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Abstract 

The Euler top is a rigid body fixed at its centre of mass and free to rotate without 

external torques. Its angular momentum in the space frame is constant. In this thesis, 

there are several herpoihode graphs that compare and contrast various configurations 

of the Euler top. In addition, an important identity is found that relates the angle of 

rotation of the body around the angular momentum vector and the angle swept by 

the herpoihode. An explanation for the phenomenon is provided that uses the fact 

that the motion takes place on a torus embedded in the SO(3) group of rotations. 

This explanation is then confirmed by numerical simulations. 

The rattleback is a spinning top that reverses the direction of motion on its own. 

Depending on its moments of inertia and shape, it can reverse one or more times or it 

can spin at an axis other than the vertical. The equations of motion are linearized and 

parameter ranges are found such that the rattleback exhibits qualitatively different 

behaviours. These parameters are then used in numerical simulations that confirm 

the ptedictions of the linearized equations of motion. The numerical simulations 

also indicate that a spin reversal occurs precisely when the wobbling angle is at its 

maximum - something that has been observed in real rattlebacks. 
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Chapter 1 

Euler Top 

1.1 Introduction 

The Euler top is a rigid body that is fixed at its centre of mass and is free to move 

without external torques. The equations of motion were first derived by Euler in 1758 

[9]. In 1834, Poinsot [23] showed how the motion of the Euler top can be represented 

as an ellipsoid fixed at its centre of mass and rolling on a plane. The curve traced 

by the point of contact on the ellipsoid is called the poihode. The curve traced by 

the point of contact on the plane is called the herpolhode. In his paper, Poinsot drew 

a graph of a herpolhode with inflection points - which happens when the Euler top 

is not physically realizable. For a physically realizable Euler top, the herpolhode is 

always locally convex and has no inflection points. One of the earliest pictures of 

a realistic herpolhode was shown by Routh [24] in 1884. In 1886, Darboux [8] was 

probably the first to prove that a realistic herpolhode has no inflection points, and 

another article on the matter was published by Lecornu [16] in 1906. In 1966 Arnold 

[1] published an article that treated the Euler top problem using Lie groups. In 1991, 

Montgomery [21] published a paper that found a relationship between the projction 

angle i9 and the herpolhode angle e. In 1993 Levi [17] published an article related 
to the Euler top. In his book Cushman [7] corrected a slight error in Arnold's and 

Montgomery's calculations and claimed that the change in angle i9 over a period T 

equals the angle 6 swept by the herpolhode after every other maximum of its radius 
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- a conclusion that was very close to the actual truth. The author of this thesis, in 

collaboration with L. Bates and R. Cushman, has further clarified previous results, 

notably by finding the relationship between the angle .79 and the herpoihode angle 

for all possible cases. It turns out that for certain conditions, Cushman's identity 

found in [7] is valid while for other conditions, there is a difference of 2ir between 

the two sides of Cushman's identity. 

1.2 Definitions 

A rigid body is a system of point masses such that the distance between every two 

points is constant. The mass of the rigid body measures the quantity of matter 

present in it, while the volume measures the space that the rigid body occupies. 

Define x'-y'-z' coordinate system fixed in the body. The moment of inertia 

about the x'-y' plane and the moment of inertia about the x'-axis are defined aè: 

= 

.rZI = 

fv(x'2 +,Y/2 )dm 

Iv x'2dm 
(Li) 

where dm is an infinitesimal mass element and V is the volume of the rigid body. 

The moment of inertia tensor is the 3 x 3 matrix: 

I 

Ix' 

_'x'y' IV (1.2) 

Since this matrix is symmetric, it is diagonalizable by an orthogonal transformation. 

Therefore every rigid body has three mutually orthogonal principal axes along which 

the inertia matrix is diagonal. These axes meet at the centre of mass of the body. 
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From now on, we will assume that x'-y'-z' coordinate system coincides with the three 

principal axes of the body. An Euler top is a rigid body that is fixed at its centre 

of mass and is free to rotate without external torques acting on it. For example, 

the rotational motion of the Earth has some similarities with the motion of an ideal 

Euler top. To describe the motion of the body mathematically, choose two coordinate 

frames: one that is fixed in space (the space frame) and one that is fixed in the body 

(the body frame). Choose the three coordinate axes of the body frame to coincide 

with the three principal axes. Let 4, '2 and 13 be the three principal moments 

of inertia (about the x'-, y'-. and z'.-axes in the body frame, respectively). In every 

instant, there is an angular velocity vector [w1, w2, w3] in the body frame that changes 

with time. w1,w2 and w3 are the instantaneous angular velocities about x'-,y'- and 

z'-axes respectively in the body frame. Each rotation can be represented by a 3 x 

3 orthogonal matrix with determinant 1. The matrix must be orthogonal since the 

body is rigid and does not deform. The determinant of the matrix must equal +1 

since the motion is continuous. Let A be such a matrix. 

a1 b1 c1 

A a2 

a3 

b2 c2 

b3 C3 

All such matrices form the SO(3) group of rotations. Let t be the time elapsed since 

the beginning of motion. The map t -+ A(t) describes the motion of the body. 
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Body Frame 

SpaceFrame 

Z 

V 
Y 

Figure 1.1: Rotational Motion of a Rigid Body. 
The space frame x-y-z is fixed in space. The body frame x'-y'-z' is fixed in the body 
and rotates with the body. x',y' and z' are the three principal axes. The moment of 

inertia around x' is I, around y' is 12 and around z' is 13. The instantaneous 

angular velocity around x' is w1, around y' is w2 and around z' is w3. 

1.3 Initial Conditions 

One way to parametrize the matrix A(t) is in terms of the Euler angles 0 (angle of 

nut ation), 0 (angle of precession) and ' b (angle of spin). Graumann [11] has shown 

all different possibilities that can arise but for the purposes of this thesis the reader 

can refer to the following Figure 1.2. If the initial orientation of the rigid body is 

given in terms of its Euler angles (; b, 9) then the initial matrix A(0) can be found 
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Osiginsl Spin Axis 
EWer Angle of Spin 

Euler Angle of Nntntion 

New Spin Axis 

Euler Angle of Precensinn 

Figure 1.2: Euler angles 

by using the following identities (see [11]): 

• a1 = cos 9 cos 0 cos - sin q sin 0, 

a2 = cos 9 sin 0 cos ',& + cos 0 sin b, 

a3 = — sin 9 COS b, 

= — COS 9 COS sin b sin COS 

= — COS 9 sin sin + COS qCOS '', (1.3) 

b3 = sin 9 sin , 

Cl = sin 9 COS q5, 

C2 = sin 9 sin 5, 

C3 = COS 9. 

Once we know the initial orientation of the body, we must apply Newton's second 

law to see how the motion changes with time. This will be accomplished in the next 

section, but for now it is important to know that the angular momentum in the space 
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frame remains constant (due to the lack of external torques). Choose the z axis of 

the space frame to coincide with the constant anglular momentum. If, in addition to 

the three Euler angles, the magnitude L of the constant angular momentum vector 

L in the space frame is also known, then the initial wi and 6 are determined from 

the formulas: 

wli 

w2i 

a3L 
Ii 

(1.4) 

t9, = arctan al  

The angle 6 is the angle between the projection of [a1, a2, a3] onto the xy plane and 

the x-axis in the space frame. Call this angle the projection angle. It measures the 

amount of rotation of the body around the angular momentum vector L in space 

frame. Many authors have shown (see, for example, [7]) that the four variables 

w1,w2, w3 and 6 are necessary and sufficient to parametrize the rotation matrix A(t). 

Therefore, knowing [w1, w2, w3] and 6 as functions of time is sufficient to reconstruct 

the motion of the Euler top. Thus, four initial conditions are always needed for 

describing the motion of the Euler top: either (w1, w2, W3,10) or (, b, 0, L). 

1.4 Euler-Arnol'd Equations 

Let L equal the angular momentum vector of the body in the space frame: 

L = A(t) * [11w1, I2w2, I3w3]T (1.5) 
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z 

<a1,2,o3> 

y 

Figure 1.3: Geometrical Representation of i9 
The angle 9: The angle between the projection of [a1, a2, a3] onto the x-y plane and 

the x-axis in the space frame 

The absence of external torques means that the angular momentum L of the body 

in the space frame remains constant: 

dL 

dt 
(1.6) 

The z-axis in the space frame has been chosen so that its positive direction coincides 

with the positive direction of vector L. Let 1 equal the angular, momentum of the 

body in the body frame: 

1 = [11w1, I2w2, I3w3] (1.7) 

Converting from space frame to body frame coordinates and using the Coriolis The-

orem, equation (1.6) then becomes: 

dl _ 

— —1 x [w1,w2,w3] 
dt 

(1.8) 
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Expanding this vector equation, we get the differential equations that govern the 

motion of the Euler Top ( the Euler equations): 

= (I2—Is)w2w3, 

12w2 = (13 - Ii)w1w3, (1.9) 

I3w3 = (Ii—I2)w1w2. 

These three equations can be solved explicitly by using Jacobian elliptic functions 

sn,cn and dn (see, for example, [27],[7]). Let 12 be the second largest moment of 

inertia. Then the solution for w2 can be expressed using the formula: 

= 22sn(n(t - )Jk) (1.10) 

where 

= Amplitude of w2(t) 

n = Time scale coefficient 

e = Time shift coefficient 

k Modulus of Jacobian elliptic functions. 

Each of the Jacobian elliptic functions is periodic. When the Euler equations are 

solved, two of the three elliptic functions (sn and cn) have the same period which we 

will call i-, while the period of the third one (dn) is ii-. The period r of sn and cn 

can be found with the formula: 

= K(k) 

where K(k) is the complete elliptic integral K(k) = j cit 2 

sin t 

By themselves, the three Euler equations (1.9) are not sufficient to parametrize the 

rotation matrix A(t). When a fourth equation for is added to the three Euler 
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equations, the new system of four equations is called the Euler-A rnol 'd equations. 

This system then is necessary and sufficient to parametrize A(t). Shown below is 

the fourth equation of the Euler-Arnol'd equations (see [7] for derivation): 

t— L(J2w+I3w) 
- L2—I?w? (1.12) 

The equation for 9 is valid as long as .12 is the second largest moment of inertia. The 

energy E is an important integral of the Euler equations ( 1.9): 

E = (I1w + I2w + I3w) (1.13) 

The rotation matrix is computed from the solutions of the Euler-Arnol'd equations 

as follows (for derivation, see [7]): 

A(t) = 

a1 b1 c1 

a2 b2 c2 

a3 b3 c3 

a3 

b3 = 12W2 

C3 

a1 /1—acos, 

a2 = 1—asin, 

= a3b3 COS 9+c3sin  

c3 cosi9—a3b3 sin  

a3c3cos—b3srn  

= b3 Cos 19+a3c3sin 19  
C2 2 

(1.14) 
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These equations are valid as long as a3 0 0 (or equivalently, w1 0). The case when 

= 0 is trivial. 

1.5 Herpoihode 

1.5.1 Mathematical Analysis 

Poinsot [23] showed that the motion of the Euler top can be represented as an ellip-

soid fixed at the centre of mass of the Euler top and rolling on a plane perpendicular 

to the constant angular momentum vector L. This plane is called the invariable plane 

II. The curve traced by the point of contact of the rolling ellipsoid on the invari-

able plane is called the herpolhode. Its parametric representation can be obtained 

when the solution [w1, w2, w3] of the Euler equations is transformed to space frame 

coordinates. Call this vector [ah, Yh, Zh]. This is the angular velocity of the body in 

the space frame. Here is how the Xh(t) and yh(t) coordinates of the herpolhode are 

Figure 1.4: Invariable Plane and Herpolhode 

computed (see [7] for derivation): 
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Xh (wi_ r,) a' cosi9—(c3w2---b3w3) sin9  =  

- (c3w2—b3w3) cos9+(wj— 2Ea -7-.) sint9 

Yh - 
Here E is the total energy of the Euler Top (1.13). The remaining variables can 

be computed from (1.9),(1.12) and (1.14). 

If the rotation matrix A(t) is known) then the coordinates of the herpoihode can 

be computed using the following formulas: 

xh = a1w1+b1w2+c1w3 

Yh = a2w1 + b2w2 + c2w3 

The path of the herpolhode always remains in an annular region between two 

circles Cmin and Cmax. As the time t increases, the herpoihode follows a locally 

convex curve (when the 3 principal moments, of inertia have physically realizable 

values) that alternately touches Cmin and Cm=. Let be the radius of and 

Tma be the radius of Cma . Cushman and Bates [7] have shown how' to calculate 

crm jn and Tma. If I],.> 12 > 13 then r,,,,,, is calculated to be: 

rmax =  /( -  -. E) (Z - -) (1.17) 213 

If 1i < 12 <13 then TmacI is calculated to be: 

2 / L2 L2 
Tmc i/ (y - E)(E y)  

When L2 - 212E = 0, the modulus k (and the parameter m = k2) of the Jacobian 

elliptic functions equals one. Tm in depends on the sign of L2 - 212E and on whether 

I1>I2>IS orIl<I2<I3. 

Let 11 > 12 > 13. If £ 2 - 2.T2E> 0, the formula for rm.n is (see [7] for derivation): 

2 
Tmim = 

L2 L2 

212 21, 
(1.19) 
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If L 2 
- 212E < 0, then Tmjm is given by: 

rmj= 2 V( L' L2 
L 213 212 

(1.20) 

Now let 11 < 12 <13. If 1? - 212E > 0, the formula for Tmjn is (see [7] for derivation): 

If L2 - 212E < 0, then rmin 

2 IL2 

L 21, 212 

is given by: 

2/L2 £ 2 

Tmjfl= 
L 212 213 

(1.21) 

(1.22) 

Cushman and Bates [7] further prove that the time it takes for the herpoihode to 

reach Cmax twice equals the period r of two of the three Jacobi elliptic functions that 

are the solutions to the Euler equations (1.9). In addition, numerical experiments 

suggest that the time between two successive maximums of the herpoihode radius is 

T 

2 

1.5.2 Computing the Herpoihode Coordinates 

Let 6 be the angle swept by the herpoihode after time t, and (0) = 0. Numerically, 

this angle can be computed as follows. Let R(t) = r(t)2 = ch(t)2 + yh(t) 2. Since the 

computer program computes discrete points, it is not always possible to determine 

whether r(t) = Tma. Moreover, the very time when this happens can be missed 

due to the step size. Thus, another approach is taken. Note that all the relative 

maximums of R(t) coincide with its absolute maximum (that is, when the herpolhode 

moves toward Cmax it never starts going back to Cmim before reaching Cmaçj first). 
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(Likewise, the relative minimums of R(t) coincide with its absolute minimum but 

this is not important from computational viewpoint). The computer program tracks 

3 consecutive herpoihode points at a time. Let R(t) at each of these points be equal 

to R1 = R(t),R2 = R(t - dt) and R3 = R(t - 2dt) where dt is an infinitesimal 

change in time t. Therefore R1 "leads" while R3 "trails". When R1 > R2 > R3 

the herpoihode is moving toward the outer circle. At the time when R reaches its 

maximum, R2 > R1 and R2 > R3. It is at this time that the herpolhode is tangent 

to the outer circle and the coordinates are recorded. Afterwards, several logical 

true/false switches determine whether the herpoihode touches the outer circle again 

(in which case nothing is recorded) and then once again (in which case the time 

and coordinates are recorded). The angle swept by the herpoihode is recorded from 

the very beginning and at each time step this angle increases by the appropriate 

amount d as determined by the two leading points (x, yhl) and (xh2, yh2): d = 

arccos  Xh12+yh1?J 2  

\/(X +v) ( 2+y2) 

1.5.3 The Herpoihode: Numerical Examples 

Shown below are several graphs that can help us understand the motion of the Euler 

top. There are four cases to be .considered: 

1. I1>I2>I3 and L2-212E<O 

2. 11>12>13 and L2-212E>O 

3. Ii<I2<I3 and L2-212E<O 

4. Ii<I2<I3 and L2-212E>O 

For each of these cases, there are three graphs: 

1. Herpoihode. Note that the motion in all herpoihode graphs is counterclockwise. 
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The time that it takes the herpolhode to reach the outer circle twice is found. 

2. {w1, w2, Wj] as functions of time. Obviously, the solutions are the Jacobian elliptic 

functions sn, cn and dn. The period r of two of them equals the time it takes the 

herpolhode to reach the outer circle twice. 

3. Herpoihode angle and projection angle i9 as functions of time. In two cases, 

the two graphs almost overlap and the difference ((t3) - (t1)) - (9(r) ` 0(0)) is 

zero. In the other two cases the two graphs show different trends and this difference 

is ±2qr. 
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HerpoLhode 
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32. 849094 

6.283417 

-6.406595 

Figure 1.5: Herpolhode 
Parameters: 

Principal moments of inertia: 1:L = 4,12 = 2.2,13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 15, çb = 0, b = 10 

Output: 
First time when herpolhode radius reaches its maximum: ti = 3.272 

Angle swept by herpolhode from t = 0 to t = t1: e(t1)=12.960146 radians 
Angle when t = t1: i9(ti)=16.250130 radians 

Third time when herpolhode radius reaches its maximum: t3 = 9.958 

Angle swept by herpolhode from t = 0 to t = t3: e(t3)=39.525822 radians 
Angle 19 when t = t3: t9(t3)=49.099224 radians 

Period of Jacobian elliptic functions ,= t3 — t1 = 6.686 
Change in herpolhode angle from t1 to t3 = e(t3) — (t1)= 26.565678 radians 

Change in from t1 to t3 = 9(t3) - (t1)= 32.849094 radians 

Difference between change in V.and change in herpolhode angle = 6.283417 = 2ir 
Value of 1? - 212E = -6.406595 
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Jacobian ELLiptic Functions 
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Figure 1.6: Jacobi Elliptic Functions vs. Time 
Parameters: 

Principal moments of inertia: I 4,12 = 2.2,13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 15, q = 0, 0 = 10 
Calculation of the period r of sn and cn: 

k - V(I,-.r,)(L2-2I3,-) = 0.561 (I2—I3)(211E—L2) 

  = 1.031 
111213 

K(k) = 6.685 

N2 

N3 

(1.23) 
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NerpoLhode flngie and Projection Angie 
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Figure 1.7: Herpoihode Angle and Projection Angle 9 as Functions of Time 

Parameters: 
Principal moments of inertia: 4 = 4,12 = 2.2, Is = 2 

Angular momentum in the space frame: L = 10 
Initial Euler frame: 0 = 15, çb = 0, 1' = 10 
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HerpoLhode 
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Figure 1.8: Herpoihode 

Parameters: 
Principal moments of inertia: 11 = 4,12 = 2.2,13 = 2 

Angular momentum in the space frame: £ = 10 

Initial Euler frame: 0 = 40, q5 = 0, b = 10 
Output: 

First time when herpoihode radius reaches its maximum: t1 = 2.322 

Angle swept by herpoihode from t = 0 to t = t1: (t1)=11.048027 radians 
Angle t9 when t = ti: (t1)=11.233678 radians 

Third time when herpoihode radius reaches its maximum: t3 = 7.148 

Angle swept by herpolhode from t = 0 to t = t3: 03) =33.971615 radians 
Angle when t = t3: i9(t3)=34.157978 radians 

Period of Jacobian elliptic functions = t3 - t1 = 4.826 

Change in herpoihode angle from t1 to t3 = - (t1)= 22.923590 radians 
Change inO from t1 to t3 = 9(t3) - '1(t1)= 22.924301 radians 

Difference between change inO and change in herpoihode angle= 0.000712 

Value of £2 - 212E = 12.164030 
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Jacob.an ELLLptL.c FunctLons 
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Figure 1.9: Jacobi Elliptic Functions vs. Time 
Parameters: 

Principal moments of inertia: 11 = 4,12 = 2.2,13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 40, q. = 0, 10 = 10 
Calculation of the period r of sn and cn: 

V
I(I2I3)(2IjE_L2) = 0.574 
(II-42)(V-213E) 

/  (1j,-12)(L2-213B - 
V 111213 

K(k) = 4.824 

(1.24) 
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HerpoL.hode Angie and Projection Rngie 
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Figure 1.10: Herpolhode Angle 6 and Projection Angle 9 as Functions of Time 

Parameters: 

Principal moments pf inertia: I = 4,12 = 2.2,13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 9 = 40, q = 0, b = 10 
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HerpoLhode 
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Figure 1.11: Herpoihode 

Parameters: 
Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 

Angular momentum in the space frame: L = 2 
Initial Euler frame: 0 = 45, q = 0> = 10 

Output: 
First time when herpoihode radius reaches its maximum: t1 = 0.426 

Angle swept by herpoihode from t = 0 to t = t1: (t1)=0.283923 radians 

Angle t9 when t = t1: 9(t1)=0.422922 radians 
Third time when herpoihode radius reaches its maximum: t3 = 28.978001 
Angle swept by herpoihode from t = 0 to t = t3: e(t3)=16.859516 radians 

Angle t9 when t = t3: i9(t3)=16.998795 radians 
Period of Jacobian elliptic functions = t,3 - t1 = 28.552 

Change in herpoihode angle from t1 to t3 = (t3) - (t1)= 16.575594 radians 

Change in t9 from t1 to t3 = i9(t3) - (t1)= 16.575872 radians 

Difference between change in 9 and change in herpoihode angle = 0.000279 
Value of £ 2 - 212E = -0.219846 
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JacobLon ELLLptLc F'unctLons 
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Figure 1.12: Jacobi Elliptic Functions vs. Time 
Parameters: 

Principal moments of inertia: I]L = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial Euler frame: 0 = 45, 0 = 0, 0 = 10 
Calculation of the period r of sn and cn: 

V
I(I3_%2)(L2_-211E) = 0.881 
(I2—Ij)(213E—L2) 

/(I2_I1)(213E_L2 = 0.309 
111213 

—K(k) = 28.553 

WI 

W2 

W3 

(1.25) 
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NerpoLhode Ari9Le and Projection flngLe 
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Figure 1.13: Herpoihode Angle and Projection AngleO as Functions of Time 
Parameters: 

Principal moments of inertia: I. = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 45, 0 = 0, 0 = 10 
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HerpoLhode 
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Figure 1.14: Herpoihode 

Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 

Angular momentum in the space frame: L = 2 
Initial Euler frame: 0 = 15, = 20, '?/' = 30 

Output: 

First time when herpolhode radius reaches its maximum: t1-= 0.978 

Angle swept by herpolhode from t = 0 to t = t1: e(t1)=0.657706 radians 

Angle t9 when t = t1: t9(ti)=1.296771. radians 
Third time when herpolhode radius reaches its maximum: t3 = 18.285999 
Angle swept by herpolhode from t = 0 to t = t3: E(t3)=14.449825 radians 

Angle '9 when t = t3: (t3)=8.805639 radians 
Period of Jacobian elliptic functions = t3 - t1 = .17.308001 

Change in herpolhode angle from t1 to t3 = e(t3) - e(t1)= 13.792119 radians 

Change in t9 from t1 to t3 = 9(t3) - '9(t1)= 7.508868 radians 

Difference between change in ' 5' and change in herpolhode angle = -6.283251 = -2ir 
Value of L2 - 2.12E = 1.299038 
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JacobLan ELLLptLc FunctLone 
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Figure 1.15: Jacobi Elliptic Functions vs. Time 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 

Angular momentum in the space frame: Ii = 2 

Initial Euler frame: 9 = 15, çb = 20, ,0 = 30 
Calculation of the period r of sn and en: 

k - V(I,—I,)(21,---L2) = 0.285 
- (I3—I2)(L2-211E) 

- I(I3—I2)(i,2-2I'E) = 0.371 
- 111213 

= K(k) = 17.308 

Ni 

W2 

W3 

(1.26) 
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HerpoLbode l9ngLe and ProjectLon flngLe 
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Figure 1.16: Herpolhode Angle and Projection Angle 3 as Functions of Time 
Parameters: 

Principal moments of inertia: 4 = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: £ = 10 

Initial Euler frame: 0 = 15, 0 = 20, 0 = 30 
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1.5.4 Discussion of the Numerical Examples 

According to Montgomery [21], the difference 19(T) - t9(0) equals the angle swept by 

the herpoihode between two successive maximums of its radius. However, according 

to Cushman [7], it is the angle swept by the herpoihode between every other maxi-

mum (t3) - (t1) that equals 29(r) —29(0) (where t1 is the time of first maximum, t3 is 

the time of third maximum and is the herpoihode angle swept since the beginning 

of motion). The numericaf experiments in the previous section suggest that this is 

not always the case depending on the moments of inertia and the initial conditions: 

1. 11 > 12 > 13 and L 2 - 212E < 0 (see Figures 1.5,1.6,1.7) 

In this case, e(t3) - (t1) = 29(r) - 29(0) - 2ir 

2. 11 > 12 > 13 and £2 - 212E> 0 (see Figures 1.8,1.9,1.10) 

In this case, (t3) - (t1) = 29(r) - 29(0) 

3. I <'2 <13 and £ 2_ 212E < 0 (see Figures 1.11,1.12,1.13) 

In this case, (t3) - (t1) 29(r) - 29(0) 

4. 11 < 12 <13 and £2 - 212E> 0 (see Figures 1.14,1.15,1.16) 

In this case, (t3) - (t1) = &(T) - 29(0) + 2ir 
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L. Bates and R. Cushman, in several conversations with the author, have suggested 

an explanation for the observed phenomena which will be discussed in the next 

section. 

1.6 Solid Ball Model 

1.6.1 Mathematical Analysis 

To better visualize how the rotations change in time, the solid ball model is used. 

To describe a rotation A(t), one needs an axis of rotation and an angle of rotation, 

noting that a roation of ir radians is identical to a rotation of —ir radians. The axis 

of rotation can be represented by a 3-dimensional unit vector [ri, r2, r3]. Whn this 

unit vector is multiplied by the angle of rotation C, a new vector is obtained that has 

a magnitude between 0 and ir. Hence each element of 90(3) can be represented as a 

3-dimensional point in 'a " solid ball" of radius ir. Topologically, erery two opposite 

points of the boundary of the solid ball are identified. Suppose that at a given time 

t, we have computed the rotation matrix A(t). Then the 3-dimensional point of the 
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solid ball model is computed as follows (for derivation, see [7]): 

trace(A) = a,+ b2 + c3, 

= arccos trace(A)-1  
2 ' 

ri 

r3 

xl. 

Yr 

2sinC' 

- c1—a3 

- 2sinC' 

- a2—b1  
2sinC' 

= 

r2 , 

(1.27) 

Zr = T3. 

Here {r1, r2, r3] is a vector of norm 1 which specifies the directibn of the axis of 

rotation, while C indicates the amount of rotation about that axis which can be 

between 0 and ir. Thus, the point [xv, Yr, Zr] completely describes the instantaneous 

rotation ata time t. 

1.6.2 Explanation of the Herpoihode Results 

While the Solid Ball model describes the motion of the Euler top, this does not mean 

that the motion would pass through every point of SO(3). The configuration space 

is the tangent bundle TSO(3) which is a.6-dimensional manifold diffeomorphic to 

R3 x SO(3). L = constant is an invariant submanifold in TSO(3) (meaning that if 

the motion started along this submanifold, it would stay there). This. submanifold 

is 3-dimensional and has the topology of SO(3). The energy E is also constant. 

Therefore the level set {E = constant fl L = constant} is a 2-dimensional subman-

ifold imbedded in SO(3). It is along this invariant submanifold that the motion of 

the Euler top takes place. This 2-dimensional manifold is compact and orientable, 



30 

therefore it can be represented as a sphere with 2 2 x handles where x is the Euler 

characteristic of the surface. Since E > 0, the vector field along this manifold is 

nonvanishing. Hence the Euler characteristic x of the surface must be zero and so 

the surface must be a torus imbedded in 50(3). If the torus is defined abstractly as 

the points of a square with opposite sides identified, one cannot distinguish between 

the two circles C1 and C2 that form the basis, of the torus. So the information that 

the torus is imbedded in 50(3) is important because it allows one to distinguish 

between 1 attitude and longitude, as the next two figures illustrate. 

Figure 1.17: Longitudinal circle along the torus 

This circle is not the boundary of a disk in a solid torus imbedded in SO(3) and 

cannot be continuously deformed to a point 

Figure 1.18: Lattitudinal circle along the torus 

This circle is the boundary of a disk in a solid torus imbedded in SO (3) and can be 

continuously deformed to a point 

Depending on the sign of the value of L2 - 212E and depending on whether 
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11 > '2 > 13 or. 13. < 12 < I, the motion along the torus can be longitudinal or 

lattitudinal. 

Figure 1.19: Longitudinal motion along the torus 

Figure 1.20: Lattitudinal motion along the torus 

Recall that (t) equals the angle that the herpolhode has swept after time t. 

Case 1: 11 > 12>13 

1.1: £2 - 212E < 0 (see Figures 1.21,1.22,1.23,1.5,1.6,1.7) 

In this case, the motion along the torus is longitudinal and the angle e(t) lags behind 

'i9(t) so that 6 (4) - = 'ó'(r) - t9(0) - 2ir. 

1.2: £2 - 212E> 0 (see Figures 1.24,1.25,1.26,1.8,1.9,1.10) 

In this case, the motion along the torus is lattitudinal and e(t3) —(t1) = 9(r) — 9(0). 

Case 2: 11 <12 < 13 
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2.1: £ 2 - 212E < 0 (see Figures 1.27,1.28,1.29,1.11,1.12,1.13) 

In this case, the motion along the torus is ilattitudinal and (t3) —e(t1) = '13(T) —t9(0). 

2.2: £2 - 2.T2E > 0 (see Figures 1.30,1.31,1.32,1.14,1.15,1.16) 

In this case, the motion along the torus is longitudinal and the angle (t) moves 

ahead of t9(t) so that (t3) - e(t1) = 9(r) - i9(0) + 2ir. 

1.6.3 The Torus: Numerical Examples 

Shown below are several plots of the projections of the torus on the coordinate planes 

after some time has elapsed for different paramters. In these numerical simulations, 

the torus actually looks like a cylinder. Since it is imbedded in the solid ball SO(3) 

of radius ir, a point on the cylinder that is ir units away from the origin is identical 

to the diametrically opposite point - hence what looks like a cylinder is actually a 

torus. Note the difference between longitudinal and lattitudinal motions. 
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Torus ProjeeU.on on X-Y PLans 
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Figure 1.21: Solid Ball Model for the Euler Top 

Parameters: 

Principal moments of inertia: 4 = 4,12 = 2.2, 13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 15, 0, = 10 
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Torus Pr'ojectLon on X-Z PLane 
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Figure 1.22: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: I = 4,12 = 2.2,13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 15, çb = 0, 0 = 10 
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Torus ProjectLon on 1-Z PLane 
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Figure 1.23: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 4 = 4,12 = 2.2, Is = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = l5,q = 0, = 10 
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Torus ProjectLon on X-Y PLane 
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Figure 1.24: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: .T = 4,12 = 2.2, 13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: 0 = 40, 0 = 0, ,b = 10 
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Torus Project.Lon on X-Z PLane 
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Figure 1.25: Solid Ball Model for the Euler Top 

Parameters: 

Principal moments of inertia: 11 = 4,12 = 2.2, 13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frame: e = 40, 0 = 0"0 = 10 
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Torus Projeot.Lon on Y-Z PLane 
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Figure 1.26: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 4 = 4,12 = 2.2, 13 = 2 
Angular momentum in the space frame: L = 10 

Initial Euler frathe: 0 = 40, q = 0, 0 = 10 
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Torus ProjeotLon on X-Y PLane 
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Figure 1.27: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial Euler frame: 0 = 45, q = 0, 0 = 10 
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Torus Projoot.Lon on X-Z PLane 
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Figure 1.28: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial, Euler frame: 0 = 45, 0 = 0, .b = 10 
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Torus ProjectLon on Y-Z PLane 
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Figure 1.29: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial Euler frame: 0 = 45, 0 = 0, 0 = 10 
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Torus ProjecUon on XY PLane 
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Figure 1.30: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: I = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial Euler frame: 9 = 15, 0 = 20, 0 = 30 
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Torus Projection on XZ PLane 
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-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 
x 

Figure 1.31: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 
Angular momentum in the space frame: L = 2 

Initial Euler frame: U = 15, 0 = 20, 0 = 30 
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Torus Projeot..Lon on Y-Z PLane 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 
Y 

Figure 1.32: Solid Ball Model for the Euler Top 
Parameters: 

Principal moments of inertia: 11 = 2,12 = 3,13 = 4.8 
Angular momentum in the space.frame: L = 2 

Initial Euler frame: 9 = 15, q = 20,'0 = 30 



Chapter 2 

Equations for a Rigid Body Rolling on the Plane 

2.1 General Equations 

The variables necessary to describe the motion of a rolling rigid body on the plane 

are [u1, U.2, U3, W1, w2, w3]. Here w1, w2 and w3 are the magnitudes of the angular 

velocities about the three principal axes x',y' and z' respectively. U1, u2 and u3 are 

the components of a unit vector that determines the point of contact between the 

rigid body and the plane. When energy dissipation and slipping are ignored and 

using Newton's second law, the equations of motion of a rolling rigid body on the 

plane are derived to be (see for example ([6], [13]) for derivation): 

(2.1) 
Ii+Msx(thxs) = Msx(xw)+Msx(wxs)xw+Mgsxu+(Iw)xw 

where 

I = Moment of inertia diagonal matrix 

M = Mass of rigid body 

g = Downward Acceleration due to Gravity 

s = Inverse of the Gauss map (3-dimentional vector [x, y) z] that is a function of 

[u1, u2, u3] and depends on the shape of the rigid body.) 

The differential equations for u are: 

14 = U2W3 - U3W2 

U2 = U3WI - U1W3 

U3 = U1W2 - U2W1 

45 

(2.2) 
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The equations for the angular velocities [wi, w2, w3] are more complicated and it 

is useful to store intermediate values. The vector s(u) = [x, y, z} is a function of 

{u1, u2, u3]. The physical meaning of the vector [x, y, z] is that it is the "path" 

followed by the point of contact along the surface of the rigid body when no rotations 

or translations are accounted for. The left hand side Ith + Ms x (th x s) of (2.1) is 

Tth where T is the matrix: 

T = 

Ii + My2 + Mz2 —Mxy —Mxz 

—Mxy 12+ MX  + Mz2 —Myz 

—Mxz —Myz 13 + Mx2 + My2 

The inverse of matrix T is: 

1 

D 

where 

1213 + I2Rxv + I3R2,2, + MX2R 

Mx(I + R) 

M3z(I2 + R) 

MXU(I3 + R) 

1113 + 1jR + 13v. + M V 21z 

M V-z(-(I + R) 

M33(I2 + R) 

Myz(I1 + R) 

1112 + IjR + I2Ryz + Mz2R) - 

111213 + M((1iI2(v2 + v2) + 1113(2,2 + 32) + I213(y2 + 32)) + M(1j2 + %32 + I3z2)R 

M(z2 + v2 + 2) 

M(x2 + y2) 

M(2 +.2) 

M(V2 + 32) 

(2.3) 

(2.4) 

(2.5) 

Now we'll compute the terms of the right hand side of equation (2.1). The term 

1w X CO is: 

[(12 - I3)w2w3, (13 - Ij)w1w3, (I - I2)w1w2} (2.6) 

The term Mys x u equals: 

[Mgyu3 - Mgzu2, Mgzui - Mgxu3, Mgxu2 - Mgyu1] (2.7) 
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The term Ms x (w x s) x w equals: 

M(yw22z - w2w3y2 - yw1w3x + zw1w2x + w3w2z2 - zw32y) 

M(zw32x - w3w1z2 - zw2w1y + XW2W3y + w1w3x2 - xw12z) 

M(xw12y - w1w2x2 - xw3w2z + yw3w1z + w2w1y2 - yw22x) 

(2.8) 

The three terms above can be added Ms x (w x s) x w + Mgs x u + 1w x w and 

we get: 

M(yw22z W2W3j2 - yw1w3x ± zw1w2x + £J3UJ2Z2 - ZW32y + 9U3 - gzu2) + (12 - I3)w2w3 

M(zw32x W3W1Z2 - zw2w1y + zw2w3y + w1w3a2 - xw12z + 9ZU1 - gxu) + (13 - Ij)w1w3 

- M(xw12y - W1W2x2 - XW3W2Z + yw3w1z + w2w1y2 - yw22x + 9xu2 - gyu1) + (Ii - I2)W1W2 - 

(2.9) 

Finally, we must compute the term Ms x ( x w) of the right hand side of equation 

The term Ms x (9 x w) then equals: 

M(y(w2 : w) - z(.w1 - w3)) 

M(z(iw3 - w2) - x(thw2 - iw1)) 

- M(x(wi - thw3) - y('w3 - zw2)) - 

(2.10) 

Equation (2.1) can be written in matrix form as M = S where the 3-dimensional 
vector S is: 

M(yw22z - - Vc'1"3 + .WC?2X + W3W2Z2 - ZW32 3) + gyt - iu2) + (lz - 13)w2w3 + M(y(w2 - - z(&j - 

M(zw32 - &3w1z2 ZCF2(F3 + '2'3v + wjw3 - xw12z + gzui - gu) + (13 - 13)w1w3 + M(z( 3 - zw2) - x(th 2 - 

M(xwi2  WILW2 X2 - - X()3()2Z + YW3WIz + W2W3.Y2 - vw2 2 + gu2 - gyuj) + (Li - 12)w1w2 + M((.i1 - - y(w. - 

(2.11) 

Finally equation (2.1) can be written as 61 = T'S where T' is (2.4) and S is 

(2.11). Note that this equation is valid for any rigid body rolling on the plane. The 

vectors [x, y, z} and [, , .'J depend on [u1, u2, u3] arid, are determined by the shape 

of the body. 
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2.2 Examples of Rolling Rigid Bodies 

2.2.1 Sphere 

Assume the centre of mass of the sphere coincides with its geometric centre. In this 

case, the inverse Gauss map is the identity map: 

X = U1 = z11 

J = U2 Y = U2 

ZU3 ZU3 

(2.12) 

If the sphere is homogeneous (uniform mass distribution) or symmetric (spheri-

cally symmetric mass distribution) the three principal moments of inertia are equal. 

In this case, Graumann [11] has developed the following equations in terms of Euler 

angles. 

0 

= R(vocosq5+vpsin9sinq5) 

R(vosin—vsin9cosq) 

= V9 

Vç6 

V1p 

i9 = —v9v sin 0 

vo (VA —v/, Cos 0)  
sin  

vo(v1,— v11, Cos 0)  
sin  

(2.13) 

Another example is the Chaplygin sphere which has its centre of mass at its 

• geometric centre, but the three principal moments of inertia are not equal. In this 

case, too, Graumann [11] has found the differential equations in terms of Euler 

angles parametrization. Unfortunately, these equations are several pages long and 
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seem unsuitable for stability analysis or numerical computer program. 

2.2.2 Disk 

- For reference, these are the equations for a rolling disk in terms of Euler angles 

derived by Graumann [11] 1: 

= R(cos çt sin 0v0 - cos 0 sin cbv# + sin qv) 

= R(sin sin Gvo - cos 0 cos - cos 

9 = V9 

Vq5 

= V%() 

AV2 cos 0 sin 0—M9R cos 0—(C+MR2)(vp+vçj, cos 0)v Sfl 0 

V9 = A+MR2 

V 

ti= 

2.2.3 Rattleback 

v (C(v,j,+vçf, cos O)-2Avçi, COS 0) 
Asin9 

(C+MR2)vov,6 sin  ve cos cos 0)-2Av,6 cos 0 

C+MR2 A sin 0 

(2.14) 

Let the body fixed reference frame be centred at the centre of mass of the rattleback, 

with the three axes coinciding with the three principal moments of inertia. This 

configuration has been used by almost all authors (for example, [26],[6],[13]). Let 

the positive z-axis be vertically upward. Assume that the surface of the rattleback 

is parabolic with equation: 

1 2 1 
Z = + 0 12XY + U22' - h (2.15) 

'There is a typographical error on page 135 of [11]. The denominator of the equation for VO 
should be A sin 0 as it is here, instead of A + MR  
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y 

Reference 
Frame 

Figure 2.1: Rattleback Spinning on the Plane 

Here 1122 - > 0, U11 > 0, o-22 > 0 since the surface is convex. In addition, 

h> 0. For example if all = 0.24, 9 12 =  0.12)L722 =  0.56, h = 1.0 then the surface of 

the rattleback in three dimensions looks as displayed in Figure2.2. The upward unit 

normal [Uj., U2, u3] at any point (x, y, z) on the surface is given by the formula: 

=  [—o11x - 0 12Y, — 0-122; -  U22Y, 11 (2.16) 

+ (0 ii2; + 0-12y) 2 + (cr12x + cr22y)2 

Therefore 

= —(criix+o-12y)'us 

= — (o12x+a22y)us 

Solving these equations for x andy, we get s(u) which is the inverse of the Gauss 

map: 

2; 

Y 

z 

-  22t1+a2u2  

- (011cr22-0 12)u3 

- O12U1O1L2  

- (o11o22 — o 2)u3 

22U2O12UU2+O1U 

2(o11o22—a-2)u 

(2.17) 

(2.18) 
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Figure 2.2: The Shape of the Rattleback 

Now we can also find [th, , .]: The vector can be computed in the following way:. 

O22 (t2W3 U3W2) 012 (3w1 U1W3) (oa2u1—o12u2)(u1w2 —u2w1)  
(o1o22—o2)u3 + (.11o.22 — 0' 2 U + 1122O2)U 

O12(U2C)3 U3W2) 0 11(uswl — uiwg) .j.   

(o11o22 —o)us (oii o22 — o 2)u3 

_Lth - 

123 U3 

(2.19) 



Chapter 3 

Rattleback 

3.1 Historical Perspective 

3.1.1 Definitions 

A rattleback is a spinning top that has the unusual property of reversing the direction 

of spin on its own. As it spins, it begins to rattle then miraculously starts spinning 

in the opposite direction - hence the name rattleback. Some rattlebacks reverse their 

spin direction several times. Other rattlebacks, if spun in the unstable direction, 

reverse the direction of motion once, then continue spinning in the stable direction. If 

spun in the stable direction, however, they do not reverse their spin. Such rattlebacks 

are said to exhibit a spin bias in one direction. The first known rattlebacks were 

found by archaelogists when digging in ancient Celtic ruins ([25],[11]). That is why 

a rattleback is sometimes called a Celtic stone. Another name for a rattleback that 

is mentioned in the literature occasionally is a wobblestone. 

3.1.2 Popular Articles 

In 1979, Walker [25] published a popular article about the rattleback. This article 

had very little mathematics but tried to explain why the rattleback reverses its spin. 

In 1985, Boardman [5] wrote an article that describes in detail how to make a rat-

tleback. The article begins with a poem dedicated to the rattleback: 

52 
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Behold the mysterious celt, 

With a property that amuses. 

One way it will spin, 

The other way it refuses. 

3.1.3 Scientific Articles 

The first rigorous mathematical model of the rattleback was developed by G.T.Walker 

in 1896 [26]. The model ignored the effects of slipping and friction. In his article, 

Walker proved that stable motion in one direction is possible without energy dissipa-

tion by using a method similar to modern-day linearization and eigenvalue analysis. 

The two equilibrium points that he found have been named the Walker equilibria. 

Subsequent authors ([15], [6], [13]) also linearized the equations of the rattleback 

about the Walker equilibiria and analyzed the stability of the dynamical system. A 

portion of this thesis also takes this approach and examines the signs of the real 

parts of the eigenvalues. In addition, Walker's prediction of stable motion in one 

direction for some parameters is confirmed by numerical experiments done in this 

thesis. Chronologically, the next paper on the rattleback was written by Herglotz 

in 1941, and is mentioned by Magnus [18] and Astapov [4] but there is no other 

information where this article can be found. In 1974, Magnus [20] wrote a short ar-

ticle where he had a diagram with stable and unstable regions in the w3-h parameter 

space. In 1980, Astapov [4] developed a model of the rattleback with the following 

assumptions: no energy dissipation, elliptic paiaboloid shape. In his article, the 

body fixed frame was along the 3 axes of symmetry of the paraboloid while the 

moment of inertia matrix was not diagonal. Only one other article ([14]) assumes 
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this configuration. In all other articles (as well as in this thesis) the body fixed 

frame is along the three principle moments of inertia while the paraboloid is rotated. 

Astapov [4] then linearized the equations, used Routh-Hurwitz criteria and derived a 

stability diagram in the w3 - h space similar to the one in the article of Magnus [20]. 

Chronologically, the next paper on the rattleback was written by Kane and Levinson 

[14] in 1982. The rattleback shape was assumed to be ellipsoid and friction was 

taken into account. The paper describes how to write a computer program for the 

rattleback and gives several numerical examples. Kane and Levinson demonstrated 

numerically that without energy dissipation, infinitely many reversals occur while 

with energy dissipation there is only one reversal. However, as this thesis and many 

articles ([26], [6], [15], [13]) have demonstrated, for some parameters there can be 

only one reversal even when energy is conserved. In 1985, Karapetyan [15] proved 

that for certain rattlebacks, as the energy increases a Hopf bifurcation occurs and one 

of the two Walker equilibria becomes stable. In this thesis, numerical experiments 

will confirm the occurrence of Hopf bifurcation for some parameters as predicted by 

Karapetyan [15]. In 1986, Bondi [6] wrote a comprehensive article on the rattleback. 

He did not assume energy dissipation to be present and the rattleback shape was 

assumed to be an elliptic paraboloid. He linearized the equations of motion and drew 

an important stability diagram where he classified the rattlebacks into Type 1 and 

Type 2 rattlebacks (later authors have named the third region of the Bondi diagram 

a " Type 0" rattleback). Bondi [6] proved the following: 

A Type 0 rattleback exhibits multiple reversals and the wobbling motion is always 

unstable. The eigenvalues corresponding to both Walker equilibria have positive real 

parts regardless of the energy. The author of this thesis gives a numerical example of 
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Type 0 rattleback. Such a rattleback has been observed. A Type 1 rattleback can 

exhibit two distinct types of behaviour, depending on its initial spin (energy). For 

lower energies, it reverses direction many times and the wobbling motion is always 

unstable (Zone 0 behaviour). For higher energies, it reverses direction once and the 

wobbling motion decays to zero. In this thesis, several numerical experiments show 

all the possibilities that can arise for a Type 1 rattleback (see also similar graphs 

in '[10]). Bondi [6] did not elaborate much on the Type 2 case, but future author's 

([10],[13]) have studied this type in more detail. According to them, there are several 

possibilities depending on the energy. If the energy is low, the wobbling motion is 

unstable for both Walker equilibria. If the energy is between two critical values, at 

most one reversal occurs after which the wobbling motion decays and one of the two 

Walker equilibria is stable. For high energies, one reversal occurs after which the 

wobbling motion decays toward an axis different than the vertical axis. New equi-

libria appear and their stability has not yet been studied in full. The author of this 

thesis gives some numerical examples that can provide a hint about the complexity 

of the Type 2 rattleback behaviour. In 1988, an article by Garcia and Hubbart [10] 

appeared where they summarized previous research, ran several numerical simula-

tions and even compared the results with an actual rattleback. It seems that they 

were the first to plot numerically the motion of a rattleback that spins about an 

axis other than the vertical (and so there is a new table equilibrium point while the 

Walker equilibrium is unstable - indicating the possibility of a pitchfork bifurcation 

which was later mntioned also by Hermans [13]). In this thesis, the author too 

has plotted numerically such motion about a tilted axis. According to Garcia and 

Hubbart [10], previous researchers have tried to explain the rattleback phenomena 
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in two ways. G.T. Walker [26], Bondi [6] and others have argued that spin reversal 

can be explained solely by the intrinsic inertial and geometric properties of the rat-

tieback while ignoring the effects of slipping or dissipation - a view shared by the 

author of this thesis as well. On the other hand, Kane and Levinson [14] have ar-

gued that energy dissipation must be taken into account in order to fully explain the 

behaviour of the rattleback. In 1994, Graumann [11] wrote a Masters thesis about 

the rattleback. He demonstrated theoretically how the rattleback equations can be 

written in te±ms of Euler angles. Hermsns [13] in his Ph.D. thesis in 1995 linearized 

the equations of motion about the Walker equilibria (something that has also been 

done in this thesis) and predicted that not only Hopf but also pitchfork bifurcations 

are possible. The numerical work in this thesis has indeed shown the presence of 

pitchfork. bifurcations for some parameter values. 

3.2 Linearization about the Walker equilibrium 

Given a system of differential equations, an equilibirium point is a solution for which 

the vector field vanishes. For the rattleback, an important equilibrium point is 

the Walker equilibrium: [u1, u2, u3, w1, w2, w3] = [0, 0, 1, 0, 0, L)3]. Physically, it corre-

sponds to the rattleback rotating with constant angular velocity w3 about the vertical 

axis with point of contact [x, y, z] = [0, 0, —h]. Strictly speaking, when the rattle-

back is moving there are actually two Walker equilibria corresponding to angular 

velocities ±w3. 1 An equilibrium is asymptotically stable if a solution close to it 

approaches it as t —+ oc. Such an equilibrium is also called a sink. An equilibrium 

1When the rattleback is at rest there is of course only one Walker equilibrium corresponding to 
W3 = 0. 
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is unstable if a solution close to it does not remain close to it for all time. When a 

rattleback reverses its direction of spin, this means that the Walker equilibrium is 

unstable for that direction. In order to determine the local stability properties of 

the Walker equilibrium, we must linearize the nonlinear equations of motion. 

The matrix T' (2.4) evaluated at the Walker equilibrium is: 

(Ii+M72)_l 0 0 

o (12 + Mz2)' 0 

o 0 13 1 

(3.1) 

For linearization [I, 010, T'J (a 6 x 6 matrix where I is the identity 3 x 3 

matrix) must be multiplied by the gradient of the vector three-dimensional vector S 

(2.11) with respect to the 6 variables [u,, u2, u3, w1, w2, w3], evaluated at the Walker 

equilibrium (a 6 x 6 matrix). The 6 x 6 matrix for the overall system before 

multiplication by matrix [I, 010, T'] then is: 

0 W3 0 0 —1 0 

—w3 0 0 ]. 0 0 

0 0 0 0 0 0 

MCI (2hw + g) d42 0 Mho, 2w8 3  5 d45 0 

d51 Mi.a(2hw+g) 0 d54 Mhcr12w3 0 
5 

0 0 0 0 0 0 

(3.2) 
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where 

S = 11 0 22 Ul2 

d42 = (hw (a22 - a11) - go11 + ghS) 

d45 = Mh2w3 + (12 - I3)w3 Mhcr22w3  
5 

d51 = 1 (hw(a22 - a) + 9922 - ghS) 

d54 = -Mh2w3 + (13 - Ii)w3 + Mhcriiw3  

(3.3) 

The product of [I, OlD, T-'] (a 6 x 6 matrix where I is the identity 3 x 3 matrix) 

with the matrix (3.2) (a 6 x 6 matrix) then equals a 6 x 6 matrix: 

where 

0 0 0 —1 0 

—w3 0 0 1 0 0 

o 
Mo22 (2hw2+g)  
o(Ii+Mh) 

0 0 0 0 0 

d42 

Mu12 (2hw+g) 
ö(I2+Mh2) 

0 0 

d42 

d45 

d51 

d54 

o Mho-120 d45 o 
5(Ii+Mh ) 

o d54 Mhui 1w'  
5(I2+Mh) 

0 0 0 

M(hc.4 (cr22 —oii)—go-ii+gh5) 
a(I1+Mh2) 

Mh2w35+(I2 13)W3 5—Mho2w3  

5(Ii+Mh2) 

M(hw (cr22 — crli)+gu22 — gh5) 

5(I2+Mh2) 

- —Mh2w35+(I3—Ii)w35+Mhcxii&i3 - 
- 5(I2+Mh2) 

0 

(3.4) 

(3.5) 

While this appears to be a 6-dimensional vector field, in reality it is restricted 

to S2 x R3 (since due to the rolling constraint [u1, U2, u3] is a unit vector and so an 
element of the 2-sphere S2). This is the reason why there are zeros along the sixth 
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row and the third column. The characteristic polynomial is: 

—A 

0 

MO-12 (2hw2+g) 

d51 

0 

where 

W3 0 0 

—A 0 1 

.0 —X 0 

d42 0 Mhcr12w. A 
- ö(I1+Mh) 

Mcr12(2hw2+g) 
5(I2+Mh?) 

d42 

d45 

d54 

0 

0 0 

—1 0 

0 0 

0 0 

d45 0 

d54 Mhoj2w A 0 
S(I2+Mh2) 

0 0 —A 

M(hw(o-22 —o-ii)—go-jj+ghö)  
5(Ix+Mh2) 

Mh2w36+(I2 —13)W38—Mhcr22w3  

5(Ii +Mh2) 

M(h4 (cr22 —crn)+9cr22 —ghö)  

ô(I2-FMh2) 

- —Mh2ws5+(I3 —Ii)w35+Mhcrjjw3 

- 5(I2+Mh2) 

Expansion of the determinant along the third and sixth rows yields: 

A2 

where 

—A 

—Wa 

Mo-12 (2hw+g)  
6(Ij+Mh2) 

d41 

d32 

d34 

d41 

d43 

W3 0 —1 

- —A 

d32 

Mo-12 (2hw+g)  
5(I2+Mh) 

1 0 

Mhcr12w3  
S(Ii+Mh2) 

d43 

d34 

Mhcri2w3  
o(I2+Mh2) 

M(hw (cr22 —crii)_go-ij+gh5)  
5(Ii+M!c2) 

Mh2wa5+(I2 — 13)&J3 8— MhO'22&J3  
5(Ij+Mh2) 

M(hw (cr22 — on)+go-22-9h(Y)  

5(I2+Mh2) 

—Mh2w35+(I3 —11)w35+Mhcrnw3  

S(I2+Mh2) 

(3.6) 

(3.7) 

=0 (38) 

(3.9) 

There are two eigeiivalues equal to zero. The reason for the first one has been 

explained - the vector field is restricted to S2 X R3. The second eigenvalue zero 

occurs because there are infinitely many equilibria along the line [0, 0, 1, 0, 0, w3] for 

all real w3. The other four eigenvalues are the roots of a fourth-order polynomial. 
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3.2.1 Low Energy Analysis (w3 = 0) 

For simplicity, let us first consider the case when w3 = 0. Physically this means that 

the rattleback is not moving. The 4 by 4 determinant (3.8) then becomes: 

—). 0 0-1 

o —x 1 0 

Mo12g M(—goii+gh5) x 0 
5(Ii+Mh2) 5(Ij+Mh2) 

M(90'22—gh5) -  Moi2g U —x 
o(I2+Mh2) 5(I2+M1 2) 

= 0 (3.10) 

Now let A -  Mga12  B = Mg(—on+hö) c = Mg(cr22_hö) and D = Mgoj2  Then 
- a(I2+Mh2)' o(I+Mh2) ' ö(I2+Mh2) 5(I2+Mh2) 

the characteristic equation is: 

A4+(C—B)A2+AD—CB=o (3.11) 

Using the notation of Hermans [13] page 62, this equation can be written in the 

following way: 2 

with 

72. 

,y4= 

where 

A4+'y2)2+'y4 = 0 

Mg((I2+Mh2)( 1 _h)+(Ii+Mh2)( ...h))  

(I1+Mh2)(I2+Mh2) 

M 2g2z  
(Ii+Mh2)(I2--Mh2) 

112 2 
(—h)(—h)—(7 --) 

(3.12) 

(3.13) 

(3.14) 

2There is a typographical error in equation (3.10) of Hermans [13]: the sign in front of y2 must 
be positive. 
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3.2.2 High Energy Analysis (w3 0 0) 

The determinant (3.8) can be written as follows: 

—A 

—w3 

W3 0 —1 

—A 1. 0 

Aw32 + B Cw32 + D Ew3 - A Fw3 

Gw32 + H 1w32 + J Kw3 Lw3 - A 

When expanded, the determinaitt becomes equal to: 

A4+(—E-- L)w3A3 +((—O+EL+G—FK+1)w+(H—D)p2+ 

((A+AK+CLEG—FI—I—E—L)w+(—B+BK+DL_Eff_FJ_J))w3A 

+(AI+AL—CG—OK+EI+EL—FG—FK)w34± 

(AJ+BI+BL—CH—DG—DK+EJ—FH)w+(BJ—DH) 

Using the notation of Hermans [13] on page 74, this can be written as follows: 

where 

C4 

/34 

/32 

'12 

'14 

p(A)_— A4-i-ajA3+a2A2+cisA-i-a4 (3.15) 

-  —Mha2(Ii—I2)  
a1 - 5(Ij+Mh2)(I2+Mh2)W3 

a2 - 

2 - a3 - w3a1 

a4 = a4w + fi4w + ,y4 

(J3—I2) (I3—I1)+(Mh)2L_Mh((I2_rs)(—h)+(Il._I3)(j1_h))  

(Ii+Mh2)(I2+Mh2) 

Mg((I3—I2)( °2 
15 15  

(Ii+Mh2)(I2+Mh2) 

= a4+1 

M.g((I2+Mh2)( 1 —h)+(I1+Mh2 ) ( Z.h)) 

(Ij+Mh2)(12+Mh2) 

M 2gL.  
(I+Mh2)(I2+Mh2) 

(3.16) 

(3.17) 
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Besides Hermans [13], Karapetyan [15] has also arrived at this result. 

3.2.3 Bifurcations 

The characteristic equation (3.15) has four roots and since the coefficients are real, 

all complex roots must be conjugate pairs. The signs of the real parts of the roots 

yield information about the local stability properties of the Walker equilibrium. If 

all roots have negative real parts, then the Walker equilibrium is locally stable. If at 

least one root has a positive real part, then the Walker equilibrium is locally unstable. 

Besides the signs of the positive real parts, it is also important to know how the roots 

move in the complex plane as the parameters change. If a change in parameters 

causes a pair of complex roots to cross the imaginary axis with nonzero velocity, 

then a Hopf bifurcation occurs. If before the Hopf bifurcation the equilibrium was 

unstable (some roots were with positive real parts), after the Hopf bifurcation it 

becomes stable (all roots are with negative real parts). A pitchfork bifurcation can 

occur when all roots have negative real parts, and after a parameter change, a real 

root crosses the imaginary axis at the origin and becomes positive. In this case, 

the Walker equilibrium becomes unstable and two new equilibria appear (they are 

locally stable at least initially). More information on the theory of bifurcations can 

be found in [12]. 

Applying the Routh-Hurwitz criteria to the characteristic equation (3.15) , we see 

that necessary and sufficient conditions for all roots to. be in the left complex half-

plane (that is, for one Walker equilibrium to be stable) are: 

ai>O,as>O,a4>O,a3(aia2—a3)--aa4>O 
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Or, assuming 11 > 12: 

w3<0 

a4W + /3iij + > 0 

('y2-/34)w--74>0 

The inequalities (3.19) can be combined as: 

(3.19) 

w(c 4w + 72) > ('y - - '4> 0 (3.20) 

where w = w 3 > 0. 

Graphically, condition (3.20) can be displayed as a parabola P(w) = w(a4w + 72) 

and a line Q(w) = (72 - ,84)w — -y4 in the w-f(w) plane. Whenever the line is above 

the waxis and below the parabola, the Walker equilibrium [0, 0, 1, 0, 0, —w3] is stable; 

in all other cases it is unstable. If the line Q (w) is never between the w-axis and the 

parabola P(w), both Walker equilibria are unstable regardless of the energy (Type 

o rattleback). When the slope of the line (72 - ,84) is positive, a Hopf bifurcation 

is possible when the line crosses the w-axis (Type 1 rattleback). Afterwards, it 

can cross the parabola once (Type 2A rattleback) or twice (Type 2B rattleback) 

depending on the graph of the parabola in which case pitchfork bifurcations leading 

to new equilibria arise. 

3.3 Numerical Simulations 

While Bondi [6] classifies rattleba.cks according to their shapes, Hermans [13] classifies 

them according to energy and moments of inertia. An overall review of types of 

rattlebacks and their behaviours is presented below. Slipping and friction are ignored. 

All numerical simulations used the following parameters: M = 1, h = 1, g = 1. The 
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time step size was chosen to be 0.001 for most cases. In the numerical simulations 

that follow, two important angles are graphed as functions of time: the spin angle r 

and the wobble angle 77 . The spin angle measures how much the rattleback has spun 

around the body fixed vertical axis. When the spin angle reaches local maximum 

or minimum, this means that the rattleback reverses its direction of motion. The 

spin angle is computed using the following formula: r = UW1• This formula was U u2 

derived from a similar formula in [14]. The wobble angle measures the angle between 

the absolute vertical axis and the body fixed vertical axis. It is between 0 and 90 

degrees. Note that when the wobble angle is maximum, a spin reversal occurs. This 

is confirmed by the numerical simulations in the subsequent pages. The wobble angle 

can be computed as follows (see also [14]): 77 = arccos u3. At the beginning of the 

discussion of each type of rattleback, there is a diagran based on Bondi's model [6]. 

Instead of .T, '2, 13, ofl, 0 12, 22, M, h, p Bondi uses new parameters that are derived 

from the shape of the rattleback and the moments of inertia. These parameters are 

'y, e, , W.. Bondi then computed it and u, the signs of which determine the'type 
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of the rattleback. Bondi's parameters are computed using the following equations: 

a - Ii+Mh2 
- Mh2 

,8 

Ic 

[I, 

12 +Mh2  
Mh2 

13 
Mh2 

(0ii + 22 + \/(011 0-22)2 + 40 ?2) 

(0 ii + 0-22 - \/(011 - 0-22) 2 + 4o?2) 

0_il °22 

(3.21) 

We have included these values as well for reference with each diagram and the reader 

can refer to Bondi's article [6] for more detailed explanation. 

3.3.1 Type 0 Rattleback 

1. E=Emin 

The rattleback is not moving. There is only one equilibrium point: 

[0, 0, 1, O, 0, 0] 

2. E>Emn 

The rattleback has two equilibrium points: [0, 0, 1, 0, 0, ± w3] These are the Walker 

equilibria. They are both unstable. The rattleback reverses direction infinitely many 

times (unless of course the initial conditions are exactly at the Walker equilibrium in 

which case the rattleback never reverses its direction). Multiple reversals have been 

observed in real rattlebacks. A sample set of parameter values that would yield a 

Type 0 rattleback are: 11 = 4,12 1,13 = 0.25,0-12 = O.05,022 = 0.25 
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Figure 3.1: Type 0 Rattleback: Bondi Diagram 
Parameters: 

M= 1,h = 1,g = 1, -11 — 4,12 = 1I3 = 3.5, all 0.25, o12 = 0.05, U22 = 0.25 
Bondi Parameters: 

G = 0.3, 0.2,W = 0, a = 5,8 = 2,'y = 3.5,/c = l.442jt = 0.283 

(In this case the slope of the line Q (w) is negative and the equilibria are always 

unstable). The following graphs show how the spin angle and wobble angle change 

with time for a Type 0 rattleback with the above parameters: 
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Figure 3.2: Type 0 Rattleback: Spin Angle vs. Time 

Parameters: M=1,h=1,g=1,I1=4,I2 - 1,I3-3.5,o 11 —O.25,,12 
0.05, U22 = 0.25, tstep = 0.005 

Initial conditions: ul = 0.05, u2 = 0, w1 0, w2 = 0, w3 = 0.5 
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WobbLe I9ngLo as a F'unctLon of TLmo 
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Figure 3.3: Type 0 Rattleback: Wobble Angle vs. Time 
Parameters: M= 1,h= 1,g= 1, 11 = 4,12 = 1I3 = 3.5, al, = 0.25,a 12 = 

0.05, L722 = 0.25, t8a,P = 0.005 
Initial conditions: u = 0.05, u2 = 0, w1 = 0, w2 = 0, w3 = 0.5 

Note: There are two frequencies: a high frequency and a low beat frequency of the 

local maximums. A .spin reversal occurs at time when there is a local maximum of 
the low beat frequency (see Figure 3.2). 
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3.3.2 Type 1 Rattleback 

6ondL 0La9ram 
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Figure 3.4: Type 1 Rattleback: Bondi Diagram 

Parameters: 
M= 1,h = 1,g = 1,11 = 4,12 = 1, 13 = = 0.24,o-12 0.12, 0'22 = 0.56 

Bondi Parameters: 
e = 0.6, = 0.2, W = —0.8, o = 5, /3 = 2, ,y = 3.5, ic = 1.008, M = —0.633 

1. EEmin 

The rattleback is not moving. There is only, one equilibrium point: 

[0, 0, 1, 0, 0, 0]. 
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2. Emin < E < E 

The rattleback has two equilibrium points: [0, 0, 1, 0, 0, ±w3] These are the Walker 

equilibria. They are both unstable. 

3.E>EH 

At a high enough energy, one of the two Walker equilibria becomes stable. Its 

eigenvalues cross the imaginary axis and a Hopf bifurcation occurs. There are still 

two Walker equilibria [0, 0, 1, 0, 0, ±w3}, but one of them is stable. The other Walker 

equilibrium is still unstable and will remain so. Now the rattleback exhibits a bias in 

one direction. If sp'un in the unstable direction, it will change direction on its own. 

Walker [26] described this behaviour in one of the earliest papers on the rattleback. 

He thus proved that stable motion is possible without friction or dissipation. Some 

sample parameter values that would yield a Type 1 rattleback are: ./j = 4,12 = 

3,13 = 2, ull = 0.25, U12 = 0.05, 0 22 = 0.25. Other parameter values: I = 4,12 = 

1, 1s = 3. 5, all = 0. 24, 912 = 0. 12, 0 22 = 0.56. The follo\ving graph shows the relative 

positions of line Q(w) and parabola P(w) in this case: 
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T,ype 1 Rattteback 
Re1.atLve Posi.t.Lons of LLne and ParaboLa 
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Figure 3.5: Type 1 Rattleback: Routh-Hurwitz Stability Criteria 
Graphs of Parabola P(w) and Line Q(w) 

Parameters: 
M= 1,h = 1,g = 1,11 — 4,12 = 1I3 = 3.5, all = 0.24) 0-12 = O.12,022 — 0.56 

Hopf Bifurcation: w3 = —0.6488856842 

It is evident from this figure that a change in stability occurs when w3 = —0.6488856842. 

The following graph shows how the eigenvalues of the characteristic equation change 

when w3 changes from -0.5 to -0.6488856842 to - 1: 
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Figure 3.6: Type 1 Rattleback: Eigenvalues Crossing the Imaginary Axis 
Parameters: 

M= 1,h = 1,g = 1,11 = 4,12 = 1I3 = 3.5,cr11 = 0.24, a12 = 0.12, o22 = 0.56 

Hopf Bifurcation: w3 = -0.6488856842 

Note: A pair of eigenvalues with negative real parts cannot be seen in each of the 
graphs due to the scale chosen. 

Left Graph: w3 = -0.5, eigenvalues:-0.077 ± 1.492i, +0.002 ± 0.552i 

Middle Graph: w3 = -0.6488856842, eigenvalues:-0.097 ± 1.565i, 0 ± 0.649i 
Right Graph: w3 = -1, eigenvalues:-0.14 ± 1.783i, -0.01 ± 0.914i 

It is evident that depending on the initial spin, the Type 1 rattleback can exhibit 

two qualitatively different behaviours. For small spin, , the Walker equilibria are 

unstable and the wobbling motion increases with time. Numerical simulations did 

detect an increase in the wobbling motion; however, even for large values of time 

elapsed at most one reversal was observed. Therefore, the numerical simulations 
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suggest that as t -f oo the rattleback spins in the stable direction while wobbling 

forever. Shown below are numerical simulations that demonstrate the instability of 

the Walker equilibria for small initial spin. For similar numerical experiments, see 

also [10]. 
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Figure 3.7: Type 3. Rattleback, w3 = —0.5 
Parameters: M=1,li=1,g=1,I1 = 4,12 = 1, 13 = 3.5, all = O.24,o'12 = 012, U22 = 

0.56, 0.001 
Initial Conditions: t = 0.05, U2 = 0, 601 = 0, w2 = 0, w3 = —0.5 
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WobbLe f9r,gLe as a F'unctLon of ILme 
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Figure 3.8: Type 1 Rattleback, w3 = —0.5 
Parameters: M=1,h=1,g=1,I = 4,12 = 1I3 = 3.5,o = 0.24, U12 = 0.12,cr22 = 

O.56,tstep = 0.001 
Initial Conditions: u1 = 0.05, -u2 = 0, w1 = 0, w2 = 0, w3 = —0.5 

Note: Even though the wobbling motion appears to be unstable, after a long 

numerical simulation it eventually leveled off while the spin angle did not reverse. 
This may indicate that while locally the equilibrium is unstable, globally the orbit 

does not end at the other equilibrium and the rattleback wobbles with a 

near-constant amplitude 
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Figure 3.9: Typel Rattleback 
Graph of solution of linearized equation: y = 41e0.002t cos .552tj 

Recall from Figure 3.6 that a +0.002 ± 0.552i is a pair of eigenvalues corresponding 
to the parameters given in Figure 3.8. Therefore, this figure is very similar to 

Figure 3.8 
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SpLn flngl..e as a F'unctLon of TLms 
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Figure 3.10: Type 1 Rattleback,w3 = 0.5 
Parameters: M=1,h=1,g=1,Ii = 4,12 = 1,13 = 3.5, all = 0.24,o 12 = O.12,022 = 

0.56, = 0.001 
Initial Conditions: u = 0.05, u2 = 0; w1 = 0, w2 = 0, w3 = 0.5 
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WobbLe FngLe as a F'unctLon of Ti.me 

30.0 

25.0-

a 

10.0-
0 

5.0-

• • •.•. :. • 

0.0   
00 50.0 100.0 150.0 200.0 250.0 300.0 

TLme ( seconds) 

Figure 3.11: Type 1 Rattleback, w3 = 0.5 
Parameters: M=1,h=1,g=1,I1 = 4,12 = 1,13 = 3.5, all = 0.24,0-12 = 0.12,022 = 

O.56,tstep = 0.001 
Initial Conditions: u1 = 0. 05) U2 = 0, w1 = 0, w2 = 0, w3 = 0.5 

However, for high initial spin a Hopf bifurcation occurs and one of the two Walker 

equilibria becomes stable. The rattleback exhibits a spin bias in one direction and 

when it starts moving in that direction, the wobbling decays: 
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Figure 3.12: 
Parameters: M=1,h=1,g=1,I1 

Initial Conditions: u1 

Type 1 Rattleback, w3 = —1.2 

= 4,12 = 1I3 = 3.5,o = 0.24, 0_12 
0.56, = 0.001 

= 0. 05, U2 = 0, W1 = 0, W2 = 0,w3 = 

= 0. 12) cr22 

—1.2 
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Figure 3.13: 
Parameters: M1,h=1,g=1,I1 

Initial Conditions: u 

Type 1 Rattleback, w3 = —1.2 

= 4,12 = 1,13 = 3.5, 11 = 0. 24, 012 
0.56, 0.001 
= 0.05,u2 = 0,w1 = 0,w2 = 0,w3 = 

= 0.12,0-22 = 

—1.2 
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Figure 3.14: Type 1 Rattleback,w3 = 1.2 

Parameters: M=l,h=1,g=1,I1=4,I2 = 1,13 = 3.5,o 0.24) 912 = O.12,022 = 

0.56, tstep = 0.001 
Initial Conditions: u1 = 0,05,u2 = 0,w1 = 0, W2 = 0,w3 = 1.2 
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WobbLe flrogLe as a F'uroctLan of TLme 
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Figure 3.15: Type 1 Rattleback, w3 = 1.2 
Parameters: M=1,h=1,g=1,I1= 4,12 = 1,13 = 3.5, all = 0.24,oi2 = 0.12,o-22 = 

0.56, t3t0 = 0.001 
Initial Conditions: tt1. = 0.05, u2 = 0, w1 = 0, w2 = 0, w3 = 1.2 
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3.3.3 Type 2 Rattleback 

6ondL DLagram 
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Figure 3.16: Type 2A Rattleback: Bondi Diagram 

Parameters: 

M = 1, h = 1,9 = 1,11 = 4,12 = 3,13 = 2, all = 0.24, 12 = 0.12, 922 = 0.56 
Bondi Parameters: 

G 0.6, = 0.2, W = —0.8, a = 5;I8 = 4, ,y = 2, ic = —0.050, p = —1.133 

I. EEmin 

The rattleback is not moving. There is only one equilibrium point: 

[0, 0, 1, 0, 0, 0]. 
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2. Emim <E<EH 

The rattleback has two equilibrium points: [0, 0, 1, 0, 0, ±w3] These are the Walker 

equilibria. They are both unstable. 

3. .Eff <E<Ep1 

One of the two Walker equilibria becomes stable. Its eigenvalues cross the imag-

inary axis and a Hopf bifurcation occurs. There are still two Walker equilibria 

[0, 0, 1, 0, 0, ±w3], but one of them is stable. The rattleback exhibits a bias in one 

direction, as is evident from the following numerical simulations. 
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Figure 3.17: Type 2A Rattleback, w3 = —0.5 
Parameters: 

M=1,h=1,g=1,I1 = 4,12 = 3,13 = 2, all = 0.24, U12 =  0.12, 0 22 = 0.56, t,tp = 0.001 
Initial Conditions: u, = 0.05, tL2 = 0, w1 = 0, w2 = 0, w3 = —0.5 
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WobbLe f9ngLe as a F'unctLori of TLme 
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SpLn FIngLe as a FunctLon of TLme 
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Figure 3.19: Type 2A Rattleback,w3 = 0.5 
Parameters: 

M=1,h=1,g=1,I1 = 4,12 = 3,13 = 2, all = 0.24, LT12 =  0.12, o22 = O.56,t8 = 0.001 
Initial Conditions: u1 = 0.05,u2 = 0,w1 = 0,w2 = 0,w3 = 0.5 
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WobbLe f9ngLe as a F'urictLan of TLme 
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Figure 3.20: Type 2A Rattleback, w3 = 0.5 
Parameters: 

M=1,h=1,g=1,Ii = 4,12 = 3,13 = 2, all = 0.24,912 = 0.12,922 = 0.56,tstep = 0.001 
Initial Conditions: U1 = 0-05, U2 = 0,w1 0,w2 = 0, W3 = 0.5 
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4. Ep1 < E < Ep2 

When the energy is above E 1, two eigenvalues of the one stable Walker equilibrium 

are both real and negative. One of these elgenvalues crosses the imaginary axis at the 

origin, and a pitchfork bifurcation occurs. Four new equilibria appear in addition 

to the two Walker equilibria. Both Walker equilibria are now unstable. Of the 

four new equilibria, two are stable and the other two are unstable. The rattleback 

exhibits bias in one direction and spins at an axis other than the vertical. For some 

rattlebacks, no further bifurcations of the Walker equilibrium occur. The following 

graph displays the relative positions of line Q(w) and parabola P(w) in this case: 
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T,ype 2 FattLeback 
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Figure 3.21: Type 2 Rattleback: Routh-Hurwitz Stability Criteria 
Graphs of Parabola P(w) and Line Q(w) 

Parameters: M=1,h=1,g=1,I1 = 4,12 = 3,13 = 2,s= 0.24) 912 = 0.12) 9 22 = 0.56 
Hopf bifurcation: w3 = —0.3429971703 

Pitchfork bifurcation: w3 = —1.214417405 

The following eigenvalue graphs demonstrate numerically that the pitchfork bi-

furcation at w3 = —1.214417405: 
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Figure 3.22: Type 2 Rattleback: Eigenvalues for 3 different w3 
These three graphs from left to right demonstrate the following numerical values: 

Leftmost graph: w3 = -1.213,eigenvalues: -O.008,-O.0273, -0.013 ± 1.585i 
Middle graph: w3 = -1.21441'7405,eigenvalues: 0, -0.036, -0.013 ± 1.586i 

Rightmost graph: w3 -1.215 ,eigenvalues: +0.002,-0.038, -0.013 ± 1.583i 

The following numerical simulations show how the rattleback behaves for different 

initial spins. 
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Figure 3.23: 

M=1,h1,g=1,I1 = 4,12 = 3,13 
Initial Conditions: u] 

200.0 300.0 
TLmo (seconds] 

400.0 500.0 

Type 2A Rattleback, w3 = —1.5 
Parameters: 

= 2, o = 0. 24, 0 12 = 0. 12, U22 = 
= 0.05,'u2 = 0,w1= 0,w2 = 0,w3 = —1.5 

0.56,t35 = 0.001 
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WobbLe AngLe as a F'urctLon of TLme 
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Figure 3.24: 

M=1,h=1,g=1,I1 = 4,12 = 3,13 
Initial Conditions: u1 

Type 2A Rattleback, w3 = —1.5 
Parameters: 

= 2, all = 0.24, U12 = 0.12, 22 = 

= 0.05,u2 = 0,w1 = 0,w2 = 0,w3 = —1.5 
0.56,t85 = 0.001 
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Figure 3.25: Type 2A Rattleback,w3 = 1.5 
Parameters: 

M=1,h=1,g=1,I1 = 4,12 = 3,13 = 2, all = 0.24, 0_12 0.12, 22 = 0.56, tg p = 0.001 
Initial Conditions: v1 = 0.05, u2 = 0, w1 = 0, w2 = 0, w3 = 1.5 
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Figure 3.26: Type 2A Rattleback, w3 = 1.5 
Parameters: 

M=1,h=1,g=1,I1 = 4,12 = 3,13 = 2, = 0.24, U12 = 0.12, 0 22 = 0.56, t, t',,  0.001 
Initial Conditions: u1 0.05,u2 = 0,w 0,w2 = 0,w3 = —1.5 
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Other possible parameters for Type 2A rattleback are: 11 = 40, 12 = i_U, 13 = 

35,o 0.24) U12 = 0.12) 922 = 0.56. Or: Jj = 40,12 = 10I3 = 35,o- = 0.25, U12 = 

0.05, U22 = 0.25. 

5.E>E 2 

At an even higher energy (E > E 2), a new pitchfork bifurcation occurs for some 

values of the parameters and now there are a total of ten equilibria. Example: 

Ii = 50,12 = 40,13 = 2O,cr = 0.24, U12 = 0.12, u22 = 0.56, r. = 0.3, y = —0.001. 

Note that in this last example,the rattleback would be in " Type 1" region of Bondi's 

diagram which is clearly not the case. The following graph displays the relative 

positions of line and parabola in this case 
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Figure 3.27: Type 2B Rattleback 
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Figure 3.28: Type 2B Rattleback 
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3.4 Calculation of the Rotation Matrix A(t) and Translation 

Vector v(t) for the Rattleback 

Solution of the differential equations for [u1, 'u2, 'u3] and [w1, w2, w3] would not be 

sufficient to find the exact motion of the rattleback. At any moment of time, the 

rattleback's position can be described by its orientation in space (given by a 3 x 

3 orthogonal matrix A(t)) and a translation of its centre of mass (given by a 3 

dimensional vector v(t)). The matrix A(t) satisfies the following equation: 

A=A 

Let the components of A(t) be: 

A(t)= 

0 W3 W2 

W3 0 - Wi 

-W2 W1 0 

a1 b1 c1 

a2 b2 c2 

a3 b3 C3 

(3.22) 

(3.23) 
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The components of A(t) can be found as follows: 

i1 = b1c'3 - c1w2 

a2 = b2w3 - c2w2 

a3 = b3w3 C3W2 

ciwi - a1w3 

= C2WJ, - a2w3 

b3 = c3w1 - a3w3 

di = a1w2 - b1w1 

62 = a2w2 b2W1 

C3 = a3w2 - b3w1 

(3.24) 

Now let the translation vector be [v1, v2, v3]. Its components can be found as follows: 

'lii = —a1x - b1y - c1z 

= —a2x - b2y - c2z 

,63 = —a3x - b3y - c3z 

(3.25) 

Here [x, y, z] is the inverse of the Gauss map, depending on [u1, u2, u3] In conclusion a 

complete set of differential equations for the rattleback consists of 18 equations to be 

solved simultaneously: find [u1, U2, U3], [w1, w2, w3], A(t) (9 equations) and [v1, v2, v3]. 

Then if the rest position of a point on the rattleback is (qi, q2, q3), its position 

(p1,p2,ps) after time t can be found using the equations: 

Pi = a1q1 + b1q2 + c1q3 + Vi 

P2 = a2q1 + b2q2 + c2q3 + V2 

P3 = asqi+b3q2+c3q3+v3 

(3.26) 



Chapter 4 

Conclusion 

4.1 New Results for the Euler Top 

Somewhat surprisingly, this thesis has demonstrated that even for a centuries-old 

problem such as the Euler top there are new mathematical identities to be discovered. 

In collaboration with L. Bates and R. Cushman, the author of this thesis has found 

that the difference ((t3) - - (t9(T) - can equal 0, 2ir or —27r-depending 

on the parameters chosen. An explanation for the phenomenon is provided in this 

thesis. The explanation is based on a subtle observation about how the motion takes 

place on a torus imbedded in SO(3). 

4.2 New Results for the Rattleback 

Here is a summary of the new results for the rattleback that have been discovered 

in this thesis: 

• There are more numerical simulations and graphs than in all previous rattleback 

papers combined. 

• The iiumerica1 simulations indicate that for a Type 0 rattleback, spin reversal 

occurs at the time of the local maximum of the lower beat frequency of the wobble 

angle. 

• For Type 1 rattleback, when the energy is low the numerical simulations show that 
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the rattleback does not reverse infinitely many times, as Bondi [6] or Garcia and 

Hubbart [10] imply. When the rattleback starts moving in the stable spin direction, 

the local maximums of the wobble angle asymptotically approach some constant 

angle. In practice, this means that for low energies a Type 1 rattleback spins in the 

stable direction while wobbling forever. 

• Hermans [13] describes rattlebacks with two or ten equilibria, depending on the 

relative positions of the line and parabola that emerge from the Routh-Hurwitz 

stability criteria. In this thesis, a new configuration is found that yields six equilibria. 

A rattleback with six equilibria is called Type 2A rattleback, to distinguish it from 

a rattleback with ten equilibria - Type 2B rattleback. 
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Appendix A 

Computer Program for the Euler Top 

The computer program that ran the simulations was written in FORTRAN 90 and 

is supplied in this appendix. There are two files to be compiled and linked: 

"euler.f90" (code lines from PROGRAM EULER to END PROGRAM EULER) 

"subroutines.f90" (code lines from MODULE SUBROUTINES to END MODULE 

SUBROUTINES). 

On most machines, compiling and linking can be accomplished with commands sim-

ilar to the following: 

f90 subroutines.f90 euler.f90 

This compiles and links the files, then creates an executable file. On UNIX ma-

chines the name of the executable file is " a.out". The input variables and liii-

tial conditions are entered in a separate text file " data" in the following order: 

I] 12, I, L, O,, qj, / j, dt, tf. Once the ninenumbers for file " data" are entered with 

spaces between them, executing the file " a.out" produces two output files: " outputl" 

and " output2". The file outputl has 12 columns: t, w1, w2, w3, '9, ,T,Xh, Yh,Xr, Yr, Z. 

Here t is time, [w1, c.'2, w3] are the components of the instantaneous angular velocity in 

the rotating frame (the solutions of the Euler equations). V is the projection angle. 

is the angle swept by the herpoihode and r is its radius at a time t. [Xh, yhll are 

the coordinates of the herpoihode points, while [Xr, Yr, Zr] are the 3-D coordinates of 

the rotation using the solid ball model. These quantities can then be plotted using a 

standard graphics package. For example, here are the commands used in MATLAB 
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to produce a herpolhode graph: 

>> load('outputl'); 

>> xoutputl(: , 8); 

>> y=outputl(:,9); 

>> plot(x,y) 

The file output2 has the following entries: t1, e(t1), t9 (h), t3, e(t3), 19 (h), 'i- = t3 - 

2 — 212E. The numbers 

in this exact order can be seen to the right of each herpoihode graph in this thesis. 
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The lines on this page should be written in file " euler.f90". 

PROGRAM EULER 

USE SUBROUTINES 

IMPLICIT NONE 

OPEN(UNIT100,FILE='data') 

READ(100,*) A,B,C,L,THETAO,PHIO,PSIO,H,TF 

CLOSE (UNIT=100) 

CALL INITIAL 

T=O.ODO 

OPEN (UNIT=210,FILE=' outputl') 

OPEN (UNIT=220 , FILE=' output2') 

DO WHILE (T.LE.TF) 

CALL PLUNGE 

CALL 1-IERPOLHODE 

CALL S03 

WRITE(210,310) T,WI,W2,W3,THETA1,THETAHERPOLHODE,& 

RADIUS, HERPOLHODEID, HERPOLHODE2D, Ri, R2, R3 

ENDDO 

WRITE(220,*) T1,H1,TH1,T3,H3,TH3,DT,DH,DTH,DIFF,L1 

310 FORMAT(12(F6.3,2X)) 

END PROGRAM EULER. 
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All the lines from here on should be written in a file " subroutines.f90". 

MODULE SUBROUTINES 

IMPLICIT NONE 

REAL(8),PUBLIC:: T,H,A,B,C,L,THETAO,PHIO,pSIO,A1,A2,A3,& 

B1,B2,B3,C1,C2,C3,THETA1,W1,W2,W3,PI,HERPOLHODE1D& 

I-IERPOLHODE2D , THETA..HERPOLHODE, RADIUS , DELTA1 , XPOINTI. , Sc 

YPOINT1 , XPOINT2 , YPOINT2 , XPOINT3 , YPOINT3 , R1 , R2 , R3, & 

THETA2,TF,E,T1,TS,H1,H3,TH1,TH3,DT,DH,DTH,DIFF,L1,& 

RMAX,RMIN 

REAL (4), VECTOR114 , VECTOR124 , VECTOR214 ,& 

VECTOR224 

LOGICAL , PUBLIC:: TIME_TO..EXIT= . FALSE. , SWITCH1= . TRUE. , & 

SWITCH2= . FALSE. , DELTA1SWITCH= . FALSE. , & 

DELTAO1SWITCH= . FALSE. 

• REAL(S) , PRIVATE:: W1DOT1,W1DOT2,W1DOT3,W1DOT4,W2DOT1W2DOT2,w2DOT3,& 

W2DOT4,W3DOT1,W3DOT2,W3DOTS,w3D0T4,& 

THETA1DOTI , THETA1DOT2 , THETA1DOT3 , THETA1DOT4 

CONTAINS 

FUNCTION W1DOT (Wi , W2 , W3) 

REAL(8) W1DOT,Wi,W2,W3 

W1DOT= (B-C) *W2*W3/A 
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END FUNCTION W1DOT 

FUNCTION W2DOT(W1 , W2 , W3) 

REAL(8) W2DOT,W1,W2,W3 

W2DOT= (C-A) *W1*W3/B 

END FUNCTION W2DOT 

FUNCTION W3DOT(W1 , W2 , W3) 

REAL(8) W3DOT,W1,W2,W3 

W3DOT=(A-B) *W1*W2/C 

END FUNCTION W3DOT 

FUNCTION THETA 1DOT (Wi , W2 , W3) 

REAL(8) THETA1DOT, Wi , W2 , W3 

IF((L**2-(A*W1)**2) . NE.0) THEN 

THETA1DOT=L* (B*w2**2+c*w3**2) / (L**2- (A*W1) **2) 

ELSE 

TIME_TO_EXIT=. TRUE. 

ENDIF 

END FUNCTION THETA1DOT 

SUBROUTINE RUNGE 

************************************************************** 
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Fourth order Runge-Kutta solver of the differential 

equations defined in MODULE FUNCTIONS. 

INPUT VARIABLES: 

REAL(8) H (STEPSIZE) 

INPUT/OUTPUT VARIABLES (UPDATED IN THE SUBROUTINE): 

REAL(8) T,W1,W2,W3,THETA1,A1,A2,A3,B1,B2B3C1C2C3 

All the above variables are defined as REAL(8),PUBLIC 

in MODULE VARIABLES1. 

W1DOT1=H*W1DOT(W1 , W2 , W3) 

W2DOT1=H*W2DOT (Wi, W2 , W3) 

W3DOT1=H*W3DOT(W1 , W2 , W3) 

THETA1DOT1=H*THETA1DOT (Wi , W2 , W3) 

W1D0T2=H*W1DOT (W1+O. SDO*W1DOT1, W2+O . 5D0*W2DOT1 , & 

W3+O . 5D0*W3D0T1) 

W2DOT2=H*W2DOT (Wi+O . 5D0*W1DOT1 , W2+O . 5D0*W2D0T1 , & 

W3+O . 5D0*W3D0T1) 

W3DOT2=H*W3DOT (W1+O 5D0*W1DOT1 , W2+O . 5D0*W2D0T1 , & 

W3+O 5D0*W3D0T1) 

THETA1DOT2=H*THETA1DOT (W1+O. 5D0*W1DOT1 , W2+O . 5D0*W2DOT1 , & 

W3+O . 5D0*W3DOT1) 
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W1DOT3H*W1DOT (W1+o. 5D0*W1DOT2 , W2+O . 5D0*W2DOT2 , & 

W3+O . 5D0*W3D0T2) 

W2DOT3=H*W2DDT (W1+O . 5D0*W1DOT2 , W2+O. 5D0*W2DOT2 , & 

W3+0. 5D0*W3DOT2) 

W3DOT3=H*W3DOT (W1+O . 5D0*W1DOT2 , W2+O . 5D0*W2DOT2 , & 

W3+O . 5D0*W3D0T2) 

THETA1DOT3=H*THETA1DOT (W1+O. 5D0*W1DOT2, W2+O . 5D0*W2DOT2 , & 

W3+O . 5D0*W3DOT2) 

W1DOT4H*W1DOT (W1+W1DOT3 , W2+W2DOT3 , W3+W3DOT3) 

W2DOT4=H*W2DOT (W1+W1DOT3 , W2+W2DOT3, W3+W3DOT3) 

W3DOT4=H*W3DOT(W1+W1DOT3 , W2+W2DOT3 , W3+W3DOT3) 

THETA1DOT4=H*THETA1DOT (W1+W1DOT3 , W2+W2DDT3 , W3+W3DOT3) 

T=T+H 

WI=W1+ (W100T1+2. ODO*W1DOT2+2 . ODO*W1DOT3+W1DQT4) /6. ODO 

W2=W2+ (W2DOT1+2. ODO*W2DOT2+2 . ODO*W2DOT3+W200T4) /6. ODO 

W3=W3+ (W3DOT1+2. ODO*W3DOT2+2 . 000*w3D0T3+w3D0T4) /6. ODO 

THETA1=THETA1+ (THETA1DOT1+2. ODO*THETA1DOT2+2 . ODO*& 

THETA1DOT3+THETA1Dor4) /6. ODO 

A3=A*W1/L 

B3=B*W2/L 

C3=C*W3/L 

A1=(DSQRT(1-A3**2))*Dcos(THEm1) 
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A2= (DSQRT(1-A3**2)) *DSIN (THETA1) 

B1=- (A3*B3*DCOS (THETA1)+C3*DSIN (THETA1) ) /DSQRT(1-A3**2) 

B2=(C3*DCOS (THETA1) -A3*B3*DSIN(THETA1))/DSQRT(1-A3**2) 

C1=- (A3*C3*DCOS (THETA1) -B3*DSIN (THETA1) ) /DSQRT(1-A3**2) 

C2=- (B3*DCOS (THETA1) +A3*C3*DSIN (THETA1) ) /DSQRT(1-A3**2) 

END SUBROUTINE RUNGE 

SUBROUTINE HERPOLHODE 

Using the output from SUBROUTINE RUNGE and SUBROUTINE ROTATE, 

SUBROUTINE HERPOLHODE does the following: 

1. Computes the new 2-D point of the herpolhod curve 

x-coordinate = HERPOLHODE1D = HERPOLHODE1 

Y-coordinate = HERPOLHODE2D = HERPOLHODE2 

2. Updates the angle of the new vector relative to the 

starting vector (this angle is equal to THETA-HERPOLHODE) 

3. Finds the 2 points when the radius of the herpolhode 

is a maximum (with 1 maximum between the 2 points skipped) 
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First point: (VECTOR114,VECTOR124) 

Second point: (VECTOR214,VECTOR224) 

4. Finds the angle (DELTA1) between the 2-points 

REAL (8) RPOINT1 , RPOINT2 , RPOINT3 

!FINDING THE HERPOLHODE COORDINATES FROM ROTATION MATRIX 

HERPOLHODE1D=A1*W1-i-B 1*W2-l-C1*W3 

HERP OLHODE2D=A2*W1-i-B2*W2+C2*W3 

!END FINDING THE HERPOLHODE COORDINATES FROM ROTATION MATRIX 

RADIUS=SQRT(HERPOLHODE1D**2+HERPOLHODE2D**2) 

XPOINT3=XPOINT2 

YPOINT3=YPOINT2 

XPOINT2=XPOINT1 

YPOINT2=YPOINT1 

XPO INT1=HERPOLHODE1D 

YPO fliT 1=HERP OLHODE2D 

IF( ((XPOINT1**2+YpOINT1**2) * (XPOINT2**2+YpoINT2**2)) . NE . 0) & 

THETA_HERPOLHODE=THETA_HERPOLHODE+DACOS ( (XPOINT1*& 

XPOINT2+YPOINT1*YPOINT2) /DSQRT( (XPOINT1**2+YPOINT1**2) *& 

(XPOINT2**2+ypoINT2**2))) 
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IF (SWITCH1.OR.SwITcH2) THEN 

RPOINT1=XPOINT1**2+YPOINT1**2 

RPOINT2=XPOINT2**2+YPOINT2**2 

RPOINT3=XPOINT3**2+YPOINT3**2 

IF ((RPOINT2.GT.RpoINTi) . AND. (RPOINT2.GT.RPOINT3)) THEN 

IF (SWITCH1 . AND. (. NOT. SWITCH2)) THEN 

VECTOR1 14=XPOINT2 

VECTOR124=YPOINT2 

TI=T 

Hi =THETA.HERPOLHODE 

TH1=THETA1 

DELTAO1SWITCH= . TRUE. 

ENDIF 

IF (SWITCH1.AND.SwITCH2) THEN 

SWITCH1= . FALSE. 

SWITCH2= . FALSE. 

VECTOR214=XPOINT2 

VECTOR224=YPOINT2 

DELTA1=ACOS ( (VECTOR1 14*VECTOR2 14+VECTOR124*VECTOR224) /& 

SQRT((VECTOR114**2+VECTOR124**2) * (VECTOR214**2+vECToR224**2))) 

T3=T 
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H3=THETA_HERPOLHODE 

TH3=THETA 1 

DT=T3-T1 

DH=H3-H1 

DTH=TH3-TH1 

DIFF=DTH-DH 

DELTA1SWITCH= . TRUE. 

ENDIF 

IF ((. NOT.swITCH1) . AND.SWITCH2) THEN 

SWITCH 1=. TRUE. 

SWITCH2= . TRUE. 

ENDIF 

IF (SWITCH1.AND. (. NOT.SWITCH2)) THEN 

SWITCH1= . FALSE. 

SWITCH2= . TRUE. 

ENDIF 

ENDIF 

ENDIF 

END SUBROUTINE HERPOLHODE 

SUBROUTINE S03 
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Using the output of SUBROUTINE ROTATE, SUBROUTINE S03 

calculates the point (Ri,R2,R3) and angle (THETA2) that 

is equivalent to the matrix of rotation, according to 

the solid ball model. 

************************************************************** 

REAL(8) TRACE 

TRACE=A1+B2-i-C3 

THETA2=DACOS (0. 5D0* (TRACE-i. ODO)) 

R1=THETA2* (B3-C2) / (2. ODO*DSIN(THETA2)) 

R2=THETA2* (C1-A3) / (2. ODO*DSIN(THETA2)) 

R3=THETA2* (A2-B1) / (2. ODO*DSIN(THETA2)) 

END SUBROUTINE SO3 

SUBROUTINE INITIAL 

!INPUT: A,B,C,L,THETAO,PHIO,PSIO, 

!OUTPUT: AI,A2,A3,B1,B2,B3,Ci,C2,C3,Wi,W2,W3,THETAI. AT T0 

!OUTPUT: E,L1,RMIN,RMAX 

P1=4. ODO*DATAN(i . ODO) 

THETAO=(PI/180 . ODO)*THETAO 

PHIO=(PI/180 . ODO)*PHIO 

PSIO=(PI/i80.oDO)*pslo 
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A1=DCOS (THETAO) *DCOS (PHIO) *DCOS (PSIO) -DSIN (PHIO) *DSIN (PSIO) 

A2=DCOS (THETAO) *DSIN (PHIO) *DCOS (PSIO)+DCOS (P1110) *jjSIN (PSIO) 

A3=-DSIN (THETAO) *DCOS (PSIO) 

B1=-DCOS (THETAO) *DCOS (PHIO) *DSIN (PSIO) -DSIN (PHIO) *DCOS (PsIO) 

B2=-DCOS (THETAO) *DSIN(pHIo) *DSIN (PSIO) +DCOS (PHIO) *DCOS (PSIO) 

B3=DSIN (THETAO) *DSIN(PSIO) 

C1=DSIN (THETAO) *DCQS (PHIO) 

C2=DSIN(THETAO) *DSIN (PHIO) 

C3=DCOS (THETAO) 

W1=A3*L/A 

W2=B3*L/B 

W3=C3*L/C 

THETA1=DATAN (A2/A1) 

E=0. 5D0* (A*wl**2-i-B*w2**2+c*w3**2) 

L1=L**2-2*B*E 

TIME_T0.EXIT= . FALSE. 

IF((A.GE.B).AND.(B.GE.C)) THEN 

RMAX=(2 . ODO/L) *DSQRT ( (L**2/ (2. ODO*C)-E) * (E-L**2/ (2. ODO*A))) 

IF(L1.LT.0) THEN 

FtMIN=(2. ODO/L) *DSQRT ((L**2/ (2. ODO*C) -E) * (E-L**2/ (2. ODO*B))) 

ELSE 

RMIN=(2. ODO/L) *DSQRT((L**2/ (2. ODO*B) -E) * (E-L**2/(2. ODO*A))) 

ENDIF 

ENDIF 
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IF((A.LT.B).AND.(E.LT.C)) THEN 

RMAX=(2 . ODO/L) *DSQRT((L**2/ (2. ODO*A) -E) * (E-L**2/ (2 . ODO*C))) 

IF(L1.GE.0) THEN 

RMIN=(2. ODO/L) *DSQRT( (L**2/ ( 2. ODO*B) -E) * (E-L**2/ (2. ODO*C))) 

ELSE 

RMIN=(2 . ODO/L) *DSRT( (L**2/ (2. ODO*A) -E) * (E-L**2/ (2 . ODO*B))) 

ENDIF 

ENDIF 

SWITCH 1=. TRUE. 

SWITCH2= . FALSE. 

HERPOLHODE1D=A1*W1-i-B1*W2+C1*W3 

HERPOLHODE2D=A2*W1+B2*W2+C2*W3 

XPOINT1=HERPOLHODE1D 

YP 0 INT 1=HERP OLHODE2D 

XPOINT2=XPOINTI 

YPOINT2=YPOINT1 

XPOINT3=XPOINTI 

YPOINT3=YPOINT1 

THETk.HERPOLHODE=O . ODO 

DELTAO1SWITCH= . FALSE. 

DELTA1SWITCH=. FALSE. 

END SUBROUTINE INITIAL 

END MODULE SUBROUTINES 



Appendix B 

Computer Program for the Rattleback 

The computer program that ran the simulations was written in FORTRAN 90 and 

is supplied in this appendix. There are two files to be compiled and linked: 

"rattleback.f90" (code lines from PROGRAM RATTLEBACK to END PROGRAM 

RATTLEBACK) 

"sub.f90" (code lines from MODULE SUBROUTINES to END MODULE SUBROU-

TINES). 

On most machines, compiling and linking can be accomplished with commands sim-

ilar to the following: 

f90 sub.f90 rattleback.f90 

This compiles and links the files, then creates an executable file. On UNIX machines 

the name of the executable file is " a.out". The input variables and initial conditions 

are entered in a separate text file " data" in the following order: M,h,g,Ii ,I2 I3 ,O11,O12, 

o22 ,dt, tf, u1,u2,w1,w2,w3. Once the sixteen numbers for file " data" are entered with 

spaces between, them, executing the file " a.out" produces the file " output". The 

file output has three columns: t, r, 17. Here t is time,F is the spin angle and 77 is 

the wobble angle. These quantities can then be plotted using a standard graphics 

package. For example, here are the commands used in MATLAB to produce a graph 

of spin angle as a function of time: 

120 
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>> load('outputl'); 

>> x=outputl (: , 1); 

>> y=outputl(: , 2); 

>> plot(x,y) 
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PROGRAM RATTLEBACK 

USE SUBROUTINES 

• IMPLICIT NONE 

OPEN (UNIT=100 , FILE=' data') 

READ(100,*) M,H,G,I1,I2, I3,SIGMA11,SIGMA12,SIGMA22,5,TF,U1,U2,& 

OMEGA1 , OMEGA2, OMEGA3 

CLOSE (UNIT=100) 

OPEN (UNIT=200, FILE=' output') 

T=O.ODO 

U3=DSQRT(1.ODO-U1**2-U2**2) 

DO WHILE (T.LE.TF) 

CALL COMPUTE 

CALL RUNGE 

WRITE(200, *) T,GAMMA,ETA 

ENDDO 

CLOSE (UNIT=200) 

END PROGRAM RATTLEBACK 
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MODULE SUBROUTINES 

IMPLICIT NONE 

VARIABLES: 

M=MASS 

!G=ACCELERATION DUE TO GRAVITY 

!H=DISTANCE FROM CENTRE OF MASS TO LOWEST POINT 

[U1,U2,U3]=VECTOR U 

COMEGA1 , OMEGA2, OMEGA3 =ANGULAR VELOCITY VECTOR 

SIGMA11 , SIGMA12, SIGMA22=DETERMINE SHAPE OF RATTLEBACK 

!I1,I2,I3=PRINCIpAL MOMENTS OF INERTIA 

[X,Y,Z]=INVERSE GAUSS MAP, FUNCTION OF [U1,U2,U3] 

CXDOT,YDOT,ZDOT]=TIME DERIVATIVE OF [X,Y,z] 

!S=STEPSIZE 

!T=TIME 

!TF=FINAL TIME 

!GAMMA=SPIN ANGLE 

!ETA=WOBBLE ANGLE 

REAL(8) , PtJBLIC:: U1,U2,U3,OMEGA1, OMEGA2,OMEGA3,DELTA,ETA,g. 

X,Y,Z,SIGMA11,SIGMA12,SIGMA22,I1,I2,I3XDOTYDOTZDOT& 

S,T,TF,GAMMA,PI=3. 14159265359D0,M,G,H 

REAL(8),PRIVATE:: XYZ,XY,XZ,YZ,D,T11,T12,T13,T22,T23,T33& 

S1,S2,S3 
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REAL(8) , PRIVATE:: U1DOT1,U1DOT2,U1DOT3,U1DOT4,& 

U2DOT1 , U2DOT2 , U2DOT3 , U2DOT4 , U3DOT1 , U3DOT2 , U3DOT3 , U3DOT4 

REAL(8) , PUBLIC:: OMEGA1DOT1,OMEGA1DOT2,OMEGA1DOT3,OMEGA1DOT4,& 

OMEGA2DOT1, OMEGA2DOT2, OMEGA2DOT3, OMEGA2DOT4, & 

OMEGA3DOT1 , OMEGA3DOT2, OMEGA3DOT3, OMEGA3DOT4, & 

GAMMADOT1 , GAMMADOT2, GAMMADOT3, GAMMADOT4 

CONTAINS 

SUBROUTINE COMPUTE 

DELTA=SIGMA1 1*SIGMA22-SIGMA12**2 

X= (-SIGMA22*U1+sIGMA12*u2) / (DELTA*U3) 

Y=(SIGMA12*U1-SIGMA11*U2)/ (DELTA*U3) 

Z=O. 5D0*SIGMA11*X**2+SIGMA12*X*Y+O. 5D0*SIGMA22*Y**2-H 

XDOT=(-SIGMA22*(U2*OMEGAS-U3*OMEGA2)+SIGMA12*(U3*OMEGA1- & 

U1*OMEGA3) ) / (DELTA*U3)-i- (SIGMA22*U1-SIGMA12*U2) *& 

(U1*OMEGA2-U2*OMEGA1)/ (DELTA*U3**2) 

YDOT=(SIGMA12*(U2*OMEGA3-U3*OMEGA2)--SIGMA11*(U3*OMEGA1- & 

U1*OMEGA3))/(DELTA*U3)+(SIGMA11*U2-SIGMA12*U1) *& 

(U1*OMEGA2-U2*OMEGA1)/ (DELTA*U3**2) 

ZDOT= (-U1*xDOT-U2*YDOT) /U3 

XYZ=X**2+Y**2+Z**2 

XY=X**2+Y**2 

XZ=X**2+Z**2 

YZ=Y**2+Z**2 
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D=I1*I2*I3+M**2*XYZ* (I1*x**2+I2*y**2+I3*z**2)+& 

M*(Ii*I2*XY+Ii*I3*XZ+I2*I3*Yz) 

Ti 1= (I2*I3-I-M**2*X**2*XYZ+M* ( I2*XY+I3*XZ))/D 

T22= (I i*I3+M**2*Y**2*XYZ+M* (I i*XY+I3*YZ) ) ID 

T33=(I1*I2+N**2*Z**2*XYZ+M*(Ii*XZ+I2*yz))/D 

T12=M*X*Y* (I3+M*XYZ) ID 

Ti3=M*X*Z* (I2+M*XYZ) ID 

T23=M*Y*Z* (Ii+M*xYz)/D 

S1=M* (Y*Z*OMEGA2**2-y**2*oMEGA2*oMEGA3-x*y*oMEGA1*oMEGA3+ 

X*Z*OMEGA1*OMEGA2-I-Z**2*OMEGA2*OMEGA3-Y*Z*OMEGA3**2+& 

G*Y*tJ3-G*Z*U2) + (12-13) *ONEGA2*OMEGA3+& 

N* (Y* (XDOT*OMEGA2-YDOT*OMEGA1) -Z* (ZDOT*OMEGA1-XDOT*OMEGA3)) 

S2=M* 

X*Y*OMEGA3*OMEGA2-I-X**2*OMEGA1*OMEGA3-X*Z*OMEGAi**2+& 

G*Z*U1-G*X*U3) +( I3-I 1) *OMEGA1*OMEGA3+& 

M* (Z* (YDOT*OMEGA3-ZDOT*OMEGA2) -X* (XDOT*ONEGA2-YDOT*OMEGAi)) 

S3=M* (Y*X*OMEQA1**2-X**2*QMEGA2*QMEGA1-x*z*OMEGA2*QMEGAS+& 

Y*Z* OMEGA1 *OMEGA3+Y**2*OMEGA2*QMEGAI-y*X*OMEGA2**2+& 

G*X*U2-G*Y*Ui)+(I 1-12) *OMEGA1*OMEGA2+& 

M* (x* (ZDOT*OMEGA1-XDOT*OMEGA3) -Y* (YDOT*ONEGA3-ZDOT*OMEGA2)) 

END SUBROUTINE COMPUTE 

FUNCTION tJiDOT(TJi , U2 , U3, OMEGA1, OMEGA2, OMEGA3) 

REAL(8) U1DOT,Ui,U2,U3,OMEGA1,OMEGA2,OMEGA3 



126 

U1DOT=U2*OMEGA3-U3*OMEGA2 

END FUNCTION MOT 

FUNCTION U2DOT(U1 , U2 , U3, OMEGA1, OMEGA2, OMEGA3) 

REAL(8) U2DOT,U1,U2,U3,OMEGA1,OMEGA2,OMEGA3 

U2DOT=U3*OMEGA1-U1*OMEGA3 

END FUNCTION U2DOT 

FUNCTION U3DOT(IJ1 , U2 , U3 , OMEGA1, OMEGA2, OMEGA3) 

REAL(8) U3DOT,U1,U2,U3,OMEGA1,OMEGA2,OMEGA3 

U3DOT=U1*OMEGA2-U2*OMEGA1 

END FUNCTION U3DOT 

FUNCTION OMEGA1DOT(U1 , U2 , U3, OMEGA1, OMEGA2,OMEGA3) 

REAL(8) OMEGAIDOT,UI,U2,U3,OMEGA1,OMEGA2,OMEGA3 

OMEGA1DOT=TII*S1+T12*S2+T13*S3 

END FUNCTION OMEGA1DOT 

FUNCTION ONEGA2DOT(U1,U2 , OMEGA1 , OMEGA2, OMEGA3) 

REAL(8) OMEGA2DOT,U1,U2 , U3, OMEGA1 , OMEGA2, ONEGA3 

OMEGA2DOT=T12*S1+T22*S2+T23*S3 

END FUNCTION OMEGA2DOT 

FUNCTION OMEGA3DOT(U1 , U2 , U3, OMEGA1 , OMEGA2, OMEGA3) 
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REAL(8) OMEGA3DOT,U1 , U2 , U3 , OMEGA1 , OMEGA2, OMEGA3 

OMEGA3DOT=T13*S1+T23*S2+T33*S3 

END FUNCTION OMEGA3DOT 

FUNCTION GAMMADOT(U1 , U2 , U3 , OMEGA1, OMEGA2, OMEGA3) 

REAL(S) GAMMADOT,U1,U2 , U3, OMEGA1 , OMEGA2, OMEGA3 

GAMMADOT=(Ul*OMEGA1+U3*OMEGA3) / (1-U2**2) 

END FUNCTION GAMMADOT 

SUBROUTINE RUNGE 

!CALL COMPUTE 

U1DOT1=S*U1DOT(Ul , U2 , U3, DMEGA1 , OMEGA2 • OMEGA3) 

U2DOT1=S*U2DOT (Ui , U2 , 1J3, OMEGA1 , OMEGA2,DMEGA3) 

U3D0T1=S*U3DOT (Ui , U2 , U3,OMEGA1 , OMEGA2, OMEGA3) 

OMEGA1DOT1=S*OMEGA1DOT (Ui , U2 , U3, OMEGA1 , OMEGA2, OMEGA3) 

OMEGA2DOTlS*DMEGA2DOT (Ui , U2 , U3, OMEGA1, OMEGA2, OMEGA3) 

0MEGA3D0T1=S*OMEGA3DOT (Ui , U2 , U3, OMEGA1, OMEGA2, OMEGA3) 

GAMMADOTI=S*GAMMADOT (UI , U2 , U3, OMEGA1, OMEGA2 , OMEGA3) 

U1D0T2=S*U1DOT (U1-i-O. 5D0*U1DOT1 , U2+O 5D0*U2DOT1 , & 

U3+O . ,OMEGA1+O 5D0*OMEGA1DOT1 , & 

OMEGA2+O 5D0*OMEGA2DOT1, OMEGA3+O 5D0*OMEGA3DOT1) 

U2DOT2=S*U2DOT(U1+O. 5D0*U1DOT1 , U2+O . 5D0*U2DOT1 , & 

U3+O 5D0*U3D0T1, OMEGA1+O . 5D0*OMEGA1DOT1 , & 
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OMEGA2+0. 5D0*OMEGA2DOT1, OMEGA3+O . 5D0*OMEGA3DOT1) 

U3DOT2=S*U3DOT(U1+0. 5D0*U1DOT1 , U2+0 . 5D0*U2DOT1 , & 

133+0 . 5D0*U3DOT1 , OMEGA1+O . 5D0*OMEGA1DOT1 , & 

OMEGA2+0 . 5D0*OMEGA2DOT1 • OMEGA3+0 . 5D0*OMEGA3DOT1) 

OMEGA1DOT2=S*OMEGA1DOT(U1+O. 5D0*U1D0T1 , U2+0. 5D0*U2DOT1 , & 

U3+0 . 5D0*U3DOT1, DMEGA1+O . 5D0*OMEGA1DOT1 , & 

DMEGA2+0 . 5D0*OMEGA2DOT1, OMEGA3+O . 5D0*OMEGA3DOT1) 

OMEGA2DOT2=S*OMEGA2DOT (U1+0. 5D0*U1DOT1 , 132+0. 5D0*U2DOT1 , & 

133+0. 5D0*U3DOT1 , OMEGA1+O . 5D0*OMEGA1DOT1 , & 

OMEGA2+O . 5D0*OMEGA2DOT1, OMEGA3+O ..5D0*OMEGA3DOT1) 

OMEGA3DOT2=S*OMEGA3DOT (131+0. 5D0*U1DDT1 , 132-1-0. 5D*U2DOT1 , & 

133+0. 5D0*U3DOT1,OMEGA1+0 . 5D0*0MEGA1D0T1 , & 

DMEGA2-l-0 . 5D0*OMEGA2DOT1, OMEGA3-I-0 . 5D0*OMEGA3DOT1) 

GAMMADOT2=S*GAMMADOT (U1+O . 5D0*U1D0T1 , U2+0. 5D0*U2DOT1, & 

133+0. 5D0*U3DOT1, OMEGA1+0 . 5D0*OMEGA1DOT1, & 

OMEGA2+0 . 5D0*OMEGA2DDT1, ONEGA3+0 . 5D0*OMEGA3DOTI) 

TJ1DOT3=S*U1DOT (131+0. SDO*U1DOT2 , 132+0. 5D0*U2DOT2 , & 

133+0 . 5D0*U3DOT2, 0MEGA1+0 5D0*OMEGA1DOT2 , & 

OMEGA2+O . 6D0*OMEGA2DOT2, ONEGA3-10 . 5D0*DMEGA3DOT2) 

U2DOT3=S*U2DOT (131+0. 5D0*U1DOT2 , 132+0. 5D0*IJ2DOT2 , & 

U3+0 . 5D0*U3DOT2, OMEGA1+0 . 5D0*OMEGA1DOT2 , & 

DMEGA2+0 . 5D0*OMEGA2DOT2, OMEGA3+0 . 5D0*OMEGA3DOT2) 

U3DOT3=S*U3DOT (U1-'-O. 5D0*U1DOT2 , 1J2+0 5D0*U2DOT2 , & 
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U3+O . 5D0*U3DOT2, OMEGA1+O 5D0*OMEGA1DOT2 , & 

OMEGA2+O . 5D0*OMEGA2DOT2, OMEGA3+O . 5D0*OMEGA3DOT2) 

OMEGA1DOT3=S*OMEGA1DOT (U1+O. 5D0*U1DOT2 , U2+O . 5D0*U2DDT2 , & 

U3+O. 5D0*U3DOT2, OMEGA1+O . 5D0*OMEGA1DOT2 , & 

OMEGA2+O. 5D0*OMEGA2DOT2, OMEGA3+O 5D0*OMEGA3DDT2) 

OMEGA2DOT3=S*OMEGA2DOT (U1+O. 5D0*U1DOT2 , U2+O 5D0*U2DOT2 , & 

U3+O . 5D0*U3DOT2, OMEGA1+O . 5D0*OMEGA1DOT2 , & 

OMEGA2+O 5D0*OMEGA2DOT2, OMEGA3+O 5D0*OMEGA3DOT2) 

OMEGA3DOT3=S*OMEGA3DOT (U1+o. 5D0*U1DOT2 , U2+O. 5D0*U2DOT2 , & 

U3+O 5D0*U3DOT2, OMEGA1+O. 5D0*OMEGA1DOT2 , & 

OMEGA2+O 5D0*OMEGA2DOT2, OMEGA3+O . 5D0*OMEGA3DOT2) 

GAMMADOT3=S*GAMMADOT (U1+O . 5D0*tJ1DOT2 , U2+O 5D0*U2DOT2 , & 

U3+O 5D0*U3DOT2, OMEGA1+O. 5D0*OMEGA1DOT2 , & 

OMEGA2+O . 5D0*OMEGA2DOT2, OMEGA3+O 5D0*OMEGA3DOT2) 

U1DOT4=S*U1DOT(U1+U1DOT3 , U2-FU2DDT3 , U3+U3DOT3 , & 

OMEGA1+OMEGA1DOT3, OMEGA2+DMEGA2DOT3 , OMEGA3+OMEGA3DOT3) 

U2DOT4=S*U2DOT(UI+UlDOT3,U2+U2DOT3 , U3+U3DOT3 , & 

OMEGA1+OMEGA1DOT3, OMEGA2+OMEGA2DOT3, OMEGA3+OMEGA3DOT3) 

U3DOT4=S*U3DOT (U1+U1DOT3 , U2+U2DOT3 , U3+U3DOT3 , & 

OMEGA1+OMEGA1DOT3, OMEGA2+ONEGA2DOT3, OMEGA3+OMEGA3DOT3), 

ONEGA1DOT4=S*OMEGA1DOT (U1+U1DOT3 , U2+U2DOT3 , U3+U3DOT3 , Sc 

OMEGA1+OMEGA1DOT3 , OMEGA2+OMEGA2DDT3, OMEGA3-I-OMEGA3DOT3) 

OMEGA2DOT4=S*OMEGA2DOT (U1+tJ1DOT3 , U2+U2DOT3 , U3+U3DOT3 , Sc 
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OMEGA1+OMEGA1DOT3, OMEGA2+OMEGA2DOT3, OMEGA3+OMEGA3DOT3) 

OMEGA3DOT4=S*OMEGA3DOT (U1+U1DOT3 , U2+U2DOT3 , U3+U3DOT3 , & 

OMEGA1+OMEGA1DOT3, OMEGA2+OMEGA2DOT3, OMEGA3+OMEGA3DOT3) 

GAMMADOT4=S*GAMMADOT (U1+U1DOT3 , U2+U2DOT3 , U3+tJ3DOT3, & 

OMEGA1+OMEGA1DOT3, OMEGA2+OMEGA2DOT3 , OMEGA3+OMEGA3DOT3) 

T=T+S 

U1=U1+ (tJ1D0T1+2 . ODO*U1DOT2+2 . ODO*U1DOT3+U1DOT4) /6. ODO 

U2U2+ (U2DOT1+2 . ODO*U2DOT2+2 . ODO*U2DOT3+U2DOT4) /6. ODO 

U3=U3+ (U3DOT1+2 . ODO*U3DOT2+2 . ODO*U3DOT3+U3DOT4) /6. ODO 

DMEGA1'=OMEGAl+ (OMEGA1D0T1+2 . ODO*OMEGA1DOT2-i-& 

2. ODO*OMEGA1DOT3+0MEGA1Dor4) /6. ODO 

OMEGA2=OMEGA2+ (OMEGA2DOT1+2 . ODO*OMEGA2DOT2+& 

2. ODO*OMEGA2DOT3+OMEGA2DOr4) /6. ODO 

OMEGA3=OMEGA3-i- (OMEGA3DOT1-i-2 . ODO*OMEGA3DOT2-i-& 

2. ODO*OMEGA3DOT3+OMEGA3DOT4) /6. ODO 

GAMMA=GAMMA+ (GAMMADOT1-I-2 . ODO*GAMMADOT2+& 

2. ODO*GAMMADOT3+GAMMADOT4) /6.000 

ETA=DACOS (U3) 

END SUBROUTINE RUNGE 

END MODULE SUBROUTINES 



Appendix C 

Tables of Elliptic Functions 

C.1 Complete Elliptic Integral K(k) 

Ic K(k) Ic K  

0.00 1.570796 0.50 1.685750 
0.01 1.570836 0.51 1.691263 
0.02 1.570953 0.52 1.696972 

0.03 1.571160 0.53 1.702885 

0.04 1.571425 0.54 1.709009 
0.05 1.571779 0.55 1.715354 

0.06 1.572213 0.66 1.721930 

0.07 1.572726 0.57 1.728747 
0.08 1.573319 0.68 1.735815 
0.09 1.573992 0.59 1.743146 
0.10 1.574746 0.60 1.750764 
0.11 1.576581 0.61 1.758651 

0.12 1.576497 0.62 1.766853 
0.13 1.677497 0.63 1.775376 
0.14 1.578579 0.64 1.784236 

0.15 1.579746 0.66 1.793454 
0.16 1.550397 0.86 1.803050 

0.17 1.582334 0.87 1.813045 

0.18 1.583757 0.68 1.823468 
0.39 1.555268 0.69 1.834339 
0.20 1.556888 0.70 1.845694 

0.21 1.588558 0.71 1.857564 
0.22 1.590338 0.72 1.869955 

0.23 1.592212 0.73 1.882999 
0.24 1.594179 0.74 1.896650 

0.25 1.590242 0.75 1.910090 
0.26 1.598402 0.76 1.926075 

0.27 1.600681 0.77 1.941970 
0.28 1.603020 0.78 1.955748 

0.29 1.605482 0.79 1.976494 
0.30 1.608049 0.80 1.995303 
0.31 1.610722 0.81 2.015287 

0.32 1.613504 0.82 2.036575 
0.33 1.616397 0.83 2.069319 

0.34 1.619404 0.84 2.083701 
0.35 1.622528 0.85 2.106935 

0.36 1.625771 0.86 2.138283 

0.37 1.629137 0.87 2.169065 
0.38 1.632628 0.88 2.202877 

0.39 1.636248 0.89 2.239622 

0.40 1.640000 0.90 2.280549 
0.41 1.643888 0.91 2.326312 

0.42 1.647917 0.92 2.378071 
0.43 1.652090 0.93 2.437458 
0.44 1.656411 0.94 2.506865 

0.45 1.660886 0.96 2.590011 
0.46 1.665520 0.96 2.693143 

0.47 1.670317 0.97 2.827995 
0.48 1.675284 0.98 3.020980 
0.49 1.680426 0.99 3.356601 
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C.2 f(t)=sn(t I m=k2 ) 
m 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 
\ 
t\ 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 
1.6 

1.7 

1.8 

1.9 

2.0 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.0 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4.0 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

5.0 

0.000 0.000 0.000 

0.100 0.100 0.100 

0.199 0.199 0.198 

0.296 0.295 0.295 

0.389 0.388 0.388 

0.479 0.478 0.476 

0.565 0.562 0.559 

0.644 0.640 0.636 

0.717 0.712 0.707 

0.783 0.777 0.770 

0.841 0.834 0.826 

0.891 0.883 0.875 

0.932 0.924 0.916 

0.964 0.956 0.948 

0.985 0.980 0.973 

0.997 0.994 0.990 

1.000 1.000 0.999 

0.992 0.997 0.999 

0.974 0.984 0.992 

0.946 0,963 0.977 

0.909 0.933 0.954 

0.863 0.894 0.922 

0.808 0.847 0883 

0.746 0.792 0.836 

0.675 0.729 0.782 

0.598 0.659 0.720 

0.516 0.582 0.650 
0.427 0.499 0.574 

0.335 0.411 0.492 

0.000 

0.100 

0.198 

0.294 

0.387 

0.474 

0.556 

0.632 

0.702 

0.764 

.0.819 

0.866 

0.907 

0.940 

0.965 

0.984 

0.995 

1.000 

0.997 

0.988 

0.971 

0.948 

0.917 

0.878 

0.833 

0.780 

0.720 

0.652 

0.578 

0.000 

0.100 

0.198 

0.294 

0.386 

0.472 

0.554 

0.628 

0.696 

0.757 

0.811 

0.858 

0.897 

0.930 

0.957 

0.977 

0.991 

0.998 

1.000 

0.995 

0.985 

0.969 

0.946 

0.916 

0.880 

0.838 

0.788 

0.731 

0.667 

0.000 

0.100 

0.198 

0.293 

0.385 

0.471 

0.551 

0.624 

0.691 

0.750 

0.803 

0.849 

0.888 

0.920 

0.947 

0.968 

0.984 

0.994 

0.999 

0.999 

0.995 

0.985 

0.970 

0.949 

0.923 

0.891 

0.852 

0.807 

0.755 

0.000 

0.100 

0.198 

0.293 

0.384 

0.469 

0.548 

0.620 

0.686 

0.744 

0.795 

0.839 

0.878 
0.910 

0.937 
0.958 

0.975 

0.987 

0.996 

1.000 

0.999 

0.995 

0.987 

0.975 

0.958 

0.936 

0.910 

0.877 

0.839 

0.00 0.000 

0.100 0.100 

0.198 0.198 

0.293 0.292 

0.383 0.382 

0.467 0.466 

0.545 0.543 

0.616 0.612 

0.680 0.675 

0.737 0.730 

0.787 0.778 

0.830 0.820 

0.867 0.856 

0.899 0.887 

0.925 0.913 

0.947 0.934 

0.965 0.952 

0.978 0.967 

0.988 . 0.978 

0.995 0.987 

0.999 0.993 

1.000 0.998 

0.998 1.000 

0.992 1.000 

0.984 0.998 

0.972 0.994 

0.956 0.988 

0.937 0.979 

0.913 0.968 

0.239 0.319 0.405 0.498 0.596 0.696 0.795 0.884 0.954 

0.141 0.223 0.313 0.411 0.518 0.630 0.743 0.850 0.937 

0.042 0.125 0.217 0.320 0.434 0.557 0.685 0.809 0.916 

-0.058 0.025 0.119 0.225 0.345 0.478 0.620 0.763 089i. 

-0.158 -0.075 0.019 0.127 0.251 0.392 0.547 0.710 0.861 
-0.256 -0.174 -0.081 0.028 0.154 0.301 0.468 0.650 0.826 

-0.351 -0.271 -0.180 -0.072 0.055 0.206 0.383 0.582 0.785 

-0.443 -0.366 -0.276 -0.171 -0.045 0.108 0.292 0.508 0.737 

-0.530 -0456 -0.370 -0.268 -0.144 0.008 0.197 0.426 0.683 
-0.612 -0.541 -0.459 -0.361 -0.242 -0.092 0.099 0.339 0.622 

-0.688 -0.621 -0.544 -0.450 -0.336 -0.190 -0.001 0.246 0.553 

-0.757 -0.695 -0.622 -0.534 -0.425 -0.286 -0.101 0.150 0.477 

-0.818 -0.761 -0.694 -0.612 -0.510 -0.377 -0.199 0.051 0.394 

-0.872 -0.821 -0.759 -0.683 -0.588-0.464 -0.294 -0.049 0.305 

-0.916 -0.872 -0.816 -0.747 -0.660 -0.545 -0.384 -0.148 0.212 

-0.952 -0.915 -0.866 -0.804 -0.725 -0.619 -0.470 -0.245 0.114 

-0.978 -0.949 -0.908 -0.854 -0.782 -0.686 -0.549 -0.338 0.014 

-0.994 -0.975 -0.943 -0.896 -0.833 -0.746 -0.621 -0.425 -0.085 

-1.000 -0.992 -0.969 -0.931 -0.876 -0.799 -0.686 -0.507 -0.184 
-0.996 -0.999 -0.987 -0.959 -0.913 -0.845 -0.744 -0.581 -0.279 

-0.982 -0.998 -0.998 -0.980 -0.943 -0.885 -0.795 -0.649 -0.369 

-0.959 -0.988 -1.000 -0.993 -0.967 -0.918 -0.840 -0.709 -0.454 

0.000 

0.100 

0.198 

0.292 

0.381 

0.464 

0.540 

0.608 

0.669 

0.723 

0.770 

0.811 

0.845 

0.875 

0.899 

0.920 

0.938 

0.952 

0.964 

0.974 

0.982 

0.988 

0.993 

0.996 

0.998 

1.000 

1.000 

0.999 

0.998 

0.995 

0.991 

0.985 

0.978 

0.970 

0.959 

0.946 

0.931 

0.912 

0.889 

0.862 

0.831 

0.794 

0.750 

0.701 

0.644 

0.579 

0.507 

0.428 

0.343 

0.251 

0.155 

0.000 

0.100 

0.197 

0.291 

0.380 

0.462 

0.537 

0.604 

0.664 

0.716 

0.762 

0.800 

0.834 

0.862 

0.885 

0.905 

0.922 

0.935 

0.947 

0.956 

0.964 

0.970 

0.976 

0.980 

0.984 

0.987 

0.989 

0.991 

0.993 

0.994 

0.995 

0.996 

0.997 

0.997 

0.998 

0.998 

0.999 

0.999 

0.999 

0.999 

0.999 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 
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\ m 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 

\ 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

6.0 

6.1 

6.2 
6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

7.0 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 

7.8 

7.9 

8.0 

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

8.8 

8'.9 

9.0 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

10.0 

-0.926 -0.969 

-0.883 -0.941 

-0.832 

-0.773 

-0.706 

-0.631 

-0.551 

-0.465 

-0.374 

-0.279 

-0.182 

-0.083 

0.017 

0.117 

0.215 

0.312 

0.405 

0.494 

0.578 

0.657 

0.729 

0.794 

0.850 

0.899 

0.938 

0.968 

0.988 

-0.905 

-0.860 

-0.806 

-0.745 

-0.677 

-0.602 

-0.520 

-0.433 

-0.342 

-0.247 

-0.149 

-0.050 

0.050 

0.150 

0.247 

0.342 
0.434 

0.521 

0.602 

0.677 

0.746 

0.807 

0.860 

0.905 

0.941 

-0.994 -0.999 

-0.980 -0.999 

-0.959 -0.991 

-0.929 -0.977 

-0.891 -0.955 

-0.846 -0.926 

-0.793 -0.890 

-0.732 -0.846 

-0.664 -0.795 

-0.590 -0.737 

-0.509 -0.672 

-0.422 -0.599 

-0.331 -0.521 

-0.236 -0.436 

-0.138 -0.346 

-0.038 -0.252 

0.061 -0.155 

0.161 -0.056 

0.258 0.044 
0.352 0.144 

0.442 0.241 

0.528 0.336 

0.607 0.426 

0.680 0.511 

0.747 0.591 

0.806 0.664 

0.857 0.730 

0.999 0.969 0.901 0.789 

0.999 0.988 0.937 0.841 

0.989 0.998 0.964 0.885 

0.970 0.999 0.984 0.922 

0.941 0.991 0.996 0,952 

0.902 0.975 1.000 0.975 

0.865 0.949 0.996 0.990 

0.798 0.914 0.984 0.998 

0.734 0.872 0.964 1.000 

0.663 0.820 0.935 0.994 

0.585 0.761 0.899 0.981 

0.501 0.695 0.855 0.962 

0.412 0.621 0.804 0.935 

0.319 0.541 0.744 0.900 

0.223 0.456 0.678 0.859 

0.124 0.365 0.604 0.810 

0.025 0.271 0.525 0.754 

-0.075 0.174 0.439 0.691 

-0.174 0.075 0.349 0.620 

-0.272 -0.025 0.254. 0.543 

-0.366 -0.125 0.157 0.460 

-0.458 -0.223 0.058 0.371 

-0.544 -0.319 -0.042 0.278 

-0.984 -0.945 

-0.995 -0.967 

-1.000 -0.983 

-0.999 -0.993 

-0.992 -0.999 

-0.978 -1.000 

-0.959 -0.995 

-0.933 -0.986 

-0.901 -0.971 

-0.862 -0.951 

-0.816 -0.925 

-0.763 -0.893 

-0.703 -0.855 

-0.635 -0.811 

-0.561 -0.760 

-0.481 -0.701 

-0.395 -0.636 

-0.303 -0.563 

-0.208 -0.484 

-0.110 -0.399 

-0.010 -0.309 

0.090 -0.214 

0.188 -0.116 

0.284 -0.016 

0.377 0.084 

0.464 0.182 

0.546 0.278 

0.621 0.370 

0.690 0.457 

0.751 0.538 

0.806 0.613 

0.853 0.681 

0.894 0.741 

0.927 0.795 

0.954 0.842 

0.975 0.882 

0.989 0.916 

0.998 0.943 

1.000 0.965 

0.996 0.982 

0.986 0.993 

0.970 0.999 

0.948 1.000 

0.920 0.996 

0.884 0.987 

0.842 0.972 

0.793 0.953 

0.737 0.928 

0.673 0.896 

0.603 0.859 

-0.878 -0.762 -0.532 

-0.910 -0.809 -0.603 

-0.937 -0.849 -0.666 

-0.958 -0.883 -0.723 

-0.975 -0.912 -0.772 

-0.988 -0.936 -0.815 

-0.996 -0.956 -0.852 

-1.000 -0.972 -0.883 

-0.999 -0.984 -0.909 

-0.995 -0.992 -0.931 

-0.987 -0.998 -0.950 

-0.975 -1.000 -0.965 

-0.958 -0.999 -0.977 

-0.936 -0.995 -0.986 

-0.909 -0.989 -0.992 

-0.877 -0.978 -0.997 

-0.839 -0.965 -0.999 

-0.794 -0.947 

-0,743'-0.926 

-0.685 -0.899 

-0.619 -0.868 

-0.547 -0.831 

-0.468 -0.787 

-0.382 -0.738 

-0.291 -0.681 

-0.196 -0.617 

-0.098 -0.546 

0.056 

-0.044 

-0.143 

-0.239 

-0.331 

-0.418 

-0.498 

-0.571 

-0.636 

-0.694 

-0.745 

-0.789 

-0.826 

-0.859 

-0.886 

-0.909 

-0.928 

-1.000 -0.944 

-0.998 -0.958 

-0.995 -0.969 

-0.989 -0.977 

-0.981 -0.985 

-0.970 -0.990 

-0.957 -0.994 

-0.940 -0.997 

-0.919 -0.999 

-0.895 -1.000 

0.002 -0.468 -0.866 -1.000 

0.101 -0.384 -0.831 -0.999 

0.200 -0.294 -0.791 -0.996 

0.295 -0.199 -0.745 -0.993 

0.385 

0.470 

0.549 

0.622 

0.687 

0.745 

0.796 

0.840 

0.878 

0.910 

0.937 

0.959 

0.975 

0.988 

0.996 

1.000 

0.999 

0.995 

0.987 

-0.101 -0.692 -0.988 

-0.001 -0.631 -0.982 

0.098 -0.563 -0.975 

0.196 -0.488 -0.965 

0.291 -0.407 -0.954 

0.382 -0.319 -0.940 

0.466 -0.225 -0.923 

0.544 -0.128 -0.902 
0.615 -0.029 -0.878 

0.679 0.071 -0.849 

0.736 0.170 -0.815 

0.786 0.265 -0.775 

0.829 0.357 -0.729 

0.867 0.442 -0.676 

0.898 0.521 -0.616 

0.925 0.593 -0.549 

0.947 0.658 -0.474 

0.964 0.715 -0.392 

0.978 0.765 -0.303 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 
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C.3 f(t)=cn( t I m = k2 ) 
\ m 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 
\ 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 

0.2 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 

0.3 0.955 0.955 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.957 0.957 
0.4 0.921 0.921 0.922 0.922 0.923 0.923 0.923 0.924 0.924 0.925 0.925 

0.5 0.878 0.879 0.879 0.880 0.881 0.882 0.883 0.884 0.885 0.886 0.887 

0.6 0.825 0.827 0.829 0.831 0.833 0.835 0.836 0.838 0.840 0.842 0.844 
0.7 0.765 0.768 0.771 0.775 0.778 0.781 0.784 0.787 0.791 0.794 0.797 

0.8 0.697 0.702 0.707 0.713 0.718 0.723 0.728 0.733 0.738 0.743 0.748 
0.9 0.622 0.630 0.638 0.645 0.658 0.661 0.668 0.676 0.683 0.691 0.698 

1.0 0.50 0.552 0.563 0.574 0.585 0.596 0.607 0.617 0.628 0.638 0.648 

1.1 0.454 P0.469 0.484 0.499 0.514 0.529 0.543 0.558 0.572 0.586 0.599 

1.2 0.362 0.382 0.402 0.422 0.441 0.460 0.479 0.498 0.516 0.534 0.552 

1.3 0.267 0.293 0.317 0.342 0.367 0.391 0.415 0.439 0.462 0.485 0.507 

1.4 0.170 0.200 0.231 0.261 0.291 0.321 0.350 0.380 0.408 0.437 0.465 

1.5 0.071 0.106 0.142 0.178 0.214 0.250 0.286 0.321 0.356 0.391 0.425 

1.6 -0.029 0.012 0.053 0.095 0.137 0.180 0.222 0.264 0.306 0.347 0.388 

1.7 -0.129 -0.08S -0.036 0.012 0.060 0.109 0.158 0.207 0.257 0.305 0.354 
1.8 -0.227 -0.177 -0.125 -0.072 -0.017 0.038 0.095 0.152 0.209 0.265 0.322 

1.9 -0.328 -0.270 -0.214 -0.155 -0,095 -0.032 0.031 0.096 0.162 0.227 0.293 
2.0 -0.416 -0.360 -0.301 -0.238 -0.172 -0.103 -0.032 0.041 0.116 0.191 0.266 

2.1 -0.505 -0.448 -0.386 -0.320 -0.249 -0.174 -0.095 -0.013 0.070 0.156 0.241 
2.2 -0.589 -0.532 -0.469 -0.400 -0.325 -0.245 -0.159 -0.068 0.026 0.122 0.219 

2.3 -0.666 -0.611 -0.548 -0.478 -0.400 -0.315 -0.222 -0.123 -0.019 0.089 0.199 
2.4 -0.737 -0.685 -0.624 -0.554 -0.474 -0.885 -0.287 -0.179 -0.064 0.057 0.180 

2.5 -0.801 -0.752 -0.694 -0.626 -0.546 -0.455 -0.351 -0.235 -0.109 0.025 0.163 

2.6 -0.857 -0.813 -0.760 -0.694 -0.616 -0.523 -0.415 -0.292 -0.155 -0.007 0.148 

2.7 -0.904 -0.867 -0.819 -0.758 -0.683 -0.591 -0.480 -0.350 -0.202 -0.039 0.134 
2.8 -0.942 -0.912 -0.870 -0.816.-0.745 -0.656 -0.544 -0.409 -0.250 -0.071 0.121 

2.9 -0.971 -0.948 -0.914 -0.867 -0.803 -0.718 -0.607 -0.468 -0.299 -0.103 0.110 

3.0 -0.990 -0.975 -0.950 -0.911 -0.855 -0.777 -0.669 -0.527 -0.349 -0.137 0.099 
3.1 -0.999 -0.992 -0.976 -0.947 -0.901 -0.830 -0.728 -0.587 -0.401 -0.171 0.090 

3.2 -0.998 -1.000 -0.993 -0.974 -0.939 -0.879 -0.785 -0.646 -0.454 -0.207 0.081 

3.3 -0.987 -0.997 -1.000 -0.992 -0.968 -0.920 -0.837 -0.704 -0.508 -0.244 0.074 

3.4 -0.967 -0.985 -0.997,-1.000 -0.988 -0.954 -0.884 -0.760 -0.564 -0.283 0.067 

3.5 -0.936 -0.962 -0.984 -0.997 -0.998 -0.979 -0.924 -0.813 -0.620 -0.323 0.060 

3.6 -0.897 -0.931 -0.961 -0.985 -0.999 -0.994 -0.956 -0.862 -0.675 -0.366 0.055 

3.7 -0.848 -0.890 -0.929 -0.963 -0.990 -1.000 -0.980 -0.905 -0.730 -0.411 0.049 

3.8 -0.791 -0.841 -0888 -0.932 -0.970 -0.996 -0.995 -0.941 -0.783 -0.458 0.045 

3.9 -0.726 -0.784 -0.839 -0.893 -0.942 -0.982 -1.000 -0.969 -0.833 -0.506 0.040 

4.0 -0.654 -0.719 -0.783 -0.845 -0.905 -0.958 -0.995 -0.989 -0.879 -0.557 0.037 
4.1 -0.575 -0.648 -0.720 -0.791 -0.860 -0.926 -0.980 -0.999 -0.919 -0.608 0.033 

4.2 -0.490 -0.572 -0.651 -0.730 -0.809 -0.886 -0.956 -0.999 -0.952 -0.661 0.030 

4.3 -0.401 -0.490 -0.578 -0.665 -0.752 -0.839 -0.923 -0.989 -0.977 -0.714 0.027 

4.4 -0.307 -0.404 -0.500 -0.594 -0.689 -0.786 -0.883 -0.970 -0.993-0.765 0.025 

4.5 -0.211 -0.315 -0.418 -0.520 -0.623 -0.728 -0.836 -0.941 -1.000 -0.815 0.022 
4.6 -0.112 -0.223 -0.334 -0.444 -0.554 -0.666 -0.784 -0.905 -0.996 -0.862 0.020 

4.7 -0.012 -0.130 -0.247 -0.364 -0.482 -0.601 -0.727 -0.862 -0.983 -0.904 0.018 

4.8 0.087 -0.035 -0.159 -0.284 -0.408 -0.534 -0.668 -0.814 -0.960 -0.940 0.016 

4.9 0.187 0.059 -0.071 -0.201 -0.333 -0.466 -0.606 -0.761 -0.929 -0.968 0.015 
5.0 0.284 0.154 0.019 -0.118 -0.257 -0.397 -0.543 -0.705 -0.891 -0.988 0.013 
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\ m 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 

\ 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

6.0 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

7.0 

7.1 

7.2 

7.3 
7.4 

7.5 

7.6 

7.7 

7.8 

7.9 

8.0 

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

8.8 

8.9 

9.0 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

10.0 

0.378 0.247 0.108 -0.035 

0.469 0.338 0.197 0.049 

0.554 0.426 0.284 0.132 

0.635 0.511 0.370 0.215 

0.709 0.592 0.453 0.297 

0.776 0.667 0.533 0.378 

0.835 0.736 0.609 0.457 
0.886 0.799 0.681 0.533 

0.927 0.854 0.748 0.606 

0.960 0.901 0.808 0.676 

0.983 0.940 0.861 0.741 

0.997 0.969 0.907 0.800 

1.000 0.989 0.944 0.854 

0.993 0.999 0.972 0.900 

0.977 0.999 0.990 0.938 

0.950 0.989 0.999 0.968 

0.914 0.969 0.998 0.988 

0.869 0.940 0.987 0.998 

0.816 0.901 0.966 0.999 

0.754 0.854 0.936 0.990 

0.685 0.798 0.897 0.970 

0.608 0.736 0.849 0.942 
0.526 0.666 0.794 0.905 

0.439 0.591 .0.733 0.859 

0.347 0.511 0.665 0.807 

0.251 0.426 0.592 0.748 

0.153 0.338 0.515 0.683 

0.054 0.246 0.434 0.614 

-0.046 0.153 0.350 0.541 

-0.146 0.059 0.264 0.465 

-0.244 -0.036 0.177 0.387 

-0.339 -0.130 0.088 0.306 

-0.431 -0.224 -0.002 0.224 

-0.519 -0.316 -0.091 0.141 

-0.602 -0.405 -0.180 0.058 

-0.679 -0.490 -0.268 -0.026 

-0.749 -0.572 -0.354 -0.109 

-0.811 -0.649 -0.437 -0.192. 

-0.865 -0.719 -0.518 -0.274 -0.010 0.262 

-0.911 -0.784 -0.595 -0.356 -0.087 0.191 

-0.948 -0.841 -0.668 -0.435 -0.164 0.120 
-0.975 -0.890 -0.735 -0.512 -0.241 0.050 

-0.992 -0.931 -0.797 -0.586 -0.317 -0.021 

-1.000 -0.963 -0.851 -0.657 -0.393 -0.092 

-0.997 -0.985 -0.898 -0.723 -0.467 -0.162 

-0.985 -0.997 -0.937 -0.785 -0.539 -0.233 

-0.962 -1.000 -0.967 -Q.840 -0.609 -0.304 

-0.930 -0.992 -0.988 -0.888 -0.676 -0.374 

-0.889 -0.975 -0.998 -0.928 -0.739 -0.443 

-0.839 -0.948 -0.999 -0.960 -0.798 -0.512 

-0.180 -0.326 

-0.103 -0.256 

-0.025 -0.185 

0.052 -0.115 

0.130 -0.044 

0.207 0.027 

0.283 0.097 

0.359 0.168 

0.434 0.239 

0.507 
0.578 

0.647 

0.711 

0.772 

0.828 

0.877 

0.919 

0.953 

0.978 

0.994 

1.000 

0.996 

0.982 

0.959 

0.926 

0.886 

0.838 

0.784 

0.724 

0.660 

0.592 

0.521 

0.309 

0.379 

0.449 

0.518 

0.585 

0.650 

0.713 

0.772 

0.826 

0.875 

0.917 

0.951 

0.977 

0.993 

1.000 

0.997 

0.983 

0.961 

0.929 

0.889 

0.843 

0.790 

0.733 

0.449 0.671 

0.374 0.607 

0.299 0.540 

0.222 0.472 

0.145 0.402 

0.068 0.332 

-0.479 -0.647 

-0.414 -0.588 

-0.350 -0.528 

-0.285 -0.469 

-0.221 -0.409 

-0.158 -0.351 

-0.094 -0.293 

-0.031 -0.236 

0.032 -0.180 

0.096 -0.124 

0.159 -0.069 

0.223 -0.014 

0.287 0.040 

0.351 0.095 

0.416 0.151 

0.480 0.207 

0.545 0.26.3 

0.608 0.321 

0.670 0.379 

0.729 0.438 

0.785 0.497 

0.837 0.557 

0.884 0.616 

0.924 0.675 

0.957 0.732 

0.981 0.787 

0.995 0.838 

1.000 0.883 

0.995 9.923 

0.980 0.956 

0.956 0.980 

0.923 0.995 

0.882 1.000 

0.836 0.995 

0.783 0.981 

0.727 0.957 

0.667 0.924 

0.606 0.885 

0.542 0.839 

0.478 0.788 

0.414 0.734 

0.349 0.677 

0.285 0.618 

0.221 0.559 

0.157 0.499 

0.094 0.439 

0.030 0.380 

-0.033 0.322 

-0.096 0.265 

-0.160 0.208 

-0.847 -0.998 

-0.798 -0.999 

-0.746 -0.990 

-0.691 -0.971 

-0.636 -0.943 

-0.580 -0.908 

-0.524 -0.867 

-0.470 -0.821 

-0.416 -0.772 

-0.364 -0.720 

-0.313 -0.668 

-0.264 -0.615 

-0.215 -0.563 

-0.168 -0.513 

-0.122 -0.464 

-0.077 -0.417 

-0.032 -0.372 

0.013 -0.329 
0.058 -0.288 

0.103 -0.249 

0.148 -0.211 

0.195 -0.175 

0.243 -0.141 

0.292 -0.107 

0.342 -0.075 

0.393 -0.043 

0.446 -0.011 

0.501 0.021 

0.556 0.053 

0.612 0.085 

0.667 0.118 

0.722 0.152 

0.776 0.186 

0.826 0.223 

0.873 0.261 

0.914 0.300 

0.948 0.342 

0.974 0.386 

0.992 0.431 

1.000 0.479 

0.997 0.528 

0.985 0.579 

0.964 0.631 

0.934 0.684 

0.897 0.736 

0.854 0.787 

0.805 0.836 

0.753 0.881 

0.699 0.920 

0.644 0.953 

0.012 

0.011 

0.010 

0.009 

0.008 

0.007 

0.007 

0.006 

0.005 

0.005 

0.004 

0.004 

0.004 

0.003 

0.003 

0.003 

0.002 

0.002 
0.002 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 
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C.4 f(t)=dn( t m = k2 ) 
\ in 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 

\ 
t\ 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 1.000 1.000 0.999 0.999 0.998 0.998 0.997 0.997 0.996 0.996 0.995 

0.2 1.000 0.998 0.996 0.994 0.992 0.990 0.988 0.986 0.984 0.982 0.980 
0.3 1.000 0.996 0.991 0.987 0.983 0.978 0.974 0.970 0.965 0.961 0.957 

0.4 1.000 0.992 0.985 0.977 0.970 0.962 0.955 0.947 0.940 0.932 0.925 

0.5 1.000 0.989 0.977 0.966 0.954 0.943 0.932 0.920 0.909 0.898 0.887 

0.6 1.000 0.984 0.968 0.952 0.937 0.921 0.905 0.890 0.874 0.859 0.844 

0.7 1.000 0.979 0.959 0.938 0.918 0.897 0.877 0.857 0.837 0.817 0.797 

0.8 1.000 0.974 0.949 0.923 0.898 0.873 0.847 0.822 0.797 0.772 0.748 

0.9 1.000 0.969 0.939 0.908 0.878 0.848 0.817 0.787 0.757 0.727 0.698 

1.0 1.000 0.965 0.929 0.894 0.858 0.823 0.788 0.753 0.718 0.683 0.648 

1.1 1.000 0.960 0.920 0.880 0.840 0.800 0.760 0.720 0.679 0.639 0.599 

1.2 1.000 0.956 0.912 0.868 0.823 0.778 0.733 0.688 0.643 0.598 0.552 

1.3 1.000 0.953 0.906 0.857 0.809 0.759 0.709 0.659 0.609 0.558 0.507 

1.4 1.000 0.951 0.900 0.849 0.796 0.743 0.688 0.633 0.577 0.521 0.465 

1.5 1.000 0.949 0.897 0.842 0.786 0.729 0.670 0.610 0.549 0.487 0.425 

1.6 1.000 0.949 0.895 0.838 0.779 0.718 0.655 0.591 0.524 0.457 0.388 

1.7 1.000 0.949 0.695 0.837 0.776 0.711 0.644 0.575 0.503 0.429 0.354 

1.8 1.000 0.950 0.896 0.838 0.775 0.708 0.637 0.562 0.485 0.404 0.322 
1.9 1.000 0.953 0.900 0.841 0.777 0.707 0.633 0.554 0.470 0.383 0.293 

2.0 1.000 0.955 0.904 0.847 0.782 0.711 0.633 0.549 0.459 0.364 0.266 
2.1 1.000 0.959 0.911 0.855 0.790 0.718 0.637 0.548 0.452 0.349 0.241 

2.2 1.000 0.963 0.919 0.865 0.801 0.728 0.644 0.551 0.448 0.337 0.219 

2.3 1.000 0.968 0.927 0.877 0.815 0.741 0.656 0.557 0.448 0.327 0.199 

2.4 1.000 0.973 0.937 0.890 0.831 0.758 0.670 0.568 0.451 0.321 0.180 

2.5 1.000 . 0.978 0.947 0.904 0.848 0.777 0.688 0.582 0.458 0.317 0.163 

2.6 1.000 0.983 0.957 0.919 0.867 0.798 0.710 0.600 0.468 0.316 0.148 
2.7 1.000 0.987 0.966 0.934 0.887 0.821 0.734 0.621 0.482 0.318 0.134 

2.8 1.000 0.992 0.975 0.949 0.907 0.846 0.760 0.646 0.500 0.323 0.121 

2.9 1.000 0.995 0.983 0.962 0.926 0.870 0.788 0.673 0.521 0.331 0.110 

3.0 1.000 0.998 0.990 0.974 0.945 0.895 0.818 0.703 0.545 0.342 0.099 
3.1 1.000 0.999 0.995 0.984 0.962 0.919 0.848 0.736 0.573 0.355 0.090 

3.2 1.000 1.000 0.999 0.992 0.976 0.941 0.877 0.770 0.604 0.372 0.081 

3.3 1.000 1.000 1.000 0.998 0.987 0.961 0.906 0.805 0.638 0.392 0.074 
3.4 1.000 0.998 0.999 1.000 0.995 0.977 0.932 0.839 0.674 0.415 0.067 

3.5 1.000 0.996 0.997 0.999 0.999 0.989. 0.955 0.873 0.712 0.441 0.060 

3.6 1.000 0.993 0.992 0.996 1.000 0.997 0.974 0.905 0.752 0.470 0.055 

3.7 1.000 0.990 0.986 0.989 0.996 1.000 0.988 0.934 0.792 0.502 0.049 

3.8 1.000 0.985 0.979 0.980 0.988 0.998 0.997 0.959 0.831 0.537 0.045 

3.9 1.000 0.981 0.970 0.969 0.977 0.991 1.000 0.979 0.869 0.575 0.040 

4.0 1.000 0.976 0.961 0.956 0.963 0.979 0.997 0.992 0.904 0.616 0.037 

4.1 1.000 0.971 0.951 0.942 0.947 0.964 0.988 0.999 0.936 0.658 0.033 

4.2 1.000 0.966 0.941 0.927 0.928 0.945 0.974 0.999 0.962 0.702 0.030 

4.3 1.000 0.961 0.931 0.912 0.909 0.923 0.955 0.992 0.982 0.747 0.027 

4.4 1.000 0.957 0.922 0.898 0.889 0.899 0.931 0.979 0.995 0.792 0.025 

4.5 1.000 0.954 0.914 0.884 0.869 0.875 0.905 0.959 1.000 0.835 0.022 

4.6 1.000 0.951 0.907 0.871. 0.850 0.850 0.877 0.935 0.997 0.877 0.020 

4.7 1.000 0.950 0.901 0.860 0.832 0.825 0.847 0.906 0.986 0.914 0.018 

4.8 1.000 0.949 0.897 0.851 0.816 0.802 0.817 0.874 0.968 0.946 0.016 

4.9 1.000 0.949 0.895 0.844 0.803 0.780 0.788 0.840 0.944 0.971 0.015 

5.0 1.000 0.950 0.894 0.839 0.791 0.761 0.759 0.805 0.914 0.989 0.013 
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m 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 

\ 

5.1 1.000 0.952 0.896 0.837 0.783 0.744 0.733 0.770 0.880 0.999 0.012 

5.2 1.000 0.955 0.899 0.837 0.777 0.730 0.709 0.736 0.842 0.999 0.011 

5.3 1.000 0.958 0.903 0.840 0.775 0.719 0.688 0.704 0.803 0.991 0.010 
5.4 1.000 0.962 0.910 0.845 0.775 0.712 0.670 0.674 0.763 0.974 0.009 

5.5 1.000 0.967 0.917 0.852 0.779 0.708 0.655 0.646 0.723 0.949 0.008 

5.6 1.000 0.972 0.926 0.862 0.786 0.707 0.644 0.621 0.685 0.918 0.007 
5.7 1.000 0.977 0.935 0.873 0.795 0.710 0.637 0.600 0.648 0.881. 0.007 

5.8 1.000 0.982 0.945 0.886 0.807 0.717 0.633 0.582 0.614 0.841 0.006 
5.9 1.000 0.986 0.955 0.900 0.822 0.727 0.633 0.568 0.582 0.797 0.005 

6.0 1.000 0.991 0.965 0.915 0.838 0.740 0.637 0.558 0.553 0.753 0.005 

6.1 1.000 0.994 0.974 0.930 0.857 0.756 0.644 0.551 0.528 0.708 0.004 

6.2 1.000 0.997 0.982 0.945 0.876 0.775 0.656 0.548 0.506 0.664 0.004 
6.3 1.000 0.999 0.989 0.958 0.896 0.796 0.670 0.549 0.487 0.621 0.004 

6.4 1.000 1.000 0.994 0.971 0.916 0.819 0.689 0.554 0.472 0.580 0.003 
6.5 1.000 1.000 0.998 0.982 0.935 0.844 0.710 0.562 0.460 0.542 0.003 

6.6 1.000 0.999 1.000 0.990 0.953 0.868 0.734 0.574 0.452 0.506 0.003 

6.7 1.000 0.997 1,000 0.996 0.968 0.893 0.760 0.590 0.448 0.474 0.002 

6.8 1.000 0.994 0.997 1.000 0.981 0.917 0.788 0.610 0.447 0.444 0.002 

6.9 1.000 0.991 0.993 1.000 0.991 0.940 0.818 0.633 0.450 0.418 0.002 
7.0 1.000 0.986 0.988 0.997 0.998 0.959 0.848 0.659 0.457 0.394 0.002 

7.1 1.000 0.982 0.980 0.991 1,000 0.976 0.877 0.688 0.467 0.374 0.002 

7.2 1.000 0.977 0.972 0.983 0.998 0.989 0.906 0.719 0.480 0.357 0.001 

7.3 1.000 0.972 0.962 0.972 0.993 0.997 0.932 0.752 0.497 0.343 0.001 

7.4 1.000 0.967 0.953 0.960 0.984 1.000 0.955 0.787 0.518 0.332 0.001 
7.5 1.000 0.962 0.943 0.946 0.971 0.998 0.974 0.822 0.542 0.324 0.001 

7.6 1.000 0.958 0.933 0.932 0.956 0.992 0.988 0.856 0.569 0.319 0.001 
7.7 1.000 0.955 0.924 0.917 0.939 0.980 0.997 0.889 0.599 0.316 0.001 

7.8 1.000 0.952 0.915 0.902 0.920 0.965 1.000 0.920 0.633 0.317 0.001 

7.9 1.000 0.950 0.908 0.888 0.900 0.946 0.997 0.947 0.669 0.320 0.001 
8.0 1.000 0.949 0.902 0.875 0.880 0.925 0.988 0.969 0.707 0.326 0.001 

8.1 1.000 0.949 0.898 0.863 0.860 0.901 0.974 0.986 0.746 0.335 0.001 
8.2 1.000 0.950 0.895 0.853 0.842 0.877 0.954 0.996 0.786 0.347 0.001 

8.3 1.000 0.951 0.894 0.846 0.825 0.852 0.931 1.000 0.825 0.362 0.000 
8.4 1.000 0.954 0.895 0.840 0.810 0.827 0.905 0.997 0.864 0.380 0.000 

8.5 1.000 0.957 0.898 0.837 0.797 0.804 0.876 0.986 0.900 0.401 0,000 

8.6 1.000 0.961 0.902 0.837 0.787 0.782 0.847 0.970 0.932 0.426 0.000 

8.7 1.000 0.966 0.908 0.839 0.780 0.762 0.817 0.948 0.959 0.453 0.000 

8.8 1.000 0.971 0.916 0.843 0.776 0.745 0.787 0.921 0.979 0.483 0.000 

8.9 1.000 0.976 0.924 0.850 0.775 0.731 0.759 0.890 0.993 0.517 0.000 
9.0 1.000 0.981 0.933 0.859 0.777 0.720 0.733 0.857 1.000 0.553 0.000 

9.1 1.000 0.985 0.943 0.870 0.782 0.712 0.709 0.823 0.998 0.593 0.000 

9.2 1.000 0.990 0.953 0.882 0.789 0.708 0.688 0.788 0.988 0.634 0.000 

9.3 1.000 0.993 0.963 0.896 0.800 0.707 0.670 0.753 0.971 0.677 0.000 

9.4 1.000 0.996 0.972 0.911 0.813 0.710 0.655 0.720 0.948 0.722 0.000 
9.5 1.000 0.998 0.981 0.926 0.829 0.716 0.644 0.689 0.918 0.767 0.000 

9.6 1.000 1.000 0.988 0.941 0.846 0.726 0.637 0.660 0.885 0.811 0.000 

9.7 1.000 1.000 0.994 0.955 0.865 0.739 0.633 0.633 0.848 0.854 0.000 
9.8 1.000 0.999 0.998 0.968 0.885 0.755 0.633 0.610 0.809 0.893 0.000 

9.9 1.000 0.998 1.000 0.979 0.905 0.774 0.637 0.591 0.769 0.928 0.000 

10.0 1.000 0.995 1.000 0.988 0.924 0.794 0.644 0.575 0.729 0.958 0.000 


