DSIN (PSIO)
A2=DCOS (THETAO) *DSIN (PHI0) *DCOS (PSI0)+DCOS (PHIO) #DSIN (PSIO)
A3=-DSIN(THETAO)*DCOS (PSI0)

B1=-DCOS (THETAO) *DCOS (PHIO) *DSIN (PSI0)-DSIN (PHIO)*DCOS (PSIO)
B2=-DCOS (THETAO) *DSIN (PHIO) *DSIN (PSIO)-+DCOS (PHIO) *+DCOS (PSIO)
B3=DSIN(THETAQ)*DSIN(PSIO)

C1=DSIN (THETAOQ)*DCOS (PHIO)

C2=DSIN (THETAO) *DSIN(PHIO)

C3=DCOS (THETAO)

W1=A3%L/A

W2=B3+L/B

W3=C3*L/C

THETA1=DATAN (A2/A1)

E=0.5D0% (A*W1k*2+B* W24 2+CHW3+2)

L1=L#%2-2%B*E

TIME_TO_EXIT=.FALSE.

IF((A.GE.B) .AND. (B.GE.C)) THEN
RMAX=(2.0DO/L)*DSQRT((L**2/<2.0DO*C)—E)*(E—L**2/(2.0DO*A)))
IF(L1.Lf.o) THEN

RMIN=(2.0D0/L)*#DSQRT ((L**2/(2.0D0*C)-E) * (E-L*%2/(2.0D0%xB)))
ELSE

RMIN=(2.0DO0/L)*DSQRT ((L*%2/(2.0D0*B) -E) * (E-L*%2/ (2.0D0*A)))
ENDIF

ENDIF



IF((A.LT.B).AND. (B.LT.C)) THEN

~ RMAX=(2.0DO0/L)*DSQRT ( (L**2/(2.0D0*A)~E) * (E-L#*2/ (2.0D0*C)) )
IF(L1.GE.0) THEN

RMIN=(2.0D0/L)*DSQRT ((L**2/(2.0D0*B)-E) * (E~L*#*2/ (2.0D0*C)))
ELSE
RMIN=(2.0D0O/L)*DSQRT ( (L*%2/(2.0D0*A)~E) * (E-L*%2/(2.0D0%*B)))
ENDIF - | '

ENDIF

SWITCH1=.TRUE.

SWITCH2=.FALSE.

HERPDLHODE1D=A1*W1+B1*W2+61*W3'
HERPOLHODE2D=A2%W1+B2*W2+C2%W3

XPOINT1=HERPOLHODE1D

YPDINT1=HERPDLH6DE2D

XPOINT2=XPOINT1

YPOINT2=YPOINT1

XPOINT3=XPOINT1

YPOINT3=YPOINT1

THETA_HERPOLHODE=0.0DO

DELTAO1SWITCH=.FALSE.

DELTA1SWITCH=.FALSE.

END SUBROUTINE INITIAL

END MODULE SUBROUTINES
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Appendix B
Computer Program for the Rattleback

The computer program that ran the simulations was written in FORTRAN 90 and
is supplied in this appendix. There are two files to be compiled and linked:
”rattleback.f90” (code lines from PROGRAM RATTLEBACK to END PROGRAM
RATTLEBAOK)

?sub.f90” (code lines from MODULE SUBROUTINES to END MODULE SUBROU-
TINES).

On most machines, compiling and linking can be accomplished with commands sim-
ilar to the féllowing: |

90 sub.f90 rattleback.fo0

This compiles and links the files, then creates an execufable file. On UNIX machines
the name of the executable file is ”a.out”. The input variables and initial conditions
- are entered in a separate text file ” data” in the following order: M,h,g,I1,15,I5,011,012,
022?dt, tf, U1,Us,Wr,We,ws. Once the sixteen numbers for file ”data” are entered with
spaées between, them, executing the file "a.out” produces the file ”output”. The
file output has three columns: ¢, I, . Here ¢ is time,I" is the spin angle and 7 ié
the wobble angle. These quantities can then be plotted using a standard graphics
package. For example, here are the commands used in MATLAB to produce a graph

of spin angle as a function of time:
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>> load(’outputl’);
>> x=outputi(:,1);
>> y=outputi(:,2);

>> plot(x,y)
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PROGRAM RATTLEBACK
USE SUBROUTINES

- IMPLICIT NONE

OPEN (UNIT=100,FILE="data’)

READ (100, %) M,H,G,T1,12,13,SIGMA11,SIGMA12, STGMA22,S,TF, U1, U2, &
OMEGAL , OMEGA?2, OMEGA3

CLOSE (UNIT=100)

OPEN (UNIT=200,FILE="output’)

T=0.0D0

| U3=DSQRT(1.0DO-UL##2-U24%2)

DO WHILE (T.LE.TF)

CALL COMPUTE

CALL RUNGE

WRITE(200,%) T,GAMMA,ETA

ENDDO

CLOSE (UNIT=200)

END PROGRAM RATTLEBACK
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MODULE SUBROUTINES

IMPLICIT NONE

IVARIABLES :

IM=MASS

| G=ACCELERATION DUE TO GRAVITY

IH=DISTANCE FROM CENTRE OF MASS TO LOWEST POINT
 [U1,U2,U3]=VECTOR U

| [OMEGA1 ,0MEGA2, OMEGA3] =ANGULAR VELOCITY VECTOR
|STGMA11,SIGMA12, STGMA22=DETERMINE SHAPE OF RATTLEBACK
111,12, I3=PRINCIPAL MOMENTS OF INERTIA

! [X,Y,Z]=INVERSE GAUSS MAP, FUNCTION OF [U1,U2,U3]

| [XDOT, YDOT, ZDOT]=TIME DERIVATIVE OF [X,Y,Z]

|S=STEPSIZE '

| T=TIME

| TF=FINAL TIME

|GAMMA=SPIN ANGLE

| ETA=WOBBLE ANGLE

! ********************************************************
REAL(8) ,PUBLIC: : U1,U2,U3,0MEGA1,OMEGA2, OMEGAS, DELTA, ETA, &
X,Y,Z,SIGMA11,SIGMA12,SIGMA22, T1,12, T3, XDOT, YDOT, ZDOT, &
S,T,TF,GAMMA,PI=3.14159265359D0,M,G ,

REAL(8) ,PRIVATE: : XYZ,XY,XZ,YZ,D,T11,T12,T13,T22,T23,T33,&

81,52,83
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REAL(8) ,PRIVATE:: U1DOT1,U1D0T2,U1D0T3,U1D0T4,&
U2D0T1,U2D0T2,U2D0T3,U2D0T4,U3D0T1,U3D0T2,U3D0T3,U3D0OT4
REAL(S),PUBLIC:: OMEGA1DOT1,0MEGA1DOT2,0MEGA1DOT3,0MEGALDOT4, &
OMEGA2DOT1,0MEGA2D0T2,0MEGA2D0T3, OMEGA2D0T4, &
OMEGASDDTi,DMEGABDOTQ,DMEGABDDTS,OMEGA3DOT4,&

GAMMADOT1,GAMMADOTZ2 , GAMMADOT3, GAMMADOT4

CONTAINS
SUBROUTINE COMPUTE

DELTA=SIGMA11*SIGMA22-SIGMA12%*2
X=(~SIGMA22+U1+SIGMA12+U2) / (DELTA*U3)
Y=(SIGMA12%U1-SIGMA11%U2) / (DELTA*U3)

Z=0.5D0*SIGMAL 1#X*+2+SIGMA12%X*Y+0 . EDO*SIGMA22% Y*2~H
XD0T=(~SIGMA22*(U2*DMEGA3—U3*0MEGA2)+éIGMA12*(U3*0MEGA1— &
U1*OMEGA3) )/ (DELTA*U3)+ (SIGMA22+U1-SIGMA12+U2) *&
(U1%0MEGA2-U2%0MEGA1) / (DELTA*U3#*2)

YDOT= (SIGMA12% (U2*OMEGA3-U3+OMEGA2) ~STGMA1 1 (U3*OMEGAL- &
U1*0OMEGA3) )/ (DELTA*U3)+(SIGMA11xU2-SIGMA12%U1) *&
(U1%0MEGA2-U2%0MEGA1) / (DELTA*U3%%2)
ZDOT=(-U1+XDOT-U2#YDOT) /U3

XY Z=X ok 2+Y 4k 2+ Lok 2

XY =Xk 2+ %2

XZ=X %% 2+ 7% %2

YZ=Y4*2+7Z%*2
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D=Ii*I2*Is+M**2*XYZ*(I1*X**2+IQ*Y**2+I3*Z**2)+&

M# (T1*I24XY+I1*I3%XZ+I2%I3%YZ)
T11=(I2%I3+M#k 2k Xk % 2+ XY Z+M* (124X Y+I3*XZ) ) /D
T22=(T1#I3+M**2x Yk x2%XYZ+M* (I1*XY+I3%YZ)) /D
T33=(I1*I2+M**k 2k Z*k*¥2+XYZ+M* (11*XZ+I2%YZ)) /D

T12=M*X*Y* (I3+M*xXYZ) /D

T13=M*X*Z* (I12+M*XYZ) /D

T23=M*Y*Z (I1+M*XYZ) /D

S1=M* (Y*Z*0OMEGA2**2-Y**2x0OMEGA2*0MEGA3-X*Y+*0OMEGA 1%0MEGA3+&
X*Z*DMEGAi*0MEGA2+Z**2*OMEGAQ*OMEGAB—Y*Z*OMEGAB**2+&
G*Y*UB—G*Z*U2)+(IQ—IS)*OMEGA2*DMEGA3+&

M# (Y (XDOT*OMEGA2-YDOT*OMEGA1) ~Z# (ZDOT*OMEGA1-XDOT+OMEGA3) )
S2=M* (X+Z*0OMEGA3%*2~Z**2+%0MEGA1*0MEGA3~Z*Y*OMEGA1*OMEGA2+&
XxY*OMEGA3*OMEGA2+X**2%0MEGA1*OMEGA3~X+Z*0OMEGA 1 %% 2+&
G*Z*Ui—G*X*U8)+(IB~Ii)*DMEGAi*DMEGA3+&
M*(Z*(YDOT*OMEGAS—ZDDT*OMEGA2)~X*(XDDT*DMEGAQ—YDDT*DMEGAi))
S3=M* (Y+X+0OMEGA1**2~X**2+%0MEGA2%OMEGA1-X*Z*0OMEGA2*OMEGA3+&
Y*Z*DMEGAi*0MEGA3+Y#*2*DMEGA2*OMEGA1—Y*X*DMEGA2**2+&
G*X*+U2-GxY+U1) +(I1-12) *OMEGA1*OMEGA2+&
M*(X*(ZDDT*DMEGAi—XDDT*OMEGAB)~Y*(YDOT*OMEGA3—ZDOT*OMEGA2))

END SUBROUTINE COMPUTE

FUNCTION U1DOT(U1,U2,U3,0MEGA1,OMEGA2,0MEGA3)

REAL(8) U1DOT,U1,U2,U3,0MEGAL,OMEGA2,0MEGA3
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U1DOT=U2*0MEGA3-U3*0MEGA2

END FUNCTION U1iDQT

FUNCTION U2D0T(U1,U2,U3,0MEGA1,0MEGA2,0MEGA3)
REAL(8) U2DOT,U1,U2,U3,0MEGA1,OMEGA2,0MEGA3
U2D0T=U3*0MEGA1-U1*0OMEGA3

END FUNCTION U2DOT

FUNCTION U3DOT(U1,U2,U3,0MEGA1,OMEGA2,0MEGA3)
REAL(8) U3DOT,U1,U2,U3,0MEGA1,OMEGA2,0MEGA3
U3D0T=U1*0MEGA2-U2*0MEGA1

END FUNCTION U3DOT

FUNCTION DMEGAiDDT(Ul,U2,UB,OMEGAl,DMEGAZ,DMEGAS)
REAL(8) OMEGA1DOT,U1,U2,U3,0MEGA1,OMEGA2,0MEGA3
OMEGA1DOT=T11%S1+T12%32+T13%33

END FUNCTION OMEGA1DOT

FUNCTION OMEGAQbOT(Ul,U2,U3,DMEGA1,DMEGA2,0MEGA8)
REAL(8) OMEGA2DOT,U1,U2,U3,0MEGA1,0MEGA2,0MEGAS
OMEGA2D0T=T12%S1+T22*S2+T23%33

END FUNCTION OMEGA2DOT

FUNCTION OMEGA3DOT(U1,U2,U3,0MEGA1,OMEGA2,0MEGA3)



REAL(8) OMEGA3DOT,U1,U2,U3,0MEGA1,0MEGA2,0MEGAS
OMEGA3DOT=T13%S1+T23%S2+T33%S3

.END FUNCTION OMEGA3DOT

FUNCTION GAMMADOT(U1,U2,U3,0MEGA1,0MEGA2,0MEGA3)
REAL(8) GAMMADOT,U1,U2,U3,0MEGAL,OMEGA2,0MEGA3
GAMMADOT=(U1*0MEGA1+U3*0MEGA3) / (1-U2%%2)

END FUNCTION GAMMADOT

SUBROUTINE RUNGE

!CALL COMPUTE

U1D0OT1=8*U1D0T (U1,U2,U3,0MEGA1,OMEGA2,0MEGA3)
U2DOT1=S*U2DOT(U1,ﬁ2,U3,0MEGAi,OMEGA2,0MEGAS)
U3DOT1=S*U3DDT(U1,U2,U3,DMEGAi,OMEGAQ,OMEGAS)
TDMEGAiDDT1=S*OMEGA1DDT(Ui,U2,U3,DMEGAl{UMEGA2,OMEGA3)
OMEGA2D0T1=S*0MEGA2D0T (U1,U2,U3,0MEGAL, OMEGA2, OMEGA3)
OMEGA3DOT1=S*0MEGA3DOT (U1,U2,U3,0MEGAL, OMEGA2,0MEGA3)

GAMMADOT 1=S*GAMMADOT (U1,U2,U3,0MEGA1,OMEGA2, OMEGA3)

U1D0T2=S*U1DOT (U1+0.5D0+U1D0OT1,U2+0.5D0*U2D0T1, &
U3+0.5D0*U3D0OT1, OMEGA1+0.5D0O*0MEGA1DOT] , &

DMEGAQ+O.5DO*DMEGA2DOT1,DMEGA8+O.5DO*DMEGA3DOT1)
U2D0T2=5*U2D0T (U1+0.5D0*U1DOT1,U2+0.5D0*U2D0T1, &

U3+0.5D0*U3DOT1, OMEGA1+0. 5DO*0OMEGA1DOTL, &
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OMEGA2+0.5D0*0MEGA2DOT1 , OMEGA3+0 . 5DO*0OMEGA3DOT1)
U3DOT2=S*U3DOT (U1+0.5D0*U1D0T1,U2+0 . 5D0*U2DOT1 , &
U3+0.5D0*U3DOT1,OMEGA1+0.5D0*0MEGA1DOT1 , &
OMEGA2+0.5D0*0MEGA2DOT1 , OMEGA3+0 . 5DO*0MEGA3DOT1)
OMEGA1DOT2=S*0MEGA1DOT (U1+0.5D0*U1D0T1,U2+0.5D0*U2D0T1, &
U3+0.5D0*U3D0T1, OMEGA1+0.5D0*0MEGA1DOT1 , &

OMEGA2+0 . 5DO*0MEGA2D0T1 , OMEGA3+0 . 5DO*0OMEGA3DOT1)
DMEGA2DOT2=S*OMEGA2DDT(U1+d.5DO*U1DDT1,U2+O.5DO*U2DDT1,&
U3+0.5D0*U3D0T1,OMEGA1+0.5D0*0MEGA1DOT1 , &

OMEGA2+0 . 5DO*0MEGA2DO0T1 , OMEGA3+0 ..5D0*0MEGA3DOT1)
OMEGA3DOT2=S*0MEGA3DOT (U1+0.5D0%U1D0OT1,U2+0.5D0*U2D0T1, &
U3+O.5DO*U3DDT1,0MEGA1+O:5DO*0MEGA1DUT1,&
DMEGA2+O.5DO*OMEGA2DDT1,0ME¢A3+O.5DO*DMEGA3DDT1)
GAMMADOT2;S*GAMMADOT(U1+0.5DO*U1DDT1,U2+O.5DO*U2DDT1,&
U3+0.5D0*U3D0T1,OMEGA1+0.5D0*0MEGA1DOT1 ,&

OMEGA2+0 . 5DO*0MEGA2DOT1 , OMEGA3+0 . 5DO*0OMEGA3D0OT1)

U1DOT3=S*U1DDT(U1+O.5DO*U1DDT2,U2+O.5DO*U2DDT2,&
U3+0.5D0*U3D0T2, OMEGA1+0 . 5DO*0OMEGA1DOT2, &
0MEGA2+O.5DO*0MEGA2DDT2,0MEGAS{O.SDO*DMEGA3DDT2)
U2D0T3=3*U2D0T (U1+0.5D0%U1D0T2,U2+0.5D0*U2D0T2, &
U3+0.5D0*U3D0T2, OMEGA1+0 . 5DO*0MEGA1DOT2,&
0MEGA2+O.5DO*DMEGA2DOT2,DMEGA3+O.5DO*OMEGA3DDT2)

U3D0T3=8*U3DOT (U1+0.5D0*U1D0T2,U2+0.5D0*U2D0T2, &
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U3+0.5D0*U3DOT2, OMEGA1+0. 5DO*0OMEGA1DOT2, &

OMEGA2+0 . 5D0*0MEGA2D0T2 , OMEGA3+0 . 5D0+0MEGA3DOT2) '
OMEGA1DOT3=S*DMEGA1DDT(U1+O.5DO*U1DOT2,U2+O.5DO*U2DOT2,&
U3+O:5DO*U3DDT2,DMEGA1+O.5DO*OMEGA1DOT2,&
OMEGA2+0.5D0*0MEGA2DOT2 , OMEGA3+0 . 5DO*OMEGA3DOT2)
OMEGA2D0T3=8+0MEGA2DOT (U1+0. 5DO*U1D0OT2, U2+0 . 5D0*U2D0T2, &
U3+0.5D0*U3D0T2, OMEGA1+0 . 5EDO*OMEGA1DOT2, &

OMEGA2+0 . 5DO*0MEGA2DOT2, OMEGA3+0 . 5DO*0MEGA3DOT2)
DMECA3DOT3=S*OMEGA3DDT(U1+O.5DO*U1DOT2,U2+O.5DO*U2DDT2,&
U8+0.5DO*U3DDT2,0MEGA1+O.5DO*UMEGA1DDT2,&
OMEGA2+O.5DO*OMEGA2DDT2,DMEGA3+O.5DO*DMEGA3DDT2)
GAMMADOT3=8*GAMMADOT (U1+0.5D0*U1D0T2,U2+0. 5D0*U2D0T2, &
U3+0.5D0*U3D0T2, OMEGA1+0 . 5DO*0OMEGA1DOT2, &

OMEGA2+0 . 5DO*0MEGA2D0T2, OMEGA3+0 . 5DO*0MEGA3DOT2)

U1D0T4=8*U1D0T (U1+U1DOT3,U2+U2D0OT3, U3+U3DOT3, &
OMEGA1+0OMEGA1DOT3, OMEGA2+0MEGA2D0OT3 , OMEGA3+0MEGA3DOT3)
U2D0T4=8+U2D0T (U1+U1DOT3,U2+U2D0T3, U3+U3DOT3, &
DMEGA1+DMEGA1DDT3,UMEGA2+OMEGA2DOf3,0MEGA3+OMEGA3DDT3)
U3D0T4=8*U3DOT (U1+U1DOT3,U2+U2D0T3, U3+U3DOT3, &
OMEGA1+0OMEGA1DOT3, OMEGA2+0MEGA2DOT3 , OMEGA3+0MEGA3DOTS).
OMEGA1D0T4=3+0MEGA1DOT (U1+U1D0OT3,U2+U2D0T3, U3+U3DOT3, &
DMEGA1+DMEGA1DOT3,DMEGA2+DMEGA2DOT3,0MEGA3+OMEGA3DOT3)

OMEGA2D0T4=S*0MEGA2DOT (U1+U1D0T3,U2+U2D0T3, U3+U3DOT3, &



OMEGA1+0MEGA1DOT3, OMEGA2+0MEGA2DOTS , OMEGA3+0MEGA3DOT3)
OMEGA3DOT4=3*0MEGA3DOT (U1+U1D0OT3, U2+U2D0T3, U3+U3DOT3, &
OMEGA1+0MEGA1DOT3, OMEGA2+0OMEGA2D0T3 , OMEGA3+0MEGA3DOT3)
GAMMADOT4=S*GAMMADOT (U1+U1D0T3,U2+U2D0T3, U3+U3D0OT3, &

OMEGA1+0MEGA1DOT3, OMEGA2+0MEGA2D0T3 , OMEGA3-+0MEGA3DOT3)

T=T+S
U1=U1+§U1DOT1+2.0DO*U1DOT2+2.0DO*U1DOT3+U1DDT4)/6.0DO
U2=U2+(U2D0T1+2. 0DO*U2D0T2+2 . ODO*U2D0T3+U2D0T4) /6 . 0DO
U3=U3+(U3DOT1+2.0D0*U3D0T2+2 . 0DO*U3DOT3+U3D0OT4) /6.0D0
'OMEGA1=0MEGA1+(OMEGA1DOT1+2 . ODO*0OMEGA1DOT2+&
2.0DO*0MEGA1DOT3+0MEGA1D0T4) /6.0D0

OMEGA2=0MEGA2+ (OMEGA2DOT1+2 . ODO*OMEGA2DOT 2+
2.0D0*0OMEGA2DOT3+0MEGA2D0T4) /6. 0DO _
OMEGA3=DMEGA3+(OMEGA3DOT1+2.0DO*OMEGA?DDT2+&
2.0bo*DMEGABDDT3+OMEGA3DDT4)/6.0DO

GAMMA=GAMMA+ (GAMMADOT1+2 . ODO*GAMMADOT2+&
2.0DO*GAMMADOT3+GAMMADOT4) /6 . 0DO

ETA=DACO0S (U3)

END SUBROUTINE RUNGE

END MODULE SUBROUTINES
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Appendix C

Tables of Elliptic Functions

C.1 Complefe Elliptic Integral K (k)

X K(k} x K(x)
0.00 1.570796 0.50 1.685760
0.01 1.570836 N 0.51 1.691263
0.02 1.570953 0.52 1.696972
0.03 1.571150 0.63 1.702885
0.04 1.571425 0.54 1.709009
0.05 1.671779 0.55 1.716354
0.06 1.572213 0.56 1.721930
0.07 1.572726 0.57 1.728747
0.08 1.573319 0.58 1.735815
0.09 1.573992 0.59 1.743146
0.10 1.574746 0.60 1.750754
0.11 1.576581 0.61 1.758651
0.12 1.576497 0.62 1.766853
0.13 1.577497 0.63 1.775376
0.14 1.578579 0.64 1.784236
0.15 1.579746 0.65 1.793454
0.16 1.580997 0.66 1.803050
0.17 1.582334 0.67 1.813045
0.18 1.683757 0.68 1.823466
0.19 1.585268 0.69 1.834339
0.20 1.586868 0.70 1.848694
0.21 1.588558 0.71 1.857564
0.22 1.590338 0.72 1.869985
0.23 1.692212 0.73 1.882999
0.24 1.594179 0.74 1.896650
0.26 1.596242 0.76 1.910990
0.26 1.598402 0.76 1.926075
0.27 1.600661 0.77 1.941970
0.28 1.603020 0.78 1.958748
0.29 1.605482 0.79 1.976494
0.30 1.608049 0.80 1.996303
0.31 1.610722 0.81 2.015287
0.32 1.613504 0.82 2.036575
0.33 1.616397 0.83 2.059319
0.34 1.619404 0.84 2.083701
0.35 1.622528 0.85 2.109935
0.38 1.626771 0.86 2,138283
0.37 1.629137 0.87 2.169065
0.38 1.632628 0.88 2.202677
0.39 1.636248 0.89 2.239622
0.40 1.640000 0.90 2.280549
0.41 1.643888 0.91 2.326312
0.42 1.647917 0.92 2.378071
0.43 1.652090 0.93 2.437458
0.44 1.656411 0.94 2,506865
0.45 1.660886 0.95 2.590011
0.48 1.665520 0.96 2.693143
0.47 1.670317 0.97 2,827995
0.48 1.676284 0.98 3.020980
0.49 1.680426 0.99 3.356601
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C.2 f{t)=sn(t|m=k?)

\m
A\
t\

TR WNHROORONDT D BN MO

COONPNTDWNROOBAGD T WNIHODOPADT W OO Do

0.000 0.100 0.200

0.000
0.100
0.199
0.296
0.389
0.479
0.565
0.644
0.717
0.783
0.841
0.891
0.932
0.964
0.985
0.997
1.000
0.992
0.974
0.946
0.909
0.863
0.808
0.746
0.676
0.598
0.516
0.427
0.335
0.239
0.141
0.042
~0.058
-0.168
~0.2566
-0.351
~0.443
~0.630
~0.612
-0.688
~0.767
-0.818
~-0.872
-0.916
~0.952
~0,978
~0,994
=1.000
-0.996
~0.982
~0.959

0.000
0.100
0.199
0.295
0.388
0.478
0.562
0.640
0.712
0.777
0.834
0.883
0.924
0.956
0.980
0.994
1.000
0.997
0.984
0.963
0.933
-0.894
0.847
0.792
0.729
0.659
0.582
0.499
0.411
0.319
0.223
0.125
0.025
=-0.076
=0.174
=-0.271
-0.366
-0.456
-0.541
~-0.621
-0.695
~0.761
~0.821
~0.872
~0.915
~0.949
~0.976
~0.992
=-0.999
-0.998
-0.988

0.000
0.100
0.198
0.295
0.388
0.476
0.559
0.636
0.707
'0.770
0.826
0.875
0.916
0.948
0.973
0.990
0.999
0.999
0.992
0.977
0.954
0.922
0.883
0.836
0.782
0.720
0.650
0.574
0.492
0.405
0.313
0.217
0.119
0.019
-0.081
-0.180
-0.276
=0.370
-0.459
-0.544
-0.622
-0.694
-0.769
-0.816
~0.866
-0.908
-0,943
-0.969
-0.987
~0.998
~1.000

0.300

0.000
0.100
0.198
0.294
0.387
0.474
0.556
0.632
0.702
0.764

.0.819
0.866
0.907
0.940
0.965
0.984
0.995
1.000
0.997
0.988
0.971
0.948
0.917
0.878
0.833
0.780
0.720
0.652
0.578
0.498
0.411
0.320
0.225
0.127
0.028

-0.072

-0.171

-0.268

-0.361

~0.450

-0.534

~0.612

-0.683

-0.747

-0.804

-0.854

-0.896

-0.931

~0,959

-0.980

~0.993

0.400

0.000
0.100
0.198
0.204
0.386
0.472
0.554
0.628
0.696
0.757
0.811
0.8568
0.897
0.930
0.957
0.977
0.991
0.998
1.000
0.995
0.985
0.969
0.946
0.916
0.880
0.838
0.788
0.731
0.667
0.596
0.518
0.434
0.345
0.281
0.154
0.055
=-0.045
-0.144
=0.242
~0.336
~0.426
-0.510
-0.588
~0.660
~0.725
~0.782
~0.833
-0.876
-0.913
=0.943
-0.967

0.500

0.000
0.100
0.198
0.293
0.385
0.471
0.551
0.624
0.691

0.750

0.803
0.849
0.888
0.920
0.947
0.968
0.984
0.994
0.999
0.999
0.995
0.985
0.970
0.949
0.923
0.891
0.852
0.807
0.755
0.696
0.630
0.557
0.478
0.392

0.301-

0.206
0.108
0.008
~0.092
=-0.190
-0.286
-0.377

=0.464

~0.56456
-0.619
-0.686
-0.746
~0.799
~0.845
-0.885
-0.918

0.600

0.000
0.100
0.198
0.293
0.384
0.469
0.548
0.620
0.686
0.744
0.795
0.839
0.878
0.910
0.937
0.958
0.975
0.987
0.996
1.000
0.999
0.995
0.987
0.975
0.958
0.936°
0.910
0.877
0.839
0.796
0.743
0.685
0.620
0.547
0.468
0.383
0.292
0.197
0.099
=0.001
-0.101
-0.199
~-0.294
-0.384
-0.470
~0.549
-0.621
~-0.686
~0.744
-0.796
-0.840

0.700

0.000
0.100
0.198
0.293
0.383
0.467
0.545
0.616
0.680
0.737
0.787
0.830
0.867
0.899
0.925
0.947
0.965
0.978

0.988 .

0.995
0.999
1.000
0.998
0.992
0.984
0.972
0.956
0.937
0.913
0.884
0.850
0.809
0.763
0.710
0.650
0.582
0.508
0.426
0.339
0.246
0.150
0.051
-0.049
-0.148
~0.245
-0.338
-0.425
-0.507
-0.581
-0.649
-0.709

0.800

0.198
0.292
0.382
0.466
0.543
0.612
0.675
0.730
0.778
0.820
0.856
0.887
0.913
0.934
0.952
0.967
0.978
0.987
0.993
0.998
1.000
1.000
0.998
0.994
0.988
0.979
0.968
0.954
0.937
0.916
0:891
0.861
0.826
0.785
0.737
0.683
0.622
0.553
0.477
0.394
0.305
0.212
0.114
0.014
~0.085
~0.184
~0.279
-0.369
-0.454

0.900

0.000
0.100
0.198
0.292
0.381
0.464
0.540
0.608
0.669
0.723
0.770
0.811
0.845
0.875
0.899
0.920
0.938
0.952
0.964
0.974
0.982
0.988
0.993
0.996
0.998
1.000
1.000
0.999
0.998
0.995
0.991
0.985
0.978
0.970
0.959
0.946
0.931
0.912
0.889
0.862
0.831
0.794
0.750
0.701
0.644
0.579
0.507
0.428
0.343
0.251
0.1585

1.000

0.000
0.100
0.197
0.291
0.380
0.462
0.537
0.604
0.664
0.716
0.762
0.800
0.834
0.862
0.885
0.905
0.922
0.835
0.947
0.956
0.964
0.970
0.976
0.980
0.984
0.987
0.989
0.991
0.993
0.994
0.995
0.996
0.997
0.997
0.998
0.998
0.999
0.999
0.999
0.999
0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
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0.000

~-0.926
-0.883
-0.832
~-0.773
-0,706
-0.631
-0.551
-0.465
-0.374
-0.279
-0.182
~0.083
0.017
0.117
0.215
0.312
0.405
0.494
0.578
0.657
0.729
0.794
0.850
0.899
0.938
0.968
0.988
0.999
0.999
0.989
0.970
0.941
0.902
0.855
0.798
0.734
0.663
0.585
0.501
0.412
0.319
0.223
0.124
0.025
-0.075
-0.174
=-0.272
-0.366
~0.458
-0.544

0.100

~0.969
~0.941
-0.905
-~0.860
-0.806
~0.745
-0.677
-0.602
-0.520
-0.433
-0.342
=-0.247
-0.149
=-0.050
0.050
0.150
0.247
0.342
0.434
0.521
0.602
0.677
0.746
0.807
0.860
0.805
0.941
0.969
0.988
0.998
0.999
0.991
0.97b
0.949
0.914
0.872
0.820
0.761
0.695
0.621
0.541
0.456
0.365
0.271
0.174
0.075
~-0.025
=0.125
-0.223
-0.319

0.200

-0.994
~0.980
-0.959
=-0.929
-0.891
-0.846
-0.793
~-0.732
~0.664
-0.690
-0.509
=0.422
-0.331
~0.236
~0.138
-0.038
0.061
0.161
0.2568
0.352
0.442
0.528
0.607
0.680
0.747
0.806
0.857
0.901
0.937
0.964
0.984
0.996
1.000
0.996
0.984
0.964
0.935
0.899
0.856
0.804
0.744
0.678
0.604
0.5256
0.439
0.349

0.264 .

0.157
0.058
-0.042

0.300

-0.999
~0.999
-0.991
-0.977
~0.9556
-0.926
-0.890
-0.846
-0.795
=-0.737
~0.672
-0.599
-0.521
-0.436
-0.346
=0.252
~0.165
~-0.056
0.044
0.144
0.241
0.336
0.426
0.511
0.591
0.664
0.730
0.789
0.841
0.885
0.922
0.952
0.975
'0.990
0.998
1.000
0.994
0.981
0.962
0.935
0.900
0.859
0.810
0.754
0.691
0.620
0.543
0.460
0.371
0.278

0.400

-0.984
-0.995
~1.000
-0.999
=-0.992
~0.978
~0.959
-0.933
~0.901
~0.862
~-0.816
=-0.763
-0.703
-0.635
~-0.561
~-0.481
-0.395
-0.303
=-0.208
-0.110
-0.010
0.090
0.188
0.284
0.377
0.464
0.546
0.621
0.690
0.751
0.806
0.853
0.894
0.927
0.954
0.975
0.989
0.998
1.000
0.996
0.986
0.970
0.948
0.920
0.884
0.842
0.793
0.737
0.673
0.603

0.500

-0.945
~-0.967
~0.983
-0.993
~0.999
=1.000
-0.995
-0.986
=0.971
~0.951
~0.925
-0.893
-0.855
~0.811
-0.760
-0.701
~0.636
-0.563
-0.484
-0.399
-0.309
~0.214
-0.116
-0.016
.084
.182
.278
.370
487
.538
.613
.681
.741
.7985
.842
.882
.916
.943
.965
.982
993
.999
1.000
0.996
0.987
0.972
0.953
0.928
0.896
0.859

OO0 OO0 0O0OOOO0OO0OO0DOOOOOO

0.600

-0.878
-0.910
=0.937
-0.958
=-0.975
-0.988
-0.996
~1.000
~0.999
-0.995
-0.987
~0.975
~0.958
-0.936
~0.909
-0.877
~-0.839
=-0.794

~0.743

-0.685
-0.619
~0.547
-0.468
-0.382
-0.291
-0.196
-0.098
0.002
0.101
0.200
0.295
0.385
0.470
0.549
0.622
0.687
0.745
0.796
0.840
0.878
0.910
0.937
0.959
0.975
0.988
0.996
1.000
0.999
0.995
0.987

0.700

~-0.762
~0.809
-0.849
-0.883
-0.912
-0.936
-0.956
-0.972
-0.984
~-0.992
~0.998
~1.000
-0.999
~-0.995
-0.989
-0.978
~0.965
-0.947
~-0.926
-0.899
-0.868
-0.831
-0.787
~0.738
~-0.681
-0.617
~0.546
~0.468
-0.384
-0.294
~0.199
~0.101
=-0.001
0.098
0.196
0.291
0.382
0.466
0.544
0.615
0.679
0.736
0.786
0.829
0.867
0.898
0.925
0.947
0.964
0.978

0.800

-0.532
~0.603
-0.666
-0.723
-0.772
-0.815
-0.852
-0.883
-0.909
-0.931
-0.950
-0.965
~0.977
-0.986
-0.992
-0.997
-0.999
-1.000
-0,998
~0.995
-0.989
-0.981
-0.970
-0.957
~-0.940
-0.919
-0.895
-0.866
~0.831
-0.791
-0.745
-0.692
~-0.631
-0.563
-0.488
-0.407
-0.319
~0.225
-0.128
-0.029
0.071
0.170
0.265
0.357
0.442
0.521
0.593
'0.658
0.715
0.765

0.900

0.056
-0.044
-0.143
-0.239
-0.331
-0.418
-0.498
-0.571
-0.636
-0.694
-0.745
-0.789
-0.826
-0.859
-0.886
-0.909
-0.928
-0.944
-0.958
~0.969
-0.977
-0.985
-0.990
-0.994
-0.997
~0.999
-1.000
-1.000
-0.999
~0.996
~0.993
-0.988
-0.982
-0.975
-0.965
-0.954
-0.940
-0.923
-0.902
-0.878
-0.849
-0.815
-0.775
-0.729
-0.676
-0.616
~0.549
-0.474
-0.392
-0.303

1.000

1.000
1.000
1.000
1.000
1.000

1.000°

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
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0.000 0.4100 0.200

1.000
0.995
0.980
0.955
0.921
0.878
0.825
0.765
0.697
0.622
0.540
0.454
0.362
0.267
0.170
0.071

-0.029

-0.129

-0.227

-0.323

-0.416

-0.505

-0.589

-0.666

-0.737

-0.801

-0.857

-0.904

~0.942

-0.971

-0.990

-0.999

-0.998

-0.987

-0.967

~0.936

-0.897

~0.848

-0.791

~0.726

-0.654

-0.575

~0.490

-0.401

-0.307

-0.211

-0.112

-0.012
0.087
0.187
0.284

1.000
0.995
0.980
0.958
0.921
0.878
0.827
0.768
0.702
0.630
0.552
"0.469
0.382
0.293
0.200
0.106
0.012
-0.083
-0.177
-0.270
-0.360
-0.448
~0.532
-0.611
-0.685
-0.752
~0.813
-0.867
-0.912
-0.948
-0.975
-0.992
-1.000
-0.997
-0.985
-0.962
-0.931
=0.890
-0.841
-0.784
-0.719
-0.648
-0.572
~0.490
-0.404
-0.316
-0.223
-0.130
-0.036
0.059
0.154

1.000
0.995
0.980
0.956
0.922
0.879
0.829
0.771
0.707
0.638
0.563
0.484
0.402
0.317
0.231
0.142
0.053
~0.036
-0.125
-0.214
-0.301
-0.386
-0.469
-0.648
-0.624
-0.694
-0.760
-0.819
-0.870
~0.914
-0.950
-0.976
-0.993
-1.000

-0.997

~0.984
=-0.961
-0.929
-0.888
~-0.839
~-0.783
=0.720
~-0.651
~0.578
~0.500
-0.418
-0.334
~0.247
-0.159
-0.071

0.019

0.300

1.000
0.995
0.980
0.956
0.922
0.880
0.831
0.775
0.713
0.6456
0.574
0.499
0.422
0.342
0.261
0.178
0.095

0.012 -

-0.072
-0.155
-0.238
-0.320
~-0.400
-0.478
-0.554
-0.626
~0.694
-0.758
~0.816
-0.867
-0.911
=-0.947
-0.974
-0.992
~-1.000
-0.997
~0.985
-0.963
-0.932
~0.893
-0.845
~0.791
~-0.730
-0.665
-0.594
~0.520
-0.444
-0.364
-0.284
-0.201
~0.118

0.400

1.000
0.995
0.980
0.956
0.923
0.881
0.833
0.778
0.718
0.653
0.585
0.514
0.441
0.367
0.201
0.214
0.137
0.060
~0.017
-0.096
~0.172
=0.249
-0.325
=-0.400
-0.474
-0.546
-0.616
-0.683

~0.745

-0.803
~0.855
-0.901
-0.939
-0.968
-0.988
-0.998
-0.999
-0.990
~0.970
=-0.942
-0.905
~0.860
-0.809
-0.752
-0.689
~0.623
~0.554
-0.482
-0.408
-0.333
-0.257

0.500

1.000
0.995
0.980
0.956
0.923
0.882
0.835
0.781
0.723
0.661
0.596
0.5629
0.460
0.391
0.321
0.250
0.180
0.109
0.038
-0.032
=0.103
~0.174
~-0.245
-0.315
-0.385
-0.455
~0.523
-0.591
~0.656
-0.718
=-0.777
~0.830
~0.879
=0.920
~0.954
-0.979
~-0.994
~1.000
~0.996
~0.982
-0.958
-0.926
~0.886
~0.839
~0.786
-0.728
-0.666
-0.601
-0.634
~0.466
~0.397

0.600

1.000
0.995
0.980
0.956
0.923
0.883
0.836
0.784
0.728
0.668
0.607
0.543
0.479
0.415
0.350
0.286
0.222
0.158
0.095
0.031

-0.032

-0.095

-0.159

-0.222

-0.287

-0.351

-0.415

~0.480

-0.544

~0.607

~0.669

-0.728

-0.785

-0.837

-0.884

-0.924

-0.956

-0.980

-0.995

-1.000

-0.995

~0.980

-0.956

-0.923

-0.883

-0.836

~0.784

-0.727

~0.668

-0.606

-0.543

0.700

1.000
0.995
0.980
0.956
0.924
0.884
0.838
0.787
0.733
0.676
0.617
0.558
0.498
0.439
0.380
0.321
0.264
0.207
0.152
0.096
0.041

-0.013

-0.068

-0.123

-0.179

~0.235

-0.292

~0.350

-0.409

-0.468

-0.527

-0.587

-0.646

-0.704

-0.760

-0.813

-0.862

-0.905

-0.941

-0.969

-0.989

-0.999

-0.999

-0.989

~0.970

~0.941

-0.905

-0.862

-0.814

-0.761

-0.705

0.800

1.000
0.995
0.980
0.956
0.924
0.885
0.840
0.791
0.738
0.683
0.628
0.572
0.516
0.462
0.408
0.356
0.306
0.257
0.209
0.162
0.116
0.070
0.026
~0.019
-0.064
=-0.109
-0.155
-0.202
=0.250
-0.299
-0.349
-0.401
~0.454
-0.508
~0.564
-0.620
~0.675
~0.730
~0.783
-0.833
-0.879
-0.919
-0.952
=0.977
-0.993
~1.000
-0.996
-0.983
-0.960
~0.929
-0.891

0.800

1.000
0.995
0.980
0.957
0.925
0.886
0.842
0.794
0.743
0.691
0.638
0.586
0.534
0.485
0.437
0.391
0.347
0.305
0.265
0.227
0.191
0.156
0.122
0.089
0.057
0.025
-0.007
~0.039
-0.071
-0.103
~0.137
-0.171
-0.207
-0.244
-0.283
-0.323
-0.366
-0.411
-0.458
~0.5086
-0.557
~0.608
-0.661
-0.714

~0.765

-0.815
-0.862
~0.904
~-0.940
-0.968
-0.988

1.000

1.000
0.995
0.980
0.957
0.925
0.887
0.844
0.797
0.748
0.698
0.648
0.599
0.552
0.507
0.465
0.425
0.388
0.354
0.322
0.293

0.266 °

0.241
0.219
0.199
0.180
0.163
0.148
0.134
0.121
0.110
0.099
0.090
0.081
0.074
0.067
0.060
0.055
0.049
0.045
0.040
0.037
0.033
0.030
0.027
0.025
0.022
0.020
0.018
0.016
0.015
0.013
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0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

0.378 0.247 ,0.108 -0.035 -0.180 -0.326 -0.479 -0.647 -0.847 -0.998 0.012
0.469 0.338 0.197 0.049 -0.103 -0.256 ~0.41i4 -0.588 -0.798 -0.998 0.011
0.554 0.426 0.284 0.132 -0.025 -0.185 -0.350 ~0.528 ~0.746 -0.990 0.010
0.635 0.511 0.370 0.2i5 0.052 -0.115 -0.285 -0.469 -0.691 -0.9741 0.009
0.709 0.592 0.453 0.297 0.130 -0.044 -0.221 -0.409 -0.636 -0.943 0.008
0.776 0.667 0.533 0.378 0.207 0.027 -0.158 -0.351 ~-0.580 ~0.908 0.007
0.835 0.736 0.609 0.457 0.283 0.097 -0.094 -0.293 ~0.524 -0.867 0.007
0.886 0.799 0.681 0.533 0.359 0.168 -0.031 -0.236 ~0.470 -0.821 0.006
0.927 0.854 0.748 0.606 0.434 0.239 0.032 -0.180 -0.41i6 -0.772 0.008
0.960 0.901 0.808 0.676 0.507 0.309 0.096 ~0.i24 ~0.364 -0.720 0.005
0.983 0.940 0.861 0.741 0.578 0.379 0.159 -0.069 -0.313 ~0.668 0.004
0.997 0.969 0.907 0.800.0.647 0.449 0.223 -0.014 -0.264 -0.615 0.004
1.000 0.989 0.944 0.854 0.7i1 0.5i8 0.287 0.040 -0.215 -0.563 0.004
0.993 0.999 0.972 0.900 0.772 0.585 0.351 0.095 -0.168 -0.513 0.003
0.977 0.999 0.980 0.938 0.828 0.650 0.416 0.161 ~0.122 ~0.464 0.003
0.950 0.989 0.999 0.968 0.877 0.713 0.480 0.207 -0.077 -0.417 0.003
0.914 0.969 0.998 0.988 0.919 0.772 0.545 0.263 -0.032 -0.372 0.002
0.869 0.940 0.987 0.998 0.953 0.826 0.608 0.32% 0.013 -0.329 0.002
0.816 0.901 0.966 0.999 0.978 0.875 0.670 0.379 0.058 -0.288 0.002
0.7564 0.854 0.936 0.990 0.994 0.917 0.729 0.438 0.103 -0.249 0.002
0.685 0.798 0.897 0.970 1.000 0.951 0.785 0.497 0.148 -0.211 0.002
0.608 0.736 0.849 0.942 0.996 0.977 0.837 0.557 0.195 -0.175 0.001
0.526 0.666 0.794 0.905 0.982 0.993° 0.884 0.616 0.243 -0.141 0.001
0.439 0.591 0.733 0.859 0.959 1.000 0.924 0.675 0.292 -0.107 0.001
0.347 0.511 0.6656 0.807 0.926 0.997 0.9567 0.732 0.342 -0.075 0.001
0.251 0.426 0.592 0.748 0.886 0.983 0.981 0.787 0.393 -0.043 0.001
0.163 0.338 0.515 0.683 0.838 0.961 0.995 0.838 0.446 -0.011 0.001
0.064 0.246 0.434 0.614 0.784 0.929 1.000 0.883 0.501 0.021 0.001
-0.046 0.153 0.850 0.541 0.724 0.889 0.995 0.923 0.5566 0.053 0.001
-0.146 0.059 0.264 0.465 0.660 0.843 0.980 0.956 0.612 0.085 0.00%
-0.244 -0.036 0.177 0.387 0.592 0.790 0.956 0.980 0.667 0.118 0.001
~0.339 -0.130 0.088 0.306 0.524 0.733 0.923 0.995 0.722 0.152 0.00i
-0.431 -0.224 -0.002 0.224 0.449 0.671 0.882 1.000 0.776 0.186 0.000
~0.519 -0.316 -0.091 0.141 0.374 0.607 0.836 0.995 0.826 0.223 0.000
-0.602 -0.405 ~0.180 0.068 0.299 0.540 0.783 0.981 0.873 0.261 0.000
~-0.679 -0.490 -0.268 -0.026 0.222 0.472 0.727 0.957 0.9i4 0.300 0.000
-0.749 -0.572 -0.354 —-0.109 0.145 0.402 0.667 0.924 0.948 0.342 0.000
~0.811 -0.649 -0.437 -0.192. 0.068 0.332 0.606 0.885 0.974 0.386 0.000
~-0.866 -0.719 -0.518 ~0.274 -0.010 0.262 0.542 0.839 0.992 0.431 0.000
-0.911 ~0.784 ~0.595 -0.356 -0.087 0.191 0.478 0.788 1.000 0.479 0.000
~0.948 -0.841 -0.668 -0.435 -0.164 0.120 0.414 0.734 0.997 0.528 0.000.
-0.975 ~0.890 -0.735 -0,512 -0.241 0.050 0.349 0.677 0.985 0.579 0.000
-0.992 ~0.931 -0.797 ~0.586 -0.317 -0.021 0.285 0.618 0.964 0.631 0.000
~1.000 -0.963 -0.851 -0.657 -0.393 -0.092 0.221 0.559 0.934 0.684 0.000
~0.997 -0.985 -0.898 ~0.723 -0.467 -0.162 0.157 0.499 0.897 0.736 0.000
~0.985 -0.997 -0.937 -0.785 -0.539 ~0.233 0.094 0.439 0.854 0.787 0.000
-0.962 -1.000 -0.967 -0.840 -0.609 -0.304 0.030 0.380 0.805 0.836 0.000
~0.930 ~-0.992 -0.988 -0.888 -0.676 -0.374 -0.033 0.322 0.753 0.881 0.000
-0.889 -0.9756 ~0.998 ~-0.928 -0.739 -0.443 -0.096 0.265 0.699 0.920 0.000
~0.839 ~0.948 -0.999 ~0.960 -0.798 -0.512 -0.160 0.208 0.644 0.953 0.000
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1.000
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0.974
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0.965
0.960
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0.951
0.949
0.949
0.949
0.950
0.953
0.965
0.959
0.963
0.968
0.973
0.978
0.983
0.987
0.992
0.995
0.998
0.999
1.000
1.000
0.998
0.996
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.000
.999
.996
.991
.985
977
.968
.959
.949
.939
.929
.920
.912
.906
.900
.897
.895
.896
.896
.900
.904
911
.919
.927
.937
.947
.957
.966
9786
.983
.990
.996
.999
.000
.999
.997
.992
.986
.979
970
.961
.951
.941
.931
922
.914
907
.901
.897
.895
.894

0.300

1.000
0.999
0.994
0.987
0.977
0.966
0.952
0.938
0.923
0.908
0.894
0.880
0.868
0.857
0.849
0.842
0.838
0.837

0.838°

0.841
0.847
0.855
0.865
0.877
0.890

+0.904

0.919
0.934
0.949
0.962
0.974
0.984
0.992
0.998
1.000
0.998
0.996
0.989
0.980
0.969
0.956
0.942
0.927
0.912
0.898
0.884

0.871.

0.860
0.8561
0.844
0.839

0.400

1.000
0.998
0.992
0.983
0.970
0.954
0.937
0.918
0.898
0.878
0.858
0.840
0.823
0.809
0.796
0.786
0.779
0.776
0.775
0.777
0.782
0.790
0.801
0.815
0.831
0.848
0.867
0.887
0.907
0.926
0.945
0.962
0.976
0.987
0.995
0.999
1.000
0.996
0.988
0.977
0.963
0.947
0.928
0.909
0.889
0.869
0.850
0.832
0.816
0.803
0.791

0.500

1,000
0.998
0.990
0.978
0.962
0.943
0.921
0.897
0.873
0.848
0.823
0.800
0.778
0.759
0.743
0.729
0.718
0.711
0.708
0.707
0.711
0.718
0.728
0.741
0.758
0.777
0.798
0.821
0.846
0.870
0.895
0.919
0.941
0.961
0.977

0.989 .

0.997
1.000
0.998
0.991
0.979
0.964
0.945
0.923
0.899
0.875
0.850
0.825
0.802
0.780
0.761

0.600

1.000
0.997
0.988
0.974
0.955
0.932
0.905
0.877
0.847
0.817
0.788
0.760
0.733
0.709
0.688
0.670
0.655
0.644
0.637
0.633
0.633
0.637
0.644
0.656
0.670
0.688
0.710
0.734
0.760
0.788
0.818
0.848
0.877
0.906
0.932
0.955
0.974
0.988
0.997
1.000
0.997
0.988
0.974
0.9565
0.931
0.905
0.877
0.847
0.817
0.788
0.759

0.700

1.000
0.997
0.986
0.970
0.947
0.920
0.890
0.857
0.822
0.787
0.783
0.720
0.688
0.659

10.633

0.610
0.691
0.875
0.562
0.554
0.549
0.548
0.551
0.8657
0.568
0.582
0.600
0.621
0.646
0.673
0.703
0.736
0.770

0.805

0.839
0.873
0.905
0.934
0.959
0.979
0.992
0.999
0.999
0.992
0.979
0.959
0.935
0.906
0.874
0.840

0.805

OPOOOHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOH

.800

.000
.996
.984
.965
.940
.909
.874
.837
797
L7857
.718
.679
.643
.609
.B77
.549
.524
.503
.485
.470
.459
.452
.448
.448
.451
.458
.468
.482
.B00
.B21
.545
.B73
.604
.638
.674
L7412
.752
.792

831

.869
.904
.936
.962
.982
.995
.000
.997
.986
.968

944

.914

0.900

1.000
0.996
0.982
0.961
0.932
0.898
0.859
0.817
0.772
0.727
0.683
0.639
0.598
0.558
0.521
0.487
0.457
0.429
0.404
0.383
0.364
0.349
0.337
0.327
0.321
0.317
0.316
0.318
0.323
0.331
0.342
0.355
0.372
0.392
0.415
0.441
0.470
0.502
0.537
0.575
0.616
0.658
0.702
0.747
0.792
0.835
0.877
0.914
0.946
0.971
0.989

.O_OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO!—-‘-

.000

.000

996

.980
.957
.925
.887
.844
797
.748
.698
.648
.599
.552
.507

465
425

.388
.3564
.322
.293"
.266
.241
.219
.199
.180
.163
.148
.134
.121
.110
.099
.090
.081
.074
.067
.060
.055
.049
.045
.040
.037
.033
.030
.027
.025
.022
.020
.018
.016

0185
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0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

1.000 0.952 0.896 0.837 0.783 0.744 0.733 0.770 0.880 0.999 0.012
1.000 0.985 0.899 0.837 0.777 0.730 0.708 0.736 0.842 0.999 0.011
1.000 0.958 0.903 0.840 0.775 0.719 0.688 0.704 0.803 0.991 0.010
1.000 0.962 0.910 0.845 0.775 0.712 0.670 0.674 0.763 0.974 0.009
1.000 0.967 0.917 0.852 0.779 0.708 0.655 0.646 0.723 0.949 0.008
1.000 0.972 0.926 0.862 0.786 0.707 0.644 0.621 0.685 0.918 0.007
1.000 0.977 0.985 0.873 0.795 0.710 0.637 0.600 0.648 0.881 0.007
1.000 0.982 0.945 0.886 0.807 0.717 0.633 0.582 0.614 0.841 0.006
1.000 0.986 0.955 0.900 0.822 0.727 0.633 0.568 0.582 0.797 0.005
1.000 0.991 0.965 0.916 0.838 0.740 0.637 0.558 0.553 0.753 0.005
1.000 0.994 0.974 '0.930 0.857 0.756 0.644 0.551 0.528 0.708 0.004
1.000 0.997 0.982 0.945 0.876 0.775 0.6566 0.548 0.506 0.664 0.004
1.000 0.999 0.989 0.958 0.896 0.796 0.670 0.549 0.487 0.621 0.004
1,000 1.000 0.994 0.971 0.916 0.819 0.689 0.554 .0.472 0.580 0.003
1.000 1.000 0.998 0.982 0.935 0.844 0.710 0.562 0.460 0.542 0.003
1.000 0.999 1.000 0.990 0.953 0.868 0.734 0.574 0.452 0.506 0.003
1.000 0.897 1.000 0.996 0.968 0.893 0.760 0.590 0.448 0.474 0.002
1.000 0.994 0.997 1.000 0.981 0.917 0.788 0.610 0.447 0.444 0.002
1.000 0.991 0.993 1.000 0.991 0.940 0.818 0.633 0.450 0.418 0.002
1.000 0.986 0.983 0.997 0.998 0.959 0.848 0.659 0.457 0.394 0.002
1.000 0.982 0.980 0.991 1,000 0.976 0.877 0.688 0.467 0.374 0.002
1.000 0.977 0.972 '0.983 0.998 0.989 0.906 0.719 0.480 0.357 0.001
1.000 0.972 0.962 0.972 0.993 0.997 0.932 0.752 0.497 0.343 0.001
1.000 0.967 0.953 0.960 0.984 1.000 0.955 0.787 0.518 0.332 0.001
1.000 0.962 0.943 0.946 0.974 0.998 0.974 0.822 0.542 0.324 0.001
1.000 0.958 0.933 0.932 0.956 0.992 0.988 0.856 0.569 0.319 0.001
1.000 0.955 0.924 0.917 0.939 0.980 0.997 0.889 0.599 0.316 0.001
1.000 0.952 0.916 0.902 0.920 0.966 1.000 0.920 0.633 0.317 0.001
1.000 0.950 0.908 0.888 0.900 0.946 0.997 0.947 0.669 0.320 0.001
1.000 0.949 0.902 0.875 0.880 0.925 0.988 0.969 0.707 0.326 0.001
"1.000 0.949 0.898 0.863 0.860 0.901 0.974 0.986 0.746 0.335 0.001
1.000 0.950 0.895 0.853 0.842 0.877 0.954 0.996 0.786 0.347 0.00i
1.000 0.951- 0.894 0.846 0.826 0.852 0.931 1.000 0.825 0.362 0.000
1.000 0.954 0.895 0.840 0.810 0.827 0.905 0.997 0.864 0.380 0.000
1.000 0.957 0.898 0.837 0.797 0.804 0.876 0.986 0.900 0.401 0.000
1.000 0.961 0.902 0.837 0.787 0.782 0.847 0.970 0.932 0.426 0.000
1.000 0.966 0.908 0.839 0.780 0.762 0.817 0.948 0.959 0.453 0.000
1.000 0.971 0.916 0.843 0.776 0.745 0.787 0.921 0.979 0.483 0.000
1.000 0.976 0.924 0.850 0.775 0.731 0.759 0.890 0.993 0.517 0.000
1.000 0.981 0.933 0.859 0.777 0.720 0.733 0.857 1.000 0.553 0.000
1.000 0.985 0.943 0.870 0.782 0.712 0.709 0.823 0.998 0.593 0.000
1.000 0.990 0.953 0.882 0.789 0.708 0.688 0.788 0.988 0.634 0.000
1.000 0.993 0.963 0.896 0.800 0.707 0.670 0.753 0.971 0.677 0.000
1.000 0.996 0.972 0.911 0.813 0.710 0.655 0.720 0.948 0.722 0.000
1.000 0.998 0.981 0.926 0.829 0.716 0.644 0.689 0.918 0.767 0.000
1.000 1.000 0.988 0.941 0.846 0.726 0.637 0.660 0.885 0.811 0.000
1.000 1.000 0.994 0.955 0.865 0.739 0.633 0.633 *0.848 0.854 0.000
1.000 0.999 0.998 0.968 0.885 0.755 0.633 0.610 0.809 0.893 0.000
1.000 0.998 1.000 0.979 0.905 0.774 0.637 0.591 0.769 0.928 0.000
1.000 0.995 1.000 0.988 0.924 0,794 0.644 0.575 0.729 0.958 0.000



