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Abstract

In this thesis, we proposed a minimum Hellinger distance estimator (MHDE) and a min-

imum profile Hellinger distance estimator (MPHDE) for estimating the parameters in the

ARCH and GARCH models depending on whether the innovation distribution is specified

or not. The asymptotic properties of MHDE and MPHDE were examined through graphs

as the theoretical investigation of them are more involved and needs further study in the

future research. Moreover, we demonstrated the finite-sample performance of both MHDE

and MPHDE through simulation studies and compared them with the well-established meth-

ods including maximum likelihood estimation (MLE), Gaussian Quasi-MLE (GQMLE) and

Non-Gaussian Quasi-MLE (NGQMLE). Our numerical results showed that MHDE and MPHDE

have better performance in terms of bias, MSE and coverage probability (CP) when the data

are contaminated, which testified to the robustness of MHD-type estimators.
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Chapter 1

INTRODUCTION

In this chapter, we give some background introduction for this research work. In Sec-

tion 1.1, we introduce the ARCH and GARCH models that will be considered throughout

the thesis. In Sections 1.2 and 1.3 we review the minimum Hellinger distance estimation

(MHDE) and minimum profile Hellinger distance estimation (MPHDE) respectively, which

are the methods that will be used to estimate the ARCH/GARCH models.

1.1. ARCH/GARCH Models

Volatility has played a vital role in financial time series analysis and risk management.

It is an important indicator of market risk in that higher volatility generally indicates higher

risk involved and as a result companies need to adjust their trading strategies based on the

volatility forecasting [11]. Therefore, generating reliable volatility forecasting has long been

the main concern of financial institutions. What complicates the volatility analysis is that

volatility tends to cluster together, i.e. large/small changes tend to be followed by large/small

changes. This phenomenon suggests that volatility is autocorrelated and changing over time.

To deal with this issue, Engle [10] has proposed autoregressive conditional heteroscedasticity

(ARCH) to model volatility dynamics as a function of past squared returns: for i= 0,1, · · · ,n,

Xt = σtεt ,

σ2
t = β0 +

p
∑

i=1
βiX2

t−i,
(1.1)

where Xt is observable and is generally interpreted as returns of an asset at time t, σ2
t de-

scribes the conditional variance of the current returns, and the innovation error εt is un-

observable but independent of Xt− j for j = 1, · · · , t. This model is commonly denoted as

1



ARCH(p) with p the degree of dependence.

In the ARCH(p) model (1.1), β0 is the lower bound of the conditional and unconditional

variance of Xt’s, while βi, i = 1, . . . p, measures how fast the impact of a shock in returns at

time t− i on volatility at time t fades over time. In other words, any large (in absolute value)

shock in εt will be associated with a persistently large (conditional) variance in the returns

Xt . The larger the
p
∑

i=1
βi, the longer the persistence of this effect. Theoretically, we need

β0 ≥ 0, 0≤ βi < 1 for i = 1, · · · , p and
p
∑

i=1
βi < 1 to ensure the stability of ARCH(p) process.

The εt’s are i.i.d. random shocks featuring a white noise process with mean zero and

variance one. This enables σt’s to bear the interpretation of conditional volatility of Xt

given all the information about X up to t − 1, denoted as Ft−1. To see this, notice that

E(ε2
t |Ft−1) = E(ε2

t ) = 1 and E(Xt |Ft−1) = E(σtεt |Ft−1) = σtE(εt |Ft−1) = 0, thus the

variance of Xt conditional on the past history Xt−1,Xt−2, . . . ,X0 is

E(X2
t |Ft−1) = E(σ2

t ε
2
t |Ft−1) = σ

2
t E(ε2

t |Ft−1) = σ
2
t .

Moreover, since E(εtεt− j) = 0 and εt and Xt− j are independent for j 6= 0, it also follows that

E(XtXt− j) = E[(σtεt)(σt− jεt− j)] = E(σtσt− j)E(εtεt− j) = 0.

This implies that Xt is serially uncorrelated but not independent. However, the squared re-

turns are generally serially correlated and thus not independent as well.

The introduction of ARCH(p) model has led to the proliferation of related volatility

models. Among numerous generalizations of ARCH model, the following GARCH(p,q)

model proposed by Bollerslev [5] has been most widely used:

Xt = σtεt ,

σ2
t = β0 +

p
∑

i=1
βiX2

t−i +
q
∑
j=1

α jσ
2
t− j.

(1.2)

In the GARCH(p,q) model, the current conditional variance, σ2
t , depends on the weighted

averages of not only past squared returns but also historical (conditional) variances. When it

2



comes to the interpretation of the model parameters, β0 is the lower bound of the conditional

and unconditional variance of Xt’s. The βi measures the extent to which a shock in returns

at time t− i affects the volatility at time t. The α j measures the effect of volatility shock at

time t− j on the volatility at time t. In addition,
p
∑

i=1
βi +

q
∑
j=1

α j measures the rate at which

these effects dies over time. The larger the
p
∑

i=1
βi +

q
∑
j=1

α j, the longer the persistence of these

effects. To ensure the stability of the GARCH(p,q) process, we need the constraints β0 ≥ 0,

0≤ βi < 1 for i = 1, . . . , p, 0≤ α j < 1 for j = 1, . . . ,q and 0 <
p
∑

i=1
βi +

q
∑
j=1

α j < 1.

One benefit of using GARCH model is that a high-order ARCH model can be approx-

imated by a more parsimonious GARCH representation that is easier to be identified and

estimated [9]. Therefore, GARCH(1,1) model is usually used in volatility analysis and fore-

casting.

Since the introduction of ARCH and GARCH models, the estimation of model parame-

ters has been a popular research topic in statistics and economics. The most common method

is the Guassian Quasi-maximum likelihood estimation (GQMLE), which is based on the as-

sumption that the distribution of innovation εt is normal. This in turn implies that the returns

has a conditional normal distribution. Notwithstanding that a wealth of empirical evidence

(see, for example, McFarland et al. [24] and Baillie and Bollerslev [2]) has documented the

substantial excess kurtosis of the innovation distribution, it has been shown in Weiss [33],

Lee and Hansen [19] and Lumsdaine [23] that GQMLE is consistent and asymptotically nor-

mally distributed even if the true innovation distribution is far from normal, provided that

the innovation distribution has a finite fourth moment. This desirable property has made

GQMLE a widely diffused approach to the estimation of ARCH/GARCH models. Nev-

ertheless, deviation of true innovation density from Guassian may increase the variance of

GQMLE considerably and thereby fail to reach the efficiency of MLE by a wide margin,

reflecting the cost of not knowing the true innovation distribution.

To account for the excess kurtosis of innovation distribution, the quasi-MLE (QMLE)

3



assuming heavy-tailed distributions, such as the Student’s t distribution, is sometimes used;

see, for example, Bollerslev [6] and Nelson [26]. The drawback of this method is obvious

as it may result in inconsistent estimates of model parameters if the specified distribution

of innovation is different from the true innovation distribution. As a consequence, several

methods have been introduced in an attempt to obtain consistent and asymptotically efficient

estimators of the model parameters that requires minimal knowledge about the innovation

distribution. For example, Storti [31] has presented a distribution-free approach that re-

lies on minimizing the weighted distance between estimated and sample auto-covariance

of squared returns, in which the proposed estimator competes favourably with GQMLE al-

though the robustness properties of the estimator was not investigated. Moreover, Fan et al.

[11] has proposed a non-Gaussian quasi-maximum likelihood estimator (NGQMLE) fea-

turing a three-step procedure. To be specific, they use non-Gaussian likelihood functions

that includes a scale parameter to correct the inconsistency of using non-Gaussian likelihood

function when it is not compatible with the true distribution. The resulting estimator is more

efficient than the GQMLE, particularly when the innovation error has heavy tails. In addi-

tion, Andrews [1] has proposed a rank-based estimator by minimizing a rank-based residual

dispersion function, which has also been shown to be robust against density misspecification

and more efficient than GQMLE.

Although various techniques have been employed to estimate the ARCH/GARCH model

parameters in the literature, few have utilized minimum Hellinger distance (MHD) method

except for Kadjo et al. [16]. Specifically, they proposed the simulated MHD (SMHD) method

to the estimation of model parameters but with the assumption that the innovation distribu-

tion is known so that the returns (as a function of unknown parameters) can be simulated.

The literature on even the class of all minimum distance estimations is surprisingly sparse.

To our best knowledge, there are only a few works considering minimum distance estimation

for ARCH/GARCH models. Specifically, Baillie and Chung [3] and Storti [31] have con-

4



structed weighted squared distance estimators for GARCH(1,1) model based on autocorre-

lation functions. For general GARCH(p,q) models, Galbraith et al. [12] has developed a

squared distance estimator based on the estimated ARCH parameters. However, MHD-type

estimators have been shown to be consistent, asymtotically normal and more importantly,

robust to data contamination by [4] for the i.i.d. data. Therefore, we should give serious

consideration to it when it comes to the estimation of ARCH/GARCH model parameters.

As a result, I will investigate the estimation of ARCH/GARCH models using MHD-type

estimators.

1.2. Minimum Hellinger Distance Estimation (MHDE)

MHDE was first proposed by Beran [4] for parametric models. Beran [4] has shown

that MHDE has good properties such as consistency, asymptotic normality and asymptotic

variance achieving Cramér-Rao lower bound. In fact, Lindsay [21] has proved that MLE

and MHDE are members of a large class of efficient estimators with various second-order

efficiency properties. On the other hand, Beran [4] has shown that MHDE also possesses

excellent robustness properties for parametric models. More specifically, the MHDE is re-

sistant against both outliers and model misspecification. With both asymptotic efficiency and

robustness, MHDEs are receiving increasing attention in practice and constitute a desirable

class of estimators.

Consider the class of parametric models { fθ : θ ∈ Θ}, where the parameter space Θ is

a subset of Rp with p ∈ N. Following Beran [4], the MHDE of the unknown θ is defined as

the value in Θ that minimizes the Hellinger distance between the parametric model fθ and

its nonparametric density estimator. Mathematically, the MHDE θ̂ is defined as

θ̂ = arg inf
θ∈Θ

∥∥∥ f 1/2
θ
− f̂ 1/2

∥∥∥ (1.3)

where ‖ ·‖ denotes the L2-norm and f̂ is a nonparametric density estimator of fθ , such as the

5



kernel density estimator.

The literature on MHDE has been dominated by its investigation under parametric mod-

els. For example, Simpson [29] has examined MHDE for discrete data models, while Yang

[47] and Ying [48] have studied MHDE for censored data. Sriram and Vidyashankar [30]

and Woo and Sriram [35, 36] have investigated MHDE for branching processes and mixture

complexity of a finite mixture model, respectively. MHDE for finite mixture models and

their variants were studied in Woodward et al. [37], Cutler and na [8], Karlis and Xekalaki

[17], Lu et al. [22] and Xiang et al. [45]. Takada [32], N’drin and Hili [25] and Prause et al.

[27] have studied MHDE in stochastic volatility model, one-dimensional diffusion process

and bivariate time series, respectively. In addition, Karunamuni and Wu [18] has proposed a

one-step MHDE to overcome computational drawbacks of MHDE.

On the other hand, MHDE for semiparametric models hasn’t been fully investigated

until recently. Suppose we observe independent and identically distributed (i.i.d.) random

variables (r.v.s) X1, . . . ,Xn with density g0 = fθ ,η being a member of the general semipara-

metric model

F = { fθ ,η : θ ∈Θ,η ∈H }, (1.4)

where Θ is a compact subset of Rp and H is an arbitrary set of infinite dimension. In gen-

eral, θ is the parameter of interest with η being the nuisance parameter. To make estimating

θ meaningful, assume F is identifiable in the sense that, if the Hellinger distance between

fθ1,η1 and fθ2,η2 is 0, i.e. ‖ f 1/2
θ1,η1
− f 1/2

θ2,η2
‖ = 0, then θ1 = θ2 and η1 = η2. Wu and Karuna-

muni [38, 39] have extended the MHDE from parametric models to (1.4), the semiparametric

model of the general form, and the resulting MHDE has been proved to retain the efficiency

and robustness properties under regularity conditions. Wu and Karunamuni [41] has exam-

ined the hypothesis testing based on the MHDE for model (1.4). For semiparametric models

of specific form, Wu et al. [43] has studied MHDE in a two-sample semiparametric model

with the two population probability distribution functions (p.d.f.) linked by an exponen-

6



tial ‘tilt’. Zhu et al. [49] has investigated MHDE under the same model but for survival

data with cure rate, while Chen and Wu [7] has applied this model to the classification of

leukemia patients. Wu and Zhou [42] has applied and studied MHDE for a semiparametric

two-component location-shifted mixture model.

1.3. Minimum Profile Hellinger Distance Estimation (MPHDE)

For model (1.4), the works mentioned in Section 1.2 focuses on the case when an es-

timator η̂ of η , based on either the same data or other resources, is available. If an esti-

mator of η is not available, Wu and Karunamuni [40] has for the first time introduced the

minimum profile Hellinger distance estimation (MPHDE). The MPHDE is obtained by first

profiling out the infinite-dimensional nuisance parameter η and then minimizing the profiled

Hellinger distance. More specifically, let f̂ denote an appropriate nonparametric estimator

of fθ ,η based on the sample X1, . . . ,Xn. For any fixed θ ∈Θ, we define the profiled nuisance

parameter by

η(θ) = arg inf
η∈H

∥∥∥ f 1/2
θ ,η − f̂ 1/2

∥∥∥ , θ ∈Θ.

Now the MPHDE of θ is defined as

θ̂ = arg inf
θ∈Θ

∥∥∥ f 1/2
θ ,η(θ)

− f̂ 1/2
∥∥∥ . (1.5)

It has been proved by Wu and Karunamuni [40] that the MPHDE θ̂ defined in (1.5) is con-

sistent, asymptotically normal, efficient, and adaptive (provided that the specific semipara-

metric model under consideration is adaptive). Furthermore, Wu and Karunamuni [40] has

also shown that the MPHDE retains good robustness properties against outliers and model

misspecification. Wu et al. [44] and Xiang et al. [46] have developed the MPHDE for, re-

spectively, a semiparametric two-component location-shifted mixture model and a semipara-

metric two-component mixture model with the first component known up to some unknown
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parameters and the second component being an unspecified distribution with an unknown

location parameter.

In this thesis, we investigate the MHD-type estimations for ARCH/GARCH models.

Specifically, we focus on the estimation of the ARCH(1) and GARCH(1,1) models. How-

ever, we consider both cases of known and unknown innovation distribution, which cor-

responds to a parametric model and a semiparametric model, respectively. We propose a

MHDE when the innovation distribution is known and a MPHDE when it is unknown. Note

that the proposed MHDE and MPHDE are not direct applications of those defined for gen-

eral parametric and semiparametric models in the sense that the latter are based on i.i.d. r.v.s

while the data under our consideration are time series data and thus are not independent. We

would like to study whether the resulting MHD-type estimators for ARCH/GARCH models

still possess good efficiency and robustness properties.

The remainder of the thesis is orgainized as follows. Chapter 2 proposes and studies

MHDE and MPHDE for ARCH/GARCH models when the innovation distribution is known

and unknown, respectively. The MHDE and MPHDE are compared with the commonly used

estimators in the current literature including MLE, GQMLE and NGQMLE. In Chapter 3,

finite-sample performance, including both efficiency and robustness, of the proposed MHDE

and MPHDE are examined through Monte Carlo simulation. A real data is analyzed in

Chapter 4 using the proposed MPHDE. Finally, concluding remarks and discussion of future

work are presented in Chapter 5.
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Chapter 2

METHODOLOGIES

This chapter discusses the methods of estimating ARCH/GARCH models with partic-

ular emphasis on ARCH(1) and GARCH(1,1) models. We consider both cases when the

innovation distribution is known and unknown in Section 2.1 and Section 2.2, respectively.

In Section 2.1, when the innovation distribution is known, we construct a MHDE for the

unknown parameters and demonstrate its asymptotic properties using graphs. For the pur-

pose of comparison in Chapter 3, we also review the commonly used MLE. In Section 2.2,

when the innovation distribution is unknown, we propose a MPHDE of the unknown pa-

rameters. For the purpose of comparison in the next chapter, we also review some other

competing estimators used in the literature, including the highly diffused GQMLE and the

NGQMLE. Simulation studies demonstrating the finite-sample performance of MHDE as

well as MPHDE are deferred to Chapter 3.

2.1. Innovation Distribution is Known

As a special case of GARCH(p,q) given in (1.2), the GARCH(1,1) model is repre-

sented with different parameter notations as follows

Xt = σtεt ,

σ2
t = β0 +β1X2

t−1 +β2σ2
t−1, t = 0,1, · · · ,n,

(2.1)

where Xt’s are observed serially uncorrelated but non-i.i.d. returns and εt’s are unobservable

i.i.d. random shocks following the p.d.f. fε with mean zero and variance one. In this section,

we consider the relatively simpler case that the innovation distribution fε is known. Note

that in (2.1), the GARCH(1,1) is a parametric model when the innovation distribution is
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known. Since the ARCH(1) model is a special case of the more complicated GARCH(1,1)

model when β2 = 0, we illustrate the construction of MHDE under GARCH(1,1) model. In

Section 2.1.1 we propose and construct the MHDE for GARCH(1,1) parameters. Section

2.1.2 is devoted to demonstrating the properties of the proposed MHDE through graphs. For

comparison purposes, we review in Section 2.1.3 the commonly used MLE.

2.1.1 Construction of MHDE

MLE is known to be the most efficient estimator under the regularity conditions, i.e. it

achieves the Cramér-Rao lower bound. However, it is very sensitive to and thus distorted

by outliers and data contamination. As shown in many studies, financial time series gen-

erally contain extreme values, especially during financial crisis when outliers are generated

and contaminate the prevailing distribution of returns. To account for this fact and to over-

come the potential problems caused by non-robustness of MLE, in this section we propose a

MHDE for the models under our consideration. We first give the construction of the MHDE

and then study the asymptotic properties of the resulting estimator.

Recall that the original definition of MHDE given in (1.3) for parametric models is

based on i.i.d. samples. Since the Xt’s in (2.1) are non-i.i.d. r.v.s, it is not appropriate to

construct the MHDE based on the distribution of Xt . One may argue that we can give a

MHDE based on the joint distribution of the non-i.i.d. Xt’s, but the problems are: first, it is

tedious and difficult to derive the joint distribution of the Xt’s in terms of model parameters;

second, the thus resulting estimator may not possess the efficiency and robustness properties

of the originally defined MHDE given in (1.3) for i.i.d. samples. Therefore, under model

(2.1), we need to modify the original MHDE to accommodate the difficulties invoked by the

nature of non-i.i.d samples.

Let β = (β0,β1,β2)
> denote the true model parameter vector. We assume that the

parameter space Θ is a compact subset of R3, as β1,β2 are bounded between 0 and 1 and β0

10



is a finite constant. Note that

εt =
Xt√

β0 +β1X2
t−1 +β2σ2

t−1

, t = 1, · · · ,n. (2.2)

are i.i.d. random shocks that are unobserved. Thus when β is known, the r.v.s defined in

(2.2) are i.i.d. and follow a known p.d.f. fε . However, since β is actually unknown, we let

b = (b0,b1,b2)
> denote a reasonable estimate of β and define

νb,t :=
Xt√

b0 +b1X2
t−1 +b2σ2

t−1

=

√
β0 +β1X2

t−1 +β2σ2
t−1√

b0 +b1X2
t−1 +b2σ2

t−1

εt . (2.3)

Then the {νb,t : t = 0,1, . . . ,n} are expected to be i.i.d. and follow a p.d.f. close to fε . Note

that νβ ,t = εt and the p.d.f. of νβ ,t’s are exactly fε . Following this idea, we can construct a

nonparametric density estimator of fε based on νb,t . Throughout this thesis, we always use

kernel nonparametric function estimation. Specifically, we use the kernel density estimator

f̂ (b; ·) of fε defined by

f̂ (b;x) =
1

nhn

n

∑
t=1

K
(

x−νb,t

hn

)
, (2.4)

where K is a kernel function (non-negative p.d.f.) and hn is a sequence of bandwidths such

that hn > 0, hn→ 0 and and nhn→ 0 as n→ ∞. Kernel functions are usually symmetric and

some commonly used ones include triangle, quartic, Epanechnikov and Gaussian kernels. It

is noteworthy that all kernels are asymptotically equivalent and different choices of kernel

won’t influence the asymptotic properties of the estimators. Now the MHDE β̂MHD of β can

be defined as

β̂MHD = arg inf
b∈Θ

∥∥∥ f̂ 1/2(b;x)− f 1/2
ε (x)

∥∥∥
= arg inf

b∈Θ

(∫
f̂ (b;x)dx+

∫
fε(x)dx−2

∫
f̂ 1/2(b;x) f 1/2

ε (x)dx
)1/2

= arg inf
b∈Θ

(
2−2

∫
f̂ 1/2(b;x) f 1/2

ε (x)dx
)1/2

= argsup
b∈Θ

∫
f̂ 1/2(b;x) f 1/2

ε (x)dx

(2.5)
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The last equality holds since f̂ (b; ·) and fε are p.d.f.s, i.e.
∫

f̂ (b;x)dx = 1 and
∫

fε(x)dx = 1.

Also note that the ‘arg inf’ and ‘argsup’ in (2.5) can be safely replaced with ‘argmin’ and

‘argmax’ respectively simply due to the fact that the parameter space Θ is compact and thus

the infimum and supremum are achievable within Θ.

By the definition (2.5), the MHDE β̂MHD of β is the value of b which minimizes the

Hellinger distance between the assumed innovation distribution fε and its kernel nonpara-

metric estimator under the model (2.1), or equivalently the value that makes the distribution

of νb,t’s as close to fε as possible.

Remark 2.1. The nonparametric kernel density estimator f̂ (b; ·) given in (2.4) con-

tains the parameter b to be estimated while the underlying true density function is free of

parameters. This is different from the original definition of MHDE given in (1.3).

Remark 2.2. In economics, we are not only interested in the estimation of the parameter

β but also the innovation distribution fε . If fε is unknown, then f̂ (β̂MHD; ·) can serve as a

reasonable empirical estimate of the innovation distribution based on the observed data Xt’s.

This aspect is further pursued in Section 2.2.

2.1.2 Graphical demonstration of MHDE

In this part, we use graphs to demonstrate visually the mechanism of the MHDE defined

in (2.5). For demonstration purposes, we consider the ARCH(1) model given in (1.1) with

the true innovation distribution fε being t4 and the true parameter values β = (1,0.8)>.

We first examine whether the proposed MHDE in (2.5) is reasonable or not. For a

single sample of size n = 1000 and different values of b = (b0,b1)
>, we calculate ‖b−

β‖ and the Hellinger distance ‖ f̂ 1/2(b;x)− f 1/2
ε (x)‖ and then plot them on x-axis and y-

axis, respectively, in Figure 2.1. We take b0 = 0.6+ 0.04k and b1 = 0.6+ 0.02k with k =

0,1, · · · ,20. Note that the true β value is achieved when k = 10. There are two curves drawn

in the figure, the blue one is for 0≤ k≤ 10 and the red one is for 10≤ k≤ 20. As can be seen
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from it, the L2 distance between f 1/2
ε (x) and f̂ 1/2(b;x) is an increasing function of the L2

distance between b and β . As a consequence, the minimizer β̂MHD given in (2.5) is expected

to be fairly close to the true value β since minimizing (2.5) is equivalent to minimizing the

L2 distance between b and β .

Figure 2.1: The Hellinger distance ‖ f̂ 1/2(b;x)− f 1/2
ε (x)‖ as a function of ‖b−β‖.

As we were not able to derive theoretically the asymptotic distribution of the MHDE,

we use QQ-plot to examine its distribution. In addition to considering the true innovation

distribution being t4, we also examine the contaminated distribution 0.95t4 + 0.05χ2
(2) for

comparison purposes. To obtain the QQ-plot presented in Figure 2.2, we run 500 simulations

each with a sample size of n= 3000. From Figure 2.2 we can see that the large-sample distri-

bution of the MHDE doesn’t appear to be normal when there is no contamination. Rather, the

distribution exhibits heavier tails than normal distribution. In contrast, the MLE appears to

be normally distributed when there is no contamination, which is a proved property of MLE
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under regularity conditions. Nevertheless, when there is contamination, the distribution of

MLE deviates from normal while that of MHDE appears to be less heavy-tailed.

Figure 2.2: QQ-plots of the MHDE and the MLE.

Next we examine the estimated innovation density f̂ 1/2(β̂MHD;x), which is based on the

kernel density estimator in (2.4). For a single sample of size n= 50,200,500,1000,3000,5000,

we first estimate the MHDE, then plug it into (2.3) to calculate the estimated residuals,

and finally plug the estimated residuals into (2.4) to obtain the estimated innovation density

f̂ 1/2(β̂MHD;x). The results are presented in Figure 2.3. Note that when using (2.3) we should

set b2 = 0 as we are considering ARCH(1) model. We can see from the figure that the es-

timated innovation distribution of εt’s is getting increasingly closer to the true distribution

fε as the sample size increases, which suggests that the MHDE of β is getting closer and

closer to the true parameter values. The justification of this can be found in the Appendix.
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This testifies to the consistency of MHDE to a certain degree. Figure 2.3 also indicates that

the convergence rate of MHDE to the true parameter values might be relatively slow and the

sample size needs to be at least 500 in order to obtain accurate parameter estimates. But this

requirement of relatively large sample size is usually not a problem in financial time series

as daily or even hourly data are usually available.

2.1.3 Review of MLE

MLE is the most commonly used method in estimating ARCH/GARCH model parame-

ters due to its simplicity. More importantly, it is consistent and the most efficient estimator if

the distribution is correctly specified. In general, to estimate the parameters using maximum

likelihood, we form a likelihood function, which is essentially a joint p.d.f.. But instead of

treating it as a function of the data given the set of parameters, i.e. f (x1,x2, . . . ,xn|β ), we

think of the likelihood function as a function of the parameters given the data, L(β |x1,x2, . . . ,xn),

and maximize the likelihood function with respect to the parameters.

In the ARCH/GARCH model framework, suppose εt has a known p.d.f. fε(x). Since

Xt = σtεt , by simple calculation of the p.d.f. of transformed r.v.s, the conditional p.d.f. of Xt ,

given all the information Ft−1 up to t−1, is then

fXt |β ,Ft−1(x) =
1
σt

fε

(
x
σt

)
,

where Ft−1 is essentially the information about the returns up to t− 1 and β is the model

parameters to be estimated that is contained in σt .

If the returns Xt’s were independent of each other, we could write the joint density func-

tion of X1,X2, . . . ,Xn or equivalently the likelihood function as the product of the marginal

densities. However, the returns Xt are clearly not independent. In spite of this, we can still
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(a) n=50 (b) n=200

(c) n=500 (d) n=1000

(e) n=3000 (f) n=5000

Figure 2.3: Estimated innovation distribution f̂ 1/2(β̂MHD;x) v.s. the true innovation distri-

bution.
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write the joint p.d.f. as the product of conditional ones, i.e.

fX1,...,Xn|β (x1, . . . ,xn) = fXn|β ,X1,...,Xn−1(xn) fX1,...,Xn−1|β (x1, . . . ,xn−1)

= fXn|β ,X1,...,Xn−1(xn) fXn−1|β ,X1,...,Xn−2(xn−1) fX1,...,Xn−2|β (x1, . . . ,xn−2)

...

= fXn|β ,X1,...,Xn−1(xn) fXn−1|β ,X1,...,Xn−2(xn−1) · · · fX2|β ,X1(x2) fX1|β (x1).

Then with fX1|β ,F0 = fX1|β , the likelihood function is

L(β |x1,x2, . . . ,xn) =
n

∏
t=1

fXt |β ,Ft−1(xt) =
n

∏
t=1

1
σt

fε

(
xt

σt

)
.

It is usually more convenient to work with the log-likelihood function as follows

l(β |x1,x2, . . . ,xn) = logL(β |x1,x2, . . . ,xn) =
n

∑
t=1

log fε

(
xt

σt

)
−

n

∑
t=1

logσt .

As an example, consider the GARCH(1,1) model given in (2.1) and assume εt follows a

Student’s t distribution with variance normalized to one. If we use fd to denote the t dis-

tribution with degrees of freedom d, then its variance is d
d−2 and the p.d.f. of εt is then√

d
d−2 fd

(√
d

d−2x
)

. Now the log-likelihood function given X1,X2, . . . ,Xn is

l(β |x1,x2, . . . ,xn) =
n

∑
t=1

log

√
d

d−2
fd

(
xt

σt

√
d

d−2

)
−

n

∑
t=1

logσt

=
n

∑
t=1

log fd

(
xt

σt

√
d

d−2

)
+

n

∑
t=1

log

√
d

d−2
−

n

∑
t=1

logσt .

The properties of MLE on ARCH/GARCH model has been studied extensively in literature;

see, for example, Gourieroux et al. [13], Weiss [34] and Lee and Hansen [20] among many

others.

2.2. Innovation Distribution is Unknown

In reality, it is very likely that the innovation distribution is unknown. Thus, estima-

tion methods that require minimal distribution assumptions are highly sought-after. In this
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section, we will explore the scenario where the innovation distribution is unknown. Note

that when the innovation distribution is unknown, the ARCH and GARCH models are semi-

parametric models since the models involves both a finite dimensional unknown parameters

and infinite dimensional unknown functions. In Section 2.2.1, we propose and construct

a MPHDE of the parameters in ARCH/GARCH models. In Section 2.2.2, we discuss the

properties of the proposed MPHDE using graphs. For comparison purposes, in Section 2.2.3

we review the commonly used methods, which are GQMLE and NGQMLE.

2.2.1 Construction of MPHDE

In this section, we generalize the MHDE defined in Section 2.1.1 to accommodate the

case of unknown innovation distribution. Throughout this section, we assume that the in-

novation distribution fε in (2.1) is symmetric but otherwise unspecified. The symmetry

assumption here is essential as it allows us to derive the MPHDE without too much difficul-

ties. We will follow the idea of the MPHDE first introduced by Wu and Karunamuni [40]

to construct the MPHDE for the GARCH(1,1) model given in (2.1) by first profiling out the

unknown innovation density fε . With the profiled innovation density, we then minimize over

the parameter space to obtain the MPHDE of β .

For the kernel density estimator f̂ (b;x) given in (2.4), note that

f̂
1
2 (b;x) =

1
2

([
f̂

1
2 (b;x)+ f̂

1
2 (b;−x)

]
+
[

f̂
1
2 (b;x)− f̂

1
2 (b;−x)

])
and that the first term on the right-hand side of the above expression is an even function of x

18



while the second is an odd function of x. Let g be any even p.d.f., then∥∥∥ f̂
1
2 (b;x)−g

1
2 (x)

∥∥∥2

=
∫ [

f̂
1
2 (b;x)−g

1
2 (x)

]2
dx

=
∫

f̂ (b;x)dx+
∫

g(x)dx−2
∫

f̂
1
2 (b;x)g

1
2 (x)dx

= 1+1−2
∫ 1

2

[
f̂

1
2 (b;x)+ f̂

1
2 (b;−x)

]
g

1
2 (x)dx−2

∫ 1
2

[
f̂

1
2 (b;x)− f̂

1
2 (b;−x)

]
g

1
2 (x)dx

= 2−
∫ [

f̂
1
2 (b;x)+ f̂

1
2 (b;−x)

]
g

1
2 (x)dx.

(2.6)

The last equality of (2.6) holds since the product of an even function and an odd function

is an odd function which integrates to zero on the real line. When we try to minimize the

Hellinger distance on the left hand side of (2.6), we only need to maximize the second term

on the right hand side. By the Cauchy-Schwarz inequality, this quantity is maximized when

g
1
2 (x)

‖g 1
2 (x)‖

=
f̂

1
2 (b;x)+ f̂

1
2 (b;−x)

‖ f̂
1
2 (b;x)+ f̂

1
2 (b;−x)‖

,

that is g
1
2 (x) = [ f̂

1
2 (b;x)+ f̂

1
2 (b;−x)]/‖ f̂

1
2 (b;x)+ f̂

1
2 (b;−x)‖2 since ‖g 1

2 (x)‖2 =
∫

g(x)dx =

1. As a result, for all even p.d.f. g, ‖ f̂
1
2 (b;x)−g

1
2 (x)‖ is minimized at

g(x) =

[
f̂

1
2 (b;x)+ f̂

1
2 (b;−x)

]2

∥∥∥ f̂
1
2 (b;x)+ f̂

1
2 (b;−x)

∥∥∥2 .

Plug the above value of g(x) into (2.6), we obtain the profile Hellinger distance function

H(b) = 2−
∥∥∥ f̂

1
2 (b;x)+ f̂

1
2 (b;−x)

∥∥∥ .
Now we only need to minimize H(b) over b ∈ Θ, or equivalently maximize ‖ f̂

1
2 (b;x) +

f̂
1
2 (b;−x)‖ over b ∈Θ. The MPHDE of β is thus defined as

β̂MPHD = argmax
b∈Θ

∥∥∥ f̂
1
2 (b;x)+ f̂

1
2 (b;−x)

∥∥∥ . (2.7)

Wu and Karunamuni [40] has proved that the MPHDE is in general efficient and asymptot-

ically normally distributed. However, the definition of MPHDE here is a bit different from
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the general one proposed in Wu and Karunamuni [40] in the sense that the latter has non-

parametric density estimation and unknown parameters separated while the former has them

combined in the same function due to the non-i.i.d. data.

2.2.2 Graphical demonstration of MPHDE

Since we were not able to study theoretically the asymptotic properties of the proposed

MPHDE in (2.7) due to the complexity of the ARCH/GARCH model, we use graphs to

demonstrate its properties in this part. We consider the same setting as that in Section 2.1.2,

i.e. ARCH(1) with fε being t4 and β = (1,0.8)>. Figure 2.4, 2.5 and 2.6 are constructed in

the same way as for Figure 2.1, 2.2 and 2.3 respectively, but for the MPHDE defined in (2.7)

instead of the MHDE defined in (2.5). We observe similar phenomena in Figure 2.4, 2.5 and

2.6 to those in Figure 2.1, 2.2 and 2.3 respectively.

Figure 2.4 displays the objective function ‖ f̂
1
2 (b;x) + f̂

1
2 (b;−x)‖ given in (2.7) as a

function of the L2 distance between b and the true values β for a single sample size of n =

1000. The blue curve is for 0≤ k ≤ 10 while the red curve is for 10≤ k ≤ 20. From Figure

2.4 we can see that the objective function is a decreasing function of the L2 distance between

b and β , and in turn the profile Hellinger distance function is an increasing function of the

L2 distance between b and β . Theoretically the objective function can achieve the maximum

value of 2 and Figure 2.4 does show a maximum close to 2. This indicates that maximizing

the objective function in (2.7) is equivalent to minimizing the L2 distance between b and β .

Thus, the maximizer β̂MPHD given in (2.7) will be very close to the true value β intuitively.

In other words, the MPHDE is expected to be consistent even though we are not able to prove

it theoretically.

Further, we use the QQ-plot presented in Figure 2.5 to examine the distribution of the

MPHDE. From Figure 2.5 we can see that the large-sample (n = 3000) distribution of the

MPHDE doesn’t appear to be normal when there is no contamination, and instead the distri-
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Figure 2.4: The Hellinger function ‖ f̂
1
2 (b;x)+ f̂

1
2 (b;−x)‖ as a function of ‖b−β‖.

bution exhibits heavier tails than normal distribution, espeically on the right tail. In contrast,

the GQMLE and NGQMLE appear to be normally distributed, which is a proved property

in literature of GQMLE and NGQMLE. However, in the case of contamination, the large-

sample distribution of MPHDE appears to have less pronounced heavy tails. Whereas, the

distribution of GQMLE and NGQMLE now have heavy tails and deviate from normal. The

details of the GQMLE and NGQMLE are deferred to Section 2.2.3.

Figure 2.6 examines the estimated innovation function f̂ 1/2(β̂MPHD;x), which is also

based on the kernel density esitmator in (2.4). We can see from the figure that the estimated

innovation density of εt’s is getting closer and closer to the true distribution fε as the sample

size increases, which indicates that the MPHDE of β is getting increasingly closer to the true

parameter values. This gives evidence to the consistency of MPHDE to some extent. Figure

2.6 also indicates that the convergence rate of the MPHDE to the true parameter value might

be relatively slow as well and the sample size needs to be at least 500 in order to obtain an
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Figure 2.5: QQ-plots of the MPHDE, GQMLE and NGQMLE.
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accurate MPHDE.

2.2.3 Review of GQMLE and NGQMLE

Due to its simplicity, GQMLE is the most popular method for estimating ARCH/GARCH

models when the innovation distribution is unknown. GQMLE simply use the Gaussian func-

tion as the innovation distribution regardless of the true innovation distribution. GQMLE has

been shown to be consistent provided that the innovation has a finite fourth moment. Despite

its simplicity, GQMLE may suffer from considerable efficiency loss if the true innovation

distribution is far from normal. To improve the efficiency, Fan et al. [11] suggested us-

ing the heavy-tailed likelihood function with a scale parameter η f , which serves to correct

the inconsistency of using non-Gaussian likelihood functions. Specifically, they constructed

the likelihood function based on the following three-step procedure. In the first step, the

GQMLE is calculated to obtain a reasonable estimate of the innovation εt , which will in turn

be used to estimate the scale parameter η f . Here the GQMLE is given by

β̂G = argmax
b∈Θ

1
n

n

∑
t=1

l1(b;xt)

= argmax
b∈Θ

1
n

n

∑
t=1

(
− log(σt)−

x2
t

2σ2
t

) (2.8)

where l1 is the likelihood function based on normal distribution. In the second step, an

estimate of η f , denoted by η̂ f , is obtained by performing the following maximization with

estimated residuals from the first step:

η̂ f = argmax
η

1
n

n

∑
t=1

l2
(

η , β̂G;xt

)
= argmax

η

1
n

n

∑
t=1

[
− log(η)+ log f

(
ε̃t

η

)]
,

where ε̃t = xt/σ̃t are the estimated residuals based on the GQMLE β̂G calculated in the first

step and σ̃t is the σt value in (2.1) with β replaced by β̂G. Finally, the NGQMLE β̂NG is
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defined as the maximizer of the non-Gaussian quasi-likelihood with plug-in η̂ f , i.e.

β̂NG = argmax
b∈Θ

1
n

n

∑
t=1

l3
(
η̂ f ,b;xt

)
= argmax

b∈Θ

1
n

n

∑
t=1

[
− log(η̂ f σt)+ log f

(
xt

η̂ f σt

)]
,

(2.9)

where f is a heavy-tailed likelihood function (we use t4 in our simulation studies). Fan

et al. [11] showed that NGQMLE generally outperforms GQMLE in terms of efficiency,

particularly when the innovation distribution is heavy-tailed. However, the authors didn’t

investigate the robustness properties of NGQMLE. We will show in the next chapter that both

GQMLE and NGQMLE are quite sensitive to outlier contamination, which is the common

deficiency of MLE-type estimators.
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(a) n = 50 (b) n = 200

(c) n = 500 (d) n = 1000

(e) n = 3000 (f) n = 5000

Figure 2.6: Estimated innovation distribution f̂ 1/2(β̂MPHD;x) v.s. the true innovation distri-

bution.
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Chapter 3

SIMULATION STUDIES

In this chapter, we illustrate the finite-sample performance of the proposed MHDE and

MPHDE, particularly for ARCH(1) and GARCH(1,1) models, through Monte Carlo sim-

ulation. To check the robustness properties, we examine the performance of both MHDE

and MPHDE when data is contaminated and not contaminated. Specifically, for ARCH(1)

model, we consider the following four scenarios: (i) the innovation distribution fε is known

and data is not contaminated (easiest case); (ii) fε is known and data is contaminated; (iii)

fε is unknown and data is not contaminated; (iv) fε is unknown and data is contaminated

(hardest case). For GARCH(1,1) model, we only consider the latter two harder cases as it is

more relevant to the real data analysis. The proposed MHDE is compared with MLE When

fε is known, while the proposed MPHDE is compared with GQMLE and NGQMLE when

fε is unknown.

A variety of the innovation distributions are considered in our simulation studies. Specif-

ically, when data is not contaminated, we consider Student’s t distribution with various de-

grees of freedom and generalized normal distribution with different shape parameters for fε .

All these distributions are standardized to have mean zero and variance one so as to align

with the assumption of ARCH/GARCH models. In the case of data contamination, we con-

sider generalized normal distribution with contaminating data from uniform or chi-square

distribution.

The generalized normal distribution, also known as the exponential power distribution,

is a parametric family of symmetric distributions that are governed by three parameters,

namely the location parameter µ , the scale parameter α and the shape parameter d. Through-

out the thesis, we use ggd to denote the generalized normal p.d.f. with shape parameter d.
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This family includes the normal distribution when d = 2 (with mean µ and variance α2

2 ) and

the Laplace distribution when d = 1. As d → ∞, the p.d.f. ggd converges pointwise to a

uniform density on (µ − d,µ + d). This family allows for tails that are either heavier than

normal (when d < 2) or lighter than normal (when d > 2).

For each type of innovation distribution, we run N = 500 simulations each with sample

size ranging among 250,500 and 1000. All the simulations are done in MATLAB and we

use the build-in function ‘fmincon’ to solve the associated optimization problems.

Kernel density estimation is used in the construction of both MHDE and MPHDE. In

our simulation, we use the compact-supported Epanechnikov kernel function

K(x) =
3
4
(1− x2)I[−1,1](x).

Moreover, data-driven bandwidths are employed to reduce the finite-sample bias and MSE

of both MHDE and MPHDE. Specifically we use hn = Snn−1/3 with Sn the robust scale

estimator

Sn = 1.1926 med
i

[
med

j
|ε̂i− ε̂ j|

]
proposed by [28], where

ε̂i =
Xi

σ̂i
=

Xi√
β̂0 + β̂1X2

i−1 + β̂2σ̂2
i−1

is the estimated residuals based on β̂GQMLE .

The performance of estimators is assessed by the estimated bias and MSE given by

B̂ias =
1
N

N

∑
i=1

(β̂ i−β ),

M̂SE =
1
N

N

∑
i=1

(β̂ i−β )2,

where β̂ i is the estimate β̂ in the ith simulation repetition. In addition to the bias and MSE

of the estimators, we also report the coverage probability (CP) that is calculated using boot-

strap. Specifically, for a generated single sample of a particular size n, we first calculate
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the estimate β̂ of the model parameters. Then 100 bootstrapping samples are sampled with

replacement from the original single sample. With the 100 bootstrapping samples, we can

calculate 100 (bootstrapping) estimates β̂bs and their sample standard deviation SD(β̂bs). Fi-

nally the level 1−α confidence interval of β is obtained by β̂ ± zα/2SD(β̂bs), where zα/2 is

the upper α/2-quantile of standard normal distribution. We use α = 5% in our simulation.

The coverage probability is simply the number of times that the true β value falls into the

above constructed bootstrapping confidence interval divided by N = 500. We look at the per-

formance of the estimators for ARCH(1) and GARCH(1) models in Section 3.1 and Section

3.2 respectively.

3.1. ARCH(1)

Consider ARCH(1) model given in (2.1) with β2 = 0. Note that β0 is the lower bound

of the conditional and unconditional variance of Xt’s, and β1 measures the rate at which a

shock in returns Xt today feeds into next period’s volatility dies over time. In other words,

any large (in absolute value) shock in εt will be associated with a persistently large (condi-

tional) variance in the returns Xt . The larger the β1, the longer the persistence of this effect.

Theoretically, we need β0 > 0 and 0 < β1 < 1 to ensure the stability of ARCH(1) model. As

a result, we impose the constraints β0 > 0 and 0≤ β1 ≤ 1 in our simulation studies, and we

take the true parameter values to be β = (β0,β1)
> = (1,0.7)>.

Case 1: known innovation distribution

Under ARCH(1) model with β = (1,0.7)> and known innovation distribution, we com-

pare the performance of the proposed MHDE given in (2.5) with the MLE by examining their

biases, MSE and CP. The results are presented in Tables 3.1 and 3.2 for β0 and β1 respec-

tively. Note that for t distribution, the smaller the degrees of freedom, the heavier the tail of

the distribution. For generalized normal distribution ggd , the smaller the shape parameter d,
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the heavier the tail of the distribution (d < 2 heavy-tailed; d > 2 light-tailed).

From Tables 3.1 and 3.2 we can see that, no matter which innovation distribution and

which sample size is considered, MLE always has smaller MSE than those of MHDE. This

is not surprising as MLE is the most efficient estimator under regularity conditions. MLE

also has smaller bias in most cases than the MHDE. Moreover, MLE and MHDE have close

performance in terms of CP, with both close to the nominal level 95% although the latter has

a little bit lower CP in some cases. In summary, the MLE is more efficient and thus preferred

over the MHDE when the data is not contaminated.

From Tables 3.1 and 3.2 we also observe that the bias and MSE of both the MLE and

MHDE tend to increase and the CP tends to decrease, as the kurtosis of innovation distri-

bution grows (i.e. the innovation distribution has heavier tail). This is probably due to the

increase of the probability of extreme values as the tail gets heavier. Also as expected, when

sample size n increases, the performance of both MLE and MHDE improves.
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Table 3.1: β̂0,MLE and β̂0,MHD for ARCH(1) with known innovation distribu-

tion.

β̂0,MLE β̂0,MHD

fε n Bias (MSE) CP Bias (MSE) CP
t20 250 0.023 (0.069) 0.92 0.027 (0.076) 0.91

500 0.009 (0.026) 0.93 0.017 (0.030) 0.93
1000 0.006 (0.006) 0.94 0.014 (0.008) 0.94

t9 250 0.029 (0.071) 0.91 0.027 (0.082) 0.91
500 0.021 (0.027) 0.90 0.025 (0.033) 0.90

1000 0.009 (0.010) 0.93 0.015 (0.013) 0.92
t6 250 0.024 (0.080) 0.92 0.028 (0.089) 0.92

500 0.019 (0.028) 0.93 0.028 (0.033) 0.93
1000 -0.015 (0.012) 0.94 -0.019 (0.014) 0.93

t4 250 0.028 (0.089) 0.93 0.033 (0.098) 0.92
500 0.021 (0.034) 0.93 0.023 (0.040) 0.92

1000 0.021 (0.015) 0.90 0.019 (0.019) 0.90
t3 250 0.035 (0.096) 0.89 0.039 (0.108) 0.88

500 0.020 (0.040) 0.91 0.024 (0.047) 0.92
1000 0.017 (0.017) 0.92 0.016 (0.020) 0.91

gg4 250 0.007 (0.036) 0.95 0.010 (0.042) 0.96
500 0.005 (0.010) 0.94 0.007 (0.014) 0.94

1000 0.005 (0.004) 0.95 0.006 (0.006) 0.94
gg2 250 0.011 (0.058) 0.94 0.014 (0.068) 0.94

500 0.010 (0.019) 0.93 0.012 (0.022) 0.93
1000 0.007 (0.006) 0.95 0.010 (0.008) 0.92

gg1 250 0.016 (0.086) 0.96 -0.019 (0.095) 0.97
500 0.018 (0.029) 0.90 -0.016 (0.034) 0.91

1000 0.009 (0.013) 0.92 -0.013 (0.016) 0.91
gg0.5 250 -0.034 (0.123) 0.90 -0.042 (0.131) 0.88

500 -0.024 (0.040) 0.92 -0.028 (0.048) 0.91
1000 -0.015 (0.019) 0.92 -0.015 (0.021) 0.92
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Table 3.2: β̂1,MLE and β̂1,MHD for ARCH(1) with known innovation distribu-

tion.

β̂1,MLE β̂1,MHD

fε n Bias (MSE) CP Bias (MSE) CP
t20 250 -0.013 (0.046) 0.92 -0.010 (0.056) 0.91

500 -0.007 (0.017) 0.94 -0.008 (0.020) 0.93
1000 -0.005 (0.004) 0.94 -0.005 (0.006) 0.93

t9 250 -0.019 (0.059) 0.92 -0.015 (0.065) 0.91
500 -0.014 (0.022) 0.93 -0.012 (0.026) 0.92

1000 -0.015 (0.007) 0.93 -0.016 (0.009) 0.93
t6 250 -0.025 (0.071) 0.94 -0.023 (0.077) 0.96

500 -0.014 (0.024) 0.93 -0.015 (0.028) 0.93
1000 -0.016 (0.010) 0.92 -0.015 (0.011) 0.92

t4 250 -0.024 (0.081) 0.91 -0.025 (0.089) 0.91
500 -0.018 (0.031) 0.92 -0.022 (0.035) 0.91

1000 -0.006 (0.013) 0.93 -0.017 (0.015) 0.92
t3 250 -0.025 (0.099) 0.89 -0.037 (0.111) 0.87

500 0.022 (0.038) 0.91 -0.028 (0.041) 0.89
1000 -0.024 (0.016) 0.91 -0.020 (0.018) 0.90

gg4 250 -0.013 (0.023) 0.93 -0.015 (0.030) 0.92
500 -0.006 (0.008) 0.94 -0.009 (0.011) 0.93

1000 -0.006 (0.003) 0.95 -0.006 (0.004) 0.96
gg2 250 -0.022 (0.040) 0.92 -0.018 (0.048) 0.92

500 -0.008 (0.017) 0.93 -0.011 (0.019) 0.93
1000 -0.003 (0.004) 0.95 0.009 (0.005) 0.94

gg1 250 -0.023 (0.082) 0.93 0.027 (0.089) 0.92
500 -0.015 (0.023) 0.92 0.019 (0.027) 0.92

1000 -0.006 (0.009) 0.93 0.010 (0.011) 0.92
gg0.5 250 -0.036 (0.112) 0.90 -0.033 (0.118) 0.88

500 -0.019 (0.038) 0.91 -0.029 (0.042) 0.89
1000 -0.012 (0.015) 0.91 -0.017 (0.018) 0.90
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Case 2: known innovation distribution and contaminated

In this part, we still consider ARCH(1) model with known innovation distribution but

now the innovation distribution (further the data) is contaminated. The purpose of this case

is to examine the robustness properties of the proposed MHDE. We consider two types of

contamination. The first one assumes that a certain percentage of the innovation distribution

is contaminated by another distribution, i.e.

εt ∼ (1−δ ) fε +δh (3.1)

for some small contamination rate δ > 0 and some contaminating distribution h. The second

type of contamination assumes that the distribution of a small time period ∆t = bδnc (small

portion of consecutive observations) is completely different from the assumed innovation

distribution while the rest of the observations are from the assumed innovation distribution.

In another word,

εt ∼

 fε , if 0≤ t ≤ t1 or t1 +∆t ≤ t ≤ n,

h, if t1 < t < t1 +∆t.
(3.2)

where t1 = 0.3n. This kind of contamination is thought to be a better depiction of the asset

returns in the event of financial crisis when the distribution of returns is generally different

from those at normal times. Nevertheless, we will examine both types of contamination and

the contamination rate δ = 5% in both type of contamination. The contaminating distribution

is chosen to be either uniform distribution, such as U [−0.5,0], or chi-square distribution,

such as χ2
(2). We present the results for the generalized normal distribution, ranging from

light-tailed gg4 to heavy-tailed gg0.5, in Table 3.3 and 3.4 for the first type of contamination

(3.1). Table 3.5 and 3.6 report the results for the second type of contamination (3.2). The

results for t distributions considered in Case 1 are overall quite similar and thus omitted.

From Table 3.3 and 3.4 we can see that, for contamination structure (3.1), the biases

and MSEs of both MLE and MHDE are significantly increased while the CPs of them are

decreased, in comparison with the corresponding uncontaminated ones. This is expected
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as extra noises are introduced in the data, which skews the innovation distribution and in-

validates the model assumptions of zero mean and unit variance of the innovation to some

degree. Despite this, both the (absolute values of) biases and MSEs of MLE and MHDE de-

crease as sample size increases. More importantly, MHDE now outperforms MLE in terms

of bias, MSE and CP in most cases. Specifically, the (absolute values of) bias and MSE of

MHDE are remarkably smaller than those of MLE while the CPs of MHDE is slightly better

than those of MLE. This testifies to the robustness of MHDE that MLE is generally lacking.

Under the second type of contamination (3.2), we observe from Table 3.5 and 3.6 sim-

ilar phenomena as those under the first type of contamination (3.1), in which MHDE again

has a competitive edge over MLE. Even though the MHDE is more robust than MLE, its

performance is still severely undermined. In this sense, the proposed MPHDE given in (2.7)

is expected to be more robust than the MHDE since the former doesn’t use the assumed

innovation function but instead estimates it nonparametrically.

When the two types of contamination are compared, i.e. Table 3.3 and 3.4 compared

with Table 3.5 and 3.6, the second type of contamination affects both the MLE and the

MHDE more severely than the first type in the sense of having much larger bias, MSE and

much smaller CP. This is quite understandable as under (3.1) the observation follows a dis-

tribution that is very close to the assumed one at any time, while under (3.2) the data is from

a completely different distribution during a certain time period.
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Table 3.3: β̂0,MLE and β̂0,MHD for ARCH(1) with known innovation distribution and contamina-

tion (3.1).

β̂0,MLE β̂0,MHD

Contamination (3.1) n Bias (MSE) CP Bias (MSE) CP
0.95gg4 +0.05U [−0.5,0] 250 -0.054 (0.056) 0.88 -0.044 (0.059) 0.90

500 -0.052 (0.030) 0.87 -0.041 (0.027) 0.89
1000 -0.055 (0.014) 0.87 -0.034 (0.012) 0.90

0.95gg4 +0.05χ2
(2) 250 -0.058 (0.061) 0.87 -0.047 (0.061) 0.88

500 -0.064 (0.028) 0.86 -0.045 (0.024) 0.87
1000 -0.053 (0.013) 0.87 -0.031 (0.011) 0.87

0.95gg2 +0.05U [−0.5,0] 250 -0.068 (0.086) 0.85 -0.050 (0.089) 0.88
500 -0.062 (0.040) 0.86 -0.047 (0.035) 0.86

1000 -0.059 (0.017) 0.85 -0.039 (0.014) 0.86
0.95gg2 +0.05χ2

(2) 250 -0.055 (0.086) 0.86 -0.048 (0.083) 0.87
500 -0.058 (0.036) 0.85 -0.033 (0.033) 0.87

1000 -0.053 (0.016) 0.86 -0.031 (0.013) 0.88
0.95gg1 +0.05U [−0.5,0] 250 -0.074 (0.119) 0.83 0.066 (0.122) 0.86

500 -0.058 (0.054) 0.84 -0.056 (0.049) 0.86
1000 -0.053 (0.026) 0.83 -0.044 (0.023) 0.86

0.95gg1 +0.05χ2
(2) 250 -0.075 (0.123) 0.84 -0.060 (0.117) 0.86

500 -0.072 (0.052) 0.84 -0.051 (0.049) 0.87
1000 -0.058 (0.025) 0.85 -0.053 (0.023) 0.88

0.95gg0.5 +0.05U [−0.5,0] 250 -0.102 (0.165) 0.81 -0.061 (0.161) 0.84
500 -0.092 (0.075) 0.80 -0.056 (0.068) 0.83

1000 -0.100 (0.042) 0.81 -0.052 (0.036) 0.84
0.95gg0.5 +0.05χ2

(2) 250 0.096 (0.169) 0.81 0.072 (0.161) 0.84
500 0.093 (0.071) 0.80 0.060 (0.067) 0.83

1000 0.091 (0.038) 0.81 0.054 (0.033) 0.84
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Table 3.4: β̂1,MLE and β̂1,MHD for ARCH(1) for ARCH(1) with known innovation distribution

and contamination (3.1).

β̂1,MLE β̂1,MHD

Contamination (3.1) n Bias (MSE) CP Bias (MSE) CP
0.95gg4 +0.05U [−0.5,0] 250 -0.046 (0.047) 0.89 0.034 (0.050) 0.90

500 -0.044 (0.025) 0.88 0.037 (0.022) 0.89
1000 -0.047 (0.012) 0.89 0.028 (0.009) 0.90

0.95gg4 +0.05χ2
(2) 250 -0.051 (0.050) 0.88 0.039 (0.052) 0.91

500 -0.054 (0.023) 0.87 0.037 (0.020) 0.89
1000 -0.045 (0.011) 0.86 0.026 (0.009) 0.89

0.95gg2 +0.05U [−0.5,0] 250 -0.049 (0.073) 0.90 0.042 (0.077) 0.91
500 -0.053 (0.033) 0.88 0.039 (0.031) 0.89

1000 -0.059 (0.014) 0.89 0.033 (0.011) 0.90
0.95gg2 +0.05χ2

(2) 250 -0.045 (0.072) 0.90 0.040 (0.072) 0.90
500 -0.047 (0.030) 0.88 0.027 (0.028) 0.89

1000 -0.049 (0.013) 0.89 0.026 (0.011) 0.89
0.95gg1 +0.05U [−0.5,0] 250 -0.063 (0.098) 0.84 -0.055 (0.103) 0.86

500 -0.049 (0.044) 0.85 0.046 (0.042) 0.87
1000 -0.045 (0.022) 0.85 0.037 (0.018) 0.87

0.95gg1 +0.05χ2
(2) 250 -0.064 (0.095) 0.85 0.050 (0.100) 0.87

500 -0.058 (0.045) 0.84 0.042 (0.042) 0.86
1000 -0.053 (0.021) 0.85 0.044 (0.018) 0.87

0.95gg0.5 +0.05U [−0.5,0] 250 -0.077 (0.152) 0.82 0.051 (0.149) 0.84
500 -0.075 (0.068) 0.81 0.046 (0.062) 0.84

1000 -0.069 (0.035) 0.82 0.043 (0.031) 0.85
0.95gg0.5 +0.05χ2

(2) 250 0.082 (0.154) 0.81 -0.060 (0.148) 0.83
500 0.077 (0.065) 0.82 -0.050 (0.061) 0.84

1000 0.067 (0.034) 0.82 -0.049 (0.029) 0.85
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Table 3.5: β̂0,MLE and β̂0,MHD for ARCH(1) with known innovation distribution and con-

tamination (3.2).

β̂0,MLE β̂0,MHD

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 -0.085 (0.209) 0.76 -0.068 (0.173) 0.78

h =U [−0.5,0] 500 -0.079 (0.153) 0.75 -0.061 (0.123) 0.76
1000 -0.084 (0.113) 0.76 -0.059 (0.096) 0.77

fε = gg4 250 -0.080 (0.197) 0.76 -0.069 (0.168) 0.77
h(x−1.5) =−χ2

(2) 500 -0.074 (0.146) 0.75 -0.062 (0.114) 0.76

1000 -0.068 (0.101) 0.76 -0.057 (0.089) 0.78
fε, = gg2 250 0.086 (0.225) 0.76 0.070 (0.189) 0.77

h =U [−0.5,0] 500 0.079 (0.149) 0.75 0.062 (0.123) 0.78
1000 0.074 (0.108) 0.75 0.057 (0.100) 0.78

fε = gg2 250 0.087 (0.222) 0.75 0.069 (0.184) 0.77
h(x−1.5) =−χ2

(2) 500 0.080 (0.143) 0.75 0.057 (0.122) 0.77

1000 0.079 (0.101) 0.76 0.060 (0.095) 0.78
fε = gg1 250 0.099 (0.316) 0.74 0.086 (0.260) 0.76

h(x) =U [−0.5,0] 500 0.094 (0.194) 0.74 0.077 (0.167) 0.77
1000 0.086 (0.132) 0.75 0.071 (0.101) 0.78

fε = gg1 250 0.094 (0.308) 0.74 0.084 (0.253) 0.76
h(x−1.5) =−χ2

(2) 500 0.092 (0.187) 0.73 0.080 (0.169) 0.76

1000 0.083 (0.125) 0.74 0.065 (0.099) 0.77
fε = gg0.5 250 0.120 (0.392) 0.72 0.102 (0.325) 0.75

h =U [−0.5,0] 500 0.114 (0.295) 0.71 0.089 (0.236) 0.74
1000 0.106 (0.170) 0.72 0.093 (0.138) 0.74

fε = gg0.5 250 0.121 (0.377) 0.73 0.096 (0.311) 0.75
h(x−1.5) =−χ2

(2) 500 0.109 (0.286) 0.72 0.098 (0.227) 0.74

1000 0.113 (0.160) 0.72 0.084 (0.132) 0.75
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Table 3.6: β̂1,MLE and β̂1,MHD for ARCH(1) with known innovation distribution and con-

tamination (3.2).

β̂1,MLE β̂1,MHD

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 -0.075 (0.173) 0.76 -0.057 (0.135) 0.78

h =U [−0.5,0] 500 -0.074 (0.127) 0.76 -0.051 (0.094) 0.77
1000 -0.070 (0.094) 0.77 -0.050 (0.065) 0.79

fε = gg4 250 -0.070 (0.164) 0.76 -0.058 (0.131) 0.77
h(x−1.5) =−χ2

(2) 500 -0.065 (0.121) 0.75 -0.052 (0.086) 0.76

1000 -0.060 (0.084) 0.76 -0.048 (0.054) 0.77
fε = gg2 250 0.076 (0.187) 0.76 0.059 (0.149) 0.77

h =U [−0.5,0] 500 0.070 (0.124) 0.75 0.052 (0.102) 0.76
1000 0.065 (0.090) 0.75 0.048 (0.068) 0.76

fε = gg2 250 0.077 (0.184) 0.76 0.058 (0.144) 0.77
h(x−1.5) =−χ2

(2) 500 0.070 (0.119) 0.75 0.050 (0.101) 0.76

1000 0.070 (0.084) 0.76 0.048 (0.063) 0.77
fε = gg1 250 0.087 (0.242) 0.73 0.072 (0.183) 0.75

h =U [−0.5,0] 500 0.083 (0.161) 0.72 0.065 (0.118) 0.75
1000 0.076 (0.110) 0.73 0.060 (0.076) 0.76

fε = gg1 250 0.083 (0.246) 0.73 0.071 (0.185) 0.75
h(x−1.5) =−χ2

(2) 500 0.081 (0.155) 0.73 0.067 (0.110) 0.76

1000 0.073 (0.104) 0.74 0.055 (0.071) 0.76
fε = gg0.5 250 0.106 (0.298) 0.71 0.086 (0.228) 0.74

h =U [−0.5,0] 500 0.100 (0.231) 0.71 0.075 (0.163) 0.73
1000 0.093 (0.141) 0.72 0.078 (0.098) 0.75

fε = gg0.5 250 0.106 (0.288) 0.71 0.082 (0.220) 0.74
h(x−1.5) =−χ2

(2) 500 0.096 (0.237) 0.70 0.077 (0.172) 0.73

1000 0.099 (0.129) 0.71 0.071 (0.097) 0.74
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Case 3: unknown innovation distribution

When the innovation distribution is unspecified, which is a more realistic case, we com-

pare the performance of the proposed MPHDE in (2.7) with both the GQMLE given in (2.8)

and the NGQMLE given in (2.9) proposed by Fan et al. [11]. We take t4 as the quasi-

likelihood function used in the construction of NGQMLE. We use the same underlying in-

novation distributions as those in Case 1 and the simulation results are reported in Table 3.7

and 3.8.

From Table 3.7 and 3.8 we can see that when the innovation distribution is normal

(gg2), close to normal (t20) or light-tailed (gg4), the GQMLE outperforms both MPHDE

and NGQMLE in terms of bias, MSE and CP by a small margin. And for all other cases,

NGQMLE and MPHDE performs better than GQMLE. The performance of GQMLE dete-

riorates as the tails of innovation distribution grow heavier, particularly in gg0.5 and t3. This

is expected since the GQMLE assumes the innovation distribution is normal and it is most

efficient when the true innovation is normal and the performance deteriorates when the inno-

vation distribution deviates from normal. Comparing MPHDE with NGQMLE, we find that

NGQMLE boasts smaller bias and MSE in most cases while their CPs are very close to each

other. Thus, the NGQMLE is preferred over MPHDE when we know that the data is clean.
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Table 3.7: β̂0,MPHD, β̂0,G and β̂0,NG for ARCH(1) with unknown innovation distribution.

β̂0,MPHD β̂0,G β̂0,NG

fε n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
t20 250 0.029 (0.083) 0.91 0.030 (0.087) 0.92 0.031 (0.081) 0.91

500 -0.021 (0.038) 0.90 0.016 (0.035) 0.91 0.020 (0.036) 0.90
1000 -0.016 (0.010) 0.91 0.012 (0.009) 0.93 0.011 (0.009) 0.92

t9 250 0.037 (0.093) 0.89 0.042 (0.096) 0.89 0.035 (0.089) 0.90
500 -0.027 (0.040) 0.89 0.030 (0.041) 0.88 -0.029 (0.039) 0.89

1000 -0.022 (0.016) 0.90 0.015 (0.017) 0.89 0.014 (0.015) 0.90
t6 250 0.036 (0.101) 0.90 0.038 (0.119) 0.89 -0.038 (0.094) 0.90

500 0.032 (0.040) 0.88 0.036 (0.047) 0.87 -0.034 (0.037) 0.89
1000 -0.023 (0.017) 0.89 0.022 (0.019) 0.88 -0.021 (0.016) 0.89

t4 250 0.034 (0.110) 0.90 0.042 (0.144) 0.89 -0.036 (0.103) 0.90
500 -0.030 (0.048) 0.89 0.032 (0.062) 0.88 -0.023 (0.043) 0.90

1000 -0.024 (0.025) 0.88 -0.026 (0.031) 0.87 -0.018 (0.023) 0.89
t3 250 0.058 (0.121) 0.88 0.069 (0.162) 0.87 -0.060 (0.119) 0.88

500 0.044 (0.056) 0.88 0.054 (0.079) 0.86 -0.041 (0.053) 0.88
1000 -0.034 (0.027) 0.89 -0.042 (0.039) 0.88 -0.025 (0.025) 0.89

gg4 250 0.019 (0.050) 0.92 0.015 (0.043) 0.93 0.017 (0.047) 0.92
500 0.018 (0.021) 0.91 0.008 (0.016) 0.92 0.008 (0.019) 0.91
1000 -0.014 (0.008) 0.92 0.007 (0.006) 0.94 0.010 (0.008) 0.93

gg2 250 0.022 (0.066) 0.92 0.014 (0.061) 0.94 0.022 (0.064) 0.92
500 -0.020 (0.025) 0.91 0.012 (0.020) 0.92 0.013 (0.023) 0.91
1000 -0.018 (0.010) 0.92 0.008 (0.007) 0.93 0.010 (0.009) 0.92

gg1 250 0.035 (0.101) 0.91 0.038 (0.106) 0.90 0.028 (0.097) 0.91
500 -0.018 (0.040) 0.90 0.020 (0.044) 0.89 0.014 (0.038) 0.90
1000 -0.016 (0.021) 0.91 -0.016 (0.027) 0.90 -0.014 (0.021) 0.91

gg0.5 250 0.051 (0.133) 0.88 0.062 (0.151) 0.87 -0.048 (0.128) 0.89
500 0.033 (0.056) 0.89 0.043 (0.072) 0.87 -0.028 (0.054) 0.89

1000 0.022 (0.027) 0.90 0.042 (0.035) 0.88 -0.023 (0.025) 0.90
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Table 3.8: β̂1,MPHD, β̂1,G and β̂1,NG for ARCH(1) with unknown innovation distribution.

β̂1,MPHD β̂1,G β̂1,NG

fε n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
t20 250 -0.036 (0.058) 0.90 -0.029 (0.062) 0.91 -0.033 (0.064) 0.90

500 -0.025 (0.029) 0.92 -0.010 (0.026) 0.93 -0.013 (0.027) 0.92
1000 -0.016 (0.011) 0.92 -0.005 (0.011) 0.93 -0.006 (0.011) 0.93

t9 250 -0.024 (0.072) 0.90 -0.021 (0.066) 0.89 -0.030 (0.066) 0.91
500 -0.018 (0.032) 0.91 -0.024 (0.032) 0.90 -0.021 (0.030) 0.91

1000 -0.016 (0.018) 0.92 -0.022 (0.020) 0.91 -0.017 (0.017) 0.92
t6 250 -0.042 (0.083) 0.91 -0.044 (0.087) 0.89 -0.040 (0.082) 0.91

500 -0.034 (0.035) 0.90 -0.026 (0.038) 0.89 -0.023 (0.033) 0.90
1000 -0.029 (0.020) 0.91 -0.023 (0.023) 0.90 -0.024 (0.019) 0.91

t4 250 -0.048 (0.092) 0.90 -0.052 (0.110) 0.88 -0.042 (0.088) 0.91
500 -0.036 (0.042) 0.89 -0.053 (0.050) 0.88 -0.030 (0.040) 0.90

1000 -0.023 (0.024) 0.91 -0.030 (0.029) 0.91 -0.017 (0.022) 0.91
t3 250 -0.051 (0.125) 0.88 -0.068 (0.149) 0.87 -0.047 (0.118) 0.88

500 -0.038 (0.050) 0.89 -0.058 (0.068) 0.87 -0.024 (0.047) 0.89
1000 -0.028 (0.027) 0.90 -0.049 (0.037) 0.88 -0.027 (0.026) 0.90

gg4 250 -0.026 (0.041) 0.92 -0.016 (0.034) 0.93 -0.021 (0.039) 0.92
500 -0.017 (0.018) 0.91 -0.015 (0.016) 0.92 -0.014 (0.017) 0.91

1000 -0.010 (0.010) 0.93 -0.011 (0.008) 0.94 -0.012 (0.010) 0.93
gg2 250 -0.028 (0.050) 0.92 -0.033 (0.041) 0.92 -0.039 (0.044) 0.91

500 -0.022 (0.023) 0.92 -0.013 (0.019) 0.93 -0.018 (0.021) 0.91
1000 -0.012 (0.010) 0.93 -0.006 (0.006) 0.94 -0.010 (0.010) 0.93

gg1 250 -0.037 (0.084) 0.91 -0.037 (0.091) 0.90 -0.038 (0.080) 0.91
500 -0.025 (0.032) 0.91 -0.028 (0.034) 0.90 -0.029 (0.031) 0.92

1000 -0.018 (0.015) 0.92 -0.015 (0.019) 0.91 0.014 (0.013) 0.92
gg0.5 250 -0.049 (0.125) 0.89 -0.074 (0.146) 0.87 -0.042 (0.119) 0.89

500 -0.037 (0.048) 0.89 -0.069 (0.064) 0.88 -0.033 (0.044) 0.89
1000 -0.026 (0.022) 0.90 -0.042 (0.033) 0.88 -0.022 (0.019) 0.90
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Case 4: unknown innovation distribution and contaminated

This case is parallel to the Case 2 but with unknown innovation distribution. So as in

Case 2, we consider both types of contaminations, (3.1) and (3.2), in order to assess the

robustness of MPHDE as compared to those of GQMLE and NGQMLE. We also consider

the same contaminating distributions and contamination rate as those in Tables 3.3-3.6. The

results are presented in Table 3.9 and 3.10 for the first type of contamination (3.1) while

Table 3.11 and 3.12 report the second type (3.2).

From Table 3.9 and 3.10 we can see that, for contamination structure (3.1), the biases

and MSEs of all the three estimators are significantly increased while the CPs of them are

decreased, in comparison with the corresponding uncontaminated ones. Despite this, as

expected, both the (absolute values of) biases and MSEs of MLE and MHDE decrease as

sample size increases. When the three estimators are compared with each other, GQMLE

generally has the worst performance while MPHDE has the best performance among the

three estimators in terms of bias, MSE and CP, which gives evidence of the robustness of

MPHDE in the event of contamination.

Under the second type of contamination (3.2), we observe from Table 3.11 and 3.12

similar phenomena as those under the first type of contamination (3.1), in which MPHDE

performs better than both GQMLE and NGQMLE. Specifically, MPHDE is around 40%

more efficient than GQMLE and 20% more effficient than NGQMLE on average. MPHDE

also has a clear advantage over GQMLE and NGQMLE in terms of bias and CP.

When the two types of contamination are compared, i.e. Table 3.9 and 3.10 com-

pared with Table 3.11 and 3.12, the second type of contamination affects the performance

of MPHDE, GQMLE and NGQMLE more severely than the first type in the sense of having

much larger bias, MSE and much smaller CP. This is consistent with our observations in

Case 2 when the innovation distribution is known.

When the MHDE and MPHDE are compared with each other, MPHDE performs better
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when it comes to bias, MSE and CP under the second type of contamination while MHDE

performs better under the case of no contamination and the first type of contamination. This

observation is quite reasonable. Specifically, when there is no contamination, the MHDE

makes use of the correctly specified innovation distribution and thus is more efficient than the

MPHDE. Under the second type of contamination which is more severe than the first type,

the MHDE makes use of the wrong specified innovation distribution and thus produce worse

results than those of MPHDE which estimates the innovation distribution nonparametrically

based on the data. On the other hand, under the first type of contamination, MHDE still

benefits from the specified innovation distribution that is close to the contaminated one.
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Table 3.9: β̂0,MPHD, β̂0,G and β̂0,NG for ARCH(1) with unknown innovation distribution and con-

tamination (3.1).

β̂0,MPHD β̂0,G β̂0,NG

Contamination (3.1) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
0.95gg4+ 250 -0.053 (0.068) 0.87 -0.070 (0.072) 0.87 -0.064 (0.066) 0.87

0.05U [−0.5,0] 500 -0.047 (0.034) 0.87 -0.060 (0.040) 0.86 -0.055 (0.037) 0.86
1000 -0.043 (0.020) 0.87 -0.053 (0.026) 0.86 -0.050 (0.025) 0.86

0.95gg4+ 250 -0.051 (0.066) 0.88 -0.070 (0.072) 0.88 -0.062 (0.064) 0.88
0.05χ2

(2) 500 -0.046 (0.029) 0.87 -0.064 (0.033) 0.86 -0.057 (0.031) 0.86

1000 -0.042 (0.017) 0.87 -0.057 (0.023) 0.87 -0.049 (0.020) 0.86
0.95gg2+ 250 -0.059 (0.095) 0.86 -0.070 (0.098) 0.86 -0.069 (0.094) 0.86

0.05U [−0.5,0] 500 -0.050 (0.038) 0.87 -0.065 (0.042) 0.85 -0.056 (0.040) 0.86
1000 -0.054 (0.016) 0.87 -0.059 (0.019) 0.86 -0.058 (0.019) 0.86

0.95gg2+ 250 -0.058 (0.093) 0.86 -0.066 (0.100) 0.86 -0.062 (0.093) 0.86
0.05χ2

(2) 500 -0.046 (0.036) 0.87 -0.053 (0.040) 0.86 -0.054 (0.040) 0.86

1000 -0.042 (0.016) 0.88 -0.055 (0.018) 0.87 -0.059 (0.017) 0.87
0.95gg1+ 250 -0.070 (0.133) 0.85 -0.090 (0.142) 0.82 -0.086 (0.136) 0.84

0.05U [−0.5,0] 500 -0.072 (0.059) 0.85 -0.080 (0.068) 0.82 -0.075 (0.064) 0.83
1000 -0.055 (0.029) 0.86 -0.074 (0.039) 0.84 -0.072 (0.034) 0.85

0.95gg1+ 250 -0.067 (0.131) 0.85 -0.087 (0.139) 0.82 -0.083 (0.135) 0.83
0.05χ2

(2) 500 -0.064 (0.055) 0.84 -0.079 (0.063) 0.81 -0.078 (0.060) 0.83

1000 -0.056 (0.030) 0.85 -0.074 (0.037) 0.82 -0.070 (0.033) 0.83
0.95gg0.5+ 250 -0.072 (0.182) 0.83 -0.101 (0.195) 0.80 -0.086 (0.185) 0.81

0.05U [−0.5,0] 500 -0.066 (0.078) 0.82 -0.092 (0.094) 0.78 -0.081 (0.085) 0.79
1000 -0.062 (0.045) 0.84 -0.095 (0.058) 0.79 -0.078 (0.051) 0.80

0.95gg0.5+ 250 -0.073 (0.179) 0.84 -0.096 (0.191) 0.81 -0.088 (0.187) 0.82
0.05χ2

(2) 500 -0.068 (0.075) 0.83 -0.092 (0.090) 0.80 -0.079 (0.083) 0.81

1000 -0.064 (0.044) 0.83 -0.086 (0.056) 0.79 -0.075 (0.051) 0.80
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Table 3.10: β̂1,MPHD, β̂1,G and β̂1,NG for ARCH(1) with unknown innovation distribution and

contamination (3.1).

β̂1,MPHD β̂1,G β̂1,NG

Contamination (3.1) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
0.95gg4+ 250 -0.058 (0.059) 0.88 -0.070 (0.062) 0.87 -0.064 (0.059) 0.88

0.05U [−0.5,0] 500 -0.054 (0.032) 0.88 -0.064 (0.038) 0.86 -0.059 (0.036) 0.87
1000 -0.046 (0.017) 0.89 -0.061 (0.022) 0.86 -0.055 (0.020) 0.88

0.95gg4+ 250 -0.056 (0.058) 0.90 -0.069 (0.061) 0.87 -0.056 (0.056) 0.90
0.05χ2

(2) 500 -0.048 (0.030) 0.89 -0.060 (0.036) 0.86 -0.055 (0.036) 0.88

1000 -0.047 (0.017) 0.89 -0.058 (0.021) 0.87 -0.050 (0.020) 0.87
0.95gg2+ 250 -0.051 (0.077) 0.88 -0.069 (0.077) 0.89 -0.056 (0.080) 0.88

0.05U [−0.5,0] 500 -0.050 (0.034) 0.89 -0.060 (0.037) 0.88 -0.053 (0.037) 0.88
1000 -0.041 (0.016) 0.89 -0.062 (0.018) 0.88 -0.049 (0.020) 0.88

0.95gg2+ 250 -0.054 (0.076) 0.90 -0.072 (0.074) 0.90 -0.060 (0.079) 0.90
0.05χ2

(2) 500 -0.050 (0.030) 0.89 -0.060 (0.034) 0.88 -0.054 (0.034) 0.88

1000 -0.048 (0.014) 0.90 -0.057 (0.016) 0.88 -0.057 (0.017) 0.89
0.95gg1+ 250 -0.065 (0.111) 0.85 -0.073 (0.128) 0.82 -0.068 (0.109) 0.83

0.05U [−0.5,0] 500 -0.058 (0.055) 0.84 -0.068 (0.065) 0.80 -0.064 (0.059) 0.82
1000 -0.049 (0.027) 0.85 -0.059 (0.032) 0.81 -0.056 (0.030) 0.84

0.95gg1+ 250 -0.059 (0.110) 0.87 -0.068 (0.124) 0.85 -0.061 (0.115) 0.87
0.05χ2

(2) 500 -0.052 (0.052) 0.86 -0.064 (0.062) 0.83 -0.059 (0.057) 0.85

1000 -0.049 (0.026) 0.85 -0.060 (0.033) 0.83 -0.055 (0.031) 0.84
0.95gg0.5+ 250 -0.071 (0.165) 0.82 -0.084 (0.184) 0.80 -0.076 (0.177) 0.81

0.05U [−0.5,0] 500 -0.064 (0.076) 0.82 -0.075 (0.092) 0.78 -0.069 (0.080) 0.80
1000 -0.055 (0.042) 0.83 -0.072 (0.051) 0.79 -0.064 (0.046) 0.80

0.95gg0.5+ 250 -0.069 (0.161) 0.83 -0.075 (0.178) 0.80 -0.074 (0.177) 0.82
0.05χ2

(2) 500 -0.064 (0.072) 0.82 -0.073 (0.088) 0.79 -0.059 (0.075) 0.80

1000 -0.051 (0.039) 0.83 -0.068 (0.056) 0.79 -0.063 (0.043) 0.81
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Table 3.11: β̂0,MPHD, β̂0,G and β̂0,NG for ARCH(1) with unknown innovation distribution and

contamination (3.2).

β̂0,MPHD β̂0,G β̂0,NG

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 -0.064 (0.156) 0.79 -0.093 (0.202) 0.76 -0.075 (0.180) 0.76

h =U [−0.5,0] 500 -0.059 (0.101) 0.77 -0.086 (0.148) 0.75 -0.070 (0.130) 0.75
1000 -0.053 (0.080) 0.78 -0.083 (0.116) 0.76 -0.066 (0.087) 0.76

fε = gg4 250 -0.060 (0.145) 0.78 -0.091 (0.199) 0.76 -0.071 (0.170) 0.77
h(x−1.5) =−χ2

(2) 500 -0.050 (0.099) 0.77 -0.084 (0.140) 0.76 -0.076 (0.116) 0.76

1000 -0.053 (0.075) 0.79 -0.076 (0.104) 0.76 -0.065 (0.089) 0.77
fε = gg2 250 0.065 (0.172) 0.77 0.087 (0.223) 0.76 0.080 (0.205) 0.76

h =U [−0.5,0] 500 0.056 (0.117) 0.76 0.082 (0.146) 0.74 0.074 (0.131) 0.74
1000 0.054 (0.078) 0.76 0.078 (0.110) 0.75 0.064 (0.094) 0.75

fε = gg2 250 0.061 (0.174) 0.77 0.085 (0.222) 0.75 0.080 (0.194) 0.75
h(x−1.5) =−χ2

(2) 500 0.052 (0.105) 0.77 0.086 (0.145) 0.75 0.071 (0.127) 0.76

1000 0.051 (0.076) 0.78 0.075 (0.100) 0.76 0.066 (0.088) 0.76
fε = gg1 250 0.076 (0.242) 0.76 0.109 (0.329) 0.73 0.086 (0.279) 0.74

h =U [−0.5,0] 500 0.068 (0.151) 0.76 0.106 (0.205) 0.72 0.078 (0.171) 0.74
1000 0.063 (0.094) 0.76 0.093 (0.139) 0.73 0.072 (0.115) 0.75

fε = gg1 250 0.072 (0.238) 0.76 0.105 (0.304) 0.73 0.089 (0.263) 0.74
h(x−1.5) =−χ2

(2) 500 0.066 (0.148) 0.77 0.096 (0.181) 0.73 0.077 (0.162) 0.75

1000 0.060 (0.083) 0.77 0.085 (0.130) 0.73 0.068 (0.128) 0.75
fε = gg0.5 250 0.088 (0.284) 0.74 0.129 (0.367) 0.70 0.101 (0.309) 0.72

h =U [−0.5,0] 500 0.080 (0.196) 0.74 0.118 (0.265) 0.69 0.097 (0.246) 0.71
1000 0.073 (0.114) 0.73 0.109 (0.185) 0.70 0.089 (0.152) 0.72

fε,1 = gg0.5 250 0.084 (0.266) 0.75 0.121 (0.353) 0.71 -0.095 (0.289) 0.72
h(x−1.5) =−χ2

(2) 500 0.077 (0.196) 0.73 0.112 (0.260) 0.70 -0.088 (0.239) 0.71

1000 0.070 (0.104) 0.74 0.105 (0.174) 0.71 -0.081 (0.151) 0.72

45



Table 3.12: β̂1,MPHD, β̂1,G and β̂1,NG for ARCH(1) with unknown innovation distribution and

contamination (3.2).

β̂1,MPHD β̂1,G β̂1,NG

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 0.055 (0.120) 0.80 0.081 (0.184) 0.76 0.069 (0.141) 0.77

h =U [−0.5,0] 500 0.051 (0.087) 0.79 0.077 (0.137) 0.77 0.064 (0.115) 0.77
1000 0.046 (0.060) 0.79 0.066 (0.105) 0.78 0.060 (0.078) 0.78

fε = gg4 250 -0.058 (0.127) 0.78 -0.077 (0.164) 0.76 -0.072 (0.148) 0.76
h(x−1.5) =−χ2

(2) 500 -0.052 (0.080) 0.77 0.079 (0.126) 0.75 0.075 (0.108) 0.76

1000 -0.041 (0.050) 0.79 0.064 (0.082) 0.76 0.062 (0.065) 0.76
fε = gg2 250 0.051 (0.133) 0.78 0.078 (0.186) 0.76 0.079 (0.162) 0.76

h =U [−0.5,0] 500 0.053 (0.100) 0.78 0.074 (0.120) 0.76 0.068 (0.113) 0.76
1000 0.046 (0.062) 0.79 0.061 (0.093) 0.77 0.066 (0.084) 0.77

fε = gg2 250 0.057 (0.135) 0.79 0.077 (0.186) 0.77 0.079 (0.169) 0.77
h(x−1.5) =−χ2

(2) 500 0.047 (0.095) 0.78 0.075 (0.117) 0.75 0.071 (0.106) 0.76

1000 0.040 (0.057) 0.79 0.071 (0.084) 0.76 0.072 (0.073) 0.76
fε = gg1 250 -0.070 (0.163) 0.76 -0.097 (0.252) 0.72 -0.091 (0.210) 0.74

h =U [−0.5,0] 500 -0.059 (0.103) 0.76 -0.087 (0.175) 0.72 -0.079 (0.145) 0.73
1000 -0.057 (0.067) 0.77 -0.079 (0.120) 0.73 -0.068 (0.096) 0.75

fε = gg1 250 -0.071 (0.163) 0.76 -0.091 (0.246) 0.73 -0.064 (0.193) 0.75
h(x−1.5) =−χ2

(2) 500 -0.066 (0.091) 0.77 -0.083 (0.158) 0.73 -0.074 (0.119) 0.74

1000 -0.058 (0.061) 0.77 -0.076 (0.118) 0.74 -0.064 (0.086) 0.75
fε = gg0.5 250 -0.080 (0.207) 0.74 -0.108 (0.293) 0.70 -0.094 (0.240) 0.72

h =U [−0.5,0] 500 -0.072 (0.142) 0.73 -0.097 (0.222) 0.70 -0.086 (0.193) 0.71
1000 -0.067 (0.082) 0.74 -0.088 (0.133) 0.71 -0.081 (0.118) 0.72

fε = gg0.5 250 -0.075 (0.197) 0.75 -0.103 (0.280) 0.71 -0.086 (0.540) 0.73
h(x−1.5) =−χ2

(2) 500 -0.074 (0.150) 0.74 -0.095 (0.205) 0.70 -0.080 (0.184) 0.73

1000 -0.062 (0.083) 0.74 -0.086 (0.132) 0.71 -0.072 (0.115) 0.72
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3.2. GARCH(1,1)

Now we assess and compare the finite-sample performance of the proposed estimator

MPHDE with GQMLE and NGQMLE under the GARCH(1,1) model. We can similarly

consider the same Cases 1-4 under GARCH(1,1) model, but since some results are quite

similar, we only report the more general Case 3 and Case 4 under the second type of con-

tamination (3.2).

For the GARCH(1,1) model given in (2.1), β0 is the lower bound of the conditional and

unconditional variance of Xt’s, β1 measures the extent to which a shock in returns Xt today

feeds into next period’s volatility while β2 measures the effect of volatility shock today on

the next period’s volatility. In addition, β1 +β2 measures the rate at which these effects dies

over time. The larger the β1 +β2, the longer the persistence of these effects. To ensure the

stability of the GARCH process, we impose the constraints βi > 0, i = 0,1,2 and 0 < β1 +

β2 < 1 in the simulation. In our simulation studies, we take the true parameter values β =

(β0,β1,β2)
>=(0.5,0.3,0.6)>. Note that in GARCH(1,1), σ0 is also an unknown parameter.

Following the convention in the existing literature, we use the sample unconditional standard

deviation as an estimate for σ0 to reduce dimensionality, i.e. σ0 = std(Xt).

Case 5: unknown innovation distribution

When the innovation distribution is unknown and data are not contaminated, the results

are presented in Table 3.13, 3.14 and 3.15 for β0, β1 and β2 respectively. As in Case 3, we

take t4 as the quasi-likelihood function used in the construction of NGQMLE. The perfor-

mance of MPHDE relative to GQMLE and NGQMLE is similar to those in the ARCH(1)

model. Specifically, When the innovation distribution is normal (gg2), close to normal (t20)

or light-tailed (gg4), GQMLE delivers the best performance among the three followed by

NGQMLE. On the other hand, when the innovation distribution has heavy tails, NGQMLE

generally performs the best followed by MPHDE.
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Case 6: unknown innovation distribution and contaminated

When the innovation distribution is unknown and data are subject to the second type of

contamination (3.2), the results are presented in Table 3.16, 3.17 and 3.18 for β0, β1 and β2

respectively. Similar to the simulation studies of the ARCH(1) model in Case 4, MPHDE

again tops both GQMLE and NGQMLE in terms of bias, MSE and CP by a considerable

margin, which justifies its robustness to data contamination.
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Table 3.13: β̂0,MPHD, β̂0,G and β̂0,NG for GARCH(1,1) with unknown innovation distribu-

tion.

β̂0,MPHD β̂0,G β̂0,NG

fε n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
t20 250 -0.028 (0.088) 0.90 0.024 (0.086) 0.91 0.025 (0.087) 0.91

500 -0.019 (0.034) 0.90 0.014 (0.032) 0.91 0.017 (0.035) 0.90
1000 -0.015 (0.013) 0.91 0.012 (0.012) 0.92 0.014 (0.012) 0.91

t9 250 -0.034 (0.090) 0.90 0.033 (0.088) 0.89 0.031 (0.084) 0.90
500 -0.028 (0.036) 0.89 0.031 (0.039) 0.88 0.029 (0.034) 0.89
1000 -0.023 (0.016) 0.88 0.020 (0.020) 0.89 0.017 (0.014) 0.89

t6 250 0.034 (0.100) 0.90 0.035 (0.117) 0.88 -0.030 (0.090) 0.90
500 0.023 (0.040) 0.89 0.026 (0.046) 0.87 -0.018 (0.037) 0.89

1000 -0.019 (0.018) 0.90 0.019 (0.024) 0.88 -0.018 (0.016) 0.90
t4 250 0.033 (0.116) 0.90 0.048 (0.145) 0.88 -0.037 (0.106) 0.90

500 -0.028 (0.045) 0.89 0.038 (0.057) 0.87 -0.029 (0.043) 0.89
1000 -0.024 (0.022) 0.89 -0.031 (0.030) 0.87 -0.025 (0.020) 0.90

t3 250 0.046 (0.126) 0.88 0.061 (0.153) 0.86 -0.050 (0.118) 0.88
500 0.039 (0.058) 0.88 0.051 (0.074) 0.86 -0.043 (0.052) 0.89

1000 -0.026 (0.025) 0.89 -0.044 (0.033) 0.87 -0.033 (0.024) 0.89

gg4 250 0.021 (0.045) 0.92 0.018 (0.041) 0.93 0.019 (0.044) 0.92
500 0.023 (0.023) 0.91 0.012 (0.019) 0.92 0.016 (0.022) 0.91
1000 -0.016 (0.010) 0.91 0.010 (0.009) 0.93 0.012 (0.010) 0.92

gg2 250 0.027 (0.062) 0.92 0.020 (0.057) 0.93 0.025 (0.060) 0.92
500 -0.016 (0.029) 0.91 0.013 (0.026) 0.92 0.015 (0.030) 0.91
1000 -0.013 (0.014) 0.92 0.010 (0.013) 0.93 0.012 (0.014) 0.91

gg1 250 -0.035 (0.098) 0.92 0.038 (0.106) 0.91 0.030 (0.091) 0.92
500 -0.028 (0.038) 0.91 0.035 (0.044) 0.89 0.025 (0.036) 0.91
1000 -0.017 (0.020) 0.91 0.022 (0.025) 0.89 0.017 (0.019) 0.90

gg0.5 250 0.045 (0.113) 0.89 0.055 (0.134) 0.87 -0.039 (0.109) 0.89
500 0.027 (0.051) 0.88 0.042 (0.059) 0.86 -0.025 (0.049) 0.88

1000 0.024 (0.026) 0.89 0.032 (0.033) 0.87 -0.022 (0.024) 0.89
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Table 3.14: β̂1,MPHD, β̂1,G and β̂1,NG for GARCH(1,1) with unknown innovation distribu-

tion.

β̂1,MPHD β̂1,G β̂1,NG

fε n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
t20 250 -0.031 (0.046) 0.90 -0.026 (0.043) 0.91 -0.028 (0.044) 0.90

500 -0.021 (0.021) 0.91 -0.018 (0.022) 0.92 -0.016 (0.020) 0.91
1000 -0.009 (0.008) 0.92 -0.008 (0.006) 0.92 -0.011 (0.007) 0.92

t9 250 -0.027 (0.053) 0.91 -0.025 (0.051) 0.90 -0.020 (0.049) 0.91
500 -0.017 (0.024) 0.90 -0.020 (0.026) 0.90 -0.015 (0.022) 0.90

1000 -0.013 (0.013) 0.91 -0.015 (0.015) 0.91 -0.012 (0.011) 0.91
t6 250 -0.030 (0.060) 0.91 -0.031 (0.064) 0.90 -0.027 (0.057) 0.91

500 -0.019 (0.031) 0.90 -0.020 (0.037) 0.89 -0.016 (0.027) 0.90
1000 -0.016 (0.017) 0.91 -0.018 (0.020) 0.90 -0.014 (0.016) 0.91

t4 250 -0.035 (0.078) 0.90 -0.041 (0.088) 0.89 -0.031 (0.070) 0.91
500 -0.029 (0.037) 0.89 -0.037 (0.042) 0.88 -0.024 (0.034) 0.90

1000 -0.019 (0.022) 0.91 -0.024 (0.028) 0.89 -0.016 (0.020) 0.91
t3 250 -0.037 (0.110) 0.88 -0.047 (0.133) 0.87 -0.033 (0.096) 0.88

500 -0.030 (0.055) 0.88 -0.042 (0.069) 0.87 -0.028 (0.051) 0.88
1000 -0.023 (0.029) 0.89 -0.034 (0.035) 0.88 -0.020 (0.027) 0.89

gg4 250 -0.021 (0.033) 0.92 -0.017 (0.029) 0.93 -0.018 (0.032) 0.92
500 -0.012 (0.019) 0.91 -0.009 (0.017) 0.92 -0.009 (0.019) 0.92

1000 -0.007 (0.010) 0.92 -0.005 (0.009) 0.93 -0.006 (0.012) 0.92
gg2 250 -0.020 (0.039) 0.92 -0.018 (0.034) 0.92 -0.019 (0.038) 0.92

500 -0.016 (0.025) 0.91 -0.015 (0.021) 0.92 -0.019 (0.024) 0.91
1000 -0.009 (0.015) 0.92 -0.007 (0.012) 0.92 -0.009 (0.015) 0.92

gg1 250 -0.030 (0.070) 0.91 -0.034 (0.075) 0.90 -0.029 (0.067) 0.91
500 -0.018 (0.030) 0.91 -0.022 (0.034) 0.90 -0.016 (0.028) 0.92

1000 -0.011 (0.014) 0.92 -0.015 (0.016) 0.91 0.009 (0.012) 0.92
gg0.5 250 -0.035 (0.119) 0.90 -0.058 (0.142) 0.88 -0.033 (0.111) 0.90

500 -0.030 (0.043) 0.89 -0.050 (0.058) 0.87 -0.026 (0.039) 0.89
1000 -0.019 (0.018) 0.90 -0.031 (0.026) 0.89 -0.017 (0.016) 0.90
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Table 3.15: β̂2,MPHD, β̂2,G and β̂2,NG for GARCH(1,1) with unknown innovation distribu-

tion.

β̂2,MPHD β̂2,G β̂2,NG

fε n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
t20 250 -0.037 (0.066) 0.90 -0.031 (0.061) 0.91 -0.034 (0.061) 0.90

500 -0.026 (0.032) 0.91 -0.018 (0.031) 0.92 -0.022 (0.030) 0.91
1000 -0.013 (0.013) 0.92 -0.011 (0.012) 0.92 -0.015 (0.011) 0.92

t9 250 -0.030 (0.067) 0.90 -0.031 (0.065) 0.90 -0.026 (0.062) 0.91
500 -0.021 (0.034) 0.91 -0.022 (0.036) 0.90 -0.018 (0.032) 0.91

1000 -0.018 (0.017) 0.92 -0.018 (0.017) 0.91 -0.016 (0.015) 0.92
t6 250 -0.036 (0.084) 0.91 -0.044 (0.086) 0.90 -0.038 (0.079) 0.91

500 -0.028 (0.039) 0.90 -0.029 (0.040) 0.89 -0.026 (0.036) 0.90
1000 -0.016 (0.024) 0.91 -0.017 (0.027) 0.91 -0.016 (0.022) 0.91

t4 250 -0.046 (0.102) 0.90 -0.050 (0.109) 0.90 -0.040 (0.097) 0.91
500 -0.035 (0.049) 0.89 -0.048 (0.055) 0.88 -0.032 (0.044) 0.89

1000 -0.024 (0.022) 0.91 -0.030 (0.026) 0.89 -0.020 (0.020) 0.91
t3 250 -0.049 (0.126) 0.88 -0.062 (0.156) 0.87 -0.043 (0.121) 0.88

500 -0.037 (0.051) 0.89 -0.049 (0.068) 0.88 -0.031 (0.048) 0.89
1000 -0.028 (0.025) 0.90 -0.042 (0.032) 0.88 -0.026 (0.023) 0.90

gg4 250 -0.027 (0.049) 0.92 -0.022 (0.042) 0.93 -0.024 (0.045) 0.93
500 -0.013 (0.021) 0.91 -0.010 (0.019) 0.92 -0.015 (0.020) 0.91

1000 -0.011 (0.013) 0.92 -0.009 (0.011) 0.92 -0.010 (0.013) 0.92
gg2 250 -0.029 (0.054) 0.92 -0.026 (0.051) 0.92 -0.029 (0.054) 0.92

500 -0.021 (0.030) 0.91 -0.019 (0.024) 0.91 -0.023 (0.026) 0.91
1000 -0.011 (0.016) 0.92 -0.010 (0.013) 0.93 -0.011 (0.015) 0.92

gg1 250 -0.038 (0.077) 0.91 -0.041 (0.083) 0.90 -0.037 (0.071) 0.91
500 -0.023 (0.033) 0.90 -0.026 (0.040) 0.89 -0.023 (0.030) 0.90

1000 -0.014 (0.016) 0.91 -0.017 (0.019) 0.90 0.012 (0.014) 0.91
gg0.5 250 -0.048 (0.127) 0.89 -0.070 (0.150) 0.87 -0.043 (0.118) 0.89

500 -0.035 (0.045) 0.88 -0.061 (0.062) 0.87 -0.033 (0.048) 0.89
1000 -0.029 (0.023) 0.89 -0.040 (0.032) 0.88 -0.024 (0.021) 0.90

51



Table 3.16: β̂0,MPHD, β̂0,G and β̂0,NG for GARCH(1,1) with unknown innovation distribution and

contamination (3.2).

β̂0,MPHD β̂0,G β̂0,NG

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 -0.060 (0.138) 0.78 -0.087 (0.181) 0.75 -0.079 (0.151) 0.76

h =U [−0.5,0] 500 -0.052 (0.097) 0.77 -0.084 (0.137) 0.74 -0.072 (0.111) 0.74
1000 -0.050 (0.063) 0.77 -0.083 (0.096) 0.75 -0.073 (0.082) 0.76

fε = gg4 250 -0.053 (0.134) 0.78 0.085 (0.174) 0.76 0.072 (0.146) 0.77
h(x−1.5) =−χ2

(2) 500 -0.050 (0.093) 0.77 0.079 (0.131) 0.75 0.072 (0.109) 0.76

1000 -0.051 (0.060) 0.79 0.073 (0.091) 0.76 0.067 (0.075) 0.76
fε = gg2 250 -0.064 (0.157) 0.77 -0.083 (0.195) 0.75 -0.072 (0.172) 0.75

h =U [−0.5,0] 500 -0.058 (0.112) 0.76 -0.085 (0.149) 0.73 -0.068 (0.120) 0.74
1000 -0.055 (0.073) 0.76 -0.077 (0.112) 0.74 -0.069 (0.088) 0.75

fε = gg2 250 -0.060 (0.152) 0.78 0.077 (0.193) 0.75 0.069 (0.170) 0.76
h(x−1.5) =−χ2

(2) 500 -0.057 (0.089) 0.77 0.080 (0.128) 0.74 0.067 (0.106) 0.76

1000 -0.052 (0.062) 0.78 0.075 (0.090) 0.75 0.064 (0.074) 0.76
fε = gg1 250 -0.060 (0.213) 0.76 -0.092 (0.269) 0.73 -0.066 (0.236) 0.74

h =U [−0.5,0] 500 -0.055 (0.141) 0.76 -0.088 (0.181) 0.73 -0.060 (0.157) 0.75
1000 -0.058 (0.083) 0.77 -0.084 (0.130) 0.74 -0.072 (0.103) 0.75

fε = gg1 250 0.061 (0.211) 0.76 0.090 (0.254) 0.73 0.069 (0.221) 0.75
h(x−1.5) =−χ2

(2) 500 0.064 (0.134) 0.77 0.086 (0.167) 0.74 0.067 (0.146) 0.75

1000 0.053 (0.081) 0.77 0.082 (0.122) 0.74 0.062 (0.100) 0.75
fε = gg0.5 250 0.070 (0.252) 0.74 -0.101 (0.295) 0.71 -0.085 (0.271) 0.72

h =U [−0.5,0] 500 0.064 (0.179) 0.74 -0.098 (0.233) 0.70 -0.084 (0.203) 0.72
1000 0.060 (0.099) 0.75 -0.093 (0.132) 0.71 -0.081 (0.117) 0.73

fε = gg0.5 250 0.067 (0.248) 0.75 0.097 (0.290) 0.72 -0.087 (0.268) 0.73
h(x−1.5) =−χ2

(2) 500 0.063 (0.169) 0.74 0.095 (0.221) 0.71 -0.080 (0.196) 0.73

1000 0.060 (0.090) 0.76 0.095 (0.131) 0.72 -0.081 (0.117) 0.74
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Table 3.17: β̂1,MPHD, β̂1,G and β̂1,NG for GARCH(1,1) with unknown innovation distribution and

contamination (3.2).

β̂1,MPHD β̂1,G β̂1,NG

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 0.052 (0.096) 0.80 0.064 (0.135) 0.77 0.054 (0.107) 0.78

h =U [−0.5,0] 500 0.048 (0.070) 0.79 0.063 (0.094) 0.76 0.053 (0.083) 0.78
1000 0.042 (0.049) 0.81 0.058 (0.066) 0.77 0.050 (0.061) 0.78

fε = gg4 250 0.050 (0.094) 0.79 0.062 (0.124) 0.77 0.053 (0.105) 0.78
h(x−1.5) =−χ2

(2) 500 0.049 (0.067) 0.78 0.062 (0.089) 0.75 0.051 (0.072) 0.76

1000 0.040 (0.044) 0.79 0.053 (0.063) 0.76 0.045 (0.052) 0.77
fε = gg2 250 0.052 (0.112) 0.78 0.068 (0.153) 0.76 0.062 (0.122) 0.76

h =U [−0.5,0] 500 0.048 (0.076) 0.78 0.058 (0.104) 0.75 0.052 (0.086) 0.76
1000 0.043 (0.049) 0.79 0.058 (0.073) 0.77 0.049 (0.066) 0.77

fε = gg2 250 -0.050 (0.107) 0.78 -0.066 (0.147) 0.76 -0.061 (0.118) 0.76
h(x−1.5) =−χ2

(2) 500 -0.048 (0.066) 0.78 -0.058 (0.103) 0.75 -0.053 (0.080) 0.76

1000 -0.042 (0.044) 0.79 -0.053 (0.067) 0.76 -0.048 (0.058) 0.76
fε = gg1 250 0.057 (0.148) 0.76 0.075 (0.192) 0.73 0.067 (0.162) 0.74

h =U [−0.5,0] 500 0.054 (0.088) 0.76 0.067 (0.118) 0.73 0.060 (0.108) 0.73
1000 0.044 (0.056) 0.77 0.060 (0.081) 0.73 0.053 (0.070) 0.75

fε = gg1 250 -0.058 (0.139) 0.76 -0.073 (0.189) 0.73 -0.066 (0.153) 0.75
h(x−1.5) =−χ2

(2) 500 -0.048 (0.085) 0.77 0.067 (0.119) 0.73 0.058 (0.102) 0.74

1000 -0.043 (0.057) 0.77 0.061 (0.075) 0.74 0.054 (0.066) 0.75
fε = gg0.5 250 0.062 (0.168) 0.74 0.077 (0.218) 0.71 0.065 (0.184) 0.73

h =U [−0.5,0] 500 0.056 (0.121) 0.74 0.073 (0.171) 0.70 0.064 (0.133) 0.72
1000 0.050 (0.070) 0.75 0.067 (0.108) 0.72 0.062 (0.085) 0.73

fε = gg0.5 250 -0.061 (0.160) 0.75 -0.076 (0.207) 0.71 0.068 (0.182) 0.73
h(x−1.5) =−χ2

(2) 500 -0.055 (0.105) 0.74 -0.071 (0.165) 0.70 0.063 (0.135) 0.73

1000 -0.048 (0.069) 0.76 0.062 (0.106) 0.71 0.055 (0.087) 0.73
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Table 3.18: β̂2,MPHD, β̂2,G and β̂2,NG for GARCH(1,1) with unknown innovation distribution and

contamination (3.2).

β̂2,MPHD β̂2,G β̂2,NG

Contamination (3.2) n Bias (MSE) CP Bias (MSE) CP Bias (MSE) CP
fε = gg4 250 0.059 (0.132) 0.79 0.080 (0.187) 0.76 0.068 (0.147) 0.77

h =U [−0.5,0] 500 0.055 (0.096) 0.79 0.079 (0.137) 0.77 0.067 (0.115) 0.77
1000 0.048 (0.067) 0.80 0.073 (0.096) 0.78 0.063 (0.085) 0.78

fε = gg4 250 0.057 (0.129) 0.80 0.078 (0.181) 0.78 0.067 (0.145) 0.78
h(x−1.5) =−χ2

(2) 500 0.056 (0.093) 0.78 0.077 (0.129) 0.77 0.064 (0.099) 0.77

1000 0.046 (0.061) 0.79 0.067 (0.092) 0.77 0.057 (0.072) 0.78
fε = gg2 250 0.060 (0.154) 0.78 0.085 (0.213) 0.76 0.078 (0.169) 0.76

h =U [−0.5,0] 500 0.055 (0.105) 0.79 0.073 (0.151) 0.76 0.066 (0.118) 0.77
1000 0.049 (0.068) 0.79 0.073 (0.106) 0.77 0.062 (0.091) 0.77

fε = gg2 250 -0.057 (0.147) 0.79 -0.082 (0.204) 0.77 -0.076 (0.163) 0.78
h(x−1.5) =−χ2

(2) 500 -0.055 (0.091) 0.78 -0.073 (0.150) 0.75 -0.067 (0.110) 0.76

1000 -0.048 (0.070) 0.79 -0.067 (0.108) 0.76 -0.061 (0.089) 0.77
fε = gg1 250 0.066 (0.171) 0.77 0.095 (0.253) 0.73 0.084 (0.199) 0.74

h =U [−0.5,0] 500 0.062 (0.092) 0.76 0.084 (0.144) 0.72 0.075 (0.129) 0.73
1000 0.051 (0.065) 0.77 0.075 (0.105) 0.73 0.067 (0.084) 0.74

fε = gg1 250 -0.067 (0.168) 0.77 -0.092 (0.247) 0.73 -0.082 (0.187) 0.75
h(x−1.5) =−χ2

(2) 500 -0.055 (0.088) 0.77 0.084 (0.146) 0.73 0.073 (0.111) 0.74

1000 -0.050 (0.065) 0.78 0.076 (0.090) 0.74 0.068 (0.078) 0.75
fε = gg0.5 250 0.071 (0.193) 0.75 0.097 (0.244) 0.71 0.081 (0.211) 0.73

h =U [−0.5,0] 500 0.064 (0.147) 0.73 0.092 (0.207) 0.70 0.080 (0.163) 0.72
1000 0.057 (0.092) 0.74 0.084 (0.141) 0.71 0.078 (0.112) 0.72

fε = gg0.5 250 -0.070 (0.185) 0.75 -0.096 (0.233) 0.71 0.085 (0.188) 0.72
h(x−1.5) =−χ2

(2) 500 -0.063 (0.139) 0.74 -0.089 (0.198) 0.71 0.079 (0.166) 0.73

1000 -0.055 (0.087) 0.75 0.078 (0.138) 0.72 0.069 (0.104) 0.73
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Chapter 4

REAL DATA ANALYSIS

In this chapter, we demonstrate the implementation of the proposed estimators through

real data analysis. Specifically, we use GARCH(1,1) model to fit the daily (log) returns of

S&P 500 index collected from December 18, 2007 to December 18, 2017, which contains

2531 trading days in total. The daily (log) returns Xt is defined as

Xt = logPt− logPt−1 = log
(

1+
(

Pt

Pt−1
−1
))
≈ Pt−Pt−1

Pt−1
, (4.1)

where Pt is the index at the end of trading day t. The approximation is based on log(1+x)≈ x

when x is small. Therefore, the log returns is essentially the percentage change in the asset

price. Moreover, the log returns is preferred over the change in price Pt −Pt−1 because the

former is a better indicator of the performance of an asset. For example, consider two assets

in which $10 and $1000 are invested by investors A and B respectively. Suppose both assets

are down $10 the next day, then the two investors seem to be equally worse off in terms of

change in price. However, investor A has lost all of his money while investor B just lost 1%

of his initial investment.

Figure 4.1a displays the returns of S&P 500 index over this time period. It is clear

from Figure 4.1a that the daily returns exhibit volatility clustering where the returns appear

to be more volatile from the year of 2008 to the mid of the year 2009 when the global

financial crisis occurred, suggesting the need to use ARCH/GARCH model. We also observe

from Figure 4.1a that the returns fluctuate around zero horizontal line which indicates that

the unconditional mean of the daily returns is around zero. In Figure 4.1b, we present the

histogram of the daily returns, along with the normal curve in red. From it we can see

again that the innovation distribution is roughly symmetric about zero with quite a heavy
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tail. These observations justifies our use of GARCH(1,1) model to fit the data. We use the

more general GARCH(1,1) model instead of ARCH model since high-order ARCH model

can be approximated by GARCH(1,1) model.

(a) Time series plot (b) Histogram

Figure 4.1: Returns of S&P 500 index

Since we don’t know the exact innovation distribution, we use the MPHDE, GQMLE

and NGQMLE to estimate the semiparametric GARCH(1,1) model. The estimates along

with their standard errors are reported in Table 4.1. The standard errors are calculated using

bootstrap with 500 bootstrapping samples.

From Table 4.1 we can see that β0 seems to be statistically insignificant while β1 and β2

appear to be significant, regardless of estimation method used. Moreover, the MPHDE has

the smallest bootstrapping standard errors while the GQMLE has the largest. This might be

explained by the fact that the data is ‘contaminated’ during the global financial crisis in 2008

and 2009. When comparing the parameter estimates from these three methods, we find that

MPHDE and NGQMLE are close to each other while the GQMLE is a bit different. From

Table 4.1 we can also see that the estimated GARCH process is stable as β̂1 + β̂2 < 1 based

on either method. Being stable here means that the conditional variance of returns does not

grow without bounds over time and the unconditional variance of returns is finite. This is
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consistent with our visual inspection of Figure 4.1a. On the other hand, the sum β̂1 + β̂2 is

very close to 1, regardless of estimation method used. This indicates that the shock in the

financial market in the current period has quite a persistent effect on the volatility of S&P

500 index in the future period. When β̂1 and β̂2 are compared, since β̂2 is much bigger than

β̂1, we can firmly conclude that past volatility has a much greater impact than past returns on

current volatility. Overall, the analysis results are consistent with those in existing literature

(see, for example, Huang [15]).

Table 4.1: Estimates and their standard errors (in parenthesis) of MPHDE,

GQMLE and NGQMLE.

MPHDE GQMLE NGQMLE

β0 1.165×10−5 1.254×10−5 1.283×10−5

(1.791×10−5) (2.079×10−5) (1.934×10−5)
β1 0.083 0.153 0.093

(0.027) (0.075) (0.031)
β2 0.889 0.823 0.894

(0.082) (0.124) (0.096)
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Chapter 5

SUMMARY AND DISCUSSION

This thesis focuses on the estimation of ARCH(1) and GARCH(1,1) models, for which

the MHDE and MPHDE are proposed depending on whether the innovation distribution is

known or unknown. In the real-world application, GARCH(1,1) model is usually a reason-

able model to consider as it can approximate the high-order ARCH process [9].

Chapter 1 reviews the ARCH/GARCH models and the MHDE and MPHDE. In Chapter

2, we propose and construct the MHDE and the MPHDE for the ARCH/GARCH models.

In Section 2.1, when the innovation distribution is known, we construct a MHDE for the

unknown parameters. This MHDE is different from the original general definition of MHDE

in that the nonparametric p.d.f. estimation and the unknown parameters are mixed together,

which in turn increases the difficulty of investigating the asymptotic properties of the re-

sulting estimator. As a consequence, we are not able to prove the consistency of MHDE

mathematically. However, we examine the asymptotic properties of MHDE using graphs.

Specifically, we show graphically that MHDE can recover accurately the true innovation

distribution when the sample size is relatively large. This suggests that MHDE is expected

to converge to the true parameter values. Moreover, MHDE does not appear to be asymp-

totically normally distributed while MLE does when there is no contamination. However,

when data is contaminated, the distribution of MLE deviates from normal and that of MHDE

becomes less heavy-tailed. In Section 2.2, when the innovation distribution is unknown,

we propose the MPHDE by first profiling out the unknown innovation distribution that is

assumed to be symmetric. Even though we are not able to prove its consistency from the the-

oretical point of view, we show graphically that the profile Hellinger distance is an increas-

ing function of the L2-distance between the parameters and their true value, which implies
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that the proposed MPHDE should be fairly close to the true parameter values. Graphical

demonstration shows that the MPHDE is also capable of recovering accurately the unknown

innovation distribution when sample size is relatively large. In addition, the large-sample

distribution of GQMLE and NGQMLE no longer appear to be normal and that of MPHDE

exhibits less heavy tails when there is contamination.

Chapter 3 examines the finite-sample performance of the proposed MHDE and MPHDE

through Monte Carlo simulation studies. The results under ARCH(1) and GARCH(1,1)

models are presented in Sections 3.1 and 3.2 respectively. In Section 3.1 for ARCH(1)

model, we consider the following four cases: (i) the innovation distribution is known and

data is not contaminated; (ii) the innovation distribution is known and data is contaminated;

(iii) the innovation distribution is unknown and data is not contaminated; (iv) the innova-

tion distribution is unknown and data is contaminated. We compare the performance of the

MHDE with that of the MLE under Cases (i) and (ii). And the performance of MPHDE

is compared to that of GQMLE and the NGQMLE under Cases (iii) and (iv). We consider

two types of contamination. The first type contaminates the innovation distribution at each

time point with 5% contamination rate, while the second type assumes a completely differ-

ent innovation distribution 5% of the time. The simulation results show that MLE generally

has better performance in terms of bias, MSE and CP when the innovation distribution is

known and uncontaminated (Case i) while MHDE has an advantage in the first kind of con-

tamination. Although MHDE also outperforms MLE in the second kind of contamination,

they both perform poorly. When the innovation distribution is unknown and without con-

tamination (Case iii), NGQMLE generally has the best performance followed by MPHDE if

the true innovation distribution is heavy-tailed. However, GQMLE has the best performance

followed by NGQMLE if the true innovation distribution is normal, close to normal or light-

tailed. On the other hand, when the innovation distribution is known and with contamination

(Case iv), MPHDE has the best performance followed by NGQMLE. In Section 3.2 which
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considers GARCH(1,1) model, we have similar observations and conclusions to those in

Section 3.1. In summary, MPHDE is generally recommended in the real-world applications

where innovation distribution is unknown due to its robustness to data contamination and the

fact that with data contamination GQMLE and NGQMLE no longer enjoy normal distribu-

tion, even for large sample.

In Chapter 4, we analyze a real data, which is the daily (log) returns of S&P 500 in-

dex from December 18, 2007 to December 18, 2017. We fit a GARCH(1,1) model to the

data using MPHDE, GQMLE and NGQMLE, respectively. The three methods give similar

estimates, even though the MPHDE and the NGQMLE are close to each other while the

GQMLE is a bit different. All the three methods give consistent estimation results compared

with those in existing literature in which β0 is close to zero, β1 is close to 0.1 and β2 is close

to 0.9.

In my future research, there are two problems that needs to be addressed. First, the con-

sistency of the MHDE and MPHDE needs to be proved rigorously in order to further justify

its use in ARCH/GARCH models. Second, even though the MPHDE has been derived under

the symmetric assumption of the innovation distribution, we hope that a MPHDE that is free

of any distribution assumption can be developed in the future so that it can accommodate

asymmetric (actually any) innovation distributions.
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