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Abstract

In this work, we propose a novel method of applying deep learning technique in thermal image

processing and analysis for healthcare application. It addresses detection of abnormal thermal

patterns, thus identifying, in particular, patterns of elevated temperature that indicate fever, hy-

pothermia and related abnormalities. Temperature estimation is performed based on the analysis

of regions-of-interest from the thermal images of human faces. Another focus of this work is to in-

vestigate thermal effects of alcohol intoxication. We applied the deep learning approach on 16,000

usable images of 40 subjects from a publicly available Drunk-Sober database. Two Convolutional

Neural Network architectures were investigated for the task of processing of two regions of inter-

est - the forehead and the eyes. The accuracy of the neural network classifiers to predict subject’s

insobriety using the forehead and eye regions-of-interest reached 95.5% and 96.67%, respectively,

compared to the best known results on the same data using a non-deep neural networks. To boost

the accuracy of classification, both the feature-level and the score-level fusion were applied as well,

thus improving the accuracy to 96.92%.
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Chapter 1

Introduction

This thesis is a result of the feasibility study conducted in collaboration with the Calgary Drop-In

& Rehab Centre Society in Calgary (also called the DI Centre). This study was focused on the

task of detecting potential medical emergencies of the DI Centre clients in a non-invasive, access

check-in manner, using thermal body metrics (a type of biometrics) at distance, i.e. via infrared

camera. Two problems within this study were investigated:

• How accurate would be the body temperature estimation (via face area)using in-

frared camera and a particular access point setup given certain restrictions?

• Would the usage of thermal video be helpful in detecting abnormal temperatures

cased by fever or other medical condition such as insobriety?

1.1 Motivation

The Calgary DI Centre is one of the largest homeless shelters in North America. It has being using

biometrics such as fingerprints for the access point for few years. The Centre serves about 2,000

homeless people per day, and identity management and security is in paramount demand there.

The shelter has multiple groups of clients, and providing appropriate services to various groups

by identifying the known or occasional clients (such as families fleeing domestic violence, trade

workers who need temporary shelter at night, or drug addicts and heavily intoxicated occasional

visitors) is an important part of the shelter entrance and security system.

As of 2018-2019, the IT Department of the DI Centre is conducting a pilot project on using

face biometrics (face recognition) at a prototype ‘kiosk’. Face recognition of frequent client (for

now, volunteers only) is performed at this one prototype setup using access to Microsoft face
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recognition tools. The IT Department is considering adding other ways to assist in client services,

such as detecting early signs of illnesses or insobriety. One of the choices for a relevant study was

to investigate potential use of thermal camera that could be later installed in the same prototype

‘kiosk’. Usage of early detection of extreme fevers, hypothermia (frostbite) or insobriety would

allow the DI Centre personnel to assist client and call medical emergency service as needed.

Homelessness is a social phenomenon related to human dynamics in the changing world, eco-

nomical and financial issues, as well as potential threats such as epidemics and natural disasters [1].

Homelessness is a part of a more complex problem: according to the UN, over 1 billion people live

in inadequate shelter and over a 100 million people live in conditions classified as homelessness

[2].

Shelters and Drop-In Centres are social services or charities that provide services to homeless

people, as well as people who are temporarily dislocated due to emergencies or natural disasters.

Such Centres need a highly efficient infrastructure for managing clients and protecting personnel.

However, the majority of Shelter clients do not possess any IDs, or carry IDs that may not be

validated. Using biometric-based identity management is one of the solutions to this problem. For

shelter clients, biometric IDs can empower them to exercise their fundamental economic and social

rights, as well as enabling Shelter governing agencies to validate and streamline their services.

The DI Centre formulated their current problems and challenges in the area of secure access

to the building, as well as building facilities security as related to clients’ activities and access to

services:

• What biometric solutions can be recommended and integrated in the DI into access

control such that those technologies are acceptable, non-invasive, usable, and pri-

vacy and trust preserving? Current fingerprint scanning deployed in the DI does not

seem to satisfy the above criteria; for example, fingerprint identification has low

accuracy because some of the clients have worn-out or unclean fingers.

• How to enhance or update the existing technologies that would improve the safety
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of citizens and personnel? Currently, no solutions are known for risk assessment or

warning in the DI, except for manual analysis of video-feed from CCTV cameras

by security officers. In addition, the DI center faces problems as huge as unexpected

deaths of clients, so an early warning system is of utmost importance in the center

to reduce the problem of unexpected instant deaths of the clients of the shelter.

This thesis reports the preliminary results of a pilot project initiated by the Calgary Drop-In &

Rehab Centre Society, and conducted in cooperation with the Biometric Technology Laboratory,

University of Calgary, Canada. This study focused in the following tasks:

• Body temperature estimation using thermal imaging of face of a subject, acquired

using an infrared camera in a particular access point setup given certain restrictions.

• Feasibility study detecting abnormal thermal pattern cased by certain medical con-

dition such as insobriety.

1.2 Background

Face biometrics is a non-invasive, contactless, and commonly accepted type of biometrics for ac-

cess points and surveillance networks. The challenges of facial recognition include environmental

variations (luminance, day and night time), pose, accessories etc. However, face imaging in visible

and cross-spectrum (such as thermal) bands, can provide useful features assessed at a distance,

such as body temperature, facial expression, age, gender and, possibly, identify drug and alcohol

abuse cases [3].

Infrared Thermography (IRT), also known as thermal imaging, is the science of detecting the

infrared radiation emitted from a body and extracting the temperature value. IRT is a biometric

technology that is contactless and poses lesser privacy concerns compared to video and photograph

recording, since thermal images does not allow directly identify subject based on the appearance.

IRT as a form of biometrics has been used for monitoring a patient’s health status [4].
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Outbreaks of contagious diseases such as severe acute respiratory syndrome (SARS) have oc-

curred in some countries, reinforcing intensive IRT based screening at the borders especially at

international airports [5]. IRT screening was used for detection of febrile clients because fever is

one of the most noticeable signs of infections such as avian influenza, influenza A virus subtype

H1N1, and SARS [6].

Recently, a body of research on using thermal image analysis of face to detect alcohol intoxi-

cation appeared starting with [7].

This thesis revisits the major results achieved in this area, and specifically focuses on detecting

thermal abnormalities such as elevated temperature, assessing the accuracy of measurements given

the restricted data, and, finally, focusing on thermal pattern indicative to insobriety, given available

data. We further investigate the feasibility of the above approaches for the specific application in

the Calgary DI Centre.

1.3 Objectives

The main hypothesis (‘thesis’) of this study is formulated as follows: “The thermal body pattern

abnormalities caused by certain medical conditions, which are correlated to specific temperature

distributions, can be detected and analyzed using infrared images/video of subject’s face in close

proximity to the thermal camera. The applications involves detecting abnormal temperatures cased

by fever or other medical condition such as insobriety”.

The main objectives of the thesis are as follows:

• Design a semi-automated system capable of a feasible estimation of the subject

facial temperature. The automation is important for scalability to real-life imple-

mentations, where no manual intervention is possible.

• Create an implementation which continuously records infrared images of a subject

face and predicts the level of sobriety.
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Figure 1.1: Architecture of the proposed system for thermal image analysis

• Utilize state-of-the-art techniques, such as feature extractors and classifiers based

on machine learning, in particular, Convolutional Neural Network (CNN) and Sup-

port Vector Machines (SVM).

• Test the proposed approach on an available data sets such as the University of Patras

‘Sober-Drunk’ Database. Organize the experiments and present the results in a way

that is unbiased, and can be easily compared with by other researchers.

Figure 1.1 shows the general architecture of the system we are proposing for the analysis of

thermal images.

This system includes the following components:

• The input data is an infrared image of the subject’s face acquired at close proximity

to the infrared camera.

• The images are passed to the Pre-processing stage that ensures the frames are uni-

form and normalized.

• The next stage is two-fold: (a) a temperature estimation using the curve-fitting

model, or (b) feature extraction and classification of sobriety using the deep neural

network.
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• the output data is the estimated temperature (which can be further used to classify

the subjects as having normal temperature, febrile or hypothermic), and the subject

label (either ‘sober’ or ‘drunk’).

1.4 Contributions

The contributions made during the course of this research are reflected throughout the following

publications:

• O. Obi-Alago, S. Yanushkevich, “Using Thermal Signature Abnormalities in health-

care,” in 19th Annual Alberta Biomedical Engineering Conference, 2018.

• O. Obi-Alago, P.Kozlow, A. Noor, S.C. Eastwood, H.M. Wetherley, and S. Yanushke-

vich, “Pilot Project: Biometric-Enabled Risk Assessment for City Emergency Shel-

ters,” the IEEE Transactions on Computational Social Systems, submitted.

• O. Obi-Alago, S. Yanushkevich, “Thermal Image Processing and Classification us-

ing Deep Neural Networks,” in the Eight International Conference on Emerging

Security Technologies, UK 2019, submitted.

The first publication mainly focused on developing the system for detecting illness and also alcohol

detection using CNN. Two networks was built using two regions-of-interest on the images, and the

accuracies of classification was estimated.

The second paper describes a multi-biometric enabled identity management and risk assess-

ment system for clients that are part of an emergency shelter. As part of a smart-city concept, this

system proposes to improve authentication by fusing many data channels such as gait, face, and

thermal imaging. For this system an individual’s physiological as well as behavioral features can

be used to grant permission to access certain services. Based on Bayesian decision networks the

proposed system is capable of providing a risk assessment which is based on available biometric

data.
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In the third publication, an extra step was taken to fuse the results from the first paper in order

to develop a more accurate system for classification. This yielded a higher classification accuracy

than the individual networks proposed in the first paper.

1.5 Thesis Outline

The rest of this thesis is organized into the following four chapters. Chapter 2: Literature Re-

view contains a relevant literature review on face detection and extraction methods, the use of IRT

in detection fever and sobriety of individuals and then the classification methodologies on gait

recognition, virtual modeling, databases available, and a detailed description about some common

algorithms and techniques currently being used. Chapter 3, Face Thermal Patterns Analysis, de-

scribes how infrared images can be used to detect a sick subjects and the experiments that was

conducted on this approach. Chapter 4, Insobriety Detection using Thermal images and Machine

Learning, describes the proposed system of detecting sobriety in subjects. In addition, an applica-

tion was developed and experimentation was conducted to test the feasibility of the system. Lastly,

Chapter 5: Conclusions & Future work summarizes important observations made throughout the

study, and presents ideas for future work.
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Chapter 2

Literature Review

Thermal imaging has been used for decades to analyze temperature distribution of objects of in-

terest. In this section, an overview of the background information and breakthroughs on the use

of thermal imaging in healthcare applications such as human body temperature estimation and

analysis of thermal pattern of faces will be discussed.

2.1 Thermal Imagery for Health Diagnosis

There is ongoing research on application of thermal, or infrared (IR) cameras to capture and record

temperature variations on the skin for medical diagnostic purposes. The human body is homeother-

mic, i.e self-generating and regulating a stable internal body temperature necessary for survival.

The temperature of the human face is about 300 K, or 36.6oC and, according to Wien Law,

radiates as 300 Kelvin black-body (with wave length of 9.5 microns). Recall that Wien’s law states

that the black-body radiation curve for different temperature peaks at a wavelength is inversely

proportional to the temperature. That peak is different for different temperatures as stated by the

Planck radiation law, which describes the spectral brightness of black-body radiation as a func-

tion of wavelength at any given temperature. It explains the shift of the spectrum of black-body

radiation toward shorter wavelengths as temperature increases. In other words, all objects emit a

certain amount of black body radiation as a function of their temperature, and the higher an object’s

temperature, the more infrared radiation is emitted as black-body radiation. It works even in total

darkness because ambient light level does not matter.

Thermal sensors, or cameras, help record the temperature distribution of an objects in the

camera view that emits infrared light. The focused light is scanned by a phased array of infrared-

detector elements. The detector elements create a temperature pattern called a thermogram. A
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usual infrared detector resolution, or the number of pixels, is 480×640 or less.

The thermogram created by the detector elements is translated into electric impulses that are

sent to a signal-processing unit that forms a data for the display.

The thermal cameras that are best for human body thermal pattern analysis operate in the

wavelengths range from 7.5 to 13.0 microns (mid- and long-wave infrared). Note that 9.5 microns

for 300 Kelvin black body corresponds to that of human skin. Raw thermal images are gray-scale

images, usually with 256 levels of intensity. Pixel intensity of the thermal images can be mapped

onto the temperature maps. Thermal images does not provide an absolute temperature in every

pixel of the image, and rather must be compensated in a software way.

In practice, using as reference a local temperature measurement on the object or a subject is the

simplest and most effective solution. Thermal cameras labeled “R” are radiometrically calibrated.

Using such cameras enables the capture of absolute temperature in every pixel of an image. They

save their images in RJPG (radiometric JPG) format, a .jpg image with temperature data embedded

in every pixel. However, even with radiometrically calibrated cameras, the differences in illumi-

nation, the properties of the object surface (material, texture), also affect the thermal emissivity.

Such bias can be compensated by the software, as well as at the hardware level.

The correspondence between the image pixel intensity and temperature of a subject on the

thermogram can be used to extract useful information on the metabolic and vascular activity to

detect abnormal changes in physiology.

Thermal imaging is used to study a number of diseases, especially ones that cause inflammation

or where blood flow rate changes. Currently, a lot of physicians employ thermal imaging cameras

to detect some medical conditions, such as arthritis, repetitive strain injury, muscular pain, and

circulatory problems. For example, [8] reported that the surface temperature of an arthritic joint is

related to the inflammation on the joint.

Thermal imaging has also been used to diagnose osteoarthritis, which is a type of joint disease

that results from breakdown of joint cartilage and underlying bone. In [9]; it was concluded that
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there are temperature changes associated with degenerative changes caused by osteoarthritis.

In [10], detection of abnormalities in peripheral circulation using thermography was studied.

The paper investigated circulatory disorders, such as Raynaud’s phenomenon, or hand arm vibra-

tion syndrome, that causes damage to small blood vessels from exposure to vibrating machinery. It

was shown that the effect of local blood circulation on skin temperature can be assessed by thermal

imaging.

Infrared imaging was also applied to diagnose cancer, especially breast cancer. Paper [11] was

one of the first to report the use of surface temperature measurements as a possible tool for breast

cancer diagnosis. Paper [12] reviews the progress that has been made in using thermal imaging to

detect breast cancer over the past three decades.

2.2 Thermal Imagery for Detection of Insobriety

Insobriety is a physiological condition caused by alcohol affect on body function. The use of

thermal imagery in detection of alcohol intoxication lies in the fact that the blood flow rate in

blood vessels on the face changes when alcohol is consumed and, consequently, causes a change

in the temperature distribution [13].

In [7], it was suggested that features derived from the pixel values within regions-of-interest on

the face can be used to detect alcohol intoxication. The approach called Local Difference Pattern

(LDP) calculated using the pixels on the thermal image of a face was applied to identify intoxicated

subjects [14]. This approach considered a difference between the neighboring pixels, and used it

for classification. Research by [15] shows that there are specific regions of interest on the face that

are better suited for detecting intoxication. It is found that the thermal behavior of forehead and

nose regions of the face change after alcohol consumption. The eye region was also investigated in

the research on this subject. The temperature distribution on the eyes of sober and drunk persons

was studied in [16]. It was observed that the temperature difference between the sclera and the iris

increases when an individual consumes alcohol. The information derived from this difference in
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temperature was used to classify a subject as being intoxicated or sober.

In a research conducted by [13], the blood vessels on the face was separated and isolated from

the rest of the information on the image of the face by applying morphology on the diffused image.

To extract the blood vessels from the thermal image, the top-hat transform and anisotropic diffusion

was applied to the image. Top-hat transform, which is an operation that extracts small elements

and details from images, was used to isolate hot or cold features in an image of a specific size, and

a non-linear anisotropic diffusion was applied to enhance the vessels on the images. The increased

blood vessel activity was utilized for classification of sobriety levels of subjects.

Neural network classifier was applied by [17] to discriminate thermal images of “sober” and

“drunk’ subjects. Two approaches based on neural networks were studied. In the first approach,

different neural structures were used for different locations in the thermal image of the face, and the

convergence capabilities of the network were monitored. A successful convergence characterized

the corresponding location of the face as being a good candidate for intoxication identification.

According to the second approach, a single neural structure was trained with data from the thermal

images of the whole face.

2.3 Face Detection

Detection of face in a thermogram is an important part of finding facial temperature abnormalities.

The most common face detection algorithm, applied on video images, is Viola-Jones algorithm

[18]. It filters the face using a set of Haar-like features (moving windows). The calculations are

simplifies by using an approach called an integral image. The feature filter extracts the patterns

such as eyes, eyebrows and facial borders. These filters, also called “weak” classifiers, are then

boosted with AdaBoost which selects the most discriminative features. Finally, a cascade of classi-

fiers selects the best detected location of the face. This method works extremely fast, but can have

low detection rates on rotated images or different lighting conditions.

Another unified model for face detection is presented in [19]. It is based on a search algorithm
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that uses a mixture of trees with a shared pool of part of the facial templates. It models every facial

landmark as a part and use global mixtures to capture topological changes due to viewpoint.

Authors in [20] proposed a face detection approach specifically for infrared images. They

approached the face detection from a statistical point of view. They analyzed the “hot” parts on the

face that are the tissue area that have a lot of blood vessels, such as the periorbital and the forehead.

In the contrary, the “cold” parts have fewer blood vessels; it includes cheeks and nose. This feature

casts the human face as a bimodal distribution entity. The background of a thermal image can also

be described by a bimodal distribution. It typically consists of walls (cold objects) and the upper

part of the subject’s body dressed in clothes (hot objects). The bimodal distributions of the face

and background vary over time, due to thermo-physiological processes and environmental noise

respectively. Using these distributions, a face region in a thermal image can be detected.

Deep learning approach such as Convolutional Neural Network (CNN) have also been used for

face detection, as suggested in [21]. The CNN cascade operates at multiple resolutions, rejects

the background regions in the fast low-resolution stages, and carefully evaluates a small number

of challenging candidates in the later, high-resolution stage. To improve localization effectiveness

and reduce the number of candidates at later stages, they introduced a CNN-based calibration stage

after each detection stage in the cascade.

2.4 Thermal Image Registration

Image registration has been a challenging task in the field of image processing. The purpose of

image registration is to account for any lateral or vertical movement from the subject that takes

place during image collection. There are various techniques available for image registration for

medical images and for images in biometric applications. The author in [22] proposed an intra

subject image registration of the infrared images. In [23], the authors discussed a Multi-Modality

Image registration (MMIR) of visible and infrared facial regions for the accurate detection of the

Canthi (eye corner) regions. According to the study, Canthi regions provide the most accurate es-
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timates of the core body temperature. The challenge is that it is very difficult to accurately identify

Canthi regions from an infrared image. They used a two-step coarse to fine registration for both

the visible and infrared images, achieving a reasonable registration accuracy and the temperature

reading accuracy of 0.10±0.09oF .

2.5 Classifiers

In deep learning, classification is the process of identifying which set or categories a new obser-

vation belongs to, on the basis of a training set of data containing observation whose category is

known. Classifiers are used to perform the classification and this is done after the extracted fea-

tures are passed onto them. The classifiers learns from the training data and predicts the class of

the new data from the testing set. The choice of the classifier depends on a number of factors: size

of the data, whether the data is labeled or not, and if the classes are discreet or continuous.

A simple K-Nearest-Neighbor, for example was not used in out study, because it is generally

inefficient for the large data set size [24]. The UPatras database that was used in this work is

properly labeled and has thousands of images making the SVM and CNN the preferred classifiers.

2.5.1 Support Vector Machine

SVM is a supervised learning model based on the principle of regression analysis. It was first

introduced in 1992 [25], and was used to train and classify unseen data. SVM have been used to

solve a both pattern recognition and estimation problems. It has also been applied to dependency

estimation, forecasting and constructing intelligent machines [26, 27]. SVMs have the capacity

to work with very large feature space, due to the generalization principle which is based on the

Structural Risk Minimization Theory i.e., the algorithm is based on guaranteed risk bounds of

statistical learning theory [28]. SVMs as a classification method also has an application in medical

research. K.Polat [29] applied Least Square SVM (LSSVM) in solving the problem of breast

cancer diagnosis, with classification accuracy of 98.53%.

14



Training an SVM is simple, as there is only one parameter for linear SVM, and two in RBF

SVM. It does not have the problem of local minima, unlike some other learning classifiers such as

neural networks. Rather, SVM calculates a decision boundary based on the parameters selected.

The most common form of SVM is the C-support vector classification (C-SVC), which classi-

fies data with a cost parameter C. The value of C is used to determine the number of misclassified

data samples and the decision boundary. If some of the outlier samples are left to be misclassified

by the SVM, it allows the decision boundary to be smooth and simple, thus classifying other un-

seen data more accurately. The parameter C is set by the user, and is generally grid searched in

order to generate the most optimal value. n-SVC is an extension where the parameter n controls the

number of allowed support vectors. A support vector is a data point close to the decision boundary,

which SVM uses to optimize the data class separation.

SVM algorithms use a set of mathematical functions called kernels for the transformation of

input to the required form. Multiple kernels for SVM have been proposed: linear, Radial Basis

Function (RBF), polynomial and Gaussian kernel [25]. The simplest kernel is the linear kernel

which is used the classify linear data. When the data set gets more complex(non-linear), RBF

kernel is commonly used. It has shown a better classification accuracy than the linear kernel

[30]. Polynomial and Gaussian kernel also classifies non-linear data well. It was used in medical

research for the classification of normal and malignant tissues [31].

2.5.2 Deep Learning

Deep learning (also known as deep structured learning) is a part of a broader family of machine

learning methods based on learning data representations, as opposed to task-specific algorithms.

Deep learning can be supervised, semi-supervised or unsupervised. Deep learning uses a cascade

of multiple layers of nonlinear processing units for feature extraction and transformation. Each

successive layer uses the output from the previous layer as input. The networks have many more

layers (increased depth) than their traditional counterpart. The features learned from deep networks

have proven to classify better than shallow networks. Types of deep learning networks include deep
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auto-encoders, deep Bayesian networks, and convolutional neural network (CNN). CNN is a class

of deep neural networks, most commonly applied to analyzing visual imagery. They take into

account the spatial information present in images by using layers of filters instead of individual

weights. CNN is a variation of the traditional neural network, but it uses filters instead of weights

which allows for many more layers because there are less overall parameters to be trained.

CNN was first introduced by Yann LeCun in 1994 when he created LeNet used for automatic

document recognition [32]. The LeNet5 architecture explored the fact that image features are

distributed across the entire image, and convolutions with learnable parameters are an effective way

to extract similar features at multiple locations. At the time there was no GPU to help training, and

CPUs were slow, and previous solutions treated each pixel as a separate input of a large multi-layer

neural network. LeNet5 proved that those should not be used in the first layer, because images are

highly spatially correlated, and using individual pixel of the image as separate input features would

not take advantage of these correlations.

CNN became more popular with the introduction of AlexNet [33], a winner of the ImageNet

Large Scale Visual REcognition challenge 2012 (ILSVRC). In 2014, another network was reported

that was deeper than AlexNet and performed better by 6% [34].

CNN has been used for many applications. Facial Recognition has been done with CNN on

large databases and it has generally outperformed the common filter based methods [35, 36, 37,

38, 39]. FaceNet was created by Google, and VGG network were made for face detection and

showed over 99% detection rate on Faces-in-the-wild images [40, 41]. CNNs have been used

to solve challenging computer vision tasks, especially in object detection and classification, text

recognition, sign recognition and scene understanding [42].

In 2016, Microsoft and Google released ResNet and Inception, which is an extension of CNNs

called directed acyclic graph neural networks (DAGNNs) [43, 44]. The idea of DAGNNs is that

the data does not need to flow in one path through the network, its layers can be passed over

during training by inserting ”shortcuts”. A very deep version with 1,000 layers was created, but it
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performed worse than the smaller networks, showing there is a limit to accuracy gains by simply

creating a deeper network. ResNet-152 and its extensions currently show superior performance on

the ImageNet data set.

A lot of researchers are working on optimizing deep learning and creating extensions and add-

ons to improve the structure and hyper parameters. One major drawback in CNN is having a

lot of parameters that need to be fine-tuned, which affects the accuracy of the network. Ensemble

networks have been proposed as a solution to this, where each network has slightly different values

for the hyper-parameters. Every network classifies a portion of the data, and the results are fused

together to produce one answer.

2.5.3 Training Methodologies

Training a classifier in CNN is a important. When the network is trained properly, a high accuracy

of classification is achieved. The input data is usually separated into a training set and a testing

set, such that no same images are put in both the training and testing set, to avoid having false

accuracy. Separating the training and testing set data is done in two ways - image level and subject

level separation.

In image level separation, all the data is merged and treated as one disregarding the label on

the images. Then this merged data is split into training and testing set. The training set is used

for training the network and the testing set is used for testing and cross-validation to evaluate the

performance of the system.

In subject level separation, the images are split according to their labels. In this scenario, the

subject in the training images is completely different from the subject in the testing set. This

approach is very suitable for scenarios where the test subjects are most likely not known to the

network. In should be noted that in emergency shelter scenario that this study is dedicated to, it

is very likely that the probe subject was been seen by the system before (was not included in the

training). Therefore, in our study we chose to use the subject level separation. In addition, if the

database contains very similar images, subject level separation makes the classification simpler
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because it reduces the amount of images to match, unlike in the image level separation where all

the images are mixed together.

Cross-validation is a strategy used in designing a more robust solution for the accuracy of a

network. The data set is broken into K sets, where K value is the number of subjects. Some of the

sets are used for training and the remaining set is used for classification. For the UPatras database,

there are 40 subjects, and we chose 40-fold cross validation. This is boundary case of validation,

also known as “leave-one-out” approach. This method was chosen in this study as it provides a

robust accuracy, and allows to estimate accuracy for each subject individually.

Another measurement most commonly used when the class sizes are unbalanced is precision.

Precision is the number of correct predictions of one class divided by the total number of images

in the class. Given a problem with c classes, there will be c precisions. The overall accuracy is

then calculated as the average of the precisions. The advantage to using this over classification

accuracy is that it properly represents the accuracy of each class, regardless of its size.

2.6 Fusion Methodologies

Fusion in pattern recogniioin is a method of merging results from various classifier, or experimental

setups, and allows to achieve a better accuracy. Instead of relying on just one method, fusion

gives us an opportunity to exploit the strength of both methods, and increase the accuracy of

classification.

Multimodal biometric systems that uses several biometrics (for example, face and iris, gait

and fingerprint) generally apply fusion of different types of biometrics at various levels. Single

(unimodal) biometrics tend to suffer due to noise sensitive data, intra-class variations, inter-class

similarities, etc. The purpose of fusing some unimodal together biometrics is to increase the ro-

bustness and resistance to spoof attacks [45]. There are various levels at which fusion can be

performed [46]:

• Sensor level - where two or more datasets acquired using different sensors are com-

18



bined.

• Feature level - which focuses on combining critical features extracted from two or

more modalities.

• Score level - where the scores obtained from various matchers/classifiers are com-

bined.

• Decision level - where the decisions of classifiers for various systems are combined.

A lot of research has been ongoing in the field of fusion methodologies in an attempt to improve

biometric classification systems. These works include fusing different biometric modalities at

different levels. For example, the performance of iris recognition was improved using score level

fusion for scores derived for both textural and topological based matchers [47]. [48] proposed to

combine the iris and face at features level using Complex Common Vector (CCV) algorithm, and

was able to achieve better accuracy. Experimentation by [49] using score and signal level fusion

in iris recognition system yielded a better accuracy, although score level fusion performed slightly

better than the signal fusion.

In the field of security using facial recognition systems, fusion has also been proven to boost

system accuracy. In the research conducted by [50], higher security using face matching was

achieved by using feature level fusion. Decision level fusion of fingerprint and finger-vein as

presented by [51] shows the increased accuracy. The recognition was done using minutiae points

on ridge area, and finger-vein recognition was done using Local Binary Patterns method.

2.7 Conclusion

In this chapter, we revised the ongoing research on the use of thermal image for health diagno-

sis and detecting alcohol intoxication. We discussed the use of thermal images as a non-invasive

method of diagnosis of certain thermal abnormalities that may indicate health emergencies and

illnesses. The major advantage of infrared imagery is the fact that it is non-invasive and provides a
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relatively good accuracy in temperature estimation, as well as thermal regions detection or classi-

fication.

The need of properly registered images was also discussed, and different methods of achieving

same were presented. The classification of selected types of thermal image abnormalities, such

as the one indicative to subject’s insobriety, as reported in literature, were reviewed. Two specific

approaches were the focus of this review: SVM and CNN. In addition, a fusion approach to achieve

a higher accuracy of classification was revised. Fusing different features prior to classification, as

well as fusion of few classifier results is generally shown to boost the accuracy of classification.

The reviewed approaches were selected to be used and/or modified for the purpose of the

experimental study presented in the next chapters.
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Chapter 3

Face Thermal Patterns Analysis

This Chapter revisits the approaches to analysis of thermal pattern distribution on human face

using remote measurements by infrared (IR), or thermal, sensors known as IR video cameras.

Specifically, we focus on detecting regions-of-interest (ROI) for detecting abnormal temperatures

such as elevated above normal. These reading will be later used in Chapter for detecting the pattern

on the thermal face image indicative to insobriety, in particular.

3.1 Infrared Thermography

IR thermography is a technology that maps the surface, that is, skin, temperature of a body [52].

Use of thermal images for remote measurement of fever have been investigated in medical and

health sciences for few decades [53, 54, 55, 56, 57].

There is an evidential correlation between the facial temperature and the health status of a

subject. Normal body temperature ranges from about 360C to about 37.20C.

Fever is a very well known symptom of some infectious diseases such as influenza, SARs etc.

Fever screening based on infrared thermographs (IRT) is an approach that has been implemented

during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome [23].

Fever is also often part of the defensive response of the immune system of the human body,

which aims to kill intruding microbiological organisms (e.g. bacteria, viruses etc.) [58]. Normal

fever is not so bad as it supports the healing process of the body. However, if the the fever increases

above 430C and also very persistent, it could be dangerous [59]. Suppressing such fever is very

important especially for older people in order to protect their cardiovascular organs [60].

The most well-known approach to measure fever is using a mercury-in-glass thermometer [60].

The cheap and affordable standard devices sometimes require up to 4-5minutes to obtain a proper
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temperature reading. The reliability of these measurement devices is also dependent on the part

of the body the temperature was obtained from. Common areas for temperature measurements

are under the arms, mouth and ear region but the axilla region doesn’t always give a very precise

measurements [61]. There are other areas of the body that temperature reading can be taken from

but some of them can be very intrusive, inconvenient or even painful like the rectal region [62].

Not being very patient with the measurement process, because of waiting times of 5 minutes or

more, can cause false measurement results because the subject may not be able to remain calm for

the duration of the measurement. It becomes extremely challenging to measure fever especially

for children because they cannot stay calm for a prolonged length of time. A specialized fever

measurement device which uses infrared on the ear drum [63] is very fast and reliable when used

properly [64, 65]. However, the measurement is prone to error, for instance, when the tympanic

thermometer is held at a wrong angle. Additionally, both devices need direct body contact, which

is unhygienic. On the contrary, there are forehead thermometers that can be used without direct

body contact, but studies has shown that they have some limitations [66]. Nevertheless, these

thermometers offer a fast measurement and are hygienic.

It has become considerably easy to travel through different countries and continents with var-

ious climates. This has contributed to the increase in epidemic and pandemic crises, especially in

elderly people or people with a weak immune system [67]. Therefore, in airports or other border

control points, a quick temperature measurement and tests using thermal cameras have been found

beneficial [68]. Due to the increased use of thermal images in detecting illness, there has been an

investigation of how reliable the thermal cameras are for fever measurement [54, 55, 56, 57]. In

[56], the authors discuss the need of standardization when using infrared cameras.

Since the main goal of this study is investigate the possible solutions for remote, non-invasive

ways to assess the subjects’ possible health-related thermal status abnormalities, we first embark

on measurement of face skin temperature, as the most obvious area of body available at the point of

access to a shelter. Specifically, in this study, we collaborated with the IT department of the Calgary
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Drop-in Centre which is in the process of the implementation of a kiosk with a face recognition

for frequent clients of this shelter. The IT department there was interested to case study the use of

IRT, together with the facial recognition system. The goal is to identify clients who might be sick

(fever, other illnesses manifested via elevated or abnormally low body temperature) and need to be

directed to emergency healthcare services.

Motivated by these applications, this thesis investigates a contactless body temperature mea-

surement approach based on IRT, using a thermal camera. The aim of this development is to au-

tomate fever measurement, including automated region-of-interest detection. Unlike the existing

contact or semi-contact temperature measurement devices, such contactless measurement would

be an ambient screening of a user of an access kiosk point, and the subject would not feel that

their privacy is violated. This solution will also help the shelters or other mass access system

staff to provide appropriate health services to their clients. This solution will also be embedded

in the application for a client identification kiosk (using face biometrics) that is being developed,

in particular, in the Calgary Drop-in Centre. Since such kiosk requires a client to have their faces

to present to the video camera, an additional biometrics, thermal face video, would allow for the

health status check in the same setup as the established authentication process. If a subject’s ther-

mal images display a high fever or other abnormal thermal patterns, a health personnel would be

dispatched to access the client and provide medical help if needed.

3.2 Working Principle of an Infrared Camera

Thermal cameras are sensitive to thermal radiation at the infrared light wavelength. This light is

invisible to the naked eye, but can be felt as heat if the intensity is high enough.

All objects emit some kind of infrared radiation, and it’s one of the ways that heat is transferred.

If you hold your hand over some hot coals on the grill, those coals are emitting a ton of infrared

radiation, and the heat is transferring to your hand. The hotter an object is, the more infrared

radiation it produces. Thermal cameras can see this radiation and convert it to an image that we
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can then see with our eyes, much like how a night vision camera can capture invisible infrared

light and convert it to an image that our eyes can see. The amount of radiation a body emits can be

calculated using Planck’s law:

Bv(v,T ) =
2hv3

c2
1

e
hv

kBT −1
(3.1)

where v if the frequency of radiation, T is the absolute temprature, kB is the Boltzmann constant, h

is the Planck constant, and c is the speed of light in the medium, whether material or vacuum.

The thermal cameras can be cooled (older technology) or uncooled. Inside of an uncooled

thermal camera, there is an array of measuring devices that capture infrared radiation, called mi-

crobolometer. Microbolometers do not detect photons. Instead, they pick up on temperature dif-

ferences by sensing thermal radiation from a distant object. As microbolometers absorb thermal

energy, their detector sensors rise in temperature, which in turn alters the electrical resistance of

the sensor material. An embedded processor can interpret these changes in resistance and use the

data points to generate an image on a display. These arrays do not need any cooling systems. That

means they can be integrated into smaller devices, such as night vision goggles, weapons sights

and handheld thermal imaging cameras.

3.3 Temperature Extraction and Classification

The value of the temperature derived from infrared images is generally evaluated based on the

image pixel intensity. The raw infrared images are usually represented by a grey-scale image

intensity varying from 0 to 255 (256 levels of intensity). The higher the intensity value, the higher

is the temperature; however, this relationship is not linear. To estimate the temperature value, the

principle of polynomial curve fitting is generally used.

Curve fitting is a process used in predictive analytics. Its goal is to create a curve that describes

a mathematical function that best fits a series of data points. Interpolation is normally used in order

to find the exact fit to the data [69]. An alternative way is to create a smoothing function which “fit”

the data with a certain approximation. In either case, a single mathematical function is assigned
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to the entire body of data, with the goal of fitting all data points into a curve that delineates trends

and aids prediction. Fitted curves can be used as an aid for data visualization, to infer values of

a function where no data are available, and to summarize the relationships among two or more

variables. Extrapolation can be further used to extend the fitted curve beyond the range of the

observed data. Extrapolation is subject to a degree of uncertainty since it may reflect the method

used to construct the curve as much as it reflects the observed data [70].

3.4 Experiment

The purpose of the experiments is to test the feasibility of the proposed approach and the selected

system architecture (including a thermal camera) for fever detection. The first section describes the

task of fever detection, which involves classifying the subject database into three classes. These

three classes are: low temperature, normal temperature and high temperature (fever). The precision

of the proposed system is compared to the temperature readings from a reasonably precise forehead

thermometer which serves as the ground truth. Next, the standard deviation and the variance of

our reading is calculated. Finally, we calculate how close the remote reading to the temperature

reading from a forehead thermometer.

The data for this experiment were obtained using the frames with images of faces of multiple

subjects using the infrared camera Miricle from Thermoteknix Inc. The data were collected under

the University of Calgary Research Ethics Committee approval (a Certificate of Approval can be

found in the Appendix to this thesis).

The flowchart of the proposed approach to the facial temperature estimation using remote mea-

surements is shown in Figure 3.1.

To test the feasibility of our system in varying environmental condition, we acquired the read-

ing at two different locations and at different times of the day. Multiple thermal images (frames

of the infrared video) of total of 55 subjects were collected for this experiment at room tempera-

ture. The resulting measurements were grouped into three classes: hypothermia (abnormally low
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Figure 3.1: Flow chart of the proposed algorithm for fever detection
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temperature), normal temperature and hyperpyrexia (high body temperature, or fever). At the time

of the thermal video recording, the forehead temperature was measured using a thermometer, to

serve as our ground truth for comparison. Table 3.1 shows the value of the average temperature

for each subject during one recording session, using both the thermal camera and the thermometer.

Figure 4.18 shows the interface of the Matlab-based application we built for the measurement of

temperature using the thermal camera.

3.5 Analysis of Experimental Result

For analysis of the experimental results, we used the direct comparison approach using the coef-

ficient of determination (also known as R-squared value), as well as a method known as Bland-

Altman plot.

The coefficient of determination, or R-squared, is a statistical measure that represents the pro-

portion between the variances of two variables in a regression model. In our case, we compare

variances of both ways to measure facial temperature. For example, if the R-squared of a model is

0.50, then approximately half of the observed variation can be explained by the measured variable

(temperature).

A graph illustrating coefficient of determination, or R-squared, for the reading from the ther-

mometer and the thermal camera is shown in Figure 3.2. The R-squared value is more than 90%

which means that the points are not so far from the fitted line (which indicated where the two

values are the same).

Bland-Altman plot, or difference plot, is used in medical research to measure the agreement be-

tween two measures [71]. The resulting graph is a scatter plot that represents a difference between

the two paired measurements versus the mean of the two measurements. The mean difference is

the estimated bias, and the standard deviation s of the differences measures the random fluctuations

around this mean. This plot allows to estimate whether 95% of the data points lies within ±2s,

which corresponds to an acceptable error.
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Figure 3.2: Infrared Camera reading versus forehead thermometer reading, in Farenheit

The Bland-Altman plot for our experiment is shown in Figure 3.3. In our case, 95% of our

points lie within the ±2s of the mean difference, and this is an acceptable accuracy for estimation

of the normal forehead temperature.

The regression analysis using those plots confirm that given 95% confidence, the difference

between the contact and contactless measurement lies within mean plus/minus two standard de-

viations. The 95% limits of agreement can be unreliable estimate for small sample sizes, and,

thus, it is important to calculate confidence intervals for 95% limits of confidence. The Bland and

Altman’s approximate method provides this estimate of interval quite well.

3.6 Conclusion

The study presented in this chapter discussed the feasibility of detecting illness and diseases with

the infrared camera. An infrared camera Miricle by Thermoteknix Ltd. was used to imitate the

environment in the access point at a shelter, Calgary Drop-in center as a case study. The goal

was to investigate whether it is possible to conduct such measurements for the aforementioned
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Figure 3.3: Bland-Altman Plot of the temperature measures by the thermometer and the thermal
camera, in Farenheit

application, and whether the accuracy of measurement is acceptable.

Using the proposed regression model, we drew the conclusion that there is a strong correlation

between the temperature reading from a forehead thermometer with the one using the thermal

camera system. In particular, the bland-Altman plot shows that over 95% of our data points lies

within two standard deviations, and, thus, it is quite feasible, given the controlled experimental

conditions, such as a subject standing in front of camera, in a room-temperature environment.

Unfortunately, we were not able to conduct experiment on the subject coming from extreme cold

weather, which may influence the measurement accuracy. As well, it was difficult or impossible to

have febrile subjects, or subjects with extreme fever. Further research is required to evaluate the

thermography based measurement accuracy for extreme environment and subject conditions.
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Table 3.1: Comparison of the Temperature measurement from the Camera and the Thermometer.

Number Thermometer(0F) Thermometer(0C) IR Reading(0F) IR Reading(0C) Ta - Tm Avg(0F) STD
1 96.3 35.7 96.5 35.8 0.2 96.5 0.04
2 97.0 36.1 97.3 36.3 0.3 97.2 0.09
3 97.1 36.2 97.0 36.1 -0.1 97.1 0.01
4 97.0 36.1 97.3 36.3 0.3 97.2 0.09
5 97.3‘ 36.3 97.0 36.1 -0.3 97.2 0.09
6 96.5 35.8 96.8 36.0 0.3 96.7 0.09
7 97.0 36.1 97.2 36.2 0.2 97.1 0.04
8 96.8 36.0 96.9 36.1 0.1 96.9 0.01
9 96.9 36.1 97.2 36.22 0.3 97.1 0.09
10 96.4 35.8 96.6 35.9 0.2 96.5 0.04
11 98.0 36.7 98.0 36.1 0.0 98.0 0.00
12 97.5 36.4 97.7 36.5 0.2 97.6 0.04
13 97.0 36.1 96.9 36.1 -0.1 96.9 0.01
14 97.5 36.4 97.7 36.5 0.2 97.6 0.04
15 97.2 36.2 97.4 36.3 0.2 97.3 0.04
16 97.0 36.1 97.3 36.3 0.3 97.2 0.09
17 97.0 36.1 97.2 36.2 0.2 97.1 0.04
18 97.1 36.2 97.0 36.1 -0.1 97.1 0.01
19 95.4 35.2 95.5 35.3 0.1 95.5 0.01
20 97.3 36.3 97.5 36.4 0.2 97.4 0.04
21 96.5 35.8 96.7 35.9 0.2 96.6 0.04
22 97.0 36.1 97.1 36.2 0.1 97.1 0.01
23 95.9 35.5 95.9 35.5 0.0 95.9 0.00
24 96.4 35.8 96.7 35.9 0.3 96.6 0.09
25 96.1 35.6 96.4 35.8 0.3 96.3 0.09
26 96.1 35.6 96.2 35.7 0.1 96.2 0.01
27 96.6 35.9 96.7 35.9 0.1 96.7 0.01
28 97.3 36.3 97.5 36.4 0.2 97.4 0.04
29 96.1 35.6 96.3 35.7 0.2 96.2 0.04
30 97.0 36.1 97.3 36.3 0.3 97.2 0.09
31 97.5 36.4 97.6 36.4 0.1 97.6 0.01
32 98.1 36.7 98 36.7 -0.1 98.1 0.01
33 96.8 36.0 96.8 36.0 0.0 96.8 0.00
34 96.4 35.8 96.5 35.8 0.1 96.5 0.01
35 95.4 35.2 95.2 35.1 -0.2 95.3 0.04
36 97.8 36.1 98.0 36.7 0.2 97.9 0.04
37 97.2 36.2 97.3 36.3 0.1 97.3 0.01
38 97.0 36.1 97.0 36.1 0.0 97.0 0.00
39 96.6 35.9 96.8 36.0 0.2 96.7 0.04
40 97.0 36.1 97.2 36.2 0.2 97.1 0.04
41 96.8 36.0 96.9 36.1 0.1 96.9 0.01
42 97.0 36.1 97.2 36.2 0.2 97.1 0.04
43 96.8 35.8 96.6 36.1 -0.2 96.7 0.04
44 97.7 36.5 98.0 36.7 0.3 97.9 0.09
45 97.7 36.5 97.7 36.5 0.0 97.7 0
46 96.0 35.6 96.2 35.7 0.2 96.1 0.04
47 96.9 36.1 96.9 36.1 0.0 96.9 0
48 96.7 35.9 96.9 36.1 0.2 96.8 0.04
49 97.6 36.4 97.8 36.6 0.2 97.7 0.04
50 97.7 36.5 97.7 36.5 0.0 97.7 0
51 97.5 36.4 97.6 36.4 0.1 97.6 0.01
52 98.4 36.9 98.7 37.1 0.3 98.6 0.09
53 96.5 35.8 96.7 35.9 0.2 96.6 0.04
54 97.0 36.1 97.2 36.2 0.2 97.1 0.04
55 96.9 36.1 96.9 36.1 0.0 96.9 0.00
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Chapter 4

Insobriety Detection using Thermal images and Machine

Learning

This chapter is dedicated to investigation of possible solution to another problem, formulated by

the collaborating IT department in the Calgary Drop-in & Rehab Centre Society. The problem

in question is to identify clients who may not be sober, i.e. under alcohol influence, and, thus,

may need to be directed to the shelter area that is separated from the services to other clients

seeking shelter. The identification of such clients might be conducted in a non-invasive way using

thermal camera readings, and combined with the existing infrastructure such as a kiosk that already

performs a function of face recognition.

This chapter introduces a novel approach to classification of patterns of thermal images of faces

with the goal to detect subjects’ insobriety. This approach is based on applying the state-of-the-

art machine leaning technique. Specifically, we apply deep neural networks, to extract features

from thermal images of faces, and, consequently, classify the subjects to two groups: “sober” or

“drunk”. The method proposed in this chapter yielded a classification accuracy that is comparable

or superior in some cases to the previous work done by other researchers in this field using different

machine learning techniques including non-deep neural networks and Support Vector Machine

(SVM) [16, 14].

4.1 Data sets for the experiment

The database used for this study is the UPatras “Sober-Drunk” database [72]. The thermal video

frames (images) from this database was used for training the network. The database was collected

at the University of Patras in 2012-2013 using FLIR Thermo Vision Micron/A10 infrared camera
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(18 mm, f/1.6) contains images of 41 subjects, 31 males and 10 females. Each person consumed

four glasses of red wine, 120 ml each (13% vol.), in 1h period (a total of 480 ml of wine, i.e. 62.4

ml of alcohol). The first 50 frames were collected of each subject before alcohol consumption, and

the second acquisition of 50 frames was performed 30 minutes after drinking the fourth glass of

wine. In each acquisition, a sequence of 50 frames for each person was acquired with a sampling

period of 100 ms between the frames. The resolution of the infrared images is 128×160 pixels.

This database was used for training the pattern recognition algorithms we used. In addition,

a combination of the UPatras database images and real-life subjects (sober) we collected for this

study, was used for testing.

4.2 The proposed system

The following four sections describe the main components of the proposed approach and system

architecture: 1) Input data preparation, 2) Face detection and region of interest extraction, 3) pre-

processing, and 4) classification (we applied Convolutional Neural Network (CNN) and SVM and

compared the results).

Figure 4.1 shows the overall system architecture of the insobriety detection system.

The overall architecture is described as follows:

• Input Image: The input images were prepared using the data from the UPatras

database [72] and Matlab program for reading separate files, as provided by the

database owners. We also used frames from short infrared videos of real-life sub-

jects we collected in the Biometric Technologies Lab at UofC and in the Calgary

Drop-in Centre’s IT Department, using Miricle Thermoteknix infrared camera with

resolution 480×640.

• Face Detection and Region of Interest Extraction: The subject’s face is detected

in the frame (image), then the ROI such as eyes and the forehead are is cropped, or

extracted, and passed on to the next stage for pre-processing.
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Figure 4.1: Overall system architecture of the proposed insobriety detection system. Input im-
ages are fed into the system for face detection, followed by pre-processing, feature extraction and
classification. This architecture is used for both training on database images, and testing on probe
images.
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• Pre-Processing: At this stage, the mean centering is performed on the images.

This involves calculating the mean of the frame pixels’ intensity, and finding the

new intensity value for each pixel by subtracting the original pixel intensity from

the mean.

The thermal image pixel values are integers with values between 0 and 255. A

general data preparation technique for image data is to subtract the mean value

from the pixel values. This approach is called centering, as the distribution of the

pixel values is centered on the value of zero. Centering requires that a mean pixel

value be calculated prior to subtracting it from the pixel values.

Next, a normalization is performed which involves scaling the data to be uniform.

The images are also re-scaled to the same size so it can be acceptable by the CNN.

In our experiment, we rescaled the forehead images to 45×15. The images of the

eyes were rescaled to 25×15.

• Feature Extraction and Classification: This step is performed in our study by

using two machine learning techniques: SVM and CNN. We compared the perfor-

mance of both techniques.

The first approach includes feature extraction using an approach called Local Dif-

ference Patterns (LDP). The classification is performed using SVM. In this experi-

ment, we use only the forehead as the ROI.

The second approach involves a CNN to perform both the feature extraction and

classification. Two ROIs were used for this experiment, - the eyes and the fore-

head. A separate network was built for each ROI, since the respective images have

different sizes and different feature vectors.

• Fusion: In order to improve the overall performance, we applied a a fusion of two

CNN based classifiers, one using the whole face frames and another using the eye
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region. We considered fusion at both the feature level (via concatenation of fea-

ture vectors) and score level (using various strategies to combine the classification

scores).

In Section 4.6.6, we provide the results of performance comparison of the proposed approach

and the works done by other researchers using the same database. The accuracy of the system,

especially after the fusion was performed, was comparable to other works. Section 4.6.7 presents

the results obtained on the data acquired in the Biometric Technologies Laboratory and in the IT

Department in the Calgary Drop-in Center.

4.3 Face Detection and Region-of-Interest Extraction

The ROIs on the facial images, or frames, of the subjects used in this experiment were detected

using a well-known Viola-Jones face detector [18]. This face detector is commonly used in facial

recognition to locate and crop faces in video frames, or images. One of its main features is that

the training is quite slow while the detection is fast. The MATLAB implementation of Viola-Jones

algorithm was used for this experiment. There are three basic steps involved in this algorithm: 1)

Haar-like transform for feature extraction, 2) calculation of integral images, and 3) the AdaBoost

feature selection.

1. The feature extraction is done using Haar-like features which is a very simple and

efficient 2-dimensional (2D) filter. The 2D filters are “moved” across the image

detecting facial features like the eyes, nose, mouth and the edges of the face. There

are some properties common to the human face that makes it easy to detect. For

example , the eye region of the face is darker than the upper cheeks, also the nose

bridge region is brighter than the eyes region. Haar-like features are then calculated

as shown in Figure 4.2: the sum of the pixels in the black rectangle is calculated,

and then the sum of the pixels in the white rectangle is subtracted from the first
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Figure 4.2: Rectangular templates used in Viola-Jones algorithm:(a) and (b) are two-rectangle
feature, (c) is a three rectangular feature, and (d) is a four-rectangle feature. The illustration is
inspired by [?]

sum. This calculation happens inside a detection window which is moved across

the image.

2. This step is based on the algorithm that calculates an integral image in order to

speed-up the calculations. The integral image allows for the Haar extractor to be

calculated by substituting every pixel point with the sum of all the points to the left

and above it. Figure 4.3 shows an integral image obtained for an image pixel. The

Integral value at any point (x,y) in the summed-area table is the sum of all the pixels

above and to the left of (x,y), inclusive, as stated in the formula below:

I(x,y) = ∑
x′≤x,y′≤y

i(x′,y′) (4.1)

In other words, the intensity I values of the integral pixels are computed using the

formula:

I(x,y) = I(x,y)+ I(x,y−1)+ I(x−1,y)− I(x−1,y−1) (4.2)

3. The last step is the AdaBoost feature selection which chooses the optimal features

by combining a set of simple learning algorithms (also called weak learners) to

form a strong classifier. No single feature can accurately classify a face with some

minimal error. Each weak learning algorithm determines the optimal threshold for

each classification which might reduce the classification error. A certain weight is
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Figure 4.3: Integral Image using the sum of the pixels. The value of the integral pixel in location
1 is the sum of the pixel values in A, the value in location 2 is the sum of the pixels in A and B.
Similarly, the values for locations 2 and 4 are the sum of A and C, and the sum of A,B, C and D,
respectively

assigned to each weak learner according to its classification accuracy. Learners with

high accuracy gets a higher weight whereas learners with low accuracy gets a lower

weight. A cascade of classifiers is used for the classification. These classifiers

achieve very high classification at a short computation time. This is achieved by

ensuring that the boosted classifier’s threshold is adjusted so that the false negative

rate is reduced. This cascade of classifiers selects a rectangular region that is most

likely the one containing a face. The first classifier, which is a simple classifier,

eliminates all the regions that are clearly incorrect, and the other set of classifiers,

which is more complex, eliminates the other sub regions. The the final result will

give a rectangular region bounding the face found in the image.

It is important to mention that Viola-Jones algorithm can return multiple bounding boxes of

the face in an image. To correct this error, the minimum size of the face can be selected to reduce

the number of incorrect classifications. The minimum image size is typically the smallest possible

image that can be used in the experiment. Viola-Jones algorithm is very fast and ac curate in face

detection.

In our approach, after the face is extracted, the next step is to crop out the ROI on the face.

37



When using SVM for classification, only the forehead is used as a ROI. When using the CNN,

a combination of both face and eyes are used as the ROI. The forehead was chosen as the ROI,

because the research conducted in [14] shows that that binary pattern of the pixels on the forehead

changes after the consumption of alcohol. As well, after alcohol consumption, the temperature

distribution of the sclera and the iris changes: the sclera becomes evidently hotter than the iris

[16]. To extract the eye regions, we had to manually draw a triangular box around the region, then

map the locations over other frames of the same image. This region is cropped from the facial

image, and then normalized to a uniform size to work well with the network.

4.4 Pre-Processing

The major pre-processing techniques performed on the images are mean centering and size nor-

malization. Mean centering involves calculating the mean of each data point and subtracting each

pixel from the mean. To achieve this, the mean centered images is divided by the standard deviation

of the sample. The formula used to perform this is given below:

mi =
xi−µxi

σxi

(4.3)

where xi is one data sample, mi is the normalized data sample, µxi is the mean of the sample, and

σxi is the standard deviation of the sample. After the mean centering, we perform a normalization

which involves scaling the data to be uniform. The images were clipped and re-sized in such a way

that it will be acceptable to the network. The technique that was used for this step is the bicubic

interpolation. For the forehead images, it was re-sized to 45×15 which is very close to the size of

the cropped image. The initial formula for bicubic interpolation is as follows:

p(x,y) =
3

∑
i=0

3

∑
j=0

αi jxiy j (4.4)

where x and y are the coordinates of the pixel being interpolated, p(x,y) is the output, and αi j is a

16-term coefficient that is a function of the derivatives in the x and y directions. The coefficients

are found by taking the partial derivatives of the above formula and solving a set of equations.
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Figure 4.4: Creation of a simple LBP

Bi-cubic interpolation was chosen as it is generally smoother than other known interpolations such

as bi-linear or nearest-neighbor.

4.5 Implementation using Support Vector Machines

To form the input for the SVM classifier, we have to extract the thermal image features suggesting

alcohol intoxication. The ROI used in this case is the forehead. The feature that were extracted

are based on the LDP on the forehead; this feature was shown to work best for thermal images for

similar task [14].

4.5.1 Feature Extraction using Local Difference Patterns

Local Difference Pattern (LDP) is a modified version of the Local Binary Pattern (LBP).

LBP is a feature extractor that transforms every pixel of an image into a binary pattern by

determining their relationship with the neighboring pixel [73]. The LBP was proposed in [74].

It suggested that for each pixel in the image, considered as a centre pixel in its location, a local

information can be extracted. The difference between each center pixel intensity and the neighbor

pixel intensity is evaluated, and a binary value is assigned to the neighbor pixel depending on the

value of the difference. Using a 3x3 window size, for a center pixel with intensity Ic, and the

neighboring pixels with intensities In(n = 1,2, ....,8), an LBP is created as shown in Figure 4.4.
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Figure 4.5: Histograms of the LDP for Drunk and Sober subjects, respectively

After the LBP is computed, the binary value of 1 or 0 is assigned to each output pixel.

The method used in this thesis for feature extraction is LDP. This modified feature extraction

approach is proposed by [14]. It uses a window size with the sum of the differences of the neigh-

boring pixels to get a difference pattern, LDP. The formula is:

z =
8

∑
i=1
|yi− x| (4.5)

The LDP is evaluated over the region of interest (forehead) of all the images corresponding

to both the“sober” and “drunk” persons. The area of the forehead region is 15× 45 pixels. All

the values obtained are used to form a histogram representing the distribution of pixel intensity

differences. Figure 4.5 shows the histogram of difference values of a subject’s “drunk” and “sober”

images. The values obtained from this histogram is used for classification using SVM as described

in the next section.

4.5.2 Support Vector Machine for classification

SVM is a supervised learning models which is associated with algorithms used for data classifica-

tion and regression analysis. It requires the data to be labeled, and it can only classify between two

classes. To use SVM to classify between more than 2 classes requires combining multiple SVMs

together. SVM calculates a decision boundary between the provided classes based on the given

data samples and hyper-parameters. SVM can perform non-linear classification using the kernel
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function. It implicitly maps the input into a high dimensional feature space. These are functions

which takes low dimensional input space and transform it to a higher dimensional space, thereby

converting a non-separable problem to a separable one. In many applications, non-linear classifier

provides better accuracy, although the linear classifiers have simple training algorithms that are

very scalable [75].

Matlab implementation of SVM and the C-SVM library was used for this work [76]. C-SVM

has to do with solving a decision boundary which has the maximum space between the two classes

[75][77]. The linear case of C-SVM is defined as follows:

f (x) = wT x+b = 0 (4.6)

where wT is a vector of the weights normal to the decision boundary, b is the is vector and x is the

input data size of n, with corresponding labels y. The boundary margin is defined as the distance

from the decision boundary to the closest points in either class. The closest points are known

as support vectors. Figure 4.6 shows the idea of the decision boundary, the margin, and support

vectors, which are the circled points closest to the decision boundary.

The distance we want to maximize is the margin which has length 2
‖w‖ . Each sides margin has

an equal length of 1
‖w‖ , which is equivalent to minimizing wT w. To add the constraint that the data

must fall outside or on the margin:

y(wT x+b)≥ 1 (4.7)

When the decision boundaries and the data are not linear, the data is mapped implicitly to a

higher dimension using the kernel function.

For decision boundaries and data which are non-linear, the kernel function is used to implicitly

map the data to a higher dimension. This is important for data which is not linearly separable. If

we define a non-linear function φ , which maps x from its dimension to a higher dimension, we can

then define the kernel function K to be the dot product of two mapped data points. This is done in

order to remove the dot product φ(xi)
T φ(xi), which is very computationally expensive, and replace
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Figure 4.6: Support Vector Machine illustration from [78]

it with a function K which we can quickly calculate.

The weight vector is defined as a linear combination of the mapped training data w=∑
n
i=1 αiyiφ(xi).

The common types of kernel used are the linear, radial basis function (RBF) and the polynomial

kernel. Amongst the three types, linear is the simplest. It trains faster and it has only one parameter

to optimize. RBF has the two parameters to optimize but it trains slower than the linear. If the

optimal parameters are found, then it will train as fast as the linear kernel. In the case of the

polynomial kernel, it can perform better than the RBF for certain data types.

RBF kernel has the form

K(xi,x j) = exp(−γ
∥∥xi− x j

∥∥2
) (4.8)

where γ is a hyper-parameter that is supposed to be optimized. As γ increases, the flexibility

or curvature of the RBF decision boundary increases, which can lead to over-fitting. When γ is

small, the decision boundary is nearly linear. The goal is to separate the data with a plane with

the minimum misclassified images, such that the distance from the plane to all points is maximum.

42



SVM also takes into account outlier points z which are allowed to be misclassified with a penalty

cost C. If C is large, there is a larger penalty to misclassified samples. This constraint generally

prevents poor generalization due to outlier data points. Thus, C is the second hyper-parameter that

need optimization.

4.5.3 Experiments

The experiment was performed to test the feasibility of the proposed system architecture using

SVM for detecting insobreity using thermal frames.

The output is expected to be the input image label corresponding to one of two classes: ’drunk’

and ’sober’. The accuracy of this system is compared with the results reported in other works in

the same area.

For input data for training the SVM classifier, we used size-normalized images from the UPa-

tras database. For testing, we used a combination of database images, and images of subjects we

collected in the Biometric Technologies Laboratory.

The Sober-Drunk database collected by a team at the University of Patras, Greece was used

for this experiment. 16000 usable frames of thermal recording of 40 subjects provided a total of

4000 images of sober subjects and 12000 by the collectors for each subject: 4 images of the face,

4 for the eye region, 4 for the ears and 4 for the hand. We used the frames capturing the face and

the eye region. The first 4 acquisitions of these regions were done before alcohol was taken, and

the remaining 12 were done after some alcohol consumption. For each acquisition, 50 sequential

frames were taken every 100 ms, and the total time of acquisition was 5 s for the 50 frames. The

resolution of the camera that was used in acquisition is 128× 160 with 16 bits per pixel. The

images from the database serves as the input.

All the 16,000 usable frames of all the 40 subjects were used. A leave-one-subject-out cross

validation (40-fold cross validation) was used to find the systems accuracy.
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Figure 4.7: Confusion Matrix for the classification of subjects

The accuracy was calculated using the formula:

OverallAccuracy =
T P+T N

T P+T N +FP+FN
. (4.9)

Table 4.1 shows the accuracy of each class compared against previous works.

A confusion matrix for the classification is shown in Figure 4.7. The matrix represents the

accuracy of classification for the 40 iterations during the cross-validation. Each subjects has 1600

images that was used for testing in each iteration, which gives a total of 64,000 training/testing

images. In the pursuit of improving the accuracy of classification, the experiment on machine

learning was conducted in section 4.6.

Table 4.1: Comparison of the accuracy of the proposed approach with other methods

Method Sober Accur. Drunk Accur. Overall Accur.
Local Diff. Pattern [14] N/A N/A 85%
SURF Features [79] N/A N/A 89.23%
Three-layer NN [80] 93.1% 84.2% N/A
NN-Fusion Diss.Feat. [81] N/A N/A 96.2%
Proposed system 83.5%‘ 79% 80.13%

The accuracies of the SVM-based are less, compared to the results reported in this area cited in

the Table 4.1 . This gives are motivation to apply other techniques such as deep neural networks,
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as described in the next section.

4.6 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning which is commonly used in

visual images. In this work it is used as both feature extractor and classifier. CNN is similar to

a multilayer perceptron which is design to reduce the pre-processing. A CNN has an input layer,

normalization layer, pooling layer, fully connected layer and the output layer. The training data for

a neural network is appropriately labeled and fed into the network. This input is passed through ac-

tivation functions and series of weight, and an output score is produced. This output score creates

an error margin which is back propagated through the network to readjust the weight. This read-

justment of the weight continues until a very low error is achieved. For a regular neural network, if

the input size is very large, the size of the network grows exponentially and the computation time

is not feasible.

CNN uses 2D filters to extract information from an input image. These filters reduces the size

of the input image while preserving the most important information in the image. By doing so, the

computational time required to train the network is greatly reduced. The 2D filters slide through

the input image and evaluate each section of the image one at a time. The input images is reduced

as it moves through the layers of the network. Figure 4.8 shows the overall architecture of a CNN.

If the number of the training data increases, it is accommodated by increasing the number of layers

in the network. The overall architecture of CNN includes and input later, activation functions,

convolution and pooling layers.

Training a CNN requires the use of stochastic gradient descent (SGD) and back-propagation

(BP). A gradient measures the change in the output of a function as the input value changes. SGD

aims at minimization of the cost function and to achieve a local minimum. The algorithm sweeps

through the training set, and updates the cost function until it converges.

Convolution and fully connected layers are analogous to traditional hidden layers, they perform
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Figure 4.8: Architecture of a Convolutional Neural Network

the feature extraction and are responsible for the majority of the learning. Activation functions are

the same as in traditional neural networks. Pooling layers are used to reduce the size of the data,

while ideally retaining most of the information learned. Dropout and batch normalization are used

to increase the performance of the network by reducing over-fitting and improving convergence

times. An overview of the types of layers most commonly used is given in the next subsections.

4.6.1 Layers of the CNN

Convolution Layer

The convolution (Conv) layer replaces to the individual weights that is used in the regular neural

networks. A Conv layer has a P×P×D set of filters, and take as input a matrix of size N×N×D.

P is the width and height of the filter kernel, usually between 3 and 11, D is the number of feature

channels (for example, a greyscale image has 1 channel, color images have 3). For example, if the

input size is an array of 32×32×1 pixels and the filter is 5×5×1 filter size. The filter will slide

through and convolve with the image resulting in a 28×28×1 feature map. The response of the

ith Conv layer is expressed as follows:

Yi =WiXi +bi (4.10)

where Yi is the output of the Conv layer, Xi is the N×N×C input, Wi is the F×F×C×D matrix

of layer weights, and b is the vector biases. There is also the stride and the padding of the filter
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that moves across the input. The stride, also known as the down-sampling factor, sets how much

pixels the filter will slide through to perform another convolution. It is usually set to 1 or 2. When

the stride is 1 then we move the filters to 1 pixel at a time. When the stride is 2 then we move the

filters to 2 pixels at a time and so on. Setting this to 1 or 2, will make the output map not to be

too small and it will retain the most important features of our image. Padding on the other hand

defines how much zero padding will be added around the borders of the image. This usually done

because the filters do not fit perfectly into the input image. It is usually set to 0 or 1. By adding

the padding, it makes it possible to perform convolution at the borders of the image. This makes

the borders of the image as important as the center part of the image. In general, given an input of

size N×N×C and a Conv layer size of F×F×C×D, the output will be of size N′×N′×D. The

output size of the first two dimensions, N′, of a Conv layer can be calculated using the formula:

N′= N−F +2P
S

+1 (4.11)

where N′ is the size of the first two dimensions of the output, N is the size of the first two di-

mensions of the input layer, F is the size of the filter kernel, P is the padding and S is the stride.

For instance if F = 3, S = 1 and P = 1, the output N′ becomes equal to the input N. If this hap-

pens, there will be no down-sampling at the convolution layer, only feature extraction. All the

down-sampling will be left to the pooling layer.

Figure 4.9 and 4.10 shows two examples of a Conv layers with two variance of convolution.

First, a Conv layer of size 3×3×1×2, with S = 1 and P = 1, is applied to input with of size 3×

3×1, producing an output of size 3×3×2.Each of the filters convolves the one input separately,

and produces one output matrix each. Next,a 3×3×2×1 Conv layer is applied to an input with

two channels, of size 3×3×2. Each channel of the input will be convolved by the corresponding

channel of the Conv layer, and will be summed to produce one output. In the general case, both

scenarios would be present in one Conv layer.
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Figure 4.9: Conv Layer:A 3×3×1×2 Conv layer with S = 1, P = 1 is applied to a 3×3×1 input
matrix, each filter convolves the input separately, resulting in a 3×3×2 output matrix

Figure 4.10: Conv Layer:A 3×3×2×1 Conv layer with S = 1, P = 1 is applied to a 3×3×2 input
matrix. Each convolves its corresponding channel, and are summed to form a 3×3×1 output
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Pooling Layer

The main function of this layer is to reduce the input image size, and at the same time preserve its

most important features. This help reduce the computation time and the problem of over-fitting.

The most common types of pooling are Max pooling, Average pooling and the Sum pooling. Max

pooling is the much more common than the other two types. It extracts only the maximum pixel

in the feature map, while average pooling calculates the average of the pixel, and sum pooling

calculates the sum of all the pixels in the feature map.

The max pooling layer is needed becuase if a Conv layer extracts a feature, there is no need

to preserve the information around the feature but the feature itself. Pooling layers have the same

parameters as the Conv layer: kernel size, or the number of points to be pooled together, stride,

and padding. A typical size of the pooling kernel is 2 or 3, with strides of 1 or 2 and padding of 0.

Figure 4.11 shows an example of max pooling, average pooling and sum pooling layer.

There are two strides that is commonly used in pooling layer - overlapping pooling or non-

overlapping. Overlapping pooling occurs when the stride S is smaller than the kernel F , most

commonly, F = 3 and S = 2. This allows input values to be included in multiple pooling operations.

Non-overlapping occurs when F = S , most commonly 2. The pooling layer can be removed

completely and replaced with the Conv layers with a higher stride to do the size reduction too [82].

This concept was not tested in this thesis.

Batch Normalization

This is an optimization technique which normalizes the output of the Conv layer before they are

fed into the activation function. This parametrizes the mean and the standard deviation as trainable

parameters, to achieve convergence. The BNorm operation is performed on every mini batch. For

every image in the mini-batch, it subtracts the per channel mini batch mean, and divides it by the

per channel mini batch standard deviation:

Y (C) = γ x̃i +β (4.12)
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Figure 4.11: Pooling Layer: A 2× 2 pooling layer with a stride of 2 and pad of 0 is applied to a
4×4 input matrix, resulting in a 2×2 output matrix
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Figure 4.12: Rectified Linear Unit that zeros any negative inputs

x̃i =
xi−µ√
σ2 + ε

(4.13)

µ =
1
m

m

∑
i=1

xi (4.14)

σ
2 =

1
m

m

∑
i=1

(xi−µ)2 (4.15)

where Y (C) is the per channel output of BNorm, xi is the ith images single channel output from the

previous Conv layer, x̃i is the normalized version, µ is the per channel mini batch mean, σ2 is the

per channel mini batch variance and m is the mini batch size. The parameters γ and β are learned

parameters, trained at the same time weights of the Conv layers are trained.

Activation Layer

The activation layer removes all the negative components of the output feature function. Rectified

Linear Units (ReLU) are often used to perform this computation. ReLU leaves the output same as

the input if the input is greater than 0, and 0 if its less than or equal to 0. Figure 4.12 shows the

function for ReLU . The equation for the ReLU is as follows:

f (y) = max(0,y) (4.16)

where f (y) is the output of the activation layer, and y is the the output from the previous layer.
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This layer is placed in the CNN after every Conv layer and the pooling layer. There is also the

Maxout activation function which takes the maximum value across the input and this facilitates

optimization by dropout [83]. This ReLU layer replaces the sigmoid and the tanh activation func-

tions used in the traditional neural network. The standard ReLU is used in this thesis because it is

simple to implement and it also has a good performance.

Fully Connected Layer

Fully connected layers in a neural network connects every neuron in one layer to every neuron

in another layer. This uses the same principle as the Multi Layer Perceptron (MLP) used in the

traditional neural network. Every output is the sum of every input multiplied by a corresponding

weight. In CNNs they are often used at the end of the network, in the last one or two layers, when

the data size has been significantly reduced by the Conv and pooling layers. The output layer is

usually 1×1×c where c is the number of classes in the given classification task. Also, it is worthy

to note that the fully connected layer used in this experiment uses features that were extracted on

global level to perform the classification of the images.

Learning Rate

Learning rate is a hyper-parameter that controls how much we are adjusting the weights of our net-

work with respect the loss gradient. The lower the value, the slower the travel along the downward

slope. The goal is to minimize the the error function as the weights is changing. The error function

is the sum of all the errors from the mini batch:

L(W ) =
1
m

m

∑
i=1

Li(W ) (4.17)

where m is the mini batch size, Li is the value of the loss function for the ith mini batch and W are

the network weights.

The gradient loss function is given as: ∂L(xi,Wi)
∂Wi

. Therefore, the weight update is performed as
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follows:

Wi =Wi−
α

m

m

∑
i=1

∂L(xi,Wi)

∂Wi
(4.18)

If the learning rate is too small, the gradient descent is slow. On the other hand, if the learning

rate is too large, the gradient descent can overshoot the minimum, and may never converge or even

start diverging. For the gradient descent, the weights are updated by following the direction of

steepest descent, the negative gradient. The negative gradient is multiplied by the learning rate

to scale. In this experiment, the decreasing logarithmic learning rate is used which is distributed

between 10−3 and 10−4.

4.6.2 Error Function

In CNN, a back propagation of errors is an algorithm that uses gradient descent to update the

networks error with respect to the weight. The gradient goes backward through the network with

the gradient of the final layer of weights being calculated first, and the gradient of the first layer of

weights being calculated last. This is repeated for many training instances or until the error reaches

a desired minimum.

The error function calculates the margin between the output of the network and the desired

output. The error function must be minimized. The most common error functions are Softmax

log-loss and structured hinge-loss.

Softmax error finds the normalized probability of class Xc with respect to all other classes Xk

and attempts to maximize the value of Xc. It normalizes the network predictions so that they can

be interpreted as probabilities. The Softmax function is expressed as follows:

Lso f tmax = log(
eai

∑
N
k=1 eak

) (4.19)

The log-loss is related to the notation of entropy: since the network is predicting a probability

distribution over labels for each input, the log-loss is equivalent to the cross entropy between

the true label distribution and the network predictions. Entropy is a measure of the uncertainty

in a given distribution. It tells how unpredictable the probability distribution is. Cross entropy
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Figure 4.13: Log-loss when true label as explained in [84]

indicates the distance between what the model believes the output distribution should be, and what

the original distribution is. As the predicted probability is approaching 1, the log-loss decreases,

but as the predicted probability reduces close the zero, the log-loss increases very fast as shown in

Figure 4.13.

The hinge-loss calculates the difference between the two closest outputs, and maximizes it.

Every incorrectly classified data is assigned a loss value. It attempts to set the network output Xc

to 1, and all other network outputs Xk to 0, by updating the weights as follows:

Lshinge(X ,c) = max{0,1− (Xc−max{k! = c}Xx} (4.20)

Mini Batch Size

The data used in training a neural network is split into small batches which is used to calculate

error and update the weight. The size of the mini batch, m, determines how many images from the

total training set will be combined in a batch. If the total size of the database is X , the number of

training instances in each epoch will be X
m . Each epoch runs a different batch of the training data

but use the same learning rate. The typical m value range between 16 an 256 and this depends on
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the size of the data. The mini batch size increases the accuracy of the network and also reduces

the training time. In the proposed CNN, we used random mini-batch size which varied through the

training iteration but the average was around 132.

Momentum

Momentum characterizes the rate of acceleration of gradients vectors in the right directions, thus

leading to faster converging. This prevents the algorithm from falling into the local minima. The

weight rule using momentum is as follows:

Wi =Wi−
α

m

m

∑
i=1

∂L(xi,Wi)

∂Wi
+ρ∆Wi (4.21)

where ρ is the momentum and ∆Wi is the previous weight change. Here some information from

the previous weight change is used to update the new weight. The momentum has to be greater or

equal to zero and less than 1.

Weight Decay

During training in deep learning, it is common to use weight decay, where after each update, the

weights are scaled with a factor less than 1. This is done to gradually reduce the weight to avoid

over-fitting. The weight decay is generally very small, in the range of 10−3 to 10−5. The weight

decay has a small impact on the accuracy in this system, and is set to 10−5 in this study.

Weight Initialization

Weight initialization gives the convolution layer an initial value. Using a random weight initial-

ization with small standard deviation like 0.01 can lead to vanishing gradient [85]. Because neural

networks are typically trained by minimizing a loss function with respect to the weights using gra-

dient descent, the weight variance may lead to diminishing the output values. To solve the problem,

the authors in [86] had to pre-train a model with 8 conv layers to initialize deeper models. Paper

[85] suggested an updated weight initialization that restricts the size of the outputs by keeping the
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variance of the input and the output of the Conv layer similar:

Var[yi] = niVar[wixi] (4.22)

where ni is the size of the convolution layer and yi,wi and xi are the random variable that represents

the input channel, the filter weights and the output. In this way, the updated weight initialization

changes the standard deviation of the random value to:

σw =

√
2
ni

(4.23)

where σw is the standard deviation of the weights, and n is the size of the ith Conv layer. This

initialization method avoid reducing or magnifying the magnitudes of input signals.

4.6.3 Proposed Insobriety Detection System using CNN

In this thesis, we used the MATLAB in-built model as follows:

1. Using a Pre-trained Network: In this case, a network that was built and trained

for a specific database such as network AlexNet is re-trained for a new data. The

new data must be similar to the data it was trained, and the image size must be the

same, too.. The input of the new database is fed into the network which will be used

to classify the new data. Also, the output classes of the network and the new data

must be the same.

2. Fine-tuning of a Pre-trained network or Retraining a built model. In the case

of fine-tuning a pre-trained network, an already built network is used and modified

to suit a completely new data. Some weights from the old data will be used but it

will be fine-tuned so as to work well with the new data. Also, the output classes

and the pre-processing techniques must not be the same. This technique works well

for a network that requires a very large database. In the case of retraining a built

CNN model, a network specific to the data size, number of samples and the output
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classes is built. Every building block of the model is completely modified to suit

the new data. This gives a relatively higher accuracy when compared to the other

techniques.

The CNN structure proposed in thesis was built using the Matlab pre-built model. It was

completely retrained and fine-tuned using our data. By doing this, it creates a network specific to

the data size, number of samples, and output classes. Some of the difficulty encountered while

completely retraining a network is that the training time is large, and there is also a difficulty

in optimally selecting the parameters. We also used CNN for both the feature extraction and

classification.

4.6.4 Experiments

This section discusses the experiment that was performed using the system that was created. For

training the system, the UPatras “Sober-Drunk” database was used for training, and additional

collected data was used for testing. Leave-one-out cross-validation strategy was used for cross-

validating the results.

To boost the accuracy of the system, the CNN parameters were optimized. The CNN parame-

ters can greatly influence the accuracy of the system. Parameters were chosen based on the analysis

of the previous works on the subject, as well as heuristically in the course of the experiment.

The proposed insobriety detection system is then compared with previous works. Although the

results are often not directly comparable because of different testing sets and class separations, it

can be used to infer which method has the highest accuracy.

The Sober-Drunk database collected by a team at the University of Patras, Greece was used

for this experiment. The method of collection and labeling of this database has been described in

section 4.5.3.

The experiments and the accuracy of the system is validated by using leave-one-subject-out

validation, which in this case is equivalent to 40-fold cross validation, as there are 40 subjects.
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This means that the subject used for testing were not used for training. In the first training set, all

the frames from subject one is left out of the training set. The network is trained with the remaining

39 subjects. Then the accuracy is calculated by testing the network with all the frames from subject

one. This is repeated for all the subjects, and the accuracy is calculated based on the number of the

correctly classified images.

In the UPatras database, the number of drunk subject frames was greater than the number of

sober ones. To verify that the system would work for both sober subjects, images from the sober

subjects were collected in the Biometric Technologies Laboratory and used for testing.

CNN Training

The proposed system was created using MATLAB R2018B pre built model (MatConvnet). All

the 16,000 usable frames of 40 subjects from the University of Patras Drunk-Sober database were

used. The images has a total of 4000 sober images and 12000 drunk images. 90% of the images

was used for training and the remaining 10% was used for testing. Also, we followed leave-one

subject-out cross-validation strategy which excludes the test subject from the training set. Based

on this strategy, each network is trained on 39 subjects and tested on the remaining 1 subject, thus

resulting in 40-iteration cross validation . We chose 40 fold cross-validation because we have 40

subjects. The aim was to exclude the subject used for the testing in our training set. The idea is

that in real life scenario, subjects that will be tested on our system will most likely not be included

in our training. For this experiment we used two different ROI - the forehead and the eyes.

For the images with forehead as ROI, the input of the network was normalized to a uniform

size of 45×15. The first convolution layer in the CNN contains 20 convolution kernels with size

of 5×5. The output of the convolution layer serves as the input to the first max pooling layer with

2×2 filter and stride of 2. These steps are repeated, and the feature map is continuously reduced

until it is passed to the fully connected layer as a feature vector for classification.

The final hyper-parameters used for this network are as follows: the mean filter size is 5× 5,

the average mini batch size of 132, the logarithmic learning rate is 0.0001, the momentum is 0.9,
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the training/test ratio is 90/10, the number of epochs is 30 and the Softmax is used as the error

function.

Using the images with eyes as the region of interest, we repeated the above steps but the size

of the images were different. The images were normalized to a uniform size of 25×15. The final

optimum hyper parameters are as follows: the mean filter of size 3×3, the average mini batch size

of 132, the logarithmic learning rate with of 0.0001, the momentum of 0.9, the training/test ratio is

90/10, the number of epochs is 30 and the Softmax is used as the error function.

Figure 4.14 illustrated the rate the error of the training set goes down to 0. This is as a result of

back-propagation to tune the weights which helps in better classification.

Tuning the Parameters

This section describes how altering the parameters of the network impacted the accuracy of the

network. The insights from other literature on CNN was used to select the optimal parameters that

gave the highest accuracy of classification. Table 4.2 - Table 4.9 shows the results of experimen-

tation with various values of the CNN parameter in order to select the optimal parameters. For

each Table, one parameter is varied while the other parameters are kept constant. At the end, the

optimal value of the varied parameter is selected. The parameters that have very little or no effects

are not discussed.

Table 4.2: Tuning of hyper-parameters of the network using forehead images: 3 parameters are
constant (Number of epochs= 30; filter size = 5×5; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Training/testing set = 90/10 91.50 95.50 94.50
Training/testing set = 80/20 78.98 90.50 87.62
Training/testing set = 50/50 97.00 72.50 78.63

It is also important to note that there is some randomness in the training of a CNN. The mini

batches of data are randomly formed, and, therefore, are not the same between training instances.

The effects of the parameter tuning is discussed as follows:

59



Figure 4.14: CNN Training in Matlab: The accuracy increases as the training goes through the
epochs and updates the weight accordingly while the loss is going down to zero
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Table 4.3: Tuning of hyper-parameters of the network built with forehead Images: 3 parameters
are constant (Training/Testing Set = 90/10; filter size = 5×5; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Number of Epochs = 40 95.50 94.92 95.06
Number of Epochs = 30 91.50 95.50 94.50
Number of Epochs = 20 92.50 87.50 88.75

Table 4.4: Tuning of hyper-parameters of the network using forehead images: 3 parameters are
constant (Training/Testing Set = 90/10; Number of Epochs = 30; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
3×3 filter 87.50 95.17 93.25
5×5 filter 91.50 95.50 94.50
7×7 filter 92.75 77.33 81.19

• For the network using the forehead images, altering the percentage of data used for

training and testing the system affected accuracy of classification. As we reduce the

training data from 90% to 50% and increase the testing set data from 10% to 50%,

the overall accuracy of the system dropped by about 15%. CNN learns better when

trained with a larger size of image. This is the reason why the accuracy decreased

as the training set data was reduced. Also, there was no need to augment the data

because the images available was sufficient to properly train the network when 90%

of the data was used for training.

• Modifying the learning rate also did have a considerable impact on the accuracy of

the network. Learning rate controls how much the weight of the network is adjusted.

Table 4.5: Tuning of hyper-parameters of the network using forehead images: 3 parameters are
constant (Training/Testing Set = 90/10; filter size = 5×5; Number of Epochs = 30)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Learning Rate = 0.001 88.50 94.33 92.88
Learning Rate = 0.0001 91.50 95.50 94.50
Learning Rate = 0.00001 91.25 86.33 87.56
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When the value is very small, the network will not converge fast and may get stuck.

On the other hand if it is too large, the gradient descent can overshoot the minimum

and it may never converge. When the learning rate was changed from the optimal

value of 0.0001 to 0.001, the change in accuracy was about 2%, but when reduced

to 0.00001, the accuracy reduced by 7%.

• Reducing the filter size had a moderate effect on the network whereas increasing

the size affected the accuracy considerably. Using 3×3 filter reduced the accuracy

of the network by roughly 1% but when 7×7 filter was used, the accuracy reduced

significantly by 13.31%. It is also interesting to note that some subjects performed

better with different filter size other than the optimal filter size of 5×5 but we chose

the 5×5 filter because it gave the highest overall accuracy after the cross-validation.

• Changing the number of epochs in the network had a considerable effect on the ac-

curacy. Ordinarily, increasing the number of epochs in the network should increase

the accuracy of classification, but it also increases the training time. When the

value was reduced to 20, the accuracy decreased by approximately 6%. Increasing

the value to 40, increased the accuracy by a very small margin but it almost dou-

bled the training time. Thus, the optimal number of epochs that gives an acceptable

accuracy value with a considerable training time is 30.

Table 4.6: Tuning of hyper-parameters of the network using the eye images: 3 parameters are
constant (Number of epochs= 30; filter size = 3×3; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Training/testing set = 90/10 93.25 96.67 95.81
Training/testing set = 80/20 88.38 91.90 91.02
Training/testing set = 50/50 94.25 86.25 88.25

The following observations were noted from the experiments on the network using the eye

images:
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Table 4.7: Tuning of hyper-parameters of the network using the eye images: 3 parameters are
constant (Training/Testing Set = 90/10; filter size = 3×3; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Number of Epochs = 40 95.25 96.17 95.97
Number of Epochs = 30 93.25 96.67 95.81
Number of Epochs = 20 89.75 91.92 91.38

Table 4.8: Tuning of hyper-parameters of the network using the eye images: 3 parameters are
constant (Training/Testing Set = 90/10; Number of Epochs = 30; Learning Rate = 0.0001)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
3×3 filter 93.25 96.67 95.81
5×5 filter 88.75 96.00 94.19
7×7 filter 90.75 91.17 91.81

• The optimum learning rate for this network is 0.0001. This value is neither too

fast nor too slow for the weight adjustment of the network. When the value was

increased to 0.001, the accuracy dropped by roughly 3% but when the value was

reduced to 0.00001, the accuracy reduced by 5%.

• Adjusting the size of the CNN filter also affected the accuracy of classification.

Using a filter size of 5× 5 yielded a classification accuracy 94.19% which is less

that the optimum accuracy by 2% whereas a filter size of 7× 7 reduced the accuracy

by 4%.

• Changing the number of epochs, which shows the number of times the learning

Table 4.9: Tuning of hyper-parameters of the network using the eye images: 3 parameters are
constant (Training/Testing Set = 90/10; filter size = 5×5; Number of Epochs = 30)

Parameters Altered Sober Accuracy Drunk Accuracy Overall Accuracy
Learning Rate = 0.001 85.50 95.08 92.69
Learning Rate = 0.0001 93.25 96.67 95.81
Learning Rate = 0.00001 92.00 90.08 90.56
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Figure 4.15: Architecture of the system showing the stages where fusion was implemented

algorithm will loop through the network, had a considerable effect on the accuracy.

When the value was reduced to 20, the accuracy dropped by roughly 4.5%, but

when it was increased the 40, the change in accuracy was less than 1%. Thus, 30 is

still the optimum number of epoch for this network.

• Lastly, changing the training/testing ratio from 90/10 to 50/50 ratio reduced the

accuracy by roughly 8%.

4.6.5 Fusion

After the parameter tuning to obtain the optimum parameters for the forehead and eyes images,

the next step is to fuse the two networks together to boost the accuracy of classification. To further

improve the performance of the system, we performed fusion of the results of the two CNNs using

the score-level and the feature-level approach. This is shown in Figure 4.15. The feature level

fusion was performed using Discriminant Correlation Analysis [87]. For the score-level fusion,

the scores for prediction was extracted, then the average and the maximum values was computed

respectively. These values were used for the overall class prediction.
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4.6.6 Performance evaluation and comparison to other works

The confusion matrix of the classification is presented in Figure 4.16. This matrix shows the total

correctly and incorrectly classified subjects for the 40 iterations of the 40-fold cross-validation.

Equation 4.9 was used to calculate the accuracy of classification.

We compared our results with previous studies conducted on the same database. In [16], an

approach called Local Difference Pattern was applied that detect regions of temperature variation

on the face images of the sober and drunk subject, with the reported “identification success” of

around 85%. An approach that combines both the detection of the temperature changes in thermal

image of iris and sclera regions (using SURF, Speeded up Robust Features) as well as motion

trajectories of drunk and sober persons proposed in [79] yielded 89.23%. A three-layer feed-

forward Neural Network (NN) proposed in [80] was trained on the whole face as well as on the

forehead of the sober and the drunk subjects. The experimental procedure was not common, since

“a training with the data from one person and testing with those from the rest of the persons was

applied”, with the average “success rate” being 93.1% and 84.2% using the thermal pattern of the

forehead region of sober and drunk subjects (only five subjects were used for experiment). Finally,

the “classification success rate” reported in [81] that used fusion of dissimilar features by means of

a 2-layer neural network with one neuron in the second layer achieved 66.6% for 2 neurons in the

first layer, 81.5% for 4 neurons in the first layer, and 96.2% with 8 neurons on the first layer (this

result is shown in Table 4.10 ).

Our approach using the CNN in five different experiments (the bottom fine row in Table 4.10)

performed as follows:

• The first experiment was conducted using only images of the forehead region. The

forehead region is easily accessible and a thermal image can be captured without

invading the privacy of the subject. From the network built with this region, the

overall accuracy of classification was 94.5%.
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Figure 4.16: Confusion Matrix for each experiment for 40 iterations
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• The second experiment was done using the eyes as the region of interest, This

is more detailed and more invasive but the accuracy of classification was better

than the one using the forehead region. The overall accuracy of classification was

95.81%

• To boost the accuracy of the first two experiments, the fusion strategy was applied.

In this third experiment, the score from the network created for the forehead and eye

regions were fused together. The higher value of the score was used in prediction

(Score level-fusion-Maximum). This experiment gave a slightly higher accuracy

value of 96.00%.

• The further enhance the accuracy, another experiment was conducted using the

same score-level fusion strategy but in the case the average of the scores were used

for prediction. The resulted to an accuracy of 96.63%.

• Lastly, a feature-level fusion was performed using the principle of Discriminant

Correlation Analysis [87]. The fusion was done after the features were extracted

and the merged features were used for classification. This experiment resulted in

the classification accuracy of 95.63%.

Table 4.10 shows a comparison of the accuracy achieved in our study with that of other re-

searchers.

Analyzing the results in Table 4.10 the CNN that used forehead region (CNN (Forehead)) and

eyes region (CNN (Eyes)), without fusion, performed better than the first two reported approaches

but worse than the third one, except for the accuracy in detecting the drunk subjects. The accuracy

of classifying a drunk subjects was generally higher than classifying a sober person when using

CNN. One of the reasons is that the number of images of drunk subjects used for training exceeded

the number of images of sober subjects. Note that the CNNs have been proven to perform better in

classification when a larger datasets are used to train the network, and the available database is of
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Table 4.10: Comparison of the accuracy for different methods of sobriety classification

Method Sober Accur. Drunk Accur. Overall Accur.
Local Diff. Pattern [14] N/A N/A 85%
SURF Features [79] N/A N/A 89.23%
Three-layer NN [80] 93.1% 84.2% N/A
NN-Fusion Diss.Feat. [81] N/A N/A 96.2%
CNN (Forehead) 91.50%‘ 95.50% 94.50%
CNN (Eyes) 93.25% 96.67% 95.81%
SL-fusion-Average 95.76% 96.91% 96.63%
SL-fusion-Maximum 95.50% 96.17% 96.00%
FL-fusion 93.04% 96.49% 95.63%

rather medium size. For the classification using fusion, the CNN showed a superior performance:

the CNN with score-level fusion performed the best, with the average-based fusion (CNN-SL-

fusion- Av) showing slightly better results than the maximum-based score-level fusion (CNN-SL-

fusion-Max). The CNN with the feature-level fusion (CNN-FL-fusion) did not performed better

than one with the network with score-level fusion. The average accuracy was the best for the CNN

with the average feature-level fusion.

4.6.7 Real-life Experiments

This section describes a real-life application of our insobriety detection system which is designed

for the described application. The purpose of this study is to study the feasibility of applying an

automatic insobrity detection algorithm in a real world scenario. The implementation was designed

and tested in the Calgary Drop-in Center. A camera placed is placed in front of the volunteer

subject who is seated or standing. The algorithm used is the proposed CNN from the previous

sections, trained on the 40 subjects from the UPatras database. Ethics approval from University

of Calgary’s Conjoint Health Research Ethics Board (CHREB) was acquired for this study. The

subjects recruited for this experiment were staff of the Calgary drop in center. The clients of the

shelter were not part of the study. The recruitment was done by the director of the IT department

and the staff were more than willing to be part of the study.

Consent forms were created for the participants and they were briefed on the implications of
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participating in the study. One of the probable reasons why they were comfortable in participation

is the fact that their identity cannot be easily found from an infrared image. The study is not

invasive and the procedure was very fast.

Also, additional infrared images were taken at the Biometrics technologies lab at the University

of Calgary. The infrared images were taken as the subjects were standing on front the camera. Only

general statistics was used in publications, with no identifiable information. Once the study was

completed, the facial images were destroyed.

Setup

The Thermoteknix infrared camera was used for recording thermal videos of the subjects. The

camera takes a continuous infrared videos of clients and it saves in the DVR after which it is

copied in a flash drive. For data collection in the Biometric Technologies Laboratory, the subject

was standing in front of the infrared camera placed on a 7 foot tripod as shown in Figure 4.17.

Afterward the forehead temperature of the subjects was taken with Euate forehead thermometer,

in order to have a ground truth data that we be compared against the temperature value estimated

using the infrared camera.

An application was created to make the process of detecting thermal abnormalities easy for the

user. This application was created with Matlab to test the feasibility.

The interface of the created application is shown in Figure 4.18.

In the application, the region of interest is selected using the ’select the region of interest’ tab.

This enables the user to select the region of interest that will be used a to extract the health status

if the subject. Once this is selected, the ’get temperature’ button is used to display the estimated

temperature of the subject. The “status check” button is used to display the information whether

the subject’s temperature is normal or not, and the “sobriety” button is used to confirm whether the

subject is sober or drunk.

With the information provided for the user, a decision is made as to what type of service the

subject requires. After all the information is extracted, the application interface shall be as shown
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Figure 4.17: Example of a subject standing in front of the infrared camera as the infrared image
recording was taken

in Figure 4.19

4.6.8 Results

Of the 55 “sober” subjects recruited for this experiment, 51 were correctly classified as sober

subjects while 4 were mis-classified as drunk subjects. The accuracy of the system is relatively

high.

4.7 Conclusion

This chapter presents the details of implementing a system that can detect sobriety of a subject

by using the thermal image of the face. Four experiments were performed, and the accuracy was

evaluated for each.

• The first experiment was performed using the forehead as the region of interest.

Feature extraction was performed using LDP, inn order to determine how each pixel
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Figure 4.18: The Interface of the application after the thermal image is uploaded
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Figure 4.19: The Interface of the application with the necessary information for the user
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intensity in the thermal image varies compare to the neighboring pixels. After the

features were extracted, classification was done with SVM. This resulted in an over-

all accuracy of 81.13%.

• In the second experiment, CNN, a deep learning technique, was used for the same

classification, with the purpose to improve the accuracy to an acceptable value.

CNN was used for both feature extraction and classification. In this experiment,

another region of interest was introduced which is the eyes. This experiment gave a

better classification accuracy than from the first experiment. The network that used

forehead images yielded an accuracy of 94.50%, whereas the network that used the

eye image had an accuracy of 95.81%.

• The third experiment was to fuse the two results obtained in experiment 2. Two

major fusion strategies were applied - Feature-level fusion which gave an accuracy

of 95.63% and score level fusion which gave an accuracy of 96.00%.

• The final experiment was to build a Matlab GUI application that was used to test

the feasibility of the experiment on real life subjects and database images. It was

tested using the full valid database, allowing future researchers to easily compare

the results. For the real-life experiment, sober subjects were the main recruits and

the classification accuracy was relatively high: 51 out of the 55 subjects that partic-

ipated in this experiment were correctly classified.
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Chapter 5

Conclusion and Future work

This chapter presents the summary of the important results and novelties in this thesis, and its

contribution to developing a concept of health monitoring system for emergency shelter.

5.1 Summary of Results

The main objective of this thesis was to develop a biometric-based approach that would help the

Calgary DI Center to expand their access system. In this regard, the health status of the client is

of utmost importance in addition to identifying the sobriety level of the clients. Fever is the most

common symptom of most illnesses, so the focus of this research was on identifying subjects with

abnormal (f.e. elevated) temperature as that would help in identifying client in medical distress.

The application created in this study can automatically estimate the temperature of a subject, as

well as their sobriety level.

The following are the main conclusions that can be drawn from the experiments conducted:

• In chapter 3, the proposed system for temperature extraction was introduced. Using

the thermal image from the subject, the principle of polynomial curve fitting was

used to detect the temperature value using thermal camera readings. The tempera-

ture reading from the system was compared to the value from a standard forehead

thermometer. The results were analyzed using a Bland-Altman plot. This shows a

strong correlation between the values estimated using the proposed system and the

actual temperature of the subjects.

• The second experiment was to identify the sobriety level of a subject. This was

done using two machine learning approaches - Support Vector Machine and Con-

volutional Neural Network. In the experiment using SVM, the feature extraction
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was done using a technique known as Local Difference Patter (LDP). There was a

clear distinction between these values for a sober and drunk subject. The classifica-

tion using SVM gave an accuracy of about 85%.

In order to boost this accuracy, CNN approach was used using the face and the eyes

as the region of interest. The accuracy using the eyes as the region of interest gave

about 95.5%, whereas the one using the forehead region gave an accuracy of 94.5%.

To further increase the classification accuracy, the classifiers using the forehead

and the eyes were combined at both feature level and the score level fusion. We

implemented both average and max score level fusion. Using this fusion strategy

improved the classification accuracy to 96.63%.

• Finally, an application was built to perform a real life experiment. The application

was used for 55 subjects and 51 of them were classified correctly. This shows that

a real life implementation of the proposed systems is feasible.

5.2 Suggestions for future work

As shown through out this study, thermal images can provide a reliable information that could be

used to access the health and the sobriety status of a subject. The system for detecting alcohol

intoxication using CNN has a significant improvement over the system built using SVM. However,

there still room for improvement. One thing that could be considered in future research is the use

of Generative Adversarial Network (GAN) to generate multiple synthetic thermal images to boost

the training set of the system. Neural Networks work better on large databases and since there is

limitation of thermal images, GAN might be helpful in solving the problem of unavailability of

very large dataset. Also, other regions of interest could be considered in addition to the eyes and

forehead that was used in this thesis. The cheek or the neck regions could be studied for possible

effect on the blood vessels found there.
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In addition, a system that uses real time infrared camera should be used for experiment to check

if real time collection and analysis of images will yield a high accuracy than the one used in this

thesis. It will also be helpful to these the extreme environmental conditions to check how feasible

this solution is on subjects that has been exposed.

Lastly, automatic detection of the forehead will be very helpful and could make the system

work independent of any human interference. To automatically detect forehead, the eyes, nose of

the human face can be used. There has been a lot of research and breakthrough in detecting some

portions of the face like the eyes, nose, mouth and other features. Knowing this, and also the fact

that the forehead is right above the eyes and the exact region of interest can be centered on top of

the nose region, the region of the forehead that will be used can be detected automatically

77



Bibliography

[1] M. Shinn, “How psychologists can help to end homelessness,” Australian Psychological Society, 2009.

[2] https://www.un.org/ruleoflaw/files/FactSheet21en.pdf, accessed on 2019-04-15.

[3] P. Tome, J. Fierreza, R. Vera-Rodriguez, and M. Nixon, “Soft biometrics and their application in person

recognition at a distance,” IEEE Trans. Inf. Forensic and Sec, vol. 9, no. 3, pp. 464–475, 2014.

[4] E. Ng, G. Kawb, and W. Chang, “Analysis of infrared thermal imager for mass blind fever screening,”

Microvascular Research, p. 104–109, 2004.

[5] K. MM and C. FY, “Airport sentinel surveillance and entry quarantine for dengue infections following

a fever screening program in taiwan,” BMC Infectious Diseases, vol. 12, p. 182, May 2012. [Online].

Available: http://dl.acm.org/citation.cfm?id=2168874.2168907

[6] Y. H. Tan, C. W. Teo, E. Ong, L. B. Tan, and M. J. Soo, “Development and deployment of infrared

fever screening systems,” Thermosense XXVI, Proc. SPIE, vol. 5405, pp. 68–78, 2010.

[7] G. Koukiou and V. Anastassopoulos, “Drunk person identification using thermal infrared images,” 16th

International Conference on Digital Signal Processing, 2009.

[8] A. J. Collins and J. A. Cosh, “Temperature and biochemical studies of joint inflammation,” Annuals of

the Rheumatic Diseases, p. 386–392, 1970.

[9] G. Varju, C. Pieper, J. Renner, and V. Kraus, “Assessment of hand osteoarthritis: correlation between

thermographic and radiographic methods,” Rheumatology (Oxford)., 2004.

[10] K.Ammer, “Cold challenge to provoke a vasospastic reaction in fingers determined by temperature

measurements: a systematic review,” Thermology International, pp. 109–118, 2009.

[11] R. Lawson, “Implications of surface temperatures in the diagnosis of breast cancer,” Can Med Assoc

J, p. 309–310, 1956.

78

https://www.un.org/ruleoflaw/files/FactSheet21en.pdf
http://dl.acm.org/citation.cfm?id=2168874.2168907


[12] S. G.Kandlikarl, I. Perez-Raya, and P. A. et. al, “Infrared imaging technology for breast cancer detec-

tion – current status, protocols and new directions,” International Journal of Heat and Mass Transfer,

vol. 108, pp. 2303–2320, 2017.

[13] G. Koukiou and V. Anastassopoulos, “Facial blood vessels activity in drunk persons using thermal

infrared,” Proceedings of the 4th International Conference on Imaging for Crime Detection and Pre-

vention, 2011.

[14] ——, “Drunk person identification using local difference patterns,” IEEE International Conference on

Imaging Systems and Technology(IST), 2016.

[15] ——, “Face locations suitable drunk persons identification,” International Workshop on Biometrics

and Forensics (IWBF), 2013.

[16] ——, “Eye temperature distribution in drunk persons using thermal imagery,” International Confer-

ence of the BIOSIG Special Interest Group (BIOSIG), 2013.

[17] ——, “Neural networks for identifying intoxicated persons,” Forensic Science International, vol. 252,

pp. 69–76, 2015.

[18] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of computer vision,

vol. 57, no. 2, pp. 137–154, 2004.

[19] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,”

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886, 2012.

[20] I. Pavlidis, P. Buddharaju, C. Manohar, and P. Tsiamyrtzis, “Biometrics: Face recognition in thermal

infrared,” Medical Systems and Devices, vol. 29, pp. 1–16, 2005.

[21] W. Li, M. Li, Z. Su, and Z. Zhu, “A deep-learning approach to facial expression recognition with

candid images,,” 2015, pp. 279–282.

[22] S. G.Kandlikarl, I. Perez-Raya, and P. A. et. al, “Thermal imaging as a biometrics approach to facial

signature authentication,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp.

214–222, 2013.

79



[23] Y. N. D. Chenna, P. Ghassemi, T. J. P. 1, and J. C. Q. Wang, “Free-form deformation approach for

registration of visible and infrared facial images in fever screening,” Sensors, p. 104– 109, 2018.

[24] T. Cover and P.Hart, “Nearest neighbor pattern classification,” IEEE Transactions on information the-

ory, vol. 13, no. 1, pp. 21–27, 1967.

[25] B. Boser, I. Guyon, and V. Vapnik, “A trainng algorithm for optimal margin classifiers,” Proceedings

of the fifth annuak workshop on Computational learning theory, pp. 144–152, 1992.

[26] E. Sami, “Support vector machines for classification and locating faults on transmission lines,” Applied

Soft Computing, vol. 12, pp. 1650–1658, 2012.

[27] J. Nayak, B. Naik, and H. Behera, “A comprehensive survey on support vector machine in data mining

tasks: Application and challenges,” International Journal of Database Theory and Application, vol. 8,

pp. 169–186, 2015.

[28] T. Joachis, “Learning to classify text using support vector machines,” Kluwer Academic Publishers,

2002.

[29] K. Polat and S. Gunes, “Breast cancer diagnosis using least square support vector machine,” Digital

Signal Processing, vol. 17, no. 4, pp. 694–701, 2007.

[30] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector machines with gaussian kernel,”

Neural computation, vol. 15, no. 7, pp. 1667–1689, 2003.

[31] G. Valentini, “Gene expression data analysis of human lymphoma using support vector machines and

output coding ensembles,” Artificial Intelligence in Medicine, vol. 26, no. 3, pp. 281–304, 2002.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffne, “Gradient-based learning applied to document recog-

nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” Advances in neural information processing systems, pp. 1097–1105, 2012.

[34] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the details: Delving

deep into convolutional nets,” arXiv preprint arXiv:1405.3531, 2014.

80



[35] I. Song, H. J. Kim, and P. B. Jeon, “Deep learning for real-time robust facial expression recognition

on a smartphone,” Consumer Electronics (ICCE), 2014 IEEE International Conference, pp. 564–567,

2014.

[36] P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki, “Dexpression: Deep convolutional neural

network for expression recognition,” arXiv preprint arXiv:1509.05371, 2015.

[37] A. Lopes, E. de Aguiar, and T. Oliveira-Santos, “A facial expression recognition system using convo-

lutional networks,” 2015, pp. 273–280.

[38] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hu, “A convolutional neural network cascade for face detec-

tion,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–5334, 2015.

[39] S. Alizadeh and A. Fazel, “Convolutional neural networks for facial expression recognition,” arXiv

preprint arXiv:1704.06756, 2017.

[40] O. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” BMVC, vol. 1, p. 6, 2015.

[41] F. Schroff, D. Kalenichenko, and J. Philbin, “acenet: A unified embedding for face recognition and

clustering,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

815–823, 2015.

[42] K. Nguyen, C. Fookes, and S. Sridharan, “Improving deep convolutional neural networks with un-

supervised feature learning,” IEEE International Conference on Image Processing (ICIP), pp. 2270–

2274, 2015.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep learning for real-time robust facial expression recognition

on a smartphone,” Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[44] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the impact of

residual connections on learning,” AAAI, pp. 4278–4284, 2017.

[45] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to biometrics. Springer Science & Business

Media, 2011.

81



[46] M. He, S.-J. Horng, P. Fan, R.-S. Run, R.-J. Chen, J.-L. Lai, M. K. Khan, and K. O. Sentosa, “Perfor-

mance evaluation of score level fusion in multimodal biometric systems,” Pattern Recognition, vol. 43,

no. 5, pp. 1789–1800, 2010.

[47] M. Vatsa, R. Singh, and A. Noore, “Improving iris recognition performance using segmentation, qual-

ity enhancement, match score fusion abd indexing,” IEEE Transactions on Systems, Man, and Cyber-

netics, Part B (Cybernetics), vol. 38, no. 4, pp. 1021–1035, 2008.

[48] Z. Wang, Q. Han, Q. Li, X. Niu, and C. Busch, “Complex common vector for multimodal biometric

recognition,” Electronic Letters, vol. 45, 2009.

[49] K. Hollingsworth, T. Petrs, and atrick J. Flynn, “Iris recognition using signal-level fusion of frames

from video,” IEEE Transactions on Information Forensics and Security, vol. 4, no. 4, p. 837=848,

2009.

[50] S. Naveen and R. Moni, “A robust novel method for face recognition from 2d depth images using dwt

and dft score fusion,” IEEE First International Conference on Computational Systems and Communi-

cations (ICCSC), pp. 1–6, 2014.

[51] Y. H. Park, D. N. Tien, E. C. Li, S. M. Kim, and H. C. Kimi, ““a multimodal biometric recognition

of touched fingerprint and finger-vein,” IEEE International Conference on Multimedia and Signal

Processing, pp. 247–250, 2011.

[52] R. E. F., “Quantitative thermal imaging,” Clinical Phys. Phsiol .Meas., vol. 11, pp. 87–95, 1990.

[53] D. C. A., “Thermography and the possibilities for its applications in clinical and experimental derma-

tology,” Clinical Dermatology, vol. 13, pp. 329–336, 1995.

[54] L. Chan, G. Cheung, I. Lauder, and C. Kumana, “Screening for fever by remote sensing infrared

thermographic camera,” Journal of travel medicine, vol. 11, pp. 273–279, 2004.

[55] C. Liu, R. Chang, and W. Chang, “Limitations of forehead infrared body temperature detection for

fever screening for severe acute respiratory syndrome,” Infection Control, vol. 25, pp. 1109–1111,

2004.

82



[56] E. Ring, A. Jung, J. Zuber, P.Rutowski, B. Kalicki, and U. Bajwa, “Detecting fever in polish children

by infrared thermography,” Proceedings of the 9th International Conference on Quantitative Infrared

Thermography, pp. 2–5, 2008.

[57] A. Nguyen, N. Cohen, H. Lipman, C. Brown, N. Molinari, W. Jackson, and D. Fishbein, “Comparison

of 3 infrared thermal detection systems and self-report for mass fever screening,” Emerging infectious

diseases, vol. 16, p. 1710, 2010.

[58] P. A. Mackowiak, “Physiological rationale for suppression of fever,” Clinical infectious diseases, pp.

185–189, 2000.
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Appendix A

Copyright Permissions

In order to conduct the research proposed in this thesis, it was necessary to obtain external bio-

metric datasets. All utilized datasets were collected under explicit user agreement of academic

use on behalf of the Biometric Technologies Lab, Department of Electrical & Computer Engineer-

ing, University of Calgary. All databases are acknowledged, cited, and have been used only for

academic research purpose. The agreements are presented in the following sections:

A.1 UPatras Database

This research utilized the Upatras dataset collected by the by the University of Patras Computer

Vision Group. The UPCV dataset is a publicly available thermal dataset and free for research and

scientific purposes. The dataset can be downloaded from http://www.physics.upatras.gr/

sober/. The database has been downloaded on-behalf of Biometric Technologies Lab. In this

thesis, the database is cited and credit is given to the owner of the dataset.
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