The Unlversity of Calgary

SHIFT
A Structured merarChical Intermediate

Form for VLSI Deslgn Tools

by

Breen M. Liblong

A thesis
submitted to the Faculty of Graduate Studles
in partial fulfillment of the requirements for the

degree of Master of Science

Department of Computer Sclence

Calgary, Alberta
September, 1984

@ Breen M. Liblong, 1984.

The Unlversity Of Calgary

Faculty Of Graduate Studies

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies for acceptance, a thesis entitled, ‘““A Structured
Hierarchical Intermediate Form for VLSI Design Tools’ submitted by Breen
M. Liblong in partial fulfillment of the requirements for the degree of Master

of Science.

C\W RSN)

Supervisor,
Dr. G. M. Birtwistle
Department of Computer Science

ﬁm/m @Ajmg/“

Dr4. Kendall /
Department of Computer Science

1

Dr. J.[Cleary {J
Department of Computer Stlence

Dr. K. Kaler
Department of Electrical Engineering

September 10, 1984

11

Abstract

This thesls examines the problem of increaslng'complexlty in the design
of Integrated circuits. An analysis of methodologies used In managing this
complexity is made and observations are drawn on the requirements for an
intermediate form used to capture VLSI designs. While not providing a hlgh
level of abstraction directly, an intermedlate form provides the framework on
which to bulld tools which deal with designs at a higher level. SHIFT, a
Structured Hierarchical Intermediate Form for VLSI Design Tools, has been
defined and implemented.. VSHIFT uses a separated hlerarchy of leaf cells and
composition cells to‘ obtain unified and consistent descriptions of the physiecal,
structural, and behavioural attributes of a design. Leaf cells specify the
actual artwork necessary to produce fabrication masks. Composition cells
contain compositions of leaf cells and other (simpler) composition cells. Cells
are composed by abutting together ports on adjoining walls, stretching them
If necessary. Relationships between ports are defined in terms of minimum or
exact distance constralnts between them. A hierarchical method is used for
solving the constraint graphs produced from composition. SHIFT Is embed-
ded in the Franz Lisp programming language. SHIFT is a keystone of EDICTV
[Birt84}, a VLSI design tool environment under construction at the University
of Calgary. SHIFT 1is also used in a primitive design library called ;9I;iftlib
which is built on the JADE [Unge84] distributed environment using the Jipth
[Libl84a] lisp interface to JADE. Shiftlib serves as a prototype for the library

assistant envisaged in EDICT.

i

Acknowledgements

I would like to thank Dr. G. M. Birtwistle for his patience, encourage-
ment and enthusiasm for this project. Thanks are also due to Dr. J. P. Grgy,

Dr. 1. Buchanan, and Tom Melham for thelr dlécusslons and encouragement.

In addition I would like to acknowledge the many useful discussions I
have enjoyed with the graduate students and faculty in the Department of

Computer Sclence at the University of Calgary.

Finally I would like to thank Evelyn Wolfe and our daughter Caitlin for

thelr love and support.

iv

Table of Contents

ADSETHACE auvvrernserenennse eorvonasens reereesseresenen tetessscsessssesanssrsssssssesssrnnnsosannesasnernes i
AcknowledgZements .iveverreecsnereensecenssassccerseasesece veeresererecnneerresesasonassnrornane iv
TALIE Of CONLEILS cevrrvreeeirererercerssrcssresssssrencesresesssessseassnssesssessossessavarerssses v
LAST Of TableS ciiviceriecerescrcrensarercasssosesorcasrsrcssesssssassscsnes ceseeecresrresrsnteseresnsens ix
LSt Of FLZUTES .ecvierverceetcssrnneresessrassssssercssssssssesassssssserssessasssssssssnsscesssnsnsssne X
Chapter 1. Introducetioncceceveriivicessreserssissscasrosense eresseestersstssnsnsessncsarnes 1
1.1, THe PrODIEIL seveieiererererecererecrersesrecrsscoreressssssronsesnsssasesssnsssontossrnssonans 1
1.2. The Nature of VLSI as an Implementation Mediumccceeeeeevreenes 2
1.3. Structured DeslgN .ccccvevcecnrearescrncaseensinne eeesreresntesnesensnstserattnsatestasase 4
1.4. The Need for an Intermediate Form coererersesusrscosansesnernare vevens 5
1.5. Scope and Structure of the Thesls ...cciceinirsreens sossesesas cvossencrasans 8
Chepter 2. The Nature of VLSI .ccicvirrrncincenceenns crerreseresenarasestesssnasoncansnns 8
2.1, A Characterization of VLSI Designscceeese ceseevensacsree tesrerereesesesesere 8

2.2. Domains of Description of a VLSI Deslgn ..ccccceernerececinncacicnecrececeans 11

2.3. Current VLSI Design ToOIS cccevrererees 17
2.3.1. The Caltech Design ToOIScceeneeeee ceesrerans ceesessesssieserarsressasesnns 17
2.3.2. Procedural Deslgn ToOIScceee... cvesnaes crorarenes veresererersseesnsasnasans 22

2.4. Summary sesesueans vesesacsrvecoresesnsrentasesresensanse corsorsesans 28

Chapter 3. Deslgn Methodologies

3.1. Structured Design Methodélogy ...
3.1.1..Regularitycece.
3.1.2. Modularity ...cccceciesrceccees ceressersnsrenrennse cececenssessosarsasnes cerecrarersesncees
3.1.3. Hierarchycceceeeenee. reeeesssasesssssssssssennane T
3.1.4. Localitycceucet cevesshressennesnsisranene cessssnsenssesatnnsantestarsarrasansensrsanes

3.2. Hierarchical Desigh MethodOIOZY ..ccccccrrrcerecrcrssericsessenscasacsssasessecncs)
3.2.1. Leaf Cells corerssssansserareennes cesreessennen cerseserarnnene ceesecsersnieenes
3.2.2. Composition Cells
3.2.3. Compatibility with Structured Deslgn cersesesseensensessransan

3.3. Iterative Modelling .cccecvcveieccesncanscncronese cereessssrsacnsae

3.4. SIMUlation .ceceerercennieneecinecceanccencntaonsene sesensasusssnssaseonns ceseesrenesarens

3.5. Current TOOIS ...cceeererenneavenne cerrsesserenns tesssensessressesnaseneons cerrveessenes

3.6. Conclusionc...ee ceeesnree ceesssessaraaressararerses cessasseccsasrssane coeneees cosnneoree

Chapter 4. High Level Intermediate FOrmsccoeeeceennenens ceeserensares ceeesanss

"4.1. Intermediate Form Philosophy rrereesnsenenseensossesessssessessase cencesencane
4.1.1. Leaf and Composit!qn Cells vereessnsene crersrcosrone
4.1.2. Composition Rulescceeeerrerueesnese vressrsessnrenes vevesenecens ceeavesnesasessas
4.1.3. External versus Internal Information In a Cellcccceevuueeenens
4.1.4. Design Systems Using a High Level Intermediate Form

4.2. SHIFT DesigZn .c.cccccaceesnanese ceeesesnencrsarseseses srevasesese seeesrsoensas creverasasnse
4.2.1. SHIFT CellS .cciovverirerenierennenmvsnecssesssassssassacannane . reveresrsnnaeasens

vi

29

29

31

31

32

32

33

33

34

35

35

38

40

41

42

43

45

47

48

49

50

4.2.2, Leaf Cells cresstoreerasranrores ceeseorcasasaens rresrtisessnssenrancan -

4.2.2.1. Physical Descriptioncccceeun soesesscasenstestansensrssssrensansassnsanses
4.2.2.2, Structural Descriptioncceeeee. ceersenseses ceeenees eersesensnsecsnsacsane
4.2.2.3. Behavioural Descriptloncccceccrcerncsrcnceresoscnn cveneroeseocen cosesrene
4.2.3. Composition Cellsccccevceeervenes teesressesssesesansrsssssseseensrsreasnnasansens
4.2.4. Design Instantiation csnnsasscosennosene [P
4.2.5. The Composition AIZOTIthIN ..c.cccceierorensncasirecsscrcsaencessanescassans v
4.2.6. Complexity of The Composition Algorithmccecee severeseensennsee
4.3. SUIMMATY .evveeereereneeesssnne tevenrecssnssssssssane seevereresesesenensasasenenasas resseessane
Chapter 5. SHIFT Implementation c..cc.eccooesecsecseses corsssesanassecansessssesrannane .
5.1. Choice of Implementation LANgUAZE .cccieasosecress cectvssncesranane cescesnoses .
5.2. SHIFT Implementationc..cceoeecereecannccens oreesenresesneesernens
5.3. SHIF'T and Current VLSI ToOIS .cccecrcconnees crevenseesenvessenssrnsens coseenacene
5.4. SHIFT aNd EDICT .cccververienssersoncorcersrssoessssassasssssesassonses sevessonsennens
Chapter 8. Conclusion cervsenececacaencossansrsoesoossseses cesecancarnesensess eeescssconns
6.1. SUMMATY .ccvcerissensens eosesenstsirassatrnaceennoseneses sarsesseserensasssanses cornnsessssnnee
6.2. Observations on SHIF'Tcoceeeee ceorcesarseosscecoterses seeessrecesvonsenns
6.3. Future Research DIrections ..ccecccrerisecesocesen cosesrentrasecessns ceerereee
References veresernseseerssnotes vereorererrenn ceccevaserensnessosones cesnvenne eescnnesronessans

Appendix A. Syntax of SHIFT

vii

56

57

61

63

64

- 66

67
69

70

71

71
72
74

75

78

78

79

80

82

88

1. Deflning Cells ..ccccveniaennees cecsesrsasansronens eteretnsesseanessrsnetnsrransnesastsnsae cerees

2. Geometry Primitives .cococeccrernicecsrecsecees
2.1. Basic Geometry Primltives
2.2. Selectors and Predicates ceassesersnsensrnnene cossstseesnesesarreseanrannes
2.3. Transformation Fungtlons eeeresssassnacesnnssnnressanene eerreentsassiseraane .-
2.4. nMOS Geometry Functlons cesesseseeseeane tesessrcnssrresnsnesararasan

2.5. CMOS Geometry Functions ..ccceceesecncnennees erertcsercansrentretsrsrsasesaresans

. 2.8. Miscellaneous Functions cecrerasnrone cessraseasosassans eeesesasernsessanennes .
3. POINLS .cceeeresrrccnnnens covesvecenes vesneasernesens cnseeessssnssveseres cesssrensesssncsionsesarsse
3.1. Creation, Selection, and Relational Functions vesresssreannee
3.2. Point Manipulations crassscrssnsesene cetetucteoerssereresasasasnerarernsasase
3.3. Point Transformationsc.c.ceicereesnceeneranceccssescencns osressrssnesssasnsassonnas
4. Instantiation and Selectloncccicsnicsrtncciencicnceroncsancceane rersecersnnnes ceasesene
5. Other Functions ceerosnsesases craessereessssese eesrresstrsresessrssssannessnanenensararsens

Appendix B. SHIFT Examplesccceenee. cecevsncerase caveenresronnsnsserasarsrensanes

1. The Shift Reglister Leaf Cellcccieircinnsnsnsrnsscacssecsenssiseisessnnsesns

2. A Shift Reglster AITaY .cocceioricarens crecneseessestestrsrssssonsatasaenes eveenne ceesvesasse

vil

88

g

8

91

91

92

93

93

93

93

94

94

95

96

96

98

List of Tables

Table 1.1. A Comparison of IC Technology Complexity ...c..cccervueeunneas

Table 3.1. TooIS VS ReqUIrements ...c.cceericeccccrsosocosrorsssssarasassossssassssscacsvace

ix

List of Figures

Figure 2.1. Moore’s LaW ..ccvccorrrcrecracenes
.Figure 2.2. NMOS Ramcell ..cccoecrinnceneas

Figure 2.3. The OM2 Floorplan

oo

oo

oo

Figure 2.4. Representatlon of a Structural Description of a Selectlvely

Loadable Dynamic Register Cell
Figure 2.5. The Scale System
Figure 3.1. A 4 by 4.Barrel Shifter

Figure 3.2. A Separated Hlerarchy

P T Y Y Ry R T Y T Y YT TP LY

oo

oo

oo

Figure 4.1. A Cell Decomposition of the OM2 Datapathccccccecseeencenes

Figure 4.2. The Behavlours of a Count Cell and Its Components

Figure 4.3(a). Overview of A Leaf Cell DeflnItioneeeeeeeeeeeeiniieiiiciiecacenas

Figure 4.3(b). Overview of A Composlt,ibn Cell Deflnitionccceveenennene

Figure 4.4(a). The Ports Definition of a Shift Reglster Cell

Figure 4.4(b). Thie Ports of & Shift RegiSter Cell w.....umrvrmmeerirsrensessieesees

Figure 4.5(a). The Constraints Definition of a Shift Register Cell

Figure 4.5(b). The Constraints Graph of a Shift Reglster Cell

Figure 4.6(2). The Geometry Deflnition of a Shift Register Cell

Figure 4.8(b). The Geometry of a Shift Register Cellcccecvverrerrerreenannecs

Figure 4.7(a). Wire Connection - Curtalledcccccciiviirereenereeceaneinenncennns

Figure 4.7(b). Wire Connection - Inflatedccccveiiiriiinininieirnnnninnnncniccnnes

Figure 4.7(c). T Connection - Curtalled

oo

13

14

15

24

30

34

44

46

50

50

51

52

53

54

55

568

58

58

59

Figure 4.7(d). T Connection - Inflatedccceerrerercensce
Figure 4.7(e). Butting Contact ~ Curtalledcccoeeeenees

Figure 4.7(f). Butting Contact - Inflated ...ccccoeeeeevenene.

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

Figure 4.8(a). The Structure Definition of a Shift Register Cell

Figure 4.8(b). The Structure Diagram of a Shift Reglster Cell

Figurer 4.9. The Behavlour of a Shift Register Cell

Figure 4.10(a). A 2 Element Shift Register Array Composition Cell

Figure 4.10(b). Geometry of a 2 Element Shift Register Array

Figure 4.11. An Example of Stretching ..cc.eceveecercocccenes

Figure 5.1. The EDICT Deslgn Environment

Figure B.1. Geometry of a 4 x 4 Shift Reglster Array

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooo

62
62
63
65
65
68

76 |

99

CHAPTER 1

Introduction

1.1. The Problem

Over the past twenty years integrated circuit technology has grown
exponentially from being capa.ble‘ of placing tens of devices on a single wafer
of silicon to placing hundreds of thousands of devices on a single chip. As a
result VLSI designers today are facing a crisls in complexity management not

unlike the same crisis faced twenty years ago by software designers.

There is a widening gap between what VLSI technqlogles are capable of
producing and what system designers can design. The designs that most fully
utilise the potential of VLSI technologles are memory chips, and only as a
result of the highly regular structure inherent in their design. With less regu-
lar structures such as mlcroprocessors system designers are having trouble

even completing designs.

The complexity scale implied by this technology can be visualised with
the help of an analogy (see Table 1.1) presented by Charles Seitz of Caltech
[Seit79]. Suppose we scale up a typical chip to make the spacing between
conductors edual to one city block in size. In this way, the circuit can then be
thought of as a multi-level road network carrying electrical signals instead of

cars.

In the mid 60’s the complexity of a chip was not much bigger than a

small town. Most people can carry around a map in thelr heads of a town

‘and be able to find their way around without too much difficulty. Similarly

designers could manage a design's detall in their heads.

A microprocessor bullt in the late 1970’s using 5 micron technology is
comparable in complexity to the entire Los Angeles basin. This would alreédy
tax our limits of memory In that only major freeways and avenues would be

- remembered; the rest would have to be negotiated using maps.

By the time a 1 micron technology is solidly in place (perhaps in as little
as two years from now) designing a chip will be equivalent to planning a
street network for all of Nevada and California at urban densities. At this
point it is beyond our ability even to remember the major freeways; only the

overall organisation of the design can be kept in our heads.

If this is extended to the ultimate limits of the technology (about 1/4
micron - {[Mead80], Chapter 1), designing a chip will be comparable to design-
ing a street network of urban densities that will cover the North American

continent.

The only hope of dealing with such complexity is to find some method of
managing it which does not increase In direct proportion to the size of the
designs. Thus techniques for structuring designs and design alds that support
these techniques must be Introduced to realise the potential of this technology

and avold the same mistakes made In software deslgn twenty years ago.

1.2. The Nature of VLSI as an Implementation Medium

VLSI is a new medium for the realisation of computations [Rem81]. Its
power springs not from its ability to implement existing engines such as

microprocessors, but to implement entirely new architectures directly. VLSI

A Comparison of IC Technology Complexity
e e e nmrm e o e
Year Connector Scale Factor Chip Size | Land Area
Separation | :(for 800m block) (width) (width)
’ Caltech
1963 || 25 microns 4 x10° 1 mm - area
4 km
. T Los
1978 || 5 microns 2 x 107 5 mm Angeles
100 km
California
1985 1 micron 1x 108 10 mm & Nevada
‘ 1000 km
: Nortﬁ
197? || 1/4 micron 4x10% 20 mm Amerlca
' 8000 km
Table 1.1.

in effect is a highly concurrent realisation medium for computationé and

7 allows us to exploit parallelism on a massive scale.

In addition, VLSI is.viewed by many as essentlai for fifth-generation com-
puting efforts and VLSI design tools are required both to design the chips
required in these computer systems and to support the experimental designs

needed along the way [Wall83].

The domain of VLSI design is very large, spanning from extremely regu-
lar and highly space and time optimised designs such as memory chips, to

highly irregular designs such as random logic circults. This thesis will focus

on the design of an intermediate form that is well sulted to a large subset of
"this domsin that lies somewhere between the two extremes; that of semi-
custom designs. Semi-custom designs can be charactérised by the use of regu-
lar structures such as PLA's to implement random’ logic, and by repetition of
elements in the design. The primary concern in semi-custom designs Is to get

a quick and correct implementation of a design.

" With a proper design methodology a design can often be optimlised after
it is designed correctly. What is required is a method of analysing the perfor-
mance bottlenecks, and then modifying the design to remove them. This
requires that a design exhibit characteristics such as locality and modularity.
" By designing an intermediate form that Incorporates these features, a firm

foundation is laid for higher level design tools.

1.3. Structured Design

The Caltech "structured design methodology” as introduced by Carver
Mead [Mead80] Is one approach to system design. It deals with the problem '
of complex deslgné by introducing regularity into the system. Even random
logic and Irregular structure have a regular implementation using PLA and
ROM structures. Hierarchical design techniques have been traditionally used
to manage complex software systems, and Rowson has extended this design
methodology into the IC domain [Rows80]. Specifically, Rowson introduces
the concept of a separated hlerarchy, where a design can be captured through
its description in terms of leaf cells and the hierarchical structure that relates

groups of these cells.

If structured design methodology is not incorporated into tools, then an

increase in the complexity of the design as measured by the number of

components will dramatically Increase the complexity of the overall design.
Structured design methodology is a method of combating the combinatorial

explosion of complexity of a design.

Further, the use of a structured design methodology in tools allows for
consistent incremental design and modiflcation of VLSI specifications. The
result is tools which are simpler to develop and modify, since they can exploit
the inherent structure of a design, instead of primarily focusing on the use of

combinatorially optimal algorithms.

1.4. The Need for an Intermediate Form

Three domains can be recognised as being important in the specification
of VLSI designs [Buch80]. These can be termed the physical, structural, and
behavioural domalns. Some tools are better suited to specifications in one
domalin over the others. As a result, no one tool exists that Is ideal for
designing chips; rather a suite of tools Is necessary for the complete design of
a VLSI circult. Communication between these tools Is greatly enhanced by a
consistent representation of the design through the use of an Intermediate

form.

Further, designs are not arrived at in their totality; they are grown incre-
mentally and modifiled many times before a satisfactory solution is reached.
Some method is needed to force an incremental specification of a design which
will remain consistent at each stage. The Incorporation of a hierarchical
design methodology into an intermediate form supports the incremental
specification through steﬁwlse reﬁﬁement of the solution. It also restricts the

effects of modification by localising such changes.

Many VLSI tools use CIF {Sprc80] as thelr Intermediate representation.
The problem with CIF is that it was only intended to ‘ be- used as a
specification of the layout for the silicon foundry. As a result other descrip-
tions (which were thrown away when the design was forced into CIF format)
have to be synthesised from the geometric description by tools like circuit
extractors. These descriptions are at best a canonical representation of the ori-
ginal description, and-at worst a totally linear description of the original

design, without any Internal structure.

What s needéd in VLSI design systems are tools which support a
designer’s flair and intuition about a solution to a design problem. They
should also report back to the designer any lnconéistencles and flaws in the
design at the level in which they occur. In order to do this an intermediate

form is needed that retains all of the original structure inherent in the design.

1.5. Scope and Structure of the Thesis

This thesis will examine current VLSI design tools and design methodolo-
gles in light of the current complexity crisls. An argument is made that an
intermediate form capable of capturing the structure inherent in a design is
crucial to the design process itself. This is further strengthened by the need
for this intermediate form to tle together the various tools that are needed to
deal with t;he design at the many different levels of abstraction. Finally the
design of an intermediate form meeting these objectives will be outlined and

its implementation and future use will be discussed.

This thesis will not address the more difficult aspect of automatlng the
' the design of VLSI clrcuits, nor will it investigate the modes of reasoning

about highly complex IC designs. One must be able to wallé before learnlﬁg

to run.

Chapter 2 will elaborate on the nature of VLSI by characterising VLSI
designs and analysing the domalns of description inherent in them. It will

also discuss how current tools deal with the deslgn process. .

Chapter 3 focuses on two design methodologles of interest; the structured
design methodology of Carver Mead, and hierarchical desl.gn methodology as
developed by Rowson. The nature of iterative modelling and the role of simu-
la.‘tion in VLSI design are discussed. Finally an examination Is made of
current design tool_s and how they meet and fail to meét the criterla developed
in chapters 2 and 3. The requirements for an intermediate form are drawn

from this analysis.

Chapter 4 discusses the design philosophy behind SHIFT and then
proceeds to describe the design of SHIFT in detall. The advantages and the
consequences of implementing SHIFT as a distrlbuted process in Lisp are

examined.

Finally, chapter & focuses on a discussion of SHIFT in the light of experi-
ences in implementing and using it. Some future extensions of this work are

also discussed.

CHAPTER 2

The Nature of VLSI

2.1. A Characterization of VLSI Designs

We are now in the midst of a microelectronic revolution which has pro-
vided us with the aﬁillty to place 100,000 ch;cult elements on a single chip.
Further, as each year goes by, manufacturers are able to put more and more
devices on a single plece of silicon. This is shown by Moore’s law in Figure
2.1. With the increasing complexity of a chip, the design time also increases

at a rapld rate [Moor79].

Working further agalnst the management of complexity is the fact that
the current life cycle of a product is approximately five years, of which the
design time average, ‘which typically includes about two fabrication cycles, is
two years. It now takes twg years fér a large team to complete a design \}vith
one hundred thousand devices; each year the number of -devices will double,
yet the life cycle and hence the elapsed average design time is expected to be
the same. Thus the overwhelming problem that we will face once we scale

down to sub-micron structures will be the management of complexity.

There are a number of methods of tackling increasing complexity. These
include adva.nges in deslgn which reduce the number of components for a
given function, the use of an Increasing number of deéigners for a given pro-
Jeet, and the exploltz.a,tlon of design methodologles which attempt to exploit
certain properties of the medium and the design itself. These design metho-

dologies include the use of standard parts from cell libraries, and mapplng

108 .

4

B4K

COMPONENTs:

PER 4K
CHIP

258

10

YEAR

Figure 2.1. Moore's Law

prob_lems into standard architectures, which may be best accomplished with
the use of silicon compilers.

There are also various design styles which may be _used to express a given
fung:tion in silicon. Two of the most comr;xon in use in industry are the gate

array technique and the use of standard cells.

10

The gate array approach is currently the most common approach to
sutomated design of custom circuits. In this approach, a two-dimensional
array of replicated cells composed of transistors is fabricated to a point just
prior to the Interconnection levels. A given circuit function is then imple-
mented by customising the connections within each local group of transistors,
to deflne its function as a basic cell, and then by customising the interconnec-
tions between cells in the array to defilne the function of the circuit. Gate
arrays are most usefully employed when minimising design time is more

important than minimising sllicon area.

The problem with this approach is that the structure of the original
design Is flattened to a single level of interconnect at the silicon surface. Thlé
mapplng can be both difficult and wasteful, but has the advantage of fast pro-
duction turnaround. The ratio of circuit density between a structured design
and a gate array has been lnvestigated for a small set of chips, with the strue-
tured designs winning out by a factor of between 3 : 1 and 6 : 1 [Hell79].
Further, the mapping can bnly be expected to get worse as designs become
more complex, since the management of interconnect becomes ever more
important, 'yet the gate array approach robs us of the abllity to manage the

interconnect fully.

The standard cell approach refers to a design method where a library of
custom-designed cells I8 used to implement a circult design. The designer
chooses the particular cells needed to implement the function, and specifies
the interconnections between them. Thus the designer Is freed of having to
worry about the detalls involved in designing cells and can work at a higher

level of abstraction. The actual placement of the cells may be manual or

11

automatic. A problem arlses with this approach when no predesigned cells
. performing the exact funcﬁon carll be found in the library. The designer
would then be forced to design a new standard cell that implements the
requlréd function, the very situation ‘he hoped to avold using this approach.
Also, since regular interconnect cannot in general be achleved, this design
style trades fiexibility and silicon area for lower design times and correct

design at the cell level.

Both gate arrays and standard cell approaches are seen to be unfit as a
design methodology suitable for handling designs capable of fully exploiting
sub-micron gate densities. For this reason only the structured design metho-
dology is pursued any further; chapter 3 examines this design methodology in
-detall. The rest of this chapter will conceptrate on the domains of description

of a VLSI design and how current topls support these.

2.2. Domains of Description of a VLSI Design

Three domains have been identifled to characterize a VLSI. design: physi-
cal, structural, and behavioural. There exists a hierarchy of description in
each of the three domains in a structured design, and it is important to ensure
that the descriptions not only be consistent within each domaln, but also
across domains. Fallure to do so can be catastrophic; for example the
behavioural and physical descriptions of a design may each be consistent, but
when the design comes back from the foundry the observed behaviour Is not
the desired or predicted behaviour because the specifications are not con-
sistent with each other. One method of ensuring consistency across domains
is to unify the description in each of the domains using a single hierarchy. In

this section we will define each domain and attempt to show how current

12

tools address each of these domalins of description.

The physical domain is concerned with the specification of the physical
layout of the integrated circuit via patterns on fabricatloﬁ masks. These pat-
terns may be deflned as boxes, polygons and wires. For example, an NMOS

ramecell (see Figure 2.2) in LAP [Loca78] would be defined:

define("ramcell”);

layer(green);
wire(4,-1,29).x(ramlen-+1);
wire(2,3,5).x(8).y(15);
pullup(path(8,14).y(26)).y(29);
wire(4,11,10).x(16).w(2).y(19).w(4).x(22);
wire(2,23,15).y(21).x(30);
pullup(path(24,15).y(8).x(29)).xy(37,17).y(29);
gb(2,6);
gb(16,15);
gb(31,22);

layer(red);
wire(2,-1,2).x(ramlen+1);
wire(2,8,2).y(7);
wire(2,30,2).y(16).xy(27,19).y(23);
wire(2,22,6).x(12).y(13);
wire(2,10,23).x(20).y(18);

layer(implant);
box(28,5,32,13);

layer(metal);
wire(4,16,-1).y(ramhgt+1);
wire(3,1.5,-1).y(ramhgt+1);
wire(3,30.5,-1).y(ramhgt+1);

enddef;

where ramlen and ramhgt are the length and helght, respectively, of the ram-

cell.

In LAP, all primitives are defined In terms of the current layer at the
time of definitlon. Wire(w,z,y).path draws a wire of width w starting at point
(x,y), and continues along the path traced out by successive movements in x
and/or y. The wire 1s the locus of all points of half-width along the path.
Boz(z1,y1,22,y2) places a box with diagonals at the corners (x1,y1) and

(x2,y2). Pullup(path) plants a butting contact at the first point in the path,

13

i

l
\\\ /

Figure 2.2. NMOS Ramcell

draws a 2-lambda wide depletion transistor along the points of the path, and
returns a 2-lambda diffusion wire starting at the path’s endpoint. Further,
both starting and ending polnts are assumed to be 2-lambda away from the
depletion transistor. Gb(z,y) 1s a diffusion-metal (green-blue) feedthrough cen-

tred at x,y.

One could then deflne a [1:x,1:y] array of ramcells by :

14

define("ramarray”);
for I:== 0 step 1 until x do
for j :== O step 1 until y do
draw("ramecell”, ixramlen, jxramhgt);
enddef;

At a higher level in the hierarchy of a design the physical description
may be specified as abutting areas within a floorplan, with each of these areas

enclosing a distinet module (see Figure 2.3).

The structural domain is concerned with describing a design in terms of
compbnents and connection nets. The components may be pﬂmitive com-
ponents such ‘as“ transistors or Instances of other component blocks [vanC79].r
The structural description can be visually represented as a series of boxes or
special symbols with lnterconnecting lines representing the nets such as the
selectively loadable dynamic register cell in Figure 2.4. Traditional forms of
structural description have been logic diagrams, where the components are

gates, multiplexors, etc. and circuit dfagrams, where the components are

Left Right
1 Reglsters Shifter ALU '
Port Port

Figure 2.3. The OM2 Floorplan

15

l Phase 1 LD’

Phase 1 LD .__I L » -

——-»—-——l_d__l - {>c —

Figure 2.4. Representation of a Structural Description
of a Selectively Loadable Dynamlc Register Cell

transistors, capacitors, resistors, etc.

The behavioural domain describes a design in terms of its function.
Some possible behavioural descri;;tions that have been used are ISPS [Barb81]
at the register transfer (RT) level, electrical circuit parameters to be used
with SPICE [Nage75], or a functional notation such as Gordon's LSM
[Gord81]. An example of a behavloural description using Gordon's notation is

that of a counting circult COUNT, deflned by |

COUNT(n) == {sw, in, out}.
{out = n};
COUNT(if sw==1 then in else n+1)

where COUNT is defined to be the behaviour of a sequential device with
lnputzand output lines {sw, in, out}, and a value for the output line out = n.
The current state is glven by the expression In the left hand side occurrence of
COUNT and the next state is given by the expression in the right hand side

occurrence of COUNT.

i6

It is also common to describe the behaviour operationally in tferms of a
programming language such as Simula [Birt73], or through the use of timing
dlagrams{ logic eqﬁatlons, ete. The advantage of a formal system such as
Gordon's over a loosely defined operational approach Is the abllity to compute
the composition of behaviours with the use of a composition rule, thereby

allowing us to compare derlved and specified behaviours.

The goal of computer a.idgd design systems Is to control the mapping
betvx.'eén the hlera.rchles in each descriptive domain [Buch80]. An example is
the REST system (Richard’s Editor for STicks) [Most81], which maps from a
structural (and partially physical) representation to a full physical description
cf a desigh automatically., Most tools attempt to describe one or at most two
of these domains; the other domains belng elther ignored or specified
separately. Unless these domains are specified In an lnt‘egrated manner, how-

ever, inconsistencles among them can easily result In incorrect designs.

Also, since these domains partially overlap it is possible to deduce a
description in one domain from the description in the other, and check the
consistency between domains. The problem with doing so for any large design .
is that it is very difficult to map efficiently from one domain to another in an
automatic manner, since there is only partial overlap and the mapping may
be very comi)lex. Thus REST encourages the user to place cuts In the wires
where a wire may be jogged as hints to the compaction algorithm to produce

a space-efficlent layout.

In the following section we will survey a number of tools in use in both
industry and research establishments, and examine them ‘In relation to their

descriptive power and conslstency among domalins.

17

2.3. Current VLSI Design Tools

Design tools rr;ust not only be easy to use; they must be able to handle
the complexity of the design, and be able to do so in a consistent manner
acroés all domains. In addition they must also allow for consistency
throughout the design cycle. No single tool currently exists which satisfles
these conditions. However, it is still instructive to examine a variety of tools

in use in light of these criteria.

2.3.1. The Caltech Design Tools

A major influence in the design of VLSI circuits has been the Caltech
structured design philosophy and its associated suite of tools [Trim81]. The
Caltech structured design philosophy is discussed In greater detall in Chapter
3. It incorporates the ldea of a special klnd of hierarchy called a separated

hierarchy which is composed of leaf cells and composition cells.

LAP. One of the most widely known leaf cell design tools has been LAP.
LAP is a Simula package which has prlxﬁitlves for producing geometric
speciﬁcations of cells. Iis standard output ls CIF for communication of infor-
mation to the foundry and geometric design rule checking tools. Although
LAP is embedded in Simula and allows the full features of the language to be
used, it is still a geometric description design tool. Further, it is a low level
geometry téol in that most of the LAP primitives have a one to one

correspondence with CIF primitives.

REST. REST [Most81] is a leaf cell design system based on symbolic layout
techniques of STICKS [WIill77]. REST is a graphical design tool and runs on
a high-resolution colour display using a mouse to input stick dilagrams. Sticks

dlagrams are both a structural specification technique and a partial geometric

18

specification teéhnique in that the relative position of wires and transistors are

meaningful but it does not provide a full-blown layout.

REST provides consistency between geometric and structural descriptions
of a design. It (ioes not, however, provide a behavioural description. In addi-
tion it is also limited to the design of leaf cells, and as such, does not provide
any means to express hlerarc'hy in a large design. Its output is in Sticks Stan-

dard form [Trimg&0], which is used as input by other composition tools.

PAUL. PAUL is a tool which Is similar to LAP. Like LAP, PAUL is embed-
ded in Simula, and is used for designing leaf cells. Its maln difference lies in
the fact that it outputs Sticks Standard flles rather than CIF flles. Since
Sticks are only a partial geometric specification (the actual size of the transis-
tors can be specified, but the rest of the geometric specification is topological)
as well as a structﬁra.l specification, it becomes easier to design leaf cells that
are process independent, using a program that fleshes out the Sticks to a full

geometric specification using the appropriate design rules for a given process.

| SAM. A fourth Caltech leaf cell tool is SAM [Trim81], which is a single
1nt<;ractive system‘ written In Smalltalk which combines layout language and
graphics as input. A user is given two windows which represent the state of
the design, one contalning a language representation, the other a graphical
representation. The user can manipulate either view, and the change iIs
displayed in both. It uses a slngie underlying representation of the design,
thereby ensuring consistency amongst views. Although it allows parameteri-
zation and an algorithmic definition of cells, SAM is a geometric description

tool for use in defilning leaf cells only.

19

In addition to these leaf cell tools, researchers at Caltech have developed

three primary composition tools; Bristle Blocks, SLAP/Earl, and SPAM.

Bristle Blocks. Bristle Blocks [Joha79] is a silicon compiler designed for the
construction of datapath chips. A datapath chip consists of data processing
elements such as reglstef files, ALU's, and shifters connected by and commun-
icating across data busses. The datapath chip Is microcode controlled with
each microcode word decoded on chip to drive the Individual control lines of
each of the processing elements. As an automatic layout;system, Bristle
Blocks imposes a generic (l.e. template) floorplan in return for ease in
automating the layout. This results in the physical floorplan being the same

as the structural floorplan.

Bristle Blocks cells are programs rather than data, thus In designing a
cell one writes a program which generates the necessary physical description
when executed. Bristle Blocks composes cells together by stretching so that
cells connect by abutment, and allows the cells to perfdrm computations and
participate in the design of the chip. Since the actual mechanics of stretching
is left to each cell, which makes local decisions (constrained by its neilghbour),

the result may be far from optimal.

The input to Bristle Blocks consists of parameterized cell definitions (as
programs) and a high level description of the chip, which consists of calls to
the cell programs. l?;ristle Blocks makes the chip by first executing the cell
definitions calls, abutting the resulting stretched cells to form the datapath
portion of the chip. Additional datapath timing and control information from
the' description of the chip is used to add control line buffers, parallel load

shift registers and instruction decoder to drive the datapath. Finally, Bristle

20

Blocks adds pads and wiring to create the complete chip.

Bristle Blocks has been enhanced since its original design to allow the
insertion of registers for testability, and a more general floorplan which allows
multiple processor systems to be compiled. The systems complled by Bristle

Blocks can have circult densities comparable to hand design.

A Bristlg Blocks description does not form a functional description of the
chip In that the required procedures only describe how a physical description
is to be generated; it does not specify what its behaviour is. Further, Bristle
Blocks is best suited to a two level plerarchy; a level compqsed of cell

definitions, and a level composed of the description which calls the cells.

SLAP /Earl. SLAP and Earl [King82] are two implementations of a system
closely connected to the separated hilerarchy. Both compose geometric
descriptions of rectangular leaf cells and other composition cells by superposi-
tion of connectors, stretching each cell when necessary. Constraints between
connectors are introduced to accomplish minimum separation, producing a
directed acyclic graph in each dimension which may be solved independently.
Two cells are composed together by composing their graphs. The graph is
then solved to produce the co-ordinates used in defining the physical instances
of the cells. The graph solution technique used Is similar to the one used for
Sticks compaction and is based on finding a solution to the constraint graph
by finding a topological sort of the nodes in the constraint graph. This algo- f

rithm is also used in SHIFT and is discussed in more detall in Chapter 4.

SLAP is embedded in Simula; Earl is an interpretive system with its own
list manipulation language. Neither deals with the structural or behavioural

domalins of description.

21

SPAM. The final Caltech composition cell we mention is Structure, Place-
ment, And Modelling (SPAM). SPAM is a system that can be used to
describe a hierarchical design which can then be simulated at any level of
detall. SPAM provides a conclse method for describing composition cells.
SPAM deals with a structural description of the cellé, from which a physical

description might be produced using Earl.

The behaviour of a composition cell can also be described. The design
can be simulated to any desired level of detail by SPAM by allowing the user
to choose which cells are the lowest level of the simulation. The behavioural

- description of the cell is used instead of the behaviours of its parts.

The structural description is primarily concerned with the speclfication of
the cell connectors. SPAM has typed connectors and these types are used for
checking that valld compositions between connectors are performed, i.e. that
the power connector of one cell is not connected to the clock connector of the

adjolning cell.

SPAM 1is used to design in a top—do;zvn manner. Cells are specified,
tested, and then decomposed into smaller cells. When a primitlve enough
level 1s reached, the cell 1s described ss a leaf cell. Simulation in SPAM is
accomplished by a bullt-in four-value event and clock driven functional simu-
lator; and is interactive. Once a cell description is compliled, the user msy
request a documentation workbook consisting of a hilerarchical map of the-
entlire circult, an Interface specification dlagram for each cell definition, and a

floorplan diagram for each composition cell in the description.

Although SPAM Integrates the structural and behavioural domains of

description, it still requires a separate tool (e.g. Earl) to describe and imple-

22
ment the physical domain.

2.3.2. Procedural Design Tools

ALI. ALI [Lipt83] Is a procedural language for the description of layouts at a
conceptual level at which nelther sizes or positions (absolute or relative) of
layout components may be specifled. In ALI a layout Is regarded as a collec-
tion of rectangular objects (oriented with their sides parallel to the Cartesian
co-ordinate axes) and a set of relations that hold amoné these objects. The
ALI programmer specifies a layout by declaring the rectangles and stating the

relationships that hold among them.

When executed ALI generates a minimum-area layout that satisfles all
the_relations between the rectangles specified in the program. It does this by
producing a set of linear inequalities involving the corners of the rectangles as
variables. These inequalities are then solved to generate the positions and
slzes'of the boxes. The program alsq produces connectivity information about
the rectangles in the layout, which may be used as Input to a switch level

simulator. This avolds the usual node extraction analysis.

ALl is built on top of PASCAL, thereby making full use of the program-
ming constructs in that language. Since cells can be specified with the use of
procedures, ALI can make use of a hlerarchical design methodology to build

large chips.

Although ALI is a procedural language, it 1s capable of describing only
the layout of a chip. The behaviours of the design’s components are not
described in any manner. This makes ALI difficult to use in designing any-
thing other than large leaf cells without an auxiliary tool to describe the

behaviour of a design. ALI also suffers from its lack of connecting primitives

23

(such as contacts) making the programs hard to write and understand, and in
the problems resulting from embedding it in PASCAL (l.e. no separate compi-
lation facilities, lack of generic types and dyhamlc arrays, variant records,

ete.).

F!nall&, ALI falls to exploit the hlerarchic structure in generating and
solving the set of linear inequalities. An ALI program iIs run thfough a fllter
to generate a standard PASCAL program, which when executed, produces the
set of linear inequalities and Vconnectivity relations for the entire design. Since
a design can currently be 10 million rectangles (and is growing fast), the solu-
tion process, even when the relatloné are restricted to keep the placement
algorithm linear, takes an Inordinate amount of time and space. By exploit-
ing the hlerarchy of designs, it Is possible to reduce the amount of eﬂ'c;rt in
solving the graphs [Ullm84], [GosI83]. We shall examine this approach further

in Chapter 4.

Scale. Scale [Buch82] is a procedural language that Is conslderably more
flexible than ALI in de‘scrlbing designs. Scale is not a single language, but a
range of speclal purpose languages covering different ranges of autpmatic lay-
out generation (see Figure 2.5). Scale programs are written in terms of silicon
structures such as wires, contacts and transistors, the primitive objects in the

language é.nd the basic bullding blocks of VLSI circuits.

Scale also provides separate mechanisms for deflning separated hlerarchy
style leaf and composition cells, and procedural language constructs such as

scoping and control structures.

All Scale complilers produce a description of a design in an Intermediate

Design Language (IDL) format. This then may be used as input to a suite of

24

Large Small
Scale Scale

CIF Deslgn
Translator ’ Rule , Simulator
Checker

Figure 2.5. The Scale System

utilities such as foundry mask pattern generation translators, design rule

checkers and slmulators.

The IDL itself i{s a joint physical and structure representation based on
the use of Buchanan’s coordinodes [Buch80], which represents the circuit as a
graph with paths running on different layers between coordinodes. Coordi-
nodes represent all connection points: between cells, between layers, between
components, and even at bends in wires. A complete hierarchy of cells is per-

mitted in IDL, and all cells are stretchable.

In Scale there are‘ three kinds of cells;‘ leaf, composition and artwork. |
Co}nposltion cells are composed only of instances of leé.f, art{vork or smaller
composition cells. All cells are joined together by abutment along adjoining
edges. Leaf cells are pure geometric descriptions of designs in terrﬁs of con-

tacts, wires, and transistors. Artwork cells allow the designer to work at the

25

mask level when necessary, for example when designing pads or -analogue dev-

ices.

Although Scale Is at a higher leVel than LAP or ALI in terms of its
descriptive power of the geometric components, it still does not attempt to

specify a functional description of a design.

MacPitts. MacPitts is a Lisp based silicon compiler for microprogram
sequenced data path designs. MacPitts takes a high-level description of the
design in a register transfer language which describes tlhe control and. data
path parts of a processor. The target architecture for implementing the sys-
tem Is a ‘comblnat;ion of state machines, one for each of the parallel processes
in the <;ode, and a data path unit. MacPitts maps the control part of the
speclficatlon into Welnberger NOR arrays, and the data part into a rectangu-

lar array of registers and logic elements.

The compller consists of two levels of routines; a higher level which
examines the source code and extracts a technology independent intermediate
level description of the system In terms of data path specifications, control
equations, and state asslgnments, and a lower level which binds the intermedi-

ate level description into an actual mask layout, specified in CIF.

MacPitts has several interesting features. First, it allows a design to be
described algorithmically, and derives the physical layout from this, using a
predefined target architecture. In our framework of déscrlptlve domains, phe
functional desecription is mapped to a standard structurali description and then
a physical layout is generated from this. Importantly, the MacPitts design
systqm also Includes a functional simulator which operates directly on the

intermediate level description output from the compiler’s technology indepen-

26

dent component. This makes 1t possible to functionally simulate designs

before the geometry is insﬁantiated.

The MacPitts approach, like many silicon compllers, is only suited to a
restricted class of problems, namely those which can easily be cast into the
target architecture. Thus to cover the wide spectrum of VLSI design, one
would like to have a range of silicon compilers at the designer’s fingertips.
Currently, MacPitts uses roughly ten times the area for layout compared with
a good hand design. This area penalty will diminish for future silicon com-
pllers just as the penalty for software compiler-generated code over hand-
tailored code has decreased, and it will improve as software compllers have for
similar reasons. Namely, as s result of new knowledge and experience in writ-
ing them, and as management of complexity becomes more Important in rela-

tion to area minimization.

The DPL/Daedzalus Design Environment. The DPL/DaedaluS design
environment is an lpteractive VLSI design system implemented at the MIT
Artificial Intelligence Laboratory [Bata81]. The system consists of several
compénents; a lasyout language called DPL, an interactive graphics facility
(Daedalus), and several special purpose design procedures for constructing
complex systems such as PLAs and microprocessor data paths. These tools
are all organised around a hlerarchical, object oriented database, written in
LISP, which contalns both the data representing the circuits (the

INSTANCES) and the procedures for constructing them (the TYPES).

The Design Procedure Language (DPL) system is a layout language
developed at MIT. A designer writes progra-ms in DPL that create and mani-

pulate the database. The user can then query the database to see the results.

27

A "design procedure” for the layout of a part is typically composed of; '
(1) a type name and parameters (which may have default values),
(2) a set of constraints among the pirameters,

(8) a collection ‘of other parts which are created as instances of other, previ-

ously defined, types,

(4) and a series of statements which modify the instances in certain ways,

such as aligning varlous parts.

Daedalus iIs an interactive, graphical interface to the DPL database, and
may be thought of as an interactive, graphical programming environment for
the]?PL language. In Daedalus, the user is able to express any Information
either symboliéally by typing an expression or DPL code, or graphically by.
pointihg with a mouse. One may also make changes to a design either graphi-

cally or by editing the DPL code directly.

The DPL/Daedalus environment is concerned primarily with the physical
and struétural descriptions of a design. It Is, however, a very good layout tool 7
in that It supports an Incremental design philosophy, and is embedded In a

highly 1nteractivé Lisp programming environment.

Palladio. Palladio [Brow83] is a circuit design environment for experiment-
ing with deslgn methodologies and knowledge-based, expert-system design
alds. Palladio Includes facilities for deflning models of circuit structure or
behaviour, called perspectives. These perspectives are used to create and
refine circult specifications, and can include coniposltion rules that constrain

how circuit components may be combined to form more complex components.

28

Palladio’s Integrated design environment provides menu-driven, graphies
interfaces for édlting and‘dlsplaylngrstructural perspectives‘ of circuits and a
behavioural lz;nguage with assoéiateq editor fof specifying a design from a
behavioural perspect‘lve. In addition, a generlc, event driven behavioural
simulator can simulate a circult specified from any behavioural perspective

and can also perform hierarchical and mixed-perspective simulation.

The design paradigm supported by Palladio is an incremer;tal refinement
of design specifications, with periodic validation of the speciﬁcations by simu-
lation. Palladlo allows multiple structural and behavioural perspectives,
which do not necessarily follow the same partitions in thé, hierarchy of decom-
position. Whlle this gives flexibility in the freedom to explore different design
étrategles, it can lead to consistency problemé between hierarchies. Since Pal-
ladio. was designed more as an experimental tool for exploring the design pro-
cess, and expert systems for circuit deslgn, this flexibility is warranted. How-
ever most designers will benefit when a more rigid structure is Imposed in a

mature circult design environment.

2.4. Summary

This chaptei‘ has presented a broad overview of the nature of VLSI as an
implementation medium, and has examined current ‘tools to show some
approacheg to designing custom sllicon. In the next chapter the structured
design and structured hlerarchy methodologies are examined further, and an
analysis is presented of how these tools Incorporate these methodologies.

Finally, from this the requirements for an intermediate form are drawn.

29

CHAPTER 3

Design Methodologies

VLSI designs are large and complex; current VLSI designs involve
upward of 100,000 transistors and many display highly concurrent activities.
Computer sclence has faced many of the same problems in the correct con-
struction of large and complex software. Some of the lessons learned can be
borrowed; the most Important belng the use of design methodologies to
| develop large and complex structures. In this chapter we examine the struc-
tured design methodology of Mead [Mead80] and Buchanan [Buohso]; the
hierarchical design methodology of Rowson [Rows80}; and examine how itera-
tive modelling and simulation fit in. Finally we shall show how current tools

fare with respect to these requirements.

3.1. Structured Design Methodology

Structured design [Mead80] emphasizes the principles of top-down,
hierarchical, modular design techniques. Unlike LSI, where circuit density is
the major constraint In a design the major constraint in VLSI is the wiring
betWeen functional blocks. Mead states that a reasonable estimate of the size
of a design in VLSI is just the area needed for routing control and data. Ran-
dom wiring, like random city roads, consumes silicon area, and desti'oys the
regularity | and locality of a design. By destroying regularity, design
modification is made extremely difficult and time consuming. Further, the
‘loss of locality of function makes design verification :much harder to achieve.

Finally, the length of a wire determines how much energy and time is needed

30

to transmit a plece of data. Thus designs with lots of global wires elther con-
sume a lot of energy, or are slow, depending on what the desligners critical

constralints are.

It follows that a design should be optimized by placement of functions on
the two dimensional surface based on the amount of intercommunication.
Mead 1}as shown that if wiring can be managed, the circuitry usually presents

little or no additional cost. This means. that the primary emphasis in design
| is on communication flow, rather thz.m computation. An example is the barrel
shifter of the OM-2 data path, where the logic fits completely under the wires
needed to move the data and control. Thus data computation becomes

incidental to data communication.

- # Bus 2
Py P P
L d Bus 1

% Bus 0
EERR S nk Ak

Figure 3.1. A 4 by 4 Barrel Shifter

31

3.1.1. Regularity

Regularity in design is _deéirable because it reduces the complexity of the
problem. Regularity involves a number of factors. One of these is the ability
of cells to tessellate in 2-space as a result of regular interconnection strategies
(e.g. with two independent layers of interconnect we can run power and data
orthogonal to control signals). Cells can then be connected by abutting
together along thelr,bcl)undarles. Regulﬁrity in programming involves tackling
sﬁnilar problems with similar approaches. Regularity in a VLSI design may
also be exploited by designing a data path in a bit slice approach and then

réplicatlng the slice.

In addition to the regularity of Interconnect, specification of cells of
identical pitch (l.e. sz;.me size along thely interconnect boundary) promotes
coﬁneptlon by stretching and abutting cells together. In contrast, the standard
cell approach is to compose cells by placement followed by routing. Any was-
tage of area from stretching at the lower levels is made up by the removal 6!‘
random lnterconneét paths. Informal estimates of area gain using this

approach is around 20% over small areas {Buchg80].

3.1.2. Modularity

Modularity makes it easler to partition a design among a group of
designers by presenting each module with a well-defined function and inter-
face. This enables designers to work on a design in a more Independent '
manner, which will tend to decrease design time. It also is a powerful tool in
the control of complexity of the design. Buchanan [Buch80] makes an analogy
between the’restrlction in structured programming to the three flow control

constructs of concatenation, conditional selection and lteration, and to the

32

restriction in structured design to the use of the constructs of cell abutmeht,
PLAs, ROMs and other condltlonﬁl control structures, and one and two
dimensional arrays of cells. Design veriflcation and simulation is also made

easler by the urse of modularity. -

3.1.3. Hierarchy

Different levels of the hierarchy _correspond to different levels of granular-
ity of function. By partitioning a design in a modular and hierarchical
manner, the designer Is able to abstract to the level of detail desired. In
bottom-up structured programming, larger structures are built from smaller
' structures by _the use of the control structures described above. These then In
turn may be used to build even larger structures, and so on up the hierarchy,

until a complete design is realised.

Alternatlvely, in a top-down structured programming approach, the
hierarchical strategy maps functional modules onto predetermined partitions
on the chip (the floor-plan). In a like manner, these modules then may be
decomposed into their components until some pbint is reached where the
primitive components may be directly mapped onto thelr portion of phe sur-

face.

3.1.4. Locality

At any level, a design can be modularized such that the module must
communicate through a well-defined external interface and internal com-
ponents are hidden from the outside. As a result, the internal functionality of
the module is localized and is not affected by chang.es to other modules. This

allows the designer to abstract the detalls of the design at any level desired

33

without having to carry with him some detalled knowledge from the global
level. An example of this is the structured d'esign guideline that buses sh<;uld
be distributed (l.e. run through the module) and not global. This rule also
works to Increase design density, since global wiring is an\expensive process in
terms of the amount of élllcon surf:;.ce uged. In software global information

detracts from locality because it is always subject to misinterpretation by

different code modules.

The principle of locality also alds verification in that any properties that
a module has 1s shared by all instances of it. Therefore only one instance

needs io be verifled.

3.2. Hierarchical Design Methodology

A design can always have some hlerarchical structure imposed on it.
There are many hierarchies of description of a design. An extreme form dis—
cussed by Rowson [Rows80] that forms the basis of hierarchical design metho-

dology 1s the separated hierarchy.

A separated hierarchy consists of two kinds of cells; leaf cells and compo-
sition cells. A leaf cell is atomlic, it has no internal hierarchic sﬁructure. A
composition cell Is composed purely of instances of other leaf and composition
cells Interconnected in some manner. The separated hierarchy completely

separates the leaf cells from the composition cells.

3.2.1. Leaf Cells

Leaf cells may be instantiated at any level in the hierarchy. A leaf cell
may have multiple representations. For example, it may have a geometric

representation consisting of polygonal shapes on mask layers, or a logic circuit

34

representation of logic elements and their Interconnections. Typlcal sizes for
geometric representations of iea! cells range up to 100 transistors. Only

instances of leaf cells have any "data” (i.e. functionality) lﬁ them.

Leaf cells are lmbortant for their function, not their lmplementation. In
analogy to software, leaf cells are the basic semantic units which 'may be used
by the designer. Alternatively, if a hlérarchic design can be thought of as a

theorem in an axlomatic system, leaf cells form the axioms used In the deriva-

tion of the theorem.

3.2.2. Composition Cells

~

fn ‘contrast, composition cells are implementation independent and
describe only the functionless logical interconnection of Instances of leaf cells
and other composition cells (l.e. cbmposltlon cells merely structure the
| ”dat;a"). The composition cells may be thought of as theorems in an
" axiomatic system. Composmon‘ rules (l.e. the interconnection mechanism) are

implementation dependent and are analogues of the rules used to construct

Composition
Cells

Leaf
Cells

Figure 3.2. A Separated Hierarchy

35

theorems. There is one composition rule for each leaf cell representation

domalin.

The separatéd hierarchy allows a designer to produce a design that is
correct by construction. That ls; given a property P and a composition rule R
that preserves the property P, if submodules haﬂng P are composed accord-

‘ing to R, the composition will have property P. This makes consistency
checking easler., élnce only the composition rule and leaf cell “representation
; need to be checked for each domain of description. By separating out the
hierarchical structure of a design from its actual representation, it is possible -
to make statements about the structure alone. Rowson introduces a formal
method of proving the equivalence of hierarchies, given composition from the

same leaf cells.

3.2.3. Compatibility with Structured Design

Belng a speclal case of hierarchles, separated hlerarchles preserve the pro-
perties of regularity, modularity, and locality. Regularity is enhanced becaﬁse
the necessary property of t;unctiona.l abstraction is embodled in the composl-
tion rules. Modularity is promoted since interconnection of cells b& composi-
tion means two cells can only compose if they have common interconnections.
Locality is guaranteed by the composition rule, since it may not introduce

new functionallty‘ into the resultant cell.

3.3. Iterative Modelling

A structured design Is not concocted out of thin air; it needs to grow
from an initial idea to a fully specified design. Often the designer has very

little insight into the implications of a decision made early on in the gross

36

decomposition of a design. As in software design, the experience and intuition
of a designer can often gulde the development of a design through ‘these critl-
cal cholces in a manner that no fully automated approach can now equal.
The désigner's intuition can be further enhanced by the use of a design
methodology such as fop—down, bottom-up or structured growth (& methodol-

ogy familiar to Lisp programmers) [Sand79].

Experience with software has shown that it'is difficult to get a design
right the first time. In fact, many iterations are often needed over the design
before it 1s correct. If a design is not structured in a hierarchical and modular
fashion it is extremely difficult to isolate the error at the appropriate level of
abstraction and correct it. A design that contams global wires or random logic
may require an large amount of rearranggment to accommodate the fix which

in turn may lead to new errors.

Even after produclng a correct design, a good designer will want to
optimize the design over time or space where prudent. Modularity makes it
easier to Isolate and remove bottlenecks from a structured design without

introducing new errors.

With structured hierarchical designs the deslgner can propose
modifications and evaluate the consequences without actually having to imple-
ment the changes in detail. This "what if..” approach allows the designer to
heavily restrict the domaln of all possible alternative designs. It also requires

that structures be modular at any level of abstraction.

3.4. Simulation

The most important use of simulation Is In verifylng the correctness of a

design according to some specification of Iits input and output behaviour.

37

This is more necessary in VLSI design than in soft;ware design since it Is time
consuming’ and expensive to test the design directly. It is also a valuable tool
in the development of a structured deslign since it can be used to verify ther

correctness of any component without worrying about side effects.

Just as there are many levéls of abstraction of a structured design, there
are many levels of granularity of a simulation of a design’s behaviour. The
most éommon simulators used are circuit-level simulators like SPICE [Nage75]
and switch-level simulators ltke MOSSIM [Bryasl1]. Both of these simulators
operate at only one level of the hlerarchy. While capable of giving an
rextremely"accurate description of a device's behavibur, SPICE is very imprac- ‘
tical to operate for a circult containing more than, say, a hundred translstprs.
It is also very difficult to reason about the causé of the behaviour exhibited by
a SPICE simulation because of the low level of abstraction (or high level of

detall).

MOSSIM is a level of abstraction above SPICE since It slmulates a
switch level model of a clrcult.' This allows‘z more complex designs to be prac-
tlically simulated, at the cost of discretizing the signal behavlour.\MOSSIM
can also be difficult to interpret, since it still deals with a design at the switch

leyel of abstraction.

Ideally we should be able to simulate a design at any level of abstraction.
This would allow the designer to draw conclusions about the correctness of a
module at the same level that It is simulated. The result is that errors are

more quickly and easily pinpointed.

A hierarchical design methodology supports the latter approach by allow-

ing behaviours at a given level of the hierarchy to be simulated from the

38

behaviours of its components. A structured design methodology also
encourages this approach since the modularity of structures allows simulated

behavlours to be easlly composed.

' Thg use of a separated hierarchy also allov.vs behaviours to be composed
at different levels. Thus, once a module has been verifled as correct, a simula-
tion of a composition cell using that component only deals with the
component’s behaviour at that level of abstraction, and not in terms of any
sub-component behaviours. Like design rule checking, this Is another example

of hlerarchles making consistency checking easier.

3.5. Current Tools

Many design tools currently in use implicitly recognize the necessity of a
deslgn methodology. Most support some of the criteria laid down for these
methodologles; few support all. Table 3.1 shows a varlety of tools and whléh
requirements each meet. Tools that actively support a discipline are indicated
by a “+,” those allowing a disclipline té be exercised in conjunction with them
are indicated by a ‘‘x,’" and those which do not allow such a discipline to be
exercised are indicated by a *‘-.”” The domains each tool deals with are indi-

cated by Geometrie, Structural, and Behavioural.

The earlier tools which deal with a single domain, such as Caesar and
Spilce, are inherently global and only deal with a slnglé domaln of description.
The'more recent tools have recognized the complexity problem, and have
attempted to deal with it by either allowing or directly supporting design
methodologles that deal with complexity. Examples of this are Mosslni, which
allows the user to black box any portion of the design by writing a module

which exhibits the desired behaviour, and DRCFIL [Whit81], a hierarchical

39

Tools vs Requirements
Tools Regul- | Modul- | Hier- Local- Iterative Domalins
arity arity archy ity Modeling
Lap + * + * * G
Rlap + + + 4+ * G
CIF + * + * * G
REST * 4+ - 4 + G,S
SPAM + + + + + S.B
Caesar * - - - - G
Mossim * * - * * S.B
Splce - - * - - - S
Slap. + + + + * G
Earl + + + + * G
MacPitts + + + + + G,B
Bristle-Blocks + + * + * G.B
Scale + 4 + + + S.G
DRCFIL 4+ + + + * G
ALI +4- * * el * . G
DPL + * 4+ * * G
Table 3.1.

design rule checker, which uses hierarchic information to minimize the

amount of checking needed for a design.

The success of sllicon compllers like MacPitts and Bristle Blocks! is also
partly due to using a design strategy (l.e. the datapath design style) that ls_'
inherently hilerarchical and modular in its organization. Finally, the most
recent tools have tended to support not only hierarchy, but also modularity

and locéllty, through the use of boundaries on cells with connections allowed

! Bristle Blocks was recently used by a three-man team to generate the 37,000-transistor
datapath chip for the MicroVAX in only seven months {John84].

40

only on the boundary wall. These include such tools as REST and Scale.

SHIFT continues in this tradition.

3.8. Conc]uqidn

This chapter has examined the structured &eslgn methodology of Mead
. and Buchanan, paying attention to the key aspects of regularity, modularity,
hieiafchy, and locality. We have also examined the hierax:chic;al design
meéhodologyA of Rowson, showing how a separated Vhiera‘rchy can deal with
complexity, and héw it fits in with _structured design methodology. In addi-
tion, t',he‘ role of iterative modelliﬁg In design evolution Was investigated.
Finally we examined how current tools fafed wlath resxr)ect' to these require-

ments.

. In the remainder of tlie thesls we focus on the requirements of an inter-
mediate form for VLSI design tools which work in an Integrated environment,
and support both a separated hierarchy and a, structured design methodolégy.
A structured Intermediate form for VLSI design tools called SHIFT will be
,”deﬁned, and the algorithm 1t uses for composing cells in a stretchable manner
along adjoining ports will be detailed. Finally, we show how SHIFT fits into

future VLSI design environments.

41

CHAPTER 4

High Level Intermediate Forms

An intermediate forms i1s a half-way house between analysis and syn-
thesis. As a result a good intermediate form must carefully balance both of
these objectives. This requires a thorough knowledge of the sources that use
(map to) the intermediate form, and the targets that arermapped from the
" intermediate form. Ideally, what the designer produces at a high level of
abstraction should be clearly reflected in the layout of the design. It is also
important that any unintended effects of the specification be clearly traceable

to its cause at the designer’'s level of abstraction.

Therefore, if an Intermediate form is used ltl should clearly reflect any
constraints the designer imposes on the resulting layout. It is just as impor;
tant that the intermediate form should allow any errors detected in the layout
(such as design rule violations) to be expressed to the designer at the level ;)f
abstraction that he was using. The degree of success in meeting both of these
objéctives in the intermediate form determines both the amount and ease of

control the designer has over the mapping of the design to the target domain.

If the sources and targets are predetermined, as for example in a silicon
compiler Wlth 8, restricted Vtarget architecture and a restricted application
range, we may design the intermediate form to be complete. However, If the
sources and targets are not predetermined, then a reasonable guess about the

design criteria for the intermediate form has to be made.

42

In the previous chapter, we examined the design methodologles of Mead
and Buchanan, and Rowson, and showed how they promdte iterative design
and support specification, verification and simulation.' Varlous tools were
examined in terms of these criteria, and found wanting. In this chapter we
willl elaborate on the essential requirements for an intermediate form, z;.nd
specify the design of SHIFT (a Structured Hierarchical Intermediate Form for
VLSI Design Tools) in terms of these. The implementation of SHIFT is dis-

cussed in chapter 5.

4.1. Intermediate Form Philosophy

The purpose of an Intermediate form is to act as a vehicle for the
specification of an IC design in a design systerq composed of a number of
tools. These tools are of a diverse nature, consisting of graphlcal and pro-
cedural tools for specifying a design in the intermediate form, and tools which
use the intermediate form as input, such as clrcult extractors, design rule

checkers, logic simulators, artwork plotters, and CIF generators.

If the Intermediate form is targeted at too low a level, any structure’
inherent at different levels of the design will be thrown away, and this will
make make it hard to report back information such as-timing errors or design
rule errors in the designer's terms. If the intermediate form is at too high a
level, then we lose the ability to have some control over the implementation
of the design from its specification. This especlally applies to silicon com-
pllers, where the mapping from a behavioural domain to a physical domain is

initially not very transparent.

What is needed 1s a representation in the middle ground; something

which allows us to specify the implementation at the lowest level, and yet

43

 retalns the structure of the design at differing levels of abstraction.

SHIFT supports the design methodologles examined in the previous

chapter in the following ways.

4.1.1. Leaf and Composition Cells

A SHIF'T specification consists of a hierarchy of leaf cells and compos@-
tion cells. Leaf cells are the lowest cells in the hierarchy, and describe basic
compoﬁents which will be laid out such as shift-registers, I/O pads, and wir-
ing cells. Leaf cells contain descriptions of designs in the physiecal, structural,
and behavioural domains. Compositiop cells are used to capture the design
hierarchy In terms of instances of leaf cells and simpler composition cells.
Composition cells have no inherent functionality; they contain onlx; a descrip-
tion of constituent cells and their interconnections. This is important for the
management of increasingly complex designs, since today’s design as a compo-
sition cell is tomorrow’s component of a design. Notation in the use of cells
must not distinguish between the two, zind this 1s reflected in the design of
SHIFT. Thus the designs and sub-designs expressed in the intermediate form
can be left in a llbrg.ry of standard components (leaf cells). The library grows

as more designs are created.

IC designs can then be described in terms of a hierarchy of cells, where
each level of the hlerarchy Is simpler in terms of its functionality than the
level above, and the lowest levél cell being an implementation of the function.
An example of this is the OM2 datapath chip described in [Mead80], where
the chlp a§ the top level is viewed as a functional black box with external

wires (see Figure 4.1).

44

//Om Dat%\ 1 o

Left Reglsters Shifter Right level 1
Port

ALU . Kill and Carry Result ALU . level 2

Input Propagate Chain Control Output '

Layout Y level 3

Cells

Figure 4.1. A Cell Decomposition of the OM2 Datapath

At the next level in t;he hierarchy, the cillp is éomposed of cells represent-
ing .a, left port, a register ‘blocrk, a barrel-shifter, an ALU, and a right port. If
we traverse down a “level of the hierarchy, from left to right we can decom-
pose the ALU block into an ALU input register, a kill and propagate control
céll, a carry chain block, a result control cell, and an ALU output register.
Finally we could deqompose the carry chain into leaf cells that implement the

function of the carry chain by specifying the layout.

A SHIFT description forms a separated hlerarchy. This allows a degree
of technology independence, since the hierarchy of a description will be the

same over a range of technologlies used to implement the leaves.

45

All cells are rectangular with a boundary on which po‘rts are placed.
Cells are composed by abutment in horizontal and vertical directions. The
composed cells are stretched to connect adjacent ports. Composition célls are
also built from other cells by abutmént. The single operation of abutment
serves as a composition rule in all three domains. Note that any necessary
"routing between cells can be Incorporated as a routing cell sandwiched

between the two cells to be connected.

SHIFT cells support the design principle of modularity, since a cell has a
well deﬂned‘ boundary, and components may only be connected through adja-
cent ports. SHIFT cells also support design regularity, since cells connect
along their rectangular boundaries in horizontal ‘and vertical directions only,

allowing cells to be easily composed.

Comp'osiﬂon cellé may be augmented with a description in any of the
domains. In effect, this augmented description is like a leaf cell deseription at
this level of the hierarchy. For example, an ALU compdslt;ion cell may havé a
behavioural description specified in addition to its behaviour derived by com-
position from constituent cells. Gordon [Gord81] shows an example of a
counter that Is decomposed into constituent behaviours (see Figure 4.2).
These descriptions may be used to specify a deslgri at the given level of
abstraction. In this manner, both top down and bottom up design methodol-

ogy are supported.

4.1.2. Composition Rules

A composition rule simply specifies how modules are to be built from
components in order to guarantee the preservation of properties. The compo-

sition rule itself adds nothing to the composition cell. All functionality comes

46

COUNT(n) L »-OUT
SWITCH—» ,
IN——»

COUNT(n) = {SWITCH, IN, OUT}.{OUT =n + 1},
COUNT (SWITCH -> IN, n + 1)

SWITCH——/—¥®» MUX - REG INC — »QUT
IN—————— Li| (n) |L2 '

MUX = {SWITCH, IN, L1, OUT}.{L1 = (SWITCH.-> IN, OUT)}, MUX
REG(n) = {L1,L2}.{L2 = n}, REG(L1)
INC = {OUT, L2}.{OUT == L2 + 1}, INC

Composition of Component Behaylours
|[MUX [REG(n) | INC]|\ L1L2 =
{SWITCH IN OUT} {Ll = (SWITCH -> IN ,OUT),

‘L2 =n, OUT-—L2+1}
|[MUX | REG(L1) | INC]|\ L1 L2

Figure 4.2. The Behaviours of a Count Cell and Its Components
from the components. The composition rule used in a composition cell has a

specific meaning in each of the three domains of descrl;ition of its component

.cells. For example, the abplicatlon of the composition rule in the physical

47

domain of description simply forms the union of the component’s physical
descriptions, whereas the applicatlon of the compoéition rule In the
behavioural domain identifles the signals connected through adjacent ports.
This preserves the locality of function that is present in component cells.
Finally, the application of the composition rule to the structural domain

results in a merging of the graphs of the components structural descriptions.

Since the leaf cell has multiple representations, each representation must
be che;:ked for consistency WIth the others. Hdwever, since leaf cells are small
(typlcally less than 50 gates) this is tractable. Even isomorphism problems of
consistency checking (which are NP-complete) are still manageable for cells of
this size. Also, however often It is used, a leaf cell has to be checked for con-

sistency between domalins only once.

The other advantage of the composition rule is that once a leaf cell has
been checked for correctness, then tlie composition rule will preserve that
corre;:tness in all composition cells that contaln that leaf cell. This hierarchi-
cal approach considerably reduces the amount of work required to verify the
correctness of a design. For example, once a leaf cell has been checked for
design rule violations, then it only remalns to check the interconnection ports

to show all future uses of that composition cell to be free of design rule errors.

4.1.3. External versus Internal Information in a Cell

‘By placing a boundary around all cells such that information can only
- flow through ports we hide the internal detalls of a cell at a given level. This
provides us with a powerful tool in designing circuits; namely that we can
abstract out the detall that we want to consider at any level in the design.

The internal information in a cell is only accessible within the cell. The

418

external Information of a cellA is limited to the. ports through which a cell com-
municates with its nelghbours. This approach actively discourages a non-
functional approach to designs. As in software, the process of specification
and verification are much easler when designs become modelled with a func-
tional approach rather than with a von Neu’mann approach [Back78]r. By res-
tricting communication through the ports, we outlaw the hardware analogues

”

of software’s "gotos” and "side-effects”.

This is not the penalty that it first seems. As chip designs become larger
the cost of communicating global informatlé)n becomes much higher than the
cost of computing it locally. Global Information also restricts the amount of
concurrency exhibited in a design. As circuits become larger, self-timing
schemes become more attractive, with the result that cells become truly self-

contalined.

4.1.4. Design Systems Using a High Level Intermediate Form

Producing an IC design requires a number of tools to assist the designer
in the design syl}thesls, test and validation process. A number of these have
Been encountered in chapter 2. What is required is to tie these tools together
into an integrated design environment by using a consistent intermediatye
representation. Some of these tools create or modify the design description;
other tools like simulators, need only extract lnfor-mation from it. A real
design system, like a real programming environment must have its constituent
parts work in unison. This requlfes a degree of intercommunication which is

difficult to achleve without a consistent view of the data they operate on.

It also has been shown in chapter 3 that these designs are developed in

an Incremental fashion, with many Iiterations over the design. With a

49

structured consistent specification of the design the development and

modification of the design Is accomplished more easily.

Finally, by making the design modular, and specifying the behaviour of
the modules and how they Interact, It allows many designers to work on
different parts of the system with some assurance that the design will work as

specified.

4.2, SHIFT Design

In the previous chapters we have examined the nature of VLSI design
and the kinds of tools needed in the development of a design. A set of
‘requirements for an intermediate form was then specified and elaborated in

the previous section. This section concentrates on the specification of SHIFT.

A design In SHIFT involves the definition and subsequent instantiation of
cells. The three domains of description in SHIFT are the physical, structural,
and behavloural démalns. As seen by Table 3.1 SHIFT is the only tool thus

far that allows a design description in all three domains.

There are three different representations or stages of cells. These are
archetypes, prototypes, and instances. The act of defining a cell in SHIFT
creates an archetype. Evaluating an archetype cell with parameters creates a
prototype by fully defining the set of constraints. Finally, an instance iIs
created by applying a solution of a constralnt graph to a prototype. Thus the
values bound to the parameters are known by -both prototypes and instances,

and the value of the ports are known only by the instances.

There is a monotonicity of requirements between archetypes, prototypes,

and instances for valid composition. Two archetypes may be composed pro-

50

viding they have the same number of ports. Two prototypes may be com-
. posed providing they have the same numberrof ports and there exists a solu-
tion to the constraint graph. Two Instances may be composed p;'oviding they
have the same num:ber of ports, a solution to the constraint graph exists, and

one such solution Is specified.

4.2.1. SHIFT Cells

There are two kinds of cells that may be defined in SHIFT, leaf cells and
composition cells. All cells have a ports, a constraint, a behaviour, and a
structure definition component. Where leaf and composition cells differ is

that leaf cells have a geometry component, and composition cells have a

(defleaf leafname (parameter-list)

(ports .ceecevene)
(const) -
(struct)
(beh ..cveeeveree)
(geom)

Figure 4.3(a). Overview of A Leaf Cell Definition

(defcomp compname (parameter-list)

(portseee.)
(const .eeveeeess)
(struct)
(beh .ceerrnens)
(compesition-expression)

)

Figure 4.3(b). Overview of A Composition Cell Definition

51

composition component (Figure 4.3). This is because the leaf cell contalns
artwork, and the composition cell contains only other cells. Once a sub-
désign is fully specified as a hlerarchy of cells it can be stored away in a
design library, and subsequent designs need not know whether it is a leaf or
composition cell. There are clear advanta;ges to storing the sub-design in its
hierarchical form rather than flattening it out to a fully detalled leaf cell, for
to do so takes up far more space and makes varlations on a design-much more

difficult to accomplish.

In the case of composition cells aﬂy of the common cell fields may be
null, in which case the ports will have names constructed from their com-
ponent cells port names, and the constraints will be synthesized from their

components constraints.

The ports are a list of names in ascending order along the north south
east, or west boundaries. The ascending order Is necessary for the

identification of ports along the adjolnlng wall when composed with‘ano'ther

(ports
: (north n:clock) (south s:clock)

(east e:gnd out e:vdd) (west w:gnd in w: vdd)

(lnterlor
ge pe last ; ground, power and butting contacts
pd.gtin pd.gtout pd.src pd.drn ; pulldown nodes
pu.gtin pu.gtout pu.src pu.drn ; pullup nodes
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes
middle) ; inverter output

Figure 4.4(a). The Ports Definition of a Shift Register Cell

52

m:phi
=
wivdd @ [e:vdd
in [D : 1 out
wignd [3 e:gnd
| sl
[
s:phi

Figure 4.4(b). The Ports of a Shift Register Cell

cell. Ports may also be defined as interior ports in leaf cells. Unlike other
1.>ort)s, interior ports do not lie on one of the cell walls, nor need they be listed
in any order. Rather, the relationship between interior ports is defined solely
by the horizontal and vertical constraints specified. An example of a leaf cell

ports definition is shown in Figure 4.4.

Constraints may be specified between any two ports, or between ports
and a wall, where these constralnts are meaningful. Horlzontal constraints

between any two ports A and B may be of the form

A=B-+e¢
or
A >= B 4 ¢, where ¢ {s a numeric expression.

53

with the meaning A lies to the east of B 'by exactly ¢, and A lies at least ¢ to

the east of B. Vertical constraints take the form

AllB+c
or
AlB+ec

with an analogous mesning in the y direction.! The distinction between verti-

(const
(w:gnd “!! south + 2) (in ~!! w:gnd + 4) ; west wall
(north “!! w:vdd + 5) (w:vdd “!! pu.drn + 1)
(out >= last + 3)
(e:gnd “!! south + 2) (out “!! e:gnd + 4) ; east wall
(e:vdd “!! out + 2) (e:vdd !! wivdd)
(s:clock >= pt.src + 3) (n:clock = s:clock) ; south & north walls
(ge = west + 5) (gc ~!! south + 2) ; ground contact
(pd.src = gc) (pd.drn == pd.src) ; pulldown
(pd.gtin >=in + 1) (pd.gtout >= pd.gtin + 8)
(pd.sre “!! ge + 1) (pd.gtin ~!! pd.sre + 3)
(pd.gtin ! in) (pd.gtout !! pd.gtin)
(pd.drn “!! pd.gtin + 3)
(middle “!! pd.drn + 1) (pu.srec “!! middle + 1); inverter output
(middle = pd.drn)
(pu.src = middle) (pu.gtin = pu.sre) ; pullup
(pu.gtout = pu.gtin) (pu.drn = pu.gtout)
(pu.gtin ~!! pu.sre + 2) (pu.gtout !! pu.gtin + 7)
(pu.drn “!! pu.gtout + 2)
(pe = pu.drn) (pe !! wivdd) ; power contact
(pt.gtout = s:clock) (pt.src >= pd.gtout) ; passtran
(pt.drn >= pt.gtin + 3) (pt.gtout ~!! pd.gtout + 1)

" (pt.gtin “!f pt.src + 3) (pt.sre !! middle)
(pt.gtin = s:clock) (pt.drn !! pt.src)
(last !! pt.drn) (last >== pt.drn + 3) ; last contact

Figure 4.5(a). The Constraints Definition of a Shift Register Cell

!These operators look similar to the horizontal operators turned on their side.

54

north ‘ ‘ n:clock

w:vdd

west east

w:gnd e:gnd

Y-Constraints (borders only) X-Constraints

Figure 4.5(b). The Constraints Graph of a Shift Register Cell

cal and horizontal constraint relations serves to disambiguate constraints with
respect to interior ports. It also enforces a notational distinction which makes
the constraints easier to read and specify. An example of a leaf cell con-
straints definition Is shown in Figure 4.5. This example is rather elaborate
since all points interior to the cell used in constructing the geometry are
represented as interior ports with constraints used to define their final values.
In practice, one might specify rigid cc;mponents in the interlof, e.a.ch being
anchored to a single node, with constraints relating to ’these nodes used to
define minimum distances between pofts onr the outer walls. However, this

example shows that constraints may be used to build the enrtlre cell.

55

(geom
(dm-at gc) ; contact between pulldown and ground
(wire metal 4 w:gnd gec e:gnd); ground wire
(pulldown ; pulldown has two parts

4 (path pd.src pd.drn) _ ; diffusion path from source to drain
2 (path pd.gtin pd.gtout)); a poly path from gtin to gtout
(wire poly in pd.gtin) ; connect gate to input port

(wire diffusion gc pd.src) ; connect pulldown to ground
(pullup ; pullup has four parts
2 (path pu.src pu.drn) ; & diffusion path from source to drain

6 (path pu.gtin pu.gtout)); a poly path from gtin to gtout
; an implant layer Is automatically drawn
; over the poly layer, extended by 2 lambda
; on elther end, and a butting contact at the
; gate input connecting the gate to the source
(wire diffusion pd.drn middle pu.src); connect the pullup and pulldown
(wire metal 4 w:vdd pc e:vdd); power wire

(wire diffusion pu.drn pc) ; connect pullup to power
(dm-at pc) ; contact between pullup and power
(passtran ; passtran is equivalent to the pulldown

2 (path pt.drn pt.src)

2 (path pt.gtin pt.gtout))
(wire poly n:clock pt.gtin) ; wire up clock to one end of the gate
(wire poly s:clock pt.gtout); wire up other end of gate to clock
(wire diffusion middle pt.src); connect inverter output to passtran’s

; source

(be-at last) ; butting contact for passtran to out
(wire diffusion pt.drn last); connect passtran to contact and
(wire poly (pt-dx last 1); contact to out

(then-y (:y out)) out)

Figure 4.6(a). The Geoinetry Definition of a Shift Register Cell

Only constraints which lie vertically or horizontally a minimum distance
greater than zero from the south and west walls, respectively, need to be
specified. All ports are automatically constrained to lle at least on or to the

east and north of the west and south walls, respectively.

56

=
— -
| | = | H
t 1]] U] B |
= H
- -
— A strgtched in x
H
T] h sFretched iny
O I O
= Y

Figure 4.6(b). The Geometry of a Shift Register Cell

" 4.2.2. Leaf Cells

Leaf cells are defined with the defleaf operator and contain a parameter
list (with optional defaults), a sequence of ports, a set of constraints among

the ports, and a description of a cell in one or more of the physical, struc-

57
tural, and beh‘avloural domains of interest.

4.2.2.1. Physical Description

"A physical description of a leaf éell consists of a list of geometric func-
tions, Which expand to lists of geometric primitives. These geometric prim:i-
tives describe the layout of the design on mask layers that are used in the
fabrication process to manufacture the integrated circuits. See Figure 4.6 for
an example of the geometry of a shift register. In this example, we see the
use of both primitive functions, and several higher level nMOS-specific funec-

tions which map to lists of primitives, to create the geometry.

The basic geometric types are box, polygon, and wire. A primitive is a
list of the primitive type, a layer, a width (if the primitive is a wire), and a
path. A path is a list of points, where each polnt may be either absolute or
relative to the previous point in the list. Obviously, the first point in the list

must be absolute. Various operators exist for creating and manipulating

points and their x and ¥ components.

In the case of the box primitive, the two points define the adjacent
corners. The path of the polygon primitive represents the ordered list of ver-
tices defining the boundary of a closed polygon. Finally the wire’s path
defines a centre line of a long uniform width run along a layer. However,
unlike the CIF-style wire, defined as the locus of points within one-half width
" of the path, the SHIFT wire has curtailed endpoints i.e. the endpoints of the

wire lie on the perimeter of the path. .

58

Figure 4.7(a).' Wire Connection - Curtalled

Figure 4.7(b). Wire Connection - Inflated

The CIF-style wire has the advantage over the SHIFT-style wire in that
any two wires connected together at a common endpofnt will form a proper
connection regardless of the angle (Figure 4.7(a-b)). However, in practice this

type of connection is not likely to occur in SHIFT.

59

MINIMUM A
SEPARATION

Figure 4.7(c). T Connectlon - Curtalled

MINIMUN
SEPARATIDN DESIGN RULE VIOULATION

X

‘, Figure 4.7(d). T Connection - Inflated

In addition, a number of undesirable effects occur when using CIF-style wires
in constructing circuits. One example is a T connection of wires on the same
layer with another wire above and parallel to the cross piece and separated by

the minimum design rule distance (Figure 4.7(c-d)).

Figure 4.7(e). Butting Contact - Curtalled

Figure 4.7(f). Butting Contact - Inflated

If the vertical plece is wider than the horizontal plece, then a design rule vio-

lation occurs with the inflated wire.

Another example 1s the connection of a polysilicon wire to the centre of a

butting contact (Figure 4.7(e-f)). The CIF-style polysilicon wire extends too

.61

far under the contact hole, resulting in another design rule violation. These
reasons makg the curtalled style wire more attractive than the inflated style
wire. If we want to make a connection at right angles between two wires at
their common endpolnts, a ‘“‘contact’ box otf the same layer may be placed at

the point, thus ensuring proper connectedness.

The layer and the width may be omlitted for the primitives, in which case

a technology defilned default is used.

4.2.2.2. Structural Description

A structural description of a leaf cell Is a lumped circuit model of the
cell. The struct\iral description serves to describe the performance of the
design, that is, both its power and speed. While the structural description of
a cell may be extracted from the geometry of a cell, and is therefore not
strictly necessary, it is used often enough in the design of chips to provide a
place specifically for it, so that it may not need to be repeatedly extracted.
Further, this may be generated automatically by a circuit extractor on the

leaf cells as they are deflned.

The structural descriptlon consists of a list of named components, and &
netlist of connections between the components and the ports. Components
may be resistors, capacitors, or n-type and p-type enhancement and depletion
mode transistors, with various attributes supplied elther by explicit declara-

tion or defaulted to a process/technology dependent value.

Resistors and capacitors have two ends to which one may connect,
denoted ‘one-end’ and ‘the-other-end’. Resistors may take a specifled resis-

tance in ohms, and capacitors may take a specified capacitance in pico-farads.

62

(struct

(nodes
pullup (n-type-dep len 8 wid 2)
pulldown (n-type-enh len 2 wid 6)
pass (n-type-enh))

(connect
(e:vdd w:vdd) .
(e:gnd w:gnd)
(n:phi s:phi)
((:source pullup) e:gnd)
((:source pulldown) e:vdd)
((:drain pullup) (:drain pulldown))
((:drain pullup) (:source pass))
((:gate pullup) (:drain pullup))
((:drain pass) out)
((:gate pulldown) in)
((:gate pass) n:pht))

Figure 4.8(a). The Structure Deflnition of a Shift Register Cell

1.
-

Figure 4.8(b). The Structure Diagram of a Shift Register Cell

Transistors have three nodes, labelled- ‘drain’, ‘source’, and ‘gate’, and

may take optional parameter values specifying thelr length and width, which

83

may be used in performance evaluation. An example of a structural descrip-

tion of a shift register is shown in Figure 4.8.

Here we see two n-type enhancement-mode transistors being declared,
one with a declared length and width, and the other defaulting to a technol-
ogy dependent value. These components are then connected to each other, ‘

and to the ports.

4.2.2.3. Behavioural Description

The behavioural domain is specified using an approach similar to that
used in denotational semantics In which the behaviour of a device is modelled “
-by a. function which is an element of a domaln of "sequential behaviours”
[Gord81]. This domalin is a unit delay model of behaviours. The domain ﬁsed

is defined to be the least solution to the domaln equation:
BEH = IN -> (OUT x BEH)

where IN and OUT model input and output signals of the devlce.‘

The behavioural specification of our example is seen in Figure 4.9. In

this example, the first element is the current state of the device, the second

(beh (8)
((s:phi = n:phl)
(out = if n:phi then (not 8) else @))
((if (ln = @) then s else in))

Figure 4.9. The Behaviour of a Shift Register Cell

684

element is a set of equatlons in terms of the current state and inputs mapping
signals to lines,-and the last element specifies the next behaviour, which is a

functionrof the current inputs and state. Float Is repreéented by ‘@',

4.2.3. Composition Celis

Composition cells are defined with the defcomp operator and contain a
parameter. list (with optional defaults), an optional sequence of ports, an
optional set of constraints among the ports, and an optional description of the
cell in the structural and beha.vlourﬁl domains. Finally, a composition cell
definition contains a composition expression, where each element Is a leaf or

7 pfototype cell, or a composition expression.

Cells may Se composed by means of one of the four cbmposltlon opera-
tors ‘>’, ‘<’, **’, and ‘v’. These correspond to horizontal composition, east
to west and west to east, é,nd vertical composition from south té north and
north to south, respectively. An exaiﬁple of a 2 element array of shift register

cells is shown in Figure 4.10.

The composition between cells .ié performed by stretching the ports on
the adjoining walls until they align; there Is no generation of x'ive;° routing
between the cells.? An example of this is shown in Figure 4.11. The subject of

composition by stretching is discussed in further detail in the section entitled

" Composition Algorithm”.

°If routing is desired it can be captured with a routing cell sandwiched between the celis
to be routed together.

85

(defcomp shift2 ()
(ports (north n:phil n:phi2)
(south s:phil s:phi2)
(west w:gnd in w:vdd)
(east e:gnd out e:vdd))
(> (shiftreg) (shiftreg))
(beh (s1 s2)
((out == if n:phi2 then (not s2) else @))
((if (in = @) then s1 else in) .
(if n:phil then (not s1) else s2)))

Figure 4.10(2). A 2 Element Shift Register Array Composition Cell

]]
=l | |
1] j l*“) J l”“
0 IRE 7 [
= =

Figure 4.10(b). Geometry of a 2 Element Shift Register Array

66

5

B

vy
1

ot —- {7}

‘.4___0

o |—
W te—10
QO H——O
T [*-U

)—
O

Figure 4.11. An Example of Stretching

4.2.4. Design Instantiation

In order to produce a description of the design In any of the three
domains we must produce an instance of the design from its description in
SHIFT. A design is instantiated in the following manner. The archetype
specification Is traversed from the root, inheriting down (i.e. binding) the
parameters at each level to the cell and evaluating the expressions in the con-
straints to produce a fully determined Set of constraints that deflnes the pro-
totype. These parameter values also may be used in expfesslons in the com-
position definitions. This result of this traversal Is a rooted tree that

comprises the prototype of the design.

T<; produce an instance from the prototypes we first synthesize up the
constraint graphs from the leaves to the root. We then solve the graph at the
top level, and inherit down the solution to the leaves. These values are then
bound to the ports and each of the domains is evaluated to produce the leaf
instances, which are then synthesized up the tree to produce'an instance of

the design.

Expanding an entire design to get all the constralnts in one direction,

and then solving them could be quite time consuming, as there could be tens

67

of thousands of ports, and hundreds of thousands of constraints. Instead, we
can use the hierarchy of SHIFT to explolt the locality of constraints and con-

siderably reduce the work.

4.2.5. The Composition Algorithm

The appr;)ach used in composing cells follows that used in the composi-
tion of a sticks languages called LAVA [Ullm84]. The basic idea is that we
can eliminate the interior constraints of a cell at any level in the hierarchy by
using them to produce a new set of constraints which only involve the border
ports of the cell. Further, these new sets of constraints are produced in such
a manner that any glven solution for the borgler ports of the cell will not
violate the interior constralnts which had beeh previously ellminated. The

algorithm 1is a two stage process.

In the first stage we reduce the constraints for the bottom-level cells, so
that we are left only with constraints involving ports on the borders of the
cell. These are synthesized up the next level of the hierarchy, and the process

repeats until we reach the root of the hierarchy.

In the second stage we find a solution to the constraint graph at the top
level of the hierarchy, and recursively inherit down the values for the border
points of the component cells, solving at each step in the hierarchy until we
reach the leaf cell at the bottom of the hierarchy. By making the coordinates
for the internal points of a cell as low as possible, consistent with the con-
straints of the cell and the values of the border points inherited down, we

may solve for the internal points of the cell at each level of the hierarchy.

The key steps in thls process are:

68

(1) The elimination of those constraints within a cell that do not involve the

border points.

(2) The combination of constraints from several cells into one set of con-

straints.

The general algorithm for the solution of the constraint graph for the

entire design is as follows;

The. topologlcal sort3 15 used to determine In what order values are
assigned to the nodes in the constraint graph. Every node with no predeces-
sors In the topologicaj sort may be taken to have the value of 0. When reach-
‘Ing node u with some predecessors, we have alfeady assigned values for those
predecessors. We then assign a value for ¥ by evaluating the constraints con-
necting u to its predecessors and taking the lowest value consistent with

these.

To eliminate the interior constraints of a cell we consider each border
point g, in turn from the bottom of the cell. Note that the bottom of the cell
SYNTHESIS

FOR. cells at level 0, 1,...,level of root DO BEGIN
eliminate interior nodes from constraints;
IF level > O (l.e. a composition cell) THEN
combine constraints involving border points of subcells

END;
INHERITANCE

solve constraints for the root cell, by finding a ,
topologlcal sort of the nodes In the constraint graph; '
FOR all instances of cells at level of root - 1 down to 0 DO
solve constraints for interior polnts, given values for border points.

3 A topological sort of an acyclic graph is the reverse of a depth first ordering of the
graph. This ordering has the important property that if there is an arc from a to b, then a
precedes b in the ordering.

€9

is regarded as a border point. We perform a depth-first search on the con-
straint graph from a but we stop when we reach another border point, b (i.e.
we do not follow any arc out of it). Thus we rez;.ch all and only the nodes
accessible from the border point. By visiting the nodes in topological order,
we can derlve for each such border node b, the length of the longest path [,
from \a to it. Thus the constraint b >= a + ! is the minimum constraint
implied by the given constraints. By repeating this for all border points, we

derive the set of constraints involving only the border polnts.

4.2.6. Complexity of The Composition Algorithm

Assuming that the constraint graph is acyclic, we may topologically sort
the nodes in time proportional to the number of arcs, }.e. the number of con-
straints. The assignment of values to nodes given the topological sort of the
cell is also proportional in time to the number of constralnts. Thus complete

solution of a cell is proportional 1n_tlme to the number of constraints.

The partial solution of constraints is actually more complex than com-
pletely solving for the constraints. However, we cannot simply solve the con-
straints for several cells independently since they may be connected at a
higher level and if we have found Incompatible values for the corresponding
ports, then the cells cannot be abutted as intended. Since the_depth—ﬁrst
search from each border polnt may Involve visiting all, or almost all, of the
points in the cell, In worst case the time to ell_mina.te the Interlor points is on
the order of the product of the number of border points and the number of

constraints.

In practice, however, the elimination of the Interlor points is much less

time—cbnsumlng, as many of the interior points will be sandwiched between

70

two border polnts, resulting in their appearing only in the depth-first search
of the border point immediately below it. In addition, the extra complexity Is
offset since a new constralint graph only has to be produced once for a given
cell. The same constraint graph can be subsequently used wherever else the
cell: appears, soO thé‘ overall cost is significantly reduced when the cell is useéi
more than once (l.e. regularity), which is characteristic of increasing trends in
integrated circuit design. Thus we can exploit the locality of the constraints

at evefy level of the hierarchy.

4.3. Summary

This chapter has focused oﬁ the requirements of an .lntermedlate form for
VLSI design tools in an integrated environment. Also the requirements for an
intermediate form that supports a separated hierarchy and a structured
design methodology have been presented. A structured intetme&iate form for
VLSI design tools called SHIFT has been outlined, together with an algorithm
for composing cells in a stretchable manner along adjoining ports. In the next
chapter we focus on the implementation-dependent aspects of SHIFT, and

how it fits within a prdposed design environment called EDICT [Birt84].

71

CHAPTER 5

SHIFT Implementation

In chapter 4 we focused on the requirements of an intermediate form for
VLSI design tools, and gave an overview of an intermediate form (SHIFT)
designed with these requirements in mind. This chapter focuses on the
current implementation of SHIFT and factors influencing decisions made in
the course of Implementation. Finally, we discuss where SHIFT fits in with

current VLSI tools being developed at the Unlversity of Calgary.

5.1. Choice of Implementation Language

The choice of language was generally motivated by the fact that SHIFT
was designed to mix in with both existing and developing tools. Since most of
the current tools ekist under the Berkeley Unixt 4.2 operating system this
meant that the implementation language should also exist on the same sys-
tem. Further, since most of the tools are written in a varlety of languages,
(e.g‘. SPICE in Fortran, LAP in Simula), the language chosen to implement
SHIFT should provide as flexible an interface as possible to other languages.
A consideration of these and the following reasons led to the choice of Franz

Lisp- [W1le84] as the language of implementation.

First, since SHIFT is a procedural as Well as declarative intermediate
form, it was desirable that SHIFT be embedded in some general purpose
language, rather than re-inventing the wheel. Second, it was felt that SHIFT

should also be extensible, thus the language In which it was to be embedded

t UNIX is a Trademark of Bell Laboratories.

72

should also be extensible. Third, we much preferred to cast the design in an
_ object-oriented language, since a lot of the manipulation was symbolic in
nature. Fourt_h, SHIF'T should be both human readablé and portable to many
systems. Fifth, SHIFT should execute efflciently, since VLSI designs tend to
be extremely large, and are continually growing in size. Lisp was the only

language avallable which fulfilled all these objectives.

Franz Lisp was chosen because of several additional features it has that
many other languages on Berkeley Unix do not have. Franz Lisp allows the
user to load ln foreign functions dynamically, thus allowing it to make use of
software already written. In addition, Franz Lisp was chosen because of its
capability to run within a distributed environment as well as in a stand-alone

configuration.

5.2. SHIFT Implementation

SHIFT retains much of the flavour of Lisp’s syntax. This decision was
made to minimize the effort involved in bullding SHIFT; any syntactlc
“sugaring’ could be done later as an interface sitting on top of SHIFT.
Further, the mapping into SHIFT would be made ea.éler by the fact that Lisp

is both easy to parse and to produce in an automatic manner.

SHIFT in its current state consists of approximately 3,000 lines of
sparsely documented code. The Franz Lisp code conforms wherever possible
to the Maclisp dialect, making SHIFT easlly transportable to many other Lisp
systems which use Maclisp or a similar dialect. This makes it easy to develop
tools in Lisp that are bullt on SHIFT. For the purposes of efficiency in execu-
tion as well as code clarity, an early decision was made to use the MIT struc-

tures package to build prototypes z\md instances. This, however, should not

73

decrease the portabllity of SHIFT, since the structures pagkage is supported

for almost all major dialects of Lisp.

As stated before, the baslc SHIFT geometric primitives are the wire, the
box, and the polygon. While these are sufficient to capture all designs of
interest, it was felt that most tools using SHIFT would want to work at a
slightly higher levél. For example, a Sticks-based editor manipulates wires,
contacts, and transistors. Also, users designing leaf cells procedurally, even
using SHIF'T, would find thelr task greatly simplified if they could specify

basic units like transistors.

As a result, SHIFT fully supports the geometric domain with a variety of
routines for designing layouts in both nMOS and CMOS technologies. NMOS
technology routines allow the user to specify pullup, pulldown, pass, and
enhancement mode transistors. CMOS technology routines consist of pmos
and nmos transistor functions, as well as a precursor gate transistor routine
for specifying a varlety of simple loglc configurations such as nand, nor, and

pla’'s, etc., as well as transmission gates.

‘While it is not central to SHIFT, it was felt that a geometry composer
should be provided. As stated before, this would provlde immedlate feedback
to users bullding tools, and allow users to try out SHIFT. It was also useful
for providing the examples in this thesls. Since the geometry of a composition
is simply the union of the geometry of its component parts, the geometry

composer was extremely easy to implement.

The structural and behavioural domains are not as fully fleshed out, and .
their composer functions have not yet been implemented. These would be

implemented in the following manner. The structural composer would require

74

a function which would compose graphs together by descending the hierarchy
and merging the leaf cell structural graphs by merging the nodes of adjacent

ports on abutting cells.

The most difficult composer to implement woﬁld be the behaviourai com-
poser. Fortunately, this has already been provided as a set of functions
implemented in LCF-LSM [Gord83]. It is intended that the existing software
be used in parallel with SHIFT, either as communicating processes through
the Jade [Unge84] distributed system, or in a more intimate manner, as LCF-
LSM 1is implemented in Franz Lisp, and provides hooks to load Lisp, and

therefore SHIF'T, functions.

5.3. SHIFT and Current VLSI Tools

There are three ways In which design tools can use SHIFT. The first
method is to use SHIFT as a textual Interface, in a manner simlilar to CIF.
This will eliminate the nasty problem of ”user extensions” to CIF that contain
information obtained by circult extraction and used In circult simulation. In
acidltion, "user extensions” are allowed in SHIFT definitions. They are simply
placed in a special slot of the prototype as an assoclation list in an
unevaluated form. The first element of the form simply becomes the name of
the user extension, and if the form Is a symbol, then the value of the associé.—

tion is nil.

The second method is to use SHIFT in future Lisp-based tools simply by
incorporating it into the Lisp environment. This would also allow tools such
as the Lisp-based SPICE interface (with a minimum of modification to it) to
use performance simulation information provided by SHIFT from the struc-

tural domain. A variant form of this would be to use SHIFT interactively,

75

since it 1s embedded In Lisp. This would allow a designer to design small cells

interactively, and in the process, become familiar with SHIFT.

The final use of SHIFT would be to use SHIFT within the context of a
distributed environment such as Jade. A Lisp-Jade Interprocess Communica-
tion Interface called Jipth [Libl84a] was developed in order to use SHIFT as a
library process ﬁhat, would contain the information of an evolving design. A
primitive version of the SHIFT library manager called shiftlth currentiy exists,
and will allow a user process tc pass messages defining cells, (in fact, any Lisp
s-expression), instantiating them, and querying the library for any informa-
tion. Further, SHIFT contains version control information that is used during
instantiation to llmit the necessary modifications to only those parts of the

design dependent on the changes.

A symbolic layout editor is currently belng developed based on SHIFT
that would allow the designer to build leaf cells using a graphical interface,
similar to REST [Most81]. However, once the cell is laid out it woulci be com-
pacted In a manner that would preserve fhe inherent constraints for subse-

quent stretching when composed.

5.4. SHIFT and EDICT

EDICT is a VLSI design tool environment under construction at the
University of Calgary. It will guarantee that designs meet their specifications;
allow specifications to be composedrrrom verified sub-modules (bottom—up), or
be refinements of rougher specifications (top-down); and cater for the incor-
poration of previously validated buillding blocks, large or small. The first
experimental ve;sions of EDICT will be extensions of current tools, and will

be written as applications of the JADE distributed environment.

76

Library | User
Assistant Interface
(SHIFT)

EDICT
Design
System
SHIFT

CIF Design Rule , Performance
Producer Checker . Simulator

Figure 5.1. The EDICT Deslgn Environment

A critical sub-system of EDICT will be a lbrary assistant which
remembers leaf cells and composition cells and stores them in a library for
future reference (see Figure 5.1). When later designs require elements with
the same specification, cells will be suggested by a library assistant working
on the fly. The library assistant will grow ever more knowledgeable as
verifled designs are automatically added to the library. Since today’s design
will be tomorrow’s component, using SHIFT to represent designs in the
library means that we will be able to bulld a collection of tried and tested
parts which will slot into future designs with a minimum of modification.
Thus a consideration in the design and implementation of SHIFT was that

SHIFT should form the kernel of the library assistant.

77

Since the preliminary version of EDICT will be built within JADE, Jipth
will allow any of the EDICT components implemented in Franz Lisp to
operate as complete entities within the Jade distributed environment. Wl_len
combined with SHIFT to create the llbrary assistant, let‘;h will allow
processes in other languages to query and modify the design datab'ase. This
means that current tools such as LAP may;co-exist with EDICT, and future
t:;ools such as layout edlto;s may be bullt to use SHIFT as their intermediate

form of choice.

This chapter has focused on the implementation-dependent aspects of
SHIFT, and how SHIFT is expected to fit in with both current and future
VLSI design tools at the University of Calgary. Chapter 6 will conclude with
an overview of the research work in this thesis, ana draw some observations

about the future of SHIFT in the state of VLSI design.

78

CHAPTER 6

Conclusion

6.1. Summary

This thesis has focused on the problem of increasing COmplexity in the
design of integrated circuits. An analysis of methodologies used in managing
this complexity has been made and observations have been drawn on the
requirements for an intermediate form used to capture VLSI designs. While H
not providing a .hlgh level of abstraction directly, such as a silicon compller
which maps from a behavioural description to a physical layout, an intermedi-
ate form provides the framework on which to bulld tools dealing with designs
at a higher level. SHIFT, a structured hierarchical intermediate form for

VLSI design tools, has been defined and partially implemented.

SHIFT uses a separated hierarchy of leaf cells and composition cells.
Leaf cells specify the actual artwork necessary to produce fabrication masks.
Composition ceils contain compositions of leaf cells and other (simpler) com-
position cells. Cells are composed by abutting together ports on adjoining
walls, stretching them if necessary. Relationships between ports are defilned
in terms of minimum or exact distance constraints between them. A hierarch-
lcal method is used for solving the constraint graphs produced from composi-
tion. SHIFT is embedded in Lisp and consists of abproximately 3000 lines of

Franz Lisp code.

SHIFT is a keystone of EDICT, a VLSI design tool environment under

construction at the Unlversity of Calgary. It is also the Intermediate form

79

used in a symbollic layout editor being deveioped, and will be the intermediate
language for future work by VLSI groups in the Computer Sclence Depart-
ment at Calgary. Finally, it is used in a primitive design library called shiftiib
which Is bullt on the JADE distributed environment using the Jipth lisp inter-
face to JADE. Shiftlib serves as a prototype for the llbrary assistant

envisaged in EDICT.

6.2. Observations on SHIFT

One observation that has been made is that SHIFT is devold of the syn-
tactic sugar that makes a language easy to program. However, SHIFT was
designed as an intermediate form, and its syntax makes it easy for tools to
generate SHIFT code in an automatic manner. Thus one tool which should
be built on SHIFT would be a procedural interface which would allow designs
to be s_peclﬂed as programs. Another observation made by the alithor was
that deslgning leaf cells by hand using SHIFT for the examples generated
some unexpected constrailnt solutions, primarily because the constraints
between ports on the walls went through interior ports. It is not easy when
laying out sizable leaf cells procedurall& to think in terms of constraints. It is
much easler to think of them graphically. It Is expected that a symbolic lay-

out editor will greatly facilitate the use of SHIFT for designing leaf cells.

Composing cells procedurally using SHIFT will not glve the same prob-
lems, since the chief concern is the abutment of cells, and any additional con-
straints must only be between border ports. This observation, however, must
awalt conflrmation by others using SHIFT. The lack of design experience
using SHIFT has hindered making many observations about its effectiveness

as an intermediate form, but early work such as a shift-to-lap fliter and

80
shiftlib is satisfactory. SHIFT Is expected to be thoroughly tested by EDICT.

6.3. Future Research Directions

Future work to be done on SHIFT includes the incorporation of electrical
properties in the.deslgn using constraints in the form of local maxima. This
would allow the designer to specify that a glven cell not exceed a certaln size,
and therefore some critical power level or time delay. This is necessary as
designers must meet certain global constraints with regard to power consﬁmp-
tion and speed that are present in any real design. It would also allow the
designer to get feedback on the critical paths present in a design at a very

early stage in the development process.

Also, a proof system for behaviours needs to be connected to SHIFT.
One possibility, as mentioned in the previous chapter, would be to use the
existing LCF-LSM system as developed by Gordon [Gord83] by coupling it to
SHIFT using Jade. Another possibility would be to use an alternative system
such as VERIFY [Barr84], which is written in Prolog, and has the advantage

of belng fully automated.

Finally, methods need to be developed to specify interior constraints of
leaf cells in such a manner that stretching would never result in design rule
violations. One possibility would be to incorporate the technique of rift lines
[Widd84] into a layout editor. The user would layout the cell symbolically,

and then draw rift lines where he wanted the cell to stretch.

Since SHIFT is embedded In Lisp it has the advantage of being an open-
ended intermediate form, and as such, it is easy to Incorporate new ideas into
it. This will Insure its use over a longer period of time than other intermedi-

ate forms. It will also have beneficial effects for tools using it, since there will

81

be a strong desire to integrate theée tools into a solild and workable VLSI
design environment that can change continuously to use new ideas as they are

developed.

82

References

[Back78]
Backus, JJW. “Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs.” Comm ACM,

August 1978.

[Barb81]
Barbaccl, M.R. “Instruction Set Processor Specifications (ISPS): The
Notation and Its Application.” IEEE Transactions on Computers C-

30(1):24-40, January, 1981.

[Barrg4]
Barrow, Harry. ‘“‘Proving the Correctness of Digital Hardware Designs”,

VLSI Design, Vol. 5, No. 7, July 1984, pp. 84-77.

[Batasi)]
Batall, J., Mayle, N., Shrobe, H., Sussman, G., and Weise, D. *‘The
DPL/Daedalus Design Environment”, VLSI 81, The Proceedings of the
First Internatioﬁal Conference on Very Large Scale Integration, August

1981, J. Gray (editor).

[Birt73]
Birtwistle, G., Dahl, O-J., Myhrhaug, B. and Nygaard K. 7 SIMULA

begin, Studentlitteratur, Lund, Sweden, 2nd ed., 1979.

[Birt84]
Birtwistle, G., Hill, D., Kendall, J., Coates, B., Esau, R., Kroeker, W,,
Liblong, B., Liu, E., Melham, T. and Schediwy, R. EDICT - An

83

Environment for Design using Integrated Circuit Tools, Unlversity of

Calgary Computer Science Research Report No. 84/155/ 13, June 1984.

[Brows3]
Brown, H., Tong, C., and Foyster, G. ‘Palladio: An Exploratory
Environment of Circuit Design’. IEEFE Computer, December 1983, pp.

41-58.

[Bryasi]
: Bryant, Randal. A Switch Level Simulation Model for Integrated Cir-

cutts. MIT Laboratory for Computer Science Technical Report-259.

[Buch80]
Buchanan, Irene. Modelling and Verification in Structured Integrated
Circuit Design, PhD Thesis, Department of Computer Science, University

of Edinburgh, 1980.

[Buch82]
Buchanan, Irene. Scale - A VLSI Design Language. Technical Report
CSR-117-82, Unlversity of Edinburgh, Department of Computer Sclence,

May 1982.

[Gordsi]
Gordon, Mike. A Model of Register Transfer Systems with applications
to Microcode and VLSI correctness. Department of Computer Science

Internal Report CSR-82-81, Unlversity of Edinburgh, March 1981.

[Gord83]
Gordon, Mike. LCF-LSM. University of Cambridge Computer Labora-

tory Technical Report No. 42, 1983.

84

[Gos183)
Gosling, J. Algebraic Constraints. PhD thesis, Department of Computer

Science, Carneglie-Mellon University; May, 1983.

[Hell79]
Heller, W.R. An Algorithm for Chip Planning, Caltech Silicon Structures

Project File #2808, 1979. -

[Joha79]
Johannsen, D. ‘“‘Bristle Blocks -- A Silicon Compiler’’, Proc. of The 16th

Design Automation Conference, 1979.

[John84]
Johnson, Stephen C. ‘“‘Top-down systeril design through silicon compila-

tion”, Electronics, Vol. 57, No. 9, pp. 121-128. May 3, 1984.
[King82]
Kingsley, Chris. FEarl: An Integrated Circuit Design Language. Caltech

Technical Report 5021, June 1982.

[Lib183]
Liblong, B. M., Birtwistle, G. M. “A VLSI Design System Based Upon a
High Level Intermediate Form™, 1983 Cenadian Conference on Very

Large Scale Integration, Waterloo Ont., 1983, pp. 150-153.

{Libl84a) 7
Liblong, B.M., and Bonham, M. Jipth - The Lisp - Jipc Interface,
Unlversity of Calgary Computer Science Technical Report in preparation.

[Libl84b]

Liblong, BM. The SHIFT Users Manual, in preparation.

85

[Libl84c)
Liblong, B., Melham, T., Birtwistle, G., Kendall, J. ‘“Towards A VLSI
Design Tool System'’, Proceedings of CIPS Session 84, Calgary, Alta.,

1984.

[Lipt83]
Lipton, R.J., Valdes, J., Vilayan, S.C., North, S.C., and Sedgewick, R.
“VLSI Layout as Programming’, ACM Transactions on Programming

Languages and Systems, Volume 5, Number 3, July, 1983.

[Loca78]
Locanthi, B. LAP: A Simula Package for IC Layout. Caltech Technical

Report Display File #1862, July, 1978

[Mead80]
Mead, Carver and Conway, Lynn. Introduction to VLSI Systems,

Addison-Wesley, 1980.

[Moor79)
Moore, G.E. *“Are We Really Ready For VLSI?", Proceedings of the Cal-

tech Conference on VLSI, January, 1979, C. Seltz (editor).

[Most81]
Mosteller, R.C. REST - A Leaf Cell Design System. M.Sc. Thests, Sili-

con Structures Project Technical Report 4317, Caltech, December, 1981.

[Nage75]
Nagel, L.W. SPICE2: A Computer Program to Simulate Semiconductor
Circuits. ERL Memo ERL-M520, University of California, Berkeley, May

1975.

86

[Rem81)
Rem, Martin. ‘“The VLSI Challenge: Complexity Bridling”, VLSI 81,
The Proceedings of the First International Conference on Very Large

Scale Integration, August 1981, J. Gray (editor).

[Rows80)
Rowson, James Allely. Understanding Hierarchical Design, PhD thesis,

Caltech Technical Report 3710, April 1980.

[Sand79)]
Sandewall, E. “Programming in the Interactive Environment: The LISP
Experience’, ACM Computing Surveys, Vol. 10, No. 1, March, 1978, pp.

35-72.

[Seit79]
Seitz, C. *“Self-Timed VLSI Systems’, Proceedings of Caltech Confer-

ence on VLSI, January 1979.

[Sproso]
Sproull, R. F., and Lyon, R. F. ‘““The Caltech Intermediate Form for LSI

Layout Description’, from [Mead80], 1980.

[Trim80]
Trimberger, S. The Proposed Sticks Standard, Caltech Computer Science

Department. Technical Report #3380, 1980.

(Trim81]
Trimberger, S., Rowson, J., Lang, C. and Gray, J. *A Structured Deslgh
Methodology and Associated Software Tools'’, IEEE Trans. on Circuits

and Systems, Vol. CAS-28, No. 7, July 1981, pp.618-633.

87

[Ullm84]
Ullman, J.D. Computational Aspects of VLSI, Computer Science Press,

1984.

[Unge84]
B.W.Unger et al. “JADE: a software simulation and prototyping
environment”. Proceedings of the Conference on Simulation in Strongly

Typed Languages, San Diego, 1984.

[vanC79]
vanCleemput, W. M. “Hlerarchical Design for VLSI: Problems and

Advantages”, Proceedings of Caltech Conference on VLSI, January 1979.

[Wallg3]
Wallich, P. ‘““Tomorrow’s Computers - The Challenges, IEEE Spectrum,

November 1983, pp. 73-77.

[Whit81]
Whitney, T. A Hierarchical Design Rule Checker, Caltech Computer

Sclence Department. Technical Report #4320, 1981.

[Widds4]
Widdowson, Rod. An Investigation of Stretchable Cells itn SCALE. To
appear as a Uni\;ersity of Edinburgh Computer Science Technical Report

in late 1984.

[Wileg4)

Wilensky, R. LISPCraft, W.W. Norton & Company, New York, 1984.

[Wil177]
Williams, J.D. STICKS - A New Approach to LSI Design, MIT MSEE

Thesis, 1977.

88

APPENDIX A

Syntax of SHIF T

The following comprises a user-level synt}actic description of SHIFT. The
description method was chosen for readabllity and because it gives some
flavour of the semantics of the functions. The syntz;.x used is a modified form
of BNF, where constructs enclosed in brackets ({]) are optional, constructs
enclosed In braces ({}) in conjunction with the vertical bar (|) mean choose
one of, and both forms may be modified with a reﬁetltlon factor. The repetl-
tion factor may be *%” , meaning O or more times, *‘4+’ meaning 1 or more

times, “ and “+4+x” , meaning X or more times. Non-terminals are denoted by

names beginning with *“I_"" , denoting a list expression, ‘‘s_"" , denoting a sym-

’

bol, “n_" , denoting a number, “h_" , denoting a cell structure, and “p_,”

denoting a point expression. For more information, consult the SHIFT Users

Manual [Libl84b].

1. Defining Cells
Cell definitions have the following syntax.

s_leaf-cell_definition 1=
(defleaf s_cell-name
(1_leaf_ports_expr]
[I_const_expr]
[I_struct_expr]
[I_beh_expr]
{l_geom_expr])

s_composition-cell_definition 1=
(defcomp s_cell_name
{l_comp_ports_expr]
{I_const_expr]
{l_struct_expr]
[I_beh_expr]
{I_comp_expr])

1_leaf_ ports_expr ::=—
(ports [(north [s_port]x)]
[(south [s_port]*)]
[(east [s_port]x)]
[(west [s_port]#)]
[(interior [s_port]#)])

1_comp_ports_expr =
(ports [(north [s_port]%))
[(south [s_port]%))
[(east [s_port]x)]
[(west [s_port]«)])

1_const_expr 1=

(const [(s_port
{>=|=|"un|n}
s_port
[{+ |-} n_value])]*)

1_struct_expr =
(struct [(nodes
[s_node_name
(s_component {s_attribute n_val]*)]«)]

[(connect
[({s_port | (s_component_node s_node_name)
s_port | (s_component_node s_node_name)

1_beh_expr ==
(beh ([s_state]*)
({[(s_port = e_val)]x).
(le_next_state]x))

l_geom_expr ii:=
(geom 1_geom_primitives)

1_comp_expression ::=
({ >]| < || v} {s_cell_name | I_comp_expression }+)

1)]*)])

89

90

1_geom_primitives = :
({1_geom_primitive | I_geom_primitives})

2. Geometry Primitives

Since SHIFT is a procedural form, one can write and use functions which
return lists of geometry primitives. In particular, there are basic functions for
specifying relative paths in the path primitive, for applying transformations to
primitives and lists of primitives, predicates and selectors which can be used
to write user geometry functions, and emos and nmos functions which take
higher-level concepts such as transistors and map them into lists of geometric

primitives.

2.1. Basic Geometry Primitives

1_geom_primitive :i== ,
1_box_primitive | 1_polygon_primitive |
1_wire_primitive | 1_geometry_function |
1_geometry_function

1_box_primitive 1=
(box [s_layer] { 1_point 1_point | I_path})

1_polygon_primitive ::=
(polygon [s_layer] { {I_point]+3 | I_path})

1_wire_primitive ::=
(wire [s_layer] [s_width] { [I_polnt]+2 | I_path})

1_path 1=
(path 1_point { 1_point | I_abs-motion | 1_rel_motion }) |
(pmerge { 1_point | 1_path }+) |
(perim 1_box_primitive) |
(lengthen-path 1_path n_first n_last)

_point_primitive 1=
1_geom_primitive | I_path

91

1_abs-motion ==
(then-x n_expr) | (then-y n_expr) | (then-xy n_expr n_exp)

1_rel-motion ;=
(by-x n_expr) | (by-y n_expr) | (by-xy n_expr n_epxr)

1_geometry_function ::=
1_cmos_geometry_function | l_nmos_geometry_function |
1_user_deflned_function | 1_compound_geometry_function

2.2. Selectors and Predicates

1_selector 1=

(:type 1_point_primitive) |
(:layer 1_geom_primitive) |
(:width 1_geom_primitive) |
(:low 1_box_primitive) |
(:high 1_box_primitive) |
(:path 1_point_primitive) |
(:nth 1_point_primitive)

1_geom_predicate ::=
(layerp s_layer) |
(pathp 1_geom_primitive) |
(widthp n_expr)

2.3. Transformation Functions

1_transform ::==
(apply-fen f_function 1_point_primitive) |
(trans-pt 1_point 1_point_primitive) |
(trans-x n_expr 1_point_primitive)
(trans-y n_expr 1_point_primitive)
(trans-xy n_expr n_expr l_point_primitive) |
(scale-pt 1_point 1_point_primitive) |
(scale-x n_expr 1_point_primitive)
(scale-y n_expr I_point_primitive)
(scale-xy n_expr n_expr 1_point_primitive) |
(mr-x 1_point_primitive)
(mr-y 1_point_primitive)
(mr-xy 1_point_primitive) |
(rot-pt 1_pt n_expr 1_point_primitive) |
(rot n_expr 1_point_primitive) |
(apply-tx 1_geom_primitives 1_trans_mat) |
(apply-rot 1_geom_primitives 1_point)

92

2.4. nMOS.Geometry Functions

1_geom_primitives ::=
(dm) |
(dm-at 1_point) |

pm
(pm-at 1_point) |

(dpeast) |

(bn-at 1_point) |

(be-at 1_point)

(bs-at 1_point)

(bw-at 1_point) |

(but-rot-at 1_point I_point) | ,
(pulldown n_diff-width 1_diff-path n_poly-width 1_poly-path) |
(passtran n_diff-width 1_diff-path n_poly-width I_poly-path) |
(pullup n_diff-width 1_diff-path n_poly-width 1_poly-path) |
(enhtran (diff-width diff-path poly-width poly-path)

2.5. CMOS Geometry Functions

1_geom_primitives ;1=
(am) |
(am-at 1_point) |
(pm)
(pm-at 1_point) |
(apeast) |
(bn-at 1_point) |
(be-at 1_point)
(bs-at 1_point)
(bw-at 1_potint) |
(ameast) |
(sn-at 1_point) |
(se-at 1_point)
(ss-at 1_point)
(sw-2t 1_point) |
(n&p+-box 1_box_primitive) |
(pwell&guards-box 1_box_primitive) | |
(gate n_active-width 1_active-path n_poly-width 1_poly-path) |
(pmos n_active-width 1_active-path n_poly-width 1_poly-path)
(nmos n_active-width 1_active-path n_poly-width 1_poly-path)
(split-rot-at 1_point 1_point) |
(split-&-n&pplus-rot-at 1_point I_point)

93

2.6. Miscellaneous Functions

1_misc_geom_functions =
(union-box 1_box_primitive 1_box_primitive) |
(inflate-box 1_box_primitive n_value) |
(cbox [s_layer] 1_point n_horiz n_vert) |
(box-to-polygon 1_box_primitive) |
(mbb 1_point_primitive) |
(shift-to-cif-wire I_wire_primitive)
(cif-to-shift-wire 1_wire_primitive)
(mbb-wire 1_wire_primitive)

3. Points

Polints are simply a structure of two numbers. Operations are provided

for the creatlion, selection, manipulation, and transfomation of points.

3.1. Creation, Selection, and Relational Functions

1_point :=
s_port | (point n_expr n_expr)

1_point_selection ;1=
(:x 1_point) | (:y 1_point)

1_point_ops 1=
(pointp 1_point)
(pt==1_point 1_point) |
(pt/= l_point 1_point) |
(pt< 1_point 1_point)
(pt> 1_point 1_point)
(pt>= 1_polnt 1_point) |
(pt<==1_point 1_point)

3.2. Point Manipulations

1_point 1=
(pt+ 1_point 1_point) |
(pt~ I_point 1_point) |
(pt* 1_point 1_point)
(pt/ 1_point 1_point)
(pt-scale n_expr 1_point) |
(pt-rot n_expr 1_point) |
(pt~-dx 1_point n_expr) |

94

(pt-dy 1_point n_expr) |
(pt-dxy 1_point n_expr n_expr) |
(pt-minus 1_point) |
(sq-pt 1_point) |

(xy-sum I_point) |
(xy-difference 1_point) |
(xy-times 1_point) |
(xy-quotient 1_point) |
(dist 1_point I_point) |
(pt-max 1_point 1_point) |
(pt-min 1_point 1_point) |
(pt-round 1_point) |
(pt-trunc I_point)

3.3. Point Transformations

1_point 1=
(normalize 1_point) |
(pt-mult 1_point 1_trans_mat) |
(identity) |
(trans-mat 1_point) |
(scale-mat 1_point) |
(rot-mat 1_point) |
(pre-mult 1_trans_mat l_trans_mat)

4. Instantiation and Selection
Instantiation of a design returns the instance-name of the deslign.

s_instantiation ==
(instantiate 's_cell_name)

An instance’s flelds may be selected with the following functions.

sl_prototype_selectors 1=

: (cell-prototype-source h_leaf_or_comp_prototype) |
(cell-prototype-date-created h_leaf_or_comp_prototype) |
(cell-prototype-version h_leaf_or_comp_prototype) |
(cell-prototype-name h_leaf_or_comp_prototype)
(cell-prototype-ports h_leaf_or_comp_prototype)
(cell-prototype-constraints h_leaf_or_comp_prototype) |
(cell-prototype-reduced-constraints h_leaf_or_comp_prototype) |
(cell-prototype-behaviour h_leaf_or_comp_prototype) |
(cell-prototype-structure h_leaf_or_comp_prototype) |
(cell-prototype-struct-fcn h_leaf_or_comp_prototype) |
(cell-prototype-user-extensions h_leaf_or_comp_prototype) |

95

(leaf-prototype-geometry h_leaf_prototype) |
(leaf-prototype-geom-fcn h_leaf_prototype) |
(comp-prototype-composed-of h_comp_prototype) |
(comp-prototype-merged-constraints h_comp_prototype) |
(comp-prototype-composed-ports h_comp_prototype) |
(comp-prototype-composed-interior h_comp_prototype)

sl_instance_selectors ::=
(cell-instance-name h_cell_instance) |
(cell-instance-class h_cell_instance) |
(cell-instance-border-values h_cell_instance) |
(cell-instance-wall-values h_cell_instance) |
(cell-instance-port-values h_cell_instance)
(cell-instance-structure h_cell_instance) |
(leaf-instance-geometry h_leaf_instance) |
(comp-instance-composed-of h_comp_instance)

5. Other Functions
These Include a geometry extractor and functions for version control.

s_version_fens 1=
(get-version s_cell_name) |
(get-creation-date s_cell_name)

1_geometry_extractor ::=
(get-geometry s_cell_name s_instance)

96

APPENDIX B

SHIFT Examples

1. The Shift Register Leaf Cell

The shift register in chapter 4 is reproduced here in its entirety.

(defleaf shiftreg
(ports
(north n:clock) (south s:clock)
(east e:gnd out e:vdd) (west w:gnd in w:vdd)
(interior
gc pe last ; ground, power and butting contacts
pd.gtin pd.gtout pd.src pd.drn ; pulldown nodes
pu.gtin pu.gtout pu.sre pu.drn ; pullup nodes
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes
middle)) ; inverter output
(const
(w:gnd “!! south + 2) (in “!! w:gnd + 4) ; west wall
(north “!! w:vdd 4+ 5) (w:vdd “!! pu.drn + 1)
(out >= last + 3)
(e:gnd “!! south + 2) (out “!! e:gnd + 4) ; east wall
(e:vdd " out + 2) (e:vdd ! wivdd)
(s:clock >== pt.src + 3) (n:clock = s:clock) ; south & north walls
(gc = west + 5) (gc “!! south + 2) ; ground contact
(pd.src = gc) (pd.drn = pd.sre) ; pulldown
(pd.gtin >= In + 1) (pd.gtout >= pd.gtin + 8)
(pd.src “!! ge + 1) (pd.gtin “! pd.src + 3)
(pd.gtin !! in) (pd.gtout !! pd.gtin)
(pd.drn “!! pd.gtin + 3)
(middle “!! pd.drn + 1) (pu.src ~!! middle + 1) ; inverter output
(middle = pd.drn)
(pu.src = middle) (pu.gtin = pu.sre) . ; pullup
(pu.gtout = pu.gtin) (pu.drn = pu.gtout)
(pu.gtin “!! pu.src 4+ 2) (pu.gtout !! pu.gtin + 7)
(pu.drn “!! pu.gtout + 2)
(pc = pu.drn) (pc !! w:vdd) ; power contact
(pt.gtout = s:clock) (pt.sre >= pd.gtout) ; passtran
(pt.drn >= pt.gtin + 3) (pt.gtout “!! pd.gtout + 1)
(pt.gtin “!! pt.src + 3) (pt.src !! middle)
(pt.gtin = s:clock) (pt.drn !! pt.sre)
(last !! pt.drn) (last >= pt.drn + 3)) ; last contact
(geom -
(dm-at ge) ; contact between pulldown and ground

97

(wire metal 4 w:gnd gc e:gnd) ; ground wire)
(pulldown ; pulldown has two parts
4 (path pd.src pd.drn) ; diffusion path from source to drain
2 (path pd.gtin pd.gtout)) ; a poly path from gtin to gtout

(wire poly in pd.gtin) ; connect gate to Input port
(wire diffusion ge pd.src) ; connect pulldown to ground
(pullup ; pullup has four parts

2 (path pu.src pu.drn) ; a diffusion path from source to drain
6 (path pu.gtin pu.gtout)) ; a poly path from gtin to gtout
; an implant layer is automatically drawn
; over the poly layer, extended by 2 lambda
: on elther end, and a butting contact at the
; gate input connecting the gate to the source
(wire diffusion pd.drn middle pu.sre); connect the pullup and pulldown
(wire metal 4 w:vdd pc e:vdd) ; power wire
(wire diffusion pu.drn pe) ; connect pullup to power
(dm-at pc) ; contact between pullup and power
(passtran ; passtran is equivalent to the pulldown
2 (path pt.drn pt.src)
2 (path pt.gtin pt.gtout))
(wire poly n:clock pt.gtin) ; wire up clock to'one end of the gate
(wire poly s:clock pt.gtout); wire up other end of gate to clock

(wire diffusion middle pt.src) ; connect inverter output to passtran’s
; source
(be-at last) ; butting contact for passtran to out

(wire diffusion pt.drn last) ; connect passtran to contact and
(wire poly (pt-dx last 1) ; contact to out
(then-y (:y out)) out))
(struct
(nodes
pullup (n-type-dep len 6 wid 2)
pulldown (n-type-enh len 2 wid 6)
pass (n-type-enh))
(connect
(e:vdd w:vdd) (e:gnd w:gnd) (n:phi s:phi)
((:source pullup) e:gnd) ((:source pulldown) e:vdd)
((:drain pullup) (:drain pulldown))
((:drain pullup) (:source pass))
((:gate pullup) (:drain pullup))
((:drain pass) out) ((:gate pulldown) in)
((:gate pass) n:phi)))
(beh (s)
((s:phi = n:pht) ,
(out = if n:phi then (not s) else @))
((if (in = @) then s else in)))

2. A Shift Register Array
The deflnition of a 4 element bit-slice looks like:

(defcomp shiftslice
(> (> shiftreg shiftreg)
(> shiftreg shiftreg)))

and the definition of a 4 bit wide bit-slice (Figure B.1.) is simply:

(defcomp shiftarray
(© (© shiftslice shiftslice)
(" shiftslice shiftslice)))

98

99

B M BN N BN &8
[l [i i
I 1 | | | IR
A aln X als H M H
(it el i i o i W s i |
S oo | .y - —.llw._ﬂlJ — ﬁnlﬂln_..ﬂll — DHJ
121 =1 121 121 IS
L 13 L 1 | L
. = M u nln H M
it it s N
- s & & @
121 121] 121 =i
LILLL LD 1 L 13111
s ™1] M 4 -
[] O [e | o O
= alllj mam EJ.I] — EIJ = .mnlw(HJ
=l 121 Hl Hl
1 INEE Ll 1 1
1 — N H H N alln
[] [o | il i i
S = J NS) S o § S B NN = N R S == § N

Figure B.1. Geometry of a 4 X 4 Shift Register Array

