Introduction
A main difficulty in computing a complete list of all irreducible graphs that are not
embeddable into the projective plane P is the fact that there are so many of these graphs - in
(1] there are 103 different ones listed - and that in a straight forward approach to exhaustively

list all these graphs, the same graph gets constructed many times in different ways.
Four techniques turned out to be useful to overcome these difficulties:

Firstly, we consider minimal graphs, that are not embeddable into P. We define a graph
G to be minimal non embeddable into P, if G is not embeddable into P, but each proper
minor of G is. This definition differs from the standard definition for irreducible graphs by
substituting "minor" for "subgraph". It is rather obvious that each minimal graph is also
irreducible. But the converse is not true. However, each irreducible graph can be obtained
from some minimal graph by several vertex splits and edge deletions. Since each of these
operations reduces the valency of the vertices, it follows that from each minimal graph only
finitely many irreducible graphs can be obtained. Given a complete list of minimal graphs, it
is a finite but tedious task, best done computer assisted, to construct a complete list of all
irreducible graphs. Clearly, the set of all minimal graphs is a subset of the set of all

irreducible graphs and constructing this subset / turns out to be manageable.

Secondly, we used - whenever possible - symmetries of the graphs to be constructed in

order to avoid multiple constructions of the same graph.

Thirdly, some graphs that occur frequently in an exhaustive enumeration of all
constructions that could lead to minimal graphs are proved to be forbidden subgraphs for

minimal graphs. This serves as a powerful guide to avoid early on constructions that would
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eventually lead to graphs that are not minimal.

Finally, we partition the set I of all minimal graphs that are not embeddable into P into
three disjoint subsets, according to properties that simplify the enumeration of each of these
subsets. I, is the subset of all graphs in I that are not 3-connected. I3 4 is the subset of all
graphs in I that are not in /4, and contain the complete bipartite graph K3 4 as a minor.

I3 is the complement of I\ jI34 in I. I is relatively easy to enumerate and we will
not address this problem here. I, has to be computed in [2], [3], [4]. In this paper we will
prove  that I3; is contained in the following set of  graphs:
{A2,B1,B17,C3,C4,C1,D3,D3,D9,D 13, E9, E3, Es, E11, Exg, E1g, E27, G}, where the
notation is the same

as in [1].

The emphasis of this paper is on proving the completeness of this list and not on
checking if all the graphs listed are minimal. It is a finite but tedious task, best done

computer assisted, to eliminate from this list all graphs that are not minimal.

Definition:
An embedding of a graph G into a 2-dimensional mannifold M is a topological mapping

of G, considered as 1-dimensional mannifold, into M.

Definition:

Two embeddings ¢; and ¢, of G into M are equivalent if there exists a homeomorphism

h from M to M such that ¢, is the composition of ¢; and .

Remark:
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It is well known that a class of equivalent embeddings of G into M is uniquely

described by listing all those circuits in G that are boundaries of faces of M.

Definition:

A graph G is minimal non embeddable into the projective plane P if G cannot be

embedded into P but each proper minor of G is embeddable into P.

Clearly, a minimal graph that is not embeddable into P is strict and finite.

Notation:

The main vertices of a graph G are the vertices of valency > 3. The generalized links of
G are those arcs of G whose inner vertices are of valency 2 and whose endvertices are main
vertices. Clearly, G is homcomorphi§ to a graph G’ whose vertices are the main vertices of
G and whose edges connect two vertices iff these vertices are connected by a generalized link
inG.

Let H be a subgraph of a graph G and a and b two vertices of H. We say that @ and
b are bridged by a bridge B of H if a or b are vertices of attachment of B or if @ or b are
vertices on two generalized links /| and /2 of H with the property that an inner vertex of /;

and an inner vertex of [, are vertices of attachment of B.

Clearly, a and b are bridged iff H can be contracted to a graph H homeomorphic to H

in which the two vertices corresponding to a and b are vertices of attachment of B.

Definition:

I34 is the set of all 3-connected minimal graphs that are not embeddable into P and

contain the complete bipartite graph K3 4 as a minor.



We will prove the
Main Theorem

Iss is contained in the following list of graphs:
{A2,B1,B7,C3,C4,C7, D2, D3, D9, D12, Eo, E3, Es, Ey, E1s, E19, Ez3, G }, where the

notation is the same as in [1].

Remark:

In this paper we do not want to prove that each graph in that list is minimal, which is a
finite but tedious task, best done computer assisted. We will prove that this list is complete,

however.

Proof:

The Main Theorem is an immediate consequence of theorem 0-3, stated and proved in

the remainder of this paper. O

Before we state theorems 0 - 3, we introduce some more notations.

K34 has three vertices of valency 4. Each of these can be split into two vertices of
valency 3, giving rise to graphs that contain K3 4 as a minor.

We partition 134 into four disjoint sets I44,0<i <3. A graph I belongs to I} 4 iff /
contains a minor that can be obtained from K 34 by i vertex splits, and / contains no minor
that can be obtained from / by i + 1 vertex splits.

Now we can state the four theorems:

Theorem 0: 194 = (A3, By, E3, E ).

Theorem 1: Id4 ¢ (B3, C3, C3, D3, D9, D12, Es, Eq1, Ex7).



Theorem 2: 124 < (C4, Do, Eo, Evo).
Theorem 3: 134 = (G).

Theorems 0 and 1 will be proved in the first part of this paper, Theorems 2 and 3 in the
second part. Before proving these theorems, we state a few simple conbinatorial facts without
proof:

K34 has exactly six inequivalent embeddings into P, given by Figure 1:

F(j,/

All graphs that are obtained from K34 by one vertex split are isomorphic and denoted by

K34. K44 has four inequivalent embeddings into P, given by Figure 2:
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In the sequel, we will always denote the vertices of K 34 and K44 as in Figure 1 and
Figure 2. It is easy to see that with this notation the following four permutations describe
automorphisms of K44:

(0, 2); (4, 6); (3, 5) (1, a)(0, 4)(2, 6).
The automorphism group generated by these four automorphisms partitions the main vertices

and generalized links of X into three equivalence classes each:
0,2,4,6) {(0,a),(2,a),(1,4),(1, 6)}
{a, 1} {0, 3), 0,5), 2, 3), (2,5, 3, 4, (5,4, (3, 6), 5, 6)}

(3,5} {1, a)

Now we come to the proof of Theorem 0:

Let I be a graph in I94. Then I contains a subgraph K homeomorphic to K34. We
number the main vertices of K with the numbers 0, 1, 2, 3, 4, 5, 6 in such a way that each
generalized link of K connects an even numbered to an odd numbered vertex of K, see
Figure 1.

Since K34 can be embedded into P, K is a proper subgraph of /. We consider the
bridges of K. If all the bridges of K bridge only pairs of main vertices of K, then all these
bridges are degenerate, since I is 3-connected, and / is a subgraph of the complete graph on
seven vertices, K7. It is a finite but tedious task process to show that in that case

I =Azorl =B,.

If one bridge of K bridges the three odd-numbered vertices of K, then I obviously
contains E3 as minor and therefore ] = E3. If one bridge of K bridges three even-numbered

vertices of K, then / obviously contains E 1 as minor and therefore I = E 3.
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No bridge of K bridges two even-numbered and one odd-numbered vertex of K, because

otherwise / would contain K44 as minor, contrary to the assumption that / € I§,.

To show that no bridge of K bridges two odd-numbered and one even-numbered vertex
of K, is somewhat more involved: Assume the contrary and let B be a bridge of K that
bridges w.l.o.g. the three vertices 0, 1 and 3. Then / contains a subgraph G homeomorphic to

G o, whose six inequivalent embeddings are given by Figure 3:

Without loss of generality we can assume that 0’ is an inner vertex of the generalized link
(0, 3) of K. Furthermore, we can choose 0’ to be the closest vertex to 0 on (0, 3) such that
no inner vertex of the generalized link (0, 0") is bridged to 3 by a bridge of G. (For if there
is an inner vertex 0” of (0, 0'), bridged to an inner vertex b on (0’, 3) we redefine G such
that 0 becomes 0, a generalized link connecting 0” and b outside of the old G becomes part
of G and the link (0”, 0’, b) in G becomes part of B.) Similarly, we define the vertex a to
be the closest vertex a on (0, 1) at which B is attached to (1, 0). (a may be equal to 1). [

therefore contains a subgraph G homeomorphic to G with the property that no inner vertex
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of (0", 0) is bridged to an inner vertex of (0, a) or to @ and no inner vertex of (0, a) is

bridged to an inner vertex of (0, 0") or to 0.

Obviously, each embedding of G — (0, a) into P can be extended to an embedding of
G into P and each embedding of G ~ (0, 0) into P can be extended to an embedding of G
into P. In order for the links (0’, 0) and (a, 0) not to be redundant in /, an inner vertex of
(0, 0) has to be bridged to some main vertex x on G or a vertex of (a, 0) has to be bridged
to a main vertex y of G. Since 0 must not be bridged to an even numbered vertex of G
(otherwise I would contain K34 as a minor) x can only be 1 if @ # 1 or x = 5. Similarly, y
can only be 3 or 5. Each of the resulting cases leads to the conclusion that / contains a

proper subgraph containing E '3 as minor, contradicting the minimality of 7. O
The proof of Theorem 1 follows directly from Lemmas 1-6:
Let I be a graph in I34. Then / contains a subgraph K homeomorphic to K{4.

Since K34 is embeddable into P, K is a proper subgraph of I. We now consider the
bridges of K. Lemma 1 deals with the possibility that all bridges of K are degenerate and
only attached to main vertices of K. Lemma 2 shows that if one bridge is not degenerate,
then K can be suitably chosen so that a bridge is attached to an inner vertex of a generalized
link of K. As stated earlier, there are only three inequivalent generalized links of K,
represented by (0, a), (0, 3), (1, a). Lemma 4 shows that no bridge can be attached to (0, a).
Lemma 5 lists all graphs resulting from a bridge attached to an inner vertex of (0, 3) and
Lemma 6 lists all graphs resulting from a bridge attached to an inner vertex of (1, a).
Lemmas 3 and 4 show that certain graphs are forbidden subgraphs of I and help to shorten

the proof considerably. 00
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In the remainder of this paper, we state and prove Lemmas 1-6.

Lemma 1:

If / is a graph in 144 and if for some subgraph of K of / that is homeomorphic to K44,
all the bridges of K are degenerate and are attached only to main vertices of K, then I is

contained in the following list of three graphs:

{B3, C7, D3}, given by the diagrams in Figure 4:

37 7 C? ’ D3
th. ¢

Proof:

To prove this lemma, we first note that I is a subgraph of the complete graph on eight
vertices, K'g. It is a finite but tedious task, best done computer assisted, to show that the only
subgraphs of Kg that belong to I are Dy, E3, Eqg, and the three graphs listed above.

D3, E3 and E 13 do not contain K34 as minor. O

Lemma 2;
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If I is a graph in /34, and if for some subgraph K of I that is homeomorphic to K34, a
bridge of K is not degenerate, then / contains a subgraph K’ homeomorphic to K44 with the

property that one bridge of K’ is attached to an inner vertex of a generalized link of K’.

Proof:

Let B be a non-degenerate bridge of a subgraph K of I, that is homeomorphic to K34.
Since I is 3-connected, B bridges at least three of the main vertices of K. If any two of
these, say a and b, are connected by a generalized link / in K, we obtain K’ from K by
replacing ! by a cycle free arc in B that connects a and b, and clearly one bridge of K’ is

attached to an inner vertex of a generalized link of K.

To finish the proof, we show that no bridge of K can bridge three main vertices of K
with the property that no two of them are connected by a generalized link of K. Using the
symmetries of K, we conclude that the following three triples form a complete set of
representatives for the different choices of three such vertices: {0, 1, 2}, {0, 2, 4} and
{1,3,5). If one of these were bridged by a bridge of k,/ would obviously contain

F 3, E 13 or E3 respectively as a proper minor, contradicting the minimality of /. O
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Let Hg be the graph whose two inequivalent embeddings into P are given in Figure S:

é 14
s ' 3 '
N AN EREIN o'\ 4 s
3 0 5 AN 0 73 p;
4 4 u 6

l thf '

Let H3 be the graph obtained from Hg by splitting the vertex 2 as shown in Figure 6:

£ §
s ' 3 !
Q Q
o' 4 3 ’
2 3 0 q S~
3 ) €3 2 5 0 3 2
4 /A ¢

It is easy to check that Hg and H, 2 have only the two inequivalent embeddings into P
given above. It is obvious that the two embeddings of H 2,2 are extensions of the two

embeddings of H, respectively.  Furthermore, Hj» has the two automorphisms



(3, 5) and (0, 6)(0’, 1).

Lemma 3:

No graph in I contains H,» as a minor.

Proof:

Assume / is a graph in I and contains Ho2 as a minor. Let H be a minimal subgraph
of I that contains H,y as a minor. Clearly, H can be obtained from H 2,2 by splitting some
of the vertices of valency 4 in H,2 and by subdividing some of the links of the resulting

graph by vertices of valency 2.

If two vertices of H are obtained by splitting the vertex i of Hy» (which is possible for
i =3, 4,5) we name these two vertices i and i’, in such a way that i’ is the vertex that is
connected by a generalized link to O or 0’ respectively. The remaining main vertices of H we

named in the same way as the corresponding vertices of H, ..

Let a be that vertex on the generalized link (2, 2") of H that is connected to the vertex 2
by a single edge e in / (@ may be equal to 2), and let H be the minor of H obtained by
contracting the link e. Because of the minimality of /, H is embeddable into P. Since H
contains Hg as a minor, each embedding of H into P induces an embedding of Hg into P.
Since the two inequivalent embeddings of Hg into P can be extended to embeddings of Ho
into P, it follows that each of the (one or two) inequivalent embeddings of H into P can be

extended to embeddings of H into P.

Now consider the graph I, obtained from / by contracting the link e with endpoints 2

and a. Because of the minimality of /, there exists an embedding of I into P, inducing an
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embedding of H into P. This embedding can obviously be extended to an embedding of H
into P. For that embedding not to be extendable to an embedding of / into P, H has to have
bridges that interfere with such an extension. The bridges of H in I are the same as the
bridges of H in I, except for the fact that the vertices of attachment 2 and @ are identified.
In any embedding of I into P, the bridges of H are embedded into faces whose boundaries
are circuits in H. The faces of an embedding of H into P that do not contain the vertex 2 in
their boundaries are the same as those of the corresponding embedding of H into P.
Therefore, for an embedding of H into P not to be extendable to an embedding of I into P,
there has to exist a bridge B of H in I that in an embedding of I into P is embeddable into a
face whose boundary contains the vertex 2. As Figure 6 shows, these boundaries are the
following: (2,1,4,0,2), (2,3,4,52, 2,0,0, 3,2, 2,0,0,52), @ 1,6,3),
(2, 1, 6, 5). The last four are obviously equivalent under the automorphisms of H 22, and we

only consider the first one of them:

Let us then first assume that there exists a bridge B of H whose vertices of attachment
are all on the circuit (2, a,2,0,0,3,3,2). In an embedding of I into P, let F be the face
into which B is embedded. Clearly, F has boundary (2,0°,0,3,2) or (2,0,4,1,2) or
(2,3,4,5,2) if B is only attached to vertices on the generalized link (2, 0") or (2, 3) of H.
This embedding of I into P induces an embedding of H into P, which in tum can be
extended to an embedding of H into P. In this embedding, let F be the face with boundary
2,a,2,0,0,3,3,2). Clearly, this embedding can be extended to an embedding of H UB
into P, by embedding B into F. (If B could not be embedded into F, / would not be
minimal since the generalized link (0, 4) of H would be redundant.) For B not to be

redundant, there has to exist another bridge B’ of H whose embedding into F interferes with
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an embedding of B into F, but if B is not only attached to vertices on the link (2, 0") or
(2,3) of H, B and B’ can both be embedded into the face F with boundary (2, 0’, 0, 3, 2).
Therefore, one of these two bridges, say B, has to be attached to a vertex b on the
generalized link (2, 3) of H, b # Jand B’ has to be attached to an inner vertex ¢ of the
generalized link (2, a, 2’, 0") of H. Furthermore, there have to exist two vertices x and y on
the boundary of F occurring with b and ¢ in the cyclical order b, c, x, y, such that B

bridges b and x and B’ bridges ¢ and y.

We can assume w.lo.g. that B and B’ are degenerate and that B does not only
bridge 2 and 3 or 2, a and 2’ and that B’ does not only bridge 2’ and 0. (Some simple
modification of the graph H into another minimal graph H” of I that contains Hyy as a
minor may be necessary.)

Therefore, we now have to consider the following 5 cases:

Case 1:
x=0,y=0"

I contains the minor M which is given by Figure 7:

6
kY [
o' 4 3
Y/
3 5 G 3
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Clearly, M is not embeddable into P and the links (0, 3), (0, 5), (0, 0") in M are redundant.
This contradicts the minimality of /.
Case 2:
x=0,y=0:

I contains the minor M given by Figure 8.

6
§ (
a
’ 4
2 2 3
3
2
p 0 £y
6
Fiy. 8

Clearly, M is not embeddable into P and the link (0, a) is redundant. This contradicts

the minimality of /.
Case 3:
x=0,y=30r3"

I contains the minor Mg, whose only embedding into P is given by Figure 9:

6
3 |
o'\ 4 5
a./
2 2
S 3 a

£.’4.9
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or the minor M1, given by Figure 10.

6
’ {
3 a
o' a
2
3’
3 > ;G5

4 ¢
{ Ft'j./O

Clearly, M is not embeddable into P and the link (0’, 4) is redundant. This contradicts the

minimality of 7.

If I' contained the minor Mg, let M be a minimal subgraph of I that contains Mg as a
minor. Let /; and /; be the generalized links of M that correspond to the links (a, 0") and
(3, 2) of M. Consider the bridges of M — (I}, I3} in I. Clearly, !; and I, cannot belong to

one and the same of these bridges, because then / would contain as proper minor the non-

embeddable graph given by Figure 11:

6
3 [
4

Q //\

2 ~ 2

S
4 0 3 s

A

/ Fie. n
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This contradicts the minimality of /.

Let then By and B, be the two bridges of M — (I}, ;) that contain 1y and /5 as
subgraphs respectively. Obviously, {Mg - (a, 0"), (2, 3)} and M — {f1, 2} have only one
embedding into P. The embeddings of / ~ By, and I — B into P are therefore extensions of
this embedding. In these extensions, B; and B, are embedded into different faces, say F,
and F,. For B or B; not to be redundant, there have to exist bridges Cy and C, of M that
interfere with an embedding of B into F and B3 onto F, Clearly, Cy and C; have to be
two different bridges, and therefore any one of the four bridges B, B3, C1, C3 is redundant.
This is again a contradiction to the minimality of /.

Case 4:

x=0,y=30r%

In this case, I contains the minor My whose only embedding into P is given by

Figure 12:
A
{
3
4 S
a
2 2
£ 3 py
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or the minor M, given by Figure 13:

6
< I
a
9’ 4 3
2
]
3' -3
3 7] S 2
4 6
! FL;. /3

Analogously to case 3, M, is not embeddable into P and we conclude that M is not

minimal since (0", 4) is redundant. Also, M 0 is not minimal because of the two links (2, 3)

and (S, 0).

This results again in a contradiction to the minimality of /.

Case §:
x=3y=3

I contains the minor M, given by Figure 14:

6
§ [
a'a' ¢4 3 3
2
5
3 o 75 ?
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Clearly, M is not embeddable into P and the link (3, 2) is redundant. This contradicts the

minimality of /.

These five cases cover all the essentially different possibilities that could occur if B was

attached only to the boundary (2, a, 2°, 0, 0, 3/, 3, 2).

Assume now that B is not attached only to that boundary or to one equivalent under the
automorphisms of H;2. Then all the vertices of attachment of B have to be on one of the

circuits (2, 1, 4, 0/, 2) or (2, 3,4, 5,2) of H.

Let us next consider the case that B is attached to the boundary (2, 1, 4, 0/, 2) in H. In
an embedding of 7 into P, B is embedded into that face F with boundary (2, 1, 4, (Y, 2) or
(2,3,4,5,2) if B is only attached to 2 and 4. For B not to be redundant, B must not be
embeddable into the face with boundary (a, 1, 4, 0, a), because otherwise each embedding of

I into P could be extended to an embedding of / into P. Therefore, one vertex of

attachement of B in H is the vertex 2.

If B bridges three of the main vertices of H, we have, using the automorphisms of H, »,
the following four choices for vertices to consider:
{(2,a,0), (2,a,4), {2,0,4), {2,0, 1}). The first one can be excluded since B must not
be attached only to the boundary (2,a,2’,0,0,3,3,2). In the remaining three cases it
follows easily that H |\ B is not embeddable into P and not minimal, since the links
(2, a), (0’, 4) and (0, 3) respectively of H are redundant, contradicting the minimality of /.

If B is only attached to the vertices 2 and 4 of H, then any embedding of H can be
extended to an embedding of H{ B by embedding B into the face with boundary

(2,3,4,5,2). For B not to be redundant, there exists a bridge B’ of H that bridges 3 and 5.
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If B is attached only to 3 and 5, H must have another bridge B” that bridges 0 and 6, and /

therefore contains the minor given by Figure 15,

é

, \"/‘7 z 4 2 a

l FL'j. /5

which obviously contains E 19 as proper minor, contradicting the'minimality of I.

The remaining cases, where B is attached to a vertex different from 3 and 5, lead again

to the same contradiction, following similar reasoning.

Finally, the case that B is attached to the boundary (2, 3, 4, 5, 2) of H, can be dealt

with analogously. O
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Lemma 4;

Let I be a graph in I{4 and K a minimal subgraph of / homeomorphic to K34. Then

no bridge of K is attached to an inner vertex of the generalized link (0, a).

Proof:

Assume the contrary, ie., let I be a graph in I 14, K a minimal subgraph of /
homeomorphic to K34 and B a bridge of K attached to an inner vertex 0’ of the generalized

link (0, a) of K. Since I is 3-connected, B has to bridge 0’ to some main vertex x of K ,

different from 0 and 4.

Because of lemma 3, x cannot be 4 or 6. Therefore, x has to be one of 3, 5,1 or 2.

The first two are equivalent because of the automorphisms of K 14, described earlier.

We now consider the three resulting cases:

Case 1:

X =3orS5.

We show that this assumption leads to a contradiction; Since B bridges 0’ and 3, B is
attached to a vertex 3’ on one of the generalized links of K that contains 3 as an endpoint.
Because of the restrictions on x stated above, 3’ can only be on the generalized link (0, 3) of
K, and 3’ may coincide with 3. Therefore, I contains a minor My whose four inequivalent

embeddings into P are given by Figure 15¢¢ *

Uy
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Let M be a minimal subgraph of / that contains Mg as a minor. Clearly, M has four
inequivalent embeddings into P which are extensions of the embeddings of Mg into P. We
observe that the generalized circuit (0, (', 3’, 0) of M is the boundary of face F in each of
these embeddings and also in each of the six inequivalent embeddings of M into P, where M
is obtained from M by contracting the generalized link (1, a) of M. We conclude that no
bridge of M can be attached only to that circuit (0, 0, 3, 0). Because if C was such a
bridge, C would have to be embeddable into F, since otherwise M \UC, a proper minor of
I, would not be embeddable into P, contradicting the minimality of I. Therefore, for C not
to be redundant, there would have to exist another bridge C’ of M that interferes with the
embedding of C into F. But this again leads to a contradiction, namely that M uCyucC’is

not embeddable into P.

We also '.observe that the generalized link (0, 3) of M can be embedded into each of the
four inequivalent embeddings of M — (0, 3) into P. Therefore, for (0, 3) not to be redundant,
there has to exist a bridge B’ of M that either bridges 0’ to one of the vertices 4, 5, 6 or that
bridges an inner vertex of (0, 3) to one of the vertices a, 1, 2, 4, 6. However, no inner vertex
of (0, 3) can be bridged to one of 2, 4, 6 because of the definition /44, nor can such a vertex
be bridged to 1 or a, because in that case / would obviously have E3 as a proper minor,
contradicting the minimality of /. Because of lemma 3, 0" cannot be bridged to 4 or 6.
Therefore, B’ bridges 0’ and 5. B’ cannot bridge 0" and 5 to 2 because of the definition of
I34, nor to 3 because otherwise / would again contain E3 as a proper minor. Therefore, B’
is only attached to vertices on (5, (), at least one of them, say 5, different from-0’, and to
vertices on (0, 0", a), at least one of them, say 0", different from 0 and a. From this we

draw the conclusion that I contains as minor the graph Ng, whose four inequivalent
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embeddings into P are given by Figure 16:

Fog-16
Let N be a minimal subgraph of I that contains Ny as a minor. Then N has the four

inequivalent embeddings into P, given by Figure 17;

F(:j. 7

Here 3’ and 3, 5 and 5, 0” and O’ are not necessarily different. Because of the

automorphisms of K34 we can assume w.lo.g. that 0’ is between 0 and 0”. Clearly, the
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subgraph of M consisting of the three generalized links 0,079, 3,0), (5,0) of N can be
embedded into each of the four inequivalent embeddings of M - {(0, 0%, 3, 0), (5, 0)} into
P. As before, we conclude that there has to exist a bridge D of M to interfere with at least
one of these embeddings and that D has to bridge 0 to one of the vertices a, 1, 2, 4, 6.
Again, 2, 4 and 6 can be excluded because of the definition of I 14, énd 1 or a would lead to

the contradiction that / contained E3 as a proper minor.

This shows that case 1 leads to a contradiction.
Case 2;

x=1

In that case, I contains a minor Mo whose four inequivalent embeddings into P are

given by Figure 18:

As in the proof of lemma 3, we note that contracting the generalized link (0, 0) of My

leads to a minor My of [ that has four inequivalent embeddings into P. Clearly, the

s e ot
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embeddings of M into P are extensions of those of M, o into P. In the same way as in the
proof of lemma 3 we conclude that the generalized link (0, ') is redundant.
Case 3:

x=2

Finally, this case is dealt with the same way as case 2, again concluding that the

generalized link (0, 0') is redundant. O

Lemma 5:

Let I be a graph in 144 with the property that for some subgraph K of I that is
homeomorphic to K34 a bridge of K is attached to an inner vertex of the generalized link

(0, 3) of K. Then I is one of the graphs D 19, E 11 or E;.

Proof:

Let I be a graph in 144 with the property stated in lemma 5 and let B be a bridge of K
that is attached to an inner vertex 0 of (0, 3). Since / is 3-connected, B has to bridge 0" to
some main vertex x of K, different from 0 and 3. Also, x has to be different from 2, 4, 6
and 5, since vertex 5 would lead to a contradiction to lemma 4 and any one of the vertices 2,

4, 6 would lead to a contradiction with the definition of I44. Therefore, x has to be one of a

Since B bridges 0" and 1, B is attached to a vertex on one of the generalized links of K

that contain 1 as an endpoint. Because of the restrictions on x stated above, x can only be on
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the generalized link (0, 1) of K. Because of lemma 4 and the symmetries of K34, x has to
be equal to 1. Therefore / contains a minor Mg whose two inequivalent embeddings into P

are given by Figure 19:
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Let M be a minimal subgraph of I that contains M as a minor. M obviously has the
two automorphisms given by (4, 6) and (0’, 2)(0, @ )(1, 5). Therefore the main vertices of M
are partitioned into the five equivalence classes {0, 2}, {1, 5}, {4, 6}, {0, a}, (3) and the
generalized links equivalent to ©, a) are the the following:

2, a),(1,4), (1, 6), (0, 0), 5, 4), (5, 6).

Since I is 3-connected, any bridge of M is attached to M at two different vertices on
two different generalized links of M. Among the endpoints of these links there is at least one
pair {x, y} that is not connected by a generalized link of M (since M has no generalized
triangles). Because of the symmetries of M, given above, there are ten different equivalence
classes of such pairs, that can be described by the following representatives:

(0,2}, (0", 4}, {0, 4}, {0, 5, {0, 4}, (1, 3}, (4, 6}, {1, 5}, (1,0), {0, 3).
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We will now investigate the ten resulting cases and show that they lead to contradictions,
unless / contains one of the graphs D 3, Ejor E 27.
{x, y} is different from {0’, 2}, because otherwise would contain F 1 as a proper minor,

Figure 20,
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contradicting the minimality of /.
{x, y) is different from (0", 4} because of the definition of I44.
{x, y} is different from (0, 4) because of lemma 3.

{x,y} is different from (0", 5} because otherwise I would contain a minor that is
excluded by lemma 4.

If {x,y}={0, a}, then B cannot bridge 0’ and a to 4 or 6 because of the definition of
I34,norto 0, 1, 2, 5 because of Lemma 4. Therefore B is either degenerate, attached only to

0’ and a, or B bridges 0’, @ and 3. In that case, / is the graph Eq7.
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If {x,y}=1{1,3), then B cannot bridge 1 and 3 to 0’,2,4,5,6 or a because of
Lemma 4, nox: to 0 or 5, because in that case / would contain E3 as a proper minor.

Therefore, B is degenerate, attached only to 1 and 3.

If {x,y} = {4, 6}, then B cannot bridge 4 and 6 to 1 or 5 because of Lemma 4 nor to 3
because of the definition of I 14. Because of the symmetries of M and the previously
excluded cases (0", 4} and {0, 4}, B cannot bridge 4 and 6 to 0", 0, 2 or a either. Therefore,

B is degenerate, attached only to 4 and 6.

If {x,y}=(1,5), then B cannot bridge 1 and 5 to 4 or 6 because of Lemma 4, nor to
0’, 2 or 3 because of the symmetries of M and the cases {1, 3} and {0, 5} dealt with earlier.
Therefore, B is either degenerate, attached only to 1 and 5, or B bridges 1 and 5 to 0 or a.
The last two possibilities are equivalent because of the symmetries of M, and in either case I

is the graph E ), Figure 22:
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If {x,y} = (1,0}, then B cannot bridge 1 and 0 to (', 4, 6 or @ because of Lemma 4,
nor to 2, 3 or 5 because of the symmetries of M and the cases {0, 5}, (1,3}, {1, 5)

previously dealt with. Therefore, B is degenerate, attached only to I and 0.
If (x,y} = (0, 3) then B cannot bridge 0 and 3 to 0’ or @ because of lemma 4, nor to

1, 2, 4, 5, or 6 because of the symmetries of M and the cases {0, a}, {0, 4},{1, 3}

previously dealt with. Therefore B is degenerate, attached only to 0 and 3.
We are now left with the possibility that M has some degenerate bridge, bridging some
of the six pairs of vertices {0, a}, (1, 3}, {4, 6}, {1, 5}, {1, 5}, {1, 0}, {0, 3}).

Obviously, for the degenerate bridge attached to 0’ and a not to be redundant, the

degenerate bridge attached to 1 and 0 is required, and vice versa. In that case, / is the graph

Dy, Figure 23:
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Similarly, the degenerate bridge attached to 4 and 6 needs the degenerate bridge attached to 1
and 5 and vice versa. It follows that M cannot have either of these bridges, because

otherwise / would contain the graph D3 a proper minor, Figure 24:
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Finally, M cannot have degenerate bridges attached to 3 and 0 or to 3 and 1, because no other

possible bridge of M can interfere with these.
This finishes the discussion of case 1, x = 1.
Case 2:
x=a

This case can be reduced to case 1: Since now B is assumed to bridge 0" and a, B is
attached to a vertex a’ on one of the generalized links of K that contain @ as an endpoint.
Because of the restrictions on X stated earlier, @’ can only be on the generalized link (0, a)

of X, and a’ may coincide with a. Therefore I contains a minor N o whose four inequivalent

embeddings into P are given by Figure 25:

Let N be a minimal subgraph of I that contains Ngo as a minor. Clearly, the four
inequivalent embeddings of N into P are extensions of the four embeddings of Ny into P.

As in the proof of lemma 4, case 1, we conclude that no bridge of N can be attached only to
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the generalized circuit (0, 0’, a’, 0) of N. Furthermore, for the generalized link (0, a) of N
not to be redundant, there has to exist a bridge B of N that bridges 0 to one of the vertices
1,2, 4,5 or 6 (since by lemma 4 no bridge can be attached to an inner vertex of (0, a)).
Again, because of the definition of 44, 2, 4 and 6 are excluded, and because of lemma 4 and
the symmetries of K44 5 is excluded. Therefore, B bridges 0" and 1, and we are back to

case 1. O

Lemma 6:

Let I be a graph in 144 with the property that for no subgraph K of I that is
homeomorphic to K34 a bridge of K intersects the generalized link (0, 3) of K in an inner
vertex, but for some subgraph K of I that is homeomorphic to K34, a bridge of K intersects

the generalized link (1, @) in an inner vertex. Then I is one of three graphs C3, D9 orEs.

Proof:

Let I be a graph with the properties stated in lemma 6 and let B be a bridge of K that
intersects the generalized link (1, @) in an inner vertex b. Since I is 3-connected, B has to
bridge b to one of the vertices 0, 2, 3, 4, 5 or 6 of K. B cannot bridge b t0 0, 2, 4 or 6
since that would, because of the symmetries of K44, contradict lemma 4 or the properties of
I stated in lemma 6. B cannot bridge b to 3 and 5, because otherwise / would have E3 as a
proper minor. Because of the symmetries of K34 we assume w.l.o.g. that B bridges b and 3.
From the constraints on B, derived earlier, it follows that B is degenerate and only attached

to b and 3.
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Therefore, I contains a subgraph whose four inequivalent embeddings into P are given

by Figure 26:

Obviously, M has the three automorphisms (0,2); (4, 6); (0, 4)(1, @), which partition the
vertices of G into the five equivalence classes {0, 2, 4, 6),{1, a}, {3}, {5}, {b).

As in the proof of lemma 5 we conclude that any bridge of M bridges one pair of main
vertices {x, y} of M that are not connected by a link of G. Because of the symmetries of
G, given above, there are seven different equivalence classes of such pairs that can be

described by the representatives {5, b}, (1, a}, {1, 3}, {0, 2}, {a, 5}, (3, 5}, {0, 4}).

If a bridge B of M bridges 5 and b, then I = Es. Figure 27:

Fie. 27
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If a bridge B of G bridges 1 and a, it follows easily that B has to bridge 1 and a to 5,

and I = Dy, Figure 28:

From the symmetries of K §|4 and the conditions in Lemma 6 follows that if a bridge B

. of M bridges any other pair of vertices, {x, y}, then B is degenerate and only attached to x

and y.

A degenerate bridge B of G cannot be attached to 1 and 3, because then B would

clearly be redundant.

A degenerate bridge B of M cannot be attached to 0 and 2, because otherwise G would

need a bridge B’ attached to a and 5, and I would have the proper minor D3, Figure 29:

@, b)

Fie. 29 D,
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and vice versa, M cannot have a dgenerate bridge attached to @ and 5.

If M has a degenerate bridge attached to 3 and 5, then M needs two more bridges,
which can only be degenerate bridges attached to (0,4} and some equivalent pair {x’, y’).

This leads to only one choice for {x’, y’}, namely (2, 6}. The I = Cs, Figure 30:
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Finally, if M had four degenerate bridges, all attached to (0, 4} and the other three equivalent
pairs, we would obtain a graph that is not embeddable into P. However, this graph is not
minimal since it has the automorphism (1, 2)(3, 4)(5, 6)(b, c), where ¢ is an inner vertex of

the generalized link (a, 2) of G. This shows that a bridge is attached to an inner vertex of a

generalized link of G equivalent to (0, a), contradicting Lemma 4. [J
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