
The University of -Calgary

SHIFT

A Structured Hlerarëhlcal Intermediate

Form for VLSI Design Tools

by

Breen M. Liblong

A thesis

submitted to the Faculty of Graduate Studies

In partial fulfillment of the requirements for the

degree of Master of Science

Department Of Computer Science

Calgary, Alberta

September, 1984

© Breen M. Liblong, 1984.

The University Of Calgary

Faculty Of Graduate Studies

The undersigned certify that they have read, and recommend to the

Faculty of Graduate Studies for acceptance, a thesis entitled, "A Structured

Hierarchical Intermediate Form for VLSI Design Tools" submitted by Breen

M. Libiong In partial fulfillment of the requirements for the degree of Master

of Science.

QA&JA
Supervisor,
Dr. G. M. Blrtwistle
Department of Computer Science

September 10, 1984

/'t/ ed-
Dr.Ld. Kendall '

Department of Computer Science

4.1eary
Dep tment of Computer ence

Dr. K. Kaler
Department of Electrical Engineering

11

Abstract

This thesis examines the problem of Increasing complexity in the design

of integrated circuits: An analysis of methodologies used In managing this

complexity is made and observations are drawn on the requirements for an

intermediate form used to capture VLSI designs.' While not providing a high

level of abstraction directly, an intermediate form provides the framework on

which to build tools which deal with designs at a higher level. SHIFT, a

Structured Hierarchical Intermediate Form for VLSI Design Tools, has been

defined and implemented.. SHIFT uses a separated hierarchy of leaf cells and

composition cells to obtain unified and consistent descriptions of the physical,

structural, and behavioural attributes of a design. Leaf cells specify the

actual artwork necessary to produce fabrication masks. Composition cells

contain compositions of leaf cells and other (simpler) composition cells. Cells

are composed by abutting together ports on adjoining walls, stretching them

if necessary. Relationships between ports are defined in terms of minimum or

exact distance constraints between them. A hierarchical method is used for

solving the constraint graphs produced from composition. SHIFT is embed-

ded in the Franz Lisp programming language. SHIFT is a keystone of EDICT

[Birt84], a VLSI design tool environment under construction at the University

of Calgary. SHIFT Is also used In a primitive design library called shiftlib

which is built on the JADE [Unge84] distributed environment using the Jipth

[Libl84a] lisp interface to JADE. Shlftlib serves as a prototype for the library

assistant envisaged in EDICT.

III

Acknowledgements

I would like to thank Dr. G. M. Birtwistle for his patience, encourage-

ment and enthusiasm for this project. Thanks are also due to Dr. J. P. Gray,

Dr. I. Buchanan, and Tom Meiham for their discussions and encouragement.

In addition I would like to acknowledge the many useful discussions I

have enjoyed with the graduate students and faculty In the Department of

Computer Science at the University of Calgary.

Finally I would like to thank Evelyn Wolfe and our daughter Caitlin for

their love and support.

Iv

Table of Contents

Abstract in

Acknowledgements lv

Table of Contents V

List of Tables Ix

List of Figures x

Chapter 1. Introduction 1

Li. The Problem 1

1.2. The Nature of VLSI as an Implementation Medium 2

1.3. Structured Design 4

1.4. The Need for an Intermediate Form 5

1.5. Scope and Structure of the Thesis 8

Chapter 2. The Nature of VLSI 8

2.1. A Characterization of VLSI Designs 8

2.2. Domains of Description of a VLSI Design ii

2.3. Current VLSI Design Tools 17

2.3.1. The Caltech Design Tools 17

2.3.2. Procedural Design Tools 22

2.4. Summary 28

V

Chapter 3. Design Methodologies 29

3.1. Structured Design Methodology 29

3.1.1.Regular1ty 31

3.1.2. Modularity 31

3.1.3. Hierarchy 32

3.1.4. Locality 32

3.2. Hierarchical Design Methodology 33

3.2.1. Leaf Cells 33

3.2.2. Composition Cells 34

3.2.3. Compatibility with Structured Design 35

3.3. Iterative Modelling 35

3.4. Simulation 38

3.5. Current Tools 38

3.6. Conclusion 40

Chapter 4. High Level Intermediate Forms 41

4.1. Intermediate Form Philosophy 42

4.1.1. Leaf and Composition Cells 43

4.1.2. Composition Rules 45

4.1.3. External versus Internal Information in a Cell 47

4.1.4. Design Systems Using a High Level Intermediate Form 48

4.2. SHIFT Design 49

4.2.1. SHIFT Cells 50

vi

4.2.2. Leaf Cells 56

4.2.2.1. Physical Description 57

4.2.2.2. Structural Description 61

4.2.2.3. Behavioural Description 63

4.2.3. Composition Cells 64

4.2.4. Design Instantiation 66

4.2.5. The Composition Algorithm 67

4.2.8. Complexity of The Composition Algorithm 69

4.3. Summary 70

Chapter 5. SHIFT Implementation 71

5.1. Choice of Implementation Language 71

5.2. SHIFT Implementation 72

5.3. SHIFT and Current VLSI Tools 74

5.4. SHIFT and EDICT 75

Chapter 6. Conclusion 78

6.1. Summary 78

6.2. Observations on SHIFT 79

8.3. Future Research Directions ' 80

References 82

Appendix A. Syntax of SHIFT 88'

vii

1. Defining Cells 88

2. Geometry Primitives 90

2.1. Basic Geometry Primitives 90

2.2. Selectors and Predicates 91

2.3. Transformation Functions 91

2.4. nMOS Geometry Functions 92

2.5. CMOS Geometry Functions 92

2.8. Miscellaneous Functions 93

3. Points 93

3.1. Creation, Selection, and Relational Functions 93

3.2. Point Manipulations 93

3.3. Point Transformations 94

4. Instantiation and Selection 94

5. Other Functions 95

Appendix B. SHIFT Examples 96

1. The Shift Register Leaf Cell 96

2.A Shift Register Array 98

List of Tables

Table 1.1. A Comparison of IC Technology Complexity 3

Table 3.1. Tools vs Requirements 39

List of Figures

Figure 2.1. Moore's Law 9

Figure 2.2. NMOS Ramcell 13

Figure 2.3. The ÔM2 Floorplan 14

Figure 2.4. Representation of a Structural Description of a Selectively

Loadable Dynamic Register Cell 15

Figure 2.5. The Scale System 24

Figure 3.1. A 4 by 4 Barrel Shifter 30

Figure 3.2. A Separated Hierarchy 34

Figure 4.1. A Cell Decomposition of the 0M2 Datapath 44

Figure 4.2. The Behaviours of a Count Cell and Its Components 48

Figure 4.3(a). Overview of A Leaf Cell Definition 50

Figure 4.3(b). Overview of A Composition Cell Definition 50

Figure 4.4(a). The Ports Definition of a Shift Register Cell 51

Figure 4.4(b). The Ports of a Shift Register Cell 52

Figure 4.5(a). The Constraints Definition of a Shift Register Cell 53

Figure 4.5(b). The Constraints Graph of a Shift Register Cell 54

Figure 4.8(a). The Geometry Definition of a Shift Register Cell 55

Figure 4.8(b). The Geometry of a Shift Register Cell 58

Figure 4.7(a). Wire Connection - Curtailed 58

Figure 4.7(b). Wire Connection - Inflated 58

Figure 4.7(c). T Connection - Curtailed 59

x

Figure 4.7(d). T Connection - Inflated 59

Figure 4.7(e). Butting Contact - Curtailed 80

Figure 4.7(r). Butting Contact - Inflated 60

Figure 4.8(a). The Structure Definition of a Shift Register Cell 62

Figure 4.8(b). The Structure Diagram of a Shift Register Cell 62

Figure 4.9. The Behaviour of a Shift Register Cell 63

Figure 4.10(a). A 2 Element Shift Register Array Composition Cell 65

Figure 4.10(b). Geometry of a, 2 Element Shift Register Array 65

Figure 4.11. An Example of Stretching 68

Figure 5.1. The EDICT Design Environment 76

Figure B.I. Geometry of a 4 x 4 Shift Register Array 99

xl

1

CHAPTER 1

Introduction

1.1. The Problem

Over the past twenty years integrated circuit technology has grown

exponentially from being capable, of placing tens of devices on a single wafer

of silicon to placing hundreds of thousands of devices on a single chip. As a

result VLSI designers today are facing a crisis in complexity management not

unlike the same crisis faced twenty years ago by software designers.

There Is a widening gap between what VLSI technologies are capable of

producing and what system designers can design. The designs that most fully

utilise the potential of VLSI technologies are memory chips, and only as a

result of the highly regular structure Inherent In their design. With less regu-

lar structures such as microprocessors system designers are having trouble

even completing designs.

The complexity scale Implied by this technology can be visualised with

the help of an analogy (see Table 1.1) presented by Charles Seitz of Caltech

[Se1t79]. Suppose we scale up a typical chip to make the spacing between

conductors equal to one city block In size. In this way, the circuit can then be

thought of as a multi-level road network carrying electrical signals instead of

cars.

In the mid 80's the complexity of a chip was not much bigger than a

small town. Most people can carry around a map in their heads of a town

2

and be able to find their way around without too much difficulty. Similarly

designers could manage a design's detail In their heads.

A microprocessor built In the late 1970's using 5 micron technology Is

comparable In complexity to the entire Los Angeles basin. This would already

tax our limits of memory In that only major freeways and avenues would be

remembered; the rest would have to be negotiated using maps.

By the time a 1 micron technology is solidly In place (perhaps In as little

as two years from now) designing a chip will be equivalent to planning a

street network for all of Nevada and California at urban densities. At this

point it Is beyond our ability even to remember the major freeways; only the

overall organisation of the design can be kept in our heads.

If this is extended to the ultimate limits of the technology (about 1/4

micron - [Mead80], Chapter 1), designing a chip will be comparable to design-

ing a street network of urban densities that will cover the North American

continent.

The only hope of dealing with such complexity Is to find some method of

managing it which does not increase In direct proportion to the size of the

designs. Thus techniques for structuring designs and design aids that support

these techniques must be introduced to realIse the potential of this technology

and avoid the same mistakes made in software design twenty years ago.

1.2. The Nature of VLSI as an Implementation Medium

VLSI is a new medium for the realisation of computations [Rem8l]. Its

power springs not from Its ability to implement existing engines such as

microprocessors, but to implement entirely new architectures directly. VLSI

3

A Comparison of IC Technology Complexity

Year Connector
Separation

Scale Factor
(for 800m block)

Chip Size
(width)

Land Area
(width)
Caltech

1963 25 microns 4 x 106 1 mm area
4 km

Los

1978 5 microns 2 x 107 5 mm Angeles
100 km

California

1985 1 mIcron 1 x 108 10 mm & Nevada
1000 km

North

19?? 1/4 micron 4 x 108 20 mm America
8000 km

Table 1.1.

In effect is a highly concurrent realisation medium for computations and

allows us to exploit parallelism on a massive scale.

In addition, VLSI is.viewed by many as essential for fifth-generation com-

puting efforts and VLSI design tools are required both to design the chips

required in these computer systems and to support the experimental designs

needed along the way [Wall83].

The domain of VLSI design is very large, spanning from extremely regu-

lar and highly space and time optimised designs such as memory chips, to

highly irregular designs such as random logic circuits. This thesis will focus

4

on the design of an Intermediate form that Is well suited to a large subset of

• this domain that lies somewhere between the two extremes; that of semi-

custom designs. Semi-custom designs can be characterlsed by the use of regu-

lar structures such as PLA's to implement random logic, and by repetition of

elements In the design. The primary concern in semi-custom designs is to get

a quick and correct Implementation of a design.

With a proper design methodology a design can often be optimised after

It Is designed correctly. What is required Is a method of analysing the perfor-

mance bottlenecks, and then modifying the design to remove them. This

requires that a design exhibit characteristics such as lcccality and modularity.

By designing an intermediate form that incorporates these features, a firm

foundation' is laid for higher level design tools.

1.3. Structured Design

The Caltech "structured design methodology" as Introduced by Carver

Mead [Mead8O] is one approach to system design. It deals with the problem

of complex designs by introducing regularity into the system. Even random

logic and irregular structure have a regular implementation using PLA and

ROM structures. Hierarchical design techniques have been traditionally used

to manage complex software systems, and Rowson has extended this design

methodology into the IC domain' [Rows8O}. Specifically, Rowson introduces

the concept of a separated hierarchy, where a design can be captured through

Its description in terms of leaf cells and the hierarchical structure that relates

groups of these cells.

If structured design methodology is not incorporated into tools, then an

increase in the complexity of the design as measured by the number of

5

components will dramatically Increase the complexity of the overall design.

Structured design methodology is a method of combating the combinatorial

explosion of complexity of a design.

Further, the use of a structured design methodology in tools allows for

consistent incremental design and modification of VLSI specifications. The

result is tools which are simpler to develop and modify, since they can exploit

the inherent structure of a design, instead of primarily focusing on the use of

combinatorially optimal algorithms.

1.4. The Need for an Intermediate Form

Three domains can be recognised as being Important in the specification

of VLSI designs [13uch80]. These can be termed the physical, structural, and

behavioural domains. Some tools are better suited to specifications In one

domain over the others. As a result, no one tool exists that Is ideal for

designing chips; rather a suite of tools is necessary for the complete design of

a VLSI circuit. Communication between these tools Is greatly enhanced by a

consistent representation of the design through the use of an Intermediate

form.

Further, designs are not arrived at in their totality; they are grown Incre-

mentally and modified many times before a satisfactory solution Is reached.

Some method Is needed to force an Incremental specification of a design which

will remain consistent at each stage. The Incorporation of a hierarchical

design methodology Into an intermediate form supports the Incremental

specification through stepwise refinement of the solution. It also restricts the

effects of modification by localising such changes.

6

Many VLSI tools use CIF [Spro8O] as their Intermediate representation.

The problem with CIF is that it was only intended to be used as a

specification of the layout for the silicon foundry. As a result other descrip-

tions (which were thrown away when the design was forced into CIF format)

have to be synthesised from the geometric description by tools like circuit

extractors. These descriptions are at best a canonical representation of the on-

ginal description, and at worst a totally linear description of the original

design, without any internal structure.

What is needed in VLSI design systems are tools which support a

designer's flair and intuition about a solution to a design problem. They

should also report back to the designer any inconsistencies and flaws In the

design at the level in which they occur. In order to do this an Intermediate

form is needed that retains all of the original structure inherent In the design.

1.5. Scope and Structure of the Thesis

This thesis will examine current VLSI design tools and design methodolo-

gies in light of the current complexity crisis. An argument is made that an

intermediate form capable of capturing the structure Inherent in a design is

crucial to the design process Itself. This Is further strengthened by the need

for this Intermediate form to tie together the various tools that are needed to

deal with the design at the many different levels of abstraction. Finally the

design of an intermediate form meeting these objectives will be outlined and

its implementation and future use will be discussed.

This thesis will not address the more difficult aspect of automating the

the design of VLSI circuits, nor will it investigate the modes of reasoning

about highly complex IC designs. One must be able to walk before learning

7

to run.

Chapter 2 will elaborate on the nature of VLSI by characterising VLSI

designs and analysing the domains of description inherent in them. It will

also discuss how current tools deal with the design process.

Chapter 3 focuses on two design methodologies of interest; the structured

design methodology of Carver Mead, and hierarchical design methodology as

developed by Rowson. The nature of Iterative modelling and the role of simu-

lation In VLSI design are discussed. Finally an examination is made of

current design tools and how they meet and fall to 'meet the criteria developed

in chapters 2 and 3. The requirements for an Intermediate form are drawn

from this analysis.

Chapter 4 discusses the design philosophy behind SHIFT and then

proceeds to describe the design of SHIFT in detail. The advantages and the

consequences of implementing SHIFT as a distributed process in Lisp are

examined.

Finally, chapter 5 focuses on a discussion of SHIFT in the light of experl-

ences In implementing and using it. Some future extensions of this work are

also discussed.

8

CHAPTER 2

The Nature of VLSI

2.1. A Characterization of VLSI Designs

We are now In the midst of a microelectronic revolution which has pro-

vided us with the ability to place 100,000 circuit elements on a single chip.

Further, as each year goes by, manufacturers are able to put more and more

devices on a single piece of silicon. This Is shown by Moore's law in Figure

2.1. With the increasing complexity of a chip, the design time also increases

at a rapid rate [Moor79].

Working further against the management of complexity Is the fact that

the current life cycle of a product Is approximately five years, of which the

design time average, which typically includes about two fabrication cycles, Is

two years. It now takes two years for a large team to complete a design with

one hundred thousand devices; each year the number of devices will double,

yet the life cycle and hence the elapsed average design time is expected to be

the same. Thus the overwhelming problem that we will face once we scale

down to sub-micron structures will be the management of complexity.

There are a number of methods of tackling Increasing complexity. These

Include advances In design which reduce the number of components for a

given function, the use of an increasing number of designers for a given pro-

ject, and the exploitation of design methodologies which attempt to exploit

certain properties of the medium and the design itself. These design metho--

dologies include the use of standard parts from cell libraries, and mapping

9

ION

214

04K

COMPONENTS

PER 4K

CHIP

10

I t 0 6 a Ii a a a I a t a a I a a a I I, . .11
01 03 05 07 03 71 73 75 77 70 81 83 85

YEAR

Figure 2.1. Moore's Law

problems into standard architectures, which may be best accomplished with

the use of silicon compilers.

There are also various design styles which may be used to express a given

function In silicon. Two of the most common in use In Industry are the gate

array technique and the use of standard cells.

10

The gate array approach is currently the most common approach to

automated design of custom circuits. In this approach, a two-dimensional

array of replicated cells composed of transistors Is fabricated to a point just

prior to the Interconnection levels. A given circuit function is then imple-

mented by customising the connections within each local group of transistors,

to define Its function as a basic cell, and then by customising the interconnec-

tions between cells in the array to define the function of the circuit. Gate

arrays are most usefully employed when minimising design time Is more

important than minimising silicon area.

The problem with this approach is that the structure of the original

design is flattened to a single level of Interconnect at the silicon surface. This

mapping can be both difficult and wasteful, but has the advantage of fast pro-

duction turnaround. The ratio of circuit density between a structured design

and a gate array has been Investigated for a small set of chips, with the struc-

tured designs winning out by a factor of between 3 : 1 and 6 : 1 [Hell79].

Further, the mapping can only be expected to get worse as designs become

more complex, since the management of interconnect becomes ever more

Important, yet the gate array approach robs us of the ability to manage the

Interconnect fully.

The standard cell approach refers to a design method where a library of

custom-designed cells Is used to implement a circuit design. The designer

chooses the particular cells needed to Implement the function, and specifies

the interconnections between them. Thus the designer is freed of having to

worry about the details involved in designing cells and can work at a higher

level of abstraction. The actual placement of the cells may be manual or

11

automatic. A problem arises with this approach when no predesigned cells

performing the exact function can be found in the library. The designer

would then be forced to design a new standard cell that Implements the

required function, the very situation he hoped to avoid using this approach.

Also, since regular interconnect cannot in general be achieved, this design

style trades flexibility and silicon area for lower design times and correct

design at the cell level.

Both gate arrays and standard cell approaches are seen to be unfit as a

design methodology suitable for handling designs capable of fully exploiting

sub-micron gate densities. For this reason only the structured design metho-

dology is pursued any further; chapter 3 examines this design methodology in

• detail. The rest of this chapter will concentrate on the domains of description

of a VLSI design and how current tools support these.

2.2. Domains of Description of a VLSI Design

Three domains have been Identified to characterize a VLSI design: physi-

cal, structural, and behavioural. There exists a hierarchy of description ' In

each of the three domains In a structured design, and It is important to ensure

that the descriptions not only be consistent within each domain, but also

across domains. Failure to do so can be catastrophic; for example the'

behavioural and physical descriptions of a design may each be consistent, but

when the design comes back from the foundry the observed behaviour Is not

the desired or predicted behaviour because the specifications are not con-

sistent with each other. One method of ensuring consistency across domains

Is to unify the description in each of the domains using a single hierarchy. In

this section we will define each domain and attempt to show how current

12

tools address each of these domains of description.

The physical domain Is concerned with the specification of the physical

layout of the Integrated circuit via patterns on fabrication masks. These pat-

terns may be defined as boxes, polygons and wires. For example, an NMOS

ramcell (see Figure 2.2) in LAP [Loca78] would be defined:

define(" ramcell");
Iayer(green);

wlre(4,- 1,29).x(ramlen+ 1);
wire(2,3,5).x(9).y(15);
pullup(path(8,14).y(26)).y(29);
wlre(4, 11, 1O).x(16).w(2).y(19).w(4).x(22);
wire(2,23, 15).y(21).x(30);
pullup(path(24, 15).y(8).x(29)).xy(37,17).y(29);
gb(2,6);
gb(16,15);
gb(31,22);

layer(red);
wire(2,-1,2).x(ramlen+ 1);
wlre(2,6,2).y(7);
wire(2,30,2).y(16).xy(27,19).y(23);
wlre(2,22,6).x(12).y(13);
wlre(2,1O,23).x(20).y(18);

layer(lmplant);
box(28,5,32,13);

layer(metal);
wire(4,16,-1).y(ramhgt+1);
wire(3,1.5,-1).y(ramhgt+1);
wlre(3,30.5,-1).y(ramhgt+1);

end def;

where ramlen and ramhgt are the length and height, respectively, of the ram-

cell.

In LAP, all primitives are defined in terms of the current layer at the

time of definition. Wire (w,x,y).path draws a wire of width w starting at point

(x,y), and continues along the path traced out by successive movements in x

and/or y. The wire is the locus of all points of half-width along the path.

Box('x1,y1,x4y2) places a box with diagonals • at the corners (xl,yl) and

(x2,y2). Pullup(path) plants a butting contact at the first point in the path,

13

Figure 2.2. NMOS Ramcell

draws a 2-lambda wide depletion transistor along the points of the path, and

returns a 2-lambda diffusion wire starting at the path's endpoint. Further,

both starting and ending points are assumed to be 2-lambda away from the

depletion transistor. Gb(x,y) is a diffusion-metal (green-blue) feedthrough cen-

tred at x,y.

One could then define a [1:x,1:y] array of ramcells by:

14

define(" ramarray");
for 1:= 0 step 1 until x do
for j :=Ostep 1 until ydo
draw("ramcell", i*ramlen, J*ramhgt);

enddef;

At a higher level In the hierarchy of a design the physical description

may be specified as abutting areas within a floorplan, with each of these areas

enclosing a distinct module (see Figure 2.3).

The structural domain Is concerned with describing a design in terms of

components and connection nets. The components may be primitive com-

ponents such as transistors or Instances of other component blocks [vanC79].

The structural description can be visually represented as a series of boxes or

special symbols with interconnecting lines representing the nets such as the

selectively loadable dynamic register cell in Figure 2.4. Traditional forms of

structural description have been logic diagrams, where the components are

gates, multiplexors, etc. and circuit diagrams, where the components are

Left

Port
Registers Shifter ALU

Right

Port

Figure 2.3. The 0M2 Floorplan

15

Phase 1 LD'

Phase lLD

 >
Figure 2.4. Representation of a Structural Description

of a Selectively Loadable Dynamic Register Cell

transistors, capacitors, resistors, etc.

The behavioural domain describes a design In terms of Its function.

Some possible behavioural descriptions that have been used are ISPS [Barb8l]

at the register transfer (RT) level, electrical circuit parameters to be used

with SPICE [Nage75], or a functional notation such as Gordon's LSM

[Gord81]. An example of a behavioural description using Gordon's notation is

that of a counting circuit COUNT, defined by

COUNT(n) == {sw, in, out).
{out =
COUNT(lf sw=1 then in else n+1)

where COUNT Is defined to be the behaviour of a sequential device with

input and output lines {sw, in, out), and a value for the output line out = n.

The current state Is given by the expression In the left hand side occurrence of

COUNT and the next state Is given by the expression in the right hand side

occurrence of COUNT.

16

It Is also common to describe the behaviour operationally In terms of a

programming language such as Simula [Birt73], or through the use of timing

diagrams, logic equations, etc. The advantage of a formal system such as

Gordon's over a loosely defined operational approach Is the ability to compute

the composition of behaviours with the use of a composition rule, thereby

allowing us to compare derived and specified behaviours.

The goal of computer aided design systems Is to control the mapping

between the hierarchies in each descriptive domain [Buch8O]. An example is

the REST system (Richard's Editor for STicks) [Most8l], which maps from a

structural (and partially physical) representation to a full physical description

of a design automatically. Most tools attempt to describe one or at most two

of these domains; the other domains being either Ignored or specified

separately. Unless these domains are specified In an Integrated manner, how-

ever, inconsistencies among them can easily result in incorrect designs.

Also since these domains partially overlap It Is possible to deduce a

description In one domain from the description in the other, and check the

consistency between domains. The problem with doing so for any large design

Is that it is very difficult to map efficiently from one domain to another In an

automatic manner, since there is only partial overlap and the mapping may

be very complex. Thus REST encourages the user to place cuts in the wires

where a wire may be jogged as hints to the compaction algorithm to produce

a space-efficient layout.

In the following section we will survey a number of tools in use in both

industry and research establishments, and examine them in relation to their

descriptive power and consistency among domains.

17

2.3. Current VLSI Design Tools

Design tools must not only be easy to use; they must be able to handle

the complexity of the design, and be able to do so In a consistent manner

across all domains. In addition they must also allow for consistency

throughout the design cycle. No single tool currently exists which satisfies

these conditions. However, It is still instructive to examine a variety of tools

in use in light of these criteria.

2.3.1. The Caltech Design Tools

A major influence In the design of VLSI circuits has been the Caltech

structured design philosophy and Its associated suite of tools [Trlm8l]. The

Caltech structured design philosophy is discussed in greater detail in Chapter

3. It Incorporates the idea of a special kind of hierarchy called a separated

hierarchy which Is composed of leaf cells and composition cells.

LAP. One of the most widely known leaf cell design tools has been LAP.

LAP Is a Simula package which has primitives for producing geometric

specifications of cells. Its standard output is CIF for communication of infor-

mation to the foundry and geometric design rule checking tools. Although

LAP is embedded In Simula and allows the full features of the language to be

used, it Is still a geometric description design tool. Further, It Is a low level

geometry tool in that most of the LAP primitives have a one to one

correspondence with CIF primitives.

REST. REST [Most81] is a leaf cell design system based on symbolic layout

techniques of STICKS [W1ll77]. REST is a graphical design tool and runs on

a high-resolution colour display using a mouse to input stick diagrams. Sticks

diagrams are both a structural specification technique and a partial geometric

18

specification technique in that the relative position of wires and transistors are

meaningful but it does not provide a full-blown layout.

REST provides consistency between geometric and structural descriptions

of a design. It does not, however, provide a behavioural description. In addi-

tion It Is also limited to the design of leaf cells, and as such, does not provide

any means to express hierarchy in a large design. Its output is in Sticks Stan-

dard form [Tr1m8O], which is used as Input by other composition tools.

PAUL. PAUL Is a tool which is similar to LAP. Like LAP, PAUL Is embed-

ded In Simula, and Is used for designing leaf cells. Its main difference lies in

the fact that it outputs Sticks Standard files rather than OF files. Since

Sticks are only a partial geometric specification (the actual size of the transis-

tors can be specified, but the rest of the geometric specification is topological)

as well as a structural specification, it becomes easier to design leaf cells that

are process independent, using a program that fleshes out the Sticks to a full

geometric specification using the appropriate design rules for a given process.

SAM. A fourth Caltech leaf cell tool Is SAM [Trim81], which Is a single

interactive system, written in Smailtalk which combines layout language and

graphics as input. A user is given two windows which represent the state of

the design, one containing a language representation, the other a graphical

representation. The user can manipulate either view, and the change Is

displayed In both. It uses a single underlying representation of the design,

thereby ensuring consistency amongst views. Although It allows parameterl-

zation and an algorithmic definition of cells, SAM is a geometric description

tool for use in defining leaf cells only.

19

In addition to these leaf cell tools, researchers at Caltech have developed

three primary composition tools; Bristle Blocks, SLAP/Earl, and SPAM.

Bristle Blocks. Bristle Blocks [Joha79] is a silicon compiler designed for the

construction of datapath chips. A datapath chip consists of data processing

elements such as register files, ALU's, and shifters connected by and commun-

Icating across data busses. The datapath chip is microcode controlled with

each microcode word decoded on chip to drive the Individual control lines of

each of the processing elements. As an automatic layout system, Bristle

Blocks imposes a generic (i.e. template) floorplan in return for ease In

automating the layout. This results in the physical floorplan being the same

as the structural floorplan.

Bristle Blocks cells are programs rather than data, thus in designing a

cell one writes a program which generates the necessary physical description

when executed. Bristle Blocks composes cells together by stretching so that

cells connect by abutment, and allows the cells to perform computations and

participate in the design of the chip. Since the actual mechanics of stretching

Is left to each cell, which makes local decisions (constrained by its neighbour),

the result may be far from optimal.

The input to Bristle Blocks consists of parameterized cell definitions (as

programs) and a high level description of the chip, which consists of calls to

the cell programs. Bristle Blocks makes the chip by first executing the cell

definitions calls, abutting the resulting stretched cells to form the datapath

portion of the chip. Additional datapath timing and control information from

the description of the chip is used to add control line buffers, parallel load

shift registers and instruction decoder to drive the datapath. Finally, Bristle

20

Blocks adds pads and wiring to create the complete chip.

Bristle Blocks has been enhanced since its original design to allow the

Insertion 'of registers for testability, and a more general floorplan which allows

multiple processor systems to be compiled. The systems compiled by Bristle

Blocks can have circuit densities comparable to hand design.

A Bristle Blocks description does not form a functional description of the

chip In that the required procedures only describe how a physical description

is to be generated; it does not specify- what Its behaviour is. Further, Bristle

Blocks is best suited to a two level hierarchy; a level composed of cell

definitions, and a level composed of the description which calls the cells.

SLAP/Earl. SLAP and Earl [King82] are two implementations of a system

closely connected to the separated hierarchy. Both compose geometric

descriptions of rectangular leaf cells and other composition cells by superposi-

tion of connectors, stretching each cell when necessary. Constraints between

connectors are introduced to accomplish minimum separation, producing a

directed acyclic graph In each dimension which may be solved independently.

Two cells are composed together by composing their graphs. The graph is

then solved to produce the co-ordinates used in defining the physical instances

of the cells. The graph solution technique used is similar to the one used for

Sticks compaction and is based on finding a solution to the constraint graph

by finding a topological sort of the nodes in the constraint graph. This algo-

rithm is also used in SHIFT and Is discussed in more detail in Chapter 4.

SLAP is embedded in Simula; Earl is an Interpretive system with its own

list manipulation language. Neither deals with the structural or behavioural

domains of description.

21

SPAM. The final Caltech composition cell we mention is Structure, Place-

ment, And Modelling (SPAM). SPAM is a system that can be used to

describe a hierarchical design which can then be simulated at any level of

detail. SPAM provides a concise method for describing composition cells.

SPAM deals with a structural description of the cells, from which a physical

description might be produced using Earl.

The behaviour of a composition cell can also be described. The design

can be simulated to any desired level of detail by SPAM by allowing the user

to choose which cells are the lowest level of the simulation. The behavioural

description of the cell is used instead of the behaviours of its parts.

The structural description is primarily concerned with the specification of

the cell connectors. SPAM has typed connectors and these types are used for

checking that valid compositions between connectors are performed, I.e. that

the power connector of one cell Is not connected to the clock connector of the

adjoining cell.

SPAM is used to design In a top-down manner. Cells are specified,

tested, and then decomposed Into smaller cells. When a primitive enough

level is reached, the cell is described as a leaf cell. Simulation In SPAM Is

accomplished by a built-in four-value event and clock driven functional simu-

lator; and Is Interactive. Once a cell description Is compiled, the user may

request a documentation workbook consisting of a hierarchical map of the-

entire circuit, an interface specification diagram for each cell definition, and a

floorplan diagram for each composition cell In the description.

Although SPAM integrates the structural and behavioural domains of

description, it still requires a separate tool (e.g. Earl) to describe and Imple-

22

ment the physical domain.

2.3.2. Procedural Design Tools

ALT. AL! [Lipt83] Is a procedural language for the description of layouts at a

conceptual level at which neither sizes or positions (absolute or relative) of

layout components may be specified. In AL! a layout is regarded as a collec-

tion of rectangular objects (oriented with their sides parallel to the Cartesian

co-ordinate axes) and a set of relations that hold among these objects. The

ALT programmer specifies a layout by declaring the rectangles and stating the

relationships that hold among them.

When executed ALl generates a minimum-area layout that satisfies all

the relations between the rectangles specified In the program. It does this by

producing a set of linear inequalities Involving the corners of the rectangles as

variables. These Inequalities are then solved to generate the positions and

sizes of the boxes. The program also produces connectivity Information about

the rectangles in the layout, which may be used as Input to a switch level

simulator. This avoids the usual node extraction analysis.

AL! Is built on top of PASCAL, thereby making full use of the program-

ming constructs in that language. Since cells can be specified with the use of

procedures, AL! can make use of a hierarchical design methodology to build

large chips.

Although AL! Is a procedural language, It Is capable of describing only

the layout of a chip. The behaviours of the design's components are not

described in any manner. This makes AL! difficult to use in designing any-

thing other than large leaf cells without an auxiliary , tool to describe the

behaviour of a design. AL! also suffers from its lack of connecting primitives

23

(such as contacts) making the programs hard to write and understand, and In

the problems resulting from embedding it in PASCAL (i.e. no separate compi-

lation facilities, lack of generic types and dynamic arrays, variant records,

etc.).

Finally, ALl fails to exploit the hierarchic structure in generating and

solving the set of linear inequalities. An AL! program is run through a filter

to generate a standard PASCAL program, which when executed, produces the

set of linear inequalities and connectivity relations for the entire design. Since

a design can currently be 10 million rectangles (and is growing fast), the solu-

tion process, even when the relations are restricted to keep the placement

algorithm linear, takes an Inordinate amount of time and space. By exploit-

ing the hierarchy of designs, it Is possible to reduce the amount of effort In

solving the graphs [Ullm84], [Gosl83]. We shall examine this approach further

In Chapter 4.

Scale. Scale [Buch82] is a procedural language that Is considerably more

flexible than ALT in describing designs. Scale is not a single language, but a

range of special purpose languages covering different ranges of automatic lay-

out generation (see Figure 2.5). Scale programs are written in terms of silicon

structures such as wires, contacts and transistors, the primitive objects in the

language and the basic building blocks of VLSI circuits.

Scale also provides separate mechanisms for defining separated hierarchy

style leaf and composition cells, and procedural language constructs such as

scoping and control structures.

All Scale compilers produce a description of a design in an Intermediate

Design Language (IDL) format. This then may be used as input to a suite of

24

Large
Scale

CIF
Translator

Small
Scale

/
IDLI

Design
Rule

Checker
Simulator

Figure 2.5 The Scale System

utilities such as foundry mask pattern generation translators, design rule

checkers and simulators.

The IDL Itself Is a joint physical and structure representation based on

the use of Buchanan's coordinodes [Buch8O], which represents the circuit as a

graph with paths running on different layers between coordinodes. Coordi-

nodes represent all connection points: between cells, between layers, between

components, and even at bends in wires. A complete hierarchy of cells Is per-

mitted in IDL, and all cells are stretchable.

In Scale there are three kinds of cells; leaf, composition and artwork.

Composition cells are composed only of instances of leaf, artwork or smaller

composition cells. All cells are joined together by abutment along adjoining

edges. Leaf cells are pure geometric descriptions of designs in terms of con-

tacts, wires, and transistors. Artwork cells allow the designer to work at the

25

mask level when necessary, for example when designing pads or analogue dev-

ices.

Although Scale is at a higher level than LAP or ALl in terms of Its

descriptive power of the geometric components, it still does not attempt to

specify a functional description of a design.

MacPitts. MacPitts is a Lisp based silicon compiler for microprogram

sequenced data path designs. MacPitts takes a high-level description of the

design in a register transfer language which describes the control and, data

path parts of a processor. The target architecture for implementing the sys-

tem is a combination of state machines, one for each of the parallel processes

in the code, and a data path unit. MacPitts maps the control part of the

specification into Weinberger NOR arrays, and the data part into a rectangu-

lar array of registers and logic elements.

The compiler consists of two levels of routines; a higher level which

examines the source code and extracts a technology independent intermediate

level description of the system In terms of data path specifications, control

equations, and state assignments, and a lower level which binds the intermedi-

ate level description into an actual mask layout, specified in CIF.

MacPitts has several interesting features. First, it allows a design to be

described algorithmically, and derives the physical layout from this, using a

predefined target architecture. In our framework of descriptive domains, the

functional description is mapped to a standard structural description and then

a physical layout is generated from this. Importantly, the MacPitts design

system also includes a functional simulator which operates directly on the

intermediate level description output from the compiler's technology Indepen-

28

dent component. This makes It possible to functionally simulate designs

before the geometry is instantiated.

The MacPitts approach, like many silicon compilers, is only suited to a

restricted class of problems, namely those which can easily be cast Into the

target architecture. Thus to cover the wide spectrum of VLSI design, one

would like to have a range of silicon compilers at the designer's fingertips.

Currently, MacPltts uses roughly ten times the area for layout compared with

a good hand design. This area penalty will diminish for future silicon com-

pliers just as the penalty for software compiler-generated code over hand-

tailored code has decreased, and it will improve as software compilers have for

similar reasons. Namely, as a result of new knowledge and experience In writ-

ing them, and as management of complexity becomes more important in rela-

tion to area minimization.

The DPL/Daedalus Design Environment. The DPL/Daedalus design

environment is an interactive VLSI design system implemented at the MIT

Artificial Intelligence Laboratory [BataSi]. The system consists of several

components; a layout language called DPL, an Interactive graphics facility

(Daedalus), and several special purpose design procedures for constructing

complex systems such as PLAs and microprocessor data paths. These tools

are all organised around a hierarchical, object oriented database, written in

LISP, which contains both the data representing the circuits (the

INSTANCES) and the procedures for constructing them (the TYPES).

The Design Procedure Language (DPL) system is a layout language

developed at MIT. A designer writes programs in DPL that create and mani-

pulate the database. The user can then query the database to see the results.

27

A "design procedure" for the layout of a part Is typically composed of;

(1) a type name and parameters (which may have default values),

(2) a set of constraints among the parameters,

(3) a collection of other parts which are created as instances of other, previ-

ously defined, types,

(4) and a series of statements which modify the instances In certain ways,

such as aligning various parts.

Daedalus is an interactive, graphical interface to the DPL database, and

may be thought of as an Interactive, graphical programming environment for

the DPL language. In Daedalus, the user is able to express any information

either symbolically by typing an expression or DPL code, or graphically by

pointing with a mouse. One may also make changes to a design either graphi-

cally or by editing the DPL code directly.

The DPL/Daedalus environment Is concerned primarily with the physical

and structural descriptions of a design. It is, however, a very good layout tool

In that It supports an incremental design philosophy, and Is embedded In a

highly interactive Lisp programming environment.

Palladio. Palladio [Brow83] is a circuit design environment for experiment-

ing with design methodologies and knowledge-based, expert-system design

aids. Palladio includes facilities for defining models of circuit structure or

behaviour, called perspectives. These perspectives are used to create and

refine circuit specifications, and can include composition rules that constrain

how circuit components may be combined to form more complex components.

28

Palladio's integrated design environment provides menu-driven, graphics

interfaces for editing and displaying structural perspectives of circuits and a

behavioural language with associated editor for specifying a design , from a

behavioural perspective. In addition, a generic, event driven behavioural

simulator can simulate a circuit specified from any behavioural perspective

and can also perform hierarchical and mixed-perspective simulation.

The design paradigm supported by Palladio Is an Incremental refinement

of design specifications, with periodic validation of the specifications by simu-

lation. Palladio allows multiple structural and behavioural perspectives,

which do not necessarily follow the same partitions in the hierarchy of decom-

position. While this gives flexibility in the freedom to explore different design

strategies, It can lead to consistency problems between hierarchies. Since Pal-

ladio. was designed more as an experimental tool for exploring the design pro-

cess, and expert systems for circuit design, this flexibility Is warranted. How-

ever most designers will benefit when a more rigid structure Is Imposed in a

mature circuit design environment.

2.4. Summary

This chapter has presented a broad overview of the nature of VLSI as an

Implementation medium, and has examined current tools to show some

approaches to designing custom silicon. In the next chapter the structured

design and structured hierarchy methodologies are examined further, and an

analysis is presented of how these tools Incorporate these methodologies.

Finally, from this the requirements for an intermediate form are drawn.

29

CHAPTER 3

Design Methodologies

VLSI designs are large and complex; current VLSI designs Involve

upward of 100,000 transistors and many display highly concurrent activities.

Computer science has faced many of the same problems in the correct con-

struction of large and complex software. Some of the lessons leariled can be

borrowed; the most Important being the use of design methodologies to

develop large and complex structures. In this chapter we examine the struc-

tured design methodology of Mead [Mead8o] and Buchanan [Buch8O]; the

hierarchical design methodology of Rowson [Rowsso]; and examine how Itera-

tive modelling and simulation fit in. Finally we shall show how current tools

fare with respect to these requirements.

3.1. Structured Design Methodology

Structured design [Mead80] emphasizes the principles of top-down,

hierarchical, modular design techniques. Unlike LSI, where circuit density is

the major constraint in a design the major constraint In VLSI is the wiring

between functional blocks. Mead states that a reasonable estimate of the size

of a design In VLSI is just the area needed for routing control and data. Ran-

dom wiring, like random city roads, consumes silicon area, and destroys the

regularity and locality of a design. By destroying regularity, design

modification is made extremely difficult and time consuming. Further, the

loss of locality of function makes design verification much harder to achieve.

Finally, the length of a wire determines how much energy and time is needed

30

to transmit a piece of data. Thus designs with lots of global wires either con-

sume a lot of energy, or are slow, depending on what the designers critical

constraints are.

It follows that a design should be optimized by placement of functions on

the two dimensional surface based on the amount of intercommunication.

Mead has shown that if wiring can be managed, the circuitry usually presents

little or no additional cost. This means. that the primary emphasis in design

is on communication flow, rather than computation. An example is the barrel

shifter of the OM-2 data path, where the logic fits completely under the wires

needed to move the data and control. Thus data computation becomes

incidental to data communication.

Bus
Out

__J_
sio I
Bu

rTr -r rT

Out

Shil I I. 1 Bus

Out
Shil
Bus
Out

T Shil
TTTFTE

Figure 3.1. A 4 by 4 Barrel Shifter

3
3

I I
0
0

10

31

3.1.1. Regularity

Regularity in design is desirable because it reduces the complexity of the

problem. Regularity involves a number of factors. One of these is the ability

of cells to tessellate in 2-space as a result of regular interconnection strategies

(e.g. with two independent layers of interconnect we can run power and data

orthogonal to control signals). Cells can then be connected by abutting

together along their boundaries. Regularity in programming Involves tackling

similar problems with similar approaches. Regularity in a VLSI design may

also be exploited by designing a data path in a bit slice approach and then

replicating the slice.

In addition to the regularity of Interconnect, specification of cells of

identical pitch (i.e. same size along their interconnect boundary) promotes

connection by stretching and abutting cells together. In contrast, the standard

cell approach is to compose cells by placement followed by routing. Any was-

tage of area from stretching at the lower levels Is made up by the removal of

random Interconnect paths. Informal estimates of area gain using this

approach is around 20% over small areas [Buch80].

3.1.2. Modularity

Modularity makes it easier to partition a design among a group of

designers by presenting each module with a well-defined function and inter-

face. This enables designers to work on a design In a more Independent

manner, which will tend to decrease design time. It also is a powerful tool in

the control of complexity of the design. Buchanan [Buch80] makes an analogy

between the restriction in structured programming to the three flow control

constructs of concatenation, conditional selection and Iteration, and to the

32

restriction In structured design to the use of the constructs of cell abutment,

PLAs, ROMs and other conditional control structures, and one and two

dimensional arrays of cells. Design verification and simulation Is also made

easier by the use of modularity.

3.1.3. Hierarchy

Different levels of the hierarchy correspond to different levels of granular-

ity of function. By partitioning a design In a modular and hierarchical

manner, the designer is able to abstract to the level of detail desired. In

bottom-up structured programming, larger structures are built from smaller

structures by the use of the control structures described above. These then in

turn may be used to build even larger structures, and so on up the hierarchy,

until a complete design Is realised.

Alternatively, in a top-down structured programming approach, the

hierarchical strategy maps functional modules onto predetermined partitions

on the chip (the floor-plan). In a like 'manner, these modules then may be

decomposed into their components until some point is reached where the

primitive components may be directly mapped onto their portion of the sur-

face.

3.1.4. Locality

At any level, a design can be modularized such that the module must

communicate through a well-defined external interface and internal com-

ponents are hidden from the outside. As a result, the Internal functionality of

the module Is localized and is not affected by changes to other modules. This

allows the designer to abstract the details of the design at any level desired

33

without having to carry with him some detailed knowledge from the global

level. An example of this Is the structured design guideline that buses should

be distributed (i.e. run through the module) and not global. This rule also

works to increase design density, since global wiring Is an expensive process in

terms of the amount of silicon surface used. In software global Information

detracts from locality because it Is always subject to misinterpretation by

different code modules.

The principle of locality also aids verification in that any properties that

a module has Is shared by all Instances of it. Therefore only one instance

needs to be verified.

3.2. Hierarchical Design Methodology

A design can always have some hierarchical structure Imposed on It.

There are many hierarchies of description of a design. An extreme form dis-

cussed by Rowson [Rows8O] that forms the basis of hierarchical design metho-

dology Is the separated hierarchy.

A separated hierarchy consists of two kinds of cells; leaf cells and compo-

sition cells. A leaf cell is atomic, It has no internal hierarchic structure. A

composition cell is composed purely of instances of other leaf and composition

cells interconnected In some manner. The separated hierarchy completely

separatesthe leaf cells from the composition cells.

3.2.1. Leaf Cells

Leaf cells may be instantiated at any level in the hierarchy. A leaf cell

may have multiple representations. For example, it may have a geometric

representation consisting of polygonal shapes on mask layers, or a logic circuit

Figure 3.2. A Separated Hierarchy

34

representation of logic elements and their interconnections. Typical sizes for

geometric representations of leaf cells range up to 100 transistors. Only

Instances of leaf cells have any "data" (i.e. functionality) in them.

Leaf cells are important for their function, not their Implementation. In

analogy to software, leaf cells are the basic semantic units which may be used

by the designer. Alternatively, If a hierarchic design can be thought of as a

theorem in an axiomatic system, leaf cells form the axioms used In the deriva-

tion of the theorem.

3.2.2. Composition Cells

In contrast, composition cells are implementation independent and

describe only the functionless logical Interconnection of Instances of leaf cells

and other composition cells (i.e. composition cells merely structure the

"data"). The composition cells may be thought of as theorems in an

axiomatic system. Composition rules (i.e. the Interconnection mechanism) are

implementation dependent and are analogues of the rules used to construct

Composition
Cells

Leaf
Cells

35

theorems. There is one composition rule for each leaf cell representation

domain.

The separated hierarchy allows a designer to produce 'a design that is

correct by construction. That is, given a property P and a composition rule R

that preserves the property P, if submodules having P are composed accord-

ing to R, the composition will have property P. This makes consistency

checking easier, since only the composition rule and leaf cell representation

need to be checked for each domain of description. By separating out the

hierarchical structure of a design from its actual representation, it is possible

to make statements about the structure alone. Rowson introduces a formal

method of proving the equivalence of hierarchies, given composition from the

same leaf cells.

3.2.3. Compatibility with Structured Design

Being a special case of hierarchies, separated hierarchies preserve the pro-

perties of regularity, modularity, and locality. Regularity Is enhanced because

the necessary property of functional abstraction is embodied in the composi-

tion rules. Modularity Is promoted since interconnection of cells by composi-

tion means two cells can only compose If they have common interconnections.

Locality is guaranteed by the composition rule, since it may not Introduce

new functionality into the resultant cell.

3.3. Iterative. Modelling

A structured design is not concocted out of thin air; it needs to grow

from an initial idea to a fully specified design. Often the designer has very

little Insight Into the implications of a decision made early on In the gross

38

decomposition of a design. As in software design, the experience and intuition

of a designer can often guide the development of a design through these criti-

cal choices in a manner that no fully automated approach can now equal.

The designer's intuition can be further enhanôed by the use of a design

methodology such as top-down, bottom-up or structured growth (a methodol-

ogy familiar to Lisp programmers) [Sand79].

Experience with software has shown that it is difficult to get a design

right the first time. In fact, many iterations are often needed over the design

before it is correct. If a design Is not structured in a hierarchical and modular

fashion it Is extremely difficult to Isolate the error at the appropriate level of

abstraction and correct It. A design that contains global wires or random logic

may require an large amount of rearrangement to accommodate the fix which

in turn may lead to new errors.

Even after producing a correct design, a good designer will want to

optimize the design over time or space where prudent. Modularity makes It

easier to Isolate and remove bottlenecks from a structured design without

introducing new errors.

With structured hierarchical designs the I designer can propose

modifications and evaluate the consequences without actually having to Imple-

ment the changes In detail. This "what if.." approach allows the designer to

heavily restrict the domain of all possible alternative designs. It also requires

that structures be modular at any level of abstraction.

3.4. Simulation

The most important use of simulation Is In verifying the correctness of a

design according to some specification of its input and output behaviour.

37

This is more necessary In VLSI design than in software desIgn since it is time

consuming and expensive to test the design directly. It is also a valuable tool

in the development of a structured design since It can be used to verify the

correctness of any component without worrying about side effects.

Just as there are many levels of abstraction of a structured design, there

are many levels of granularity of a simulation of a design's behaviour. The

most common simulators used are circuit-level simulators like SPICE [Nage75]

and switch-level simulators like MOSSIM [Brya81]. Both of these simulators

operate at only one level of the hierarchy. While capable of giving an

extremely 'accurate description of a deice's behaviour, SPICE Is very imprac-

tical to operate for a circuit containing more than, say, a hundred transistors.

It is also very difficult to reason about the cause of the behaviour exhibited by

a SPICE simulation because of the low level of abstraction (or high level of

detail).

MOSSIM Is a level of abstraction above SPICE since it simulates a

switch level model of a circuit. This allows more complex designs to be prac-

tically simulated, at the cost of discretizIng the signal behaviour. MOSSIM

can also be difficult to Interpret, since it still deals with a design at the switch

level of abstraction.

Ideally we should be able to simulate a design at any level of abstraction.

This would allow the designer to draw conclusions about the correctness of a

module at the same level that it Is simulated. The result is that errors are

more quickly and easily pinpointed.

A hierarchical design methodology supports the latter approach by allow-

ing behaviours at a given level of the hierarchy to be simulated from the

38

behaviours of its components. A structured design methodology also

encourages this approach since the modularity of structures allows simulated

behaviours to be easily composed.

The use of a separated hierarchy also allows behaviours to be composed

at different levels. Thus, once a module has been verified as correct, a simula-

tion of a composition cell using that component only deals with the

component's behaviour at that level of abstraction, and not in terms of any

sub-component behaviours. Like design rule checking, this Is another example

of hierarchies making consistency checking easier.

3.5. Current Tools

Many design tools currently in use implicitly recognize the necessity of a

design methodology. Most support some of the criteria laid down for these

methodologies; few support all. Table 3.1 shows a variety of tools and which

requirements each meet. Tools that actively support a discipline are Indicated

by a "+," those allowing a discipline to be exercised in conjunction with them

are Indicated by a "*," and those which do not allow such a discipline to be

exercised are Indicated by a The domains each tool deals with are indi-

cated by Geometric, Structural, and Behavioural.

The earlier tools which deal with a single domain, such as Caesar and

Spice, are Inherently global and only deal with a single domain of description.

The more recent tools have recognized the complexity problem, and have

attempted to deal with it by either allowing or directly supporting design

methodologies that deal with complexity. Examples of this are Mossim, which

allows the user to black box any portion of the design by writing a module

which exhibits the desired behaviour, and DRCFIL [Whit81], a hierarchical

39

Tools vs Requirements

Tools Regul-
arity

Modul-
arity

Hier-
archy

Local-
Ity

Iterative
Modeling

Domains

Lap + * + * * G
Riap + + + + * G
CIF + * + * * G
REST * + - + + G,S
SPAM + + + + + SIB
Caesar * - - - - G
Mossim * * - * * SIB
Spice' - * - - - s
Slap + + + + * G
Earl + + + + * G

MacPitts + + + + + GIB
Bristle-Blocks + + * + * GIB

Scale + + + + + SIG
DRCFIL + + + .. + * G
AL! + * * * * G
DPL + * + * * G

Table 3.1.

design rule checker, which uses hierarchic information to minimize the

amount of checking needed for a design.

The success of silicon compilers like MacPltts and Bristle Blocks' is also

partly due to using a design strategy (i.e. the datapath design style) that Is

Inherently hierarchical and modular in its organization. Finally, the most

recent tools have tended to support not only hierarchy, but also modularity

and locality, through the use of boundaries on cells with connections allowed

Bristle Blocks was recently used by a three-man team to generate the 37,000-transistor
datapath chip for the MicroVAX in only seven months [John84].

40

only on the boundary wall. These include such tools as REST and Scale.

SHIFT continues in this tradition.

3.6. Conclusion

This chapter has examined the structured design methodology of Mead

and Buchanan, paying attention to the key aspects of regularity, modularity,

hierarchy, and locality. We have also examined the hierarchical design

methodology of Rowson, showing how a separated hierarchy can deal with

complexity, and how it fits in with structured design methodology. In addi-

tion, the , role of iterative modelling in design evolution was Investigated.

Finally we examined how current tools fared with respect to these require-

ments.

• In the remainder of the thesis we focus on the requirements of an inter-

mediate form for VLSI design tools which work In an Integrated environment,

and support both a separated hierarchy and a structured design methodology.

A structured Intermediate form for VLSI design tools called SHIFT will be

defined, and the algorithm It uses for composing cells in a stretchable manner

along adjoining ports will be detailed. Finally, we show how SHIFT fits Into

future VLSI design environments.

41

CHAPTER 4

High Level Intermediate Forms

An intermediate forms is a half-way house between analysis and syn-

thesis. As a result a good intermediate form must carefully balance both of

these objectives. This requires a thorough knowledge of the sources that use

(map to) the intermediate form, and the targets that are mapped from the

intermediate form. Ideally, what the designer produces at a high level of

abstraction should be clearly reflected in the layout of the design. It is also

important that any unintended effects of the specification be clearly traceable

to its cause at the designer's level of abstraction.

Therefore, If an Intermediate form is used it should clearly reflect any

constraints the designer Imposes on the resulting layout. It Is just as impor-

tant that the intermediate form should allow any errors detected in the layout

(such as design rule violations) to be expressed to the designer at the level of

abstraction that he was using. The degree of success in meeting both of these

objectives in the intermediate form determines both the amount and ease of

control the designer has over the mapping of the design to the target domain.

If the sources and targets are predetermined, as for example in a silicon

compiler with a restricted target architecture and a restricted application

range, we may design the Intermediate form to be complete. However, if the

sources and targets are not predetermined, then a reasonable guess about the

design criteria for the intermediate form has to be made.

42

In the previous chapter, we examined the design methodologies of Mead

and Buchanan, and Rowsón, and showed how they promote iterative design

and support specification, verification and simulation.' Various tools were

examined In terms of these criteria, and found wanting. In this chapter we

will elaborate on the essential requirements for an Intermediate form, and

specify the design of SHIFT (a Structured Hierarchical Intermediate Form for

VLSI Design Tools) in terms of these. The Implementation of SHIFT is dis-

cussed in chapter 5.

4.1. Interniediate Form Philosophy

The purpose of an intermediate form Is to act as a vehicle for the

specification of an IC design in a design system composed of a number of

tools. These tools are of a diverse nature, consisting of graphical and pro-

cedural tools for specifying a design in the Intermediate form, and tools which

use the intermediate form as Input, such as circuit extractors, design rule

checkers, logic simulators, artwork plotters, and CIF generators.

If the Intermediate form is targeted at too low a level, any structure

inherent at different levels of the design will be thrown away, and this will

make make it hard to report back Information such as 'timing errors or design

rule errors in the designer's terms. If the Intermediate form is at too high a

level, then we lose the ability to have some control over the implementation

of the design from Its specification. This especially applies to silicon com-

pilers, where the mapping from a behavioural domain to a physical domain is

initially not very transparent.

What is needed Is a representation in the middle ground; something

which allows us to specify the Implementation at the lowest level, and yet

43

retains the structure of the design at differing levels of abstraction.

SHIFT supports the design methodologies examined in the previous

chapter in the following ways.

4.1.1. Leaf and Composition Cells

A SHIFT specification consists of a hierarchy of leaf cells and composi-

tion cells. Leaf cells are the lowest cells in the hierarchy, and describe basic

components which will be laid out such as shift-registers, I/O pads, and wir-

ing cells. Leaf cells contain descriptions of designs In the physical, structural,

and behavioural domains. Composition cells are used to capture the design

hierarchy in terms of Instances of leaf cells and simpler composition cells.

Composition cells have no Inherent functionality; they contain only a descrip-

tion of constituent cells and their Interconnections. This is Important for the

management of increasingly complex designs, since today's design as a compo-

sition cell is tomorrow's component of a design. Notation in the use of cells

must not distinguish between the two, and this Is reflected in the design of

SHIFT. Thus the designs and sub-designs expressed In the intermediate form

can be left in a library of standard components (leaf cells). The library grows

as more designs are created.

IC designs can then be described In terms of a hierarchy of cells, where

each level of the hierarchy is simpler in terms of its functionality than the

level above, and the lowest level cell being an implementation of the function.

An example of this is the 0M2 datapath chip described In [Mead8O], where

the chip at the top level is viewed as a functional black box with external

wires (see Figure 4.1).

44

0M2 Datachip level 0

Left Registers Shifter ALU Right level 1
Port

ALU Kill and
Input Propagate

Carry Result
Chain Control

Layout
Cells

Port

ALU level 2
Output

Figure 4.1. A Cell Decomposition of the 0M2 Datapath

level 3

At the next level In the hierarchy, the chip is composed of cells iepresent-

Ing a left port, a register block, a barrel-shifter, an ALU, and a right port. If

we traverse down a level of the hierarchy, from left to right we can decom-

pose the ALU block into an ALU input register, a kill and propagate control

cell, a carry chain block, a result control cell, and an ALU output register.

Finally we could decompose the carry chain into leaf cells that implement the

function of the carry chain by specifying the layout.

A SHIFT description forms a separated hierarchy. This allows a degree

of technology independence, since the hierarchy of a description will be the

same over a range of technologies used to implement the leaves.

45

All cells are rectangular with a boundary on which ports are placed.

Cells are composed by abutment in horizontal and vertical directions. The

composed cells are stretched to connect adjacent ports. Composition cells are

also built from other cells by abutment. The single operation of abutment

serves as a composition rule in all three domains. Note that any necessary

routing between cells can be incorporated as a routing cell sandwiched

between the two cells to be connected.

SHIFT cells support the design principle of modularity, since a cell has a

well defined boundary, and components may only be connected through adja-

cent ports. SHIFT cells also support design regularity, since cells connect

along their rectangular boundaries in horizontal and vertical directions only,

allowing cells to be easily composed.

Composition cells may be augmented with a description in any of the

domains. In effect, this augmented description is like a leaf cell description at

this level of the hierarchy. For example, an ALU composition cell may have a

behavioural description specified in addition to Its behaviour derived by com-

position from constituent cells. Gordon [Gord8l] shows an example of a

counter that is decomposed into constituent behaviours (see Figure 4.2).

These descriptions may be used to specify a design at the given level of

abstraction. In this manner, both top down and bottom up design methodol-

ogy are supported.

4.1.2. Composition Rules

A composition rule simply specifies how modules are to be built from

components in order to guarantee the preservation of properties. The compo-

sition rule itself adds nothing to the composition cell. All functionality comes

46

COUNT(n)
SWITCH—
IN Do-

COUNT(n) = {SWITCH, IN, OUT}.{OUT = n + i},
COUNT (SWITCH -> IN, n +1)

SWITCH
IN'

MUX
Li

REG
(n) L2

INC

 -OUT

 -OUT

MUX = {SWITCH, IN, Li, OUT}.{Li = (SWITCH.-> IN, bUT)}, MUX

REG(n) = {Li,L2}.{L2 = n}, REG(Li)

INC = {OUT, L2}.{OUT = L2 + i}, INC

Composition of Component Behaviours

I[MUX I REG(n) I INC JI\ Li L2 =
{swITCH,IN,oUT}.{L1 = (SWITCH -> IN,OUT),

L2 = n, OUT = L2 + i},
lEMUXI REG(L1)I INC]1\ Li L2

Figure 4.2. The Behaviours of a Count Cell and Its Components

from the components. The composition rule used In a composition cell has a

specific meaning in each of the three domains of description of its component

cells. For example, the application of the composition rule in the physical

47

domain of description simply forms the union of the component's physical

descriptions, whereas the application of the composition rule in the

behavioural domain identifies the signals connected through adjacent ports.

This preserves the locality of function that is present in component cells.

Finally, the application of the composition rule to the structural domain

results in a merging of the graphs of the components structural descriptions.

Since the leaf cell has multiple representations, each representation must

be checked for consistency with the others. However, since leaf cells are small

(typically less than 50 gates) this is tractable. Even isomorphism problems of

consistency checking (which are NP-complete) are still manageable for cells of

this size. Also, however often it is used, a leaf cell has to be checked for con-

sistency between domains only once.

The other advantage of the composition rule Is that once a leaf cell has

been checked for correctness, then the composition rule will preserve that

correctness in all composition cells' that contain that leaf cell. This hierarchi-

cal approach considerably reduces the amount of work required to verify the

correctness of a design. For example, once a leaf cell has been checked for

design rule violations, then it only remains to check the interconnection ports

to show all future uses of that composition cell to be free of design rule errors.

4.1.3. External versus Internal Information in a Cell

By placing a boundary around all cells such that information can only

flow through ports we hide the internal details of a cell at a given level. This

provides us with a powerful tool in designing circuits; namely that we can

abstract out the detail that we want to consider at any level in the design.

The internal information in a cell is only accessible within the cell. The

48

external information of a cell is limited to the ports through which a cell com-

municates with its neighbours. This approach actively discourages a non-

functional approach to designs. As in software, the process of specification

and verification are much easier when designs become modelled with a func-

tional approach rather than with a von Neumann approach [Back78]. By res-

tricting communication through the ports, we outlaw the hardware analogues

of software's "gotos" and "side-effects".

This is not the penalty that It first seems. As chip designs become larger

the cost of communicating global information becomes much higher than the

cost of computing it locally. Global information also restricts the amount of

concurrency exhibited In a design. As circuits become larger, self-timing

schemes become more attractive, with the result that cells become truly self-

contained.

4.1.4. Design Systems Using a High Level Intermediate Form

Producing an IC design requires a number of tools to assist the designer

in the design synthesis, test and validation process. A number of these have

been encountered In chapter 2. What Is required is to tie these tools together

into an Integrated design environment by using a consistent Intermediate

representation. Some of these tools create or modify the design description;

other tools like simulators, need only extract Information from it. A real

design system, like a real programming environment must have its constituent

parts work in unison. This requires a degree of intercommunication which is

difficult to achieve without a consistent view of the data they operate on.

It also has been shown in chapter 3 that these designs are developed in

an incremental fashion, with many Iterations over the design. With a

49

structured consistent specification of the design the development and

modification of the design is accomplished more easily.

Finally, by making the design modular, and specifying the behaviour of

the modules and how they Interact, It allows many designers to work on

different parts of the system with some assurance that the design will work as

specified.

4.2. SHIFT Design

In the previous chapters we have examined the nature of VLSI design

and the kinds of tools needed in the development of a design.' A set of

"requirements for an intermediate form was then specified and elaborated in

the previous section. This section concentrates on the specification of SHIFT.

A design In SHIFT Involves the definition and subsequent Instantiation of

cells. The three domains of description in SHIFT are the physical, structural,

and behavioural domains. As seen by Table 3.1 SHIFT Is the only tool thus

far that allows a design description in all three domains.

There are three different representations or stages of cells. These are

archetypes, prototypes, and instances. The act, of defining a cell In SHIFT

creates an archetype. Evaluating an archetype cell with parameters creates a

prototype by fully defining the set of constraints. Finally, an Instance Is

created by applying a solution of a constraint graph to a prototype. Thus the

values bound to the parameters are known by 'both prototypes and Instances,

and the value of the ports are known only by the instances.

There is a monotonicity of requirements between archetypes, prototypes,

and instances for valid composition. Two archetypes may be composed pro-

50

viding they have the same number of ports. Two prototypes may be com-

posed providing they have the same number of ports and there exists a solu-

tion to the constraint graph. Two Instances may be composed providing they

have the same number of ports, a solution to the constraint graph exists, and

one such solution Is specified.

4.2.1. SHIFT Cells

There are two kinds of cells that may be defined in SHIFT, leaf cells and

composition cells. All cells have a ports, a constraint, a behaviour, and a

structure definition component. Where leaf and composition cells differ is

that leaf cells have a geometry component, and composition cells have a

(defleaf leafname (parameter-list)
(ports)
(const)
(struct)
(beh)
(geom)

)

Figure 4.3(a). Overview of A Leaf Cell Definition

(defcomp compnamc (parameter-list)
(ports)
(const)
(struct)
(beh)
(composition-expression

)
)

Figure 4.3(b). Overview of A Composition Cell Definition

51

composition component (Figure 4.3). This is because the leaf cell contains

artwork, and the composition cell contains only other cells. Once a sub-

design is fully specified as a hierarchy of cells it can be stored away in a

design library, and subsequent designs need not know whether It is a leaf or

composition cell. There are clear advantages to storing the sub-design in its

hierarchical form rather than flattening It out to a fully detailed leaf cell, for

to do so takes up far more space and makes variations on a design 'much more

difficult to accomplish.

In the case of composition cells any of the common cell fields may be

null, in which case the ports will have names constructed from their com-

ponent cells port names, and the constraints will be synthesized from their

components constraints.

The ports are a list of names in ascending order along the north south

east, or west boundaries. The ascending order Is necessary for the

identification of ports along the adjoining wall when composed with, another

(ports
(north n:clock) (south s:clock)
(east e:gnd out e:vdd) (west w:gnd in w:vdd)
(interior

gc pc last ; ground, power and butting contacts
pd.gtin pd.gtout pd.src pd.drn ; puildown nodes
pu.gtin pu.gtout pu.src pu.drn ; pullup nodes
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes
middle) ; inverter output

)

Figure 4.4(a). The Ports Definition of a Shift Register Cell

52

n: phi

nvdd e:vdd

in

w:gnd

out

J3J e:gnd
U

s: phi

Figure 4.4(b). The Ports of a Shift Register Cell

cell. Ports may also be defined as interior ports in leaf cells. Unlike other

ports, interior ports do not lie on one of the cell walls, nor need they be listed

In any order. Rather, the relationship between interior ports Is defined solely

by the horizontal and vertical constraints specified. An example of a leaf cell

ports definition Is shown in Figure 4.4.

Constraints may be specified between any two ports, or between ports

and a wall, where these constraints are meaningful. Horizontal constraints

between any two ports A and B may be of the form

or
A = B + c

A >= B + c, where c is a numeric expression.

53

with the meaning A lies to the east of B by exactly c, and A lies at least c to

the east of B. Vertical constraints take the form

or
A!!B+c

A!!B+c

with an analogous meaning in the y direction.' The distinction between verti-

(const
(w:gnd !! south + 2) (in !! w:gnd + 4) ; west wall
(north 1! w:vdd + 5) (w:vdd 1! pu.drn + 1)
(out >= last + 3)
(e:gnd "!! south + 2) (out 1! e:gnd + 4) ; east wall
(e:vdd '!! out + 2) (e:vdd !! w:vdd)
(s:clock >= pt.src + 3) (n:clock = s:clock) ; south & north walls
(gc = west + 5) (gc !! south + 2) ; ground contact
(pd.src = gc) (pd.drn = pd.src) ; pulidown
(pd.gtln >= In + 1) (pd.gtout >= pd.gtln + 8)
(pd.src 1!gc + 1) (pd.gtln 1! pd.src + 3)
(pd.gtin !! In) (pd.gtout !! pd.gtln)
(pd.drn 1! pd.gtin + 3)
(middle 1! pd.drn + 1) (pu.src !! middle + 1); inverter output
(middle = pd.drn)
(pu.src = middle) (pu.gtln = pu.src) ; pullup
(pu.gtout = pu.gtln) (pu.drn = pu.gtout)
(pu.gtln 1! pu.src + 2) (pu.gtout !! pu.gtln + 7)
(pu.drn 1! pu.gtout + 2)
(pc = pu.drn) (pc !! w:vdd) ; power contact
(pt.gtout = s:clock) (pt.src >= pd.gtout) ; passtran
(pt.drn >= pt.gtln + 3) (pt.gtout 1! pd.gtout + 1)
(pt.gtin 1! pt.src + 3) (pt.src !! middle)
(pt.gtln = s:clock) (pt.drn !! pt.src)
(last !! pt.drn) (last >= pt.drn + 3) ; last contact

)

Figure 4.5(a). The Constraints Definition of a Shirt Register Cell

'These operators look similar to the horizontal operators turned on their side.

54

north

Y-Constraints X-Constraints (borders only)

n clock

Figure 4.5(b). The Constraints Graph of a Shift Register Cell

cal and horizontal constraint relations serves to disambiguate constraints with

respect to interior ports. It also enforces a notational distinction which makes

the constraints easier to read and specify. An example of a leaf cell con-

straints definition Is shown In Figure 4.5. This example Is rather elaborate

since all points interior to the cell used In constructing the geometry are

represented as interior ports with constraints used to define their final values.

In practice, one might specify rigid components in the interior, each being

anchored to a single node, with constraints relating to these nodes used to

define minimum distances between ports on the outer walls. However, this

example shows that constraints may be used to build the entire cell.

55

(geom
(dm-at gc) ; contact between pulidown and ground
(wire metal 4 w:gnd gc e:gnd); ground wire
(puildown ; pulidown has two parts

4 (path pd.src pd.drn) ; diffusion path from source to drain
2 (path pd.gtin pd.gtout)); a poly path from gtin to gtout

(wire poly In pd.gtln) ; connect gate to Input port
(wire diffusion gc pd.src) ; connect puildown to ground
(pullup ; pullup has four parts

2 (path pu.src pu.drn) ; a diffusion path from source to drain
6 (path pu.gtln pu.gtout)); a poly path from gtln to gtout

an Implant layer is automatically drawn
over the poly layer, extended by 2 lambda
on either end, and a butting contact at the
gate Input connecting the gate to the source

(wire diffusion pd.drn middle pu.src); connect the pullup and pulidown
(wire metal 4 w:vdd pc e:vdd); power wire
(wire diffusion pu.drn pc) ; connect pullup to power
(dm-at pc) ; contact between pullup and power
(passtran ; passtran Is equivalent to the puildown

2 (path pt.drn pt.src)
2 (path pt.gtin pt.gtout))

(wire poly n:clock pt.gtln) ; wire up clock to one end of the gate
(wire poly s:clock pt.gtout); wire up other end of gate to clock
(wire diffusion middle pt.src); connect inverter output to passtran's

source
(be-at last) ; butting contact for passtran to out
(wire diffusion pt.drn last); connect passtran to contact and
(wire poly (pt-dx last 1); contact to out

(then-y (:y out)) out)
)

Figure 4.6(a). The Geometry Definition of a Shift Register Cell

Only constraints which lie vertically or horizontally a minimum distance

greater than zero from the south and west walls, respectively, need to be

specified. All ports are automatically constrained to lie at least on or to the

east and north of the west and south walls, respectively.

58

stretched in x

stretched in y

Figure 4.6(b). The Geometry of a Shift Register Cell

4.2.2. Leaf Celli

Leaf cells are defined with the defleaf operator and contain a parameter

list (with optional defaults), a sequence of ports, a set of constraints among

the ports, and a description of a cell in one or more of the physical, struc-

57

tural, and behavioural domains of interest.

4.2.2.1. Physical Description

A physical description of a leaf cell consists of a list of geometric func-

tions, which expand to lists of geometric primitives. These geometric primi-

tives describe the layout of the design on mask layers that are used in the

fabrication process to manufacture the Integrated circuits. See Figure 4.8 for

an example of the geometry of a shift register. In this example, we see the

use of both primitive functions, and several higher level nMOS-specific func-

tions which map to lists'of primitives, to create the geometry.

The basic geometric types are box, polygon, and wire. A primitive is a

list of the primitive type, a layer, a width (if the primitive is a wire), and a

path. A path Is a list of points, where each point may be either absolute or

relative to the previous point in the list. Obviously, the first point in the list

must be absolute. Various operators exist for creating and manipulating

points and their x and y components.

In the case of the box primitive, the two points define the adjacent

corners. The path of the polygon primitive represents the ordered list of, ver-

tices defining the boundary of a closed polygon. Finally the wire's path

defines a centre line of a long uniform width run along a layer. However,

unlike the CIF-style wire, defined as the locus of points within one-half width

of the path, the SHIFT wire has curtailed endpoints i.e. the endpoints of the

wire lie on the perimeter of the path.

58

Figure 4.7(a). Wire Connection - Curtailed

x

Figure 4.7(b). Wire Connection - Inflated

The CIF-style wire has the advantage over the SHIFT-style wire in that

any two wires connected together at a common endpoint will form a proper

connection regardless of the angle (Figure 4.7(a-b)). However, in practice this

type of connection is not likely to occur in SHIFT.

59

)4INT)4LD(
SEP ARAT 7 DNJ

x

Figure 4.7(c). T Connection - Curtailed

MINIMUM '1'
SPA DESICN RULE VDLATION

x

Figure 4.7(d). T Connection - Inflated

In addition, a number of undesirable effects occur when using CIF-style wires

in constructing circuits. One example Is a T connection of wires on the same

layer with another wire above and parallel to the cross piece and separated by

the minimum design rule distance (Figure 4.7(c-d)).

60

Figure 4.7(e) Butting Contact - Curtailed

Figure 4.7(f). Butting Contact - Inflated

If the vertical piece is wider than the horizontal piece, then a design rule vio-

lation occurs with the Inflated wire.

Another example is the connection of a polysilicon wire to the centre of a

butting contact (Figure 4.7(e-f)). The CIF-style polysilicon wire extends too

61

far under the contact hole, resulting in another design rule violation. These

reasons make the curtailed style wire more attractive than the Inflated style

wire. If we want to make a connection at right angles between two wires at

their common endpoints, a "contact" box of the same layer may be placed at

the point, thus ensuring proper connectedness.

The layer and the width may be omitted for the primitives, in which case

a technology defined default Is used.

4.2.2.2. Structural Description

A structural description of a leaf cell Is a lumped circuit model of the

cell. The structural description serves to describe the performance of the

design, that is, both Its power and speed. While the structural description of

a cell may be extracted from the geometry of a cell, and Is therefore not

strictly necessary, it Is used often enough in the design of chips to provide a

place specifically for It, so that It may not need to be repeatedly extracted.

Further, this may be generated automatically by a circuit extractor on the

leaf cells as they are defined.

The structural description consists of a list of named components, and a

netlist of connections between the components and the ports. Components

may be resistors, capacitors, or n-type and p-type enhancement and depletion

mode transistors, with various attributes supplied either by explicit declara-

tion or defaulted to a process/technology dependent value.

Resistors and capacitors have two ends to which one may connect,

denoted 'one-end' and 'the-other-end'. Resistors may take a specified resis-

tance In ohms, and capacitors may take a specified capacitance In pico-farads.

82

(struct
(nodes

pullup (n-type-dep len 8 wid 2)
pulidown (n-type-enh len 2 wid 8)
pass (n-type-enh))

(connect
(e:vdd w:vdd).
(e:gnd w:gnd)
(n:phi s:phi)
((:source pullup) e:gnd)
((:source pulidown) e:vdd)
((:drain pullup) (:drain puildown))
((:drain pullup) (:source pass))
((:gate pullup) (:drain pullup))
((:drain pass) out)
((:gate puildown) in)
((:gate pass) n:phi))

)

Figure 4.8(a). The Structure Definition of a Shift Register Cell

—I—

Figure 4.8(b). The Structure Diagram of a Shift Register Cell

Transistors have three nodes, labelled- 'drain', 'source', and 'gate', and

may take optional parameter values specifying their length and width, which

63

may be used in performance evaluation. An example of a structural descrip-

tion of a shift register is shown in Figure 4.8.

Here we see two n-type enhancement-mode transistors being declared,

one with a declared length and width, and the other defaulting to a technol-

ogy dependent value. These components are then connected to each other,

and to the ports.

4.2.2.3. Behavioural Description

The behavioural domain is specified using an approach similar to that

used in denotational semantics In which the behaviour of a device is modelled

by a. function which is an element of a domain of "sequential behaviours"

[Gord8l]. This domain is a unit delay model of behaviours. The domain used

is defined to be the least solution to the domain equation:

BEH = IN -> (OUT x BEll)

where IN and OUT model Input and output signals of the device. ,

The behavioural specification of our example is seen In Figure 4.9. In

this example, the first element is the current state of the device, the second

(beh (s)
((s:phi = n:phl)
(out = If n:phi then (not s) else ©))

((if (In = ©) then s else in))
)

Figure 4.9. The Behaviour of a Shift Register Cell

64

element is a set of equations in terms of the current state and inputs mapping

signals to lines, and the last element specifies the next behaviour, which Is a

function of the current inputs and state. Float is represented by '©'.

4.2.3. Composition Cells

Composition cells are defined with the defcomp operator and contain a

parameter, list (with optional defaults), an optional sequence of ports, an

optional set of constraints among the ports, and an optional description of the

cell in the structural and behavioural domains. Finally, a composition cell

definition contains a composition expression, where each element is a leaf or

prototype cell, or a composition expression.

Cells may be composed by means of one of the four composition opera-

tors '>', '<', '', and Y. These correspond to horizontal composition, east

to west and west to east, and vertical composition from south to north and

north to south, respectively. An example of a 2 element array of shift register

cells is shown in Figure 4.10.

The composition between cells Is performed by stretching the ports on

the adjoining walls until they align; there is no generation of river routing

between the cells.2 An example of this is shown in Figure 4.11. The subject of

composition by stretching Is discussed In further detail in the section entitled

"Composition Algorithm".

21f routing is desired It can be captured with a routing cell sandwiched between the cells
to be routed together.

65

(defcomp sh11t2
(ports (north n:phli n:ph12)

(south s:phll s:phl2)
(west w:gnd In w:vdd)
(east e:gnd out e:vdd))

(> (shiftreg) (shiftreg))
(beh (Si s2)

((out = If n:ph12 then (not 82) else ©))
((if (In =) then Si else in)
(if n:phii then (not Si) else s2)))

)

Figure 4.iO(a). A 2 Element Shift Register Array Composition Cell

1=

H

Figure 4.10(b). Geometry of a 2 Element Shift Register Array

66

A B C D
; I • i

Figure 4.11. An Example of Stretching

4.2.4. Design Instantiation

In order to produce a description of the design In any of the three

domains we must produce an instance of the design from Its description in

SHIFT. A design is instantiated in the following manner. The archetype

specification is traversed from the root, inheriting down (i.e. binding) the

parameters at each level to the cell and evaluating the expressions In the con-

straints to produce a fully determined set of constraints that defines the pro-

totype. These parameter values also may be used In expressions In the com-

position definitions. This result of this traversal is a rooted tree that

comprises the prototype of the design.

To produce an Instance from the prototypes we first synthesize up the

constraint graphs from the leaves to the root. We then solve the graph at the

top level, and inherit down the solution to the leaves. These values are then

bound to the ports and each of the domains is evaluated to produce the leaf

Instances, which are then synthesized up the tree to produce an instance of

the design.

Expanding an entire design to get all the constraints in one direction,

and then solving them could be quite time consuming, as there could be tens

67

of thousands of ports, and hundreds of thousands of constraints. Instead, we

can use the hierarchy of SHIFT to exploit the locality of constraints and con-

siderably reduce the work.

4.2.5. The Composition Algorithm

The approach used in composing cells follows that used in the composi-

tion of a sticks languages called LAVA [Ullm84]. The basic idea is that we

can eliminate the Interior constraints of a cell at any level in the hierarchy by

using them to produce a new set of constraints which only involve the border

ports of the cell. Further, these new sets of constraints are produced In such

a manner that any given solution for the border ports of the cell will not

violate the interior constraints which had been previously eliminated. The

algorithm Is a two stage process.

In the first stage we reduce the constraints for the bottom-level cells, so

that we are left only with constraints involving ports on the borders of the

cell. These are synthesized up the next level of the hierarchy, and the process

repeats until we reach the root of the hierarchy.

In the second stage we find a solution to the constraint graph at the top

level of the hierarchy, and recursively inherit down the values for the border

points of the component cells, solving at each step in the hierarchy until we

reach the leaf cell at the bottom of the hierarchy. By making the coordinates

for the internal points of a cell as low as possible, consistent with the con-

straints of the cell and the values of the border points Inherited down, we

may solve for the Internal points of the cell at each level of the hierarchy.

The key steps in this process are:

68

(1) The elimination of those constraints within a cell that do not involve the

border points.

(2) The combination of constraints from several cells into one set of con-

straints.

The general algorithm for the solution of the constraint graph for the

entire design Is as follows;

The topological sort3 Is used to determine in what order values are

s&signed to the nodes In the constraint graph. Every node with no predeces-

sors In the topological sort may be taken to have the value of 0. When reach-

ing node u with some predecessors, we have already assigned values for those

predecessors. We then assign a value for u by evaluating the constraints con-

necting u to its predecessors and taking the lowest value consistent with

these.

To eliminate the Interior constraints of a cell we consider each border

point a, in turn from the bottom of the cell. Note that the bottom of the cell

SYNTHESIS

FOR cells at level 0, 1,...,Ievel of root DO BEGIN
eliminate Interior nodes from constraints;
IF level > 0 (i.e. a composition cell) THEN
combine constraints involving border points of subcells

END;

INHERITANCE

solve constraints for the root cell, by finding a
topological sort of the nodes In the constraint graph;

FOR all instances of cells at level of root - 1 down to 0 DO
solve constraints for Interior points, given values for border points.

A topological sort of an acyclic graph Is the reverse of a depth first ordering of the
graph. This ordering has the Important property that If there Is an are from a to b • then a
precedes b in the ordering.

69

is regarded as a border point. We perform a depth-first search on the con-

straint graph from a but we stop when we reach another border point, b (i.e.

we do not follow any are out of it). Thus we reach all and only the nodes

accessible from the border point. By visiting the nodes in topological order,

we can derive for each such border node b, the length of the longest path 1,

from a to it. Thus the constraint b > = a + us the minimum constraint

implied by the given constraints. By repeating this for all border points, we

derive the set of constraints involving only the border points.

4.2.6. Complexity of The Composition Algorithm

Assuming that the constraint graph Is acyclic, we may topologically sort

the nodes in time proportional to the number of arcs, i.e. the number of con-

straints. The assignment of values to nodes given the topological sort of the

cell is also proportional in time to the number of constraints. Thus complete

solution of a cell is proportional in time to the number of constraints.

The partial solution of constraints is actually more complex than com-

pletely solving for the constraints. However, we cannot simply solve the con-

straints for several cells independently since they may be connected at a

higher level and if we have found Incompatible values for the corresponding

ports, then the cells cannot be abutted as Intended. Since the depth-first

search from each border point may involve visiting all, or almost all, of the

points in the cell, in worst case the time to eliminate the interior points is on

the order of the product of the number of border points and the number of

constraints.

In practice, however, the elimination of the, interior points is much less

time-consuming, as many of the interior points will be sandwiched between

70

two border points, resulting In their appearing only in the depth-first search

of the border point immediately below it. In addition, the extra complexity Is

offset since a new constraint graph only has to be produced once for a given

cell. The same constraint graph can be subsequently used wherever else the

cell appears, so the overall cost is significantly reduced when the cell is used

more than once (i.e. regularity), which is characteristic of increasing trends In

Integrated circuit design. Thus we can exploit the locality of the constraints

at every level of the hierarchy.

4.3. Summary

This chapter has focused on the requirements of an intermediate form for

VLSI design tools in an Integrated environment. Also the requirements for an

Intermediate form that supports a separated hierarchy and a structured

design methodology have been presented. A structured intermediate form for

VLSI design tools called SHIFT has been outlined, together with an algorithm

for composing cells In a stretchable manner along adjoining ports. In the next

chapter we focus on the Implementation-dependent aspects of SHIFT, and

how It fits within a proposed design environment called EDICT [B1rt84].

71

CHAPTER 5

SHIFT Implementation

In chapter 4 we focused on the requirements of an intermediate form for

VLSI design tools, and gave an overview of an Intermediate form (SHIFT)

designed with these requirements in mind. This chapter focuses on the

current implementation of SHIFT and factors influencing decisions made in

the course of implementation. Finally, we discuss where SHIFT fits in with

current VLSI tools being developed at the University of Calgary.

5.1. Choice of Implementation Language

The choice of language was generally motivated by the fact that SHIFT

was designed to mix in with both existing and developing tools. Since most of

the current tools exist under the Berkeley Unixf 4.2 operating system this

meant that the implementation language should also exist on the same sys-

tem. Further, since most of the tools are written in a variety of languages,

(e.g. SPICE in Fortran, LAP in Simula), the language chosen to Implement

SHIFT should provide as flexible an Interface as possible to other languages.

A consideration of these and the following reasons led to the choice of Franz

Lisp [WIle84] as the language of implementation.

First, since SHIFT Is a procedural as well as declarative intermediate

form, it was desirable that SHIFT be embedded In some general purpose

language, rather than re-inventing the wheel. Second, it was felt that SHIFT

should also be extensible, thus the language In which it was to be embedded

f UNIX Is a Trademark of Bell Laboratories.

72

should also be extensible. Third, we much preferred to cast the design in an

object-oriented language, since a lot of the manipulation was symbolic in

nature. Fourth, SHIFT should be both human readable and portable to many

systems. Fifth, SHIFT should execute efficiently, since VLSI designs tend to

be extremely large, and are continually growing in size. Lisp was the only

language available which fulfilled all these objectives.

Franz Lisp was chosen because of several additional features It has that

many other languages on Berkeley Unix do not have. Franz Lisp allows the

user to load in foreign functions dynamically, thus allowing it to make use of

software already written. In addition, Franz Lisp was chosen because of its

capability to run within a distributed environment as well as in a stand-alone

configuration.

5.2. SHIFT Implementation

SHIFT retains much of the flavour of Lisp's syntax. This decision was

made to minimize the effort involved In building SHIFT; any syntactic

"sugaring" could be done later as an interface sitting on top of SHIFT.

Further, the mapping into SHIFT would be made easier by the fact that Lisp

Is both easy to parse and to produce in an automatic manner.

SHIFT In its current state consists of approximately 3,000 lines of

sparsely documented code. The Franz Lisp code conforms wherever possible

to the Maclisp dialect, making SHIFT easily transportable to many other Lisp

systems which use MaclIsp or a similar dialect. This makes it easy to develop

tools in Lisp that are built on SHIFT. For the purposes of efficiency in execu-

tion as well as code clarity, an early decision was made to use the MIT struc-

tures package to build prototypes and instances. This, however, should not

73

decrease the portability of SHIFT, since the structures package is supported

for almost all major dialects of Lisp.

As stated before, the basic SHIFT geometric primitives are the wire, the

box, and the polygon. While these are sufficient to capture all designs of

interest, it was felt that most tools using SHIFT would want to work at a

slightly higher level. For example, a Sticks-based editor manipulates wires,

contacts, and transistors. Also, users designing leaf cells procedurally, even

using SHIFT, would find their task greatly simplified if they could specify

basic units like transistors.

As a result, SHIFT fully supports the geometric domain with a variety of

routines for designing layouts in both nMOS and CMOS technologies. NMOS

technology routines allow the user to specify pullup, pulidown, pass, and

enhancement mode transistors. CMOS technology routines consist of pmos

and nmos transistor functions, as well as a precursor gate transistor routine

for specifying a variety of simple logic configurations such as nand, nor, and

pla's, etc., as well as transmission gates.

While It Is not central to SHIFT, It was felt that a geometry composer

should be provided. As stated before, this would provide Immediate feedback

to users building tools, and allow users to try out SHIFT. It was also useful

for providing the examples In this thesis. Since the geometry of a composition

Is simply the union of the geometry of Its component parts, the geometry

composer was extremely easy to implement.

The structural and behavioural domains are not as fully fleshed out, and.

their composer functions have not yet been implemented. These would be

implemented in the following manner. The structural composer would require

74

a function which would compose graphs together by descending the hierarchy

and merging the leaf cell structural graphs by merging the nodes of adjacent

ports on abutting cells.

The most difficult composer to implement would be the behavioural com-

poser. Fortunately, this has already been provided as a set of functions

implemented in LCF-LSM [Gord83]. It Is intended that the existing software

be used in parallel with SHIFT, either as communicating processes through

the Jade [Unge84] distributed system, or in a more intimate manner, as LCF-

LSM Is Implemented In Franz Lisp, and provides hooks to load Lisp, and

therefore SHIFT, functions.

5.3. SHIFT and Current VLSI Tools

There are three ways in which design tools can use SHIFT. The first

method Is to use SHIFT as a textual interface, in a manner similar to CIF.

This will eliminate the nasty problem of "user extensions" to CIF that contain

information obtained by circuit extraction and used in circuit simulation. In

addition, "user extensions" are allowed in SHIFT definitions. They are simply

placed in a special slot of the prototype as an association list in an

unevaluated form. The first element of the form simply becomes the name of

the user extension, and if the form Is a symbol, then the value of the associa-

tion is nil.

The second method is to use SHIFT In future Lisp-based tools simply by

incorporating it into the Lisp environment. This would also allow tools such

as the Lisp-based SPICE interface (with a minimum of modification to it) to

use performance simulation Information provided by SHIFT from the struc-

tural domain. A variant form of this would be to use SHIFT interactively,

75

since it is embedded in Lisp. This would allow a designer to design small cells

interactively, and in the process, become familiar with SHIFT.

The final use of SHIFT would be to use SHIFT within the context of a

distributed environment such as Jade. A Lisp-Jade Interprocess Communica-

tion Interface called Jipth [Libl84a] was developed in order to use SHIFT as a

library process that would contain the information of an evolving design. A

primitive version of the SHIFT library manager called 8hi1t11b currently exists,

and will allow a user process to pass messages defining cells, (In fact, any Lisp

s-expression), instantiating them, and querying the library for any informa-

tion. Further, SHIFT contains version control information that is used during

instantiation to limit the necessary modifications to only those parts of the

design dependent on the changes.

A symbolic layout editor is currently being developed based on SHIFT

that would allow the designer to build leaf cells using a graphical Interface,

similar to REST [Most81]. However, once the cell Is laid out it would be com-

pacted in a manner that would preserve the inherent constraints for subse-

quent stretching when composed.

5.4. SHIFT and EDICT

EDICT is a VLSI design tool environment under construction at the

University of Calgary. It will guarantee that designs meet their specifications;

allow specifications to be composed from verified sub-modules (bottom-up), or

be refinements of rougher specifications (top-down); and cater for the incor-

poration of previously validated building blocks, large or small. The first

experimental versions of EDICT will be extensions of current tools, and will

be written as applications of the JADE distributed environment.

76

Library
Assistant
(SHIFT)

CIF
Producer

H EDICT Design
System
(SHIFT' I1

Design Rule
Checker

User
Interface

Performance
Simulator

Figure 5.1. The EDICT Design Environment

A critical sub-system of EDICT will be a library assistant which

remembers leaf cells and composition cells and stores them In a library for

future reference (see Figure 5.1). When later designs require elements with

the same specification, cells will be suggested by a library assistant working

on the fly. The library assistant will grow ever more knowledgeable as

verified designs are automatically added to the library. Since today's design

will be tomorrow's component, using SHIFT to represent designs In the

library means that we will be able to build a collection of tried and tested

parts which will slot into future designs with a minimum of modification.

Thus a consideration in the design and implementation of SHIFT was that

SHIFT should form the kernel of the library assistant.

77

Since the preliminary version of EDICT will be built within JADE, Jipth

will allow any of the EDICT components implemented In Franz Lisp to

operate as complete entities within the Jade distributed environment. When

combined with SHIFT to create the library assistant, Jlpth will allow

processes In other languages to query and modify the design database. This

means that current tools such as LAP may co-exist with EDICT, and future

tools such as layout editors may be built to use SHIFT as their intermediate

form of choice.

This chapter has focused on the implementation-dependent aspects of

SHIFT, and how SHIFT is expected to fit In with both current and future

VLSI design tools at the University of Calgary. Chapter 8 will conclude with

an overview of the research work in this thesis, and draw some observations

about the future of SHIFT in the state of VLSI design.

78

CHAPTER 6

Conclusion

6.1. Summary

This thesis has focused on the problem of Increasing complexity in the

design of integrated circuits. An analysis of methodologies used in managing

this complexity has been made and observations have been drawn on the

requirements for an intermediate form used to capture VLSI designs. While

not providing a high level of abstraction directly, such as a silicon compiler

which maps from a behavioural description to a physical layout, an Intermedi-

ate form provides the framework on which to build tools dealing with designs

at a higher level. SHIFT, a structured hierarchical intermediate form for

VLSI design tools, has been defined and partially Implemented.

SHIFT uses a separated hierarchy of leaf cells and composition cells.

Leaf cells specify the actual artwork necessary to produce fabrication masks.

Composition cells contain compositions of leaf cells and other (simpler) com-

position. cells. Cells are composed by abutting together ports on adjoining

walls, stretching them If necessary. Relationships between ports are defined

In terms of minimum or exact distance constraints between them. A hierarch-

ical method Is used for solving the constraint graphs produced from composi-

tion. SHIFT is embedded in Lisp and consists of approximately 3000 lines of

Franz Lisp code.

SHIFT is a keystone of EDICT, a VLSI design tool environment under

construction at the University of Calgary. It is also the intermediate form

79

used in a symbolic layout editor being developed, and will be the intermediate

language for future work by VLSI groups In the Computer Science Depart-

ment at Calgary. Finally, It Is used in a primitive design library called shiftlib

which is built on the JADE distributed environment using the Jipth lisp inter-

face to JADE. Shiftlib serves as a prototype for the library assistant

envisaged in EDICT.

8.2. Observations on SHIFT

One observation that has been made Is that SHIFT Is devoid of the syn-

tactic sugar that makes a language easy to program. However, SHIFT was

designed as an intermediate form, and its syntax makes It easy for tools to

generate SHIFT code In an automatic manner. Thus one tool which should

be built on SHIFT would be a procedural interface which would allow designs

to be specified as programs. Another observation made by the author was

that designing leaf cells by hand using SHIFT for the examples generated

some unexpected constraint solutions, primarily because the constraints

between ports on the walls went through interior ports. It Is not easy when

laying out sizable leaf cells procedurally to think In terms of constraints. It is

much easier to think of them graphically. It is expected that a symbolic lay-

out editor will greatly facilitate the use of SHIFT for designing leaf cells.

Composing cells procedurally using SHIFT will not give the same prob-

lems, since the chief concern is the abutment of cells, and any additional con-

straints must only be between border ports. This observation, however, must

await confirmation by others using SHIFT. The lack of design experience

using SHIFT has hindered making many observations about Its effectiveness

as an intermediate form, but early work such as a shift-to-lap filter and

80

shiftlib is satisfactory. SHIFT is expected to be thoroughly tested by EDICT.

6.3. Future Research Directions

Future work to be done on SHIFT Includes the Incorporation of electrical

properties in the design using constraints in the form of local maxima. This

would allow the designer to specify that a given cell not exceed a certain size,

and therefore some critical power level or time delay. This Is necessary as

designers must meet certain global constraints with regard to power consump-

tion and speed that are present In any real design. It would also allow the

designer to get feedback on the critical paths present in a design at a very

early stage in the development process.

Also, a proof system for behaviours needs to be connected to SHIFT.

One possibility, as mentioned In the previous chapter, would be to use the

existing LCF-LSM system as developed by Gordon [Gord83] by coupling it to

SHIFT using Jade. Another possibility would be to use an alternative system.

such as VERIFY [Barr84], which is written in Prolog, and has the advantage

of being fully automated.

Finally, methods need to be developed to specify interior constraints of

leaf cells in such a manner that stretching would never result in design rule

violations. One possibility would be to Incorporate the technique of rift lines

[Widd84] into a layout editor. The user would layout the cell symbolically,

and then draw rift lines where he wanted the cell to stretch.

Since SHIFT is embedded in Lisp it has the advantage of being an open-

ended intermediate form, and as such, it Is easy to incorporate new ideas into

It. This will insure its use over a longer period of time than other intermedi-

ate forms. It will also have beneficial effects for tools using it, since there will

81

be a strong desire to integrate these tools into a solid and workable VLSI

design environment that can change continuously to use new ideas as they are

developed.

82

References

[Back78]

Backus, J.W. "Can programming be liberated from the von Neumann

style? A functional style and Its algebra of programs." Comm ACM,

August 1978.

[Barb81]

Barbacci, M.R. "Instruction Set Processor Specifications (ISPS): The

Notation and Its Application." IEEE Transactions on Computers C-

30(1):24-40, January, 1981.

[Barr84]

Barrow, Harry. "Proving the Correctness of Digital Hardware Designs",

VLSI Design, Vol. 5, No. 7, July 1984, pp. 64-77.

[Bata81]

Batali, J., Mayle, N., Shrobe, H., Sussman, G., and Weise, D. "The

DPL/Daedalus Design Environment", VLSI 81, The Proceedings of the

First International Conference on Very Large Scale Integration, August

1981, J. Gray (editor).

[B1rt73]

Blrtwlstle, G., Dahl, O-J., Myhrhaug, B. and Nygaard K. SIMULA

begin, Studentlitteratur, Lund, Sweden, 2nd ed., 1979.

[B1rt84]

Blrtwistle, G., Hill, D., Kendall, J., Coates, B., Esau, R., Kroeker, W.,

Liblong, B., Liu, E., Meiham, T. and Schediwy, R. EDICT - An

83

Environment for Design using Integrated Circuit Tools, University of

Calgary Computer Science Research Report No. 84/155/13, June 1984.

[Brow83]

Brown, H., Tong, C., and Foyster, G. "Palladio: An Exploratory

Environment of Circuit Design". IEEE Computer, December 1983, pp.

41-58.

[Brya81]

Bryant, Randal. A Switch Level Simulation Model for Integrated Cir-

cuits. MIT Laboratory for Computer Science Technical Report-259.

[Buch80]

Buchanan, Irene. Modelling and Verification in Structured Integrated

Circuit Design, PhD Thesis, Department of Computer Science, University

of Edinburgh, 1980.

[Buch82]

Buchanan, Irene. Scale - A VLSI Design Language. Technical Report

CSR-117-82, University of Edinburgh, Department of Computer Science,

May 1982.

[Gord81]

Gordon, Mike. A Model of Register Transfer Systems with applications

to Microcode and VLSI correctness. Department of Computer Science

Internal Report CSR-82-81, University of Edinburgh, March 1981.

[Gord83]

Gordon, Mike. LCF-LSM. University of Cambridge Computer Labora-

tory Technical Report No. 42, 1983.

84

[Gosl83]

Gosling, J. Algebraic Constraints. PhD thesis, Department of Computer

Science, Carnegie-Mellon University, May, 1983.

[Hell79]

Heller, W.R. An Algorithm for Chip Planning, Caltech Silicon Structures

Project File #2806, 1979.

[Joha79]

Johannsen, D. "Bristle Blocks - A Silicon Compiler", Proc. of The 16th

Design Automation Conference, 1979.

[John 84]

Johnson, Stephen C. "Top-down system design through silicon compila-

tion", Electronics, Vol. 57, No. 9, pp. 121-128. May 3, 1984.

[KIng82]

Kingsley, Chris. Earl: An Integrated Circuit Design Language. Caltech

Technical Report 5021, June 1982.

[L1bl83]

Liblong, B. M., Birtwlstle, G. M. "A VLSI Design System Based Upon a

High Level Intermediate Form", 1983 Canadian Conference on Very

Large Scale Integration, Waterloo Ont., 1983, pp. 150-153.

[LIbl84a]

Liblong, B.M., and Bonham, M. Jipth - The Lisp - Jipc Interface,

University of Calgary Computer Science Technical Report in preparation.

[Libl84b]

Liblong, B.M. The SHIFT Users Manual, in preparation.

85

[Lib184c]

Liblong, B., Meiham, T., Blrtwlstle, G.,Kendall, J. "Towards A VLSI

Design Tool System", Proceedings of CIPS Session 84, Calgary, Alta.,

1984.

[Llpt83]

Lipton, R.J., Valdes, J., Vljayan, S.C., North, S.C., and Sedgewick, R.

"VLSI Layout as Programming", ACM Transactions on Programming

Languages and Systems, Volume 5, Number 3, July, 1983.

[Loca78]

Locanthi, B. LAP: A Simula Package for IC Layout. Caltech Technical

Report Display File #1862, July, 1978

[Mead80]

Mead, Carver and Conway, Lynn. Introduction to VLSI Systems,

Addison-Wesley, 1980.

[Moor79]

Moore, G.E. "Are We Really Ready For VLSI?", Proceedings of the Cal-

tech Conference on VLSI, January, 1979, C. Seitz (editor).

[Most81]

Mosteller, R.C. REST - A Leaf Cell Design System. M.Sc. Thesis, Sili-

con Structures Project Technical Report 4317, Caltech, December, 1981.

[Nage75]

Nagel, L.W. SPICE2: A Computer Program to Simulate Semiconductor

Circuits. ERL Memo ERL-M520, University of California, Berkeley, May

1975.

86

[Rem81]

Rem, Martin. "The VLSI Challenge: Complexity Bridling", VLSI 81,

The Proceedings of the First International Conference on Very Large

Scale Integration, August 1981, J. Gray (editor).

[Rows8o]

Rowson, James Allely. Understanding Hierarchical Design, PhD thesis,

Caltech Technical Report 3710, April 1980.

[Sand79]

Sandewall, E. "Programming in the Interactive Environment: The LISP

Experience", ACM Computing Surveys, Vol. 10, No. 1, March, 1978, pp.

35-72.

[Seit79]

Seitz, C. "Self-Timed VLSI Systems", Proceedings of Caltech Confer-

ence on VLSI, January 1979.

[Spro8O]

Sproull, R. F., and Lyon, R. F. "The Caltech Intermediate Form for LSI

Layout Description", from [Mead80], 1980.

[Trim80]

Trimberger, S. The Proposed Sticks Standard, Caltech Computer Science

Department. Technical Report #3380, 1980.

[Trim81]

Trimberger, S., Rowson, J., Lang, C. and Gray, J. "A Structured Design

Methodology and Associated Software Tools", IEEE Trans. on Circuits

and Systems, Vol. CAS-28, No. 7, July 1981, pp.618-633.

87

[Ul1m84]

Ullman, J.D. Computational Aspects of VLSI, Computer Science Press,

1984.

[Unge84]

B.W.Unger et al. "JADE: a software simulation and prototyping

environment". Proceedings of the Conference on Simulation in Strongly

Typed Languages, San Diego, 1984.

[vanC79]

vanCleemput, W. M. "Hierarchical Design for VLSI: Problems and

Advantages", Proceedings of Caltech Conference on VLSI, January 1979.

[Wall83]

Wallich, P. "Tomorrow's Computers - The Challenges", IEEE Spectrum,

November 1983, pp. 73-77.

[Whit81]

Whitney, T. A Hierarchical Design Rule Checker, Caltech Computer

Science Department. Technical Report #4320, 1981.

[Widd84]

Widdowson, Rod. An Investigation of Stretchable Cells in SCALE. To

appear as a University of Edinburgh Computer Science Technical Report

In late 1984.

[Wlle84]

Wilensky, R. LISPCraft, W.W. Norton & Company, New York, 1984.

[W11177]

Williams, J.D. STICKS - A New Approach to LSI Design, MIT MSEE

Thesis, 1977.

88

APPENDIX A

Syntax of SHIFT

The following comprises a user-level syntactic description of SHIFT. The

description method was chosen for readability and because it gives some

flavour of the semantics of the functions. The syntax used Is a modified form

of BNF, where constructs enclosed In brackets ([]) are optional, constructs

enclosed in braces ({}) in conjunction with the vertical bar (I) mean choose
one of, and both forms may be modified with a repetition factor. The repeti-

tion factor may be "*" , meaning 0 or more times, "+" meaning 1 or more

times, and "+x" , meaning x or more times. Non-terminals are denoted by

names beginning with "l_" , denoting a list expression, "s_" , denoting a sym-

bol, "n_" , denoting a number, "h_" , denoting a cell structure, and "p_,"

denoting a point expression. For more Information, consult the SHIFT Users

Manual [Libl84b].

I. Defining Cells

Cell definitions have the following syntax.

s_leaf-cell_definition ::=
(defleaf s_cell-name

[1_leaf_ports_expr]
[l_const_expr]
[l_struct_expr]
[l_beh_expr]
[l....geom_expr])

89

s_composition-cell_definition ::=
(defcomp s_cell_name

[l_cOmp_ports_expr]
[l_const_expr]
[l_struct_expr]
[l_beh_expr]
[I_comp_expr])

ljeaf_ports_expr:
(ports [(north [s_port]*)]

[(south [s_port]*)]
[(east [s_port]*)]
[(west [s_port] *)]
[(interior [s_port] *)])

l_comp_ports_expr ::=
(ports [(north [s_port]*)]

[(south [s_port]*)]
[(east [s_port]*)]
[(west [s_port]*)])

l_const_expr ::=
(const [(s_port

{ >= I = !! }
s_port
{ + I - } n_value])]*)

i_struct_expr ::=
(struct [(nodes

[s_node_name
(s—component [s—attribute n_val] *)] *)]

[(connect
[({s_port (s_component_node s_node_name)}
{s_port _ (s_component_node s_nodename)})]*)])

I_beh_expr ::=
(beh ([s_state]*)

([(s_port = e_val)]*).
([e_next_state] *))

l_geom_expr
(geom l_geom_primitives)

l_comp_expression ::=
({ > I < I I v} {s_cell_name I l_comp_expression}+)

90

1_geom_primitives
({l....geom_prlmltive I l....geom._primltives}*)

2. Geometry Primitives

Since SHIFT is a procedural form, one can write and use functions which

return lists of geometry primitives. In particular, there are basic functions for

specifying relative paths in the path primitive, for applying transformations to

primitives and lists of primitives, predicates and selectors which can be used

to write user geometry functions, and cmos and nmos functions which take

higher-level concepts such as transistors and map them Into lists of geometric

primitives.

2.1. Basic Geometry Primitives

1_geom_primitive ::=
1_box_primitive I 1_polygon_primitive I
1_wire_primitive 1_geometry_function I
1_geometry_function

1_box_primitive ::=
(box [s_layer] { 1_point 1—point I l_path})

1_polygon_primitive ::=
(polygon [s_layer] { [l_point]+3 I l_path})

1_wire_primitive ::=
(wire [s_layer] [s_width] { [1_point]+2 I 1_path))

1_path ::=
(path 1_point { 1—point I Labs-motion I l_rel_motion }*)
(pmerge { I_point I 1—path }+) I
(perim 1—box—primitive) I
(lengthen-path 1_path n_first n_last)

1_point_primitive ::=
1_geom_primitive I 1_path

91

Labs-motion ::=
(then-x n_expr) I (then-y n_expr) I (then-xy n_expr n_exp)

1_rel-motion
(by-x n_expr) I (by-y n_expr) I (by-xy n_expr n_epxr)

1_geometry_function ::=
1_cmos_geometry_function 1_nmos_geometry_function
C1_user_defined_function I 1_compound_geometry_function

2.2. Selectors and Predicates

1—selector ::=
(:type 1_point_primitive) I
(:layer 1_geom_primitive)
(:width 1_geom_primitive)
(:low 1_box_primitive) I
(:high 1_box_primitive) I
(:path 1_point_primitive) I
(:nth 1_point_primitive)

1_geom_predicate :=
(layerp s_layer) I
(pathp 1_geom_primitive) I
(widthp n_expr)

2.3. Transformation Functions

1_transform ::=
(apply-fcn f_function 1_point_primitive)
(trans-pt 1_point 1_point_primitive)
(trans-x n_expr 1_point_primitive)
(trans-y n_expr 1_point_primitive)
(trans-xy n_expr n_expr 1_point_primitive)
(scale-pt 1_point 1_point_primitive) I
(scale-x n_expr 1_point_primitive)
(scale-y n_expr 1_point_primitive)
(scale-xy n_expr n_expr 1_point_primitive)
(mr-x 1_point_primitive)
(mr-y 1_point_primitive)
(mr-xy 1_point_primitive) I
(rot-pt 1_pt n_expr 1_point_primitive) I
(rot n_expr 1_point_primitive) I
(apply-tx 1_geom_primitives 1—trans—mat)
(apply-rot 1_geom_primitives 1_point)

92

2.4. nMOS Geometry Functions

1_geom_primitives
(dm) I
(dm-at Lpolnt)
(pm) I
(pm-at 1..point) I
(dpeast) I
(bn-at 1_point) I
(be-at 1_point)
(bs-at Lpoint)
(bw-at Lpoint) I
(but-rot-at 1_point 1_point)
(pulidown n_duff-width 1_duff-path n_poly-width 1_poly-path)
(pasatran n_duff-width 1_duff-path n_po1y-width L_poly-path)
(pullup n_duff-width 1_duff-path n_poly-width 1—poly-path)
(enhtran (duff-width duff-path poly-width poly-path)

2.5. CMOS Geometry Functions

1..geom_primitives
(am)I
(am-at 1_point)
(pm) I
(pm-at 1—point) I
(apeast) I
(bn-at 1_point) I
(be-at Lpolnt)
(bs-at 1....polnt)
(bw-at 1—point)
(ameast)
(on-at 1_point) I
(se-at 1_point)
(ss-at 1_point)
(sw-at 1_point) I
(n&p+-box 1_box_primitive)
(pwell&guards-box 1_box_primitive)
(gate n_active-width 1_active-path n_poly-width 1—poly-path) I
(pmos n_active-width 1_active-path n_poly-width 1—poly-path)
(nmos n_active-width 1_active-path n_poly-width 1_poly-path)
(split-rot-at 1_point 1_point)
(split-&-n&pplus-rot-at 1_point 1_point)

93

2.6. Miscellaneous Functions

1_misc_geom_functions ::=
(union-box 1_box_primitive 1_box_primitive)
(inflate-box 1_box_primitive n_value)
(cbox [s_layer] 1_point n_horiz n_vert)
(box-to-polygon 1_box_primitive)
(mbb 1_point_primitive) I
(shift-to-cif-wire 1_wire_primitive)
(cif-to-shift-wire 1_wire_primitive)
(mbb-wire 1_wire_primitive)

3. Points

Points are simply a structure of two numbers. Operations are provided

for the creation, selection, manipulation, and transfomation of points.

3.1. Creation, Selection, and Relational Functions

I_point ::=
s_port I (point n_expr n_expr)

1_point_selection ::=
(:x 1_point) I (:y 1_point)

1_point_ops ::=
(pointp 1_point)
(pt= 1_point 1_point) I
(pt/= 1_point 1_point I
(pt< 1_point 1_point)
(pt> 1—point 1—point)
(pt>= 1_point 1_point)
(pt<= 1_point 1_point)

3.2. Point Manipulations

1_point ::=
(pt+ 1_point 1_point) I
(pt- 1_point 1_point) I
(pt* 1_point 1_point)
(pt/ 1_point 1_point)
(pt-scale n_expr 1_point)
(pt-rot n_expr 1_point) I
(pt-dx 1_point n_expr)

94

(pt-dy I_point n_expr) I
(pt-dxy 1_point n_expr n_expr)
(pt-minus 1_point) I
(sq-pt 1_point) I
(xy-sum Lpolnt) I
(xy-difference 1_point) I
(xy-times 1_point)
(xy-quotient 1....point) I
(dist 1_point 1_point)
(pt-max 1_point 1_point)
(pt-mm 1_point 1_point)
(pt-round 1_point)
(pt-trunc 1_point)

3.3. Point Transformations

1_point ::=
(normalize 1_point) I
(pt-mult 1_point 1_trans_mat) I
(identity)
(trans-mat 1_point) I
(scale-mat I_point) I
(rot-mat 1—point) I
(pre-mult 1_trans_mat 1_trans_mat)

4. Instantiation and Selection

Instantiation of a design returns the instance-name of the design.

s_instantiation ::=
(instantiate 's—cell—name)

An Instance's fields may be selected with the following functions.

si_prototype_selectors ::=
(cell-prototype-source h_leaf_or_comp_prototype) I
(cell-prototype-date-created h_ieaf_or_comp_prototype) I
(cell-prototype-version h_leaf_or_comp_prototype) I
(cell-prototype-name h_leaf_or_comp_prototype)
(cell-prototype-ports h_leaf_or_comp_prototype)
(cell-prototype-constraints h_leaf_or_comp_prototype) I
(cell-prototype-reduced-constraints h_leaf_or_comp_prototype)
(cell-prototype-behaviour h _leaf _or_comp_prototype) I
(cell-prototype-structure h_leaf_or_comp_prototype) I
(cell-prototype-struct-fcn h_leaf_or_comp_prototype) I
(cell-prototype-user-extensions h_leaf_or_comp_prototype)

95

(leaf-prototype-geometry h_leaf_prototype) I
(leaf-prototype-geom-fen h_leaf_prototype) I
(comp-prototype-composed-of h_comp_prototype) I
(comp-prototype-merged-constraints h_comp_prototype) I
(comp-prototype-composed-ports h_comp_prototype)
(comp-prototype-composed-interior h_comp_prototype)

si_instance_selectors
(cell-instance-name h_cell_Instance) I
(cell-instance-class h_cell_instance) I
(cell-instance-border-values h_cell_Instance)
(cell-instance-wall-values h cell _Instance) I
(cell-instance-port-values h__cell_Instance)
(cell-instance-structure h_cell_instance) I
(leaf-instance-geometry h_leaf_instance) I
(comp-instance-composed-of h_comp_instance)

5. Other Functions

These Include a geometry extractor and functions for version control.

s_verslon_fcns ::=
(get-version s_cell_name)
(get-creation-date s_cell_name)

1_geometry_extractor ::—
(get-geometry s_cell_name s_Instance)

06

APPENDIX B

SHIFT Examples

1. The Shift Register Leaf Cell

The shift register in chapter 4 Is reproduced here In its entirety.

(defleaf shiftreg
(ports

(north n:clock) (south s:clock)
(east e:gnd out e:vdd) (west w:gnd in w:vdd)
(interior

gc pc last ; ground, power and butting contacts
pd.gtin pd.gtout pd.src pd.drn; pulidown nodes
pu.gtin pu.gtout pu.src pu.drn ; pullup nodes
pt.gtin pt.gtout pt.src pt.drn ; passtran nodes
middle)) ; inverter output

(const
(w:gnd 1! south + 2) (in 1! w:gnd + 4) ; west wall
(north 1! w:vdd + 5) (w:vdd '1! pu.drn + 1)
(out >= last + 3)
(e:gnd 1! south + 2) (out 1! e:gnd + 4); east wall
(e:vdd 1! out + 2) (e:vdd !! w:vdd)
(s:clock >= pt.src + 3) (n:clock = s:clock) ; south & north walls
(gc = west + 5) (gc 1! south + 2) ; ground contact
(pd.src = gc) (pd.drn = pd.src) ; puildown
(pd.gtin >= In + 1) (pd.gtout >= pd.gtln + 8)
(pd.src 1! gc + 1) (pd.gtin 1! pd.src + 3)
(pd.gtin !! In) (pd.gtout !! pd.gtin)
(pd.drn 1! pd.gtin + 3)
(middle 1! pd.drn + 1) (pu.src 1! middle + 1) ; inverter output
(middle = pd.drn)
(pu.src = middle) (pu.gtin = pu.src) ; pullup
(pu.gtout = pu.gtin) (pu.drn = pu.gtout)
(pu.gtin 1! pu.src + 2) (pu.gtout !! pu.gtin + 7)
(pu.drn 1! pu.gtout + 2)
(pc = pu.drn) (pc !! w:vdd) ; power contact
(pt.gtout = s:clock) (pt.src >= pd.gtout) ; passtran
(pt.drn >= pt.gtin + 3) (pt.gtout 1! pd.gtout + 1)
(pt.gtin 1! pt.src + 3) (pt.src !! middle)
(pt.gtin = s:clock) (pt.drn !! pt.src)
(last !! pt.drn) (last >= pt.drn + 3)) ; last contact

(geom
(dm-at gc) ; contact between puildown and ground

97

(wire metal 4 w:gnd gc e:gnd) ; ground wire
(pulidown ; pulidown has two parts
4 (path pd.src pd.drn) ; diffusion path from source to drain
2 (path pd.gtin pd.gtout)) ; a poly path from gtin to gtout

(wire poly in pd.gtln) ; connect gate to input port
(wire diffusion gc pd.src) ; connect pulidown to ground
(pullup ; pullup has four parts
2 (path pu.src pu.drn) ; a diffusion path from source to drain
8 (path pu.gtin pu.gtout)) ; a poly path from gtin to gtout

an implant layer is automatically drawn
over the poly layer, extended by 2 lambda
on either end, and a butting contact at the
gate input connecting the gate to the source

(wire diffusion pd.drn middle pu.src); connect the pullup and pulidown
(wire metal 4 w:vdd pc e:vdd) ; power wire
(wire diffusion pu.drn pc) ; connect pullup to power
(dm-at pc) ; contact between pullup and power
(pastran ; passtran Is equivalent to the puildown
2 (path pt.drn pt.src)
2 (path pt.gtin pt.gtout))

(wire poly n:clock pt.gtin) ; wire up clock to one end of the gate
(wire poly s:clock pt.gtout); wire up other end of gate to clock
(wire diffusion middle pt.src) ; connect Inverter output to pasatran's

source
(be-at last) ; butting contact for passtran to out
(wire diffusion pt.drn last) ; connect passtran to contact and
(wire poly (pt-dx last 1) ; contact to out

(then-y (:y out)) out))
(struct

(nodes
pullup (n-type-dep len 6 wid 2)
pulldown (n-type-enh len 2 wid 6)
pass (n-type-enh))

(connect
(e:vdd w:vdd) (e:gnd w:gnd) (n:phi s:phi)
((:source pullup) e:gnd) ((:source pulidown) e:vdd)
((:drain pullup) (:drain puildown))
((:drain pullup) (:source pass))
((:gate pullup) (:drain pullup))
((:drain pass) out) ((:gate puildown) in)
((:gate pass) n:phi)))

(beh (s)
((s:phi = n:phi)
(out = if n:phi then (not s) else ©))

((if (in = ©) then s else in)))
)

98

2. A Shift Register Array

The definition of a 4 element bit-slice looks like:

(defcomp shiftslice
(> (> shiftreg shiftreg)
(> shiftreg shiftreg)))

and the definition of a 4 bit wide bit-slice (Figure B.1.) Is simply:

(defcomp shiftarray
((shiftslice shiftslice)
(shiftslice shiftslice)))

99

F

II II

I

 'H
II

lu

-I I

I

mom

J

I

I MUM

I

I

MUM

Figure B.1. Geometry of a 4 x 4 Shift Register Array

