
THE UNIVERSITY OF CALGARY

Self-stabilizing Minimum Spanning Tree
Construction on Message-Passing Networks

by

Zhiying Liang

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

January, 2002

© Zhiying Liang 2002

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Self-stabilizing Minimum Spanning Tree Con-

struction on Message-Passing Networks" submitted by Zhiying Liang in partial fulfillment

of the requirements for the degree of Master of Science.

Supervisor, Zr. a Higham,

Department of Computer Science.

A4 ,
Dr. Claudio Costi,

Department of Computer Science.

_q/0 //0 3
Date

Dr. Karen Seyffa

Department of Mathematics and Statistics.

11

Abstract

Self-stabilization is an abstraction of fault tolerance for transient faults. It guarantees that,

the system will eventually reach a legitimate configuration when started from an arbitrary

initial configuration.

This thesis presents two minimum spanning tree algorithms designed directly for de-

terministic, message-passing networks. The first converts an arbitrary spanning tree to a

minimum one; the second is a fully self-stabilizing construction. The algorithms assume

distinct identifiers and reliable fifo message passing, but do not rely on a root or synchrony.

Also, processors have a safe time-out mechanism (the minimum assumption necessary for

a solution to exist.) Both algorithms apply to networks that can change dynamically.

111

Acknowledgments

First of all, I would like to thank my supervisor Lisa Higham. I thank her for getting

me interested in Distributed Computing, and her constant guidance, encouragement and

support.

I thank Dr. Claudio Costi and Dr. Karen Seyffarth for their valuable comments and

corrections.

I also want to thank the constant support from my family, especially, my husband

Michael Dery and my mother Jingfen Yu.

Finally, I acknowledge the support from the Department of Computer Science.

iv

Contents

Approval Sheet ii

Abstract

Acknowledgments iv

Contents vi

1 Introduction 1
1.1 Models of Distributed Computing 1

1.1.1 Communication 2
1.1.2 Timing model 3
1.1.3 Scheduler 4

1.1.4 Atomicity 5
1.1.5 Network Topology 6

1.1.6 Network Labels 6
1.1.7 Fault Models 7

1.1.8 Algorithm Type 7
1.2 Self-stabilization 8

1.2.1 History and General Description 8

1.2.2 Definition of Self-stabilization 10

1.3 Overview of Thesis 10

2 Literature Review 12

3 Prepatory Graph Theory and Distributed Computing Theory 18

3.1 Graph Theory Preliminaries 18
3.1.1 Notation 18
3.1.2 The Minimum Spanning Tree Problem and Properties 19

3.1.3 Distributed Computing Model 24

V

4 From An Arbitrary Spanning Tree To A Minimum Spanning Tree 26
4.1 A Distributed MST algorithm given a spanning tree 27

4.1.1 The Edge Processors 27
4.1.2 The Messages 28
4.1.3 The Protocol 28

4.2 Proof of Correctness 30
4.3 Complexity 36
4.4 Dynamic Growing Network 37

4.5 Bounded Message Queue 39

5 A Self-Stabilizing Minimum Spanning Tree Algorithm 40
5.1 Self-Stabilizing MST algorithm 41

5.1.1 The Processors 41
5.1.2 The Messages 42
5.1.3 The Protocol 42

5.2 Proof of Correctness 46
5.3 Complexity Analysis 52

6 Model Conversion 54

6.1 Simulation 54

7 Conclusions 61

7.1 Summary of Contributions 61
7.2 Observations, Discussion and Future Directions 62

Bibliography 67

vi

CHAPTER 1

Introduction

Comprehension will be in Nancy Lynch [14].

1.1 Models of Distributed Computing

The term distributed system is used to describe a communication network, a multiprocessor

computer or a multitasking single computer. A distributed system contains of two types of

components: processors and communication channels between the processors. Distributed

computing studies the computational activities performed on these systems.

Distributed systems, by their very nature, are subject to much uncertainty. Uncertainty

may be a result of failures: individual processors may crash, information may be corrupted,

lost or replicated during transmission, processors may lose synchrony, and so forth. There-

fore a major concern in the study of distributed computing is dealing with uncertainty.

Fault-tolerant computing is geared towards the study of reliable distributed systems that

tolerate uncertainty.

In the theory of distributed computing, one usually uses the term model to denote an

abstract representation of a distributed system. An algorithm is the program given to the

processors to solve a certain problem on a certain model setting. Complexity analysis

provides some measurement of the performance of algorithm. For example, the problem

can be mutual exclusion, leader election, or construction of a minimum spanning tree. The

model can be shared memory or messaging-passing. The algorithm can be deterministic

1

1. INTRODUCTION 2

or randomized. The message complexity of the algorithm would provide a bound on the

total number of messages exchanged while the system solves the problem. The theory

of distributed computing aims to study problems and their complexity measures under a

variety of models.

Various different models arise depending on assumptions about how both processors

and communication behave. The following subsections describe some common alternative

choices for several different components of a model of a distributed system.

1.1.1 Communication

The communication model describes the mechanism that supports information exchange

between processors. Two common interprocessor communication models are the message

passing model and the shared memory model.

In the message passing model, processors communicate by exchanging messages. A

processor sends a message by adding it to its outgoing message queue, and receives a

message by removing it from its incoming queues. Different sub-models arise from dif-

ferent assumption about both channel and queue behavior. Queues may have bounded or

unbounded size. If they are bounded then the model must specify what happens when a

message is added to a full queue. Typically, it is lost or some other message in the queue is

lost. Generally bounded queues are more realistic models of channel behavior.

Each processor may have one queue for the entire set of all incoming messages or it may

have a separate queue for each adjacent communication channel. The model may include

the capability to send one message to a specified neighbor in one step, or broadcast a single

message to any subset of neighbors, or even send different messages to each neighbor in

one step.

A communication link is either unidirectional or bidirectional. A unidirectional com-

munication link from processor Pi to processor P2 is used to transfer messages from Pi to

P2. A unidirectional communication link can be described as a FIFO queue containing all

the messages send by processor P1 to its neighbor processor P2 and not yet received by P2.

1. INTRODUCTION 3

When P1 sends a message to P2, the message is added to the end of this queue. P2 may re-

ceive a message m from the head of the queue. At the same time the message m is removed

from this queue. A bidirectional communication link between P1 and P2 is modelled by a

pair of FIFO queues, one in each direction.

In the shared memory model, processors communicate through globally shared objects.

Typically these objects are atomic registers. An atomic register is a shared variable that

can be either read or written in one indivisible (atomic) step. An atomic register can be

multi-reader/multi-writer, or multi-reader/single-writer, or single-reader/single-writer. But

sometime the model includes stronger objects such as test-and-set, or fetch-and-add and

other read-modify-write objects such as queues and stacks. Processors may write in a set

of registers and may read from a possibly different set of registers. Most of the techniques

used in the shared memory setting can be adapted for use in the message passing setting.

The link register model is a special restriction of the shared memory model. The net-

work is modelled as a graph. However, rather than the message passing model, in the link

register model, there are two registers between each pair of neighboring processors. A pro-

cessor P1 communicates with its neighbor processor P2 by writing in the register r12 and

reading from the register r21. The processor P2 communicates with P1 by writing in r21 and

reading from r12. The link register model is commonly used in the self-stabilizing setting.

Of course these different assumptions impact the cost of algorithm solutions to dis-

tributed computing problems. They also differ in how accurately they reflect the real system

they are intended to model.

1.1.2 Timing model

The three basic models of timing in distributed systems are called the Synchronous model,

the Asynchronous model and the Partially Synchronous model.

The synchronous model, where each processor simultaneously executes one step of its

program in each time step, is the simplest model to describe, to program and to analyze.

Understanding first how to solve a problem in the synchronous setting is often useful for

1. INTRODUCTION 4

developing the algorithms to solve the same problem under different more realistic timing

assumptions. But sometimes it is impossible or inefficient to implement the synchronous

model in a distributed system.

In the asynchronous model, processors execute their programs at different speeds. Both

the absolute speed of each processor and the relative speed between processors may vary

arbitrarily during the computation. The asynchronous model is harder to program than

the synchronous model. Without timing restrictions, problems are more general and in-

teresting and more realistic. On the other hand, it is typically harder to solve problems

efficiently when there are no timing guarantees. Many problems that are solvable under the

assumption of synchrony become impossible to solve in the asynchronous model.

The partially synchronous model assumes some restrictions on the relative timing, but

execution is not in lock-step as it is in the synchronous model. It is a realistic model

but often difficult to program. An algorithm tuned for one partial-synchrony assumption

may fail for others. Thus these algorithms may lack portability. Violation of the timing

assumption can cause the algorithm to fail to operate correctly.

A probability distribution on communication speeds, another kind of timing model, has

been assumed in some literature. Although not many algorithms have been designed for

models with probability distributions on communication speed, this model has an advan-

tage and potential since it can be tuned for likely transmission speed§ while maintaining

correct behavior when timing behavior is unusual.

1.1.3 Scheduler

In an asynchronous system, the differences in the speeds of the processors are simulated

with the use of a scheduler, alternatively called a daemon. It is assumed that at each time

step a scheduler determines which processors execute the next step of their program subject

only to synchronization enforced by explicit program constraints. The distributed daemon

and the central daemon are two types of scheduler. In each step, the central daemon acti-

vates only one processor at a time. In each step, the distributed daemon selects a nonempty

1. INTRODUCTION 5

set of processors and activates all the processors in the set simultaneously. The central

daemon is a special case of the distributed daemon in which the set of activated processors

consists of exactly one processor. Some algorithms work correctly under a central daemon

but not a distributed daemon. The requirement of a central daemon is an unreasonable con-

straint for a truly distributed system. In particular, its implementation requires some form

of centralized control.

The scheduler is typically constrained by a fairness assumption that provides some min-

imum guarantee on the interval between successive steps of a processor. There are many

different strengths of fairness. Weak fairness only ensures that in an infinite execution, each

processors takes an infinite number of steps. k-fairness ensures that no processor executes

more than k steps between any two successive steps of any other processor. A round robin

scheduler constrains processors to take a fixed order under a 1-fairness assumption. The

round-robin is the most restricted and often unrealistic scheduler. In this thesis, we assume

the scheduler is only constrained to be weakly fair.

1.1.4 Atomicity

An atomic step is the largest step that is guaranteed to be executed uninterruptedly. Com-

posite atomicity and read/write atomicity are two common kinds of atomicity. Composite

atomicity allows a processor to perform several operations on shared memory in one atomic

step. For example, under composite atomicity, a processor could read the state of each of

its neighbors and update its own state as one indivisible action. A conservative assumption

is that in a shared memory system an atomic step contains only a single read operation or a

single write operation. This is called read/write atomicity.

Clearly an algorithm that is designed to work under read/write atomicity can be used

in any system with composite atomicity. However, an algorithm that solves a problem

under composite atomicity may be incorrect for read/write atomicity. Often it is easier to

find an algorithm and prove it correct for composite atomicity than for read/write. This

motivates one active research direction which is to design general technique for converting

1. INTRODUCTION 6

an algorithm correct for composite atomicity to one correct for read/write atomicity.

In randomized algorithms, there exist random operation such as coin tosses. If the

random operation is not separable from the next read or write operation, then we call it

coarse atomicity. The term fine atomicity means an atomic step contains only a random

operation or a read operation or a write operation.

1.1.5 Network Topology

A message-passing system is generally modelled as a graph where processors are the nodes

and the communication links are edges. In this case, the topology of the network is fixed.

The assumptions about processors' knowledge of their network can have a significant im-

pact on the network's ability or cost to solve various problems. For example, an algorithm

can be designed for an arbitrary topology, or may be required to work only for a fixed

family of topologies such as rings, trees, chains or complete graphs. As well, the algorithm

may be parameterized by the network size, or it may be that the size is not available and can

not be used explicitly by the algorithm. The direction of communication channels can be

unidirectional or bidirectional. The network can be connected or disconnected, weighted

or unweighted.

We may need to solve a problem only on a fixed specified graph, for example a mesh of

25 nodes. Sometimes, problems need to be solved on a family of similar graphs, for exam-

ple, a bidirectional ring of unknown size or an arbitrary graph of known size. Nevertheless,

the most interesting situations is when a problem is to be solved for an arbitrary graph. An

even more challenging situation is when the network can change over time and a solution

must be designed so that it continuously updates under these dynamic changes.

1.1.6 Network Labels

Network labels play an important role in modelling the system. The node label and the

edge label are two kinds of network labels.

1. INTRODUCTION 7

A system may have totally identical processors in which processors (nodes) do not

have distinct identifiers (labels). The term anonymous system is used for such systems.

Sometimes, a distinguished processor (node) in network has a distinct identifier (label) and

all the others have the same label. Most of papers we refer in Chapter 2 are modelled in

this setting, regarding the node with the distinct label as the root. In many cases, all the

processors (nodes) in a system may have distinct identifiers (labels).

Sometimes, edges in network could have no labels, for example, the network could be

anonymous. Sometimes, edges in network could have distinct labels, which could be repre-

sented by their end-point nodes if the network nodes have distinct identifiers. Sometimes,

edges could be labeled to reflect some properties, for example, the weight of an edge could

represent the cost of communication on the link. Sometimes, edges are partitioned into the

different classes, labelled by distincted colors.

1.1.7 Fault Models

There are also different fault models in the context of fault-tolerant computing. For in-

stance, we can consider four types of processor failures: stopping failures, where faulty

processors can, at some point, just stop executing their local protocol; crash/recovery fail-

ures, where processors can continuously execute their local protocol after recovering from

their stopping failure; crash/restart, where processors restart their local protocol after recov-

ering; Byzantine failures, where faulty processors can exhibit completely arbitrary behavior

(subject to the limitation that they cannot corrupt portions of the system to which they have

no access). We can also consider some communication failures: lost data, duplicated data,

corrupted data and reordering of data during communication.

1.1.8 Algorithm Type

An algorithms may be deterministic or may employ randomization. There are two kinds of

randomized algorithms: Las Vegas randomized algorithms and Monte Carlo randomized

1. INTRODUCTION 8

algorithms. A Las Vegas randomized algorithm solves a problem P if, for any instance of

P, it terminates with probability 1, and upon termination the solution is correct. A Monte

Carlo randomized algorithm solves a problem P if, for any instance of P, it terminates

within a bounded number of steps, and the solution is correct with probability at least p

where 0 < p < 1. Randomized algorithms are often used to break symmetry in an anony-

mous system.

If every processor in the system performs the same transition function, the algorithm

is called uniform. In particular, if the system is anonymous and the network is regular1,

then all the processors are indistinguishable, so any algorithm for that system must be

uniform. If one distinguished processor, often called the root or the leader, has a distinct

transition function, and all others have the identical transition function, then the algorithm

is called semi-uniform. Finally, if every transition function for each processor is distinct,

then the algorithm is called non-uniform. A non-uniform algorithm is only possible if every

processor is distinct, for example, in the system with distinct identifiers.

1.2 Self-stabilization

1.2.1 History and General Description

Large networks of processors are typically susceptible to transient faults and they are fre-

quently changing dynamically. Ideally, basic primitives used by these systems can be made

robust enough to withstand these faults and adapt to network changes. In 1974, Dijkstra [5]

proposed a self-stabilizing model for achieving fault-tolerance in the presence of transient

faults that can meet these requirements. According to Dijkstra, a system is self-stabilizing

when "regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite

number of steps." A system that is not self-stabilizing may stay in an illegitimate state for-

ever. He observed that "The complication is that a node's behavior can only be influenced

1A11 the processors in the network have the same degree

1. INTRODUCTION 9

by the part of the total system state description that is available in that node: local actions

taken on account of local information must accomplish a global objective". Dijkstra de-

fined the self-stabilizing mutual exclusion problem on a ring of n finite state processors,

where directly connected processors were called neighbors. His algorithm is semi-uniform

because it requires the existence of a distinguished processor which behaves differently

from the others. Dijkstra also introduced a central daemon in his model. In his paper,

a processor is said to hold a token (Dijkstra called it a privileged machine) if a specified

boolean function of the state of the processor and states of its neighbors is true. So, a pro-

cessor can make a move by changing its state when it holds a token. A malicious scheduler

picks one of the privileged processors, at each step, in an arbitrary but weakly fair order, to

take its next move. In a move, a processor enters the new state, which is a function of its

old state and the states of its neighbors. As the result of a move, the processor may become

unprivileged, but its neighbour could become privileged.

The global configuration of the algorithm consists of the states of all n processors. The

legal configurations are those configurations in which exactly one processor holds a token.

The specification of a correct system also requires that the token be passed on the ring in a

round-robin fashion. Dijkstra's self-stabilizing mutual exclusion algorithm guarantees that

eventually the system will have a unique token to pass around the ring even when there are

many tokens, or there is no token, initially present in the ring.

Although the concept of self-stabilization was proposed twenty five years ago, there

were very few published results about self-stabilizing systems in the first fifteen years. In

1983, Lamport [13] said the following at his invited address to the 3rd ACM Symposium

on Principles of Distributed Computing: "I regard this as Dijkstra's most brilliant work, at

least, his most brilliant published paper. It's almost completely unknown. I regard it to be

a milestone in work on fault tolerance" and suggested self-stabilization as a very important

and very fertile field for research. In the years following Lamport's announcement, there

has been a flurry of papers in self-stabilization. Dijkstra's notion of self-stabilization, which

originally had a very narrow scope of application, is proving to become a unified method

1. INTRODUCTION

to resolve transient failures on distributed systems.

1.2.2 Definition of Self-stabilization

10

Before defining self-stabilization for a system, some preliminary definitions are introduced.

Let S be a distributed system and let C be an arbitrary component of S. The local state of

component C is the complete state description for C. The global configuration of distributed

system S is the list of the local state of all the components in the system S. A set of

legitimate configurations is a subset of all possible configurations, and represents those

configurations in which the system S is supposed to be. In a legitimate configuration S

is performing according to the design goals and in each step moves to another legitimate

configuration barring any subsequent errors.

Transient faults cause processors to change their states resulting in an illegitimate global

configuration. A self-stabilizing system will be able to overcome such a fault by eventually

stabilizing to its required behavior without restarting the system. If the interval between two

successive transient faults is long enough and if stabilization is fast enough, then the system

should be able to converge to its correct behavior and achieve some useful work before the

next fault causes the stabilization to repeat. More specifically, a self-stabilizing system

guarantees that it will eventually reach the legitimate configurations when started from an

arbitrary initial configuration. This behavior is called Convergence. Once a legitimate

configurations is reached, the invariant is conserved for the rest of the execution of the

protocol. This behavior is called Closure.

If a protocol is self-stabilizing the system need not be initialized, which can be a sig-

nificant additional advantage especially for physically dispersed systems such the Internet.

1.3 Overview of Thesis

In this thesis, we present two distributed algorithms for the minimum spanning tree (MST)

problem for a message-passing system on an arbitrary connected, weighted, undirected

1. INTRODUCTION 11

network where processors have distinct identifiers. Chapter 2 contains a survey of the

literature related to self-stabilizing spanning tree and minimum-spanning tree construction.

Chapter 3 gives a precise description of the model. In Chapter 3, we motivate the ideas

of our algorithm by outlining a new sequential algorithm that constructs an MST given an

arbitrary spanning tree. While this algorithm is inefficient sequentially, it adapts well to a

concurrent environment and is the motivation for our first distributed algorithm. Chapter 4

presents this algorithm, Basic-MST, and its correctness, and analysis. Although one main

idea is contained in BasicMST, substantial modifications and enhancements are needed

to convert it to a general self-stabilizing MST algorithm. Chapter 5 presents the second

algorithm, Self-Stabilizing-MST and its proof of correctness, and a complexity analysis.

These algorithms are presented in an imaginary model where edges rather than nodes are

processors. Chapter 6 shows a mapping technique for simulating the edge driven model

by the usual network model. In Chapter 7, we summarize the contributions of this thesis,

discuss further comments and describe the future work.

CHAPTER 2

Literature Review

The book Self-Stabilization [6] written by Shlomi Dolev is the first and only book

in the field of self-stabilizing distributed algorithms. Before I began my research on the

minimum spanning tree problem, I studied the book and referred to it on many occasions.

Even though the book was not intended to cover all the research activity in the field, I

found that it has quite extensive material for the beginner and the researcher. This Chapter

reviews the concepts that will be used in the remainder of the thesis and the papers related

to the self-stabilizing spanning tree problem.

Two important primitives for many protocols in distributed computing are construc-

tion of a spanning tree and construction of a minimum spanning tree. For example, a

distributed message-passing network of processors might rely on an underlying spanning

tree to manage communication. If the cost of using the different communication channels

varies significantly, it may be desirable to identify the spanning tree with minimum cost. So

a distributed self-stabilizing (minimum) spanning tree protocol would eventually converge

to a global state where each processor identifies which of its adjacent edges are part of

the required tree, regardless of what each processor had originally identified as part of the

tree: As long as no further faults or changes occurred, this tree would remain unchanged

once it was identified. Although there exist a number of self-stabilizing algorithms for the

spanning tree problem [4, 11, 1, 8], only in [2] does the algorithm deal with constructing a

minimum spanning tree (MST).

Let us first briefly review some previous works. Antonoiu and Srimani [1] presented

12

2. LITERATURE REVIEW 13

a self-stabilizing distributed algorithm to construct an arbitrary (not necessarily breadth

first) spanning tree. They say the algorithm has "a single uniform rule for all nodes in the

graph". Because there is a distinctive root processor, however, it is non-uniform algorithm

according to the definition of this thesis and as is commonly accepted. The algorithm runs

under a distributed daemon and composite atomicity. Each processor maintains a pointer

to its parent and a level value between 0 and n - 1, which is its distance from the root. For

any node, i, except the root, the legitimacy predicate for node i is true when the parent of

i is one of its neighbours and the level of i is 1 greater then the level of its parent. The

algorithm proceeds in asynchronous rounds of communication The root continuously sets

its level to 0 and its pointer to itself. Every other node behaves as follows. In each round

the level and parent pointer of a node are updated if and only if the node's legitimacy

predicate is not true. If no neighbour of node i has level less than i's level and i's level is

less than n, then i increments its level; otherwise i assigns its pointer to any neighbour that

has level, 1, less than its own, and sets its own level to 1+ 1. If the legitimacy predicate

is true for every node, the configuration is legitimate, that is, it forms a spanning tree.

The correctness that both pointer and level values eventually stabilize to a spanning tree

depends on induction. In round one, the root must be correct. Assuming a subset of size

k containing the root is correct, which means that the predicate is true for all the nodes in

the subset, then this subset does not change its structure and, eventually, the correct subset

increases by at' least one node. The authors do not address the complexity of this algorithm.

An upper bound, however, is easily achieved. Once a node is correct, component include

the root, all the nodes in the component do not change its level or its parent pointer. In

every round, the minimum level over all incorrect nodes is incremented until it is n or there

are no incorrect nodes. Hence after n round all incorrect nodes have level n. Thus after at

most an additional n rounds, the legitimacy predicate is satisfied by all the nodes. So the

spanning tree is constructed in fewer than 2n rounds.

Antonoiu and Srimani '[2] also proposed a distributed self-stabilizing algorithm for the

minimum spanning tree problem. They claim that their's is the very first paper on this

2. LITERATURE REVIEW 14

problem in the self-stabilizing setting. The algorithm is designed for undirected connected

and unique edge-weighted graphs with asynchronous, composite atomicity under the dis-

tributed daemon model. Every node in the system performs the same uniform rule. The

rule is based on Maggs and Plotkin's results in 1988 [15] that consider the minimum span-

fling tree problem as a path finding problem. The main idea is to find ijjj, the minimum

of the maximum of the weight of the edges in any path between two node i and j, for any

nodes i and j. Maggs and Plotkin show that an edge e1 is in the unique minimum spanning

tree if and only if Nfij is equal to the weight of eij. For simplicity, Antonoiu and Srimani

first introduced the rule and the proof for a particular node r. For a given r, every node

i maintains two local variables, L(i) and D(i), containing information about the currently

"best" path from i to r ("best" is intended to capture the path to r containing that edge

with weight qfjr). Specifically, L(i) is the level of node i, that is the number of edges on

the current path and D(i) is the maximum edge weight on the current path. So D(i) is the

current estimate of 1111r. The node i looks at the variables of its neighbours and takes action

by updating its level L(i) and its estimate D(i). If all the neighbours have the reset value,

which means the estimates at each neighbour of node i is wrong, then L(i) and D(i) gets

reset as well. The "best" path to r from i, is via that neighbour j, such that the maximum

of the weight of the edge to get to j and the weight of the maximum edge of the best path

form j to r is as small as possible. Precisely D(i) - min(maxJEN() (w(ej) , D(j))). Since

values may be initially incorrect, a reset is used if values are out of range, or another error

is detected. The proof is again by induction and is similar to [1].

Chen, Yu and Huang [4] proposed a central daemon, composite atomicity and non-

uniform self-stabilizing algorithm for constructing a spanning tree of a network of size

at most n. In their algorithm, each processor i, except the specific processor r called the

root, maintains two local variables, level L(i) and parent D(i). The level is the estimated

distance between i and r and is a positive integer no bigger than n. The parent of i is a

pointer to a neighbour of i. The level of r is always equal to 0 and has no parent pointer.

Any other node i computes its variables by a set of rules. A node i is in an error states if

2. LITERATURE REVIEW 15

L(i) = n. The rules are: if the parent p of i is in an error state, then i is also in an error state

too. If L(p) is less than n - 1, then set L(i) = L(p) + 1; If i is in an error state and one of

its neighbours u is not, then set D(i) = u and L(i) = L(u) + 1.

Even through the model is restricted, the most significant contribution of their paper is

the approach of showing that a system is self-stabilizing. Their ideas are based on Kessels'

model [12]. Let f be a function from a global configuration to a well founded set that

satisfies:

. for every move of the system the value of f decreases.

. the value of f is minimum exactly for legitimate configurations.

In Kessels' approach a system is proven to be self-stabilizing by showing two things. First

we show if the system has not stabilized, then some local predicate is true. This means

that the corresponding processor can make a move. Second we show that such a function

f exists. Chen, Yu and Huang partitioned all the nodes in the graph into the disconnected

components of the "tree" edges in a configuration. For each component, the minimal level

of the nodes in that component is determined. Let t1 be the number of components with

minimum level i. They define the value of the configuration to be the vector (t0, t1,.. . ,

They prove that when these vectors are ordered lexicographically, then no matter what rule

in the algorithm is applied, the vector value of the function decreases. Eventually, the value

for the function must obtain (1,0, . . . , 0), indicating that a spanning tree is formed. The

system is self-stabilized. This proof technique is a significant contribution and provides an

additional tool for correctness proofs.

Huang and Chen [11] also proposed a non-uniform self-stabilizing algorithm for con-

structing breadth-first trees. Distributed daemon and composite atomicity are assumed in

this paper. In their algorithm, except the specific processor r which is called the root, each

processor i maintains two local variables, level L(i) and parent D(i). The level is the esti-

mated distance between i and r. The parent of i is a pointer to a neighbour of i. The level

of r is always equal to 0 and r has no parent pointer. For any other node i, if i's parent is not

2. LITERATURE REVIEW 16

a neighbour of i with lowest level, then i updates its pointer to point to any such neighbour

j and sets L(i) = L(j) + 1. As the acknowledged their model is again too restricted because

of composite atomicity and non-uniform. However, their major contribution is providing a

proof technique. Their ideas are similar to their previous paper [4]. Since a bounded func-

tion may be hard to find in many cases, in this paper, they transformed the original set of

rules into a new equivalent set of rules. The transformed set of rules have the property that

exactly one rule can apply it any step. Then a bounded function is associated with each rule.

When the first rule applies, function F1 decreases. When the second rule applies, function

F1 does not increase and function F2 decreases. Then the bounded function F = (F1, F2)

lexicographically ordered, decreases when any rule is applied. They also proved that in

any unstable configuration at least one processor applies a rule in each computation step.

Since F2 is bounded from below, within a finite number of computation steps F will reach

its minimum value, which indicates that a spanning tree is formed. Huang and Chen leave

the complexity analysis as a future study.

Another self-stabilizing algorithm for breadth-first spanning tree construction was pre-

sented by Dolev, Israeli and Moran [7, 8] for the shared memory model assuming read/write

atomicity. The algorithm is semi-uniform and dynamic. The model is less restricted and

more realistic than that of Huang and Chen [11]. Each processor continuously computes

its distance from the root (the special processor) and notifies the result to all its neighbours.

The way of computing the distance from the root is to read all its neighbours' distances,

choose the minimum from among them and then add one.

In the same paper, Dolev, Israeli and Moran have proposed a nice technique, fair com-

bination, that we also call fair composition, for designing self-stabilizing algorithms. The

main idea is to compose two or more self-stabilizing algorithms: each algorithm takes a

step alternately, to obtain a more complex algorithm. Theorem 5.4 [8] states :" Assume

that AL2 is self-stabilizing for a task T2 given task T1. If AL1 is self-stabilizing for T1, then

the fair combination of AL1 and AL-2 is self-stabilizing for T2." Dolev, Israeli and Moran

composed their bread-first spanning tree algorithm with a mutual-exclusion algorithm for

2. LITERATURE REVIEW 17

a tree system. The composed algorithm acts as a compiler, which makes it possible for

any protocol that is self-stabilizing under composite atomicity to execute correctly in a

self-stabilizing style under only read/write atomicity.

CHAPTER 3

Prepatory Graph Theory and Distributed

Computing Theory

3.1 Graph Theory Preliminaries

3.1.1 Notation

For this entire thesis, let G = (V, E) denote a connected, undirected graph where V are

the vertices, and E are the edges. An edge is an unordered pair of vertices in V. If the

graph is weighted then there is a function, wt, from E to the natural numbers. A path

from a vertex v0 to vertex vk in graph G is a sequence (vo, ..., vk) of vertices such that

(VI,Vj+1) E E for i = O,...,k— 1. A cycle is formed by a path (vo,...,vk) if vo = Vk and

vi,. . . , Vk are distinct. A connected graph is one in which a path exists between every pair

of vertices. If e1 = (vi, Vj+1) for i from 0 to k - 1, then the path (vo, . . . , vk) is also recorded

as eo, . . . , ej_ - Similarly, cycle (vo,. . . , v) is also recorded as the edges en,. . . , ek-1 where

ej_ 1 = (vk_1,vo) and e= (vj,vj+i) for i from 0tok-2.

In [16], two equivalent definitions of a spanning tree are:

• A spanning tree of graph G is a subset of I V —1 edges from E connecting all the
vertices in G.

18

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 19

A spanning tree of graph G is a subset of I V I —1 edges that is cycle-free.

In the following we assume all edge weights are distinct. The size of V is n and the size

of E is m. A spanning tree is minimum if the sum of the weights of its edges is as small as

possible. If weights of the edges are distinct, then the minimum spanning tree is unique.

3.1.2 The Minimum Spanning Tree Problem and Properties

The minimum spanning tree (MST) problem is described as follows:

Input: A connected graph G = (V, E)

Output: A minimum spanning tree MST (G) = (VP), where E C E.

MST can be computed efficiently using algorithms that are greedy in nature. One such

algorithm, known as Kruskal's algorithm [3], maintains a forest that initially contains all

nodes in V and no edges. First the edges of the graph are sorted in nondecreasing order

of their weights. The edges of the graph are processed in sorted order, and if the addition

of the current edge does not create a cycle in the current forest, it is added to the forest.

Eventually the algorithm adds I V I —1 edges to generate a minimum spanning tree.

In what follows, we develop a new algorithm that finds the minimum spanning tree of

a graph assuming that an arbitrary spanning tree is already known. This algorithm is less

efficient in the sequential setting than well-known greedy solutions to the general MST

problem such as Kruskal's and Prim's algorithms [3]; however, it has some properties that

are appealing in concurrent settings and adapt well to self-stabilization.

Throughout, T = (V, E') denotes a spanning tree of G = (V, E). An edge e E E' is called

a tree edge, and e E E \ E' is a non-tree edge.

If(vo,vi . . .vj) is a path inT, and (vk,vo) is an edge in E \ E', then the cycle (vo, . .., vk)vo)

in G is called afundamental cycle of T containing (vk, vo).

Claim 3.1.1 Ve E E\E', there is exactly one fundamental cycle of T containing e.

Proof: Let e = (vi, v2) E E \ E'. Because T is a spanning tree of G, there is a path in

T between any two vertices. So let P be a path in T between vi and V2. Therefore edge

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 20

(Vi, v2) and the path P form a fundamental cycle. If such a fundamental cycle is not unique,

there must be two paths between Vi and v2 in the tree T. Together, some edges in these two

paths form a cycle and all these edges are in T, contradicting that T is a tree. Therefore a

spanning tree of a connected graph and one of its non-tree edges has a unique fundamental

cycle. I

Let fid_cyl(T, e) denote the unique fundamental cycle of T = (V, E') containing e E

E \ E'. When the edge set E' of T is needed, it is denotedfiid_cyl(E', e).

Claim 3.1.2 If e is non-tree edge and e' Efrzd.cyl(E', e), then (E' U {e}) \ e' is the edge set

of a spanning tree of G

Proof: Let E* = (E' U {e}) \ e'. Since E' is the edge set of a spanning tree, by Claim 3. 1.1

fnd_cyl(E', e) is unique. E* is obtained from E' by adding e and removing e', so E* still

contains no cycle and still has size I V I —1. Therefore E* is an edge set of a spanning tree

of G. I

Claim 3.1.3 If e is in MST (G), then e is not a maximum edge in any cycle of G.

Proof: Assume e = (Vi, v2) E MST(G) = (VP) and e is the maximum edge of 'some

cycle e, el, e2,.. . , ek of G. Clearly not all of el, e2,. .. , ek are also in E. Suppose there is

an ej E E \ E, such that the fnd_cyl(E, e) contains e. Then the edge set (E U{ei}) \ {e}

forms a spanning tree of G, by Claim 3.1.2, with less total weight than t, contradicting the

fact that t is the edge set of the minimum spanning tree. Therefore, for every edge ej in

the cycle e, ei, . . , ek that is not in t, then fnd_cyl(E, e) does not contain e. Now construct

the following path P. Initially P is empty. For each e, 1 <i < k, if ej E E, append ej to

P, if ej E E \ E, append fnd_cyl(E, e) \ {ej} to P. Now P is a path in MST (G), from VI to

V2 that does not contain e = (V1 , v2). Hence P concatenated with e must contain a cycle in

MST (G), which is impossible. 0

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 21

Denote by max(fnd..cyl(E', e)), the edge with maximum weight in fnd_cyl(E', e). For

e E E \ E', the function minimize_cyl(E', e) returns a new set of edges and is defined by

minimize_cyl(E', e) = (E' U{e}) \ {max(fnd_cyl(E', e))}.

Corollary 3.1.1 For non-tree edge e, minimize_cyl(E' , e) is an edge set of a spanning tree

of G.

Proof: This is a special case of Claim 3.1.2. U

The next claim says that a spanning tree T = (V, E') does not change after applying

minimize_cyl(E', e), for any non-tree edge e, if and only if T is the minimum spanning

tree.

Claim 3.1.4 E' is the edge set ofMST (G) f and only ifVe E E \ E', E' = minimizecyl(E' , e).

Proof: For sufficiency, suppose that MST (G) = (VP) where E = {e1 , e2,. . . , e,_1 } and

w(êi) < w(ê2) < ... <w(ên_1). Let E' = {eç,4,. . . ,e_} denote the edges in T, where

T satisfies E' = minimize_cyl(E',e),Ve E E\ E' and w(eç) <w(4) <...< w(e_1). We

prove that e =4 Vi ≤ i ≤ n - 1 by induction on i. For the basis, let e,,n be the smallest edge

in E. By Kruskal's algorithm, e,,1 E E, and thus = el. Suppose eç 0 esm. Then, by our

choice of ordering, e517 E'. But then minimize_cyl(E', e,,1) will return a new edge set of a

new tree T* T. Therefore esill = eç = êi. Now assume {e1, e2,. . . , êk} = {eç , 4, . . . , ek
for k < n - 1. By Kruskal's algorithm, êk+1 is the smallest edge not in 1161 , e2,. . . , êk}

such that {e1, p2,. . . , êk} U {êk+1 } is acyclic. Therefore w(4+i) ≥ w(êk+I). If e 1 êk+1,

then by the choice of ordering, êk+1 V E', and the graph (V,E'U{êk+I }) will contain a

cycle. Because {e1,e2, . . . ,êk+1} is acyclic, {eç,4, . . . ,4} U {êk+1} is acyclic. So the

max(fnd_cyi (E', êk+1)) must be contained in set E' \ {eç,. . . 4} = {4+. . . , e_1 }, say
e,,. Therefore minimize_cyl(E', 9k+ 1) will replace e,,1 with êk+1. So minimize_cyl(E', êk+1)

E' which contradicts the condition of the claim. Thus, E' contains the same edges as E.

So = (V, E') = MST (G).

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 22

For necessity, observe that if minimize_cyl(E', e) returns an edge set E* of a tree, say

T*, different from T, then T* is a spanning tree with weight strictly less than T, which is

impossible if T is the minimum spanning tree of G. U

The next claim says that once minimize_cyl removes an edge from a spanning tree by

replacing it with a lighter one, no subsequent application of minimize_cyl can put that edge

back into the spanning tree.

Claim 3.1.5 Consider a sequence of spanning trees To = (V,Eo), T1 = (V,Ei),..., where

To is any spanning tree of G, and for i ≥ 1, Ei = minimize..cyl(E,_ 1, e_ 1) for some edge

es_I EE\E_.i. Let =max(fnd_cyl(E....1,e....i)). Then Vi≥ 1,e E for any j≥ i.

Proof: We use induction on jto prove the stronger result, that Vi ≥ 1 and Vj ≥ i, eT 0 Ej

and 4 = max (fnd_cyl(E, efl).

For the basis, consider j = i ≥ 1. Since 4 = max(fnd_cyl(E1_1,e1_1)), 4 0 Ej and

clearly 4 = max(fnd_cyl(E1, efl). Now assume the inductive hypothesis, namely that

4 0 E and 4 = max(fndcyl(Ej+k, 4)) for k ≥ 0. Consider Ef+k+1 = minimizecyl

(Ej+k) el+k) where el+k is some edge in E \ Ej+k. If Ej+k+l = Ej+k, then obviously 4
Ej+k+1 and 4 max(fnd_cyl(E1+kl , efl). So suppose e+k+l = max (fnd_cyl(E +k, ei+k)) 74

Case I: If fnd_cyl (Ej+k, 4), then fnd_cyl (E+k+1, 4) = fnd_cyl (Ej+k, 4). So

4 = max (fnd_cyl (Et+k+ i,4)) and 4 0 Ei+k+ l•

Case II: e+k+l E fnd_cyl(E+k, 4). Then Ti+k+l is formed from Tj+k by removing

e+k+ and adding ei+k. Let fnd_cy1(E k, 4) be 4P1 e+k+ 1P2 and let fnd_cyl(Ej+k, e+k)
ei+kP34+k+1P4 where PI, P2, P3 and P4 are the paths in Tj+k directed so that the end points

of e+k+l are in the same order in both lists. Let 15 denote the path formed from the

edges of P take in reverse order. Then fnd_cyl (EiIkIi, 4) is contained in the subgraph

4P1 e+kPP2. Since wt(4) ≥ wt(e), Ve P1 UP2U4+k+l and wt(4+k+l) ≥ wt(e),Ve E

P3UP4U{ei+k}, 4 = max(fnd_cyl(E +k+l ,4)) and 4 0 Ej+k+1. U

The preceding claims combine to provide the strategy for an algorithm that converts an

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 23

arbitrary spanning tree into the MST. Specifically, if minimize_cyl is applied successively

for each non-tree edge in any order for any initial spanning tree, the result is the minimum

spanning tree.

Claim 3.1.6 Let To = (V,Eo) be a spanning tree of G = (V, E) and {el,e2. ...

E \ E0 (in any order). Let E = minimize_cyl(E_1 , ei), for i = 1 to m - n. Then T,,_,1

(V, E,_) = MST (G).

Proof: Claim 3.1.5 implies that 'v'e E E \ Em—n7 e = max(fnd_cyl(Em_n, e)). So

minimize_cyl (E,,1_) e), Ve E E \ So by Claim 3.1.4, is the edge set of MST (G).

U

Claim 3.1.7 Let E' C E be the edges of a spanning tree of G = (V, E) and W E E \ E'. Let

y = inax(1ndcy1(E' , w)) and E" = (E' U {w}) \ {y}. Ve E' UE", either max(fndcy1(E' , e)) =

max(ftzd.cyl(E", e)) or max(fnd.cyl(E' , e)) = y.

Proof: Case I: y 0 fnd_cyl(E', e), then fnd_cyl(E", e) = fnd_cyl(E', e). So

max(fndcyl(E', e)) = max(fnd_cyl(E", e)).

Case U: y E fndcyl(E', e). Then E" is obtained from E' by removing y and adding w.

Let fnd..cyl(E', e) be eP1yP2 and let fnd_cyl(E', w) = wP3yP4 where Pi , P2, P3 and P4 are

the paths in the spanning tree directed so that the end points of y are in the same order

in both lists. Let P denote the path formed from the edges of P taken in the reverse order.

Then fndcyl(E", e) is contained in the subgraph eP1wPP2. Since y = max(wP3yP4), y>

max(w). If max(ePiyP2) E {e} U {P1 } U {P2}, then max(eP1yP2) = max(ePiwPP2),

so max(fnd_cyl(E', e)) = max(fnd_cyl(E", e)), so the Claim holds. If max(ePjyP2) {e} U

{Pi} U {P2}, then max(ePlyP2) = y, so the Claim also holds. U

Consider a spanning tree that is changing over time by a sequence of steps, each of

which adds a non-tree edge and removes the tree edge of maximum weight in the funda-

mental cycle of that edge. Even though the fundamental cycles of other edges are also

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 24

changed by these actions, the next Corollary says that the maximum edges in these funda-

mental cycles do not change unless they are removed from the tree.

Let To = (V,Eo) is a spanning tree. LetX = {(e,m) I e 0 E0 and m = max(fnd_cyl(Eo, e))}.

Corollary 3.1.2 Consider the procedure:

j — O

repeat

choose (e, m) € X

if e Ej and E Ej then - (EjU{e})\{m}

14-1+1

For any j, and for any (e, m) E X, ife E E \ Ej and m E E, then m = max (fid..cyl (Ei, e)).

Proof: This follows directly from Claim 3.1.7 by induction.

3.1.3 Distributed Computing Model

An asynchronous distributed message-passing network of processors is modelled by a sim-

ple, weighted, connected and undirected graph where vertices represent processors, edges

represent communication links between processors and weights represent some measure of

the cost of communicating over the corresponding link.

Each processor P has a distinct identifier. Also each processor knows only the iden-

tifiers of its neighbours and for each neighbour Q, the weight of the edge (P, Q). Edge

weights are assumed to be distinct since they can always be made so by appending to each

weight the identifiers of the edge's end-points. For example, an edge of weight w between

two vertices with x and (where x <y) can be encoded as the triple (w, x, y) instead, making

it unique. Then weights are ordered lexicographically on these triples.

The self-stabilizing MST problem requires that given any initial configuration of the

network, each processor is required to determine for each of its adjacent edges, whether or

not it is in the minimum spanning tree of the network.

3. PREPATORY GRAPH THEORY AND DISTRIBUTED COMPUTING THEORY 25

Self-stabilization is impossible for purely asynchronous message-passing systems [10].

We therefore assume that each processor in the network is augmented with a time-out

mechanism that satisfies a necessary safety property, namely: each processor's time-out

interval is guaranteed to be at least as long as the time taken by any message sent by the

processor to travel a path of n edges where n is the number of processors in the network.

For correctness we require that this lower bound on the time-out interval is not violated

but it can be any (even very large) overestimate. The time-out interval could be provided

directly or could be described as n times a, where a is the maximum time for any message

to travel any edge. In the first case, knowledge of n is not required; in the second case

this is the only place when knowledge of n is used. Of course, since our second algorithm

is self-stabilizing, a violation in the safety of a time-out can, at worst, act as a fault from

which the algorithm will eventually recover.

CHAPTER 4

From An Arbitrary Spanning Tree To A
Minimum Spanning Tree

From Claim 3.1.6 we see that the application of minimize_cyl to each of the non-tree

edges results in the MST regardless of the order of application. This suggests that the

minimize_cyl operations could proceed concurrently provided care is taken that they do not

interfere with each other. This is the central idea for a distributed algorithm, called Ba-

sic-MST which identifies the minimum spanning tree of a network provided the network

has already identified an arbitrary spanning tree.

The description of algorithms Basic-MST is simplified by temporarily changing per-

spective to one where we pretend that communication edges do the processing and that

nodes act as message-passing channels between adjacent edges. Call the graph represent-

ing this particular network setting altered(G). That is, given a message-passing network of

processors modeled by a graph G, we describe our algorithm for the network that is mod-

eled by altered(G), where each edge has access to the identifiers of the edges incident at

each of its end-points. It is not difficult to show how the original network, G, simulates an

algorithm designed for the network altered(G). Section 6.1 contains a formal description

of how this is done.

In algorithm Basic-MST, each non-tree edge e initiates a messages that searches for a

26

4. FROM AN ARBITRARY SPANNING TREE TO A MINIMUM SPANNING TREE 27

heavier edge in the fundamental cycle consisting of e itself and the current tree edges. If

one is found then edge e initiates another procedure that removes the heavy edge and adds

e to the collection of tree edges.

Of course, non-tree edges proceed concurrently to search for fundamental cycles and

adjust spanning tree membership. However, we will see that Basic-MST manages these

concurrent changes so that errors do not result.

Algorithm Basic-MST is described in Section 4.1, proved correct in Section 4.2 and

analyzed in Section 4.3. Some properties of algorithm Basic-MST will be discussed in

Sections 4.4 and 4.5.

4.1 A Distributed MST algorithm given a spanning tree

4.1.1 The Edge Processors

We assume that vertices in the network have distinct identifiers taken from some totally

ordered set ID (with order relation denoted <). Let EID = ID x ID. An edge processor e is

a member of KID. If e = (u, v), then u and v are the distinct identifiers of the two end-points

of the edge processor e. Each edge processor has a weight that is a positive integer. The

weight of edge e is return by the function wt(e). Recall that distinct weights of edges can

be assumed.

The variables e = (u, v) and wt(e) are assumed to be static and in uncorruptable stable

storage. Of course, the program for an edge (u, v) is also stable.

Each edge processor e = (u, v) also maintains the following three local variables in

unstable storage:

• The boolean chosen-status, which indicates whether or not the edge processor e cur-

rently is in the Chosen-Set subgraph. We call e a chosen edge if chosen-status(e) is

True and an unchosen edge otherwise.

• The non-negative integer timer in the interval [0,3 x safetime(e)], where safetime(e)

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 28

is an upper bound on the time required for a message sent by e to travel any path of

length at most n. (The factor 3 is necessary for correctness as will be seen later.)

• The ID end-point E {u, v} that is used to record from which end-point the current

message arrived.

These three values are all variables that are read and written by the algorithm Ba-

sic-MST.

4.1.2 The Messages

There are three types of messages. A Search message has 3 fields ("search", eid, weight),

where eid is a member of ED and weight is an edge weight. A Replace messages has 3

fields ("replace", weight, path), where path is a list of EID's recording a path of chosen

edges. A Crowned message has 2 fields ("crowned", path).

The purpose of Search messages is to find the heaviest weight chosen edge in the fun-

damental cycle that contains unchosen edge. Replace messages and Crowned messages

replace the chosen edge found by the Search message with the unchosen edge that initiated

the Search message.

4.1.3 The Protocol

An edge processor is adjacent to other edge processors at each of its end points. For edge

processor with e = (u, v) denote those edge processors adjacent to end-point u (respectively

v) by N(u) (respectively N(v)). We also denote the end point v of (u, v) by 17.

An edge e = (u, v) employs two procedures for sending messages to its neighbour-

ing edges. The procedure send(mess, enejgjz) sends the message mess to the neighbouring

edge processor eneigli. (The algorithm ensure that eneigli is a neighbour of e.) The proce-

dure propagate(mess, end-point) sends a copy of message mess to all edge processors in

N(end-point), where end-point E {u,v}. When a message is received, the end-point it ar-

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 29

rived at is recorded. Typically, the propagate procedure is used to forward copies of that

message (possibly revised) to neighbouring edge processors at the opposite end-point.

Define e' to be a destination edge of a Replace message ("replace", weight, path), if

wt(e') = weight. Define e to be a destination edge of a Crowned message ("crowned",

path), if last(path) = e.

When an unchosen edge e = (u, v) times-out, edge (u, v) propagates, through end-point

v, a Search message that has been initialized to ("search", (u, v), wt(e)) and resets its timer.

The propagation continues along chosen edges but terminates at any unchosen edge. As

the propagation proceeds, the weight field of the Search message is updated to contain the

heaviest weight of any edge covered by the Search message. When an unchosen edge e

receives its own Search message ("search", (u, v), weight), (necessarily, via u), it compares

its own weight, wt(e), with weight recorded in the Search message. If weight = wt(e)

then e becomes passive until the next time-out. Otherwise e propagates a Replace message

initialized to ("replace", weight, [e]) 1 When a Replace message is received by a chosen

edge ê whose weight wt(ê) is not equal to weight, then ê prepends its own ED to the

head of the list and propagates the modified Replace message again. Just as for Search

messages, Replace messages terminate at unchosen edges. When a Replace message ("re-

place", weight, path) is received by its destination edge e', then e' removes itself from the

current Chosen-Set by setting its chosen-status to False and initiates the Crowned message

("crowned", path). The Crowned message follows the path of edges constructed by the

Replace message in reverse order, back to the unchosen edge e. When the Crowned mes-

sage is received by its destination edge e, e puts itself into the Chosen-Set by setting its

chosen-status to True.

The Basic-MST algorithm is shown in Figure 4.1. It uses two functions. The function

reset-timer is a built-in function for each edge processor, e, which initializes the timer to

2 x safetime(e). For list = [xl,x2,. .. ,x,], head(list) = x1, last(list) = x, and tail(list)

[x2,. . . ,x,]. The symbol 2 denotes the empty list. The symbol is used for concatenation

'Lists are delimited with square brackets i.e. [...]

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 30

Procedure for edge processor e = (u, v):

Upon time-out

1. if (- i chosen_status(e)) then

2. propagate (("search", (u, v) , wt(e)), v);
3. reset-timer;

Upon receipt of ("search", eid, weight) from end-point E {u,v}
4. if (chosen_status(e)) A (e 0 eid) then

5. propagate (("search", eid, max(wt(e), weight)), end-point);

6. elseif (e = eid) A (-n chosen_status(e)) A (weight> wt(e)) then

7. propagate (("replace", weight, [e]), end-point);

8. reset-timer;

Upon receipt of ("replace", weight, path) from end-point E {u, v}
9. if (chosen_status(e)) A (wt(e)5t weight) then

10. propagate (("replace", weight, [e]path), end-point);
11. elseif (chosen_status(e)) A (wt(e) = weight) then

12. chosen_status(e)<— False;

13. send (("crowned", path), head(path));
14. reset-timer;

Upon receipt of ("crowned", path)

15. if (tail(path) X.) then
16. send (("crowned", tail(path)), head(tail(path)));

17. elseif (tail(path)= ?) then
18. chosen-status(e) +- True;

Figure 4.1: Algorithm Basic_MST

of lists.

4.2 Proof of Correctness

We prove that if algorithm Basic-MST is run from any initial configuration where the edges

with chosen-status = True form a spanning tree of the network and there are no messages

in the network, then eventually, those edges with chosen-status = True will be exactly the

edges of the minimum spanning tree and will subsequently not change. Consider any exe-

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 31

cution of algorithm Basic-MST beginning from any such initial configuration where there

are no messages in the system and the edge processors with chosen-status = True constitute

a spanning tree of the network. The execution proceeds in steps that are determined by a

weakly fair scheduler. At step i, the processor chosen by the scheduler executes its next

atomic action.

Several definitions will help make the proof precise and concise.

Define locaLstate(e, i) to be the sequence of values of chosen_status(e), timer(e) and the

collection of messages at e at step i. At any step i, we capture the important attributes of the

state of the entire system by the configuration at step i, denoted Config(i), and defined by:

Config(i) = (local_state(e1, i), loca1..state(e2, i), ..., local_state(e,, i)). Define Chosen-Set(i)

to be the set {e I In Config(i), chosen-status (e) = True}.

The proof depends on capturing each edge that, while not yet chosen, has a Crowned

message destined to it that will change its chosen-status to True. We call this the latent-status,

which is not a variable of the algorithm, but is only used for the proof, and is defined as

follows. At step 0, for every edge e, latent-status(e) is False. Latent-status(e) becomes True

at step i if, at step i, a chosen edge e' changes its chosen-status to False because of receipt

of a Replace message ("replace", wt(e'),path) where last(path) = e. Latent-status(e) be-

comes False at step j if at step j edge e change its chosen-status to True because of receipt

of a Crowned message ("crowned", path), where last(path) = e. Define Latent-Set(i) to

be the set {e I In Config(i),latent_status(e) = True}. Define Target-Set(i) to be the set

Chosen-Set(i) U Latent_Set(i).

Define major steps to be the subsequence of steps at which some processor executes

either line 12 and 18 of algorithm Basic-MST. Denote the subsequence of (1,2,3,...) of

these steps that are major steps by (t1 , t2,...). Observe that Chosen-Set can only change at

line 12 or 18. Also, by definition, Latent-Set can only change when Chosen-Set does. So

Target-Set can only change at major steps.

As a Search message propagates, many copies are produced that travel over the net-

work. We use Search-Message-Set(se) to denote all of the copies of a Search message s

4. FROM AN ARBITRARY SPANNING TREE TO A MINIMUM SPANNING TREE 32

that was initiated by an unchosen edge e. If on the network, one search and replace pro-

cedure completed before another began, then for each unchosen edge, e, the fundamental

cycle of e would remained fixed during the search procedure and each unchosen edge e

would receive exactly one copy from Search.MessageSet(s, e). All the other copies would

terminate at leaves of the current tree. Because of the concurrency and asynchrony, how-

ever, fundamental cycles are changing dynamically and it is possible that an unchosen edge,

e, receives multiple copies from Search.Message_Set(s, e). This can happen if some edge ë

in the fundamental cycle of e is the maximum weight edge in the fundamental cycle of some

other unchosen edge ê. Then it is the possible that one copy from Search..MessageSet(s, e)

travels e's original fundamental cycle and then ê removes ë and adds ê to Chosen_Set, thus

changing the fundamental cycle of e. Then another copy from SearchMessage_Set(s, e)

(moving slowly) travels this revised fundamental cycle. Therefore it is possible that one

initial Search message, s (initiated in line 2) generates several replace responses (line 7).

A Replace message is associated with an initial-search-message, s, if it is generated in re-

sponse to some message . in Search_Message_Set(s, es). A Replace message is successful

if, when it is received by its destination edge, er, er is chosen. A successful Search message

causes the receiving edge to become unchosen and a Crowned message to be sent to the

sender of the search thus adding it to the Latent-Set.

Our goal is to show that the Target-Set is always a spanning tree. The proof of this

hinges on the property that there is at most one successful Replace message associated

with any Search_Message_Set(s, e). The details are in the following lemma, which depends

on some graph theoretic claims and lemmas from Chapter 3.

Lemma 4.2.1 For every step i, Target-Set(i) is a spanning tree.

Proof: Since Target-Set can only change when at least one of Chosen-Set or Latent-Set

changes, it suffices to prove the lemma for major steps. Let to be step 0 and ti be the ith

major step, i ≥ 1. The proof proceeds by induction on the major step index. To achieve the

proof, we strengthen the induction hypothesis to:

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 33

1. For every i> 0, Target-Set(ti) is a spanning tree and

2. Target-Set(ti) = (Target_Set(t_i) U {e}) \ {max(fnd_cyl(Target_Set(t_i), e))} for some

e such that chosen-status(e) = False at step t - 1.

Initially the Chosen-Set(to) is a spanning tree and there are no messages in the system.

So trivially Latent-Set(to) = 0, and thus Target-Set(to) = Chosen-Set(to) U Latent-Set(to)

is a spanning tree. When Target-Set(to) changes to Target_Set(t1), it is the first time that

a Replace message ever succeeds. All the unchosen edges at step to remain False at step

t1, including e which initiated the Replace message and no fundamental cycles have yet

changed. However, at time t1, edge e is added to the Latent-Set. Therefore Target-Set(ti)

(Target_Set(to) U {e}) \ max(fnd_cyl(Target_Set(To, e))) and chosen-status(e) = False at

step ti - 1. By Corollary 3.1.1 Target-Set(ti) is a spanning tree. Therefore the inductive

hypothesis holds for the base cases to and t1.

Assume that for every 0 ≤ j < k, Target_Set(tj) is a spanning tree and Target_Set(tj) =

(Target_Set(t_i) U {e}) \ { max (fnd_cyl(Target_Set(t_i), e)} for some edge e, where

chosen-status(e) = False at the step tj - 1.

Case I. Suppose line 18 is executed by some edge e at a major step tk. Then the

most recent message received by this edge e was a Crowned message with destination e.

Thus at step tk - 1, latent-status(es) = True, and at step tk chosen-status(es) = True. So

Target-Set remains unchanged. That is Target-Set(tk) = Target_Set(tk_l). So the inductive

hypothesis holds in this case.

Case II. In step tk, line 12 is executed by some edge er. Then the most recent message

received by er was a Replace message with destination er from some edge e and

chosen_status(er) = True at step tk - 1 (successful replace)

chosen_status(er) = False at step tk

Latent-Set(tk) = Latent_Set(tk - 1) U {e}

Thus if
es V Target_Set(tk_1) (4.1)

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 34

and er = Max (fnd_cyl(Target_Set(tk_i) , es)) (4.2)

then Target_Set(tk) is a spanning tree by Corollary 3.1.1, and this spanning tree is formed

from the spanning tree at step tk_ 1 in the manner claimed by the inductive hypothesis.

So it remains to show equations 4.1 and 4.2 for this case. Suppose that e E Target-Set

(tk_1). Then there must have been an earlier Crowned message with destination e sent

from some different edge, say e. Thus e must have sent at least 2 successful Replace

messages, one to er and one to e. So both er and e were discovered to be the maximum

in some cycle of chosen edges travelled by es's Search messages. First observe that both

these Search messages were in the same search message set, say SearchMessageSet(s, es).

This is because any successful replace will cause a Crowned message to reach the origi-

nator before the originator can time-out and initiate another search. Since by the induc-

tion hypothesis, Target_Set(tj) was a spanning tree for j from 0 to k- 1, these cycles

were both fundamental cycles of e. So the fundamental cycle of e must have changed

during the propagation of the Search message s. Without loss of generality, assume the

fundamental cycle of e3 that contained e preceded in time the fundamental cycle that

contained er. By the induction hypothesis, the spanning tree formed by the Target-Set

was transformed from the one containing ew to the one containing e, by a sequence of

steps each of which removed the maximum edge from some fundamental cycle and re-

placed it with the non-tree edge of that cycle. Find the index i such that in the sequence

TargetSet(0),Target_Set(ti),.. . ,Target_Set(t_i), e E Target-Set(ti) and ew 0 Target-Set

(t+,). By the induction hypothesis, Target-Set(ti) changed to t1 by the removal of e,

and the addition of some unchosen edge e, where e = max(fnd_cyl(TargetSet(t),e)).

Thus e must have received a successful Replace message from e at which point e be-

came unchosen. But e was also unchosen when it received the Replace message from e.

This is impossible since a chosen edge can become unchosen only once by Claim 3.1.5. So

there could not have been a previous successful Replace and hence e Target_Set(tk_i).

By Corollary 3.1.2, as long as edge er remains in the spanning tree, it continues to be

the maximum edge of the fundamental cycle of e. Since, er is chosen at step tk - 1, and

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 35

the chosen set is a spanning tree, it must be the maximum edge in the fundamental cycle of

e in the spanning tree Target_Set(tk_1). I

From the proof of Lemma 4.2.1, it follows that Target-Set actually changes only when

line 12 is executed, at which point, an edge is removed from Chosen-Set and another added

to Latent-Set. Define T1, T2,... to be the subsequence of steps (and of t1 , t2,...) when line

12 is executed and call these steps change steps.

Let W(S) =

Lemma 4.2.2 For every change step Ti, W(TargetSet(Tj)) > W(TargetSet(T11)).

Proof: According the proof of Lemma 4.2. 1, at line 12, Target_Set(Tk1) = (Target_Set(Tk) U

{e}) \ {e'} and e' = max (fnd_cyl(Target_Set(Tk),e)). So wt(e') > wt(e). Thus
W(Target_Set(Tk+l)) = W(Target_Set(Tk)) + wt(e) - wt(e') <W(Target_Set(Tk)).

Lemma 4.2.3 If Target-Set(Ti) 0 MST, then change step Tj. 1 will eventually occur.

Proof: If Target-Set(Ti) 54 MST, then there exists e E MST; but e 0 Target_Set(7).

So, e is an unchosen edge. The time-out mechanism will make sure the unchosen edge

e initiates a Search message. Since Target-Set is a spanning tree for all the steps and all

the edges in Latent-Set(Ti) become chosen edges because Crowned message always reach

their destination, eventually, the Search message generated by e will return to e along e's

fundamental cycle. Since e E MST, e is not the maximum edge in any cycle; therefore, a

Replace message will be generated by e to replace a chosen edge e'. When e' receives the

Replace message, if Tj has not occurred by this time, e' is still unchosen. Then line 12

will get executed: e' will be removed from Chosen-Set and e will be added into Latent-Set.

This step of execution of line 12 is So + I will eventually occur. I

Theorem 4.2.1 Basic-MST ensures that there is a step I, such that vi> I, Chosen.Set(I) =

MST.

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 36

Proof: By Lemma 4.2.2 and Lemma 4.2.3, we conclude that eventually there is a step T,

such that Target-Set(Ti) = MST. Within the next M steps, where M is the maximum safe-

time for all the edges in the network, all the edges in Latent-Set(Ti) become chosen edges

because Crowned message always reach their destination before the destination times-out.

So there exists an I, such that T1 ≤ I < Ti+M and Chosen-Set(I) = Target-Set(I) = MST.

Since Chosen-Set is the edge set of a minimum spanning tree, by Lemma 4.2.2, nothing

changes subsequently. So vi> I, Chosen_Set(I) = MST.

4.3 Complexity

Since algorithm Basic-MST is deterministic, its time complexity on a network G is defined

to be the maximum time over all executions and over all valid initial configurations for the

system to converge to a legitimate configuration; in this case a valid initial configuration

is any spanning tree and no messages in the system. The legitimate configuration requires

chosen-status(e) = True if and only if e E MST (G).

Theorem 4.3.1 The time complexity for algorithm Basic-MST is O((m - n + 1)M) where

M is the maximum safetime for all the edges in the network G with n nodes and m edges.

Proof: In algorithm Basic-MST, within 2M time, at least one unchosen edge e that is in

the minimum spanning tree of the network has a successful replace and after an additional

M that replace has moved the latent edge to the Chosen-Set. By Lemma 4.2.2, every

successful replace reduces the wt(Target_Set). Thus in at most in - n + 1 repetitions of

this argument, wt(TargeLSet) will reach the minimum weight. The maximum time taken

over all the executions is 3(m - n + l)M, so the upper bound complexity for algorithm

Basic-MST for taking the system to a legitimate configuration(MST) is O((m - n + l)M).

U

The worst case time complexity bound of Lemma 4.3.1 can be realized for some ini-

tial spanning tree on some networks under a malicious scheduler. Consider the network in

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 37

Figure 4.2. The network is the graph G = (V, E). V has n nodes and V = A U B where

IA I = IBI=n/2. A={(a,1),(a,2),...,(a,n/2)} and B={(b,1),(b)2),...,(b,n/2)}. E

has m = n2/4+n-2 edges and E = Ea U Eb U Eab where Ea = {((a, i), (a, i+ 1)) I 1 ≤

i < n/2} and Eb = {((b,i),(b,i+ 1)) 1 < i < n/2} and Eab = {((a,i),(b,j)) Ii ≤ i ≤

n/2 and 1 < j n/2}. Let Ve E Ea UEb,wt(e) <n and wt(((a, i), (b, j))) = ni+j. Thus

the edges of the MST of this network is Ea UEb U {((a, 1), (b, 1))} The initial configura-

tion is chosen such that all the edges in Ea U E, are chosen and all the edges in Eab are

unchosen except edge ((a, n/2), (b, n/2)). This is clearly spanning tree. In fact it dif-

fers from the MST by only one edge. The worse case complexity is structured as fol-

lows: All the unchosen edges times-out, they all find ((a, n/2), (b, n/2)) is the largest

edge in their fundamental cycle and send their Replace message. The Replace message

of edge ((a, n/2), (b, n/2 - 1)) is successful. In next repetition, ((a, n/2), (b, n/2 - 2))'s

Replace message is successful, and so on. In round i, The Replace message of edge

((a, n/2 - i div (n/2)), (b, n/2 - i mod (n/2))) is successful. Finally, in round m - n + 1,

((a, 1), (b, 1))'s Replace message is successful. At this point, a minimum spanning tree is

formed by the chosen edges. The time it takes to converge is at most (m - n + 1)M

4.4 Dynamic Growing Network

Algorithm Basic-MST can be used to maintain a minimum spanning tree in a network that

has edges and nodes added and weights changed dynamically.

Suppose a node is added to the network along with a set S of edges (at least one) added

to link the node into the network. Arbitrarily choose one edge e E S to be chosen and

for all e' € S \ {e}, assign their chosen-status to False. If the original chosen set formed

a spanning tree of the network, then the resulting chosen set must be a spanning tree of

the new network. Therefore algorithm Basic-MST is still able to construct the a minimum

spanning tree when the network dynamically gains nodes.

If an edge e is dynamically added into the network and chosen-status(e) is False, then

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 38

Set A:n/2 nodes Set B:n/2 nodes

a, I

a, n/2-1

a, u/2

Initial:

 1: //'
-

- - -' S - -

_
___ _____< SS ,j S7

- - - S - -
" - 5' -- S •

b, I

b, 2

b, n/2

Final:
Chosen edge Chosen edge

* Chosen edge Unchosen edge

Unchosen edge Unchosen edge

Unchosen edge Chosen edge

Figure 4.2: A worst case for Basic-MST

4. FROM AN ARBITRARY SPANNING TREE To A MINIMUM SPANNING TREE 39

the chosen set remains the same. If the chosen set formed a spanning tree before the change

and nodes remain the same, then the chosen set still forms a spanning tree of the network.

Therefore algorithm Basic-MST is still able to construct minimum spanning tree when the

network dynamically gains edges.

No matter how the weights of edges change dynamically, it only effects the structure

of the minimum spanning tree. The chosen set is still a spanning tree of the network.

Therefore algorithm Basic-MST still works.

4.5 Bounded Message Queue

Algorithm Basic-MST works on a model with unbounded message queues. It is generally

not realistic to assume a message-passing system has unbounded queues. With a little mod-

ification, the algorithm can correctly work on a message-passing network with bounded

queues. Loss of a Search or a Replace message can only cause the sender of,the search to

time-out. These losses cannot effect the Target-Set. So throwing out the Search messages

and Replace messages when the bounded queues are full will not effect the correctness of

the algorithm Basic-MST. But if a Crowned message does not get to its destination, then

Target-Set will no longer have the property of being a edge set of a spanning tree. So al-

gorithm Basic-MST will not run correctly. However, each Crowned message has a path

to follow to its destination, so Crowned messages do not spread all over network like the

Search and Replace messages. So there is no proliferation of unnecessary Crowned mes-

sages. Therefore we can reserve the queue space for storing the Crowned messages. In

order to not keep dropping the Search messages and the Replace messages from the same

unchosen edge all the time, we can modify algorithm Basic-MST with different timer val-

ues. This argument also shows that Basic-MST has some properties of fault-tolerance. It

can tolerant losing Search messages and Replace messages, but not Crowned messages.

CHAPTER 5

A Self-Stabilizing Minimum Spanning Tree
Algorithm

This chapter presents a algorithm Self_Stabilizing..MST for the minimum spanning tree

problem. Since the configuration after some faults may be arbitrary, it is more realistic and

useful to design a self-stabilizing algorithm to construct a minimum spanning tree from any

initial configuration. Algorithm Basic-MST guarantees convergence to the MST only if, in

the initial configuration, the chosen edges form a spanning tree, and there are no messages

in the network. Algorithm Self_StabilizingMST needs to alter and enhance Basic-MST so

that the minimum spanning tree is constructed even when, initially, the chosen edges are

disconnected or do not span the network or contain cycles, and when there may be spurious

messages already in the system.

The algorithm Basic-MST serves to provide some of the ideas for the second algorithm

in a simpler but less general setting. Given Basic-MST, another approach to finding a

general self-stabilizing MST algorithm might be to use the technique of fair composition

[8, 6] applied to a self-stabilizing algorithm for spanning tree construction and Basic-MST.

However, we failed to see how to achieve this because of the need to keep the variables

manipulated by Basic-MST entirely disjoint from those used to construct the spanning

tree. So Self_StabilizingJvlST uses some of the ideas of Basic-MST but is developed from

40

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 41

scratch.

The algorithm is again described for the altered graph where edges are assumed to do

the processing. We use most of the notation from Chapter 4, such as Chosen-Set. The main

idea of the two algorithms remains the same. In both algorithms, computation is driven

by unchosen edges. However, Chosen-Set is maintained differently in the two algorithms.

In algorithm Basic-MST, we momentary disconnect Chosen-Set by first removing an edge

and then adding a latent edge. In Basic-MST Chosen-Set, never forms a cycle during the

computation. In algorithm Self-Stabilizing-MST, a new chosen edge is first added and

then a latent edge is removed. The proof of correctness of algorithm Self-Stabilizing-MST

will require the graph built from Chosen-Set to be connected and span the network after

a certain initial period. Because we handle processing differently, this may create cycles

formed by chosen edges. Therefore we also introduce a procedure to handle cycles.

Algorithm Self-Stabilizing-MST is described in Section 5.1, proved correct in Section

5.2, and analyzed in Section 5.3.

5.1 Self-Stabilizing MST algorithm

5.1.1 The Processors

An edge processor e has an edge identifier (u, v), where u and v are the distinct identifiers

of its two end-points. Let EID denote the set of edge identifiers. Each edge processor e has

a weight that is a positive integer, and is denoted by wt(e).

The identifiers of the neighbouring edges of e at its u and v end-points are in stable

storage and available to e as N(u) and N(v) respectively.

• The edge processor description ((u, v) , w) is assumed to be static and in uncorruptable

stable storage. This description contains only local information that is determined solely

by the network structure. Of course, the program for an edge (u, v) is also stable.

Each edge processor, e = (u, v), maintains three variables in unstable storage:

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 42

• A boolean chosen-status, which indicates whether or not the edge processor e cur-

rently is in the Chosen-Set subgraph.

• A non-negative integer timer in the interval [0,3 x safetime(e)]. Recall that safetime(e)

is an upper bound on the time required for a message sent by e to travel any path of

length at most n.

• A boolean search-sent, which indicates whether edge processor e has sent a Search

message that has not yet returned to e. On receiving its own Search message,

search-sent will be reset to False.

These three values are all variables that are read and written by Self-Stabilizing-MST

algorithm.

5.1.2 The Messages

There are three types of messages. Search messages have 3 fields ("search", eid, path),

where eid is a member of ED and path is a list of BID's. The second field records the

unchosen edge that initiates the search, and the third field records the path of chosen edges

travelled by the Search message. Remove messages ("remove", path) and Find-cycle mes-

sages ("find-cycle", path), each have two fields with the second field recording a path of

chosen edges.

The purpose of a Search message is to find heavy edges that should be removed from

Chosen-Set. The purpose of a Remove message is to remove a heavy edge in a cycle of

Chosen-Set or in a fundamental cycle of Chosen-Set. The purpose of a Find-cycle message

is to detect cycles of chosen edges when there are no unchosen edges in the network.

5.1.3 The Protocol

Algorithm Self-Stabilizing-MST employs two procedures for edge e(u, v) to send a mes-

sage. The procedure send(mess, eneigit) sends the message mess to the neighbouring edge

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 43

processor eneigli. (The send aborts if eneig/ is not a neighbouring edge of (u, v).) Re-

call those edge processors adjacent to end-point v are denoted by N(v). The procedure

propagate (mess, v) sends a copy of the message mess to all edge processors in N(v).

Define e' to be a destination edge of a Replace message ("replace", path), if e' is the

heaviest edge in the path.

When an unchosen edge e that is not waiting for the return of its previous Search mes-

sage times-out, it initiates a new Search message ("search", e, path), where path is initially

empty. When chosen edge e' receives a Search message, it first checks if there is a cycle

of chosen edges in path U {e'}. In this case, e' initiates a Remove message with destina-

tion equal to the heaviest edge in that cycle. If there is no cycle, e' appends its eid to path

and propagates the Search message through its outgoing end-point. If a Search message is

received by the edge that originated it (the sender) and that edge is still unchosen, then it

checks whether it is larger than all the edges in path. If it is the largest, then e resets its

timer, sets search-sent to False and becomes passive until its next time-out. Otherwise, e

changes its chosen-status to True, search-sent to False and sends a Remove message ("re-

move", path). An edge receiving a Remove message forwards it along the path recorded in

the message until the Remove message reaches its destination edge. The destination edge

simply sets its chosen-status to False. If e times-out before it receives its own Search mes-

sage, then its two end-points are not connected by chosen edges. In this case, to guarantee

that the chosen edges form a spanning connected graph, the unchosen edge adds itself to

the Chosen-Set.

Algorithm Self-Stabilizing-MST also must deal with the special case when all edges are

initially chosen and hence no Search messages are generated. Any chosen edge e initiates

and propagates a Find-cycle message ("find-cycle", [e]) when it times-out. Like Search

messages, Find-cycle messages record the list of chosen edges travelled, so a chosen edge

receiving a Find-cycle message can detect if it is in a cycle of chosen edges. Then a Remove

message is initiated to travel the cycle to the destination edge, and causes that edge to set

its chosen-status to False.

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM

The intuition for the enhancements is as follows:

44

• Suppose the chosen edges are disconnected or do not span the network (or both).

Then there is at least one unchosen edge e whose end-points, say u and v, are not

connected by a path of chosen edges. So a Search message initiated by e out of its u

end-point cannot return to e's v end-point. This is detected by e through its time-out

mechanism and the boolean variable search-sent, which indicates that e is waiting

for the return of its Search message. When this detection occurs e simply changes its

status to chosen.

• Suppose a collection of chosen edges form a cycle. To detect cycles of chosen edges,

each Search message is augmented to record the list of edges on the path it travelled.

If a chosen edge receives a Search message at one end-point, and the list in that

Search message contains a chosen edge that is a neighbour of its other end-point,

then the Search message travelled a cycle of chosen edges. This cycle-detection will

succeed as long as there is an unchosen edge to initiate a Search message that will

travel that cycle.

• A Search message cannot return to its initiator at the same end-point from which it

was propagated. For this to happen, the Search message would have to arrive from

an adjacent chosen edge. but such an edge would not propagate the Search message

since it would have already detected a cycle.

• Search messages are used to establish a spanning tree as well as to convert a spanning

tree into one with minimum weight.

• A Find-cycle is initiated by a chosen edge that timed-out because it did not received

any Search message within an interval equal to its time-out interval. In order to avoid

initiating Find-cycle messages prematurely (when there is a Search message on its

way to this chosen edge) the time-out interval for any chosen edge is set to three

times its safetime.

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 45

The proceed-code for algorithm Self-Stabilizing-MST is shown as follows. The func-

tions reset-timer causes an edge processor with chosen-status False to reset its timer to its

safetime and one with chosen-status True to reset its timer to 3 times its safetirne. Timers

continue to decrement and cause a time-out when they reach zero. For list = [XI , X2, - .. ,x,],

head(list) = xi and tail(list) = [x2,. .. ,x,]. The function max(list) returns the maximum

weight over all edges in the list. A path is simple if no vertex occurs in the path more than

once. The symbol denotes concatenation. Comments are delimited by brace brackets

({,}).
Procedure for edge processore = (u, v)

Upon time-out:

1. If (-ichosen_status) A (-isearch..sent) then

2. propagate(("search", (u, v), 0), v);

3. search-sent <- True;

4. Elseif (-ichosen_status) A (search-sent) then

5. chosen-status - True;

6. Elseif (chosen-status) then

7. propagate (("find_cycle", [(u, v)]) ,

8. reset-timer.

{ disconnected chosen edges}

{ no searches happening}

Upon receipt of ("search", sender, path) from end-point, say u

9. If (chosen-status) A (sender =A (u, v)) then

10. reset-timer;

11. If (V(v, z) E N(v), (v, z) 0 path) then {no cycle}

12. propagate (("search", sender, path[(u,v)]), v);

13. Else {(v,z) EN(v) s.t. (v,z) Epath, so cycle of chosen}

14. Let path = listl ED list2 where head(1ist2) = (v, z)

15. send (("remove", list2), (v,z));

16. Elseif (-ichosen_status) A (sender = (u, v)) then

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 46

{ search traversed a fundamental cycle }
17. reset-timer;

18 search-sent +- False;

19. If (max(path) > wt(e)) then

20. chosen-status -- True;

21. send(("remove", path), head (path)).

Upon receipt of ("remove", path)

22. reset-timer;

23. If path is simple then

24. If (wt(e) 54 max(path)) then {not heaviest edge}

25. send(("remove", tail (path)), head (tail (path)));

26. Else

27. chosen-status +- False;

28. search-sent — False.

Upon receipt of ("find-cycle", path) from end-point, say u

29. reset-timer;

30. If (chosen-status) then

31. If(V(v,z) EN(v),(v,z) path) then

32. propagate (("find_cycle",path [(u, v)]), v);

33. Else {(v,z) EN(v),(v,z) Epath}

34. Let path = listi list2 where head(1ist2) = (v, z)

35. send (("remove", list2), (v, z))).

5.2 Proof of Correctness

We prove that if algorithm Self-Stabilizing-MST is executed from any initial configuration,

then eventually, those edges with chosen-status = True will be exactly the edges of the

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 47

minimum spanning tree and will subsequently not change. The proof technique relies on an

integer valued potential function that provides a measure of how far the current Chosen-Set

is from the edge set of the minimum spanning tree. We show that the value of this function

is initially bounded and that it never increases and eventually decreases. Thus it must

eventually equal 0 indicating that Chosen-Set is equal to MST. Let (el, . . . , e,) be the edges

of the network in order of increasing weight. The potential function selects the minimum

index k such that for every ej in (ek, .. . , e,), the chosen-status of ej is True if and only if e1

is in the edge set of MST. So when k = 1, the Chosen-Set is the MST.

Consider any execution, of algorithm Self-Stabilizing-MST that proceeds in steps that

are determined by a weakly fair scheduler. At step i, the processor chosen by the scheduler

executes its next atomic action.

The definition of Config(i) and Chosen-Set(i) are as defined in Chapter 4.

We consider the behaviour of the network after the initial, spurious messages have been

"worked out" of the system. Call a Search message ("search", sender, path), genuine if

1) it was initiated by an unchosen edge with edge identifier equal to sender, and 2) path

is a non-cyclic path of edges starting at sender. Call a Find-cycle message ("find-cycle",

path) genuine if it was initiated by a chosen edge e, and path is a non-cyclic path of edges

starting at e. A Remove message is genuine if it was generated in response to a genuine

Search message or a genuine Find-cycle message. Let M be the maximum safetime for any

edge in the system. Define step Sito be the first step that occurs after time Mx i.

Lemma 5.2.1 By step S1 all messages are genuine.

Proof: By the definition of safetime, any Search, Find-cycle or Remove message that

survives for time units must have travelled a path of length more than n. However Search

and Find-cycle message stop when a cycle or a fundamental cycle is detected, which must

happen by n edges are traversed. A Remove message is discarded if its path contains

repeated nodes. Otherwise it can travel at most along the edges in path, of which there are

at most n.

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 48

Lemma 5.2.2 Let V such that the subgraph of (V, ChosenSet(i)) induced by V is

connected and i ≥ S. Then for all j> i, the subgraph of(V, Chosen-Set (j)) induced by '

is connected.

Proof: Algorithm Self-Stabilizing-MST removes an edge from Chosen-Set(i) only upon

receipt of a Remove message (line 25). Since i ≥ Si such a message is genuine, and hence

was created when a cycle was discovered. This message can remove only the unique edge

with maximum weight in that cycle. So at most one edge can be removed from the cycle.

Thus V must remain connected by chosen edges. I

Lemma 5.2.3 For any initial Config(0), for all i ≥ 53, the subgraph

(V, Chosen_Set(i)) is connected and spans the network.

Proof: Assume Chosen-Set(i) is disconnected or does not span G for all i, Si ≤ i ≤ S.

Let (Vi , V2) be any two subsets of V such that the edges on paths between V1 and V2 are

unchosen for the interval from Si to 53. By step S2, each of these unchosen edges will have

timed-out, sent a Search message and set search-sent to True. By step at most 53 none will

have had the Search message that it initiated returned to its opposite end-point, so each will

have timed-out again. Because search-sent is True each will change its chosen-status to

True. By Lemma 5.2.2, once V1 and V2 are connected they remain connected. U

It is easy to check that if the network is itself a tree, then by step S2 all edges are

chosen and will remain so. Thus Self-Stabilizing-MST is correct for any tree network. The

remainder of this proof assumes that the network G is not a tree.

Several definitions will help make the proof of the next claim precise and concise.

We introduce the latent-status to capture any edge that has a Remove message des-

tined for it. More precisely, define the latent-status of edge e by: At step 0, for every

edge e, latent-status(e) is False; latent-status(e) becomes True at step i if, at step i, an un-

chosen edge e' changes its chosen-status to True because of receipt of a Search message

("search", sender, path) where sender = e', and e is the edge with maximum weight in path;

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 49

latent-status(e) becomes False at step j if, at step j, edge e changes its chosen-status to False

because of receipt of a Remove message ("remove", path) where e is the maximum weight

edge of path. Define Latent-Set(i) to be the set {e I In Config(i), latent-status(e) = True}.

Lemma 5.2.4 If G is not a tree, then for all i > S7, Chosen-Set(i) \ LatentSet(i) is a proper

subset of E.

Proof: Since Chosen-Set(i) is connected for any i> S3, by Lemma 5.2.3, the only way

for an unchosen edge to become chosen is line 20, which also adds an edge to Latent-Set.

The only way for Latent-Set to lose an edge is if that edge changes to unchosen.

Suppose Chosen-Set(3M) = E and Latent-Set(3M) = 0. Since G is not a tree, there

exists at least one cycle. If there is any Search message in the network, it will propagate

to this cycle and generate a Remove message destined for the edge with maximum weight,

say e, in that cycle by some step i < S4. So e E Latent_Set(i). Otherwise, some edge of the

cycle will time-out within time 3M, generate a find-cycle message, and detect the cycle in

at most M additional time. So by some step j ≤ S7, e E Latent_Set(j).

Therefore, once Chosen-Set(i) \ Latent-Set(i) is a proper subset of E for i ≥ 57, it

remains a proper subset for all j> i. I

Lemma 5.2.5 If G is not a tree, no chosen edge can time-out after S7.

Proof: If a chosen edge e is latent then there is a Remove message destined to e. This

message was sent by an unchosen edge in response to a Search message that passed through

e and reset e's timer at most one safetime earlier. Therefore the Remove message is received

by e and e becomes unchosen before it can time-out.

Suppose a chosen edge e is not latent. If there is an unchosen edge ê in the network

when e sets its timer, then within one safetime interval ê will time-out and propagate a

search. By Lemma 5.2.2, all chosen edges are connected so within another safetime interval

e will receive the search of ê. Thus e resets its timer before it times-out. If there is no

unchosen edge then by Lemma 5.2.4, there is a latent edge ë when e sets its timer. The latent

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 50

edge will become unchosen within one safetime interval and within two more safetime

intervals e will receive the search of e. Thus e resets its timer within 3 safetime interval

preventing it from timing-out in the network. Once a chosen edge has reset its timer, a

latent edge will become unchosen and an unchosen edge will time-out and propagate a

Search message, before a chosen edge can again time-out, because the chosen edge sets

its timer to 3 times that required for any message to reach it. Because the chosen set is

connected, the Search message will reach any chosen edge and will cause it to reset its

timer before timing out.

Let ei , e2,. . . , e, be the edges of G sorted in order of increasing weight. Let E be

the subset of E consisting of edges of MST(G). Define k(s) be the smallest integer in

{1,.. . ,m} such that, Vi> k(s), e1 E Chosen-Set(s) if and only if ej E E.

Observe that k(s) is the index of the maximum weight edge such that the predicate

(ek() E Chosen-Set(s)) differs from (ek() E E). The proof proceeds by showing that after

step S7, we have the safety property that the index k(s) never increases, and the progress

property that integer k(s) eventually decreases. Then we will be able to conclude that

eventually k(s) must be 1, implying that the chosen set is the edge set of MST. All the

remaining lemmas are implicitly intended to apply after step S7.

Lemma 5.2.6 For every edge e in E, ife E Chosen-Set(s) then e E ChosenSet(s') , Vs' > s.

Proof: The only way that edge status changes from chosen to unchosen is by receipt of a

Remove message, which can only remove the edge with maximum weight in some cycle.

By Claim 3.1.3, no such edge can be in E. U

Lemma 5.2.7 E C Chosen-Set(s).

Proof: By Lemma 5.2.6, Ve E E and e E Chosen-Set(s), e stays in Chosen_Set(s') for

S/ > s. If 3e E E and e Chosen-Set(s), e = (u, v) will time-out and initiate its Search

message at one end-point, say u. By Lemma 5.2.3, (V, Chosen-Set(s)) is connected and

spans the network. So some copy of e's Search message will return to its v end-point. By

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 51

Claim 3.1.3, there must exist e' in the path travelled by the Search message, with larger

weight than e. So e becomes a chosen edge. I

Lemma 5.2.8 k(s) is non-increasing.

Proof: By the definition of k(s), if i> k(s) and ej E Chosen-Set(s), then e1 E E. By

Lemma 5.2.6, for every s' > s, ei E Chosen_Set(s').

By the definition of k(s), If i > k(s) and e1 0 Chosen-Set(s) then ej Suppose

s' > 5, e1 E Chosen_Set(s'). Only line 5 or line 19 can change chosen-status of ej from

unchosen to chosen. Line S is impossible after time S3 by Lemma 5.2.3. So ej received

its own Search message ("search", e, path) indicating the maximum weight in path is a

chosen edge ej other than e. Since wt(ej) > wt(e), j> i because indexes of edges are by

increasing weight. Hence j> k(s) and thus ej is chosen, implying e3 E E. But e3 is also a

maximum edge in a cycle, contradicting Claim 3.1.3. I

Lemma 5.2.9 If k(s) > 1, then there exists a s' > s such that k(s') < k(s).

Proof: By the definition of k(s), ek() E Chosen-Set(s) if and only if ek(S) E. By

Lemma 5.2.7, t C Chosen-Set(s), so chosen_status(ek()) = True in Config(s) and ek(S)

E. Consider the unique fnd_cyl(E, ek(S)) = (ek() , e1, ..., e) of edges in E and the edge

ek(S) . Again by Lemma 5.2.7, ea, E Chosen-Set(s) for each 1 < i < 1. So ek(), ea1 ,.. . , e

is a cycle of chosen edges in Config(s). In this cycle ek() must be heaviest, because by

Claim 3.1.3 no edge in E can be the heaviest of any cycle of G. This cycle will be detected

by some Search message that traverses it, and ek() will be removed from the chosen set at

some subsequent step s'. Thus in Config(s'), chosen_status(ek(S)) = False. So by Lemma

5.2.8, k(s') < k(s). I

Lemma 5.2.10 If (V, Chosen-Set(s)) is a minimum spanning tree, then for ails' > s,

(V, Chosen-Set(s)) is a minimum spanning tree.

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 52

Proof: When Chosen-Set(s) is a minimum spanning tree, there is no cycle of chosen edges

and there is a path of chosen edges between every pair of vertices. Every unchosen edge is

the largest edge in the cycle consisting of itself and the path of chosen edges between its

end-points. So in Self-Stabilizing-MST, the unchosen edges keep timing out and sending

Search messages. Each Search message returns to its initiator with the information that

the unchosen initiator is the edge with maximum weight in the path traversed. By Lemma

5.2.5 chosen edges do not time-out, so there are no Find-cycle messages generated. So the

unchosen edge is passive until it next times-out. I

Lemmas 5.2.8, 5.2.9 and 5.2. 10 combine to show that our algorithm is correct.

Theorem 5.2.1 Algorithm Self-Stabilizing-MST is a self-stabilizing solution for the mini-

mum spanning tree problem on message-passing networks.

5.3 Complexity Analysis

The complexity analysis of the self-stabilizing MST algorithm is not straightforward. How-

ever the upper bound of the time complexity of Self-Stabilizing-MST can be derived from

the proof of correctness. Recall that the time complexity of Self-Stabilizing-MST on a net-

work G is defined to be the maximum time over all executions and over all initial configu-

ration for the system to converge to a legitimate configuration. The legitimate configuration

requires chosen-status(e) = True if and only if e E MST(G).

Recall that M is the maximum safetime for all the edges in the network.

Theorem 5.3.1 The upper bound of time complexity for self-stabilizing MST algorithm is

O((m - n + 1)M) for any graph with n nodes and m edges.

Proof: In algorithm Self-Stabilizing-MST, within 3M steps at least one unchosen edge

can be determined successfully whether it is in Chosen-Set. From the proof of correctness,

after 8M time units, the edge set E of MST is a subset of the Chosen-Set by Lemma

5.2.7. Furthermore, within the following each repetition, the largest e E Chosen-Set \ E

5. A SELF-STABILIZING MINIMUM SPANNING TREE ALGORITHM 53

becomes unchosen and stays unchosen. So the maximum time taken for the executions

before stabilization is (3 (m - n + 1) + 8)M. Thus an upper bound on the time complexity

for the system to converge to a legitimate configuration is 0 ((m - n + 1)M).

CHAPTER 6

Model Conversion

6.1 Simulation

We have presented distributed MST algorithms in the altered graph model where edges

represent processors and nodes provide channels between neighbouring edge-processors.

This chapter describes how the original network, G, where nodes are processors and edges

represent message-passing channels, can simulate the algorithm designed for altered(G).

Since we assume that the processor in the network G have distinct identifiers, one of

the end-points of each edge can be selected to simulate the edge-processor. The selection

could be done by simply choosing the end-point with the larger identifier. The end-point

with the larger identifier is charged with executing all the actions of the edge; the end-point

with the smaller identifier is passive and only passes on messages of that edge.

Once nodes are selected to simulate edges, it is likely that some nodes will simulate

more than one of their adjacent edges and that other nodes may simulates no edges. Say

a node is in Charge of an edge if it is assigned to simulate that edge. Every node has an

incoming simulator processor and an outgoing simulator processor. When a node v receives

a message m from edge e, it passes m to the incoming simulator. If v is in charge of e, the

incoming simulator simulates the processing of m by e and passes the resulting messages to

its outgoing simulator. If v is not in charge of e, it simply passes m to its outgoing simulator.

When the outgoing simulator of v receives a message m' for delivery to edge e' then if v

54

6. MODEL CONVERSION 55

is in charge of e', the outgoing simulator simulates the processing of m by and passes

the resulting message to the other end-point of e'. If v is not in charge of e', the outgoing

simulator simply passed in' to the other end-point of e'.

Our altered graph model assumed that an edge had access to the status of its neighbours

edges. In the node simulation just this would require a node to have access to the status

of other nodes up to a distance of at most two. For example, suppose node u is in charge

of edge (u, v) and node w is in charge of edge (v, w). Node u's simulation of (u, v) would

require that node u has access to the status (V, w) which is stored at of w, which is distance

two away. However in the message passing network this information is not immediately

available. Let AL1 to be a self-stabilizing local update algorithm that is to gather infor-

mation on the topology up to a radius of two. Our final simulator is achieved by the fair

composite of AL1 with the simulation AL2 just describes and given in detail below.

Let (p', p, w) represent edge (p', p) with weight w. We use the notational convention

that for all edges in all messages, the edge is listed as (p, q) if the message travels in the

direction from p to q. For any edge (p, p'), if p > p', then p will store all local variables

wt(p',p), timer(p', p) , chosen..status(p',p) and search.sent(p',p). Also every processor p

maintains an array of the estimated status of each processors that is at most two links away.

The self-stabilizing end-point simulating MST algorithm AL2 is derived by translating

Self-Stabilizing-MST based on the correct knowledge of the topology up to a radius of two.

Procedure for processor p:

Upon timer(p',p) time-out: for any p' < p

1. If (,chosen_status(p', p)) A (-isearch.sent(p', p)) Then

2. For p" E N(p) \ {p'} Do
3. If (p > p") Then

4. If (chosen_status(p, p")) Then

5. reset_timer timer(p,p");

6. send (("search",< p',p >,[< p,p",w(p,p") >]), p");

7. Else

6. MODEL CONVERSION

8. send (("search",<p',p 0)) P")

9. search-sent (p',p) - True;

10. Elseif (-ichosen_status(p',p)) A (search..sent(p',p)) Then

11. chosen-status (p',p) - True;

12. Elseif (chosen_status(p',p)) Then

13. For p"EN(p)\{p'} Do

14. If (p > p ") Then

15. If (chosen_status(p,p")) Then

16. reset-timer timer(p,p");

17. send (("findcyc1e", [< p, p", w(p, p") >]), p");

18. Else

19. send (("find_cycle", O),p")

20. reset-timer timer(p',p);

Upon receipt of ("search", sender, path) from p'

11. If (p > p') A (<p',p > 0 sender) Then

12. If (chosen_status(p', p)) Then

13. path - paths < p',p,w(p',p)>;

14. reset-timer timer(p',p);

15. If (Vp" E N(P) \ {p'}, < p,p",w(p,p") > path) Then

16. For p " E N(p) \ {p'} Do
17. If (p > p") Then

18. If (chosen_status(p,p")) A (< p, p", w(p, p") > sender) Then

19. reset-timer timer(p,p");

20. If (VP E N(p") \ {p}, < p",j3,w(p",j3) > 0 path) Then

21. send ((.search", sender, path <p,p",w(p,p") >), P")

22. Else

23. Let path = list1 EDlist2 when head(1ist2) =< p",j3,w(p",j3)>

24. send (("remove", liSt2), second(<p",p,w(p",p)>.));

56

6. MODEL CONVERSION 57

25. Elseif (-ichosen_status(p, p ")) A (< p, p " , w(p, p ") >= head(path)) Then

26. search-sent (p,p") +- False;

27. If (max_weight(path) > wt(p,p")) Then

28. chosen-status (p,p") - True;

29. send (("remove", path) second (head(path)));

30. Else

31. send (("search", sender, path), p11);

32. Else

33. Let path= listi ff1i5t2 when head(listz) =< p,p",w(p,p")>

34. send (("remove", list2), second(<p,p",w(p,p") >));
35. Elseif (-ichosen_status(p',p)) A (< p', p, w (p', p) >= sender) Then

36. search-sent (p',p) +- False;

37. If (max_weight(path) > wt(p',p)) Then

38. chosen_status(p', p) +- True;

39. send (("remove", path), second (head(path)));
40. Elseif (p < p') Then

41. For p" EN(p)\{p'} Do

42. If (p > p") Then

43. If (chosen_status(p,p")) A (< p,p",w(p,p") >=,4 head(path)) Then
44. reset-timer timer(p,p");

45. If (VP E N(p") \{p}, < p",p,w(p",) > 0 path) Then

46. send (("search", sender, paths < p, p ") w(p, p") >),P");

47. Else

48. Let path = Usti list2 when head(list2) =< p",p,w(p",p)>

49. send (("remove", 1ist2), second(< p " , j3, w(p, p) >));

50. Elseif (,chosen_status(p,p")) A (<p,p",w(p,p") >= sender) Then

51. search-sent (p,p") - False;

52. If (max_weight(path) > wt(p,p")) Then

6. MODEL CONVERSION

53. chosen_status(p, p ") - True;

54. send (("remove", path) ,second (head (path));

55. Else

56. send (("search", sender, path), P11);

Upon receipt of ("remove", path) from p'

57. If(p>p') Then

58. If (wt(p',p) max(path)) Then

59. If p" > p s.t. <p,p"w(p,p") >= head (tail (path));

60. send (("remove", path) ,p");

61. Elseif (wt(p,p") 0 max(path)) Then

62. send (("remove" ,tail (path)) , p1);

63. Else

64. chosen_status(p, p") - False;

65. search..sent(p, p") +- False;

66. Else

67. chosen_status(p', p) +- False;

68. search..sent(p',p) - False;

58

Upon receipt of ("find-cycle", path) from p'

69. If (p > p') Then

70. If (chosen_status(p',p)) Then

71. path <.- paths < p',p,w(p',p)>;

72. reset-timer timer(p',p);

73. If (Vp" E N(P) \ {p'}, < p,p",w(p,p") > 0 path) Then

74. For p " E N(p) \ {p'} Do

75. If (p > p") Then

76. If (chosen_status(p,p")) A (< p,p",w(p,p") >=,4 head(path)) Then

77. reset-timer timer(p,p");

6. MODEL CONVERSION

78. If (VP E N(p") \ {p}, < p",,w(p",j3) > path) Then

79. send (("find_cycle",path < p,p" ,w(p,p") >), p");

80. Else

81. Let path = list1 ED list2 when head(list2) =< p",j3,w(p",)>

82. send (("remove", list2), second(< p" , P, w(p",p) >));

83. Else

84. send (("find_cycle", path), p");

85. Else

86. Let path = list1 listj when head(list2) =< p, p" , w(p, p")>

87. send (("remove",1ist2), second(< p,p" ,w(p,p") >));

88. Else

89. For p" E N(p) \ {p'} Do
90. If (p> p/I) Then

91. If (chosen_status(p",p)) A (< p, p" , w(p, p") >56 head(path)) Then

92. reset-timer timer(p,p");

93. If (VP E N(p") \{p}, < p",,w(p",p) > 0 path) Then

94. send (("f ind-cycle", path <p,p" ,w(p,p") >), p");

95. Else

96. Let path = list1 list2 when head(list2) =< p" , j3, w(p" , i3)>

97. send ((11 remove", list2), second(<p",j3,w(p",j3) >));

98. Else

99. send (("find_cycle", path), p");

The self-stabilizing local update algorithm AL1 is as follows:

Procedure for processor p:

Upon timer(p) time-out

propagate ("update",info(p), 1)

Upon receipt of ("update",info(p'), 1)

59

6. MODEL CONVERSION

local(p') •- info(p')

propagate ("update", info(p'), 2)

Upon receipt of ("update", info(p'), 2)

local(p') - info(p')

60

The final algorithm is constructed from the fair composition of the self-stabilizing end-

point simulation algorithm AL2 of the edge-processor algorithm Self-Stabilizing-MST and

the self-stabilizing local update algorithm, AL1.

The proof of correctness of the self-stabilizing fair composition is provided in Section

2.7 of Shiomi Dolev's Self-Stabilization [6]. The theorem states: " Assume that AL2 is

self-stabilizing for a task T2 given task T1. If AL1 is self-stabilizing for T1, then the fair

composition of AL1 and AL2 is self-stabilizing for T2."

The final algorithm executes AL1 and AL2 alternately, that is executing one step of AL1

and then one step AL2. The task T1 makes sure that each node p updates its information

about p' where p' is at distance one or two from p. So AL1 for task T1 only modifies the

portion of p's states local(p'). The task T2 is to construct the minimum spanning tree based

on each node's states. So AL2 of p for the task T2 modifies chosen_status(p).

CHAPTER 7

Conclusions

7.1 Summary of Contributions

This thesis presents two new algorithms for distributed MST on the message passing model.

The first, Basic-MST, does not stabilize to the MST of the network from any initial config-

uration; rather, it converts any valid spanning tree configuration to the minimum spanning

tree in a self-stabilizing fashion. This algorithm can be used to maintain a minimum span-

ning tree in a network that can grow by the addition of edges and nodes and can have edge

weights changed dynamically. The algorithm Basic-MST also provides intuition for the

more general case.

There are few self-stabilizing algorithms written directly for the message passing model.

The algorithm SelLStabilizingJvlST is the first self-stabilizing algorithm that solves the

minimum spanning tree problem on the message passing model. When the system is started

from any initial configuration, the algorithm Self_StabilizingMST constructs a minimum

spanning tree in a bounded number of steps. The algorithm applies to fully dynamic sys-

tems as long as safetime is not violated.

Unlike many self-stabilizing algorithm for distributed networks, neither Basic-MST

or Self_StabilizingMST require a distinguished leader node in the network. This gives

additional flexibility. For example algorithms that require a leader cannot be fully dynamic.

Significantly different proofs of convergence are needed for the two algorithms even

61

7. Coi'crusioi's 62

though the second algorithm builds upon the ideas used in the first. Specially, the tech-

nique used in the proof of the correctness of the second algorithm is considered as one of

contribution of this thesis. A new potential function is obtained that provides a measure

of how far the current Chosen-Set is from the edge set of the minimum spanning tree. We

show that the value of this function never increases and eventually decreases.

The presentation of algorithms Basic-MST and Self-Stabilizing-MST were simplified

by describing them from the "edge-processor" perspective where edges rather than nodes

were assumed to drive the computation. The final message-passing algorithm is obtain by

translating from the edge driven to node driven setting, and then applying fair composition

with a self-stabilizing local topology update algorithm.

Both algorithms differ markedly from the approach of the well-known distributed Min-

imum spanning tree algorithm (GHS) of Gallager, Humblet and Spira [9], because they are

driven by the unchosen edges rather than attempting to construct a forest of trees that merge

over time.

7.2 Observations, Discussion and Future Directions

Several observations lead to further questions concerning both algorithms and models for

self-stabilization. These point to areas of potential future work.

The introduction of this thesis claimed that the Internet might provide one network

where Self-Stabilizing-MST could be applied. The Internet, however, is so large that at

any time there is likely to be some fault in it somewhere. Thus, it is highly unlikely that

following a fault there would be a fault-free interval at least as big as the stabilization time,

especially given the large worst-case time to stabilization of our algorithms. However, the

repairs in Basic-MST and Self-Stabilizing-MST proceed in a distributed fashion and are

typically quite independent. A fault in one part of a large network will only effect those

parts of the spanning tree that might "see" that fault. For example, suppose a spanning

tree edge fails by erroneously becoming unchosen due to a fault, or disappearing due to

7. CONCLUSIONS 63

a dynamic network change. Then, only those spanning tree paths that use this edge are

affected. In the Internet most connections follow approximately physically direct paths

(routing from New York to Boston does not go via London), and due to caching and repli-

cation, a great deal of the traffic is relatively local. Thus most of the network spanning

tree will continue to function without noticing the fault. Similar arguments can be made to

defend the behaviour of the algorithms as adequate in the case of other faults or dynamic

changes. Because there is no dependence on a root that must coordinate the revisions, the

repairs to the spanning tree can proceed independently and "typically" locally. Note how-

ever, that there is no general local detection and correction claim that can be proved for

either Basic-MST or Self-Stabilizing-MST.

Perhaps the lack of minimum spanning tree solutions is because a generalization of

GHS to the self-stabilizing setting is not apparent. The GHS algorithm resembles a dis-

tributed version of Krushkal's algorithm. It maintains a spanning forest, the components

of which are merged in a controlled way via minimum outgoing edges until there is only

one component, which is the MST of the network. The algorithm relies heavily on the

invariant that selected edges are cycle-free, which we do not see how to maintain in the

self-stabilizing setting when specific edges (of small weight) must be selected. Algorithm

Self-Stabilizing-MST differs markedly from the GHS kind of approach. The computation

is driven by non-tree edges. It is more akin to local error detection than to forest growing.

Algorithm Self-Stabilizing-MST is correct for a completely dynamic network. Also if

we assume that weights of edges are stored in unstable storage, the algorithm will still be

correct. Weights do not need to be static or to reside in stable storage. If communication

links are broken down or extra links are added into the network, the algorithm will still

construct a minimum spanning tree. Algorithm BasicjylSTcan be used to maintain a mini-

mum spanning tree in a network that has edges and nodes added or edges' weight changed

dynamically. However, in contrast to Self-Stabilizing-MST, it can fail if an edge or a node

is removed from the network dynamically. Suppose a chosen edge is removed from the

network. This would result in a forest of two trees of chosen edges. We see no simply way

7. Coi'cL.usioi'is 64

to determine which unchosen edge should become chosen to maintain a spanning tree, as

would be required by algorithm Basic-MST.

Basic-MST and Self-Stabilizing-MST work for networks with distinct identifiers. They

also work with distinct edge identifiers. Thus they still work if edges have distinct weights

since these can serve as identifiers. However on an anonymous network without the guar-

antee of distinct weights, the algorithm can fail. Dolev [6] provides an algorithm that

assigns distinct identifiers to an anonymous network. This could be composed with our

Self-Stabilizing-MST algorithm to give a randomized self-stabilizing algorithm for MST

on an anonymous message-passing network. It remains open whether a randomized al-

gorithm could be used to give a more efficient solution than the algorithm presented in

this thesis when the network has distinct identifies. It is also possible that on anonymous

networks a more efficient solution could be found by further exploiting randomization.

To convert to the network model, we select one of the end-points of each edge to sim-

ulate that edge processor. If the selection of nodes to simulate edges is not well balanced,

computation bottlenecks can arise. For example, if the end-point with largest identifier is

selected for each edge and there are locally maximum identifiers of high degree in the net-

work, then these nodes will be overworked. This in turn can slow down the communication

and damage the whole purpose of the concurrency. We would like to find an algorithm

that distributes the work load move evenly by more carefully tuning this assignment. The

algorithm might switch the assignment to place the smaller ID in charge of processing

or randomly assign one of the end-points to do the processing. Ideally this would be a

dynamic and self-stabilizing assignment.

We assume the network has size n. Without this assumption, will the algorithms still

be correct? The answer is yes provided some other knowledge is available. The network

size is used only to set the time-out so knowledge of network size could be replaced by

maximum time for a message to travel through all the processors.

Setting the safetime for each edge could present a challenging trade-off in some cases.

Before stabilization, time-outs trigger some essential repair mechanisms in situations that

7. Coi'icusior's 65

would otherwise be deadlocked. After stabilization, no errors are detected so a processor

does nothing until a time-out causes it to restart error detection. Thus, inflated safetimes

slow convergence in some situations, but reduce message traffic after stabilization. As

can be seen from the algorithm, the unstable configurations that trigger time-outs are quite

specialized and may be highly unlikely to occur during stabilization in some applications.

In this case it may be advantageous to choose rather large time-out values. Further work

including some simulation studies are necessary to determine appropriate safetimes for

particular applications.

Our algorithms permit different safetime settings for each edge, which may be conve-

nient since agreement does not need to be enforced. However, we do see how to exploit

this possibility for efficiency while strictly maintaining self-stabilization. If faults caused

by premature time-outs are tolerable, it may be reasonable to set safetime for each edge

so that it is only likely to be safe rather than guaranteed. In this case it may be useful to

exploit the possibility of different time-out intervals for different edges, by setting them to

reflect the time required for a message to travel the edge's fundamental cycle instead of any

simple path in the network.

In the introduction, we mention there are other models for the network communication.

Can we use the ideas that help us design the Self-Stabilizing-MST to construct a self-

stabilizing minimum spanning tree under read/write atomicity on a link-register model?

The technique to convert Basic-MST to a correct algorithm even for bounded channels

was discussed in Chapter 4. However, in Self-Stabilizing-MST, there is a local variable

search-sent. The purpose of this variable is to determine whether the chosen graph is

disconnected. If we throw the Search messages away as we did in Basic-MST to deal

with the bounded channels, then the variable search-sent could cause thrashing between

the procedure that changes edge status to chosen because the edge has evidence that the

Chosen-Set is disconnected, and the procedure that changes status to unchosen because

the edge collected evidence of a cycle in the chosen set. In this case when channels are

bounded, the algorithm will fail to converge to the legitimate configuration.

7. Coi'ici..usioNs 66

The Search messages of Basic-MST are only O (log n + log w) bits each where n is the

number of nodes in the network and w is largest weight in the network. However both

Replace messages and Crowned messages record a path of up to n identifiers. So they have

maximum size ® (n (log n + logw)). If the search and replace procedures were proceeding

sequentially these long messages would not be required. This is because propagation of

a Replace message by an unchosen edge would reach its destination along a unique path

of chosen edges, and the propagation of a crown response would travel the same path

in reverse order of still chosen edges. However, because of concurrency, it is possible

that the return path for the Crowned message is no longer composed entirely of chosen

edges. So a propagation only along chosen edges risks losing the Crowned message and

thus disconnecting the Target-Set. For algorithm Self-Stabilizing-MST, all three messages

types can be long, because each contains a list of edge descriptions. Thus their size is

®(n(logn + logw)) bits. In this case the messages record paths of 'edges and their weights

in order to detect cycles and to avoid the previously described problem. It remains an open

problem whether a Self-Stabilizing-MST can be achieved using message with size at most

O (log n+logw) bits.

Both algorithms Basic-MST and Self-Stabilizing-MST create a lot of messages some

of which can be very long. An important practical contribution would be to reduce the

length and number of messages.

Bibliography

[1] G Antonoiu and PK Srimani. A self-stabilizing distributed algorithm to construct an arbitrary

spanning tree of a connected graph. Computers and Mathematics with Applications, 30:1-7,

1995.

[2] G Antonoiu and PK Srimani. Distributed self-stabilizing algorithm for minimum spanning tree

construction. In Euro-par'97 Parallel Processing, Proceedings LNCS:1300, pages 480-487.

Springer-Verlag, 1997.

[3] Mikhail J Atallah. Algorithms and Theory of Computation Handbook. CRC Press LLC, 1999.

[4] NS Chen, HP Yu, and ST Huang. A self-stabilizing algorithm for constructing spanning trees.

Information Processing Letters, 39:147-151, 1991.

[5] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the

Association of the Computing Machinery, 17:643-644, 1974.

[6] S Dolev. Self-Stabilization. The MIT Press, 2000.

[7] S Dolev, A Israeli, and S Moran. Self stabilization of dynamic systems. In Proceedings of the

MCC Workshop on Self-Stabilizing Systems, MCC Technical Report No. STP-379-89, 1989.

[8] S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing, 7:3-16, 1993.

67

BIBLIOGRAPHY 68

[9] R Gallager, P Humblet, and P Spira. A distributed algorithm for minimum weight spanning

trees. ACM Trans. on Prog. Lang. and Systems, 5(1):66 - 77, 1983.

[10] MG Gouda and N Multari. Stabilizing communication protocols. IEEE Transactions on

Computers, 40:448-458, 1991.

[11] ST Huang and NS Chen. A self-stabilizing algorithm for constructing breadth-first trees.

Information Processing Letters, 41:109-117, 1992.

[12] JLW Kessels. An exercise in proving self-stabilization with a variant funtion. Inform. Process.

Lett., 29:39 - 42, 1988.

[13] L Lamport. Solved problems, unsolved problems and non-problems in concurrency, invited

address. In PODC84 Proceedings of the Third Annual ACM Symposium on Principles of

Distributed Computing, pages 63-67, 1983.

[14] N A Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[15] B M Maggs and S A Plotkin. Minimum spanning tree as a path finding problem. Information

Processing Letters, 2:291-293, 1988.

[16] M Townsend. Discrete mathematics:applied combinatorics and graph theory. Menlo Park,

Calif. :Benjamin/Cummings, 1987.

