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Abstract 

This thesis examines the problem of Increasing complexity in the design 

of integrated circuits: An analysis of methodologies used In managing this 

complexity is made and observations are drawn on the requirements for an 

intermediate form used to capture VLSI designs.' While not providing a high 

level of abstraction directly, an intermediate form provides the framework on 

which to build tools which deal with designs at a higher level. SHIFT, a 

Structured Hierarchical Intermediate Form for VLSI Design Tools, has been 

defined and implemented.. SHIFT uses a separated hierarchy of leaf cells and 

composition cells to obtain unified and consistent descriptions of the physical, 

structural, and behavioural attributes of a design. Leaf cells specify the 

actual artwork necessary to produce fabrication masks. Composition cells 

contain compositions of leaf cells and other (simpler) composition cells. Cells 

are composed by abutting together ports on adjoining walls, stretching them 

if necessary. Relationships between ports are defined in terms of minimum or 

exact distance constraints between them. A hierarchical method is used for 

solving the constraint graphs produced from composition. SHIFT is embed-

ded in the Franz Lisp programming language. SHIFT is a keystone of EDICT 

[Birt84], a VLSI design tool environment under construction at the University 

of Calgary. SHIFT Is also used In a primitive design library called shiftlib 

which is built on the JADE [Unge84] distributed environment using the Jipth 

[Libl84a] lisp interface to JADE. Shlftlib serves as a prototype for the library 

assistant envisaged in EDICT. 
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CHAPTER 1 

Introduction 

1.1. The Problem 

Over the past twenty years integrated circuit technology has grown 

exponentially from being capable, of placing tens of devices on a single wafer 

of silicon to placing hundreds of thousands of devices on a single chip. As a 

result VLSI designers today are facing a crisis in complexity management not 

unlike the same crisis faced twenty years ago by software designers. 

There Is a widening gap between what VLSI technologies are capable of 

producing and what system designers can design. The designs that most fully 

utilise the potential of VLSI technologies are memory chips, and only as a 

result of the highly regular structure Inherent In their design. With less regu-

lar structures such as microprocessors system designers are having trouble 

even completing designs. 

The complexity scale Implied by this technology can be visualised with 

the help of an analogy (see Table 1.1) presented by Charles Seitz of Caltech 

[Se1t79]. Suppose we scale up a typical chip to make the spacing between 

conductors equal to one city block In size. In this way, the circuit can then be 

thought of as a multi-level road network carrying electrical signals instead of 

cars. 

In the mid 80's the complexity of a chip was not much bigger than a 

small town. Most people can carry around a map in their heads of a town 
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and be able to find their way around without too much difficulty. Similarly 

designers could manage a design's detail In their heads. 

A microprocessor built In the late 1970's using 5 micron technology Is 

comparable In complexity to the entire Los Angeles basin. This would already 

tax our limits of memory In that only major freeways and avenues would be 

remembered; the rest would have to be negotiated using maps. 

By the time a 1 micron technology is solidly In place (perhaps In as little 

as two years from now) designing a chip will be equivalent to planning a 

street network for all of Nevada and California at urban densities. At this 

point it Is beyond our ability even to remember the major freeways; only the 

overall organisation of the design can be kept in our heads. 

If this is extended to the ultimate limits of the technology (about 1/4 

micron - [Mead80], Chapter 1), designing a chip will be comparable to design-

ing a street network of urban densities that will cover the North American 

continent. 

The only hope of dealing with such complexity Is to find some method of 

managing it which does not increase In direct proportion to the size of the 

designs. Thus techniques for structuring designs and design aids that support 

these techniques must be introduced to realIse the potential of this technology 

and avoid the same mistakes made in software design twenty years ago. 

1.2. The Nature of VLSI as an Implementation Medium 

VLSI is a new medium for the realisation of computations [Rem8l]. Its 

power springs not from Its ability to implement existing engines such as 

microprocessors, but to implement entirely new architectures directly. VLSI 
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A Comparison of IC Technology Complexity 

Year Connector 
Separation 

Scale Factor 
(for 800m block) 

Chip Size 
(width) 

Land Area 
(width) 
Caltech 

1963 25 microns 4 x 106 1 mm area 
4 km 

Los 

1978 5 microns 2 x 107 5 mm Angeles 
100 km 

California 

1985 1 mIcron 1 x 108 10 mm & Nevada 
1000 km 

North 

19?? 1/4 micron 4 x 108 20 mm America 
8000 km 

Table 1.1. 

In effect is a highly concurrent realisation medium for computations and 

allows us to exploit parallelism on a massive scale. 

In addition, VLSI is.viewed by many as essential for fifth-generation com-

puting efforts and VLSI design tools are required both to design the chips 

required in these computer systems and to support the experimental designs 

needed along the way [Wall83]. 

The domain of VLSI design is very large, spanning from extremely regu-

lar and highly space and time optimised designs such as memory chips, to 

highly irregular designs such as random logic circuits. This thesis will focus 
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on the design of an Intermediate form that Is well suited to a large subset of 

• this domain that lies somewhere between the two extremes; that of semi-

custom designs. Semi-custom designs can be characterlsed by the use of regu-

lar structures such as PLA's to implement random logic, and by repetition of 

elements In the design. The primary concern in semi-custom designs is to get 

a quick and correct Implementation of a design. 

With a proper design methodology a design can often be optimised after 

It Is designed correctly. What is required Is a method of analysing the perfor-

mance bottlenecks, and then modifying the design to remove them. This 

requires that a design exhibit characteristics such as lcccality and modularity. 

By designing an intermediate form that incorporates these features, a firm 

foundation' is laid for higher level design tools. 

1.3. Structured Design 

The Caltech "structured design methodology" as Introduced by Carver 

Mead [Mead8O] is one approach to system design. It deals with the problem 

of complex designs by introducing regularity into the system. Even random 

logic and irregular structure have a regular implementation using PLA and 

ROM structures. Hierarchical design techniques have been traditionally used 

to manage complex software systems, and Rowson has extended this design 

methodology into the IC domain' [Rows8O}. Specifically, Rowson introduces 

the concept of a separated hierarchy, where a design can be captured through 

Its description in terms of leaf cells and the hierarchical structure that relates 

groups of these cells. 

If structured design methodology is not incorporated into tools, then an 

increase in the complexity of the design as measured by the number of 



5 

components will dramatically Increase the complexity of the overall design. 

Structured design methodology is a method of combating the combinatorial 

explosion of complexity of a design. 

Further, the use of a structured design methodology in tools allows for 

consistent incremental design and modification of VLSI specifications. The 

result is tools which are simpler to develop and modify, since they can exploit 

the inherent structure of a design, instead of primarily focusing on the use of 

combinatorially optimal algorithms. 

1.4. The Need for an Intermediate Form 

Three domains can be recognised as being Important in the specification 

of VLSI designs [13uch80]. These can be termed the physical, structural, and 

behavioural domains. Some tools are better suited to specifications In one 

domain over the others. As a result, no one tool exists that Is ideal for 

designing chips; rather a suite of tools is necessary for the complete design of 

a VLSI circuit. Communication between these tools Is greatly enhanced by a 

consistent representation of the design through the use of an Intermediate 

form. 

Further, designs are not arrived at in their totality; they are grown Incre-

mentally and modified many times before a satisfactory solution Is reached. 

Some method Is needed to force an Incremental specification of a design which 

will remain consistent at each stage. The Incorporation of a hierarchical 

design methodology Into an intermediate form supports the Incremental 

specification through stepwise refinement of the solution. It also restricts the 

effects of modification by localising such changes. 
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Many VLSI tools use CIF [Spro8O] as their Intermediate representation. 

The problem with CIF is that it was only intended to be used as a 

specification of the layout for the silicon foundry. As a result other descrip-

tions (which were thrown away when the design was forced into CIF format) 

have to be synthesised from the geometric description by tools like circuit 

extractors. These descriptions are at best a canonical representation of the on-

ginal description, and at worst a totally linear description of the original 

design, without any internal structure. 

What is needed in VLSI design systems are tools which support a 

designer's flair and intuition about a solution to a design problem. They 

should also report back to the designer any inconsistencies and flaws In the 

design at the level in which they occur. In order to do this an Intermediate 

form is needed that retains all of the original structure inherent In the design. 

1.5. Scope and Structure of the Thesis 

This thesis will examine current VLSI design tools and design methodolo-

gies in light of the current complexity crisis. An argument is made that an 

intermediate form capable of capturing the structure Inherent in a design is 

crucial to the design process Itself. This Is further strengthened by the need 

for this Intermediate form to tie together the various tools that are needed to 

deal with the design at the many different levels of abstraction. Finally the 

design of an intermediate form meeting these objectives will be outlined and 

its implementation and future use will be discussed. 

This thesis will not address the more difficult aspect of automating the 

the design of VLSI circuits, nor will it investigate the modes of reasoning 

about highly complex IC designs. One must be able to walk before learning 
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to run. 

Chapter 2 will elaborate on the nature of VLSI by characterising VLSI 

designs and analysing the domains of description inherent in them. It will 

also discuss how current tools deal with the design process. 

Chapter 3 focuses on two design methodologies of interest; the structured 

design methodology of Carver Mead, and hierarchical design methodology as 

developed by Rowson. The nature of Iterative modelling and the role of simu-

lation In VLSI design are discussed. Finally an examination is made of 

current design tools and how they meet and fall to 'meet the criteria developed 

in chapters 2 and 3. The requirements for an Intermediate form are drawn 

from this analysis. 

Chapter 4 discusses the design philosophy behind SHIFT and then 

proceeds to describe the design of SHIFT in detail. The advantages and the 

consequences of implementing SHIFT as a distributed process in Lisp are 

examined. 

Finally, chapter 5 focuses on a discussion of SHIFT in the light of experl-

ences In implementing and using it. Some future extensions of this work are 

also discussed. 
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CHAPTER 2 

The Nature of VLSI 

2.1. A Characterization of VLSI Designs 

We are now In the midst of a microelectronic revolution which has pro-

vided us with the ability to place 100,000 circuit elements on a single chip. 

Further, as each year goes by, manufacturers are able to put more and more 

devices on a single piece of silicon. This Is shown by Moore's law in Figure 

2.1. With the increasing complexity of a chip, the design time also increases 

at a rapid rate [Moor79]. 

Working further against the management of complexity Is the fact that 

the current life cycle of a product Is approximately five years, of which the 

design time average, which typically includes about two fabrication cycles, Is 

two years. It now takes two years for a large team to complete a design with 

one hundred thousand devices; each year the number of devices will double, 

yet the life cycle and hence the elapsed average design time is expected to be 

the same. Thus the overwhelming problem that we will face once we scale 

down to sub-micron structures will be the management of complexity. 

There are a number of methods of tackling Increasing complexity. These 

Include advances In design which reduce the number of components for a 

given function, the use of an increasing number of designers for a given pro-

ject, and the exploitation of design methodologies which attempt to exploit 

certain properties of the medium and the design itself. These design metho-- 

dologies include the use of standard parts from cell libraries, and mapping 
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Figure 2.1. Moore's Law 

problems into standard architectures, which may be best accomplished with 

the use of silicon compilers. 

There are also various design styles which may be used to express a given 

function In silicon. Two of the most common in use In Industry are the gate 

array technique and the use of standard cells. 
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The gate array approach is currently the most common approach to 

automated design of custom circuits. In this approach, a two-dimensional 

array of replicated cells composed of transistors Is fabricated to a point just 

prior to the Interconnection levels. A given circuit function is then imple-

mented by customising the connections within each local group of transistors, 

to define Its function as a basic cell, and then by customising the interconnec-

tions between cells in the array to define the function of the circuit. Gate 

arrays are most usefully employed when minimising design time Is more 

important than minimising silicon area. 

The problem with this approach is that the structure of the original 

design is flattened to a single level of Interconnect at the silicon surface. This 

mapping can be both difficult and wasteful, but has the advantage of fast pro-

duction turnaround. The ratio of circuit density between a structured design 

and a gate array has been Investigated for a small set of chips, with the struc-

tured designs winning out by a factor of between 3 : 1 and 6 : 1 [Hell79]. 

Further, the mapping can only be expected to get worse as designs become 

more complex, since the management of interconnect becomes ever more 

Important, yet the gate array approach robs us of the ability to manage the 

Interconnect fully. 

The standard cell approach refers to a design method where a library of 

custom-designed cells Is used to implement a circuit design. The designer 

chooses the particular cells needed to Implement the function, and specifies 

the interconnections between them. Thus the designer is freed of having to 

worry about the details involved in designing cells and can work at a higher 

level of abstraction. The actual placement of the cells may be manual or 
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automatic. A problem arises with this approach when no predesigned cells 

performing the exact function can be found in the library. The designer 

would then be forced to design a new standard cell that Implements the 

required function, the very situation he hoped to avoid using this approach. 

Also, since regular interconnect cannot in general be achieved, this design 

style trades flexibility and silicon area for lower design times and correct 

design at the cell level. 

Both gate arrays and standard cell approaches are seen to be unfit as a 

design methodology suitable for handling designs capable of fully exploiting 

sub-micron gate densities. For this reason only the structured design metho-

dology is pursued any further; chapter 3 examines this design methodology in 

• detail. The rest of this chapter will concentrate on the domains of description 

of a VLSI design and how current tools support these. 

2.2. Domains of Description of a VLSI Design 

Three domains have been Identified to characterize a VLSI design: physi-

cal, structural, and behavioural. There exists a hierarchy of description ' In 

each of the three domains In a structured design, and It is important to ensure 

that the descriptions not only be consistent within each domain, but also 

across domains. Failure to do so can be catastrophic; for example the' 

behavioural and physical descriptions of a design may each be consistent, but 

when the design comes back from the foundry the observed behaviour Is not 

the desired or predicted behaviour because the specifications are not con-

sistent with each other. One method of ensuring consistency across domains 

Is to unify the description in each of the domains using a single hierarchy. In 

this section we will define each domain and attempt to show how current 
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tools address each of these domains of description. 

The physical domain Is concerned with the specification of the physical 

layout of the Integrated circuit via patterns on fabrication masks. These pat-

terns may be defined as boxes, polygons and wires. For example, an NMOS 

ramcell (see Figure 2.2) in LAP [Loca78] would be defined: 

define(" ramcell"); 
Iayer(green); 

wlre(4,- 1,29).x(ramlen+ 1); 
wire(2,3,5).x(9).y(15); 
pullup(path(8,14).y(26)).y(29); 
wlre(4, 11, 1O).x(16).w(2).y(19).w(4).x(22); 
wire(2,23, 15).y(21).x(30); 
pullup(path(24, 15).y(8).x(29)).xy(37,17).y(29); 
gb(2,6); 
gb(16,15); 
gb(31,22); 

layer(red); 
wire(2,-1,2).x(ramlen+ 1); 
wlre(2,6,2).y(7); 
wire(2,30,2).y(16).xy(27,19).y(23); 
wlre(2,22,6).x(12).y(13); 
wlre(2,1O,23).x(20).y(18); 

layer(lmplant); 
box(28,5,32,13); 

layer(metal); 
wire(4,16,-1).y(ramhgt+1); 
wire(3,1.5,-1).y(ramhgt+1); 
wlre(3,30.5,-1).y(ramhgt+1); 

end def; 

where ramlen and ramhgt are the length and height, respectively, of the ram-

cell. 

In LAP, all primitives are defined in terms of the current layer at the 

time of definition. Wire (w,x,y).path draws a wire of width w starting at point 

(x,y), and continues along the path traced out by successive movements in x 

and/or y. The wire is the locus of all points of half-width along the path. 

Box('x1,y1,x4y2) places a box with diagonals • at the corners (xl,yl) and 

(x2,y2). Pullup(path) plants a butting contact at the first point in the path, 



13 

Figure 2.2. NMOS Ramcell 

draws a 2-lambda wide depletion transistor along the points of the path, and 

returns a 2-lambda diffusion wire starting at the path's endpoint. Further, 

both starting and ending points are assumed to be 2-lambda away from the 

depletion transistor. Gb(x,y) is a diffusion-metal (green-blue) feedthrough cen-

tred at x,y. 

One could then define a [1:x,1:y] array of ramcells by: 
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define(" ramarray"); 
for 1:= 0 step 1 until x do 
for j :=Ostep 1 until ydo 
draw("ramcell", i*ramlen, J*ramhgt); 

enddef; 

At a higher level In the hierarchy of a design the physical description 

may be specified as abutting areas within a floorplan, with each of these areas 

enclosing a distinct module (see Figure 2.3). 

The structural domain Is concerned with describing a design in terms of 

components and connection nets. The components may be primitive com-

ponents such as transistors or Instances of other component blocks [vanC79]. 

The structural description can be visually represented as a series of boxes or 

special symbols with interconnecting lines representing the nets such as the 

selectively loadable dynamic register cell in Figure 2.4. Traditional forms of 

structural description have been logic diagrams, where the components are 

gates, multiplexors, etc. and circuit diagrams, where the components are 

Left 

Port 
Registers Shifter ALU 

Right 

Port 

Figure 2.3. The 0M2 Floorplan 
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Phase 1 LD' 

Phase lLD 

 > 
Figure 2.4. Representation of a Structural Description 

of a Selectively Loadable Dynamic Register Cell 

transistors, capacitors, resistors, etc. 

The behavioural domain describes a design In terms of Its function. 

Some possible behavioural descriptions that have been used are ISPS [Barb8l] 

at the register transfer (RT) level, electrical circuit parameters to be used 

with SPICE [Nage75], or a functional notation such as Gordon's LSM 

[Gord81]. An example of a behavioural description using Gordon's notation is 

that of a counting circuit COUNT, defined by 

COUNT(n) == {sw, in, out). 
{out = 
COUNT(lf sw=1 then in else n+1) 

where COUNT Is defined to be the behaviour of a sequential device with 

input and output lines {sw, in, out), and a value for the output line out = n. 

The current state Is given by the expression In the left hand side occurrence of 

COUNT and the next state Is given by the expression in the right hand side 

occurrence of COUNT. 



16 

It Is also common to describe the behaviour operationally In terms of a 

programming language such as Simula [Birt73], or through the use of timing 

diagrams, logic equations, etc. The advantage of a formal system such as 

Gordon's over a loosely defined operational approach Is the ability to compute 

the composition of behaviours with the use of a composition rule, thereby 

allowing us to compare derived and specified behaviours. 

The goal of computer aided design systems Is to control the mapping 

between the hierarchies in each descriptive domain [Buch8O]. An example is 

the REST system (Richard's Editor for STicks) [Most8l], which maps from a 

structural (and partially physical) representation to a full physical description 

of a design automatically. Most tools attempt to describe one or at most two 

of these domains; the other domains being either Ignored or specified 

separately. Unless these domains are specified In an Integrated manner, how-

ever, inconsistencies among them can easily result in incorrect designs. 

Also since these domains partially overlap It Is possible to deduce a 

description In one domain from the description in the other, and check the 

consistency between domains. The problem with doing so for any large design 

Is that it is very difficult to map efficiently from one domain to another In an 

automatic manner, since there is only partial overlap and the mapping may 

be very complex. Thus REST encourages the user to place cuts in the wires 

where a wire may be jogged as hints to the compaction algorithm to produce 

a space-efficient layout. 

In the following section we will survey a number of tools in use in both 

industry and research establishments, and examine them in relation to their 

descriptive power and consistency among domains. 
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2.3. Current VLSI Design Tools 

Design tools must not only be easy to use; they must be able to handle 

the complexity of the design, and be able to do so In a consistent manner 

across all domains. In addition they must also allow for consistency 

throughout the design cycle. No single tool currently exists which satisfies 

these conditions. However, It is still instructive to examine a variety of tools 

in use in light of these criteria. 

2.3.1. The Caltech Design Tools 

A major influence In the design of VLSI circuits has been the Caltech 

structured design philosophy and Its associated suite of tools [Trlm8l]. The 

Caltech structured design philosophy is discussed in greater detail in Chapter 

3. It Incorporates the idea of a special kind of hierarchy called a separated 

hierarchy which Is composed of leaf cells and composition cells. 

LAP. One of the most widely known leaf cell design tools has been LAP. 

LAP Is a Simula package which has primitives for producing geometric 

specifications of cells. Its standard output is CIF for communication of infor-

mation to the foundry and geometric design rule checking tools. Although 

LAP is embedded In Simula and allows the full features of the language to be 

used, it Is still a geometric description design tool. Further, It Is a low level 

geometry tool in that most of the LAP primitives have a one to one 

correspondence with CIF primitives. 

REST. REST [Most81] is a leaf cell design system based on symbolic layout 

techniques of STICKS [W1ll77]. REST is a graphical design tool and runs on 

a high-resolution colour display using a mouse to input stick diagrams. Sticks 

diagrams are both a structural specification technique and a partial geometric 
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specification technique in that the relative position of wires and transistors are 

meaningful but it does not provide a full-blown layout. 

REST provides consistency between geometric and structural descriptions 

of a design. It does not, however, provide a behavioural description. In addi-

tion It Is also limited to the design of leaf cells, and as such, does not provide 

any means to express hierarchy in a large design. Its output is in Sticks Stan-

dard form [Tr1m8O], which is used as Input by other composition tools. 

PAUL. PAUL Is a tool which is similar to LAP. Like LAP, PAUL Is embed-

ded In Simula, and Is used for designing leaf cells. Its main difference lies in 

the fact that it outputs Sticks Standard files rather than OF files. Since 

Sticks are only a partial geometric specification (the actual size of the transis-

tors can be specified, but the rest of the geometric specification is topological) 

as well as a structural specification, it becomes easier to design leaf cells that 

are process independent, using a program that fleshes out the Sticks to a full 

geometric specification using the appropriate design rules for a given process. 

SAM. A fourth Caltech leaf cell tool Is SAM [Trim81], which Is a single 

interactive system, written in Smailtalk which combines layout language and 

graphics as input. A user is given two windows which represent the state of 

the design, one containing a language representation, the other a graphical 

representation. The user can manipulate either view, and the change Is 

displayed In both. It uses a single underlying representation of the design, 

thereby ensuring consistency amongst views. Although It allows parameterl-

zation and an algorithmic definition of cells, SAM is a geometric description 

tool for use in defining leaf cells only. 
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In addition to these leaf cell tools, researchers at Caltech have developed 

three primary composition tools; Bristle Blocks, SLAP/Earl, and SPAM. 

Bristle Blocks. Bristle Blocks [Joha79] is a silicon compiler designed for the 

construction of datapath chips. A datapath chip consists of data processing 

elements such as register files, ALU's, and shifters connected by and commun-

Icating across data busses. The datapath chip is microcode controlled with 

each microcode word decoded on chip to drive the Individual control lines of 

each of the processing elements. As an automatic layout system, Bristle 

Blocks imposes a generic (i.e. template) floorplan in return for ease In 

automating the layout. This results in the physical floorplan being the same 

as the structural floorplan. 

Bristle Blocks cells are programs rather than data, thus in designing a 

cell one writes a program which generates the necessary physical description 

when executed. Bristle Blocks composes cells together by stretching so that 

cells connect by abutment, and allows the cells to perform computations and 

participate in the design of the chip. Since the actual mechanics of stretching 

Is left to each cell, which makes local decisions (constrained by its neighbour), 

the result may be far from optimal. 

The input to Bristle Blocks consists of parameterized cell definitions (as 

programs) and a high level description of the chip, which consists of calls to 

the cell programs. Bristle Blocks makes the chip by first executing the cell 

definitions calls, abutting the resulting stretched cells to form the datapath 

portion of the chip. Additional datapath timing and control information from 

the description of the chip is used to add control line buffers, parallel load 

shift registers and instruction decoder to drive the datapath. Finally, Bristle 



20 

Blocks adds pads and wiring to create the complete chip. 

Bristle Blocks has been enhanced since its original design to allow the 

Insertion 'of registers for testability, and a more general floorplan which allows 

multiple processor systems to be compiled. The systems compiled by Bristle 

Blocks can have circuit densities comparable to hand design. 

A Bristle Blocks description does not form a functional description of the 

chip In that the required procedures only describe how a physical description 

is to be generated; it does not specify- what Its behaviour is. Further, Bristle 

Blocks is best suited to a two level hierarchy; a level composed of cell 

definitions, and a level composed of the description which calls the cells. 

SLAP/Earl. SLAP and Earl [King82] are two implementations of a system 

closely connected to the separated hierarchy. Both compose geometric 

descriptions of rectangular leaf cells and other composition cells by superposi-

tion of connectors, stretching each cell when necessary. Constraints between 

connectors are introduced to accomplish minimum separation, producing a 

directed acyclic graph In each dimension which may be solved independently. 

Two cells are composed together by composing their graphs. The graph is 

then solved to produce the co-ordinates used in defining the physical instances 

of the cells. The graph solution technique used is similar to the one used for 

Sticks compaction and is based on finding a solution to the constraint graph 

by finding a topological sort of the nodes in the constraint graph. This algo-

rithm is also used in SHIFT and Is discussed in more detail in Chapter 4. 

SLAP is embedded in Simula; Earl is an Interpretive system with its own 

list manipulation language. Neither deals with the structural or behavioural 

domains of description. 
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SPAM. The final Caltech composition cell we mention is Structure, Place-

ment, And Modelling (SPAM). SPAM is a system that can be used to 

describe a hierarchical design which can then be simulated at any level of 

detail. SPAM provides a concise method for describing composition cells. 

SPAM deals with a structural description of the cells, from which a physical 

description might be produced using Earl. 

The behaviour of a composition cell can also be described. The design 

can be simulated to any desired level of detail by SPAM by allowing the user 

to choose which cells are the lowest level of the simulation. The behavioural 

description of the cell is used instead of the behaviours of its parts. 

The structural description is primarily concerned with the specification of 

the cell connectors. SPAM has typed connectors and these types are used for 

checking that valid compositions between connectors are performed, I.e. that 

the power connector of one cell Is not connected to the clock connector of the 

adjoining cell. 

SPAM is used to design In a top-down manner. Cells are specified, 

tested, and then decomposed Into smaller cells. When a primitive enough 

level is reached, the cell is described as a leaf cell. Simulation In SPAM Is 

accomplished by a built-in four-value event and clock driven functional simu-

lator; and Is Interactive. Once a cell description Is compiled, the user may 

request a documentation workbook consisting of a hierarchical map of the-

entire circuit, an interface specification diagram for each cell definition, and a 

floorplan diagram for each composition cell In the description. 

Although SPAM integrates the structural and behavioural domains of 

description, it still requires a separate tool (e.g. Earl) to describe and Imple-
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ment the physical domain. 

2.3.2. Procedural Design Tools 

ALT. AL! [Lipt83] Is a procedural language for the description of layouts at a 

conceptual level at which neither sizes or positions (absolute or relative) of 

layout components may be specified. In AL! a layout is regarded as a collec-

tion of rectangular objects (oriented with their sides parallel to the Cartesian 

co-ordinate axes) and a set of relations that hold among these objects. The 

ALT programmer specifies a layout by declaring the rectangles and stating the 

relationships that hold among them. 

When executed ALl generates a minimum-area layout that satisfies all 

the relations between the rectangles specified In the program. It does this by 

producing a set of linear inequalities Involving the corners of the rectangles as 

variables. These Inequalities are then solved to generate the positions and 

sizes of the boxes. The program also produces connectivity Information about 

the rectangles in the layout, which may be used as Input to a switch level 

simulator. This avoids the usual node extraction analysis. 

AL! Is built on top of PASCAL, thereby making full use of the program-

ming constructs in that language. Since cells can be specified with the use of 

procedures, AL! can make use of a hierarchical design methodology to build 

large chips. 

Although AL! Is a procedural language, It Is capable of describing only 

the layout of a chip. The behaviours of the design's components are not 

described in any manner. This makes AL! difficult to use in designing any-

thing other than large leaf cells without an auxiliary , tool to describe the 

behaviour of a design. AL! also suffers from its lack of connecting primitives 
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(such as contacts) making the programs hard to write and understand, and In 

the problems resulting from embedding it in PASCAL (i.e. no separate compi-

lation facilities, lack of generic types and dynamic arrays, variant records, 

etc.). 

Finally, ALl fails to exploit the hierarchic structure in generating and 

solving the set of linear inequalities. An AL! program is run through a filter 

to generate a standard PASCAL program, which when executed, produces the 

set of linear inequalities and connectivity relations for the entire design. Since 

a design can currently be 10 million rectangles (and is growing fast), the solu-

tion process, even when the relations are restricted to keep the placement 

algorithm linear, takes an Inordinate amount of time and space. By exploit-

ing the hierarchy of designs, it Is possible to reduce the amount of effort In 

solving the graphs [Ullm84], [Gosl83]. We shall examine this approach further 

In Chapter 4. 

Scale. Scale [Buch82] is a procedural language that Is considerably more 

flexible than ALT in describing designs. Scale is not a single language, but a 

range of special purpose languages covering different ranges of automatic lay-

out generation (see Figure 2.5). Scale programs are written in terms of silicon 

structures such as wires, contacts and transistors, the primitive objects in the 

language and the basic building blocks of VLSI circuits. 

Scale also provides separate mechanisms for defining separated hierarchy 

style leaf and composition cells, and procedural language constructs such as 

scoping and control structures. 

All Scale compilers produce a description of a design in an Intermediate 

Design Language (IDL) format. This then may be used as input to a suite of 
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Figure 2.5 The Scale System 

utilities such as foundry mask pattern generation translators, design rule 

checkers and simulators. 

The IDL Itself Is a joint physical and structure representation based on 

the use of Buchanan's coordinodes [Buch8O], which represents the circuit as a 

graph with paths running on different layers between coordinodes. Coordi-

nodes represent all connection points: between cells, between layers, between 

components, and even at bends in wires. A complete hierarchy of cells Is per-

mitted in IDL, and all cells are stretchable. 

In Scale there are three kinds of cells; leaf, composition and artwork. 

Composition cells are composed only of instances of leaf, artwork or smaller 

composition cells. All cells are joined together by abutment along adjoining 

edges. Leaf cells are pure geometric descriptions of designs in terms of con-

tacts, wires, and transistors. Artwork cells allow the designer to work at the 
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mask level when necessary, for example when designing pads or analogue dev-

ices. 

Although Scale is at a higher level than LAP or ALl in terms of Its 

descriptive power of the geometric components, it still does not attempt to 

specify a functional description of a design. 

MacPitts. MacPitts is a Lisp based silicon compiler for microprogram 

sequenced data path designs. MacPitts takes a high-level description of the 

design in a register transfer language which describes the control and, data 

path parts of a processor. The target architecture for implementing the sys-

tem is a combination of state machines, one for each of the parallel processes 

in the code, and a data path unit. MacPitts maps the control part of the 

specification into Weinberger NOR arrays, and the data part into a rectangu-

lar array of registers and logic elements. 

The compiler consists of two levels of routines; a higher level which 

examines the source code and extracts a technology independent intermediate 

level description of the system In terms of data path specifications, control 

equations, and state assignments, and a lower level which binds the intermedi-

ate level description into an actual mask layout, specified in CIF. 

MacPitts has several interesting features. First, it allows a design to be 

described algorithmically, and derives the physical layout from this, using a 

predefined target architecture. In our framework of descriptive domains, the 

functional description is mapped to a standard structural description and then 

a physical layout is generated from this. Importantly, the MacPitts design 

system also includes a functional simulator which operates directly on the 

intermediate level description output from the compiler's technology Indepen-
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dent component. This makes It possible to functionally simulate designs 

before the geometry is instantiated. 

The MacPitts approach, like many silicon compilers, is only suited to a 

restricted class of problems, namely those which can easily be cast Into the 

target architecture. Thus to cover the wide spectrum of VLSI design, one 

would like to have a range of silicon compilers at the designer's fingertips. 

Currently, MacPltts uses roughly ten times the area for layout compared with 

a good hand design. This area penalty will diminish for future silicon com-

pliers just as the penalty for software compiler-generated code over hand-

tailored code has decreased, and it will improve as software compilers have for 

similar reasons. Namely, as a result of new knowledge and experience In writ-

ing them, and as management of complexity becomes more important in rela-

tion to area minimization. 

The DPL/Daedalus Design Environment. The DPL/Daedalus design 

environment is an interactive VLSI design system implemented at the MIT 

Artificial Intelligence Laboratory [BataSi]. The system consists of several 

components; a layout language called DPL, an Interactive graphics facility 

(Daedalus), and several special purpose design procedures for constructing 

complex systems such as PLAs and microprocessor data paths. These tools 

are all organised around a hierarchical, object oriented database, written in 

LISP, which contains both the data representing the circuits (the 

INSTANCES) and the procedures for constructing them (the TYPES). 

The Design Procedure Language (DPL) system is a layout language 

developed at MIT. A designer writes programs in DPL that create and mani-

pulate the database. The user can then query the database to see the results. 
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A "design procedure" for the layout of a part Is typically composed of; 

(1) a type name and parameters (which may have default values), 

(2) a set of constraints among the parameters, 

(3) a collection of other parts which are created as instances of other, previ-

ously defined, types, 

(4) and a series of statements which modify the instances In certain ways, 

such as aligning various parts. 

Daedalus is an interactive, graphical interface to the DPL database, and 

may be thought of as an Interactive, graphical programming environment for 

the DPL language. In Daedalus, the user is able to express any information 

either symbolically by typing an expression or DPL code, or graphically by 

pointing with a mouse. One may also make changes to a design either graphi-

cally or by editing the DPL code directly. 

The DPL/Daedalus environment Is concerned primarily with the physical 

and structural descriptions of a design. It is, however, a very good layout tool 

In that It supports an incremental design philosophy, and Is embedded In a 

highly interactive Lisp programming environment. 

Palladio. Palladio [Brow83] is a circuit design environment for experiment-

ing with design methodologies and knowledge-based, expert-system design 

aids. Palladio includes facilities for defining models of circuit structure or 

behaviour, called perspectives. These perspectives are used to create and 

refine circuit specifications, and can include composition rules that constrain 

how circuit components may be combined to form more complex components. 
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Palladio's integrated design environment provides menu-driven, graphics 

interfaces for editing and displaying structural perspectives of circuits and a 

behavioural language with associated editor for specifying a design , from a 

behavioural perspective. In addition, a generic, event driven behavioural 

simulator can simulate a circuit specified from any behavioural perspective 

and can also perform hierarchical and mixed-perspective simulation. 

The design paradigm supported by Palladio Is an Incremental refinement 

of design specifications, with periodic validation of the specifications by simu-

lation. Palladio allows multiple structural and behavioural perspectives, 

which do not necessarily follow the same partitions in the hierarchy of decom-

position. While this gives flexibility in the freedom to explore different design 

strategies, It can lead to consistency problems between hierarchies. Since Pal-

ladio. was designed more as an experimental tool for exploring the design pro-

cess, and expert systems for circuit design, this flexibility Is warranted. How-

ever most designers will benefit when a more rigid structure Is Imposed in a 

mature circuit design environment. 

2.4. Summary 

This chapter has presented a broad overview of the nature of VLSI as an 

Implementation medium, and has examined current tools to show some 

approaches to designing custom silicon. In the next chapter the structured 

design and structured hierarchy methodologies are examined further, and an 

analysis is presented of how these tools Incorporate these methodologies. 

Finally, from this the requirements for an intermediate form are drawn. 
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CHAPTER 3 

Design Methodologies 

VLSI designs are large and complex; current VLSI designs Involve 

upward of 100,000 transistors and many display highly concurrent activities. 

Computer science has faced many of the same problems in the correct con-

struction of large and complex software. Some of the lessons leariled can be 

borrowed; the most Important being the use of design methodologies to 

develop large and complex structures. In this chapter we examine the struc-

tured design methodology of Mead [Mead8o] and Buchanan [Buch8O]; the 

hierarchical design methodology of Rowson [Rowsso]; and examine how Itera-

tive modelling and simulation fit in. Finally we shall show how current tools 

fare with respect to these requirements. 

3.1. Structured Design Methodology 

Structured design [Mead80] emphasizes the principles of top-down, 

hierarchical, modular design techniques. Unlike LSI, where circuit density is 

the major constraint in a design the major constraint In VLSI is the wiring 

between functional blocks. Mead states that a reasonable estimate of the size 

of a design In VLSI is just the area needed for routing control and data. Ran-

dom wiring, like random city roads, consumes silicon area, and destroys the 

regularity and locality of a design. By destroying regularity, design 

modification is made extremely difficult and time consuming. Further, the 

loss of locality of function makes design verification much harder to achieve. 

Finally, the length of a wire determines how much energy and time is needed 
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to transmit a piece of data. Thus designs with lots of global wires either con-

sume a lot of energy, or are slow, depending on what the designers critical 

constraints are. 

It follows that a design should be optimized by placement of functions on 

the two dimensional surface based on the amount of intercommunication. 

Mead has shown that if wiring can be managed, the circuitry usually presents 

little or no additional cost. This means. that the primary emphasis in design 

is on communication flow, rather than computation. An example is the barrel 

shifter of the OM-2 data path, where the logic fits completely under the wires 

needed to move the data and control. Thus data computation becomes 

incidental to data communication. 
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3.1.1. Regularity 

Regularity in design is desirable because it reduces the complexity of the 

problem. Regularity involves a number of factors. One of these is the ability 

of cells to tessellate in 2-space as a result of regular interconnection strategies 

(e.g. with two independent layers of interconnect we can run power and data 

orthogonal to control signals). Cells can then be connected by abutting 

together along their boundaries. Regularity in programming Involves tackling 

similar problems with similar approaches. Regularity in a VLSI design may 

also be exploited by designing a data path in a bit slice approach and then 

replicating the slice. 

In addition to the regularity of Interconnect, specification of cells of 

identical pitch (i.e. same size along their interconnect boundary) promotes 

connection by stretching and abutting cells together. In contrast, the standard 

cell approach is to compose cells by placement followed by routing. Any was-

tage of area from stretching at the lower levels Is made up by the removal of 

random Interconnect paths. Informal estimates of area gain using this 

approach is around 20% over small areas [Buch80]. 

3.1.2. Modularity 

Modularity makes it easier to partition a design among a group of 

designers by presenting each module with a well-defined function and inter-

face. This enables designers to work on a design In a more Independent 

manner, which will tend to decrease design time. It also is a powerful tool in 

the control of complexity of the design. Buchanan [Buch80] makes an analogy 

between the restriction in structured programming to the three flow control 

constructs of concatenation, conditional selection and Iteration, and to the 
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restriction In structured design to the use of the constructs of cell abutment, 

PLAs, ROMs and other conditional control structures, and one and two 

dimensional arrays of cells. Design verification and simulation Is also made 

easier by the use of modularity. 

3.1.3. Hierarchy 

Different levels of the hierarchy correspond to different levels of granular-

ity of function. By partitioning a design In a modular and hierarchical 

manner, the designer is able to abstract to the level of detail desired. In 

bottom-up structured programming, larger structures are built from smaller 

structures by the use of the control structures described above. These then in 

turn may be used to build even larger structures, and so on up the hierarchy, 

until a complete design Is realised. 

Alternatively, in a top-down structured programming approach, the 

hierarchical strategy maps functional modules onto predetermined partitions 

on the chip (the floor-plan). In a like 'manner, these modules then may be 

decomposed into their components until some point is reached where the 

primitive components may be directly mapped onto their portion of the sur-

face. 

3.1.4. Locality 

At any level, a design can be modularized such that the module must 

communicate through a well-defined external interface and internal com-

ponents are hidden from the outside. As a result, the Internal functionality of 

the module Is localized and is not affected by changes to other modules. This 

allows the designer to abstract the details of the design at any level desired 
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without having to carry with him some detailed knowledge from the global 

level. An example of this Is the structured design guideline that buses should 

be distributed (i.e. run through the module) and not global. This rule also 

works to increase design density, since global wiring Is an expensive process in 

terms of the amount of silicon surface used. In software global Information 

detracts from locality because it Is always subject to misinterpretation by 

different code modules. 

The principle of locality also aids verification in that any properties that 

a module has Is shared by all Instances of it. Therefore only one instance 

needs to be verified. 

3.2. Hierarchical Design Methodology 

A design can always have some hierarchical structure Imposed on It. 

There are many hierarchies of description of a design. An extreme form dis-

cussed by Rowson [Rows8O] that forms the basis of hierarchical design metho-

dology Is the separated hierarchy. 

A separated hierarchy consists of two kinds of cells; leaf cells and compo-

sition cells. A leaf cell is atomic, It has no internal hierarchic structure. A 

composition cell is composed purely of instances of other leaf and composition 

cells interconnected In some manner. The separated hierarchy completely 

separatesthe leaf cells from the composition cells. 

3.2.1. Leaf Cells 

Leaf cells may be instantiated at any level in the hierarchy. A leaf cell 

may have multiple representations. For example, it may have a geometric 

representation consisting of polygonal shapes on mask layers, or a logic circuit 
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representation of logic elements and their interconnections. Typical sizes for 

geometric representations of leaf cells range up to 100 transistors. Only 

Instances of leaf cells have any "data" (i.e. functionality) in them. 

Leaf cells are important for their function, not their Implementation. In 

analogy to software, leaf cells are the basic semantic units which may be used 

by the designer. Alternatively, If a hierarchic design can be thought of as a 

theorem in an axiomatic system, leaf cells form the axioms used In the deriva-

tion of the theorem. 

3.2.2. Composition Cells 

In contrast, composition cells are implementation independent and 

describe only the functionless logical Interconnection of Instances of leaf cells 

and other composition cells (i.e. composition cells merely structure the 

"data"). The composition cells may be thought of as theorems in an 

axiomatic system. Composition rules (i.e. the Interconnection mechanism) are 

implementation dependent and are analogues of the rules used to construct 
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theorems. There is one composition rule for each leaf cell representation 

domain. 

The separated hierarchy allows a designer to produce 'a design that is 

correct by construction. That is, given a property P and a composition rule R 

that preserves the property P, if submodules having P are composed accord-

ing to R, the composition will have property P. This makes consistency 

checking easier, since only the composition rule and leaf cell representation 

need to be checked for each domain of description. By separating out the 

hierarchical structure of a design from its actual representation, it is possible 

to make statements about the structure alone. Rowson introduces a formal 

method of proving the equivalence of hierarchies, given composition from the 

same leaf cells. 

3.2.3. Compatibility with Structured Design 

Being a special case of hierarchies, separated hierarchies preserve the pro-

perties of regularity, modularity, and locality. Regularity Is enhanced because 

the necessary property of functional abstraction is embodied in the composi-

tion rules. Modularity Is promoted since interconnection of cells by composi-

tion means two cells can only compose If they have common interconnections. 

Locality is guaranteed by the composition rule, since it may not Introduce 

new functionality into the resultant cell. 

3.3. Iterative. Modelling 

A structured design is not concocted out of thin air; it needs to grow 

from an initial idea to a fully specified design. Often the designer has very 

little Insight Into the implications of a decision made early on In the gross 
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decomposition of a design. As in software design, the experience and intuition 

of a designer can often guide the development of a design through these criti-

cal choices in a manner that no fully automated approach can now equal. 

The designer's intuition can be further enhanôed by the use of a design 

methodology such as top-down, bottom-up or structured growth (a methodol-

ogy familiar to Lisp programmers) [Sand79]. 

Experience with software has shown that it is difficult to get a design 

right the first time. In fact, many iterations are often needed over the design 

before it is correct. If a design Is not structured in a hierarchical and modular 

fashion it Is extremely difficult to Isolate the error at the appropriate level of 

abstraction and correct It. A design that contains global wires or random logic 

may require an large amount of rearrangement to accommodate the fix which 

in turn may lead to new errors. 

Even after producing a correct design, a good designer will want to 

optimize the design over time or space where prudent. Modularity makes It 

easier to Isolate and remove bottlenecks from a structured design without 

introducing new errors. 

With structured hierarchical designs the I designer can propose 

modifications and evaluate the consequences without actually having to Imple-

ment the changes In detail. This "what if.." approach allows the designer to 

heavily restrict the domain of all possible alternative designs. It also requires 

that structures be modular at any level of abstraction. 

3.4. Simulation 

The most important use of simulation Is In verifying the correctness of a 

design according to some specification of its input and output behaviour. 
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This is more necessary In VLSI design than in software desIgn since it is time 

consuming and expensive to test the design directly. It is also a valuable tool 

in the development of a structured design since It can be used to verify the 

correctness of any component without worrying about side effects. 

Just as there are many levels of abstraction of a structured design, there 

are many levels of granularity of a simulation of a design's behaviour. The 

most common simulators used are circuit-level simulators like SPICE [Nage75] 

and switch-level simulators like MOSSIM [Brya81]. Both of these simulators 

operate at only one level of the hierarchy. While capable of giving an 

extremely 'accurate description of a deice's behaviour, SPICE Is very imprac-

tical to operate for a circuit containing more than, say, a hundred transistors. 

It is also very difficult to reason about the cause of the behaviour exhibited by 

a SPICE simulation because of the low level of abstraction (or high level of 

detail). 

MOSSIM Is a level of abstraction above SPICE since it simulates a 

switch level model of a circuit. This allows more complex designs to be prac-

tically simulated, at the cost of discretizIng the signal behaviour. MOSSIM 

can also be difficult to Interpret, since it still deals with a design at the switch 

level of abstraction. 

Ideally we should be able to simulate a design at any level of abstraction. 

This would allow the designer to draw conclusions about the correctness of a 

module at the same level that it Is simulated. The result is that errors are 

more quickly and easily pinpointed. 

A hierarchical design methodology supports the latter approach by allow-

ing behaviours at a given level of the hierarchy to be simulated from the 
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behaviours of its components. A structured design methodology also 

encourages this approach since the modularity of structures allows simulated 

behaviours to be easily composed. 

The use of a separated hierarchy also allows behaviours to be composed 

at different levels. Thus, once a module has been verified as correct, a simula-

tion of a composition cell using that component only deals with the 

component's behaviour at that level of abstraction, and not in terms of any 

sub-component behaviours. Like design rule checking, this Is another example 

of hierarchies making consistency checking easier. 

3.5. Current Tools 

Many design tools currently in use implicitly recognize the necessity of a 

design methodology. Most support some of the criteria laid down for these 

methodologies; few support all. Table 3.1 shows a variety of tools and which 

requirements each meet. Tools that actively support a discipline are Indicated 

by a "+," those allowing a discipline to be exercised in conjunction with them 

are Indicated by a "*," and those which do not allow such a discipline to be 

exercised are Indicated by a ...... The domains each tool deals with are indi-

cated by Geometric, Structural, and Behavioural. 

The earlier tools which deal with a single domain, such as Caesar and 

Spice, are Inherently global and only deal with a single domain of description. 

The more recent tools have recognized the complexity problem, and have 

attempted to deal with it by either allowing or directly supporting design 

methodologies that deal with complexity. Examples of this are Mossim, which 

allows the user to black box any portion of the design by writing a module 

which exhibits the desired behaviour, and DRCFIL [Whit81], a hierarchical 
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Tools vs Requirements 

Tools Regul- 
arity 

Modul- 
arity 

Hier- 
archy 

Local- 
Ity 

Iterative 
Modeling 

Domains 

Lap + * + * * G 
Riap + + + + * G 
CIF + * + * * G 
REST * + - + + G,S 
SPAM + + + + + SIB 
Caesar * - - - - G 
Mossim * * - * * SIB 
Spice' - * - - - s 
Slap + + + + * G 
Earl + + + + * G 

MacPitts + + + + + GIB 
Bristle-Blocks + + * + * GIB 

Scale + + + + + SIG 
DRCFIL + + + .. + * G 
AL! + * * * * G 
DPL + * + * * G 

Table 3.1. 

design rule checker, which uses hierarchic information to minimize the 

amount of checking needed for a design. 

The success of silicon compilers like MacPltts and Bristle Blocks' is also 

partly due to using a design strategy (i.e. the datapath design style) that Is 

Inherently hierarchical and modular in its organization. Finally, the most 

recent tools have tended to support not only hierarchy, but also modularity 

and locality, through the use of boundaries on cells with connections allowed 

Bristle Blocks was recently used by a three-man team to generate the 37,000-transistor 
datapath chip for the MicroVAX in only seven months [John84]. 
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only on the boundary wall. These include such tools as REST and Scale. 

SHIFT continues in this tradition. 

3.6. Conclusion 

This chapter has examined the structured design methodology of Mead 

and Buchanan, paying attention to the key aspects of regularity, modularity, 

hierarchy, and locality. We have also examined the hierarchical design 

methodology of Rowson, showing how a separated hierarchy can deal with 

complexity, and how it fits in with structured design methodology. In addi-

tion, the , role of iterative modelling in design evolution was Investigated. 

Finally we examined how current tools fared with respect to these require-

ments. 

• In the remainder of the thesis we focus on the requirements of an inter-

mediate form for VLSI design tools which work In an Integrated environment, 

and support both a separated hierarchy and a structured design methodology. 

A structured Intermediate form for VLSI design tools called SHIFT will be 

defined, and the algorithm It uses for composing cells in a stretchable manner 

along adjoining ports will be detailed. Finally, we show how SHIFT fits Into 

future VLSI design environments. 
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CHAPTER 4 

High Level Intermediate Forms 

An intermediate forms is a half-way house between analysis and syn-

thesis. As a result a good intermediate form must carefully balance both of 

these objectives. This requires a thorough knowledge of the sources that use 

(map to) the intermediate form, and the targets that are mapped from the 

intermediate form. Ideally, what the designer produces at a high level of 

abstraction should be clearly reflected in the layout of the design. It is also 

important that any unintended effects of the specification be clearly traceable 

to its cause at the designer's level of abstraction. 

Therefore, If an Intermediate form is used it should clearly reflect any 

constraints the designer Imposes on the resulting layout. It Is just as impor-

tant that the intermediate form should allow any errors detected in the layout 

(such as design rule violations) to be expressed to the designer at the level of 

abstraction that he was using. The degree of success in meeting both of these 

objectives in the intermediate form determines both the amount and ease of 

control the designer has over the mapping of the design to the target domain. 

If the sources and targets are predetermined, as for example in a silicon 

compiler with a restricted target architecture and a restricted application 

range, we may design the Intermediate form to be complete. However, if the 

sources and targets are not predetermined, then a reasonable guess about the 

design criteria for the intermediate form has to be made. 
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In the previous chapter, we examined the design methodologies of Mead 

and Buchanan, and Rowsón, and showed how they promote iterative design 

and support specification, verification and simulation.' Various tools were 

examined In terms of these criteria, and found wanting. In this chapter we 

will elaborate on the essential requirements for an Intermediate form, and 

specify the design of SHIFT (a Structured Hierarchical Intermediate Form for 

VLSI Design Tools) in terms of these. The Implementation of SHIFT is dis-

cussed in chapter 5. 

4.1. Interniediate Form Philosophy 

The purpose of an intermediate form Is to act as a vehicle for the 

specification of an IC design in a design system composed of a number of 

tools. These tools are of a diverse nature, consisting of graphical and pro-

cedural tools for specifying a design in the Intermediate form, and tools which 

use the intermediate form as Input, such as circuit extractors, design rule 

checkers, logic simulators, artwork plotters, and CIF generators. 

If the Intermediate form is targeted at too low a level, any structure 

inherent at different levels of the design will be thrown away, and this will 

make make it hard to report back Information such as 'timing errors or design 

rule errors in the designer's terms. If the Intermediate form is at too high a 

level, then we lose the ability to have some control over the implementation 

of the design from Its specification. This especially applies to silicon com-

pilers, where the mapping from a behavioural domain to a physical domain is 

initially not very transparent. 

What is needed Is a representation in the middle ground; something 

which allows us to specify the Implementation at the lowest level, and yet 
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retains the structure of the design at differing levels of abstraction. 

SHIFT supports the design methodologies examined in the previous 

chapter in the following ways. 

4.1.1. Leaf and Composition Cells 

A SHIFT specification consists of a hierarchy of leaf cells and composi-

tion cells. Leaf cells are the lowest cells in the hierarchy, and describe basic 

components which will be laid out such as shift-registers, I/O pads, and wir-

ing cells. Leaf cells contain descriptions of designs In the physical, structural, 

and behavioural domains. Composition cells are used to capture the design 

hierarchy in terms of Instances of leaf cells and simpler composition cells. 

Composition cells have no Inherent functionality; they contain only a descrip-

tion of constituent cells and their Interconnections. This is Important for the 

management of increasingly complex designs, since today's design as a compo-

sition cell is tomorrow's component of a design. Notation in the use of cells 

must not distinguish between the two, and this Is reflected in the design of 

SHIFT. Thus the designs and sub-designs expressed In the intermediate form 

can be left in a library of standard components (leaf cells). The library grows 

as more designs are created. 

IC designs can then be described In terms of a hierarchy of cells, where 

each level of the hierarchy is simpler in terms of its functionality than the 

level above, and the lowest level cell being an implementation of the function. 

An example of this is the 0M2 datapath chip described In [Mead8O], where 

the chip at the top level is viewed as a functional black box with external 

wires (see Figure 4.1). 
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0M2 Datachip level 0 

Left Registers Shifter ALU Right level 1 
Port 

ALU Kill and 
Input Propagate 

Carry Result 
Chain Control 

Layout 
Cells 

Port 

ALU level 2 
Output 

Figure 4.1. A Cell Decomposition of the 0M2 Datapath 

level 3 

At the next level In the hierarchy, the chip is composed of cells iepresent-

Ing a left port, a register block, a barrel-shifter, an ALU, and a right port. If 

we traverse down a level of the hierarchy, from left to right we can decom-

pose the ALU block into an ALU input register, a kill and propagate control 

cell, a carry chain block, a result control cell, and an ALU output register. 

Finally we could decompose the carry chain into leaf cells that implement the 

function of the carry chain by specifying the layout. 

A SHIFT description forms a separated hierarchy. This allows a degree 

of technology independence, since the hierarchy of a description will be the 

same over a range of technologies used to implement the leaves. 
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All cells are rectangular with a boundary on which ports are placed. 

Cells are composed by abutment in horizontal and vertical directions. The 

composed cells are stretched to connect adjacent ports. Composition cells are 

also built from other cells by abutment. The single operation of abutment 

serves as a composition rule in all three domains. Note that any necessary 

routing between cells can be incorporated as a routing cell sandwiched 

between the two cells to be connected. 

SHIFT cells support the design principle of modularity, since a cell has a 

well defined boundary, and components may only be connected through adja-

cent ports. SHIFT cells also support design regularity, since cells connect 

along their rectangular boundaries in horizontal and vertical directions only, 

allowing cells to be easily composed. 

Composition cells may be augmented with a description in any of the 

domains. In effect, this augmented description is like a leaf cell description at 

this level of the hierarchy. For example, an ALU composition cell may have a 

behavioural description specified in addition to Its behaviour derived by com-

position from constituent cells. Gordon [Gord8l] shows an example of a 

counter that is decomposed into constituent behaviours (see Figure 4.2). 

These descriptions may be used to specify a design at the given level of 

abstraction. In this manner, both top down and bottom up design methodol-

ogy are supported. 

4.1.2. Composition Rules 

A composition rule simply specifies how modules are to be built from 

components in order to guarantee the preservation of properties. The compo-

sition rule itself adds nothing to the composition cell. All functionality comes 
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COUNT(n) 
SWITCH— 
IN  Do-

COUNT(n) = {SWITCH, IN, OUT}.{OUT = n + i}, 
COUNT (SWITCH -> IN, n +1) 

SWITCH 
IN'  

MUX 
Li 

REG 
(n) L2 

INC 

  -OUT 

 -OUT 

MUX = {SWITCH, IN, Li, OUT}.{Li = (SWITCH.-> IN, bUT)}, MUX 

REG(n) = {Li,L2}.{L2 = n}, REG(Li) 

INC = {OUT, L2}.{OUT = L2 + i}, INC 

Composition of Component Behaviours 

I[ MUX I REG(n) I INC JI\ Li L2 = 
{swITCH,IN,oUT}.{L1 = (SWITCH -> IN,OUT), 

L2 = n, OUT = L2 + i}, 
lEMUXI REG(L1)I INC ]1\ Li L2 

Figure 4.2. The Behaviours of a Count Cell and Its Components 

from the components. The composition rule used In a composition cell has a 

specific meaning in each of the three domains of description of its component 

cells. For example, the application of the composition rule in the physical 
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domain of description simply forms the union of the component's physical 

descriptions, whereas the application of the composition rule in the 

behavioural domain identifies the signals connected through adjacent ports. 

This preserves the locality of function that is present in component cells. 

Finally, the application of the composition rule to the structural domain 

results in a merging of the graphs of the components structural descriptions. 

Since the leaf cell has multiple representations, each representation must 

be checked for consistency with the others. However, since leaf cells are small 

(typically less than 50 gates) this is tractable. Even isomorphism problems of 

consistency checking (which are NP-complete) are still manageable for cells of 

this size. Also, however often it is used, a leaf cell has to be checked for con-

sistency between domains only once. 

The other advantage of the composition rule Is that once a leaf cell has 

been checked for correctness, then the composition rule will preserve that 

correctness in all composition cells' that contain that leaf cell. This hierarchi-

cal approach considerably reduces the amount of work required to verify the 

correctness of a design. For example, once a leaf cell has been checked for 

design rule violations, then it only remains to check the interconnection ports 

to show all future uses of that composition cell to be free of design rule errors. 

4.1.3. External versus Internal Information in a Cell 

By placing a boundary around all cells such that information can only 

flow through ports we hide the internal details of a cell at a given level. This 

provides us with a powerful tool in designing circuits; namely that we can 

abstract out the detail that we want to consider at any level in the design. 

The internal information in a cell is only accessible within the cell. The 
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external information of a cell is limited to the ports through which a cell com-

municates with its neighbours. This approach actively discourages a non-

functional approach to designs. As in software, the process of specification 

and verification are much easier when designs become modelled with a func-

tional approach rather than with a von Neumann approach [Back78]. By res-

tricting communication through the ports, we outlaw the hardware analogues 

of software's "gotos" and "side-effects". 

This is not the penalty that It first seems. As chip designs become larger 

the cost of communicating global information becomes much higher than the 

cost of computing it locally. Global information also restricts the amount of 

concurrency exhibited In a design. As circuits become larger, self-timing 

schemes become more attractive, with the result that cells become truly self-

contained. 

4.1.4. Design Systems Using a High Level Intermediate Form 

Producing an IC design requires a number of tools to assist the designer 

in the design synthesis, test and validation process. A number of these have 

been encountered In chapter 2. What Is required is to tie these tools together 

into an Integrated design environment by using a consistent Intermediate 

representation. Some of these tools create or modify the design description; 

other tools like simulators, need only extract Information from it. A real 

design system, like a real programming environment must have its constituent 

parts work in unison. This requires a degree of intercommunication which is 

difficult to achieve without a consistent view of the data they operate on. 

It also has been shown in chapter 3 that these designs are developed in 

an incremental fashion, with many Iterations over the design. With a 
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structured consistent specification of the design the development and 

modification of the design is accomplished more easily. 

Finally, by making the design modular, and specifying the behaviour of 

the modules and how they Interact, It allows many designers to work on 

different parts of the system with some assurance that the design will work as 

specified. 

4.2. SHIFT Design 

In the previous chapters we have examined the nature of VLSI design 

and the kinds of tools needed in the development of a design.' A set of 

"requirements for an intermediate form was then specified and elaborated in 

the previous section. This section concentrates on the specification of SHIFT. 

A design In SHIFT Involves the definition and subsequent Instantiation of 

cells. The three domains of description in SHIFT are the physical, structural, 

and behavioural domains. As seen by Table 3.1 SHIFT Is the only tool thus 

far that allows a design description in all three domains. 

There are three different representations or stages of cells. These are 

archetypes, prototypes, and instances. The act, of defining a cell In SHIFT 

creates an archetype. Evaluating an archetype cell with parameters creates a 

prototype by fully defining the set of constraints. Finally, an Instance Is 

created by applying a solution of a constraint graph to a prototype. Thus the 

values bound to the parameters are known by 'both prototypes and Instances, 

and the value of the ports are known only by the instances. 

There is a monotonicity of requirements between archetypes, prototypes, 

and instances for valid composition. Two archetypes may be composed pro-
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viding they have the same number of ports. Two prototypes may be com-

posed providing they have the same number of ports and there exists a solu-

tion to the constraint graph. Two Instances may be composed providing they 

have the same number of ports, a solution to the constraint graph exists, and 

one such solution Is specified. 

4.2.1. SHIFT Cells 

There are two kinds of cells that may be defined in SHIFT, leaf cells and 

composition cells. All cells have a ports, a constraint, a behaviour, and a 

structure definition component. Where leaf and composition cells differ is 

that leaf cells have a geometry component, and composition cells have a 

(defleaf leafname (parameter-list) 
(ports  ) 
(const  ) 
(struct  ) 
(beh  ) 
(geom ) 

) 

Figure 4.3(a). Overview of A Leaf Cell Definition 

(defcomp compnamc (parameter-list) 
(ports  ) 
(const  ) 
(struct  ) 
(beh  ) 
(composition-expression  

) 
) 

Figure 4.3(b). Overview of A Composition Cell Definition 
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composition component (Figure 4.3). This is because the leaf cell contains 

artwork, and the composition cell contains only other cells. Once a sub-

design is fully specified as a hierarchy of cells it can be stored away in a 

design library, and subsequent designs need not know whether It is a leaf or 

composition cell. There are clear advantages to storing the sub-design in its 

hierarchical form rather than flattening It out to a fully detailed leaf cell, for 

to do so takes up far more space and makes variations on a design 'much more 

difficult to accomplish. 

In the case of composition cells any of the common cell fields may be 

null, in which case the ports will have names constructed from their com-

ponent cells port names, and the constraints will be synthesized from their 

components constraints. 

The ports are a list of names in ascending order along the north south 

east, or west boundaries. The ascending order Is necessary for the 

identification of ports along the adjoining wall when composed with, another 

(ports 
(north n:clock) (south s:clock) 
(east e:gnd out e:vdd) (west w:gnd in w:vdd) 
(interior 

gc pc last ; ground, power and butting contacts 
pd.gtin pd.gtout pd.src pd.drn ; puildown nodes 
pu.gtin pu.gtout pu.src pu.drn ; pullup nodes 
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes 
middle) ; inverter output 

) 

Figure 4.4(a). The Ports Definition of a Shift Register Cell 
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n: phi 

nvdd e:vdd 

in 

w:gnd 

out 

J3J e:gnd 
U  

s: phi 

Figure 4.4(b). The Ports of a Shift Register Cell 

cell. Ports may also be defined as interior ports in leaf cells. Unlike other 

ports, interior ports do not lie on one of the cell walls, nor need they be listed 

In any order. Rather, the relationship between interior ports Is defined solely 

by the horizontal and vertical constraints specified. An example of a leaf cell 

ports definition Is shown in Figure 4.4. 

Constraints may be specified between any two ports, or between ports 

and a wall, where these constraints are meaningful. Horizontal constraints 

between any two ports A and B may be of the form 

or 
A = B + c 

A >= B + c, where c is a numeric expression. 
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with the meaning A lies to the east of B by exactly c, and A lies at least c to 

the east of B. Vertical constraints take the form 

or 
A!!B+c 

A!!B+c 

with an analogous meaning in the y direction.' The distinction between verti-

(const 
(w:gnd !! south + 2) (in !! w:gnd + 4) ; west wall 
(north 1! w:vdd + 5) (w:vdd 1! pu.drn + 1) 
(out >= last + 3) 
(e:gnd "!! south + 2) (out 1! e:gnd + 4) ; east wall 
(e:vdd '!! out + 2) (e:vdd !! w:vdd) 
(s:clock >= pt.src + 3) (n:clock = s:clock) ; south & north walls 
(gc = west + 5) (gc !! south + 2) ; ground contact 
(pd.src = gc) (pd.drn = pd.src) ; pulidown 
(pd.gtln >= In + 1) (pd.gtout >= pd.gtln + 8) 
(pd.src 1!gc + 1) (pd.gtln 1! pd.src + 3) 
(pd.gtin !! In) (pd.gtout !! pd.gtln) 
(pd.drn 1! pd.gtin + 3) 
(middle 1! pd.drn + 1) (pu.src !! middle + 1); inverter output 
(middle = pd.drn) 
(pu.src = middle) (pu.gtln = pu.src) ; pullup 
(pu.gtout = pu.gtln) (pu.drn = pu.gtout) 
(pu.gtln 1! pu.src + 2) (pu.gtout !! pu.gtln + 7) 
(pu.drn 1! pu.gtout + 2) 
(pc = pu.drn) (pc !! w:vdd) ; power contact 
(pt.gtout = s:clock) (pt.src >= pd.gtout) ; passtran 
(pt.drn >= pt.gtln + 3) (pt.gtout 1! pd.gtout + 1) 
(pt.gtin 1! pt.src + 3) (pt.src !! middle) 
(pt.gtln = s:clock) (pt.drn !! pt.src) 
(last !! pt.drn) (last >= pt.drn + 3) ; last contact 

) 

Figure 4.5(a). The Constraints Definition of a Shirt Register Cell 

'These operators look similar to the horizontal operators turned on their side. 
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north 

Y-Constraints X-Constraints (borders only) 

n clock 

Figure 4.5(b). The Constraints Graph of a Shift Register Cell 

cal and horizontal constraint relations serves to disambiguate constraints with 

respect to interior ports. It also enforces a notational distinction which makes 

the constraints easier to read and specify. An example of a leaf cell con-

straints definition Is shown In Figure 4.5. This example Is rather elaborate 

since all points interior to the cell used In constructing the geometry are 

represented as interior ports with constraints used to define their final values. 

In practice, one might specify rigid components in the interior, each being 

anchored to a single node, with constraints relating to these nodes used to 

define minimum distances between ports on the outer walls. However, this 

example shows that constraints may be used to build the entire cell. 
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(geom 
(dm-at gc) ; contact between pulidown and ground 
(wire metal 4 w:gnd gc e:gnd); ground wire 
(puildown ; pulidown has two parts 

4 (path pd.src pd.drn) ; diffusion path from source to drain 
2 (path pd.gtin pd.gtout)); a poly path from gtin to gtout 

(wire poly In pd.gtln) ; connect gate to Input port 
(wire diffusion gc pd.src) ; connect puildown to ground 
(pullup ; pullup has four parts 

2 (path pu.src pu.drn) ; a diffusion path from source to drain 
6 (path pu.gtln pu.gtout)); a poly path from gtln to gtout 

an Implant layer is automatically drawn 
over the poly layer, extended by 2 lambda 
on either end, and a butting contact at the 
gate Input connecting the gate to the source 

(wire diffusion pd.drn middle pu.src); connect the pullup and pulidown 
(wire metal 4 w:vdd pc e:vdd); power wire 
(wire diffusion pu.drn pc) ; connect pullup to power 
(dm-at pc) ; contact between pullup and power 
(passtran ; passtran Is equivalent to the puildown 

2 (path pt.drn pt.src) 
2 (path pt.gtin pt.gtout)) 

(wire poly n:clock pt.gtln) ; wire up clock to one end of the gate 
(wire poly s:clock pt.gtout); wire up other end of gate to clock 
(wire diffusion middle pt.src); connect inverter output to passtran's 

source 
(be-at last) ; butting contact for passtran to out 
(wire diffusion pt.drn last); connect passtran to contact and 
(wire poly (pt-dx last 1); contact to out 

(then-y (:y out)) out) 
) 

Figure 4.6(a). The Geometry Definition of a Shift Register Cell 

Only constraints which lie vertically or horizontally a minimum distance 

greater than zero from the south and west walls, respectively, need to be 

specified. All ports are automatically constrained to lie at least on or to the 

east and north of the west and south walls, respectively. 
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stretched in x 

stretched in y 

Figure 4.6(b). The Geometry of a Shift Register Cell 

4.2.2. Leaf Celli 

Leaf cells are defined with the defleaf operator and contain a parameter 

list (with optional defaults), a sequence of ports, a set of constraints among 

the ports, and a description of a cell in one or more of the physical, struc-
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tural, and behavioural domains of interest. 

4.2.2.1. Physical Description 

A physical description of a leaf cell consists of a list of geometric func-

tions, which expand to lists of geometric primitives. These geometric primi-

tives describe the layout of the design on mask layers that are used in the 

fabrication process to manufacture the Integrated circuits. See Figure 4.8 for 

an example of the geometry of a shift register. In this example, we see the 

use of both primitive functions, and several higher level nMOS-specific func-

tions which map to lists'of primitives, to create the geometry. 

The basic geometric types are box, polygon, and wire. A primitive is a 

list of the primitive type, a layer, a width (if the primitive is a wire), and a 

path. A path Is a list of points, where each point may be either absolute or 

relative to the previous point in the list. Obviously, the first point in the list 

must be absolute. Various operators exist for creating and manipulating 

points and their x and y components. 

In the case of the box primitive, the two points define the adjacent 

corners. The path of the polygon primitive represents the ordered list of, ver-

tices defining the boundary of a closed polygon. Finally the wire's path 

defines a centre line of a long uniform width run along a layer. However, 

unlike the CIF-style wire, defined as the locus of points within one-half width 

of the path, the SHIFT wire has curtailed endpoints i.e. the endpoints of the 

wire lie on the perimeter of the path. 
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Figure 4.7(a). Wire Connection - Curtailed 

x 

Figure 4.7(b). Wire Connection - Inflated 

The CIF-style wire has the advantage over the SHIFT-style wire in that 

any two wires connected together at a common endpoint will form a proper 

connection regardless of the angle (Figure 4.7(a-b)). However, in practice this 

type of connection is not likely to occur in SHIFT. 
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)4INT)4LD( 
SEP ARAT 7 DNJ 

x 

Figure 4.7(c). T Connection - Curtailed 

MINIMUM '1' 
SPA DESICN RULE VDLATION 

x 

Figure 4.7(d). T Connection - Inflated 

In addition, a number of undesirable effects occur when using CIF-style wires 

in constructing circuits. One example Is a T connection of wires on the same 

layer with another wire above and parallel to the cross piece and separated by 

the minimum design rule distance (Figure 4.7(c-d)). 



60 

Figure 4.7(e) Butting Contact - Curtailed 

Figure 4.7(f). Butting Contact - Inflated 

If the vertical piece is wider than the horizontal piece, then a design rule vio-

lation occurs with the Inflated wire. 

Another example is the connection of a polysilicon wire to the centre of a 

butting contact (Figure 4.7(e-f)). The CIF-style polysilicon wire extends too 
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far under the contact hole, resulting in another design rule violation. These 

reasons make the curtailed style wire more attractive than the Inflated style 

wire. If we want to make a connection at right angles between two wires at 

their common endpoints, a "contact" box of the same layer may be placed at 

the point, thus ensuring proper connectedness. 

The layer and the width may be omitted for the primitives, in which case 

a technology defined default Is used. 

4.2.2.2. Structural Description 

A structural description of a leaf cell Is a lumped circuit model of the 

cell. The structural description serves to describe the performance of the 

design, that is, both Its power and speed. While the structural description of 

a cell may be extracted from the geometry of a cell, and Is therefore not 

strictly necessary, it Is used often enough in the design of chips to provide a 

place specifically for It, so that It may not need to be repeatedly extracted. 

Further, this may be generated automatically by a circuit extractor on the 

leaf cells as they are defined. 

The structural description consists of a list of named components, and a 

netlist of connections between the components and the ports. Components 

may be resistors, capacitors, or n-type and p-type enhancement and depletion 

mode transistors, with various attributes supplied either by explicit declara-

tion or defaulted to a process/technology dependent value. 

Resistors and capacitors have two ends to which one may connect, 

denoted 'one-end' and 'the-other-end'. Resistors may take a specified resis-

tance In ohms, and capacitors may take a specified capacitance In pico-farads. 
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(struct 
(nodes 

pullup (n-type-dep len 8 wid 2) 
pulidown (n-type-enh len 2 wid 8) 
pass (n-type-enh)) 

(connect 
(e:vdd w:vdd). 
(e:gnd w:gnd) 
(n:phi s:phi) 
((:source pullup) e:gnd) 
((:source pulidown) e:vdd) 
((:drain pullup) (:drain puildown)) 
((:drain pullup) (:source pass)) 
((:gate pullup) (:drain pullup)) 
((:drain pass) out) 
((:gate puildown) in) 
((:gate pass) n:phi)) 

) 

Figure 4.8(a). The Structure Definition of a Shift Register Cell 

—I— 

Figure 4.8(b). The Structure Diagram of a Shift Register Cell 

Transistors have three nodes, labelled- 'drain', 'source', and 'gate', and 

may take optional parameter values specifying their length and width, which 



63 

may be used in performance evaluation. An example of a structural descrip-

tion of a shift register is shown in Figure 4.8. 

Here we see two n-type enhancement-mode transistors being declared, 

one with a declared length and width, and the other defaulting to a technol-

ogy dependent value. These components are then connected to each other, 

and to the ports. 

4.2.2.3. Behavioural Description 

The behavioural domain is specified using an approach similar to that 

used in denotational semantics In which the behaviour of a device is modelled 

by a. function which is an element of a domain of "sequential behaviours" 

[Gord8l]. This domain is a unit delay model of behaviours. The domain used 

is defined to be the least solution to the domain equation: 

BEH = IN -> (OUT x BEll) 

where IN and OUT model Input and output signals of the device. , 

The behavioural specification of our example is seen In Figure 4.9. In 

this example, the first element is the current state of the device, the second 

(beh (s) 
((s:phi = n:phl) 
(out = If n:phi then (not s) else ©)) 

((if (In = ©) then s else in)) 
) 

Figure 4.9. The Behaviour of a Shift Register Cell 
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element is a set of equations in terms of the current state and inputs mapping 

signals to lines, and the last element specifies the next behaviour, which Is a 

function of the current inputs and state. Float is represented by '©'. 

4.2.3. Composition Cells 

Composition cells are defined with the defcomp operator and contain a 

parameter, list (with optional defaults), an optional sequence of ports, an 

optional set of constraints among the ports, and an optional description of the 

cell in the structural and behavioural domains. Finally, a composition cell 

definition contains a composition expression, where each element is a leaf or 

prototype cell, or a composition expression. 

Cells may be composed by means of one of the four composition opera-

tors '>', '<', '', and Y. These correspond to horizontal composition, east 

to west and west to east, and vertical composition from south to north and 

north to south, respectively. An example of a 2 element array of shift register 

cells is shown in Figure 4.10. 

The composition between cells Is performed by stretching the ports on 

the adjoining walls until they align; there is no generation of river routing 

between the cells.2 An example of this is shown in Figure 4.11. The subject of 

composition by stretching Is discussed In further detail in the section entitled 

"Composition Algorithm". 

21f routing is desired It can be captured with a routing cell sandwiched between the cells 
to be routed together. 
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(defcomp sh11t2 
(ports (north n:phli n:ph12) 

(south s:phll s:phl2) 
(west w:gnd In w:vdd) 
(east e:gnd out e:vdd)) 

(> (shiftreg) (shiftreg)) 
(beh (Si s2) 

((out = If n:ph12 then (not 82) else ©)) 
((if (In = ) then Si else in) 
(if n:phii then (not Si) else s2))) 

) 

Figure 4.iO(a). A 2 Element Shift Register Array Composition Cell 

1= 

H 

Figure 4.10(b). Geometry of a 2 Element Shift Register Array 
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A B C D 
; I • i 

Figure 4.11. An Example of Stretching 

4.2.4. Design Instantiation 

In order to produce a description of the design In any of the three 

domains we must produce an instance of the design from Its description in 

SHIFT. A design is instantiated in the following manner. The archetype 

specification is traversed from the root, inheriting down (i.e. binding) the 

parameters at each level to the cell and evaluating the expressions In the con-

straints to produce a fully determined set of constraints that defines the pro-

totype. These parameter values also may be used In expressions In the com-

position definitions. This result of this traversal is a rooted tree that 

comprises the prototype of the design. 

To produce an Instance from the prototypes we first synthesize up the 

constraint graphs from the leaves to the root. We then solve the graph at the 

top level, and inherit down the solution to the leaves. These values are then 

bound to the ports and each of the domains is evaluated to produce the leaf 

Instances, which are then synthesized up the tree to produce an instance of 

the design. 

Expanding an entire design to get all the constraints in one direction, 

and then solving them could be quite time consuming, as there could be tens 
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of thousands of ports, and hundreds of thousands of constraints. Instead, we 

can use the hierarchy of SHIFT to exploit the locality of constraints and con-

siderably reduce the work. 

4.2.5. The Composition Algorithm 

The approach used in composing cells follows that used in the composi-

tion of a sticks languages called LAVA [Ullm84]. The basic idea is that we 

can eliminate the Interior constraints of a cell at any level in the hierarchy by 

using them to produce a new set of constraints which only involve the border 

ports of the cell. Further, these new sets of constraints are produced In such 

a manner that any given solution for the border ports of the cell will not 

violate the interior constraints which had been previously eliminated. The 

algorithm Is a two stage process. 

In the first stage we reduce the constraints for the bottom-level cells, so 

that we are left only with constraints involving ports on the borders of the 

cell. These are synthesized up the next level of the hierarchy, and the process 

repeats until we reach the root of the hierarchy. 

In the second stage we find a solution to the constraint graph at the top 

level of the hierarchy, and recursively inherit down the values for the border 

points of the component cells, solving at each step in the hierarchy until we 

reach the leaf cell at the bottom of the hierarchy. By making the coordinates 

for the internal points of a cell as low as possible, consistent with the con-

straints of the cell and the values of the border points Inherited down, we 

may solve for the Internal points of the cell at each level of the hierarchy. 

The key steps in this process are: 
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(1) The elimination of those constraints within a cell that do not involve the 

border points. 

(2) The combination of constraints from several cells into one set of con-

straints. 

The general algorithm for the solution of the constraint graph for the 

entire design Is as follows; 

The topological sort3 Is used to determine in what order values are 

s&signed to the nodes In the constraint graph. Every node with no predeces-

sors In the topological sort may be taken to have the value of 0. When reach-

ing node u with some predecessors, we have already assigned values for those 

predecessors. We then assign a value for u by evaluating the constraints con-

necting u to its predecessors and taking the lowest value consistent with 

these. 

To eliminate the Interior constraints of a cell we consider each border 

point a, in turn from the bottom of the cell. Note that the bottom of the cell 

SYNTHESIS 

FOR cells at level 0, 1,...,Ievel of root DO BEGIN 
eliminate Interior nodes from constraints; 
IF level > 0 (i.e. a composition cell) THEN 
combine constraints involving border points of subcells 

END; 

INHERITANCE 

solve constraints for the root cell, by finding a 
topological sort of the nodes In the constraint graph; 

FOR all instances of cells at level of root - 1 down to 0 DO 
solve constraints for Interior points, given values for border points. 

A topological sort of an acyclic graph Is the reverse of a depth first ordering of the 
graph. This ordering has the Important property that If there Is an are from a to b • then a 
precedes b in the ordering. 
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is regarded as a border point. We perform a depth-first search on the con-

straint graph from a but we stop when we reach another border point, b (i.e. 

we do not follow any are out of it). Thus we reach all and only the nodes 

accessible from the border point. By visiting the nodes in topological order, 

we can derive for each such border node b, the length of the longest path 1, 

from a to it. Thus the constraint b > = a + us the minimum constraint 

implied by the given constraints. By repeating this for all border points, we 

derive the set of constraints involving only the border points. 

4.2.6. Complexity of The Composition Algorithm 

Assuming that the constraint graph Is acyclic, we may topologically sort 

the nodes in time proportional to the number of arcs, i.e. the number of con-

straints. The assignment of values to nodes given the topological sort of the 

cell is also proportional in time to the number of constraints. Thus complete 

solution of a cell is proportional in time to the number of constraints. 

The partial solution of constraints is actually more complex than com-

pletely solving for the constraints. However, we cannot simply solve the con-

straints for several cells independently since they may be connected at a 

higher level and if we have found Incompatible values for the corresponding 

ports, then the cells cannot be abutted as Intended. Since the depth-first 

search from each border point may involve visiting all, or almost all, of the 

points in the cell, in worst case the time to eliminate the interior points is on 

the order of the product of the number of border points and the number of 

constraints. 

In practice, however, the elimination of the, interior points is much less 

time-consuming, as many of the interior points will be sandwiched between 
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two border points, resulting In their appearing only in the depth-first search 

of the border point immediately below it. In addition, the extra complexity Is 

offset since a new constraint graph only has to be produced once for a given 

cell. The same constraint graph can be subsequently used wherever else the 

cell appears, so the overall cost is significantly reduced when the cell is used 

more than once (i.e. regularity), which is characteristic of increasing trends In 

Integrated circuit design. Thus we can exploit the locality of the constraints 

at every level of the hierarchy. 

4.3. Summary 

This chapter has focused on the requirements of an intermediate form for 

VLSI design tools in an Integrated environment. Also the requirements for an 

Intermediate form that supports a separated hierarchy and a structured 

design methodology have been presented. A structured intermediate form for 

VLSI design tools called SHIFT has been outlined, together with an algorithm 

for composing cells In a stretchable manner along adjoining ports. In the next 

chapter we focus on the Implementation-dependent aspects of SHIFT, and 

how It fits within a proposed design environment called EDICT [B1rt84]. 
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CHAPTER 5 

SHIFT Implementation 

In chapter 4 we focused on the requirements of an intermediate form for 

VLSI design tools, and gave an overview of an Intermediate form (SHIFT) 

designed with these requirements in mind. This chapter focuses on the 

current implementation of SHIFT and factors influencing decisions made in 

the course of implementation. Finally, we discuss where SHIFT fits in with 

current VLSI tools being developed at the University of Calgary. 

5.1. Choice of Implementation Language 

The choice of language was generally motivated by the fact that SHIFT 

was designed to mix in with both existing and developing tools. Since most of 

the current tools exist under the Berkeley Unixf 4.2 operating system this 

meant that the implementation language should also exist on the same sys-

tem. Further, since most of the tools are written in a variety of languages, 

(e.g. SPICE in Fortran, LAP in Simula), the language chosen to Implement 

SHIFT should provide as flexible an Interface as possible to other languages. 

A consideration of these and the following reasons led to the choice of Franz 

Lisp [WIle84] as the language of implementation. 

First, since SHIFT Is a procedural as well as declarative intermediate 

form, it was desirable that SHIFT be embedded In some general purpose 

language, rather than re-inventing the wheel. Second, it was felt that SHIFT 

should also be extensible, thus the language In which it was to be embedded 

f UNIX Is a Trademark of Bell Laboratories. 
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should also be extensible. Third, we much preferred to cast the design in an 

object-oriented language, since a lot of the manipulation was symbolic in 

nature. Fourth, SHIFT should be both human readable and portable to many 

systems. Fifth, SHIFT should execute efficiently, since VLSI designs tend to 

be extremely large, and are continually growing in size. Lisp was the only 

language available which fulfilled all these objectives. 

Franz Lisp was chosen because of several additional features It has that 

many other languages on Berkeley Unix do not have. Franz Lisp allows the 

user to load in foreign functions dynamically, thus allowing it to make use of 

software already written. In addition, Franz Lisp was chosen because of its 

capability to run within a distributed environment as well as in a stand-alone 

configuration. 

5.2. SHIFT Implementation 

SHIFT retains much of the flavour of Lisp's syntax. This decision was 

made to minimize the effort involved In building SHIFT; any syntactic 

"sugaring" could be done later as an interface sitting on top of SHIFT. 

Further, the mapping into SHIFT would be made easier by the fact that Lisp 

Is both easy to parse and to produce in an automatic manner. 

SHIFT In its current state consists of approximately 3,000 lines of 

sparsely documented code. The Franz Lisp code conforms wherever possible 

to the Maclisp dialect, making SHIFT easily transportable to many other Lisp 

systems which use MaclIsp or a similar dialect. This makes it easy to develop 

tools in Lisp that are built on SHIFT. For the purposes of efficiency in execu-

tion as well as code clarity, an early decision was made to use the MIT struc-

tures package to build prototypes and instances. This, however, should not 
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decrease the portability of SHIFT, since the structures package is supported 

for almost all major dialects of Lisp. 

As stated before, the basic SHIFT geometric primitives are the wire, the 

box, and the polygon. While these are sufficient to capture all designs of 

interest, it was felt that most tools using SHIFT would want to work at a 

slightly higher level. For example, a Sticks-based editor manipulates wires, 

contacts, and transistors. Also, users designing leaf cells procedurally, even 

using SHIFT, would find their task greatly simplified if they could specify 

basic units like transistors. 

As a result, SHIFT fully supports the geometric domain with a variety of 

routines for designing layouts in both nMOS and CMOS technologies. NMOS 

technology routines allow the user to specify pullup, pulidown, pass, and 

enhancement mode transistors. CMOS technology routines consist of pmos 

and nmos transistor functions, as well as a precursor gate transistor routine 

for specifying a variety of simple logic configurations such as nand, nor, and 

pla's, etc., as well as transmission gates. 

While It Is not central to SHIFT, It was felt that a geometry composer 

should be provided. As stated before, this would provide Immediate feedback 

to users building tools, and allow users to try out SHIFT. It was also useful 

for providing the examples In this thesis. Since the geometry of a composition 

Is simply the union of the geometry of Its component parts, the geometry 

composer was extremely easy to implement. 

The structural and behavioural domains are not as fully fleshed out, and. 

their composer functions have not yet been implemented. These would be 

implemented in the following manner. The structural composer would require 
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a function which would compose graphs together by descending the hierarchy 

and merging the leaf cell structural graphs by merging the nodes of adjacent 

ports on abutting cells. 

The most difficult composer to implement would be the behavioural com-

poser. Fortunately, this has already been provided as a set of functions 

implemented in LCF-LSM [Gord83]. It Is intended that the existing software 

be used in parallel with SHIFT, either as communicating processes through 

the Jade [Unge84] distributed system, or in a more intimate manner, as LCF-

LSM Is Implemented In Franz Lisp, and provides hooks to load Lisp, and 

therefore SHIFT, functions. 

5.3. SHIFT and Current VLSI Tools 

There are three ways in which design tools can use SHIFT. The first 

method Is to use SHIFT as a textual interface, in a manner similar to CIF. 

This will eliminate the nasty problem of "user extensions" to CIF that contain 

information obtained by circuit extraction and used in circuit simulation. In 

addition, "user extensions" are allowed in SHIFT definitions. They are simply 

placed in a special slot of the prototype as an association list in an 

unevaluated form. The first element of the form simply becomes the name of 

the user extension, and if the form Is a symbol, then the value of the associa-

tion is nil. 

The second method is to use SHIFT In future Lisp-based tools simply by 

incorporating it into the Lisp environment. This would also allow tools such 

as the Lisp-based SPICE interface (with a minimum of modification to it) to 

use performance simulation Information provided by SHIFT from the struc-

tural domain. A variant form of this would be to use SHIFT interactively, 
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since it is embedded in Lisp. This would allow a designer to design small cells 

interactively, and in the process, become familiar with SHIFT. 

The final use of SHIFT would be to use SHIFT within the context of a 

distributed environment such as Jade. A Lisp-Jade Interprocess Communica-

tion Interface called Jipth [Libl84a] was developed in order to use SHIFT as a 

library process that would contain the information of an evolving design. A 

primitive version of the SHIFT library manager called 8hi1t11b currently exists, 

and will allow a user process to pass messages defining cells, (In fact, any Lisp 

s-expression), instantiating them, and querying the library for any informa-

tion. Further, SHIFT contains version control information that is used during 

instantiation to limit the necessary modifications to only those parts of the 

design dependent on the changes. 

A symbolic layout editor is currently being developed based on SHIFT 

that would allow the designer to build leaf cells using a graphical Interface, 

similar to REST [Most81]. However, once the cell Is laid out it would be com-

pacted in a manner that would preserve the inherent constraints for subse-

quent stretching when composed. 

5.4. SHIFT and EDICT 

EDICT is a VLSI design tool environment under construction at the 

University of Calgary. It will guarantee that designs meet their specifications; 

allow specifications to be composed from verified sub-modules (bottom-up), or 

be refinements of rougher specifications (top-down); and cater for the incor-

poration of previously validated building blocks, large or small. The first 

experimental versions of EDICT will be extensions of current tools, and will 

be written as applications of the JADE distributed environment. 
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Figure 5.1. The EDICT Design Environment 

A critical sub-system of EDICT will be a library assistant which 

remembers leaf cells and composition cells and stores them In a library for 

future reference (see Figure 5.1). When later designs require elements with 

the same specification, cells will be suggested by a library assistant working 

on the fly. The library assistant will grow ever more knowledgeable as 

verified designs are automatically added to the library. Since today's design 

will be tomorrow's component, using SHIFT to represent designs In the 

library means that we will be able to build a collection of tried and tested 

parts which will slot into future designs with a minimum of modification. 

Thus a consideration in the design and implementation of SHIFT was that 

SHIFT should form the kernel of the library assistant. 



77 

Since the preliminary version of EDICT will be built within JADE, Jipth 

will allow any of the EDICT components implemented In Franz Lisp to 

operate as complete entities within the Jade distributed environment. When 

combined with SHIFT to create the library assistant, Jlpth will allow 

processes In other languages to query and modify the design database. This 

means that current tools such as LAP may co-exist with EDICT, and future 

tools such as layout editors may be built to use SHIFT as their intermediate 

form of choice. 

This chapter has focused on the implementation-dependent aspects of 

SHIFT, and how SHIFT is expected to fit In with both current and future 

VLSI design tools at the University of Calgary. Chapter 8 will conclude with 

an overview of the research work in this thesis, and draw some observations 

about the future of SHIFT in the state of VLSI design. 
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CHAPTER 6 

Conclusion 

6.1. Summary 

This thesis has focused on the problem of Increasing complexity in the 

design of integrated circuits. An analysis of methodologies used in managing 

this complexity has been made and observations have been drawn on the 

requirements for an intermediate form used to capture VLSI designs. While 

not providing a high level of abstraction directly, such as a silicon compiler 

which maps from a behavioural description to a physical layout, an Intermedi-

ate form provides the framework on which to build tools dealing with designs 

at a higher level. SHIFT, a structured hierarchical intermediate form for 

VLSI design tools, has been defined and partially Implemented. 

SHIFT uses a separated hierarchy of leaf cells and composition cells. 

Leaf cells specify the actual artwork necessary to produce fabrication masks. 

Composition cells contain compositions of leaf cells and other (simpler) com-

position. cells. Cells are composed by abutting together ports on adjoining 

walls, stretching them If necessary. Relationships between ports are defined 

In terms of minimum or exact distance constraints between them. A hierarch-

ical method Is used for solving the constraint graphs produced from composi-

tion. SHIFT is embedded in Lisp and consists of approximately 3000 lines of 

Franz Lisp code. 

SHIFT is a keystone of EDICT, a VLSI design tool environment under 

construction at the University of Calgary. It is also the intermediate form 
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used in a symbolic layout editor being developed, and will be the intermediate 

language for future work by VLSI groups In the Computer Science Depart-

ment at Calgary. Finally, It Is used in a primitive design library called shiftlib 

which is built on the JADE distributed environment using the Jipth lisp inter-

face to JADE. Shiftlib serves as a prototype for the library assistant 

envisaged in EDICT. 

8.2. Observations on SHIFT 

One observation that has been made Is that SHIFT Is devoid of the syn-

tactic sugar that makes a language easy to program. However, SHIFT was 

designed as an intermediate form, and its syntax makes It easy for tools to 

generate SHIFT code In an automatic manner. Thus one tool which should 

be built on SHIFT would be a procedural interface which would allow designs 

to be specified as programs. Another observation made by the author was 

that designing leaf cells by hand using SHIFT for the examples generated 

some unexpected constraint solutions, primarily because the constraints 

between ports on the walls went through interior ports. It Is not easy when 

laying out sizable leaf cells procedurally to think In terms of constraints. It is 

much easier to think of them graphically. It is expected that a symbolic lay-

out editor will greatly facilitate the use of SHIFT for designing leaf cells. 

Composing cells procedurally using SHIFT will not give the same prob-

lems, since the chief concern is the abutment of cells, and any additional con-

straints must only be between border ports. This observation, however, must 

await confirmation by others using SHIFT. The lack of design experience 

using SHIFT has hindered making many observations about Its effectiveness 

as an intermediate form, but early work such as a shift-to-lap filter and 
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shiftlib is satisfactory. SHIFT is expected to be thoroughly tested by EDICT. 

6.3. Future Research Directions 

Future work to be done on SHIFT Includes the Incorporation of electrical 

properties in the design using constraints in the form of local maxima. This 

would allow the designer to specify that a given cell not exceed a certain size, 

and therefore some critical power level or time delay. This Is necessary as 

designers must meet certain global constraints with regard to power consump-

tion and speed that are present In any real design. It would also allow the 

designer to get feedback on the critical paths present in a design at a very 

early stage in the development process. 

Also, a proof system for behaviours needs to be connected to SHIFT. 

One possibility, as mentioned In the previous chapter, would be to use the 

existing LCF-LSM system as developed by Gordon [Gord83] by coupling it to 

SHIFT using Jade. Another possibility would be to use an alternative system. 

such as VERIFY [Barr84], which is written in Prolog, and has the advantage 

of being fully automated. 

Finally, methods need to be developed to specify interior constraints of 

leaf cells in such a manner that stretching would never result in design rule 

violations. One possibility would be to Incorporate the technique of rift lines 

[Widd84] into a layout editor. The user would layout the cell symbolically, 

and then draw rift lines where he wanted the cell to stretch. 

Since SHIFT is embedded in Lisp it has the advantage of being an open-

ended intermediate form, and as such, it Is easy to incorporate new ideas into 

It. This will insure its use over a longer period of time than other intermedi-

ate forms. It will also have beneficial effects for tools using it, since there will 
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be a strong desire to integrate these tools into a solid and workable VLSI 

design environment that can change continuously to use new ideas as they are 

developed. 



82 

References 

[Back78] 

Backus, J.W. "Can programming be liberated from the von Neumann 

style? A functional style and Its algebra of programs." Comm ACM, 

August 1978. 

[Barb81] 

Barbacci, M.R. "Instruction Set Processor Specifications (ISPS): The 

Notation and Its Application." IEEE Transactions on Computers C-

30(1):24-40, January, 1981. 

[Barr84] 

Barrow, Harry. "Proving the Correctness of Digital Hardware Designs", 

VLSI Design, Vol. 5, No. 7, July 1984, pp. 64-77. 

[Bata81] 

Batali, J., Mayle, N., Shrobe, H., Sussman, G., and Weise, D. "The 

DPL/Daedalus Design Environment", VLSI 81, The Proceedings of the 

First International Conference on Very Large Scale Integration, August 

1981, J. Gray (editor). 

[B1rt73] 

Blrtwlstle, G., Dahl, O-J., Myhrhaug, B. and Nygaard K. SIMULA 

begin, Studentlitteratur, Lund, Sweden, 2nd ed., 1979. 

[B1rt84] 

Blrtwistle, G., Hill, D., Kendall, J., Coates, B., Esau, R., Kroeker, W., 

Liblong, B., Liu, E., Meiham, T. and Schediwy, R. EDICT - An 



83 

Environment for Design using Integrated Circuit Tools, University of 

Calgary Computer Science Research Report No. 84/155/13, June 1984. 

[Brow83] 

Brown, H., Tong, C., and Foyster, G. "Palladio: An Exploratory 

Environment of Circuit Design". IEEE Computer, December 1983, pp. 

41-58. 

[Brya81] 

Bryant, Randal. A Switch Level Simulation Model for Integrated Cir-

cuits. MIT Laboratory for Computer Science Technical Report-259. 

[Buch80] 

Buchanan, Irene. Modelling and Verification in Structured Integrated 

Circuit Design, PhD Thesis, Department of Computer Science, University 

of Edinburgh, 1980. 

[Buch82] 

Buchanan, Irene. Scale - A VLSI Design Language. Technical Report 

CSR-117-82, University of Edinburgh, Department of Computer Science, 

May 1982. 

[Gord81] 

Gordon, Mike. A Model of Register Transfer Systems with applications 

to Microcode and VLSI correctness. Department of Computer Science 

Internal Report CSR-82-81, University of Edinburgh, March 1981. 

[Gord83] 

Gordon, Mike. LCF-LSM. University of Cambridge Computer Labora-

tory Technical Report No. 42, 1983. 



84 

[Gosl83] 

Gosling, J. Algebraic Constraints. PhD thesis, Department of Computer 

Science, Carnegie-Mellon University, May, 1983. 

[Hell79] 

Heller, W.R. An Algorithm for Chip Planning, Caltech Silicon Structures 

Project File #2806, 1979. 

[Joha79] 

Johannsen, D. "Bristle Blocks - A Silicon Compiler", Proc. of The 16th 

Design Automation Conference, 1979. 

[John 84] 

Johnson, Stephen C. "Top-down system design through silicon compila-

tion", Electronics, Vol. 57, No. 9, pp. 121-128. May 3, 1984. 

[KIng82] 

Kingsley, Chris. Earl: An Integrated Circuit Design Language. Caltech 

Technical Report 5021, June 1982. 

[L1bl83] 

Liblong, B. M., Birtwlstle, G. M. "A VLSI Design System Based Upon a 

High Level Intermediate Form", 1983 Canadian Conference on Very 

Large Scale Integration, Waterloo Ont., 1983, pp. 150-153. 

[LIbl84a] 

Liblong, B.M., and Bonham, M. Jipth - The Lisp - Jipc Interface, 

University of Calgary Computer Science Technical Report in preparation. 

[Libl84b] 

Liblong, B.M. The SHIFT Users Manual, in preparation. 



85 

[Lib184c] 

Liblong, B., Meiham, T., Blrtwlstle, G.,Kendall, J. "Towards A VLSI 

Design Tool System", Proceedings of CIPS Session 84, Calgary, Alta., 

1984. 

[Llpt83] 

Lipton, R.J., Valdes, J., Vljayan, S.C., North, S.C., and Sedgewick, R. 

"VLSI Layout as Programming", ACM Transactions on Programming 

Languages and Systems, Volume 5, Number 3, July, 1983. 

[Loca78] 

Locanthi, B. LAP: A Simula Package for IC Layout. Caltech Technical 

Report Display File #1862, July, 1978 

[Mead80] 

Mead, Carver and Conway, Lynn. Introduction to VLSI Systems, 

Addison-Wesley, 1980. 

[Moor79] 

Moore, G.E. "Are We Really Ready For VLSI?", Proceedings of the Cal-

tech Conference on VLSI, January, 1979, C. Seitz (editor). 

[Most81] 

Mosteller, R.C. REST - A Leaf Cell Design System. M.Sc. Thesis, Sili-

con Structures Project Technical Report 4317, Caltech, December, 1981. 

[Nage75] 

Nagel, L.W. SPICE2: A Computer Program to Simulate Semiconductor 

Circuits. ERL Memo ERL-M520, University of California, Berkeley, May 

1975. 



86 

[Rem81] 

Rem, Martin. "The VLSI Challenge: Complexity Bridling", VLSI 81, 

The Proceedings of the First International Conference on Very Large 

Scale Integration, August 1981, J. Gray (editor). 

[Rows8o] 

Rowson, James Allely. Understanding Hierarchical Design, PhD thesis, 

Caltech Technical Report 3710, April 1980. 

[Sand79] 

Sandewall, E. "Programming in the Interactive Environment: The LISP 

Experience", ACM Computing Surveys, Vol. 10, No. 1, March, 1978, pp. 

35-72. 

[Seit79] 

Seitz, C. "Self-Timed VLSI Systems", Proceedings of Caltech Confer-

ence on VLSI, January 1979. 

[Spro8O] 

Sproull, R. F., and Lyon, R. F. "The Caltech Intermediate Form for LSI 

Layout Description", from [Mead80], 1980. 

[Trim80] 

Trimberger, S. The Proposed Sticks Standard, Caltech Computer Science 

Department. Technical Report #3380, 1980. 

[Trim81] 

Trimberger, S., Rowson, J., Lang, C. and Gray, J. "A Structured Design 

Methodology and Associated Software Tools", IEEE Trans. on Circuits 

and Systems, Vol. CAS-28, No. 7, July 1981, pp.618-633. 



87 

[Ul1m84] 

Ullman, J.D. Computational Aspects of VLSI, Computer Science Press, 

1984. 

[Unge84] 

B.W.Unger et al. "JADE: a software simulation and prototyping 

environment". Proceedings of the Conference on Simulation in Strongly 

Typed Languages, San Diego, 1984. 

[vanC79] 

vanCleemput, W. M. "Hierarchical Design for VLSI: Problems and 

Advantages", Proceedings of Caltech Conference on VLSI, January 1979. 

[Wall83] 

Wallich, P. "Tomorrow's Computers - The Challenges", IEEE Spectrum, 

November 1983, pp. 73-77. 

[Whit81] 

Whitney, T. A Hierarchical Design Rule Checker, Caltech Computer 

Science Department. Technical Report #4320, 1981. 

[Widd84] 

Widdowson, Rod. An Investigation of Stretchable Cells in SCALE. To 

appear as a University of Edinburgh Computer Science Technical Report 

In late 1984. 

[Wlle84] 

Wilensky, R. LISPCraft, W.W. Norton & Company, New York, 1984. 

[W11177] 

Williams, J.D. STICKS - A New Approach to LSI Design, MIT MSEE 

Thesis, 1977. 



88 

APPENDIX A 

Syntax of SHIFT 

The following comprises a user-level syntactic description of SHIFT. The 

description method was chosen for readability and because it gives some 

flavour of the semantics of the functions. The syntax used Is a modified form 

of BNF, where constructs enclosed In brackets ( [] ) are optional, constructs 

enclosed in braces ( {} ) in conjunction with the vertical bar ( I ) mean choose 
one of, and both forms may be modified with a repetition factor. The repeti-

tion factor may be "*" , meaning 0 or more times, "+" meaning 1 or more 

times, and "+x" , meaning x or more times. Non-terminals are denoted by 

names beginning with "l_" , denoting a list expression, "s_" , denoting a sym-

bol, "n_" , denoting a number, "h_" , denoting a cell structure, and "p_," 

denoting a point expression. For more Information, consult the SHIFT Users 

Manual [Libl84b]. 

I. Defining Cells 

Cell definitions have the following syntax. 

s_leaf-cell_definition ::= 
(defleaf s_cell-name 

[1_leaf_ports_expr] 
[l_const_expr] 
[l_struct_expr] 
[l_beh_expr] 
[l....geom_expr]) 
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s_composition-cell_definition ::= 
(defcomp s_cell_name 

[l_cOmp_ports_expr] 
[l_const_expr] 
[l_struct_expr] 
[l_beh_expr] 
[I_comp_expr]) 

ljeaf_ports_expr: 
(ports [(north [s_port]*)] 

[(south [s_port]*)] 
[(east [s_port]*)] 
[(west [s_port] *)] 
[(interior [s_port] *)]) 

l_comp_ports_expr ::= 
(ports [(north [s_port]*)] 

[(south [s_port]*)] 
[(east [s_port]*)] 
[(west [s_port]*)]) 

l_const_expr ::= 
(const [(s_port 

{ >= I = !! } 
s_port 
{ + I - } n_value])]*) 

i_struct_expr ::= 
(struct [(nodes 

[s_node_name 
(s—component [s—attribute n_val] *)] *)] 

[(connect 
[({s_port (s_component_node s_node_name)} 
{s_port _ (s_component_node s_nodename)})]*)]) 

I_beh_expr ::= 
(beh ([s_state]*) 

([(s_port = e_val)]*). 
([e_next_state] *)) 

l_geom_expr  
(geom l_geom_primitives) 

l_comp_expression ::= 
({ > I < I I v} {s_cell_name I l_comp_expression}+) 
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1_geom_primitives 
({l....geom_prlmltive I l....geom._primltives}*) 

2. Geometry Primitives 

Since SHIFT is a procedural form, one can write and use functions which 

return lists of geometry primitives. In particular, there are basic functions for 

specifying relative paths in the path primitive, for applying transformations to 

primitives and lists of primitives, predicates and selectors which can be used 

to write user geometry functions, and cmos and nmos functions which take 

higher-level concepts such as transistors and map them Into lists of geometric 

primitives. 

2.1. Basic Geometry Primitives 

1_geom_primitive ::= 
1_box_primitive I 1_polygon_primitive I 
1_wire_primitive 1_geometry_function I 
1_geometry_function 

1_box_primitive ::= 
(box [s_layer] { 1_point 1—point I l_path}) 

1_polygon_primitive ::= 
(polygon [s_layer] { [l_point]+3 I l_path}) 

1_wire_primitive ::= 
(wire [s_layer] [s_width] { [1_point]+2 I 1_path)) 

1_path ::= 
(path 1_point { 1—point I Labs-motion I l_rel_motion }*) 
(pmerge { I_point I 1—path }+) I 
(perim 1—box—primitive) I 
(lengthen-path 1_path n_first n_last) 

1_point_primitive ::= 
1_geom_primitive I 1_path 
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Labs-motion ::= 
(then-x n_expr) I (then-y n_expr) I (then-xy n_expr n_exp) 

1_rel-motion 
(by-x n_expr) I (by-y n_expr) I (by-xy n_expr n_epxr) 

1_geometry_function ::= 
1_cmos_geometry_function 1_nmos_geometry_function 
C1_user_defined_function I 1_compound_geometry_function 

2.2. Selectors and Predicates 

1—selector ::= 
(:type 1_point_primitive) I 
(:layer 1_geom_primitive) 
(:width 1_geom_primitive) 
(:low 1_box_primitive) I 
(:high 1_box_primitive) I 
(:path 1_point_primitive) I 
(:nth 1_point_primitive) 

1_geom_predicate := 
(layerp s_layer) I 
(pathp 1_geom_primitive) I 
(widthp n_expr) 

2.3. Transformation Functions 

1_transform ::= 
(apply-fcn f_function 1_point_primitive) 
(trans-pt 1_point 1_point_primitive) 
(trans-x n_expr 1_point_primitive) 
(trans-y n_expr 1_point_primitive) 
(trans-xy n_expr n_expr 1_point_primitive) 
(scale-pt 1_point 1_point_primitive) I 
(scale-x n_expr 1_point_primitive) 
(scale-y n_expr 1_point_primitive) 
(scale-xy n_expr n_expr 1_point_primitive) 
(mr-x 1_point_primitive) 
(mr-y 1_point_primitive) 
(mr-xy 1_point_primitive) I 
(rot-pt 1_pt n_expr 1_point_primitive) I 
(rot n_expr 1_point_primitive) I 
(apply-tx 1_geom_primitives 1—trans—mat) 
(apply-rot 1_geom_primitives 1_point) 
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2.4. nMOS Geometry Functions 

1_geom_primitives 
(dm) I 
(dm-at Lpolnt) 
(pm) I 
(pm-at 1..point) I 
(dpeast) I 
(bn-at 1_point) I 
(be-at 1_point) 
(bs-at Lpoint) 
(bw-at Lpoint) I 
(but-rot-at 1_point 1_point) 
(pulidown n_duff-width 1_duff-path n_poly-width 1_poly-path) 
(pasatran n_duff-width 1_duff-path n_po1y-width L_poly-path) 
(pullup n_duff-width 1_duff-path n_poly-width 1—poly-path) 
(enhtran (duff-width duff-path poly-width poly-path) 

2.5. CMOS Geometry Functions 

1..geom_primitives 
(am)I 
(am-at 1_point) 
(pm) I 
(pm-at 1—point) I 
(apeast) I 
(bn-at 1_point) I 
(be-at Lpolnt) 
(bs-at 1....polnt) 
(bw-at 1—point) 
(ameast) 
(on-at 1_point) I 
(se-at 1_point) 
(ss-at 1_point) 
(sw-at 1_point) I 
(n&p+-box 1_box_primitive) 
(pwell&guards-box 1_box_primitive) 
(gate n_active-width 1_active-path n_poly-width 1—poly-path) I 
(pmos n_active-width 1_active-path n_poly-width 1—poly-path) 
(nmos n_active-width 1_active-path n_poly-width 1_poly-path) 
(split-rot-at 1_point 1_point) 
(split-&-n&pplus-rot-at 1_point 1_point) 
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2.6. Miscellaneous Functions 

1_misc_geom_functions ::= 
(union-box 1_box_primitive 1_box_primitive) 
(inflate-box 1_box_primitive n_value) 
(cbox [s_layer] 1_point n_horiz n_vert) 
(box-to-polygon 1_box_primitive) 
(mbb 1_point_primitive) I 
(shift-to-cif-wire 1_wire_primitive) 
(cif-to-shift-wire 1_wire_primitive) 
(mbb-wire 1_wire_primitive) 

3. Points 

Points are simply a structure of two numbers. Operations are provided 

for the creation, selection, manipulation, and transfomation of points. 

3.1. Creation, Selection, and Relational Functions 

I_point ::= 
s_port I (point n_expr n_expr) 

1_point_selection ::= 
(:x 1_point) I (:y 1_point) 

1_point_ops ::= 
(pointp 1_point) 
(pt= 1_point 1_point) I 
(pt/= 1_point 1_point I 
(pt< 1_point 1_point) 
(pt> 1—point 1—point) 
(pt>= 1_point 1_point) 
(pt<= 1_point 1_point) 

3.2. Point Manipulations 

1_point ::= 
(pt+ 1_point 1_point) I 
(pt- 1_point 1_point) I 
(pt* 1_point 1_point) 
(pt/ 1_point 1_point) 
(pt-scale n_expr 1_point) 
(pt-rot n_expr 1_point) I 
(pt-dx 1_point n_expr) 
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(pt-dy I_point n_expr) I 
(pt-dxy 1_point n_expr n_expr) 
(pt-minus 1_point) I 
(sq-pt 1_point) I 
(xy-sum Lpolnt) I 
(xy-difference 1_point) I 
(xy-times 1_point) 
(xy-quotient 1....point) I 
(dist 1_point 1_point) 
(pt-max 1_point 1_point) 
(pt-mm 1_point 1_point) 
(pt-round 1_point) 
(pt-trunc 1_point) 

3.3. Point Transformations 

1_point ::= 
(normalize 1_point) I 
(pt-mult 1_point 1_trans_mat) I 
(identity) 
(trans-mat 1_point) I 
(scale-mat I_point) I 
(rot-mat 1—point) I 
(pre-mult 1_trans_mat 1_trans_mat) 

4. Instantiation and Selection 

Instantiation of a design returns the instance-name of the design. 

s_instantiation ::= 
(instantiate 's—cell—name) 

An Instance's fields may be selected with the following functions. 

si_prototype_selectors ::= 
(cell-prototype-source h_leaf_or_comp_prototype) I 
(cell-prototype-date-created h_ieaf_or_comp_prototype) I 
(cell-prototype-version h_leaf_or_comp_prototype) I 
(cell-prototype-name h_leaf_or_comp_prototype) 
(cell-prototype-ports h_leaf_or_comp_prototype) 
(cell-prototype-constraints h_leaf_or_comp_prototype) I 
(cell-prototype-reduced-constraints h_leaf_or_comp_prototype) 
(cell-prototype-behaviour h _leaf _or_comp_prototype) I 
(cell-prototype-structure h_leaf_or_comp_prototype) I 
(cell-prototype-struct-fcn h_leaf_or_comp_prototype) I 
(cell-prototype-user-extensions h_leaf_or_comp_prototype) 
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(leaf-prototype-geometry h_leaf_prototype) I 
(leaf-prototype-geom-fen h_leaf_prototype) I 
(comp-prototype-composed-of h_comp_prototype) I 
(comp-prototype-merged-constraints h_comp_prototype) I 
(comp-prototype-composed-ports h_comp_prototype) 
(comp-prototype-composed-interior h_comp_prototype) 

si_instance_selectors 
(cell-instance-name h_cell_Instance) I 
(cell-instance-class h_cell_instance) I 
(cell-instance-border-values h_cell_Instance) 
(cell-instance-wall-values h cell _Instance) I 
(cell-instance-port-values h__cell_Instance) 
(cell-instance-structure h_cell_instance) I 
(leaf-instance-geometry h_leaf_instance) I 
(comp-instance-composed-of h_comp_instance) 

5. Other Functions 

These Include a geometry extractor and functions for version control. 

s_verslon_fcns ::= 
(get-version s_cell_name) 
(get-creation-date s_cell_name) 

1_geometry_extractor ::— 
(get-geometry s_cell_name s_Instance) 
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APPENDIX B 

SHIFT Examples 

1. The Shift Register Leaf Cell 

The shift register in chapter 4 Is reproduced here In its entirety. 

(defleaf shiftreg 
(ports 

(north n:clock) (south s:clock) 
(east e:gnd out e:vdd) (west w:gnd in w:vdd) 
(interior 

gc pc last ; ground, power and butting contacts 
pd.gtin pd.gtout pd.src pd.drn; pulidown nodes 
pu.gtin pu.gtout pu.src pu.drn ; pullup nodes 
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes 
middle)) ; inverter output 

(const 
(w:gnd 1! south + 2) (in 1! w:gnd + 4) ; west wall 
(north 1! w:vdd + 5) (w:vdd '1! pu.drn + 1) 
(out >= last + 3) 
(e:gnd 1! south + 2) (out 1! e:gnd + 4); east wall 
(e:vdd 1! out + 2) (e:vdd !! w:vdd) 
(s:clock >= pt.src + 3) (n:clock = s:clock) ; south & north walls 
(gc = west + 5) (gc 1! south + 2) ; ground contact 
(pd.src = gc) (pd.drn = pd.src) ; puildown 
(pd.gtin >= In + 1) (pd.gtout >= pd.gtln + 8) 
(pd.src 1! gc + 1) (pd.gtin 1! pd.src + 3) 
(pd.gtin !! In) (pd.gtout !! pd.gtin) 
(pd.drn 1! pd.gtin + 3) 
(middle 1! pd.drn + 1) (pu.src 1! middle + 1) ; inverter output 
(middle = pd.drn) 
(pu.src = middle) (pu.gtin = pu.src) ; pullup 
(pu.gtout = pu.gtin) (pu.drn = pu.gtout) 
(pu.gtin 1! pu.src + 2) (pu.gtout !! pu.gtin + 7) 
(pu.drn 1! pu.gtout + 2) 
(pc = pu.drn) (pc !! w:vdd) ; power contact 
(pt.gtout = s:clock) (pt.src >= pd.gtout) ; passtran 
(pt.drn >= pt.gtin + 3) (pt.gtout 1! pd.gtout + 1) 
(pt.gtin 1! pt.src + 3) (pt.src !! middle) 
(pt.gtin = s:clock) (pt.drn !! pt.src) 
(last !! pt.drn) (last >= pt.drn + 3)) ; last contact 

(geom 
(dm-at gc) ; contact between puildown and ground 
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(wire metal 4 w:gnd gc e:gnd) ; ground wire 
(pulidown ; pulidown has two parts 
4 (path pd.src pd.drn) ; diffusion path from source to drain 
2 (path pd.gtin pd.gtout)) ; a poly path from gtin to gtout 

(wire poly in pd.gtln) ; connect gate to input port 
(wire diffusion gc pd.src) ; connect pulidown to ground 
(pullup ; pullup has four parts 
2 (path pu.src pu.drn) ; a diffusion path from source to drain 
8 (path pu.gtin pu.gtout)) ; a poly path from gtin to gtout 

an implant layer is automatically drawn 
over the poly layer, extended by 2 lambda 
on either end, and a butting contact at the 
gate input connecting the gate to the source 

(wire diffusion pd.drn middle pu.src); connect the pullup and pulidown 
(wire metal 4 w:vdd pc e:vdd) ; power wire 
(wire diffusion pu.drn pc) ; connect pullup to power 
(dm-at pc) ; contact between pullup and power 
(pastran ; passtran Is equivalent to the puildown 
2 (path pt.drn pt.src) 
2 (path pt.gtin pt.gtout)) 

(wire poly n:clock pt.gtin) ; wire up clock to one end of the gate 
(wire poly s:clock pt.gtout); wire up other end of gate to clock 
(wire diffusion middle pt.src) ; connect Inverter output to pasatran's 

source 
(be-at last) ; butting contact for passtran to out 
(wire diffusion pt.drn last) ; connect passtran to contact and 
(wire poly (pt-dx last 1) ; contact to out 

(then-y (:y out)) out)) 
(struct 

(nodes 
pullup (n-type-dep len 6 wid 2) 
pulldown (n-type-enh len 2 wid 6) 
pass (n-type-enh)) 

(connect 
(e:vdd w:vdd) (e:gnd w:gnd) (n:phi s:phi) 
((:source pullup) e:gnd) ((:source pulidown) e:vdd) 
((:drain pullup) (:drain puildown)) 
((:drain pullup) (:source pass)) 
((:gate pullup) (:drain pullup)) 
((:drain pass) out) ((:gate puildown) in) 
((:gate pass) n:phi))) 

(beh (s) 
((s:phi = n:phi) 
(out = if n:phi then (not s) else ©)) 

((if (in = ©) then s else in))) 
) 
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2. A Shift Register Array 

The definition of a 4 element bit-slice looks like: 

(defcomp shiftslice 
(> (> shiftreg shiftreg) 
(> shiftreg shiftreg))) 

and the definition of a 4 bit wide bit-slice (Figure B.1.) Is simply: 

(defcomp shiftarray 
( ( shiftslice shiftslice) 
( shiftslice shiftslice))) 
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Figure B.1. Geometry of a 4 x 4 Shift Register Array 


