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Abstract 

In 1994, Shi[lG] studied a class of vector çingular singularly perturbed boundary- 

value problems consisting of 

where U, V, Hl and Hz are n-dimensional real-valued hct ions  and infinitely differea- 

tiable with respect to their variables respectively and E is a s m d  positive parameter. 

In this thesis, we study the following singular singularly perturbed boundary- 

value problems consisting of 

where U, V, Hl and H2 are scalar real-valued functions and infinitely differentiable 

with respect to their Miiables respectively. This problem extends Shi's problem for 

the scalar case. However, the vector case remains open. 

Under appropriate assumptions and employing the method of matched asyrnp- 

totic expansions, we constmct an outer solution followed by appropriate left bound- 

ary layer corrections and right boundary layer corrections. Then for sufficiently small 



E > O, we obtain a uniformly valid asymptotic solution, which consists of the outer 

solution and the left and right boundary layer corrections. 

To illustrate our new results, we provide an example at the end of the thesis. 
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Chapter 1 

Introduction 

In this thesis we study a dass of singdar pertubation problems. Some preliminary 

concepts and theorems are first given. 

1.1 Singular perturbation problems 

The term "perturbation problem" is generally used in mathematics when one deals 

with the following situation: There is a family of problems depending on a small 

puameter E > O, which we denote by P,. When E = O, we have the reduced problem 

Po. We want to study the relationship between the solution of P. and the solution 

of Po under appropriate assumptions. 

The perturbation problem P, may consist of an ordinary differential equation, or 

a system of differential equations, dong with some given conditions, such as initial 

or boundary conditions. Thus, problem P. can, in general, be written in the form 

( appropriate initial or boundary or 

where y and f are n-dimensional vector functions, 

int erval. 

( w 
mixed conditions 

t is a scalar variable in a given 

A pertubation problem (1.1) is cded  a regular perturbation problem if, as E + 0, 

its solution y,(t) converges to the solution yo(t)  of the reduced problem uniformlg 

with respect to the independent variable t in the entire interval. 



We can cal1 it a singular perturbation problem if y,(t) converges to yo(t) ody 

in some interval of t, but not throughout the entire i n t e d ,  thus giving lise to an 

"initial loyer" phenornenon at an initial point or "boundary layers" phenomena at 

both end-points. 

We give three examples to illustrate the situation. 

Example 1. Consider the perturbation problem 

where e > O is a s m d  parameter. 

This problem has the unique solution 

On the other hand, the reduced problem 

( Y ~ O )  = 1, t E [O, 11 

has the solution y0 ( t )  = 1. Since 

uaiformly in [0,1], we conclude that this problem is a regular perturbation problem. 

Example 2: The perturbation problem 



is a singular perturbation problem, for, as E + 0, the unique-solution 

converges to y0 = O in (O, 11, but does not converge to y0 = O uniformly in [O, 11. 

The term e-tlc is the "initial la yer" at the initial point t = 0. 

The foUowing is an example of singuiar perturbed boundary-value problem. 

Example 3: The perturbation problem 

The unique solution is 

- -- - 

Figue 1.1: The solution y ( t , ~ )  for E= 0.03 

The solution of reduced problem is 



AS E 4 0, the solution (1.4) converges, unifonnly on the interval [&1-6] (O< 

6 <1/2), to the solution (1.5) but does not converge, uniformly on the i n t d  [O,& 

to the solution (1.5). The nonuniform convergence takes place near the two endpoints, 

t = O and t = 1 [cf. Figure 1-11. We c d  these two areas the left " boundary laye? and 

the rightUboundary loyer" respectively. The left boundary layer correction is 

and the right boundary layer correction is 

Singular perturbation problems P. involving the system 

and mib ject to given initial or boundary conditions have been studied extensively by 

many authors (cf. Hoppensteadt [lO], 0 ' ~ d e ~ [ l 4 ]  and Smith[lS]). 

If the reduced system of (1.6) 

has a solution (zo(t), yo(t)) and if aU eigendues of &(t, s o i  yo, 0 )  have either a 

positive or negative real part through the entire interval, we c3il the problem P. a 

'regular singulady perturbed pmblem". If the matrix V,(t, xo(t), yo(t), 0 )  i s  singulôr 

for some t, we call the problem P, a %ngular singularly perturbed pmblem" (cf- 

0'~alle~[l4]). 
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Shi[l6] studied the following singular singuiazly perturbed boundary-value prob- 

lem with vector functions U, V,  Hl and Hz, which we will elaborate in Chapter 

In Chapter 3, we will study the following singular singularly perturbed boundary- 

value problem with scalar functions. 

The problem with 

1.2 Asymptotic series solution 

We will use the two ordering symbols O and 0 .  

Let f (E) and g ( ~ )  be two scalar functions with a small parameter E > O. If 

1 f (~)/g(~)l -t O as E + O, we mite 

f = O(!?). 

If 1 f ( E ) / ~ ( E ) [  is bounded as a + O, then we mite 

f = 0 ( d *  



In general, the exact solution for singular perturbation probiems cannot be found, 

so, our main aim is to find an approximation solution with a certain accuracy for 

a singnlar perturbation problem. We seek an asymptotic power series solution for 

singuiar perturbation problem. 

Definition. A function f (E) is said to have the asymptotic power series expansion 

if , for any integer N 2 0, 

If, we have the somewhat stronger result that 

is bounded as E + 0, then we will write this as 

Consider the function 
1 

Clearly, it has the asymptotic power series expansion as E O 

Furthemore, we can write 



A convergent power series should be an asymptotic power series, but in some 

cases, an asymptotic power series may not be a convergent power series. 

Consider the exponential integrd 

Successive integrations by parts show 

where 

for any no~egative n. 

W e  have 

I & ( x )  1 = 1 [(n + l)!zet-*t-"-2]f, + (n + 2)!x J'- et-zt-n-3 1 
S (n + l)!lxl-*-' + (n + 2)![xl  x IJz f n J d t l  

< 2(n + l)!lsl-"', x < 0. 

Let 



Since the exact solution for singular perturbation problems in general cannot be 

fond,  we try to seek an asymptotic power series solution of the form 

for a corresponding singular perturbation problem P.. However, (1.9) is not usually 

valid. The failure takes places where the solution of P, does not converge to the 

solution of Po, as e -t O. We need to make some corrections. For (1.7) or (1.8), we 

anticipate the solution to have the form 

~ ( t ,  E )  = X(t  , 6 )  + E ~ ( T ,  &) + €T(tT, €) 

y ( t ,  E )  = Y@, E )  + P(7, E )  + P(o, E )  

where 

and 

Here 

is the Ieft "stntched vuriBble" for the left "boundary Iuyer" near t = 0, and 



is the xight "stnztched variable" for the right "boundary layer" near t = 1. 

Furthmore, we require that 

W e  can use the method of matched asymptotic expansion to find asymptotic 

soiutions ( L i O ) ,  (1.11) and (1.12) for the problem (1.7) or (1.8). In Chapters 2 and 

3, we will elaborate how to use this method to find the asymptotic solution under 

appropriate conditions. 

We refer to 0'~alle~[13](~~15-17) for a bnef history and references for the 

method of matched asymptotic expansion. 

1.3 Preliminary Theorems 

Let S be a Banach space, let k be a positive number, and let Bk denote the closed 

bal1 in S of radius k centered at the origin 

We have the following theorem. (cf. Smith[l8]) 

Theorem 1.1 (Banach/Picard fixed-point theorem): Let T map the closed 

bal2 Bk of (1.15). into itseE namely Ts E Bk, for al1 s E Bk. And let T k a cont~ac- 

tion map on Bk; namely, llTsl - Ts21( 5 7 Ilsi - szll for all SI, sz E Bk, foî some 

jùed positive constant 7 < 1. Then there ezists a unique elernent s in & such that 



This theoran wilI be used to prove the existence of the solution of singuias per- 

turbation problem. 

We group together some fundamenta results which we will use in Chapters 2 and 

Consider the nonhomogeneous differentid equation 

and the boundary condition 

where A(t)  is a n x n matrix-valued function, L and R are given constant n x 

n matrices, x is a n-dimensional real vector-valued function, f ( t )  is a known n- 

dimension real vector-valued function, a is a &en constant vector of dimension 

n. 

The homogeneous part of (1.16) is 

A fundmental môtrix solution X ( t )  for (1.18) is a n x n order real nonsingular 

matrix-valued function satisfying 

Theorem 1.2: Let X ( t )  be a fundmental mutriz solution for (1.18), then the 

problem (1.16) and (1.17) hm the unique solution i f  und only if the matriz 



is norrsingular. The unique solution x ( t )  of (1.1 6) is given by 

where the Green fvnction G = G(t ,  s) is  the matriz-valued function 

X( t )  M-'LX(tl)X(s)-' for t > s 
(1.22) 

-X( t )  M-'RX(t2)X(s)-' for t 5 s 

Theorem 1.2 can be found in Smith[18] (pp3-4). 

Lemma 1.1: Let h(t, y, be a continuous n-dimensional red vector-valued 

function on [O, +ai) x lF x R" and let a E R" be a given vector. Assume thut 

for the problem 

there ezists a nonnegutive fvnction r( t)  E C2[0, +ml satrPfying 

("i) h(t,  y, y') satisfies the Nagumo condition on the domain D = { ( t ,  y)l 11 y11 5 
r ( t ) ,  t E [O, +m)); in other wortis, there ezists a positive nondecreusing and continous 

function <p on [O, +oo) such that 

and 



Then problem (1.23) has a solution y = y( t )  E C2[0, +oc+) such that 

Ilv(t)ll I r( t)  and llv'(t)ll I M ,  t E [ O ,  +ml. 

where M is a certain positive constant depending only on 9 und r. 

The proof for Lemma 1.1 can be found in Shi[l6]. 

Lemma 1.2: Let a ( t ) ,  b ( t )  and f(t) be readvalued functions. If a ( t )  satisfies 

a ( t )  2 ni, no is  a positive constant. 

for t E [O, +CO) and the pmblem 

hm a solution y = y( t )  E C2[0, +CO) for constants a,@ E R, then the solution 

y = y ( t )  is the unique solution of problem (1.24). 

Proof: It is equivalent to showing that 

has only the zero solution. Suppose the contrary. Then the problem (1.25) has a 

non-zero solution y = y( t )  E C2[0, +oo). Let w ( t )  = y( t ) * .  Then w ( t )  E C2[0, +m) 

and w(t )  is not everywhere equal to zero. 

From 

w(0) = O, w(+oo) = 0, 

we know that w( t )  has a positive maximum at some point to E (O, +cm). 

Thus 



Since w'(to) = O and y( to)  # O, we have 

However 

w1'(t0) = 2[y(to)y"(to) + y'(to)*] 

= 2y ( to )  [WY'(~*) + o(to)y (tdl 

= 2a(to)y (h)* 

> o. 
W e  reach a contradidion. Therefore, the problem (1.25) has only the zero solu- 

tion. 



Chapter 2 

A singular singularly perturbed problem 

In 1994, Shi [16] studied the following singulôr singularly perturbed boundary- 

value problem P, consisting of the differential equations 

and the boundary conditions 

where t E [O, 11, O < E 5 EO, U, V, Hl and Hz are n-dimensional real-valued fundions 

and infinitely differentiable with respect to their variables respectively. 

He made the following 4 assumptions. 

Assumption 1: The reduced problem 

0 = V ( t , x o ( t ) ,  0, O) 

x a t )  = U(t ,  x o ( t ) ,  l l o ( t ) ,  O) 

has a solution (zo(t), y o ( t ) )  E c'[O, 11 
Assumption 2: The left boundary layer problem 



has a solution go = y&) E C2[0, +m). 

The rïght boundary layer problem 

h a  a solution fo = f0(4 E C2[0, +w ). 

Assumption 3: Let 

where r, c are defined in (1.13) and (1 -14) respectively. Let Co (t ) Bo (t , T, 0) be 

positive defmite uniforrnly on the region O 5 t 5 1, O 5 T < +w, O _< o < +m; that 

is, let there exist a constant Xo > O such that 

uniformly for ( t ,  T, a) E [O, 11 x [O, +w) x [O, +a), y E P. 
d 

Furthmore, let [Co(t) &(t, r, g)]'I2 E C1 [O, 11 and - [Co(t) Bo (t , r, o) ] ' / ~  be bounded dt 
uniformly on [O, 11 x (O, eo). 

Assumption 4: Let the matrices of partial derivatives 

and 



Let problem (2.1)-(2.2) have the formal asymptotic solutions 

where 

with 

and 

Under these assumptions, Shi[l6] constmcted the outer solution (2.11) for (2.1)- 

(2.2), which can be determined by the following equations 

and 

and 



where 

E(t) = &(a,, x i ,  -, zi-1, yo, Yl? - -, yi-1) 

Qi(t) = Qi(20~ X I ,  *, xi-1, YO, YI, - 9  yi-1) 

are infinitely differentiable with respect to their vaziables respectively for i 2 1. 

By Assumption 1, 2.14 has a solution zo ( t ) ,  yo(t).  

He obtained the following lexnma. 

Lemma 2.1.1: Let Asmmptions 1 and 3 hold, then the problem (2.15)-(2.16) 

have unique solutions z i ( t ) ,  yi(t)  E COJIO, 11 for i 2 1. 

Employing the matched asymptotic method, he used the following equations 

and 

to find the left boundary layer correction, and the following equations 



to find the right boundary layer correction. Here 

are infinitely differentiable with respect to th& &ables respectively, and 

axe known values. 

Finally, he obtained the following lemma and theorem. 

Lemma 2.1.2: Let Assumptions 1-4 hold. Then the problems (2.17) and (2.19) 

have solutions 

such that 

and 
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fur themore ,  the problern (2.18) and the problem (2.20) have. unique solutions 

E+), ~ ( r )  and Zi (o ) ,  gi(o) E Coo[O, +oo ) 

such that 

and 

f o r  any integer j 2 O ,  r and o E [O, +a), and 

Theorem 2.1.1: Let Assumptions 1-4 hold, then,when N 2 O is an integer and E 

is suficiently small, the pro blem (2.1)-(2.2) hm o unique solution ~ ( t ,  E )  and y (t , 8 )  

E Cao [O,  11 satisfyng 

{ 
z(t, E )  = xN( t ,  E )  + U(EN+l), 

y(t, E )  = yN( t ,  E )  + O(fl+l)- 

whem 

{ 
N 

zN(t, E )  = C (5i(t) + Z ; _ ~ ( T )  + Z i - 1 ( 0 ) ) & ~  
i=o 
N 

yN( t ,  6) = C ( ~ i ( t )  + Y&) + G i ( 0 ) ) ~ ~  
i d  

and z - ~  (r)  = Kl(a)  = O 



Chapter 3 

A new singular singularly perturbed problem 

In this 

perturbed 

sub ject to 

where t  E 

last and somewhat long chapter, we consider a new singular singularly 

boundary-value problem P, consisting of differentid equations 

the boundary conditions 

[O, 11, O < E 5 €0. U, V,  Hl and H2 are scalar functions and infinitely 

differentiable with respect to their variables respectively. For exaxnp1es, the function 

V(t,  x, €y, E )  = t + x2 + + E is iafiaitely differentiable with respect to each of 

variables t ,  z, (ey) and E, the function Hl(z(O,~), y(O,~),e) = + y(0,~) + E 

is also infinitely differentiable with respect to each of variables x(0, E ) ,  y(0, E )  and E. 

Basicdy we employ the same approach as used by Shi[lG] and Smith[l8]. 

3.1 Assumptions 

The singular perturbation problem (3.1) and (3.2) will be studied under the fol- 

lowing four assumpt ions. 



Assumption 1: The reduced problem 

bas a solution (zo(t), yo(t)) E C1[O, 11 

Assumption 2: The left boundq layer problem 

has a solution Y. = yo(r) E C2[0, +m). 

The rîght boundary layer problem 

has a solution go = &(O) E C2[0, +m). 

Assumption 3: Define 

where T and a are defined in (1.13) and (1.14) respectively. 



Assumption 4: Let partial derivatives 

Lemma 3.1.1: Let Assumptions 1-9 hold, then in Avumption 1, the solution 

zo(t), yo(t )  E CODIO, 11 and in Asûumption 2, the solution ~ ~ ( r ) ,  fo(o) E Cm[O, +oo). 

Proof: we only show that in Assumption 1, the solution xo( t ) ,  yo(t)  E Coo[O, 11. 

The method can be applied to show that in Assumption 3, the solution y&), Fo(3 

E CODIO, +Co). 

By Assumption 1, we have 

and 

x&) E C1[O, 11. 

We can differentiate both sides of (3.11) with respect to t to obtain 



By Assumption 3 

FI ( t  , x&)) is infinit ely differentiable wit h respect to its variables. 

So 

x X t )  E: CIP, 11, 

In fact 

Fz(t, xo(t ), zo(t)) is infinitely differentiable with respect to its variables. 

Then 

x i ( t )  E C1[O, 11, 

In fact 
111 aF2 aFZ r 

xo ( t )  = - aF* 1, + -z&) + -xo( t ) -  ât du du 

where F2 = F2(t, u, v ) .  . 

We can repeat the above process for infinitely many times to condude 



is nonzero. 

From (3.13), we have 

We can use the method for showing xo(t)  E Cm[O ,1] to prove 

Finally the same method can be adopted to show 

y&), G o ( 4  Crn[O, +ml 

where yo(r) and Y0(u) are the solutions in Assumption 2. 

This completes the proof. 

We note that Co(t) = V,(t, xo(t) ,  O, O )  is bounded on the i n t e d  t E [O, 11. 

Lernma 3.1.2: Let Assumptions 1 and 2 hold, then 



are bounded on the interrid [O, +m). Furthemore in Assumption 3 

Bo(t7 r, o) and hence Co(t)Bo(t, r, a) 

are bounded for t E [O, 11, T E [O, +oc), O E [O, +a). 

Proof. We consider yo(s) in Assumption 2. Since 

SO, there exists a constant positive 6 such that 

for T 2 6. 

Since r0(r) is continuous, there exists a constant k > O such that 

on the whole interval [O, +m). 

SimiIarIy, go(o) is bounded on the interval [O, +m). 

Since 

BO@, 7 , ~ )  = XO(~) ,  YO@) + y&) + F(c. j, O) 

is a continuous function, where xo(t), yo(t), T(T) and g(a) are all bounded for t E 

[O, 11, r E [O, +m) and tr E [O, +a). 

Thus 

Bo (t , r, 0)  and hence Co (t ) Bo(t, r, c) 

are bounded for t E [0,1], r E [O,+=) and a E [O,+m). 

This completes the proof. 



3.2 The formal asymptotic solution 

W e  obtain the solution of (3.1)-(3.2) in the following fom 

where r and are defined in (1.13) and (1.14) respectively. 

Assume 

with 

and 

In other words 

and 

W e  use the method of matched asymptotic expansion to ikst h d  (xo( t ) ,  y&)), 

then  XI(^), y~(t)) ,  =d'(xi(t) ,  y i ( t ) )  for =Y i 1 2- 

Later we can see that, based on our Assumptions, (xo(t) ,  yo(t ) )  and the boundary 

conditions, we con find (zo(r), vo(r)) and (%(O), fo(c)). Generally speaking, in order 
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to h d  ( ~ ( r ) ,  F~(T)) and (j;;(u), Y'(,)) for i 2 1, we need to -find (z~(T), Y&)) and 

(Zk(,),gk(~)) [for d 0 5 k _< (i - l)] and (~r( t ) ,  yk( t ) )  [for d 0 5 k 5 il. 

3.2.1 Construction of the outer solution 

We first substitute (3.16) fomdy  into (3.1) and (3.2) to obtain 

and 

Next, we formdy obtain Taylor series expansion for the right side of (3.21) about 

E = O, that is 

From (3.21) and (3.23), we equate the coefficients of Iike powers of e to obtain 



a2 a* 
YI- ayae + z l y l m l u ( t ,  x o w i  Y&)? 0) 

and generally 

where 

Pi(t)  = P&o,X1,* -,xi-1, yoy yr,. - - 9  yi-1)- 

is infmitely difFerentiable with respect to its variables. 

With the same analysis for (3.22), we can obtain 

and generally 

is infinitely differentiable with respect to its variables. 



and specially 

Lemma 3.2.1: Let Assumptions 1 and 9 hold, then the problem (3.29) and 

(3.90) have unique solutions 

ProoE First we consider the problem (3.29), where x o ( t )  , yo(t )  i s  the solution of 

(3.28). 

By Theorem 3.1.1 

=O@), yo(t) E CODIO, 11- (3.31) 

From the second equation of (3-29), we have 



From (3.29), (3.31), (3.32) and (3.33), we caa adopt the method for proving 

Lemma 3.1.1 to prove 

.l(t)? Y&) E CWIO, l]. 

Similarly we can use the above method to prove that (3.30) has the unique solu- 

tion such that 

~ i ( t ) , y i ( t ) E C ~ [ O , 1 ]  f o r i z 2 .  (3.35) 

3.2.2 Construction of the boundary layer corrections 

We now use the method of matched asymptotic expansion to find 

First we consider the left boundary layer correction near t = O. 

Substitute 



into (3.1) and (3.2) to obtain 

and 

and 

W e  fist handle (3.37). We try to obtain Taylor series expansions for the left pait 

of (3.37) about E = O, that is 

V(ET, X(ET, E )  + EX(T, E ) ,  EY (ET, E )  + CF(?; E ) ,  E )  - V(ET, X(ET, E ) ,  EY(ET, E ) ,  E )  



and 

W e  equate the like powers of E between the two sides of (3.37) to obtain 

and generally 

where 

is infinitely dïfferentiable with respect to its variables. For example 

Applying the same method for (3.36) to obtain 



where 

is intinitely differentiable with respect to its variables. 

Now, it is time for us to consider one boundary condition 

W e  have 

Hl (X(0, E )  + €(O, E), Y(0, E )  + Y(0, E ) )  = O (3.43) 

Next, we try to obtain Taylor series expansion for the Bght side of (3.43) about 

e = O, that is 

1 -  d 
= Hl ( X O  ( O ) ,  yo(0) + Y,@), O) + x[(X(O, 4 + 4 - 5 0  (0)) -+ 

2- k l  BP 

W e  have 



and 

Substitute (3.45) and (3.46) into (3.44) and equate the coefficients of like powers 

of E to obtain 

has a known value. 

W e  combine the above results to obtain 

and 

Substitute 



into (3.1) and (3.2) and use the same method to deal with the ri& boundary layer 

correction near t = 1 to obtain 

and 

axe infinitely differentiable with respect to their Milables respectively. Furthmore 

has a known value. 

From the properties of the boundary layer corrections, it is natural to require 

and 



for aU H 2 0. 

We have the following r d t s  for the problems (3.48) and (3.50) 

Theorem 3.2.1: Let Assumptions 1-4 hold, then the problems (3.48) and (3.50) 

have solutions 

~ 0 ( 7 ) ,  y&) =d Z O ( ~ ) ,  Y,(,) E CO=[O,+m) 

such that 

and 

Proof: We first consider the problem (3.48). After we rewrite the (3.48) and add 

another condition &(+CO) = O, we have 

In fact, (3.54) is (3.4) of Assumption 2 and has solution ~, ( r ) .  Substitute it back 

into (3.48) to obtain 



It is easy to show 

ZO(T) E Cm[O, +w). 

We differentiate both sides of ODE in (3.54) to obtain 

where 

Define 

W e  have 

- 
Bo(.) = lim Bo(& r, o). 

0-00 

Clearly, (3.55) has a solution 

We will use Lemma 1.1 in Chapter 1 to show that this is the unique solution su& 

that 

where Xo is defined in Assumption 3. 

Let r(r)  = (Iz(0) 1 + 1)e-br7 we check that r ( ~ )  satisfies the conditions (i)-(iii) in 

Lemma (1.1). Since here n = 1, so Ilrll = Ir[. 



It is clear that condition (i) holds. 

For condition (ii), whenever r(r)  = ~ z ( T )  1, we have 

Since 

Thus 

Define 

where 

So, r ( ~ )  satisfies the condition (ii). 

As to the final condition (iii), by Lemma 3.1.2 

for a certain constant b. 

On the domain 



we have 

It is easy to verify that this p(s) satisfies the Nagumo condition, thus condition 

(iii) still holds. 

By Lemma 1.1 and 1.2, (3.55) has the unique solution 

~ ( 7 )  € C2[0, +cm) and I z ( T ) ~  5 r(r) .  

Based on the above results, fiom 2nd equation of (3.48), we obtain 



and 

both sides 

obtain, as required, that 

2 ODE'S in (3.48) for infmitely many times, we 

and 

The problem (3.50) can be handled similady. This completes the proof. 

Based on the above results, with routine caldation, we have 

for a certain constant pi E (O, 1) and any integer j 2 O. 

Theorem 3.2.2: Let al1 assumptions 1-4 hold, then, for i 2 1, the problems(9.49) 

and (9.51) have unique solutions 

such that 

and 



for any integer j 2 O, pi E (O, 1) and 

Proof: We first consider the problem (3.49). Let i = 1, fiom (3.49), we have 

where 

From (3.57), we have 

f (.) = O(~-('-")AOT 1 9 

for a certain constant kl. 

Let 



X +z [eh' 1- 11f (s) + e-hr 

Now we check that r(r )  satisfies the conditions (i)-(iii) in Lemma 1.1. Here 

It is clear that condition (i) holds. 

We consider condition (ii) , here 

W e  have 

and 



From the above inequalities, we obtain 

4 7 )  < 0, 

Thus, the condition (ii) holds. 

It is easy to verify that the condition (iii) still holds here. 

By Lemma 1.1 and 1.2, the problem (3.59) has the unique solution yl (7)  such 

that 

Thus, we find the unique solution Z~ (7)  such that 

We conclude 

- ~ ( ~ - ( l - m ) h \ o ' ) ,  y; (,) = O(~-('-M)XOT z1(r) - 1 - 



It is easy to obtain 

for any integer j 2 O. 

By the same method, we obtain that, for i = 2, the problem (3.49) has the unique 

solution 2&), y&) such that 

for any j 2 0, in particular 

O < p l  <pz < 1. 

By induction, we know that for any i 2 1, the problem (3.49) has the unique 

solution z~(T), yi (r  ) such that 

( z::; ) = o ( ~ - ( ~ - P ~ ~ ~ o ~  1, E [O, +=) 

for any j 2 0, in particular 

The above method can be applied to deal with problem (3.51) knalogously. 

This completes the proof. 

Theorem 3.5: Let 
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when N 2 O and z&) = 2̂ &) = O. Then, then ezists a constant b(N) > O such 

that 

where 

Proof: First we consider the case when t is firr away from 1, then 

where c E [O,+oo), N - 1 2  i 2 0, j 2 0. 

Thus 

W e  consider 

xN(t, E)' - u(~,x~(~,E),Y~(~,E)?&) 

where 



= O(EN+'). 

where 6 E [O, 11, Pi's are dehed in (3.25). 

Thus 

xN(t, E)' - u(t,xN, yN, E )  = o(E~+ ' ) .  

On the other hand, we can prove 

where 

Add (3.62) to (3.63) to obtain 

If t is near 1,- we can use the same method to obtain (3.64). 

Thus 

lxN& - U(t ,  Y*, 41 I &(N)P 

for all t E [O, 11, 61 ( N )  is a positive constant. 



The above method can a h  be applied to obtain the second inequality 

for ail t E [O, 11, &(N) is a positive constant. 

Let 

b(N)  = m 4 Q ( N ) ,  &(N)). 

We have 

I& - W t ,  xN,  yN, E )  I 5 6 ( N ) k ,  

[ E ~ &  - V ( t ,  x N ,  &yN, E )  1 5 ~ ( N ) E  N+I 

This completes the proof. 

W e  can use the same method to obtain the following results 

where zN(t, E ) ,  yN(t, E )  are defined in (3.60), p(N) is a constant. 

3.3 The Main Theorem 

Theorem 3.3.1: Let Assumptions 1-4 hold, then, when N 2 O is an integer and E 

is su.ciently small, the problem (3.1)-(9.2) has o unique solution x ( t ,  E )  and y(t, E )  

E C O o  [O, 11 satisfyng 

where (zN(t,  E ) ,  yN(t, e))  is de f i ed  in (9.60). 

The proof of this theorem involves steps (A)-(E). 



Step A: 

Let 

On the other hand 



Combine the above results to yield 

where 

w, #(t, €1, yN( t ,  4,4 ) - ('"'."' ) = (0'"' ) (a::::: ) = ( v(t, zN(t, E ) ,  E Y ~ ( ~ ,  &),el E ~ Y  (t, E)) o ( ~ + ~ )  

The same linearization method can be applied to handle the boundary conditions 

to obtain 

where 



and 

(3.74) 

From (3.69) 

Thus, it is easy to conclude 

where IEiI is a positive constant, and nom I I  Illis defined by 



The same method can be used ta obtain 

and 

where I& 1 is a positive constant, and 

Combine the above results to obtain 

The same analysis can be applied to handle functions Fi and F2 to yield 

and 



u = z ,  v - & W .  

W e  can transform (3.67) and (3.71) into the following 
I 

where 



Rewrite (3.75)-(3.78) to obtain the following 

and 

where 

Step B: 

Next, we consider the homogeneous part of (3.79) 
b 

Rewrite (3.85) into the following 

&(:)- = [(a n ) +&z] (1) 



where Bo = B&, r, a), Co = C o ( t ) ,  Do = Do@) and 

is bounded. 

We will transform (3.86) into the diagonalized form. 

Now, we try to h d  a nonsingular matnx such that 

where XI and X2 me the eigenvaules of matrïx 

In fact 

asd 

By Assumption 3 

Co& 1 

Thus, XI and X2 are nonzero for t E [O, 1],0 < E < &o. Since XI and X2 are the 

continuous functions with respect to t E [O, 11, O < E 5 €0, they are bounded, Say, 

and 



where ml, rnz, mj and rnd are constants. 

The eigenvector for the eigenvalue XI is 

The eigenvector for the eigendue X2 is 

with 

Clearly, B, P l  and P' are bounded. 

Let 

From (3.86), we have 



where Ali, Ai2, A21 and axe bounded. Since p-'(ZP - P') is bounded, when E 

is sufliciently small, fiom (3.89) and @.go), we conchde 

Now, we adopt a Riccati transformation 

( e )  



where 

with 

Thus, (3.96) takes (3.95) into the following 

where S, T are the solutions of the problems 

and 

Lemma 3.3.1 Let Assumptions 1-3 hold, then for al1 suficiently small E > 0, 

the problem (9.100) and (3.101) have unique solutions T( t ,  E ) ,  S(t, E )  such that 

T( t ,  E )  = O(€), S(t, E )  = 0(1), t E [O, 11. 

ProoE First we consider (3.100), we can rewrite (3.100) as 



Define the integral operator I(T) equal to the right side -of (3.102), fiom (3.93) 

and (3.94), we have 

Thus, 8 is a closed ball in the B a n d  space B = {T(t, E )  IT(t, E )  E C[0,1]). 

and 

where T, Ti, Tz E B 
From the above results, we use Theorem (1.1) to show (3.102) has the unique 

solution T(t ,  E )  E B, obviously this solution T ( t ,  E )  = O(E). Put this solution T(t ,  E )  



This completes the proof. 

Step C: 

W e  can fmd the fundamental solution matrix $(t, e) for (3.99) 

Thus, (3.85) has the fundamental solution matrix $(t, E )  

Clearly, when E is sufliciently smd,  we have 

where 

Let 

M(E)  = &(O, e)  + @&(I,E).  



Lemma 3.3.2: For dl sufiicntly small E > O, M ( E )  is- inoertible and M-'(E) 

satisfies 

Proof: From (3.104), we have 

From (3.82), we have 



where 82  E [O, 11, fa(!) = 0(e-4 / r ) .  By Assumption 4, when E is enough small 

where Ci # O. 

where C2 f O. 

So, M ( E )  is invertible such that 

This completes the proof. 

Step D: 



By Theorem 1.2, (3.79) can be rewriten as 

where 

and 

and 



Add the above results to obtain 

b1 G(t, 

where 

Z(U, V ,  E )  = H(u,v,E) - 2t2(o, u, v ,  E )  - &(17 u, v ,  E ) ,  

Step E: 

W e  provide the final proof for Theorem 3.3.1. 

Dehe  the nonn 

(1) = I I u I I ~  + Ilvlli , for E > O, and u,v E C[O, 11. 



where O 5 s t 5 1, cl is a constant. 

Since 



On the other hand 
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Using the same method, we wnclude for al l  sufnciently s m d  E > O, there exists 

positive constants Il& 11 and 11 E 11 such that 

and 

Let 

with n o m  (3.112). 

Thus, B is a Banach space. 

Let 



Define an integral operator 

where [(I)] is the righi side of the (3.108). 

From the above inequalities for el, lz and g, we conclude that when 

N 2 2, O < E < min{l, l/(4g + f)) ,  

we have 

TL 11 

so, Î maps B into B. 
Siace 

2 

- < ( 4 4 ~  IIHII + Ilel Il + Ile2ll) k-' 
-l 

O 
(u) 



- 
thus, Î is contrative on 6, for all E B , i = 1 , 2  

By Bana,ch/Picard fmed-point theorem (Theorem 1.1), there exists a unique so- 

for al1 sufficiently small E > O, thus the problems (3.108) has the unique solution 

On the other hand 



The r e d t  for N = O or 1 follows fiom 

cleasly 

W e  remark that in order to avoid confusion, we denote ( x N ,  f l )  for N = 0, 1 

and 2 by 

(do], y m), (&], and (x[*l, y[2]) 

respect ively. 

This completes the proof. 

3.4 Application 

Consider the singular perturbation problem P, consisting of 



This problem is of the form (3.1)-(3.2) with 

and 

The reduced problem is given by 

It has two solutions 

and 
x&) = -(t + 1)2 
yo(t) = -2(t + 1) 

24) does not satisfy Assumption 3, we choose ( 

For Assumption 2, we have 

and 



The solutions for (3.125) and (3.126) are 

and 

go(u) = -3e- 

respect ive1 y. 

For Assumption 3, we have 

Co(t)Bo(t,r,u) 12, 4 ( 0 )  = O, Do(1) = 1 3 O. 

For Assumption 4, we have 

and 

Since four Assumptions hold in this example, the problem has the solution such 

that 
x = (t + 1)2 +O(€) 

33 (1-t) 
(3.129) 

y = 2(t + 1) - 2ëfiS - s e - w  . + O(E) 

uniformly for t E [O, 11 and all sficiently s m d  E > 0. 

The above r e d t  for (3.120) and (3.121) cannot be deduced fiom [Il-[21]. 



3.5 Conclusion 

In this thesis, we study a new class of scalar singular singularly perturbed problems 

under appropnate assumptions aad obtain some new resdts. Compared to Shi[l6], 

our result has the improvement and also the restriction. The improvement is that 

we can change V(t ,  s, eay, E )  in Shi's case to V(t,  x ,  €y, E )  in our case, which extends 

Shi's problem for scalar case. The restriction is that we can only handle the problem 

with scalar functions and the problem with vector functions still remains open, which 

we would continue to investigate. 
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