Outline
1. INTRODUCTION

1. The Jade Environment and Jipc

2. Virtual Time and Time Warp

3. A Time Warp Implementation on Jade - Tipc
4. Time Warp Applications

2. INTER-PROCESS COMMUNICATION PROTOCOLS AND SEMANTICS

1. The Tipc and Jipc Protocols
2. Tipc Semantics
3. Limitations of the Implementation

3. SYSTEM ARCHITECTURE

1. The System Structure on a Single Node
The T_kernel Level
The Save_Restore Level

2. The System Structure Across Multiple Nodes
3. The Tipc Inter-Process Communication Sequence

4. SYSTEM IMPLEMENTATION

1. T_kernel Data Structures
The Tipc Process Id
The Format of a Tipc Message
The Process Control Block and the Ready Queue
The States of a Process
The Input Queue
The Output Queue
The Process Data

2. The Local Control Process
The Types of Tjipc Messages
The Types of Local Control Messages
The GVT Message

3. Process Scheduling in the T_kernel

4. The Rollback Mechanism
Types of Rollback
The Detection of Rollback
Rollback Procedures
Batch Cancellation

. Provision for Irrevocable Operations
The Calculation of Global Virtual Time
Error Handling

Memory Management and Flow Control
State Saving and Restoration

5. DEBUGGING AND EXPERIMENTATION

woJonn

1. The Readers and Writers Problem
2. Conway's Game of Life

6. CONCLUSION

Acknowledgements
References

Figures

Figure 1. A Jipc Message Interaction.

Figure 2. Tipc System Levels On A Single Site.

Figure 3. The Distributed Structure Of Tipc.

Figure 4. Interactions Between Tipc Processes.

Figure 5. The Tipc Header Message Format.

Figure 6. The Process Control Block Format And Ready Queue Structure.
Figure 7. The Input Message Queue.

Figure 8. The Output Message Queue.

Figure 9. An Example Of An Anti-In-Message.

Figure 10. The Tipc Process State Transition.

Figure 11. An Example Of The Problem With Lazy Cancellation.
Figure The Use of Save/Restore.
Figure 13. The Minimum Interval Of State Saving.

oy
N

1 INTRODUCTION

Emerging multi-computer architectures that incorporate hundreds to hundreds of thousands of
independently operating computers offer massive increases in computing power. Exploiting these new
machines, however, involves writing programs that can be executed as a large number of interacting,
asynchronous processes. Currently, this is possible only for very narrowly defined problems. The
application of multi-processors to more general problems awaits new approaches to the synchronization of
very large numbers of executing program components, or cooperating processes.

One new approach that appears to have great promise is Virtual Time, an optimistic
synchronization scheme described by David Jefferson and Henry Sowrizal [Jefferson82] and [Jefferson85].
This document presents our own version of Virtual Time, implemented in the Jade distributed
programming environment [Jade85].

Virtual Time imposes on conventional inter-process communication a temporal coordinate system,
supplied by user processes, as the basic means of synchronization. Jefferson’s paper proposes the Time
Warp mechanism for realizing Virtual Time; it offers a new method for achieving high concurrency, free of
deadlock and starvation, that suggests a re-thinking of synchronization in distributed systems.

The architecture of our Virtual Time system, called Tipc, consists of several levels. This paper is
mainly concerned with the function, design, and implementation of the kernel level, although some issues
in the design of an outer level are also presented. A key goal of our design is to provide a multi-lingual
implementation of Virtual Time. The same kernel will be used for different programming languages;
language specific issues are handled in the aforementioned outer level. An outline of these system levels,
including the Jade level, is given in the rest of this chapter. Chapter Two addresses the issues of inter-
process communication protocols and semantics, Chapter Three presents the overall structure and design
rationale of our implementation, and Chapter Four describes the implementation in detail. Chapter Five
deals with debugging and experimentation, and Chapter Six presents our conclusions.

1.1 The Jade Environment and Jipe

Jade provides an integrated set of tools which support the development of distributed systems. The
Jade environment can be described in terms of four functional levels: a hardware level, a kernel level, a

programming level, and a prototyping level. The facilities available at each level include those provided at
lower levels.

The hardware level consists of a heterogeneous network of computers and network links. Vaxes and
Suns running Unix 4.2BSD, connected by 10 Mbs Pronet and Ethernet, provide the host resources. The
Jade workstations connect to the hosts via a 1 Mbs Omninet. There is no local disk storage for
workstations, so booting and downloading are done from the hosts.

The Jade kernel level consists of Jipe, the Jade Inter-Process Communication facility. Jipe is a
synchronous message-passing protocol supported among processes residing on any of the Vaxes or
workstations. Jipc is based on the Thoth [Cheriton79] communications protocol which includes blocking
"send”, “receive”, “receive_any”, and non-blocking "forward” and reply” primitives. Some of the
differences between Jipc and Thoth are a result of the requirements for the Unix version, for example, the
support of Unix processes which can enter and leave a Jipc system. Although Thoth supports shared

memory for a "team” of processes, Jipc processes cannot share memory: all interaction among processes
must be done by passing messages.

A Jipc message contains a sequence of typed data elements. The types supported include: integer,
real, character, string, atom, byte-block, and process id. The basic communication sequence is illustrated
in Figure 1. Two message transfers are involved in this interaction, one for the send and one for the
reply. Interfaces to Jipc are available for five programming languages: Ada, C, Lisp, Prolog, and Simula.
The Tipc system is implemented in the C interface to Jipc on the workstations and the hosts. Later, Tipe
interfaces could be built for other languages.

Process 1 Process 2
fill in message buffer call receive
BLOCKED
call send —1—= UNBLOCKED
BLOCKED get data from buffer

put reply in buffer

UNBLOCKED “———————— call reply
get reply from buffer

Figure 1. A Jipc Message Interaction.

The tools provided at the programming level include a hierarchical, recursive 2 1/2 dimensional
graphics package, a cross compiler for the Jade workstation, downloading facilities, and a window system
that has a program interface. A monitoring system is used to observe the interactions among Jipc
processes; there are tools for textual traces, graphical animation of inter-process events, and control of
execution order [Joyce86].

The prototyping level supports the modelling and simulation of target distributed systems, including
the target embedded computer system. Execution of the distributed programs under development by the
modelled target system can be simulated, including the portions of the system that are external to the
embedded computer system. Performance information can be collected, displayed, and manipulated
interactively. Prototyping in Jade has been described in [Lomow & Unger 85].

1.2 Virtual Time and Time Warp

Proposals have been made to coordinate distributed systems by defining a system of clocks, logical
or physical, and labelling the events in a distributed system with timestamps, i.e., values from these
clocks [Lamport 78]. Then the events in the distributed system must occur in increasing time order, i.e., a
process cannot proceed to its next event until it knows that no other event with an earlier timestamp can
occur. This often leads to complicated algorithms for synchronization, large amounts of communication,
and less concurrency because processes must wait until they have at least one message from each potential
sender process. These methods have been called ”conservative” synchronization schemes. The work of
Peacock, Wong, and Manning [Peacock79] and Chandy and Misra [Chandy81] are representative of this
approach.

Virtual Time is a scheme that executes processes in coordination with an imaginary global virtual
clock that ticks virtual time. Virtual Time provides a temporal coordinate system used to measure
computational progress and define synchronization. A virtual clock is similar to Lamport’s clock system
[Lamport78] in that every event is labelled with a clock value from a totally ordered set (the virtual time
scale). The difference is that there is an underlying mechanism which makes all the events appear to occur
in increasing time order despite the fact that, in real time, some event with a later timestamp may occur
before one with an earlier timestamp. From the program’s point of view, however, events will occur in the
correct, order.

One mechanism for Virtual Time is called Time Warp, which relies upon process lookahead and
rollback as the fundamental way to force events to be processed in non-decreasing virtual time order. In
such a system each process is constantly gambling that no event will occur with an earlier time stamp
than that of its next event. If the process loses that gamble, it will be forced to roll back to deal with the
late event, otherwise it proceeds ahead without waiting. This ”optimistic” synchronization scheme
provides greater potential concurrency while maintaining an appropriate ordering of events.

In Time Warp, each process maintains its own virtual time, known as the Local Virtual Time
(LVT). As the system executes, process states are saved; when a process loses its gamble and is forced to
roll back, a previous state is restored and all intermediate actions affecting other processes are undone by
the use of anti-messages. The Global Virtual Time (GVT) measures the progress of the system. It
represents the minimum of the times of all processes and events in the system, and so may be taken as a
steadily advancing "floor” on the computation. No process can roll back previous to GVT; therefore,
space taken up by copies of obsolete states can be incrementally reclaimed.

1.3 A Time Warp Implementation on Jade - Tipe
This document describes a new, potentially multi-lingual, implementation of Time Warp that is
built on the Jipc {Jade85] synchronous protocol. Tipc is a version of Time Warp that provides essentially
all of the Jipc primitives, plus additional primitives for manipulating virtual time. Tipc is implemented in
two levels, a kernel level, called the T_kernel, and a Save_Restore level, that supports the saving and
restoration of process states in different programming languages and for different computing hardware.
The T_kernel level provides the following:

1. Facilities for process management, i.e., to create, kill, start, and terminate processes.

2. Facilities for processes to communicate via primitives for sending, receiving, and replying to

messages. Facilities are also provided for manipulating messages.
3. Facilities for processes to supply and to interrogate the values of their virtual clocks.

4. The computation of GVT, which is defined as the lower bound of all virtual times shown by all
virtual clocks.

5. Information about each process, including process state information and queues of input and
output messages.

6. Part of the process rollback mechanism, including primitives for processes that cannot be rolled
back. The rollback mechanism is divided between the T_kernel and Save_Restore levels.

7. Mechanisms for process scheduling, error handling, memory management and flow control.

The T_kernel level provides a Jipc-like inter-process communication protocol, called Tjipc, in which
all messages are implicitly labelled with a virtual time. Tjipc also supplies primitives for specifying or
interrogating virtual time.

The major functions of the Save_Restore level are to:

1. Provide user process state saving and restoration, the difficult part of rollback. User process
states are saved at certain points and restored when rollback is required. (These functions will be
different for different machines and languages.)

2. Hide the Time Warp mechanism from user processes, so that they are not aware that execution
may have been repeatedly rolled back and brought forward.

3. Provide services for handling irrevocable events, e.g., input/output to a device such as a CRT
screen or a printer.

Splitting Tipc into the T_kernel and Save_Restore levels was one of the major decisions made. To
save user process state efficiently is a difficult job, dependent on the machine and operating system on
which Tipc is running as well as the language in which Tipc processes are written. Since Jade is a
heterogeneous and multi-lingual environment, we have a Time Warp system with a T_kernel implemented
in C for all machines in the Jade environment. On top of the T kernel, there is the Save_Restore layer
which takes care of user process state saving and restoration (which may be implemented in different
languages, thus handling state saving in different ways). The disadvantage of this scheme is that the
rollback mechanism has to be split between the T_kernel and the Save_Restore layers, making the
implementation more difficult.

1.4 Time Warp Applications

The problem of how to generate virtual times is equivalent to the problem of how to coordinate a
distributed system: it varies with the requirements of synchronization. In a Time Warp system, virtual
time is the resource used to coordinate processes and define synchronization. However, Tipc only
guarantees that events will occur, or at least appear to occur, in virtual time order - it does not care

where and how the virtual times are generated. It is up to the programmers of Tipc systems to specify
and supply the virtual times. Therefore, systems of virtual clocks must be built on top of Tipc. These
clocks can be specified by the programmer or provided in a package. The virtual clock could be a real
time clock or derived from it, or a logical clock which ticks in accordance with some logical steps.

Higher level primitives such as procedure calls can be added to languages supporting concurrent
processes by using Tipc. The system of virtual clocks may be built into these higher levels or it may be

left for the user program to construct and assign clock values values to processes through primitives at the
language level.

2 INTER-PROCESS COMMUNICATION PROTOCOLS AND SEMANTICS

The goal of Tipc is to provide an inter-process message passing facility that implements Virtual
Time. The Jade inter-process message passing facility, Jipe, represents a synchronous communication
protocol capable of supporting Time Warp semantics. Each Tipc primitive maps semantically to a Jipc
primitive, with the difference that Time Warp semantics are also transparently provided in the Tipc
primitive. Tipc also includes some primitives for manipulating and interrogating virtual time.

2.1 The Tipe and Jipce Protocols

Tipe provides a uniform communication protocol that resembles the Jipc protocol. The primary
difference between the two is that Tipc also encorporates the idea of virtual time, thus it provides
primitives, and extra arguments to primitives, for manipulating virtual time. It thus becomes possible to
run user programs on either Jipc or Tipc, almost without change to the programs. This can be useful, for
example, to debug distributed systems using rollback.

A detailed description of the Jipc protocol is given in [Jade85]. In addition to the standard Jipe
primitives, Tipc includes:

1. An additional argument for process creation. This argument is used by the caller (the child
process’s father) to specify the virtual time interval between the time the creation primitive is
called and the time the child process starts to exist.

2. A primitive for advancing a process’s virtual time. Once a process initializes, its virtual time can
advance only by it either calling this primitive or by receiving a message with a virtual send
time greater than its virtual time when the receive primitive was called.

3. A primitive that enables a process to read its current virtual time. This primitive can be used to
support simulation or other applications.

4. A primitive for handling irrevocable actions, such as printing characters on a CRT screen. This
type of action cannot be rolled back and therefore, must be suspended temporarily until global
virtual time advances through the time the action is supposed to take place. The caller of this
primitive will be blocked until global virtual time advances past the virtual time of the call.

5. An asynchronous send primitive. Jipc is a synchronous (blocking) communication protocol which
was primarily designed for reliable inter-process communication. The distinguishing feature of
Tipe is its reliance on process lookahead and rollback as the fundamental synchronization
mechanism, thus it is no longer necessary to use process blocking for synchronization. More
important is that a blocking send will reduce concurrency (high concurrency is one of the major
design goals of a Virtual Time system). A blocking send always leads to the waiting of a process.

6. A primitive for remote process creation. This was added to handle the situation in which many
processes execute the same code on a single workstation. When the first process is created, the
code will be downloaded from the host machine and any subsequent processes executing the same
program will share that code. It would be impractical to download the same code each time a
process is created because downloading is expensive. This primitive is only valid for Jade
workstations.

7. A primitive for a process to terminate or exit. When a process has completed its actions, it must
call this primitive to terminate itself. This is due to the fact that Tipc schedules user processes
on a voluntary basis; there is no way to stop a process unless it relinquishes control to the kernel.

2.2 Tipc Semantics

The Tipe protocol is basically equivalent to Jipe with Virtual Time incorporated. Both the semantics
of Jipc and the semantics of Virtual Time are observed. For example, the nonblocking search primitive in
Jipe returns the process identification if there is a process, at the time (real time) the call is made, with
the same name as the argument, otherwise it returns a null process identification. The analogous primitive
in Tipe returns an identification if there is a process which has the given name and started at a virtual
time less than or equal to the virtual time at the moment the call is made, and which is still alive at the
virtual time the call is made, even though the process might start to exist in real time after the real call
time.

As defined in [Jefferson85], the semantics of virtual time are simple. If an event A has a virtual time
less than that of event B, then the execution of A and B must be scheduled so that A appears to be
completed before B starts. This semantic rule is satisfied if the following conditions are observed.

1. If event A comes before event B in a process, then event A has a virtual time less than that of
event B. If the events are the receipt of messages, then all messages directed to a process are
processed in non-decreasing virtual receive time order and all messages sent out by a process are
sent in non-decreasing virtual time order.

2. The virtual send time of a message is less than or equal to its virtual receive time.

3. All messages received by a process through any non-selective receive primitives (e.g.,
receive_any) are processed in nondecreasing send time order.

4. In a process all messages coming from another process are processed in nondecreasing send time
order, no matter through what receive primitives the messages are received.

5. If the event is process creation, then the virtual time at which the child process comes to exist is
greater than or equal to the virtual time of that event.

6. If one process successfully searches for another, the virtual time at the completion of the search
is greater than or equal to the virtual time at which the process being searched for starts to exist.

Messages passed between processes are stamped with their send time, the virtual time at the
moment the message is sent. The virtual receive time of a message is the virtual time when the message Is
actually received by the recetver process. Generally, in a real system it is impossible to specify the virtual
time when a message must be received, so the virtual receive time of a message is decided on the receiving
end of the communication; it equals the maximum of the virtual send time and the receiver’s virtual time
at the moment the message is received. This principle is derived from conditions one and two, and it can
be generalized. Any ”waiting” event in terms of virtual time will result in the increase of the waiting
process’s virtual time. The waiting process’s virtual time at the conclusion of the event will be the virtual
time of that event.

Condition one speaks of the "happened before” relation of events in one process. Condition two is
about the order of two closely related events: the send and the receive of a message in two processes
involved in communication. Similar to condition two, conditions four and five are about the order of two
events, one which is the cause and another the consequence. Conditions three and four specify the order
of events (the receipt of messages) in one process which are the consequences of events happening in other
processes.

Since the receive time of a message is derived from conditions one and two, conditions three and
four are necessary for satisfying the semantics of virtual time. For example, suppose process A calls
"receive any” at virtual time 90, and a message with send time 100 arrives first and is received by A.
According to conditions one and two the message is received at time 100. Then A calls "receive any”
again and a message with send time 95 arrives, so it would be received at time 100. Conditions one and
two still hold, but the receive order is wrong in terms of virtual time. With condition three, the message
with send time 95 would be processed first and the semantics of virtual time satisfied. Without condition
four, messages sent by one process and directed to another process could be received not in nondecreasing
send time order if the send order is not preserved by the network on the receive end. Again this would
conflict with the semantics of virtual time.

Another example shows that the messages directed to a process are not necessarily received in
nondecreasing virtual send time order: suppose process A calls ”receive from process B” at time 90 and
receives a message with send time 100 from process B, thus increasing the virtual time of process A to
100. Meanwhile process C sends a message at time 95; this message will not be received until process A
calls "receive from C” or ”receive any” afterwards. In this example, in our implementation, the message
with earlier send time is received later because the receiver desired to receive a specific message first.

2.3 Limitations of the Implementation

Certain limitations are present in Tipc that result from the requirement to only use Jipc for
communication between processes. These include the lack of a facility to interrupt a running Tipc process,
and potential deadlock due to the use of Jipc’s blocking send and receive calls.

Other difficulties result from splitting the rollback mechanism between the T kernel and
Save_Restore levels. Maintaining consistency between the two levels makes the connection between levels
complicated, because some feedback is required from the Save_Restore level to the T kernel level.

3 SYSTEM ARCHITECTURE

Tipe is implemented in two levels, the T kernel, which resides on each machine, or node, and the
Save_Restore level. The T_kernel comprises several system processes and a subroutine package. The
Save_Restore level provides access to state saving and restoration routines. The routines in the Tipe
subroutine package are a combination of their Tjipc counterparts and the state saving and restoration
procedures.

Tipc can be executed on any number of nodes provided that each node supports Jipc and the
T_kernel. The T_kernel will connect these nodes into a logical ring that is used in the computation of

GVT. An overview of the Tipc architecture, along with the rationale for the major design decisions is
presented in this chapter.

3.1 The System Structure on a Single Node

A Tipc system consists of several levels, i.e., User, Tipc, and Jipc, as shown in Figure 2. In the
figure, the bold box represents a process, the directed lines indicate an invocation, and the directed double
lines show the directions in which Jipc messages are sent.

The T_kernel Level

The T _kernel level consists of a Local Control Process (LCP), a package of routines providing
T_kernel primitives (Tjipc), and the Creator, a system process responsible for process creation. There is
one LCP process and one Creator process per machine. The user process interacts with the LCP by calling
routines in the Tjipc subroutine package.

One of the main functions of the LCP is to provide input message buffering for all user processes on
its machine. There are two reasons for this. First, and most important, is that it is a common situation
for a user process that some messages ”in the future” arrive because their senders have proceeded ahead in
time, while some messages arrive “from the past” because their senders have lagged. Only an
intermediate process can provide the buffering for future messages and keep the historica) record for past
messages. If a message from the past does arrive, some processed messages have to be *unreceived” and
the process has to roll back to a point in time previous to the time of the message from the past. All
messages with virtual send time equal to or greater than GVT are kept in an input queue maintained by
the LCP. Second, since Tipc has an asynchronous (nonblocking) send, an intermediate process is
necessary to provide message buffering.

Another function of the LCP is to maintain information on processes and to schedule processes. In
any scheme, a kernel process is needed. In this design, a single LCP is adopted instead of one buffering
process for each user process plus another kernel process. Demanding large amounts of space is one of the
problems with Time Warp systems. The scheme of multiple buffering processes would make the space

problem even worse and would unnecessarily increase system overhead on process swapping and
communication.

USER LEVELS

USER PROCESSES

/

PACKAGE OF Tipc PRIMITIVES

1/0

Save_Restore I/0
—
Level SERVERS [™
STATE SAVING AND
[RESTORATION PROCEDURE%
=
B
i)
PACKAGE OF Tjipc PRIMITIVES K |
T_kernel
Level {}
Local Control Process <
(LCP) Creator Process
Y
Jade Level Jipe

Figure 2. Tipc System Levels On A Single Site.

-10 -

It is necessary to save all the output messages (those sent by a process) with virtual send time equal
to or greater than global virtual time in an output queue for each user process because the user process
may roll back and some messages sent previously may have to be cancelled by sending anti-messages. The
output queues are maintained by the Tjipc package, i.e., in the user processes themselves, so that each
user process handles its own Output Queue. We admit that it is more desirable to keep both input and
output queues in the LCP for easy access. Unfortunately, this is impossible. If the output queues were
maintained in the LCP, the LCP would need to send messages on behalf of user processes. But the LCP is
not able to send messages to other processes which may also send to it (e.g., other LCPs), otherwise the
LCPs would fall into deadlock. Also, extra message passing would be involved.

All the T_kernel primitives are implemented in the Tjipc subroutine package, providing a
timestamped communication facility between Tipc processes. Within all Tjipc routines, except one for
getting the LVT, eventually a Jipc message of some type, called the local control message (LCM), is sent
to the LCP to notify it of the event, e.g., sending a message or presenting a request to receive a message.
The calling process will then be blocked until it gets the Jipc reply message from the LCP. In the

meantime, any other process may resume execution, depending on the scheduling strategy adopted by the
LCP.

The Creator is a TW system server process which accepts requests from the LCP to create user
processes. Any process creation request from a user process becomes a message directed to the Creator so
that process creation is treated as a message event, which is beneficial to a consistent rollback mechanism.
As well, it puts the burden of process creation on a dedicated process, freeing the T_kernel from that time
consuming task.

The Save_Restore Level

The main function of this level is to implement user state saving and restoration. It also provides
higher level services for irrevocable actions such as I/O operations. Two procedures are available:

1. The state saving procedure is called whenever user state needs to be saved. By the user state we
mean all the data area of a user process including the program counter, the stack area, the stack
pointer, the values of registers, global variables, and all dynamically allocated memory.

2. The check and restoration procedure is called after most Tjipc primitives to check if rollback is
required. This is done by getting the newest virtual time of the caller and comparing it with the
last virtual time, which has been kept by Tipc. If a rollback request is pending (i.e., new_LVT <
last_LVT), a previously saved user state with virtual time equal to or less than the newest value
will be restored. Once a state is restored, program execution resumes at a point where that state
was saved as if the execution had never gone beyond that point. The rollback mechanism is
totally hidden from user processes.

Higher level primitives for irrevocable operations are provided through special server processes. These
server processes run on top of Tjipc and process requests sent as Tjipc messages. The servers’ behaviour

-11-

follows the pattern:

repeat forever:
{ wait for GVT (global virtual time) to advance by calling a special
Tjipc primitive for irrevocable operations;

get all requests (messages) with virtual send time less than GVT;

service the requests;

}

The point is that rollbacks can’t occur for processes providing irrevocable services. The servers can
also be viewed as the link between the processes in the Tipc system and the outside world. More than one
server may exist to provide different services.

3.2 The System Structure Across Multiple Nodes

The above processes and functions are replicated on each node of a multi-processor, or on each
individual computer in a network. The entire Tipc system is built on top of Jipe, there being no other
way to communicate between processes. All nodes in a Tipe system form a logical ring around which the
message for estimating GVT circulates. The head of the ring is a system process called the Global
Controller, which can reside on any machine. In this process and in the LCP on each machine in the ring,
a pointer variable points to the next member (an LCP) of the ring. On system startup, the pointer in the
global controller points to itself, since the ring is initially empty. When the first Tipc user process comes
into existence on a machine not already in the ring, the LCP on that machine will send a message to the
global controller and join the ring. After the last Tipc user process actually dies on a machine, the LCP
sends another message to the global controller and leaves the ring. The ring may become empty again;
this can be a perfect indication of the termination of the whole system.

Figure 3 shows the distributed structure of a Tipc system. Small circles represent processes while the
two large concentric circles delimit the various levels. Directed lines show the directions in which
messages are sent. All messages among processes in this system are Jipc messages.

A notable feature of the structure is that the LCPs, except in one situation, only receive messages. If
two LCPs try to send messages to each other simultaneously, or more precisely, if LCP A sends a message
to LCP B before A receives a message from B, and the message reaches B after B sends its message to A,
these two LCPs will fall into deadlock since each is waiting for a reply from the other. Because of the
possibility of deadlock, the LCP is constantly waiting for any messages directed to it. On receiving a
message, it sends back a reply as quickly as possible, does whatever processing is necessary, then goes
back to wait for the next message. It never blocks waiting for a particular message, so it never falls into

deadlock.

The only exception is the GVT message, the message circulating around the ring in a fixed direction
for the estimation of GVT. The LOP receives the GVT message, replies immediately, calculates the lowest
local virtual time on its machine, then sends the message on to the next LCP in the ring. Although the
GVT message path forms a closed circle, there is only one GVT message at any given time, so it cannot
cause deadlock.

Besides the GVT message, the LCP expects two other types of messages.

Tipe
U

Figure 3. The Distributed Structure Of Tipc.

U - User Process

S - Server Process

C - Creator

LCP - Local Control Process
G - Global Controller

-12-

1. Messages for communication among user processes, which are buffered by the LCP, if necessary,
or request messages for such things as process creation or interrogation. Usually, the LCP sends a
reply for this type of message immediately.

2. Messages from local user processes to request a measage or to notify the LCP that some event has
happened in the user process. We call this type of message a Local Control Message. The LCP
does not reply to this message until it is the calling process’s turn to resume execution, thus
giving the LCP scheduling control.

3.3 The Tipc Inter-Process Communication Sequence

An interaction between Tipc processes is realized by a series of Jipc messages. A message is not
directly sent to the destination Tipc process, instead it is sent to the LCP on the machine on which the
destination process resides. The message is buffered by that LCP. When the destination process wants to
receive a message, it sends a local control message of type “receive” or “receive-any” to its LCP
whereupon the LCP will pass the message back to it by a Jipe reply message.

Figure 4 gives two typical communication sequences. In this interaction process one sends a message
to process two. A series of Jipc messages are exchanged as follows: For the nonblocking send, process one
sends the real message to the LCP on the same machine as process two and gets replied to immediately,
then sends a local control message of type "send” to notify its LCP of the send. So that process one can
continue executing, its LCP will reply to it immediately, provided that there is no other user process
ready to run with an earlier virtual time. Otherwise, process one will be suspended until it becomes the
process with the lowest virtual time. The real message (labelled with the receiver and its virtual send
time) received by the destination LCP is put in the input queue of process two. When process two sends a
local message of type "receive” to get the message, the LCP passes the real message to process two in its
reply. Also, the LCP retains a copy of the message in the input queue for process two, stamped with the
virtual receive time and marked with ”received” to distinguish it from unprocessed messages. There is a
potential wait for process two.

calls send calls receive calls send calls receive

USel’ User User User
Process Process Process Process
1 2 1 2

7
7

¢ RECEIVE| REPLY

Tii
jipc message RECEIVE SEND reply message

nonblocking send blocking send

Figure 4. Interactions Between Tipc Processes.

-13-

The sequence for a blocking send is similar to the nonblocking send except that process one goes
blocked waiting for the reply message from its LCP and a reply sequence is necessary. In fact, the reply
sequence is similar to the send sequence except that the local message of type ”send” is replaced by one of

type "reply”. The reply message is also copied into the input queue of process one in case rollback causes
the reply message to be unreceived.

-14 -

4 SYSTEM IMPLEMENTATION

This chapter is concerned with the internal structure of the Tipc system. The first five sections deal
with local control on a node, and the following three sections cover the global control of the entire system.
The last section presents one implementation of state saving and restoration.

4.1 T_kernel Data Structures

The T_kernel maintains information on Tipc user processes. Part of this information belongs to the
LCP and part to the user process. Since this system is based on message passing, each part is accessible
only to the process which owns it. The Process Control Block (PCB) and the input message queue for each
user process are held in the LCP. The output queues are maintained by the Tjipc routine package (i.e.,
each Tipc process owns its output queue), but they are system maintained and not manipulable by the
user. The Process Data (PD), system maintained user process data, are also held in the Tjipc package.

The only exception is that Tjipc contains the current process number, an integer variable of the
LCP, which contains the index number to the PCB and the PD of the process currently in execution. For
the workstation version of Tjipc, due to limited memory space, the Tjipe package must be reentrant code
so that it can be shared by all user processes on the same machine. By making the current process
number accessible (read only) to user processes, it became trivial to write reentrant code for the Tjipe
package. This variable is used by Tjipc routines as an index to the PD and the output queue of the
calling user process so that the user process accesses only on its own data area in the shared reentrant
code.

The Tipe Process Id

Before one Tipc process can communicate with another, it must obtain the process id of the process
it wishes to talk with. A process id uniquely identifies a Tipc process. Because a Tipe process is also a Jipe
process and messages are buffered by the LCP (another Jipc process) before finally reaching the
destination processes, a Tipc process id consists of

1. The Jipc process id of the process,
2. The Jipc process id of the LCP on the same machine as the process,
3. The local process number. (The local number is used for quick access to system maintained

information about the process.)

A Tipe process sees the Tipc id as a predefined type of data: t_process_id. Given the name of a
Tipc process, search primitives provided by Tipc can be used to acquire the Tipe id of that process. See

- 15 -

[Jade85] for the components of a Jipe id.

The Format of a Tipc Message

A transaction between Tipc processes is realized by a series of Jipc messages, as described in Section
3.3. A Tipc message is translated into two Jipc messages, the "header” and the "data”. The header
message contains the information needed by the T_kernel to properly handle the semantics of the message
passing primitive being used. The data message travels from the sender process to the receiver’s LCP; it
carries the information the sender wants to pass onto the receiver. If the Jipc message format could
accommodate the Tipc header message in the header of the Jipc message, it would not be necessary to
carry the header in a separate message. The format of a header message is given in Figure 5.

tjipc type

anti-message-flag

sender

receiver

send time

receive time

message number

Figure 5. The Tipc Header Message Format.

There are several types of Tipc messages, differentiated by the first item in the header message. On
receiving a Tipc header message, the LCP applies different processing procedures according to the type of
the message. Following are the components of a header message. The ”receiver” refers to the destination
user process and the "sender” the process which sends the message. The ”send time” is the local virtual
time of the sender at the moment the message is sent. The "receive time” is the virtual time when the
message is received by the receiver; it is assigned by the LCP on receiving the "receive” type local control
message from the receiver. The message number is assigned by the sender and is unique among all
messages coming from that sender. The ”anti-message-flag” distinguishes the negative Tjipe message {or
anti-message) from the positive Tjipc message (normal message). Anti-messages have exactly the same
contents as their opposites, except that the anti-message-flag carries a value -1 (instead of +1 for a
positive message), and are used in rollback to cancel normal messages sent previously. The data message
contains whatever the sender process puts in it. Like an ordinary Jipc message, the information in a data

- 16 -

message is a sequence of typed items.
The Process Control Block and the Ready Queue

The LCP keeps track of information about application processes by maintaining an array of Process
Control Blocks (PCBs). When a process initializes, or enters a Tipc system, an initialization message will
be sent to the LCP by the ”initialize” or "enter_system” routine and the LCP will assign a PCB to the
new process. This PCB will contain all information on the process throughout the time the process
remains in the Tipc system. Figure 6 lists the items in a PCB. A general description of the role the PCB
plays is given below, details will be discussed where appropriate.

The ”Jipe id” item contains the Jipc process id of the user process. The ”index number” is used as
the local process number of the process. All processes ready to execute have the ”scheduled” flag in their
PCB set and are linked together by two pointers in the PCB, the "successor” and the ”predecessor”, to
form the Ready Queue, a two way linked list. The ”successor” points to the next PCB, or NULL (for the
last PCB in the queue). The "predecessor” points to the previous PCB, or NULL (for the first PCB). A
pointer variable in the LCP points to the first PCB in the Ready Queue if there is at least one process
ready for execution, otherwise it points to NULL.

PCBs are inserted into the queue in increasing local virtual time order. When a process has
completed an event and notifies the LCP, the dispatcher routine of the LCP will wake the process up
whose PCB is the first member in the Ready Queue, so that the process can resume its execution. The
LCP does this by replying to the user process. The reply contains necessary data (notably the LVT and
the data message sent from the other process). The reply message is handled by the Tjipe routines in the
user process. Again, for Tipc, message passing is the only way for processes to exchange information.

The ”start time” contains the virtual time the Tjipc process was created or entered into the Tipe
system. It equals the virtual time that the "create” or ”enter” primitive was called plus the time interval
passed as parameter to the primitive. "LVT” keeps the current LVT of the process and ”last LVT” the
virtual time of the last event in the process. The item ”status” is probably the most important, it shows
the current state of the user process. These states fall into two categories; a process may be either out of
the Ready Queue waiting for a certain event, or in the Ready Queue waiting to execute. From the point
of view of the LCP, a Tipc process may be in one of the process states detailed next.

The States of a Process

Two ready states are introduced so that the LCP can send a reply message containing a different
type of data for each case.

L. INIT: The process has been created, or has entered into the Tipc system and initialization of its
PCB and PD has completed. It is either in the Ready Queue waiting for its turn to start
executing or is already executing.

2. READY: A process is in this state if it is not waiting for any events and is ready to resume
executing. If a rollback condition for a process is detected by the LCP, that process will
immediately be put in the Ready Queue, in this state, with the process’s LVT set to the time it
has to roll back to. It doesn’t matter if the process was ready or waiting before the rollback
request was encountered. When the time comes for the process to run, the reply message sent to
it by the LCP will contain the LVT value less than the one kept in its PD in the Tjipc package.

* ready queue

Array of PCB

PCB

\

PCB

|
|

PCB

f>
)

PCB

NULL

* successor

* predecessor

start time

last LVT

LVT

kill time

rollback mark

status

scheduled

* current message

from (sender)

local process number being searched

* anti-in-messages

Jipe ID

local process number

Figure 6. The Process Control Block Format And Ready Queue Structure.

.17 -

As mentioned earlier, this is the only way for the Tjipc routines to detect a pending rollback
request.

A user process will stay in one of the above two states until it calls the next Tjipc primitive in its
code. The rest are states of waiting for different events:

3. RECEIVE: A process enters this state when it calls the Tipc primitive to receive a message from
a specific process and the message hasn’t arrived yet. The "from” field in its PCB will contain
the process id of the expected sender process. The LCP can recognize the expected message
(when it comes) by the receiver and sender process ids (contained in the header message). When
the message arrives, the waiting process will be put in the Ready Queue in the READY state
with the ”current message” field in its PCB pointing to the message so that the message can be
passed to the receiver. The LVT field in the PCB is set to the virtual send time of the message
if the send time is greater than the original LVT of the receiver.

4. RECEIVE_ANY: A process will be in this state when it calls the Tipe primitive to receive any
message directed to it and no message has arrived at the time the call is made. Upon the arrival

of any message directed to it, the state of the process changes to READY just like in the case of
RECEIVE.

5. REPLY: A process which calls the Tipc blocking send primitive will be in this state. The ”from”
field in its POB will contain the process id of the process the message is sent to. When the reply
arrives, the state changes to READY, with the ”current message” field pointing to the reply

message. The LVT field is updated if the virtual time of the reply is greater than the original
LVT.

6. CREATE: After a process calls any creation primitive, it stays in this state waiting for a reply as
to whether the creation was successful or not and, if successful, the process id of the child
process. The reply will come from the system Creator process which is the process the creation
request message (a type of Tjipc message) is sent to by the Tjipc package. If the Creator
successfully creates the child process, it passes the child’s start time and the parent’s id to the
child by a Jipc message, and gets the child’s local process number in the reply from the child.
Then the Creator is ready to send a reply to the creation request message. This reply goes to the
parent’s input message queue in the LCP. When the reply arrives from the Creator, the parent
will be woken up and put into the READY state. Its LVT will remain the same and the ”current
message” field points to the reply message from the Creator.

7. SEARCHW: A process which calls the routine to search for a process, and is willing to wait until
it comes into existence, goes into this state if the searched for process does not already exist. It
will stay in this state until the process being searched for comes into existence. Then the latter
will send a message of some type to wake the searcher up. (The message is directed to the L.CP
on the machine of the searching process.) The LVT field in the searcher’s PCB will be updated to
the virtual start time of the searched-for process if the original LVT is less than that start time.
The "from” and ”index of being searched” in the searcher’s PCB are used to hold the Jipc id and
local number of the process being searched for.

8. LEAVE: By calling the leave primitive, a process can leave a Tjipc system. The process will not
actually leave the system until GVT advances past the LVT at which the process wants to leave.
In the mean time, the process stays in this state in case has to roll back. After the process leaves,
its PCB will be released.

9. DYING: When the execution of a process finishes, it must call the exit primitive to notify the

- 18-

LCP. The LCP will put the calling process in this state until GVT advances past the LVT of the
process at the time of the call.

10. GVT: When a process calls the primitive which waits for GVT to advance, it is suspended in this
state until GVT advances. The LVT of the process will be updated to the new advanced GVT if
the original LVT is less than the new GVT. Usually, only server processes that are created for
handling irrevocable operations may be in this state.

11. HOLD: This state is used by the LCP to control message flow. When a process tries to send a
message, it might be suspended in this state if one of the following situations arise: the machine
on which the receiver of the message resides is running out of memory; or the machine on which
the sender process resides is running out of memory. If the process encounters one of these
situations, it will stay in the HOLD state until GVT advances, then it will try again. It may still
be suspended unless enough memory space is recovered through garbage collection.

The Input Queue

The LCP maintains an input message queue for each local user process. Figure 7 is an example of an
input message queue. A two way linked list is used for the input queue to facilitate searching. The input
queue is sorted in order of virtual send time. Each entry in the queue consists of eight fields plus the
message text, a copy of the data message. The "receive time” field is left unfilled (with zero value in this
implementation) until the message is actually received. Each incoming message goes into the input queue
before it can be received by the Tipc process. The "antimsg” flag is used to distinguish normal messages
and anti-messages. If there is a pair of opposite messages in the queue, they will annihilate each other.
However, if the normal message has already been processed, the receiver process must roll back. The
message remains in the PEND (pending) state until it is received (processed) by the user process. The
"receive state” field represents how the user process obtained the message and is an important piece of
information for the detection of rollback situations (see Section 4.4). A processed message can be
identified by one of the following six receive states:

1. RCVANY - A non-selective receive primitive has been called.
2. RCV - A selective receive primitive has been called.
3. SEND - The receiver of a blocking send message has returned a reply message.

4. MAYRCV - No message from a specified process with a send time equal to or less than the
caller’s LVT was pending at the time the maybe-receive primitive was called.

5. MAYANY - No message with a send time equal to or less than LVT was pending at the time the
maybe-receive-any primitive was called.

6. CREAT - The creator process has replied to a process creation request.

Messages of state MAYRCV or MAYANY are dummy messages. They are not real messages but
created when the maybe-receive or maybe-receive-any call is made in the user process, and no message
with a send time no later than the LVT is available at that time. If corresponding messages show up later,
the dummy messages can be used to determine the right receive time, or the time that the receiver must
roll back to. The receive time of a dummy message is the calling process’s current virtual time. If the

first

NULL «—]

—— NULL

anti-message-flag

receive state

sender

receive time

send time

message number

last

succ suce succ succ "t suce
pred pred pred pred 000] pred
+1 +1 +1 +1 +1
RCV MAYRCV SEND RCVANY PEND

B A B A C
501H 502H 1201H 1901H 0
200H 1200H 1900H 2600H

3 4 8 1

data empty data data data

f

dummy message

Figure 7. The Input Message Queue.

message text

19 -

"maybe-receive” call succeeds, no dummy message is created.

Since more than one message can be received at the same virtual time, a ”counter” is introduced
into the representation of virtual time to record the order in which messages are received. Four bytes (a C
long integer) are used to hold the virtual time variable: the first three bytes represent real virtual time
and the last byte is the counter. The real virtual time is what user processes see, so the virtual time
variable’s value is 256 times larger than the real virtual time. As a matter of fact, the counter is used to
count not only the receive events but all other events happening at the same virtual time. When the
virtual time increases, the counter is cleared and starts from zero again. If the counter byte of the LVT is
equal to zero, then no event happened at the time specified by the first three bytes of the LVT. If it is n,
then n messages have been received (including dummy messages) at the same time providing no events
other than message receipts occurred. This makes the receive time unique: no two messages directed to
the same process have the same virtual receive time, which prevents some subtle problems from arising.

The send time of a message is the current LVT of the sender with the counter byte cleared, for the
counter is only of use to its owner process. The receive time of a message equals one plus the maximum of
the send time of the message and the current LVT of the receiver. Not considering rollback situations, the
LVT of a receiver process is updated to the receive time each time a message is received (i.e., the receive
time always increments by at least one). From now on, whenever ”virtual time” is mentioned, it refers to
the real virtual time represented by first three bytes of the LVT while "LVT” includes the counter byte.
It would be wise to extend the counter from local to global and this change may be made in a future
version of Tipe.

When a user process rolls back to an earlier virtual time, all the messages in its input queue with a
receive time equal to or greater than the earlier time are ”unreceived” by setting their ”state” field back
to a pending state and the "receive time” field to zero. Messages in the input queue are not necessarily in
increasing receive time order. It is possible that a message with an earlier send time is received after one
with a later send time, if a selective receive primitive is called.

The Output Queue

Output message queues are maintained in the user processes by the Tjipe package. An output queue
keeps copies of recent messages sent by the user process. It is not a buffering queue like the input queues
in the LCP, but is used merely to undo message sending by sending anti-messages when rollback occurs.
Figure 8 gives an example of the output queue.

The output queue has a structure similar to the input queue. For each message sent out, a copy of it
consisting of some information fields plus the data message is made and inserted into the queue in
increasing send time order. The virtual send time of a message is the current virtual time at which the
message was sent plus one (which means increasing the counter byte by 1). As described above, the
counter byte of the LVT can be used to record the order in which the messages were sent at the same
virtual time. Figure 8 shows that message #1 was sent at virtual time 100H (hexadecimal) with the
counter byte equal to 1 (meaning that it is the first event for that time), so the send time, i.e., the LVT of
the message, is 101H. Message #2 was sent at LVT 301H and message #3 at 303H. Between these two
send events there was probably a receive event at LVT 302H. Altogether three events happened at
virtual time 300H.

The "Tipc type” field contains the type of the Tipc message. In this example, two types are
encountered, SEND, which corresponds to the process calling the synchronous or asynchronous send
primitive, and REPLY, which corresponds to a reply message to a synchronous send message. Other
possible types are: the CREATE type which is a message sent to a Creator process, asking for the creation

l first last
suce succe succ suce SUCC | w o succ |[—sm= NULL
NULL === pred pred pred pred pred ¢ ¢ ~=] pred

COPY CSFW CSFW CSFW ANTI ANTI | rollback mark
SEND REPLY SEND SEND SEND REPLY | tjipc type

1 2 3 4 5 11 message number

B B C B C B receiver
101H 301H 303H 401H 501H 901H | send time
data data message text

et coasting forward —_—] 1
LVT before rollback
LVT actually LVT requested

rolled back to

to roll back to

Figure 8. The Output Message Queue.

90 -

of a new Tipc process; the SEARCH type which is a message sent to an LCP to search for a named Tipe
process; and the SEARCHW type which is similar to SEARCH except that the process that sends the
search message will wait until the process being searched for comes to exist. Generally, an event which
involves another process is treated as a message event and is inserted into the output queue. This provides
a simple and consistent rollback mechanism.

The "rollback_mark” field is used to distinguish messages which might have to be cancelled. When a
message is sent out, a copy of it is put in the output queue with "rollback_mark” set to COPY. In the
example in Figure 8, suppose the process is at LVT 901H when it finds out it must roll back to time 500H.
However, it didn’t save a state at 500H; the oldest state saved earlier than 500H is 300H, so the process
must roll back to 300H. All the messages in the output queue sent between that time (300H) and the time
the process was asked to roll back to (500H) are marked with CSFW meaning that these messages will not
be re-sent or cancelled as the process executes forward during the ”Coast Forward Phase”. All messages in
the output queue that were sent out after the time the process was asked to roll back to (500H) are
marked with ANTL These "ANTI” messages might be cancelled if they should not have been sent,
otherwise they will be marked with COPY again when the time comes to send them, but they will not
actually be sent again because they have already been sent correctly.

Message numbers are local. Each message sent by a process has a unique number that is assigned
incremently. This number will help the LCP on the receive end to annihilate pairs of "opposite” messages,
for anti-messages have the same number as their corresponding positive messages.

The Process Data,

The Process Data (PD) is another data structure maintained by the Tjipe package, in addition to
the Output Queue. All the constants and variables associated with a user process are held in the PD. For
the Unix version of Tipc, each user process has a private copy of the Tjipc package and the PD are the
variables defined in the package as global variables. On the workstation version, a global array of PDs is

defined within the Tjipc package and is shared by all user processes; the Tjipc routines operate only on
the PD for the process which calls these routines.

The process data include the start time of the process, the virtual time at the moment the process
came to exist, the LVT, the current virtual time of the process combined with the counter, the current
message sequence number which is to be assigned to the next output message, and the pointers to the first
and last message copies in the output queue.

The LVT is updated when the following events occur:

1. A user process calls the primitive to advance its virtual time. The LVT is increased by the value
passed as the parameter, and the counter of the LVT is cleared. If the parameter is zero, LVT
remains unchanged. The effect of advancing a zero time interval is for the LCP to reschedule the
process and let other processes with same virtual time have a chance to run. The new LVT is
passed to the LCP by a Local Control message of type >ADVANCE?” and the LVT in the PCB is
updated accordingly.

2. A user process sends a message, either to another user process or to a system process (creation or
search requests). The LVT increases by one i.e., the counter increases by one and the virtual
time remains the same. The LVT of the PCB is updated to the new value of the LVT after a
Local Control message of some type is sent to the LCP.

3. A user process calls a receive or receive-any primitive. After the message is received, the LVT is

-91 -

either updated to the send time of the message plus one if the send time is greater than the
process’s virtual time, or increased by one.

4. A user process updates its virtual time after rolling back. Having rolled back, a user process calls
the primitive to notify the system of the time that the process actually rolled back to. The LVT
is updated with the value passed as parameter, and the LVT in the PCB is also updated.

4.2 The Local Control Process
The LCP acts as the kernel of Tjipc. The functions of the LCP are to:

1. Provide input message buffering and keep copies of recently processed messages for each local
Tipc process.

2. Detect rollback requests and inform user processes when they must roll back. Also, to carry out
rollback procedures inside itself.

3. Switch the status of local processes when they send Local Control messages and to schedule
processes when they are ready to resume execution.

4. Participate in the joint effort of estimating global virtual time and to collect the garbage of
obsolete message copies from input queues when GVT advances.

5. Maintain a single special input message queue (the search queue) for search requests and to
handle those requests.

6. Handle other messages, like kill requests.

For the workstation version, the LCP also implements memory management and message flow
control. The LCP executes in an infinite loop, receiving messages and performing whatever functions
necessary. To avoid deadlock, it is never blocked while performing these functions. All messages sent to
an LCP have a integer, the "message type”, as the first data item. The LCP uses the message type to
determine how to process the rest of the message. Three types of message are accepted by the LCP:
Tjipc, Local Control, and Global Control messages.

The Types of Tjipc Messages

Tjipc messages include messages sent by Tipc processes and the reply messages from system
Creators. Those sent by Tipe processes consist of two separate Jipc messages, the header message and the
data message, as described earlier in this chapter. A Tjipc message can be either a Communication
message or a Request message.

A Communication message is a user-defined message for communication between Tipc processes. It
can be a message sent from one process to another (type SEND) or a reply to a process that sent a
message by using the synchronous send primitive (type REPLY). The LCP makes copies of these
messages and puts them in the input queues of receiver processes. On receiving a communication message,
the LCP carries out the following procedures:

-99-

1. If the message is an anti-message, the LCP will try to find its opposite in the input queue and
the positive and negative messages will ”annihilate” each other (both will be deleted from the
input queue as if they had never appeared).

2. If the message has a send time earlier than the receiver’s LVT, a check procedure is invoked to
determine if the receiver process needs to roll back (for conditions of rollback see ” The Detection
of Rollback” in Section 4.4).

3. If the receiver is waiting for a message and the incoming message is the right one, the LCP will
wake up the receiver (by switching the receiver’s status to READY) and put it in the Ready
Queue. Also, the receive time and receive status of the message will be set. Otherwise, if the
receiver is not yet waiting for a message, the message is buffered in the input queue.

A Request Message is a message sent by a Tipc process to a system process, requesting such things
as "search for another process”, "create a new process”, ”kill a process”, etc. These messages are not
intended to carry information to a particular Tipc process; they only involve the relevant process
indirectly. They are actually requests to the T kernel and are messages in this implementation for the
sake of a consistent and clear design. Different requests and the operations performed are:

1. Creation Request: The message is sent to the Creator and buffered in its input message queue,
just like a communication message to a Tjipc process. The Creator will be woken up and
allowed to resume execution, if it is waiting. The scheme of anti-messages is a bit different from
that of communication messages, however. The user process that sends a creation request
message does not resend it if, in a rollback situation, it turns out that the same creation request
should have been sent with a different send time. Instead the user process sends an anti-message
with the new send time to the Creator, which will "restart” the previously created process with a
new start time rather than kill it and create another one. This kind of anti-message will not
annihilate with its positive counterpart as usual; instead, the normal creation message is modified
with the new send time and the anti-message disappears. If it turns out that a Tipe process
should not have been created at all, the father process would send an anti-message to the
Creator with the send time set to infinity. In this case, the normal message in the input queue of
the Creator would be annihilated, the process created as the result of the creation message would
be killed, and all the effects left by it cleaned up. This variation of anti-messages is intended to
avoid unnecessary re-creation of Tipc processes, for we believe that the most common reason to
roll back a creation request is to restart a process at a different time.

2. Kill Request: Since no process expects to be killed, the kill request is not kept in any queue.
After a kill request is sent to the LCP by the Tjipc package, the LCP marks the "kill time” field
of the PCB of the process to be killed with the virtual time that the process is supposed to be
killed at. When the process reaches that time, it will be put in the DYING state. If the
process’s LVT already exceeds the time of the kill message, the process will be placed in the
DYING state and forced to roll back so that the effects of events that happened after the kill
time can be cleaned up. An anti-message to the kill message will cause the process affected to
leave the DYING state and to roll back to an event right before the time of the kill message, if
the process is already in the DYING state. This enables that process to resume its execution
after being "pseudo-dead” for some time. A process being killed (in the DYING state) actually
dies after the GVT advances through its kill time.

3. Search Request: The search request is put in the LCPs search queue instead of the input queue of
the searched-for process because the search message is not a communication message and is
therefore never expected by the process. The process may not even exist at the time the search is
made. On receiving a search request, the LCP searches the PCB array for the named process,

.93 -

then replies to the searcher as to whether the process was found, and the id of the process, if
found. If the searched-for process comes into existence later, the LCP will let it know that is has
been searched for in the LOP’s reply to the process’s initialization message (a Local Control
message}. Subsequently, the searched-for process will send a WAKESW message to wake up the
searcher process, in the case of a blocking search, or a special anti-message (an Al message, see
below), in the case of a non-blocking search. Both of these messages annihilate the search request
in the searcher’s output queue, causing the searcher process to roll back and search again. In the
non-blocking search case, the previous search request will be deleted from the search queue. This
scheme sounds complicated, but is necessary since the LCP is not allowed to send a message to
someone who is not expecting it. Thus, the searched-for process itself, not the LCP, has to send
those messages. An anti-message for a search message only annihilates its opposite in the search
queue of the LCP on the destination machine and has no further effects.

An Anti-Input (AI) Message is a rejected input message which is sent back as an anti-message. It is
different from an ordinary anti-message, which is directed by a sender process to a receiver process’s input
queue to cancel a message sent previously. An Al message is directed by a receiver process to a sender
process’s output queue to cancel a message in the output queue. This is necessary in situations when a
received message must be rejected. For example, when a failed nonblocking search request should have
been successful, as mentioned above, the previous search message would be rejected by the searched-for
process and it would send an Al message to the searcher process, forcing it to roll back and search again.

The LCP does not handle an Al message the way it handles ordinary anti-messages because the LCP
has no access to Output Queues. What the LCP does is force rollback in the process that the Al message
is directed to. It also notifies it of the message number which has been rejected. It is up to the sender to
delete the rejected output message, to roll back to the proper time, and then to resend the message if
necessary (this is the usual case, since the message is cancelled not because the sender wants to but
because it has been rejected by the receiver).

Figure 9 gives an example of an Al message. Al messages do not take the normal Tjipc message
format (header message plus data message), rather a very compact form is adopted for efficiency. The
code ANTINMSG is used so the LCP can recognize this type of message, and the ”anti-message” flag is
set to -1. Forming the rest of the message are the local number of the user process that sent the positive
message, the send time, and the sequence number of the positive message. The PCB in the picture shows
the status of the user process (here with local number 7) after the Al message has been processed. The
?rollback mark” field is set, meaning that rollback has been requested for this process. The LVT of the
PCB is set to the send time of the positive message which is also the time the process has to roll back to.
The Al message pointer points to a memory block which contains the sequence numbers of positive
messages to be annihilated (it is possible that more than one Al message is received). When the time
comes for the process to run, it will be notified of the rollback request and the time to roll back to, as well
as the identities of the messages to be annihilated in its output queue.

The Types of Local Control Messages

An LC message is sent by the Tjipc package to notify the LCP that an event of a certain type is
happening in a user process, such as waiting for an input message or waiting for GVT to advance. On
receiving an LC message, the LCP first checks the ”rollback mark” field in the PCB of the process that
sent the LC message to see if rollback is requested for that process. If rollback is pending, the LC
message will be ignored and the process is scheduled to resume execution (in most situations immediately)
and forced to roll back. If no rollback is requested, the LCP either puts the user process in a wait state or
reschedules the process in the Ready Queue, depending on the type of the LC message. Finally, the LCP

PCB

5301H

<address>

LVT

rollback mark

local process number

Al message pointer

Al message

ANTIINMSG

message type

-1

anti-message-flag

7

local process number

5300H

23

send time of positive messsage

message number of

23

Figure 9. An Example Of An Anti-In-Message.

positive message

numbers of positive messages

to be annihilated, followed
by 0

-94 -

calls the dispatch routine to run the first process in the Ready Queue, if there is one.

The following are the types of LC messages which are used to notify the LCP of events happening in
user processes.

1. ADVANCE: The user process’s virtual time has advanced.

2. ASEND: A message has been sent by calling asynchronous send.
3. REPLY: A reply has been made.

4. DYING: The user process called exit.

5. LEAVE: The user process called "leave system”.

When one of these types of LC message is received, the user process’s LVT (kept in the PCB) is
updated to the value contained in the LC message and the process is put into the READY state or into a
temporary terminating state (LEAVE or DYING). The terminating state is temporary because processes in
these states might roll back and become active again as long as the GVT remains less than the virtual
time that these process are supposed to terminate at.

There are other types of LC messages used to inform the LCP of the event that a user process is
waiting for. They cause the process to stay in a wait state with the same code as that of the LC message
(discussed in Section 4.1), if the event the process is waiting for hasn’t occurred yet. Otherwise, the
process will be in the READY state with the new event.

The GVT Message

Only two types of GC message are recognized, the UNLINK message and the GVT message. Both
are passed along the logical ring formed by a Tipc system. The UNLINK message originates in the
Global Control Process each time a node quits the ring and is used to tell the node concerned of the
change. Each UNLINK message is discarded when it reaches the node preceding the quitting node. The
GVT message is used to regularly estimate the GVT. It starts circulating when the first user process in the
system comes into existence and is discarded after the last user process in the system exits or leaves.

Upon the arrival of a GVT message, the following actions take place in the LCP if GVT has
advanced:

1. Garbage collection is performed. Outdated messages are collected from the input queues of all
user processes. Message copies in input queues that have been processed (have a non-zero receive
time) and have a receive time less than the previous GVT are considered obsolete and can be
released. All the messages with receive time equal to or greater than the previous GVT and less
than the current GVT are preserved in case user processes roll back to a time earlier than the
current GVT. This can occur in certain situations, (e.g., when a process has to roll back to GVT,
but only has saved a state with an earlier timestamp than GVT) so some messages with an
earlier receive time than the current GVT may have to be unreceived. This may or may not
occur depending on how the user process states are saved in the Tipe level. Tt is recommended
that careful consideration should be taken when designing the scheme for state saving in Tipec.

2. Processes may exit or die. User processes which were supposed to exit, die, or leave the system at

- 95 -

a virtual time less than the current GVT have their PCBs released and input queues cleaned up.
Then they are allowed to actually exit, die, or leave the system.

3. Processes waiting for GVT to advance are unblocked. User processes which are in the GVT
("waiting for GVT to advance”) state are switched to the READY state to resume execution. If a
process in the GVT state has an LVT that is less than the current GVT, its LVT will be set
equal to GVT because, normally, no user process should have an LVT less than the GVT.

4. Processes held for flow control are made READY. User processes which are in the HOLD state
are put into the READY state.

5. GVT calculations are performed. A procedure is invoked to calculate the current lowest LVT on
this node. If the lowest LVT equals the current GVT and the ”allow to hold” flag in the GVT
message is set, the GVT message will be held at this node until the lowest LVT increases.
Otherwise, the GVT message is passed onto the next node in the ring along with the lowest LVT
on this node since the last GVT message (called the historical lowest LVT). See Section 4.6 for
details of the GVT estimation algorithm.

The GVT message is held at any node whose lowest LVT is equal to the current GVT. When this LVT
advances, the GVT message is then sent to the next node in the ring. Otherwise, the GVT message is
immediately forwarded, i.e., if the node’s lowest LVT is greater than the current GVT.

4.3 Process Scheduling in the T kernel

A brief outline of process scheduling was presented in Chapters One and Two. A complete
description is presented here. The T_kernel schedules user processes on a "voluntary” basis, for there is no
other way to control the execution of a Jipe process. This will cause problems because, for example, if a
process spent too much time computing without calling any Tipc primitives, or even worse, entered an
infinite loop, then other processes on the same machine, and eventually in the entire system, would be
prevented from executing and progress would halt. The problem cannot be solved in Jipe, because there is
no way to interrupt a process in Jipc other than by killing it.

Figure 10 shows the state transitions of a Tipc process. Usually, a running user process has its PCB
first in the Ready Queue. Then the LCP unblocks it. It gets taken off the Ready Queue, and does not get
put back into the Ready Queue until it calls another Tipc primitive; meanwhile, it runs under the
scheduler of the host machine. In the mean time, no other user process runs on that machine. A running
Tipc process switches to a wait state if it calls a primitive to wait for an external event to occur (e-g., an
incoming message or for GVT to advance). In Section 4.1 various wait states are listed. In the following
situations a process will be in the terminating state (i.e., DYING or LEAVE):

L. It reaches the end of its code and calls the exit primitive;
2. It calls the leave_system primitive;

3. It encounters a runtime error and the Tipc error handler routine (in the Tjipc package) sends a
control message to the LCP. It is then suspended in the DYING state by the LCP;

4. Some other process calls the kill primitive to kill it.

event occurred

wait for external evenAt/J\
@

exit

rollback

running

leave
killed
suspended

exit
leave
killed

Figure 10. The Tipc Process State Transition.

- 96 -

The last situation occurs asynchronously with the execution of the process. A call to any primitive,
whether the call would cause a transition to the READY or one of the wait states, will put the calling
process into the DYING state if some other process had called the kill primitive and the process passes
through the time it is supposed to be killed. The same is true for the transition to the ROLLBACK state:
whenever a rollback request is detected for the running process, it will be forced to enter the ROLLBACK
state no matter which Tipc primitive it has called.

A process is in the ROLLBACK state from the moment a rollback request is detected until the
process completes rollback by calling a primitive within the Tipc level that informs the LOP of the actual
LVT that the process has rolled back to. The transition to the ROLLBACK state could happen to a
process in any other state and is non-deterministic. After the completion of rollback procedure, a process
enters the READY state.

When the event a process is expecting occurs, the process becomes READY. The scheduling rules
adopted in this implementation are:

1. Only one Tipc user process is allowed to run at any time, except for the period starting from the
moment a process is created or enters the system until it calls the initialization primitive. This
has made a significant contribution to the simplicity of the local control scheme of this
implementation.

2. A process is not in the running state only when it completes a event or elects to wait for an
external event.

3. The Ready Queue is sorted in nondecreasing virtual time order. The process with the lowest local
virtual time is always scheduled to run next. This is natural for a Time Warp system. Notice
that the LCP schedules according to virtual time, not according to LVT (the combination of
virtual time and event counter).

Processes with the same virtual time have an equal chance to run. Usually, if a process has finished
an event and is ready to execute again, it will be scheduled to run after all other processes with the same
local virtual time already in the Ready Queue. From experiments with test programs, it has been found
that this may not be fair. In some situations, it leads to unexpected rollbacks caused by communication
between processes on the same machine. Since most rollbacks are triggered by straggler messages, one
alternative is to let processes which call the asynchronous send primitive to continue to run even if there
are other processes with the same lowest virtual time in the Ready Queue. This would allow, for example,
a process to send messages to several processes at the same virtual time without having to wait for its
next turn of execution. This can prevent unnecessary rollback in situations where several processes

running on the same machine send and receive messages to and from one another at the same virtual
time.

4.4 The Rollback Mechanism

Time Warp relies on rollback as the fundamental mechanism to realize the semantics of Virtual
Time. Following the conditions presented in Section 2.2, each user process in the system proceeds forward
based on its current situation. The rollback mechanism detects any violation of those conditions caused by

late arriving messages and rolls the related user processes back to guarantee that virtual time semantics
are maintained.

-97 -

Not only is the rollback mechanism central to Time Warp systems, but it is also the most difficult
part to implement and debug. Since this implementation was built as part of the Jade environment it
had to conform to both the semantics of Jipc and the semantics of Virtual Time. The major design goal
for the rollback mechanism was a simple and uniform scheme for the different kinds of events (message
passing, process creation, searching, etc.).

Types of Rollback

Rollback is required for a user process in the following three situations:

1. Receipt of a straggler. Suppose a process that lags behind in terms of virtual time sends a
message to another process that has gone ahead. That message may become a straggler for the
latter process, in which case the latter must roll back to deal with the straggler in order to keep
the correct ordering of events. This type of rollback is caused by the straggler message and may
trigger further rollbacks in other processes.

2. Receipt of an anti-message. A process that has rolled back may need to cancel a message sent
out previously. To eliminate the effect caused by the original message, an anti-message has to be
sent. We call this type of anti-message a Normal Anti-Message: it is initiated by the sender and
is aimed at a positive message in the destination process’s input queue. On the arrival of the
anti-message, the positive message will annihilate with the anti-message if the positive message is
still in the input queue. However, if the positive message has already been processed, the receiver
process will have to roll back.

3. Receipt of an anti-in-message. Suppose a message is rejected for some reason by the receiver.
The rejected message will then be sent back to its sender as an anti-message. We call this type
of anti-message an Anti-In-Message. It is sent by the receiver to cancel the positive message in
the sender’s output queue and forces the sender to roll back. In this implementation, messages in
the search queue may be rejected when: a process that was searched for comes into existence
after the search operation finishes (actually fails) and the search should have been successful; a
process rolls back to the very beginning of its execution to restart at a different time (some of the
search requests made before may have to be remade); a process should not have been created (all
searches for that process must be undone). Other occasions when input messages may be
rejected involve exiting or dying Tipc processes. For these processes, the unprocessed input
messages should be rejected because the receiver no longer exists.

The rollback caused by receipt of a straggler message is the basic form of rollback; all other types of
rollback are triggered by it. The LCP treats the three types of rollback differently for simplicity and
efficiency.

The Detection of Rollback

In this section a more precise description is given of the criteria for each of the three types of
rollback. These criteria are derived from the conditions listed in Section 2.2 under the following
assumptions:

- 98-

1. The send order of messages from one process to another is preserved on the receive end. This is
true for Jipc messages.

2. The receive time of a message equals one plus the maximum of the send time of the message and
the current LVT of the receiver.

Type 1 Rollback, Receipt of a Straggler

First, some notation must be defined. Let the send time of the new incoming message be M_ST, the
receive time of that message be M_RT, the current LVT of the receiver process be RP_LVT, and the
receive state of the message be RS. Remember that the receive state defines which call the receiver made
to receive the message. Also let the send time and receive time of a message in the input queue be M_ST’
and M_RT"’ respectively.

On the arrival of a positive message, rollback may be required for the receiver only if M_ST <
RP_LVT. Otherwise, we do not let the message be received at a time earlier than RP_LVT (i.e., we
ensure that M_RT > RP_LVT so that no rollback is needed). Therefore, because of assumption two,
M_RT = max(M_ST,RP_LVT) + 1. Furthermore, if there is a received message in the input queue and
one of the following conditions is satisfied, then the receiver has to roll back.

(a) (M_ST < M_ST’) and (M_RT’ <= RP_LVT) and (RS = RCVANY)
or

(b) (M_ST <=M_ST’) and (M_RT’ <= RP_LVT) and (RS = MAYANY)
or

() (M_ST <=M_ST’) and (M_RT> <= RP_LVT) and (RS = MAYRCV) and

both messages are from the same sender
or
(d) (M_ST < (RP_LVT (with counter cleared))) and (RS = SEND)

where RCVANY, RCV, MAYRCV, MAYANY, and SEND are the possible receive states of a incoming
message (see ”The Input Queue” in Section 4.1). I the following condition were true:

(M_ST < M_ST’) and (M_RT’ <= RP_LVT) and (RS = RCV) and
both messages are from the same sender

the receiver would have to roll back. But this situation never arises because of assumption one. Besides,
when a process calls "receive from”, it waits for and expects message only from a specific process. It does
not care for messages from other processes until it decides to receive them. So there won’t be rollback
required for the receiver even if the following condition is met:

(M_ST < M_ST’) and (M_RT’ <= RP_LVT) and (RS=RCV) and
both messages are from different senders.

-929 -

Type 2 Rollback, Receipt of an Anti-Message

If a processed (received) incoming message in an input queue is annihilated by an anti-message, the
receiver process has to roll back to a LVT less than the receive time of the processed message. The input
queue of the Creator is an exception. The Creator is not a Tipe process, but is solely responsible for
creating new Tipc processes on request from existing processes. It never rolls back. When an anti-message
arrives at its input queue it decides whether the process affected by the anti-message should have been
created at a different time (earlier or later) or whether it should have been created at all, In either case,
the LCP will force the process concerned to roll back to its very beginning and undo what it has done,
after which it will either restart at a different time or cease to exist.

Type 3 Rollback, Receipt of an Anti-In-Message

An Anti-In-Message, an anti-message aimed at a message in an output queue, always causes the
owner of the output queue to roll back to the send time of the message to be cancelled by the Anti-In-
Message. It is complicated to decide under what conditions an Anti-In-Message should be sent. We are
not going to list those conditions, for too many implementation details are involved. For this
implementation, except for the unprocessed messages in an exiting or dying process’s input queue, only
search request messages are concerned. Search requests are handled in the context of a virtual time scale,
and so are the situations when a rollback request arises.

Rollback Procedures

In the current implementation Tipc splits into two levels, the T_kernel and Save_Restore. The
Save_Restore level handles user state saving and restoration, which is a large part of the rollback
mechanism. Since the T_kernel level is also concerned with rollback, the rollback mechanism is divided
between the two levels. Therefore, the two levels must coordinate their rollback actions. Since this
system is implemented solely in terms of Jipc primitives, and since Jipe does not provide any kind of
signalling facility, the only way to notify the Save_Restore level from the T_kernel level of a pending
rollback request is through messages.

The method we adopt is to check, at the Save_Restore level, the newest virtual time value by
calling an interrogation primitive provided at the T_kernel level. If the newest value is less than the last
one (maintained in the Tjipc package), then a rollback is pending, and rollback procedures must be
followed at the Save_Restore level. The same principle applies when the routines in the Tjipe package,
belonging to the user process, try to detect a rollback request from the LCP.

On the detection of a rollback request, the procedures for handling rollback are as follows.

1. The LCP puts the process being requested to roll back in a rollback pending state by setting the
"rollback mark” field of its PCB to a nonzero value, no matter what the process’s current status
is. Usually the rollback requests occur asynchronously. To distinguish rollback requests raised in
different situations, the "rollback mark? is set to different values so that different handling
procedures can be followed. The latest LVT that the process is requested to roll back to (call it
bLVT) is recorded in the LVT field of its PCB. At this stage no further significant action is
taken because the LCP does not yet know what LVT the process will actually roll back to. The
LCP merely waits for a chance to notify the process of the pending rollback, i.e., when the time
comes for that process to resume execution, if the process is not currently executing. If the

-30-

process is already executing, then when it finishes its current event and calls the LCP for the
next event the LCP will inform the process that it has to roll back, ignoring the request from the
process. A process in the rollback pending state will not get a chance to roll back until there is
no process with an LVT earlier than its bLVT.

2. When the time comes for a process in the rollback pending state to resume execution, the LCP
passes the bLVT (which tells how far to roll back) to the process in its reply message. The bLVT
is less than the last LVT that the user process keeps. (If the user process is using Tipc, the Tipc
package takes care of all facets of rollback.) If the user process does not check the bLVT and roll
back promptly, the LCP will keep sending back the bLVT to remind the user process and will
not let it proceed until rollback is completed. Other information besides the bLVT may be
passed back to the user process in the reply message from the LCP. If the rollback is caused by
an Anti-In-Message, the sequence number of the output message to be annihilated will be passed
back so that the user process can cancel the message from its output queue (this is done
automatically by the Tjipc package). If the user process is to restart at a different time or is to
be undone (with the “rollback mark” field of its PCB set to 2 or 3 respectively), it may cause
user processes that searched for it to roll back by sending them Anti-In-Messages. In this case,
the user process has to know which Anti-In-Messages for search requests must be sent; it will get
this information in the reply given by the LCP. The reason why the LCP does not send anti-
messages directly is that all kinds of input messages are buffered at the LCP and LCPs are not
allowed to send messages to each other asynchronously because of possible deadlock.

If the process requested to roll back is to be undone because it shouldn’t have been created, or if
the process is to be killed by another process, the Tjipc package will clean things up and let the
process terminate once GVT has passed through the time of the event.

3. Then the following steps are taken in the user process by the Tjipe package:

The state queue is searched to find the latest state whose LVT <= bLVT. The state
queue keeps all the user states saved at an LVT equal to or greater than the current GVT
and at least one state whose LVT is less than GVT,

That state is restored, i.e., the user process rolls back to that previous state.

The "set back time” primitive of Tjipe is called to inform the LCP of the actual LVT
that the user process has rolled back to (call it oLVT).

4. When the "set back time” routine is called, all the messages in the output queue of the user
process with a send time greater than oLVT will be set to the ”anti” state, meaning that anti-
messages may need to be sent for them. The anti-messages will not be sent unless it proves to
be necessary (this is called ”lazy cancellation”). Then a local control message containing the
oLVT will be sent to the LCP which compares the oLVT to the bLVT to judge whether the
process has rolled back or not (it has rolled back if oLVT < bLVT). The LCP resets the
process’s input queue by setting the receive state to pending and the receive time to zero for all
messages with receive time greater than oLVT.

In summary, rollback situations are detected by the LCP, which starts rollback. The procedures for
handling rollback are initiated in the LCP, continued in the Tjipc package and at the Tipc level in the
user process, and finally, end up back in the LCP. Then the process has finished the rollback process, and

!
.'(JD-.---“~~

 ——

tecefve

I‘¢==

pProcess A

Figure 11. An Example Of The Problem With Lazy Caneallntion

| o - -

provesn N

-32-

The pseudocode for an irreversible process looks like:

while GVT < infinity

begin
wait for GVT to advance;
if there exist any incoming messages with send time < GVT,
process them;

end

Higher level facilities, implemented as Tipc processes, are created by system and use the basic
primitive just mentioned to provide different kinds of services for user programs. These system processes
serve as intermediates between Tjipc user processes and the outside world. For example, assume that
’print” is an output routine provided by Tipc. When a user process calls ”print”, the request will be
submitted to an output process as a message containing the text the user wants to print out. The output
process will not actually send the text to whatever physical device is being used for output until GVT
advances through the virtual time of the output request. Note that a caller of a higher level facility will
not be blocked waiting for GVT to advance.

4.6 The Calculation of Global Virtual Time

Global Virtual Time (GVT) plays a central role in the global control of a Time Warp system.
Theoretically, GVT is defined to be the lower bound of the current and future LVTs of all user processes
in the same Tjipc system. At a given time, the GVT is the minimum of

1. All current LVTs of user processes in the system,
2. All virtual send times of all unreceived messages in input queues,

3. All virtual send times of messages in transit (or messages that have been sent but have not yet
arrived at their destinations).

Point three can be ignored, because, when a message is in transit, the sender is blocked waiting for a
reply from the receiver; the sender’s current local virtual time remains equal to the send time of the
message. For this implementation, those unreceived messages which may cause a process’s LVT to decline
are straggler messages; the current LVT of a process affected by a straggler message is set to the time of
the straggler when the straggler message enters the input queue. So point one includes point two; point
one alone can be considered to be the computational definition of GVT for this implementation.

It is impractical and unnecessary to maintain an accurate GVT because GVT changes constantly.
There is actually no way to calculate the exact value of the GVT at a given time unless we can stop the
entire system instantaneously. Therefore, an ”estimate” of GVT is maintained in this implementation.
The estimation may take place regularly on a certain time interval, or it may be triggered by some event.
The algorithm we adopted gives a very close estimate of the real GVT {sometimes even the accurate
value) without excess overhead. The estimation is launched only when it is necessary and stops when it
reaches the real GVT. In the mean time, the most recent estimates, which are slightly out of date, are
sent to each machine in the system. Following is a description of the algorithm.

Assume that the LCPs are numbered Al, A2, ... An and that there is a separate Global Controller,
AQ, that is a Jipc process. A0, A1, A2, ... An form a logical ring around which the GVT message
circulates. Ai knows the process id of A(i+1), the next member in the ring. An knows the process id of

-33-

AO, the head of the ring.

An LCP joins in the ring by sending a LINK message to AO after the first user process on its
machine comes into existence, and it leaves the ring by sending an UNLINK message to AO after the last
user process on its machine dies (or leaves the system). On startup, the ring is empty, i.e., the successor
process to A0 is itself. During the life time of the system the ring may expand and shrink dynamically. In
the end, the ring becomes empty again, which indicates the termination of the entire system.

The GVT message is initiated when the first LCP joins the ring, and it is discarded on system
termination. At any time, only a single GVT message exists in the ring. It starts and stops circulating
under certain conditions described in the algorithm below. The GVT message contains three fields other
than those used to distinguish it from other T_kernel messages and LINK /UNLINK messages:

TT: a working value that will be GVT at the end of each cycle (i.e., when the GVT messages
comes back to A0),

GVT: last value estimated for GVT,
HF: a flag, telling if the GVT message is allowed to be held (delayed) in an LCP.
The following pseudo code outlines how the Global Controller and the LCP estimate GVT.

Process A0 — Global Controller:

Local variables:

next_node pointer to next member in the ring,
initialized to point to AO.
gvt local copy of GVT.
initialize:
first_node -> A0;
gvt := 0;
loop:

case receipt of LINK message:
next_node -> new member of LCP;
if first new member then /* Start GVT message circulating */
begin
gvt := GVT := (;
TT :=inf; /*infis plus infinity */
HF := 0;
send TT, GVT, HF to Al;
end;
goto loop;

case receipt of UNLINK message:
get rid of the leaving member from ring;
if ring not empty then
goto loop;
else
terminate;

case receipt of GVT message with TT, GVT:

-34-

if GVT = gvt then

HF :=1; /* Allow to hold */
else

HF :=0; /* Hold not allowed */
gvt == GVT:=TT;
TT := inf;
send TT, GVT, HF to Al;
goto loop;

Process Ai — Computed within the LCP:

Local variables:

Cmin_LT Current local time
(minimum of LVTs of all processes
on this machine)

Lmin_LT maintained as minimum value of
local time since last visit of
the GVT message

Hold a flag, set if waiting for local time
to advance before sending on GVT
message, clear otherwise

Lgvt Local copy of GVT

Procedure Send_gvt_msg:

TT := minimum(TT,Lmin_LT);
Lmin_LT := Cmin_LT,;

Hold := 0;

send TT,GVT,HF to A(i+1 mod n+1);

Function Cale_LT:
return minimum of LVTs of all alive local processes;

At system startup:
initialize variables:
Cmin_LT := Lgvt := Hold := 0;
Lmin_LT := inf;

When GVT message received:
receive TT, GVT, HF from A(0 or i-1 if i>0);
Lgvt := GVT,;

Cmin_LT := Cale_LT;
if Cmin_LT = GVT then
Hold :=1;
else
begin
Hold := HF;
Send_gvt_msg;
end;

-35-

When Cmin_LT changes:
Cmin_LT := Calc_LT;
Lmin LT := minimum({Lmin_LT,Cmin_LT)
if Hold = 1 and Cmin_LT > GVT then
begin
HF := 0;
Send_gvt_msg;
end;

There are some points in this algorithm worth mentioning. Since it is impossible for any practical
algorithms to calculate Cmin_LT for each node at exactly the same time, Cmin_LT is calculated for each
node at the time of arrival of the GVT message. It is obvious that the GVT would not be the minimum of
the Cmin_LTs calculated at different times. To estimate GVT, a lower bound of local time since the last
visit of the GVT message must be maintained at each node. That is what Lmin_LT is. The estimate of
GVT is the minimum of all Lmin_LTs. Another point concerns the use of the "Hold” flag which can
prevent the following situation from arising: when a GVT message is held by Ai, the Ai+1, Ai+2, ... An
would not get the latest estimate of GVT until the local time on Ai advances and the GVT message is
passed onto them. A0 sets this flag if the new GVT is equal to the last estimate, i.e., all the nodes already
have the lastest GVT.

4.7 Error Handling

The types of error dealt with in Tipc are those run-time errors which can be detected by the
T_kernel. Some errors are specific to the implementation, arising in complex rollback situations, and are
not expected by the programmer. The problem with Lazy Cancellation raised in Section 4.4 is such an
example. However, this type of error is not a real error since it can be corrected if the process rolls back
to a virtual time earlier than that of the error and executes forward, handling the situation properly.
Therefore, we don’t want a process or even the entire system to crash because of a "false” error. We see
the error handling procedure as a last resort for preventing all false errors. A "real” Tipc error is that
caused by a logical error in user-written code, for example, trying to send a message to a dead process or

reading a wrong type of data item from a message buffer. This type of error is impossible to correct by
rollback.

A uniform procedure is followed for handling both real and false errors. When a user process
commits a run-time error, the T_kernel suspends that process’s execution by calling an exit routine on
behalf of that process. The process will stay in the DYING state until some straggler message comes in to
roll it back or GVT advances through the time when the error is committed. For a false error, a straggler
will arrive and cause the process to roll back, and the new message will "make things right” so that the
process can execute forward properly. If an error turns out to be real, i.e., not remediable by rollback,
then it will be reported to the user after GVT advances through the time of the error.

4.8 Memory Management and Flow Control

The flow control mechanism for this implementation attempts to cope with the limited primary
storage space available on Jade Workstations. What we were seeking was a simple and practical solution
rather than a general approach. Under the assumption that processes and processors are confined to a
limited primary storage space, the overflow may arise in one of the following situations:

- 36 -

1. A message arrives and the processor or the receiver process runs out of space.

2. A output message is created and there is no space for a copy of that message in the output
queue.

3. The processor or the process is out of space when a state is to be saved.

4. There is no space on the processor on which a new process is to be created.

The traditional flow control problem is the overflow of communication buffers, which usually are of
fixed size and are held separate from the storage space of the processor. In this implementation, the
overflow caused by incoming messages resembles the traditiona) problem, while the rest are problems of
overflow of internal work space. In this implementation, all these overflow problems are closely related
and are handled with a single mechanism.

The main issues involved in resolving the overflow problem are:

1. When a processor or a process runs out of storage, the only way to truly (not temporarily)
recover currently allocated space is with "garbage collection”. Storage is consumed by any event
which demands it, whether it is an input message, an output message, state saving, or creating a
new process. If the rate of consumption of storage is greater than the rate of reclamation, one of
the above mentioned overflow conditions will occur. A flow control mechanism resolves the
overflow problem either by temporarily removing some still useful information, or by holding the
sources which produce storage-demanding events.

2. There exists a feedback effect between the rate of space consumption and the rate of its
reclamation when the overflow condition is raised; i.e., the higher the consumption rate, the
lower the recovery rate. This is because the system blocks processes contending for space until
space is available. In the worst case, there is a possibility of deadlock if some process blocks on
an overflow condition forever.

3. The usefulness of information is determined by GVT. Storage can be re-used only when GVT
exceeds the virtual time associated with it. If a process gets blocked because of some overflow
condition, it will be unblocked only after the overflow condition disappears. Since the recovery
of storage must eventually be made by garbage collection, the disappearance of the overflow
condition relies on overall system progress, indicated by the GVT. If the blocked process happens
to prevent the advancement of the the message used in estimating GVT, the whole system will
come to a halt. The flow control mechanism should be able to prevent this kind of starvation.

4. Allowing for the differences in the relative rates of progress of processes is essential for the
speedup achieved by parallelism in Time Warp systems. This contributes to the flow control
problem, for there is a relationship between space and the degree of such asynchrony. The higher
the asynchrony, the more likely overflow is to occur. For example, an overflow is likely to occur
when a process is (in terms of its LVT) far behind the processes from whom it receives messages
because of the piling up of input messages. Those processes which go relatively far ahead in time
may increase the size of their output and state queues, eventually causing overflow. A good flow
control mechanism will restrict excessive asynchrony in the system. Yet it does not overly
restrict the rate of system progress unless the user tries to run a large program in a small space
when space is at a premium.

5. There is always a limit on the size of a program in a finite storage space. A tradeoff exists
between the abundance of space in a system and the rate of progress of the system. If a Tipc

-37-

program runs at the limit of available space, a significant slowdown in global progress of the
system is expected because of frequent blocking on overflow conditions. A reasonable abundance
of space is required.

Considering the above issues and the limitations on this implementation, we decided to adopt a
simple and practical flow control mechanism. To address the first problem, a traditional method suffices.
The sender of a Tipc message gets acknowledged if the message is received and queued by the receiver’s
LCP. If not acknowledged, the sender knows that the receiver is running out of space. When a process
encounters an overflow condition, it will be held (not allowed to run) until space is available, unless its

LVT is equal to GVT. Since space reclamation depends on the advance of GVT, the process remains held
until GVT increases.

To resolve the second problem, a spare memory pool is introduced. As long as there is no overflow,
this pool is never used. It is used only in case of emergency. For example, if a process runs into an
overflow condition and happens to have an LVT equal to GVT, then that process cannot be held;
otherwise, GVT would never advance and the process would not have any chance to be released. In such a
case, the spare pool is used. The spare pool has privilege in the recovery of space, i.e., a piece of space
recovered by the garbage collection procedure does not go into the common memory pool before the spare
pool is filled. In fact, this technique is nothing new other than that it controls overflow before it is too late
to use any space for buffering at all. The overflow of the spare pool is much like the overflow of a stack of
fixed size in that the size of the pool depends on the application and should be adjustable. An error
message is given if the user program runs out of space in the spare pool. In that case, the user should
either increase the size of the spare pool or reduce the number of processes running on the machine. This
simple approach is ideal for preventing those processes which go far ahead from sending messages at a
high rate to other processes which lag behind.

The following is the pseudo code for the overflow control mechanism adopted in this
implementation. Process creation is treated as a request message, but it is considered as creation failure if
there is no space for a process to be created.

Function hold:
send local HOLD message to LCP; /* suspended */
if GVT advanced then
return RELEASED;
else return ROLLBACK;

Procedure malloc:
ml: call memory allocator;
if no space available then
if LVT > GVT then

begin
rt:= hold();
if rt = ROLLBACK then
call rollback procedure;
else if rt = RELEASED then
call garbage collect procedure;
goto ml;
end;

else use spare pool;

When a Tjipc message arrives:

-38-

call memory allocator;
if memory allocated then

send acknowledgement to sender;
else no space available

begin
if send time = GVT then
use spare pool;
send acknowledge to sender;
else message rejected;
end;

When sending a message:
malloc();
if memory allocated then
begin
rs: send message out;
if message rejected then

begin
rt:= hold();
if rt = ROLLBACK then
call rollback procedure;
if rt = RELEASED;
goto rs;
end;
else message accepted;
end;

else invoke rollback procedure;

4.9 State Saving and Restoration

State restoration is an essential part of the rollback mechanism in Tipc. When a process gets a
rollback request, an earlier state of that process must be restored and all the operations performed after
that earlier state should be undone (variable assignments are undone, input messages are unreceived, and

output messages are cancelled). Only the state of a Tipe process is restored, not the state of the entire
system.

As we have discussed, the rollback procedure is performed at two levels, the T_kernel level mainly
takes care of the undoing of messages and the Save_Restore level deals with process state restoration.
Process state refers to the state of execution of a user process and may include: the contents of registers,
the value of the stack pointer, the value of the program counter, the value of the program status register,
the contents of the user stack area, the values of global variables, and dynamically allocated memory. In
this implementation we use the ”checkpoint restoration” method for state saving and restoration.
Checkpoint restoration normally requires that state be saved at regular intervals. If a rollback is

requested, process state is restored to one of the saved checkpoints, and execution resumes from that
point.

Since the rollback mechanism is the basic method for realizing virtual time semantics, state saving is
performed on a regular basis. A useful method will be efficient and transparent to the Tipc programmer.
This is required because is it very difficult for the programmer to decide where and how often the state
should be saved and where to embed state saving and restoration commands in the program. Here we

-39 -

present the basic components for performing state saving and restoration in one of our implementations,
the Jade workstation version.

Two components are provided at the Tipc level for state restoration: SAVE (a function) and
RESTORE (a procedure). Suppose that a user process is in state Si. When SAVE() is called, Si is
established as a restoration point of the process. A reference to Si is returned by the SAVE function (for
this implementation it returns a pointer to the memory block where the state of the process is stored).
Suppose that, further on in the program’s execution, a rollback request is detected requiring that the
process roll back to state Si. A call to the procedure RESTORE(Si) will cause state Si to be restored, and
the process will resume its execution from state Si.

Figure 12 illustrates the use of these two components. Suppose procedure one was called at some
point previously, so that we have a state Xi to restore. State Xi will be restored after RESTORE is
called, perhaps as a result of another call to procedure one, or a call to procedure two. The arrow shows
the point at which execution will resume.

if rollback pending

Procedure 1: Procedure 2:
Xi:=SAVE(); prepare message;
-> send;
receive; if rollback pending

begin

begin Xj = (find Xj);
Xj:= (find Xj); RESTORE(Xj);
RESTORE(Xj); end;

end;

process message;

Figure 12. The Use of Save/Restore.

Another major issue in Tipc is when and how often state should be saved. Not only is the frequency
of state saving a tradeoff between the overhead of saving and the overhead caused by rollback (in terms of
both space and time), but there is also a requirement of consistency between the states saved and the
input/output messages kept by the T _Kernel for a process. If the interval is too long between state saves,
after a state restoration a process may find that some messages which should be processed have already
been garbage collected. To avoid this problem, a criterion for state saving must be established. The
following is based on these assumptions:

1. At the T_kernel level, all the input and output messages with receive time equal to or greater
than the current GVT and all the unprocessed messages are kept in input/output queues.

2. At the Save_Restore level, one state with a time earlier than the GVT is always kept in the state
queue.

- 40 -

With these assumptions, we can establish the largest interval between saved states without risk of
missing messages in a rollback situation. Figure 13 shows this interval: state must be saved at the very
beginning of a process, and every time a process’s LVT advances. In other words, if more than one event
occurs at the same virtual time, the current state just after the last Tipe event at that time must be
saved.

Figure 13 shows that 3 is the latest state saved before GVT. Theoretically, GVT is the farthest a
process can be requested to roll back. However, suppose a process finds out from the LCP that it has to
roll back to GVT. If the process does not happen to have a saved state with a timestamp equal to GVT, it
may have to restore a state with a timestamp less than GVT. Therefore, it is possible to roll back to
state 3 in the situation shown in Figure 13. In that case, all the events (messages in the input and output
queues) that happened after state 3 have time stamps equal to or greater than GVT and are preserved in
input and output queues so there can be no missing messages. However, if state were saved at 3’ instead
of 3, or if no state were saved for virtual time VT3, then in the extreme case the process might have to
roll back to state 3’ or even state 2. If it rolled back to state 3’, the events happening between state 3’
and 3 might be missing because their time stamps are less than GVT and could have been garbage
collected. If it rolled back to state 2, all the events of time VT3 might be missing. This would lead to
fatal error.

In this implementation, state is saved every time a process’s virtual time increases. That is, before a
process calls "advance_time” to increase its LVT, or before calling any “receive” primitive. Note that
state is saved before calling a receive primitive, not after. Otherwise, the received message (also a part of
the user state) would be saved each time the state is saved, meaning that two copies for each input
message are required. Also, if SAVE were called after "receive”, then the message buffer would have to be
restored in a state restoration.

In the version for Jade workstations, SAVE and RESTORE are two routines written in Assembler.
They are similar to routines in operating systems used to save and restore the execution state of a process
in process scheduling. But the SAVE described in this document saves not only the state of process
execution (see above for the definition) but also the entire data area of a process, likewise for the
RESTORE. This major difference results from the fact that when a process is swapped out in an operating
system, its execution is suspended; the entire data area of the process remain untouched until it is
scheduled to resume execution. In a Time Warp system the user state is taken as a snapshot at a
checkpoint during its execution, so its data area is no longer the same after the snapshot. To restore a
state of a Tipc process, every aspect of the process must be put back to that previous state.

For the workstation version only, the user stack area of a process is saved. This limitation restricts
the user to define, as local, data which changes from state to state and which is relevant to the user state
for the particular application. It is possible to save the global data as well if the underlying download
facility can pass the pointer to the data upon the creation or entry of a new process. The problem is that
large chunks of data which are irrelevant to the state would then be saved unnecessarily. By defining
only those data relevant to the state as local, the space needed for state saving can be reduced to the
extent that only state variables are saved.

-——I —s= current VT

VT4

Q

‘ GVT —=

Q

VT3

€ VT2

start @ O—= VT1

|
|
|
|
: |
|
|
|
l

current event
———mmme— cvents

Figure 13. The Minimum Interval Of State Saving.

- 41 -

5 DEBUGGING AND PRELIMINARY EXPERIMENTS

It is well known that debugging a distributed program is a very difficult job, mainly because of the
nondeterministic nature of distributed systems. The rollback mechanism makes debugging even more
difficult because processes are often in incorrect states before a rollback occurs to set them on the correct
execution path. Many efforts have been made to create development environments that facilitate
distributed programming. Jade is such an effort; it not only served as the base for this implementation,
but Jade tools also greatly helped in the the development and debugging of Tipe.

The Jade Window System has been used intensively throughout the development process, allowing
us to control processes running on different machines. It also provides a program interface, so that the
user can develop new tools using Window System facilities. In fact, a monitor for debugging has been
written using this program interface and has been heavily used in the implementation of our design. This
monitor displays in its own window the Tipc data structures and queues of any processes you wish to
examine in the system, and is driven by menu selections.

All the test programs for Tipc are animated using Jaggies, the Jade graphics tool. The progress of
program execution, each process’s LVT, the GVT, and the rollback of processes are all all displayed with
animated pictures which makes many bugs visible at a glance. Of course, finding and fixing a bug is not
as easy as noticing that you have one in your program!

Several test programs have been written, mainly for the purpose of debugging, but they did
demonstrate the Time Warp approach to synchronization in distributed systems. Testing shows that the
extra overhead demanded by a Time Warp system may not be as high as expected. For this
implementation, about two to three times of the underlying Jipc communication cost are needed for a
corresponding Tipc communication. The cost of a rollback depends to a large extent on the cost of state
restoration. More extensive tests and evaluation of this implementation are under way. Here we give the

algorithms for two test programs in comparison with those suggested by ordinary synchronization
mechanisms.

5.1 The Readers and Writers Problem

This is a mutual exclusion problem. The system consists of a fixed number of processes which share
a single resource, say a file. The scheme of a central scheduling process which grants read/write requests
in the order they are received will not work for an ordinary distributed system because the requests may
not arrive in the order they are made. To solve the problem, an algorithm is suggested in [Lamport78):

”A system of clocks which satisfies the clock condition (given in {Lamport78]), is implemented and
used to define a total ordering of all events. An event is either a request or a release operation.
With this ordering, the major concern of the solution is to make sure that each process learns
about all other processes’ operations. The algorithm can be summarized as the following: to request
the resource, a process sends a timestamped message to every other process and all other processes
send back an acknowledgment message; to release the resource, a process sends timestamped
messages to every other process; each process maintains a request queue and decides locally if the
resource is available to him according to the timestamps of the messages it receives from all other
processes.”

The central process scheme works because Tipc guarantees that the requests will be accepted in the order
they are made. The test program is a simulation of the reader/ writer problem. We assume that a system

.49 -

of clocks similar to that in [Lamport78] is implemented on top of Tipc. A process sends a request message
(either ”read” or ”write” is chosen randomly), stamped with the time from its clock, to a file process
{which simulates the shared resource or the central scheduling process) and it waits for a reply from the
file process indicating that the request is granted. Upon completion of the read or write operation, it
sends a release message also stamped with its time to the file process. Then it does some local computing
for a random amount of time and sends another request. Tipc guarantees that the file process will process
the requests in their send time order. For a request event, only two messages are involved (only one
message for a release event) against 2(n-1) messages (n is the number of processes which share the file) in
the algorithm suggested in [Lamport78]. A process does not have to learn what and when the other
processes make their requests. This algorithm is much simpler than Lamport’s and requires less
communication.

5.2 Conway’s Game of Life

Suppose that there are n by n cells on a board. The rules of the game of Life are that: a cell will
come alive if it has exactly three neighbour cells alive; and an alive cell will die if the number of its alive
neighbours is less than two or greater than three. The game starts with some arrangement of alive cells,
then the life board evolves from generation to generation. For each generation, some cells die, some stay
alive or dead, and some others become alive. In our test program, each cell is represented by a Tipe
process. A cell process sends a message, with its current generation as the timestamp, to each of its eight
neighbours if it is alive for the current generation, then it counts the number of alive neighbours that it
has by counting the number of messages received in that generation. Then it applies the rules of the
game to see if it is alive and repeats. Here the system of clocks ticks with the generations, i.e., the virtual
time of a cell process is the number of its generation. This algorithm allows that some groups of cells
may be many generations ahead if they are kept away from other active groups by a zone of dead cells so
that there is little or no influence between the different groups.

For a non-Time Warp system this algorithm does not work. To make it work, the major change to
the algorithm would be that a cell process must send a message to each of its neighbours to notify then of
its state, then wait for messages from all neighbours in the same generation before it can decide on its
state in the next generation. With this algorithm, all the cell processes are synchronized and proceed at

the same rate. Again, we can see that, for a non-Time Warp system, more communication costs are
involved.

Generally, the system is similar to that suggested in [Cheriton79] - a system of clocks of some type
must be implemented. The difference resides in the fact that, for a Time Warp system, the ordering of
events is "automatic” (guaranteed by the system) as long as correct clock values are assigned to messages.
So, it is not necessary to consider how to keep the events occurring in the proper order, whereas in other
systems, algorithms must be designed in such a way that events occur in a rigid order. In fact, the design
of a clock system is an essential phase in the design of an algorithm for a Tipc system. Once a suitable
clock system has been chosen for an application, the rest of the algorithm is often straightforward. In the
example programs discussed above, a synchronized real time clock system is required for the distributed
readers/writers problem and a logical clock system which counts the number of generations is chosen for
the Game of Life. However, an algorithm which counts excessively on rollback as method of
synchronization may degrade the performance.

- 43 -

6 CONCLUSION

We view Tipc as a distributed software system supporting distributed concurrent processes. It
provides an interface similar to conventional inter-process communication protocols, while obeying virtual
time semantics. It enforces a user-defined temporal coordinate system to partially order the events
happening in the system. The virtual time can be thought of as a resource provided by Tipc as a means of
coordinating distributed systems. Therefore, a major concern in designing algorithms at the application
level is the design of proper clock systems, suitable to the synchronization requirements of the application.
The algorithms themselves may be much simpler compared to those for conventional systems.

The advantages of Time Warp systems include higher concurrency for distributed systems by
eliminating unnecessary waiting, and less communication involved in synchronization as a result of much
simpler algorithms. The costs are the extra communication overhead, the large amounts of memory
required to save message copies and user states, and the cost of rollback. Further investigation is
necessary for evaluating the performance of Tipc and for determining the types of application which are
suitable to Time Warp.

As a new paradigm for distributed systems, Time Warp is feasible and worth experimenting with.
The efficiency of Tipc is much higher than might be expected for such a complicated system. In fact, the
major portion of the system overhead still lies in Jipc, which was primarily designed for reliability and
program development, not speed.

Acknowledgements

This project has involved many people. The specifications for Tjipc and Tipc are the result of a
series of discussions among those who were involved or interested in Time Warp. I would like to express
my sincere thanks to Dr. Brian Unger, who was my supervisor and the director of this project during my
visit to the University of Calgary for the opportunity, the support, and the advice he provided. I would
also like to thank Dr. John Cleary and Greg Lomow for their numerous ideas and suggestions. Thanks to
Konrad Slind who worked on the Unix version of Tipc and will continue to work on this project, for his
help, especially his careful editing of this paper. I am also grateful to Li Xining who first explored and
experimented with the Save_Restore level.

There are so many people in the Computer Science department of the University of Calgary, and in
the Jade project, that I would like to thank. My special thanks go to Murray Peterson for the
consultation he gave whenever I asked. Forgive me for not being able to mention everyone.

- 44 -

REFERENCES

Chandy, K.M., and Misra, J.
”Asynchronous Distributed Simulation via a Sequence of Paralle] Computations.”
Communications of the ACM, 24(4), 198-206, April 1981.

Cheriton, D.R., Malcolm, M.A., Melen, L.S., and Sager, G.R.,
”Thoth: a portable real-time operating system”
Communications of the ACM, 22(2), 105-115, Feb 1979.

Jade User’s Manual

"Part I: Developing Distributed Systems in Jade, Part II: The Jade Workstation, Part III: The Jade
Graphics System, Part IV: An Example System.”
Research Report, Department of Computer Science, University of Calgary, October 1985.

Jefferson, D.R., and Sowizral, H.A.
"Fast Concurrent Simulation Using the Time Warp Mechanism, Part I: Local Control”
Technical Report, The Rand Corporation, Santa Monica, California, December 1982.

Jefferson, D.,
"Virtual Time”
ACM Transactions on Programming Languages and Systems, 7(3), 404-425, July 1985.

Joyce, J., Lomow, G., Slind, K., and Unger, B.
"Monitoring Distributed Systems.” to appear in ACM Transactions on Computer Systems.

Lamport, Leslie,
"Time, Clock, and the Ordering of Events in a Distributed System”
Communications of the ACM, 21(7), 558-565, July 1978.

Lomow, G.A., and Unger, BW.
"Distributed Software Prototyping and Simulation in Jade?”
Canadian Journal of Operational Research and Information Processing, 23(1), 69-89, February 1985.

Peacock, J.K., Wong, JW., and Manning, E.G.
"Distributing Simulation Using a Network of Processors”
Computer Networks, 3(1), 44-56, February 1979.

