A brief explanation on the cost sharing model used for the south sub-regional transit pilot project

Cost Sharing is a decision based on values. The CRP sub-regional service cost sharing methodology is based on the following three principles:

1. Equal: Implementing the service together is more benefic ial than implementing service individually.
2. Population/ridership: Communities should be responsible for the portion of service used by the people from each community.
3. Service hours/distance: Communities should be responsible for the a mount of service received and relative costs.

These three methods for dividing cost were agreed upon asimportant. The next questions were:
How do we measure each item? And what is the relative weight or importance of each item?

Measurements:

1. Equal: Five participating communities, means that the cost is divided by 5. Community A pays 20%, B pays 20%, C pays 20%, etc.
2. Population/ridership: Each community pays for their proportion of the total population, as a measure of usage. In the future, when ridership is known, actual usage of the service can replace population. For example, total population of all five communities is 500, and community A has 50 people. Community A would pay for 10% of this category.
3. Sewice hours/distance: Measuring the a mount of service received could be done by using distance (kilometres) ortime, service hours. Time waschosen because the major cost driver is the cost of the operator. Kilometres is dec eiving, since driving 15 km between towns on highways would take one-third of the time it takesto drive 15km in town.

Because this is a regional service, agreement on how to pay for the time when the bus travels between communities had to be negotiated (it waseasily agreed that each community pays for the time the bus is within municipal boundaries).

Potential to use the service wasthe key factorto deciding how to share this cost in between munic ipalities. Refeming to the diagram below, when the busleavestown A, heading to town B, only people from town A can be on the bus, therefore only town A will be responsible for that time. When it leavestown B and heads to town C, people from both A and B could be on the bus. The time it takes to travel between B and C is shared between towns A and B. Finally, once the busleavestown C, people from all three towns could be on the bus. Therefore, the time is divided by all three towns.

Stantec

The result is that the town at the end of the line, town A, ends up paying forall or a portion of each segment bec ause their residents can travel the full length of the trip.

The partic ipating communities a greed to divide the time in between each municipality by population. For example, if it takes 30 minutes to travel between B and C, and community A has 50 people, and community B has 100 people, Community A would pay for $1 / 3(50 / 150)$ of 30 minutes, orten minutes, and B would pay for $2 / 3(100 / 150)$ of 30 minutes, or 20 minutes. Thus, town A pays 100% of the time between towns A and B, 33\% of the time between B and C, and 14\% of the time between C and D (for example).

Weighting of each category:

Population and cost to provide the service were deemed the most important, and would thus account for the greatest percentage of cost. The participating communities agreed that somewhere between $10-20 \%$ of total cost would be shared equally. After running a few scenarios, the group agreed to a llocate 40% to the population/ridership bucket, 40% to service hours, and 20% to the equal category.

For example, if the service cost $\$ 100,000$ to operate, 40,000 would be a llocated to the population bucket and would be divided by the methodology shown above. In that example, Community A has 10% of the total population, and there for would be responsible for 10% of $\$ 40,000$, or $\$ 4,000$. Community A would also be responsible for it's portion of the equal bucket $(20 \%$ of $\$ 100,000=20,000)$

Stantec

