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Abstract 

The Transport Control Protocol (TCP) is widely deployed and is used by the current 

implementation of Grid File Transfer Protocol (GridFTP) for data transfers within 

grid environments. Due to TCP dynamics, throughput of data transfers can be much 

lower than the available bandwidth in heterogeneous, high bandwidth networks. 

Splitting a TCP connection into two or more sequential segments has been shown to 

improve throughput on these types of networks. 

This thesis presents a set of components that enable the deployment of over-

lay networks that make use of split-TCP connections to improve GridFTP transfer 

performance. The components include an extension to the Globus Toolkit version 

4 GridFTP server that supports split TCP connections, a service to estimate bulk 

transfer capacity and a service to determine if and where to split a connection. 

Results of experiments presented demonstrate average throughput improvements in 

excess of 100% for connections using proxies are obtainable despite using very simple 

observations to determine the routing of the split connections. 
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Chapter 1 

Introduction 

A clear trend in high performance computing (HPC) is the movement towards the 

Grid Computing paradigm; the presentation of computation, storage, networking and 

instrumentation resources as a set of services. Such a set of Grid services represents 

an HPC research infrastructure, or grid. The term "grid" is a result of a metaphor 

comparing the provision of resources to an electrical grid. Diverse sets of these 

resources from more than one administrative domain can be combined to quickly 

develop and deploy large distributed applications to address problems that were 

previously intractable. In order for this to occur, these services would ideally be as 

readily available as electricity is from an outlet. 

The realization of a grid computing infrastructure requires the development of 

middleware that makes resources available and provides support services. Providing 

resources such as computation facilities and scientific instrumentation as services 

requires the development of well defined interfaces. Support services provide func-

tionality that is required by most distributed scientific applications such as resource 

discovery, security, meta-scheduling, workflow, and data management. 

This grid infrastructure is also placing increasing demands on the networking in-

frastructure. The increasing amount of instrumentation, from medical devices that 

allow doctors to observe patients remotely, to large sensor nets in the ocean, are of-

ten connected to the Internet via non traditional network technologies such as radio 

and ad-hoc wireless networking. These media have higher error rates. This results 

1 



2 

in a increasingly complicated network topology that includes wireless and optical 

networks. The growing interest in on-demand networking with Quality of Service 

(QOS) guarantees will likely further complicate network technologies. As the num-

ber of instruments grow, the amount of data available to researchers also expands. 

Global consortia which pool databases, storage and computational resources mean 

the data and location of computation are farther apart. Meanwhile, the networking 

technologies being used to transport the data were not developed for these envi-

ronments and can not meet data transfer speed requirements despite the physical 

infrastructure being theoretically capable of transmitting the data fast enough. For 

example the Transmission Control Protocol (TOP), the most commonly used proto-

col for file transfer assumes all loss is due to congestion, whereas many links have 

a high level of loss due to uncorrectable bit errors. TOP also has no mechanism to 

effectively take advantage of QOS guarantees. The gap between the data transport 

needs of the rapidly evolving grid infrastructure and current networking standards 

is widening. 

An example of the current networking standards not meeting the needs of new 

grid applications is the ICE project. Data from sensors and cameras on the Con-

federation bridge is collected by a computer on the bridge and stored on magnetic 

tape drives. The tapes are then physically transported off the bridge to other loca-

tions for analysis. Ideally, the data would be transferred off the bridge automatically 

via the wireless link that connects the computer on the bridge to the University of 

Prince Edward Island. The software being used to gather the data on the bridge is a 

legacy application using an operating system that has limited choices for file transfer 

clients. This makes transporting the data from the site via the network difficult 
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despite the ability of the network to handle the data flow. The flow experiences 

a high bit error rate over the wireless link which is erroneously interpreted by the 

underlying transport protocol (TOP) as congestion and the send rate is needlessly 

throttled back. This results in transfer speeds that may be too low to keep up with 

the amount of data being generated despite the fact that each individual link is 

capable of transporting the data over noisy links at the necessary speeds. 

The utilization issues TOP experiences in heterogeneous environments such as the 

ICE project occurs because network engineers generally adhere to to the principles 

espoused in the "end-to-end" argument [77]; the network should simply move data 

while any intelligence remains exclusively on the edge of the network. The Internet 

is based on best effort packet delivery and includes no mechanism for the network to 

communicate its state of congestion to the edges except by dropping packets. This 

means that the longer and more complicated the network becomes, the less capable 

the edges are of efficiently using the network. 

It has been recognized for some time, that as networks become faster and more 

heterogeneous, TOP's ability to utilize the network will become worse. One way 

to to overcome TOP's limitations on these networks is to split a TCP connection 

into multiple shorter segments connected in series in order to improve performance. 

These segments are connected by proxies that provide additional buffer space and 

negotiate the TOP connections. This has generally been done for specific network 

topologies such as wireless [8, 10, 17], satellite [12], and hybrid Coaxial cable net-

works [20] because the high bit error rates, combined with high latency, .make TOP 

very inefficient on these networks. The use of proxies to split a TOP connection in 

this manner was likely not considered in the general case because the routers would 
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require too much memory to carry out this duty for all traffic. It is also not appro-

priate for the network to make the decision of whether or not to use proxies because 

applications have different needs. Proxies are useful for improving throughput but 

can increase latency for example. 

The development of grid services now make it viable in certain circumstances to 

make use of splitting a connection via a proxy at the application layer. Resource 

discovery services provide the necessary information to decide when and where to 

split a connection. New security protocols make it easier to manage access to proxies 

and new data transfer services can provide an efficient mechanism for using proxies. 

Splitting connections in this manner can be seen as making a proxy's network ac-

cess available to other hosts. The work presented in this thesis seeks to provide the 

services required to split connections in order to improve file transfer performance. 

It provides the discovery, authentication, and resource management components re-

quired to use proxies to overcome network inefficiency that results from the latency 

and diversity in network resources. The components of the system form a Grid File 

rfi.ansfer Protocol (GridFTP) overlay network that enables GridFTP clients and 

servers to utilize split-TOP connection in GridFTP transfers. 

It is possible that at some point in the future, other protocols that are more 

effective in transferring large amounts of data in wide area networks could be used 

in place of TOP. The Globus Toolkit A GridFTP server was developed with an 

eXtensible Input/Output (XIO) [3] library that makes it possible to replace under-

lying protocol modules for this very reason. However, the replacement of TOP with 

protocols that more effectively utilize bandwidth will take a considerable amount of 

time. A version of TOP's Selective Acknowledgements was first suggested in 1988 
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and the final RFC on which implementations are based is dated 1996 [59]. This eight 

year lag represents only one measure of the time from suggestion to an adopted RFC 

and does not consider the time it took for vendors to actually adopt and implement 

the option. This change represents an incremental change to an already existing 

protocol in which only the endpoints need to be modified. A protocol that replaces 

TCP would represent a much more significant change that likely includes more than 

just the edges of the network and therefore might take considerably longer. The 

proxy mechanisms developed in this thesis are an effective way to overcome TCP's 

inefficiencies while other protocols are being developed, tested and deployed. When 

new protocols are developed the proxy mechanisms developed here can still be used 

to make efficient use of on-demand bandwidth technologies. The mechanisms here 

could also be used to link legacy applications to more effective transport mechanisms. 

The rest of this thesis is organized as follows. Chapter 2 provides background of 

various grid and networking technologies. TCP and its failure to effectively utilize 

bandwidth in certain networking environments is discussed. Chapter 3 provides 

a survey of previous work in improving TOP's performance and high performance 

data transfer. Chapter 4 presents the design and rational of the GridFTP overlay 

network. Chapter 5 presents both emulation and empirical performance results of 

the GridFTP overlay network. Chapter 6 provides a summary of the thesis and 

suggests future work. 



Chapter 2 

Background 

This chapter presents background on the technologies relevant to the GridFTP Over-

lay Network Service. Grid technologies that provide security, resource discovery, data 

management, and data transfer are discussed. An overview of network protocols is 

given, with TCP more closely examined as it is the most widely used protocol for file 

transfer and the underlying protocol used by GridFTP. The GridFTP overlay net-

work utilizes GridFTP protocol. The chapter concludes with an overview of overlay 

networks and other peer to peer (P2P) technologies. 

2.1 Grid Computing 

This section discusses some of the current grid computing technologies. These tech-

nologies are used to develop higher level services such as the GridFTP overlay net-

work. 

There have been efforts to arrive at common standards within the grid community 

since 1998 [37]. The Global Grid Forum (GGF) is a community of users, developers 

and vendors that worked towards this standardization. This eventually led to the 

Open Grid Services Infrastructure (OGSI) which defined a Grid service as a Web 

service that conforms to a set of conventions that define the interaction between a 

client and a Grid service [26]. In March of 2006, Hewlett Packard, IBM and Microsoft 

announced a commitment to develop a common set of specifications for stateful Web 

6 



7 

service access, management, event handling and notification [34]. The combined 

clout of these vendors helped overcome obstacles towards the adoption of a common 

standard by various stakeholders. The Web Services Resource Framework (WSRF) 

that was developed essentially replaced OGSI and was adopted by most stakeholders 

as a standard on how to present Grid services as stateful Web services. 

The majority of grid computing technologies used by the GridFTP overlay net-

work are pieces of the Globus Toolkit version 4 (GT4) [33]. The Globus Toolkit has 

become the de facto standard for grid computing interfaces and the globus develop-

ers are committed to conforming to the WSRF standard [34]. The toolkit consists of 

a set of components providing low level functionality required by many grid services 

or distributed applications that make use of grid technologies. The functionality in-

cluded in the Globus Toolkit includes security, resource discovery, data management 

and execution management. The types of services being developed are numerous and 

only the security, resource discovery and data management tools included in GT4 

that are relevant to the GridFTP overlay network are discussed here. 

2.1.1 Security 

Grid Security Infrastructure (GSI) [35] is an X.509 certificate based credentialing 

scheme that provides authentication and authorization functionality. GSI uses a 

globally unique Distinguished Name (DN) to uniquely identify any subject. A sub-

ject may be a user, resource or program. A credential is any piece of information 

used to identify a subject [35]. GSI uses X.509 certificates as its credentials. The 

authentication algorithm is defined by the Secure Socket Layer Version 3 protocol 

(SSLv3). This scheme includes a signature algorithm that verifies a subject holds 
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a private key assumed to be accessible by only the subject. The most important 

feature of GSI is that any subject can create and sign a set of certificates referred to 

as proxies and delegate them to a process. This proxy is then used by the process to 

prove that they represent the subject in question. A process that holds a proxy can 

then use it to sign and delegate another proxy to another sub process. These proxy 

certificates form a chain of signatures up to the original signing certificate authority. 

The certificate authority is used as a trusted third party between any two subjects. 

So long as both subjects of an authentication exchange trust the same certificate 

authority, they can trust the validity of the credential certificate they are being 

presented with. The use of delegated proxies provides single sign on functionality 

allowing applications to integrate resources from multiple administrative domains. 

2.1.2 Monitoring and Resource Discovery 

GT4 includes a Monitoring and Discovery Service (MDS4) [79]. This suite of web 

services can be used to publish any information about a resource that may be mean-

ingful. For example, an organization may want to advertise the capabilities of a 

cluster such as how many nodes are in the cluster, the memory available on each 

node, and how to submit jobs to the cluster. A job meta-scheduler can then use 

this information to discover resources that match a particular job's requirements. 

Libraries and client tools allow applications to easily publish and retrieve this infor-

mation. 

In addition to information for resource discovery, monitoring data is necessary for 

performance analysis, tuning and resource selection [43]. For example, an application 

choosing from several data sources to retrieve files from may wish to use information 
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about network load or available bandwidth in order select the source that will finish 

the transfer first. 

MDS4 was designed to deal with the scalability issues inherent in grid environ-

ments. The system has a hierarchical structure allowing locally managed information 

sources to be easily aggregated. MDS4 has a soft consistency model; the data is not 

guaranteed to be the most recent. Any information registered with MDS4 also has 

a limited lifetime, ensuring that outdated information is automatically removed. 

2.1.3 GridFTP 

The GridFTP protocol is defined by the Global Grid Forum Recommendation GDF.020, 

RFC959, RF02228 and RFC2398. It is an extension of the FTP protocol, providing 

features useful for performing high performance data transfers within a grid environ-

ment. These features include (but are not limited to) [2]: 

• Grid Security Infrastructure (GSI). 

• negotiated TCP buffer sizes. 

• support for parallel transfers. 

• support for partial and reliable file transfer through the use of restart markers 

that indicate what pieces of a file have been moved. 

GridFTP is used on a large number of high performance computing sites because 

it is easier to attain high throughput transfers with it. The most important features 

contributing to this are the negotiated TCP buffer sizes and, in some environments 

parallel streams. 
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2.1.4 Data Management 

Reliable File Transfer (RFT) [56] is a service that provides reliable transfer of files 

resilient to network and host computer failures. Without RFT, if a client fails or the 

host the client is on shuts down, the transfer must be restarted from the beginning 

unless the client saves the state of transfers itself. RFT accepts a list of file transfers 

to perform, along with a proxy certificate to use to authenticate, and then attempts 

to transfer the files. RFT makes use of GridFTP's restart markers and partial file 

transfer options to efficiently restart transfers that failed partway through. This 

state information is stored in a database so that the transfer can survive a restart of 

the computer hosting the RFT service, RFT will continue to attempt to finish all 

transfers until a user specified deadline. 

The significance of RFT to the GridFTP Overlay Network service is that RFT 

provides a higher level service than the overlay network. Ideally RFT should be 

able to make use of the proxies with little or no modification. RFT only accepts 

URL pairs as input which means in order make use of both RFT and proxies to split 

GridFTP connections, the proxy information would have to be embedded in URLs. 

The GridFTP servers would then interpret the requests appropriately. 

2.2 Network Protocols 

This section discusses the network protocols commonly used by most applications in 

todays Internet, including file transfer applications. 

Network protocols are typically defined in layers with each layer responsible for 

different functions [81]. Different protocols at the same layer tend to provide a 
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different quality of service such as whether packet delivery is guaranteed or not. 

The International Standards Organization (ISO) defined a seven layer Open System 

Interconnect (OSI) model as a networking standard [45]. In practice, a simplified 

four layer model was actually put into wide use. It is referred to as the TCP/IP 

protocol suite or the Internet protocol suite [81]. The suite's four layers include 

Application Layer: Application specific protocols such as FTP or telnet. 

• Transport Layer: Provides the movement of data between two hosts. The two 

most widely used transport layer protocols are the Transmission Control Pro-

tocol (TCP) [71] and the User Datagram Protocol (UDP) [70]. UDP is a best 

effort protocol with no congestion control. In the absence of any application 

layer congestion detection, dropping packets at network interfaces and routers 

is the only way to control UDP traffic. Applications using UDP have to handle 

reliability themselves. TOP, on the other hand, provides reliable transmission 

with congestion control. This means TOP reduces the software development 

effort as it frees application programmers from implementing functionality re-

lated to transmission of data across the network. For these reasons, TOP is by 

far the most widely used protocol on the Internet and represents between 60% 

and 90% of the traffic [32]. TOP is discussed in detail in section 2.3. 

• Network or Internet Layer: Provides functionality necessary for the movement 

and routing of packets around the network. The Internet Protocol (IP) [1] 

provides connectionless packet based, unreliable data transfer. In this case the 

term unreliable indicates that the IP protocol does not guarantee that packets 

will arrive, that the ordering of packets will be maintained or that the data is 
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not corrupted along the way. 

• Link Layer : Handles all hardware level details of data transmission. This 

layer includes both the device driver in the operating system and the network 

interface card. 

One important detail regarding the TCP/IP protocol suite is that the application 

layer is typically implemented in user space, while the other 3 layers are implemented 

in kernel space [81]. This is not a requirement of the TCP/IP protocol suite, but 

most TCP/IP protocol stacks have been implemented in this manner. The result 

of this convention is that a system designed to improve throughput that operates 

at the transport or network layer requires a modification of the kernel. These types 

of changes can be difficult to deploy. In comparison any modifications done are the 

application layer are much easier to deploy because they only require building the 

new application. The advantage of modifying a lower layer protocol such as the TCP 

at the transport layer means that all applications using the protocol can make use 

of the change with little or no modification. 

2.3 Transport Control Protocol 

TCP is one of the most widely used protocols on the Internet and is the most 

often used protocol for file transfer. However, TCP fails to utilize a significant 

portion of available bandwidth in some environments. This section describes the 

TCP protocol then explains some its shortcomings. The environments in which TCP 

fails to effectively utilize bandwidth and some of the reasons for this ineffectiveness 

are discussed. 
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2.3.1 The TCP Congestion Control Protocol 

The TCP protocol [71, 5] provides guaranteed, in-order-delivery of packets with con-

gestion control. This section describes the TCP congestion control protocol and the 

problems it encounters in modern networks. The TOP congestion control protocol 

is window based. The size of the window defines how much data can be in transit at 

any one time. The protocol consists of four algorithms; slowstart, congestion avoid-

ance, fast retransmit, and fast recovery. These algorithms make use of the following 

variables: 

Flight Size: The amount of data that has been sent but not acknowledged. 

• Round Trip Time (RTT) : The interval of time between the moment a packet 

is sent and the moment acknowledgment of the same packet is received. The 

RTT of a particular connection is assumed to vary little and an estimate of 

RTT is maintained for each connection. 

• Maximum Segment Size (MSS) The maximum segment size is the maximum 

size of a TCP/IP packet, excluding the TCP/IP headers. 

• Receiver Window (rwnd): A TOP variable advertised by the receiver indicating 

the amount of data it is willing to receive. The flight size must never exceed 

rwnd. This prevents the sender from transmitting data faster than the receiver 

can consume it. 

• Congestion Window (cwnd): A TOP variable used in determining the amount 

of data to send. Cwnd is increased and decreased in response to congestion (or 

lack thereof) on the network. The flight size must never exceed cwnd. 
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• Loss Window (LW): The size of cwnd after the sender detects loss using a 

retransmission timer indicating an acknowledgment for a packet has not been 

received after a delay based on RTT or a constant upper bound. It is the size 

of one full sized segment. 

• Restart Window (RW): The size of cwnd after TCP restarts transmission after 

and idle period. 

• Initial Window (1W): The initial size of cwnd. 

• ssthresh : A variable used to determine whether to use the slow start or con-

gestion avoidance algorithm. 

• Timeout : The maximum duration of time allowed for a segment to be ac-

knowledged. This is only used when RTT is unknown. 

The TCP congestion control protocol begins with the slowstart algorithm. This 

phase is used to determine the available bandwidth over the link. During this phase 

cwnd is increased at most one MSS for each ACK received that acknowledges new 

data. The increase in window size is linear with respect to the number acknowl-

edgments received but the rate at which acknowledgments are received increases 

exponentially because the full window size is sent in a fixed interval equal to the 

RTT. When slowstart begins, the window size will be one segment. When this seg-

ment is acknowledged in approximately on RTT, the window size is increased to two. 

When the acknowledgments are received for the two segments (again in one RTT) 

the window size will be increased to four. The window size is doubling every RTT. 
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This provides an exponential increase in cwnd. TCP stays in slowstart until ssthresh 

is reached or congestion is encountered. 

The congestion avoidance algorithm is used when cwnd is greater than ssthresh. 

During this phase, the congestion window is increased by at most MSS plus the size 

of TCP/IP headers per RTT. This linear response is referred to as additive increase. 

Congestion is detected by either a timeout or duplicate acknowledgments. Con-

gestion is detected by a timeout when the sender has received no acknowledgments 

from the receiver for specified amount of time after data has been sent. The receiver 

can also actively indicate a dropped packet by sending an acknowledgment when it 

receives out of order packets, These are referred to as duplicate acknowledgments 

because they indicate the same last data packet received (IE. the last one received 

in-order). When congestion is encountered, ssthresh is cut in half (subject to a mini-

mum of 2 MSS). This response is referred to as multiplicative decrease. The additive 

increase in cwnd during the congestion avoidance phase and multiplicative decrease 

when congestion is encountered, just described, is often referred to as TCP 's Additive 

Increase/ Multiplicative Decrease (AIMD) algorithm. 

There are some exceptions to the Multiplicative decrease. If congestion is indi-

cated by a timeout, the congestion window is reduced to the Loss Window size. If 

the congestion is indicated by 3 duplicate acknowledgments, ssthresh is set to 1/2 

the current flight size. The congestion window is set to (ssthresh + 3) x MSS. This 

keeps the number of packets in flight equal to the new ssthresh because of the 3 

duplicate acknowledgments implies 3 packets have left the network. Each new ac-

knowledgment indicates that another packet is no longer in flight and a new packet 

is sent. This process is maintained until new data has been acknowledged. This is 
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referred to as the fast retransmit/fast recovery algorithm. In addition to detecting 

congestion, the congestion window is also reduced to Initial Window if no data has 

been transmitted for more than than one retransmission timeout. 

2.3.2 TOP Metrics 

There are a large number of metrics that can be used to evaluate the performance 

of the TCP protocol; the protocol used by GridFTP. This thesis focuses on the 

following metrics with the following two definitions: 

• Bulk Transfer Capacity: Bulk Transfer Capacity (BTC) is a measure of a set 

of ],inks' ability to transfer large amounts of data over a single congestion aware 

transport layer connection such as TOP [58]. It is more formally defined as: 

BTC = uniquedata_transferred/elapsed_time 

BTC is a measure of achievable effective throughput, as opposed to available 

bandwidth. Available bandwidth is the maximum rate of a new flow that will 

not reduce the rate of existing flows [49]. Achievable effective throughput is the 

unique data throughput actually achievable by an application. This is affected 

by a variety of factors including characteristics of the link such as latency, max-

imum transmission unit, packet loss and the available bandwidth. BTC is also 

affected by the specific implementation of TCP being used. TCP's congestion 

control algorithm, as formally defined by RFC 2581 [5] leaves enough choice 

in implementation of the algorithm to have a significant effect on through-

put [58]. These choices include the specific way in which cwnd is increased 

during congestion avoidance. Whether or not specific loss recovery algorithms, 
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such as selective acknowledgments (SACK) [59], are used can also have a signif-

icant effect on throughput. SACK is an optional extension to TCP that allows 

the receiver to acknowledge packets that have arrived before earlier sequenced 

packets. 

Achievable throughput is usually lower than available bandwidth but it has 

been noted [49] that achievable bandwidth may be greater than available band-

width due to the effects of the new stream on pre-existing streams. New streams 

may cause pre-existing streams to reduce their window sizes, opening up addi-

tional bandwidth on the bottleneck link. In addition to network characteristics, 

throughput can also be affected by disk access speeds and the load on the com-

puter. The BTC of a connection is the best predictor of the goodput of a 

specific data transfer. Goodput uses the same formula given above for BTC 

and is a common measure of the performance of an individual transfer. 

• Variance in throughput: Variance in throughput is the degree to which the 

transfer time of a file is different depending on when it is sent. Some of this 

variance is the result of non-stationarity in network traffic levels. Some of this 

variance is the result of the protocol used. A lower variance in transfer time 

is useful to meta-schedulers that must co-allocate network, disk and compute 

resources. 

2.3.3 Models of TCP performance 

There is a great deal of literature on modelling TCP/IP. In [60] a reasonably simple 

model is used that predicts throughput quite well when the probability of losing 
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packets is small. Given a connection's maximum segment size (MSS), round trip 

time (RTT) and loss probability p, the model of bandwidth (BW) can be stated as: 

MSS * C  
RTTJ 2.1 

In this model, C is a constant that encapsulates several details about the specific 

TOP implementation and the loss model used. For example given periodic loss (as 

opposed to random), and a TOP implementation that acknowledges every packet, 

o = /3/2. With a delayed acknowledgment strategy, C = \/3/4. This model 

assumes that the connection is limited by the congestion window and not the receive 

window. It also does not model timeouts or slowstart. 

A more complicated and more accurate model is presented in [66]. This model 

takes into account timeouts. Taking timeouts into account may have relevance in 

understanding the throughput of split-TOP connections as it has been suggested 

that the lower variance of RTT may result in fewer spurious timeouts [84]. A spu-

rious timeout means it was determined that a timeout occurred when the data was 

not actually lost, there was just significant delay. This makes the TOP connection 

needlessly throttle back throughput. The extent to which this effects the throughput 

has never been examined. 

The model of TOP performance given in equation 2.1 provides insight into why 

splitting a TOP connection can improve throughput. In a split connection with two 

segments, the two segments have a predicted throughputs .8W1 and BW2 of: 

BW1 - MSSI*C IDTXT MSS2*C 
- RTTiJr' JVV2 --  RTT,.J 
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Where: 

• C=/3/2 

While the original connection has a throughput BW of: 

BWt mm (MSS1,MSS2)*C  
- (RTT1 +RTT2 )'/pi +p2 - plp2 

BW is always less than BW1 and BW2, therefore, a throughput gain for a split 

connection is guaranteed according to these models if the assumptions of the models 

hold, and the throughput of the split connection can be assumed to be mm (BW1, BW2). 

2.3.4 TCP on High Bandwidth Delay Product Links 

The TCP congestion protocol has very poor link utilization in high bandwidth, high 

latency networks. These have also been referred to as high bandwidth delay product 

(HBDP) networks or long fat networks (LFNs) [48]. The utilization is particularly 

low when individual flows have HBPDs [52]. The bandwidth delay product (BDP) is 

the amount of unacknowledged data that must be on a link in order for the available 

(or maximum) bandwidth to be fully utilized. It is defined as the product of the 

bandwidth of the slowest link along the path and the round trip time. A high 

bandwidth delay product link is one in which the BDP is greater than the buffer 

space available in the routers along the path [55]. 

The poor performance of TCP on HBPD links is in part a result of its oscillation 

around the ideal send rate. TOP must do this because of the binary nature of the 

congestion signal; either the network is congested and a packet is dropped or it was 

not congested. When packet loss occurs, it was assumed to be because a buffer in 
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the network was full and a packet was dropped. TOP cuts its throughput in half 

when this happens. It was assumed that this would not waste bandwidth because the 

bottleneck link had a full buffer to empty out [47]. This leads to the rule of thumb 

that the router buffer be as large as the BDP [90]. However, this requirement is not 

particularly feasible with HBPD networks with individual flows in the range of 1 - 10 

Gbps since the buffers required would be too expensive [52]. While using very large 

buffers might help overcome the oscillation of throughput in TOP flows, it would 

also introduce undesirably large amounts of jitter and queueing delay. In addition, 

large buffers tend to result in a synchronization of flows [72]. A synchronization 

of flows can result in underutilization of the network because all the TOP flows 

will experience loss and reduce their window size simultaneously. The simultaneous 

reduction in window sizes may cause the aggregate window size of all flows to be too 

small to effectively utilize the network [78]. 

In addition to requiring large buffers in routers for effective utilization of band-

width, TOP requires very low packet loss rates in order to maintain throughput on 

the order of Gbps and higher. TOP's AIMD response maintaining large cwnd requires 

low loss probability due to the saw tooth pattern of the TOP congestion avoidance 

algorithm [27, 52]. An average congestion window for a standard TOP implemen-

tation is 1.2/i segments, where p is the loss probability of a packet [31]. This 

response function implies standard TOP may fail to perform effectively in HBPD 

networks even with well tuned TOP implementations. The following example will 

demonstrate the difficulty. 

Given a standard segment size of 1500 bytes, a round trip time (RTT) of 0.1 

seconds and available bandwidth of 1 Gbps the following analysis can be made. The 
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bandwidth delay product of this network is 100 Mb or 12.5 MB. In order to fully uti-

lize the link the window size would have to be 12.5 MB. This is 12.5 MB/1500 Bytes 

= 8738 segments. Given the response functionm, this implies a loss probability of 

(1.2/8738)2 or approximately 1.8 x 10-8. A packet loss probability of 10-8 represents 

a bit error rate of 10-12 [52] assuming no packets are lost due to congestion. 

TOP also suffers from low link utilization because the response to newly available 

bandwidth is too slow. The linear increase of 1 packet is too slow when additional 

bandwidth becomes available [52] such as when a TOP stream leaves. On HBDP 

networks, realizing the additional bandwidth can take on the order of minutes. It is 

also not feasible to generally increase the window at a faster rate because when the 

window is small, even increasing by 1 packet per RTT is too aggressive to maintain 

stability [47, 72]. 

TCP is also well known to be unfair to flows with a relatively high RTT [55, 40]. 

This is primarily the result of the fact that TOP increases its window size at a rate 

tied to RTT in both slowstart and congestion avoidance. This results in throughput 

being inversely proportional to RTT when multiple connections share a bottleneck 

link [55]. 

If for any reason, the TOP window is not as large as the BDP the link will be 

under-utilized. This factor indicates the importance of properly sized TOP buffer 

sizes. This requirement results in a large number of computers poorly configured to 

perform well over HBPD links, including high performance computers intended for 

scientific research [74]. 
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2.3.5 TCP in Heterogeneous Networks 

TOP interprets all packet loss as a result of congestion only. However, many net-

works encounter relatively large amounts of uncorrectable physical bit errors. Poor 

utilization as a result of this erroneous assumption has been observed in wireless 

networks [8], satellite links [12] and coaxial cable networks [20]. TOP treats these 

packet losses as a congestion signal and reduces the window size. This results in the 

window size never getting large enough to fully utilize the network. 

TOP has also been shown to perform poorly over asymmetric links; links in 

which the characteristics of the path taken by the acknowledgements (rather than 

the data) affect throughput. Limited bandwidth, high loss or a high variance in 

RTT on the acknowledgements path can result in asymmetry. Asymmetry is often 

associated with media such as cable modem networks, satellite [24] and Asymmetric 

Digital Subscriber Line (ADSL) networks [9]. Asymmetry can, however, occur over 

traditional wired links as well. This can occur due to a faulty line in one direction 

or the routing in each direction may be different. Analysis of routing asymmetry 

has previously indicated that 49 % of internet paths show some assymetry and 20% 

show differences in more than 1 hop [68]. 

If the bandwidth on the path of the acknowledgements is not large enough for the 

acknowledgements sent, this will clearly limit throughput. Whether the difference 

in bandwidth has an effect on throughput depends on the normalized bandwidth 

ratio [9]. The normalized bandwidth ratio, k, is defined as the ratio of the raw 

bandwidths divided by the ratio of the packet sizes. If more than one acknowledg-

ment is sent for every k data packets, the asymmetry will affect throughput. For 
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example, if 1500 byte data packets have available bandwidth of 10 Mbps and the 40 

byte acknowledgements have an available bandwidth of 100 Kbps, the normalized 

bandwidth ratio is 2.67. If the TCP implementation acknowledges every 2nd packet, 

the connection will be limited by the asymmetry of the link. The effect of bandwidth 

asymmetry is significant for split-TCP implementations because, unless split TCP 

is done at a router, the second connection can create bandwidth asymmetry for the 

first by using up the bandwidth on the outgoing link from the proxy. The outgoing 

data channel interferes with the acknowledgements for the incoming data channel. 

Depending on the specific topology, asymmetric bandwidths can cause burstiness 

in the sender, slow rates of window growth, idle periods, and a disruption of fast 

retransmit. A high variance in RTT means the TOP connection cannot determine a 

timeout in a reasonable amount of time. This can lead to large periods of time with 

no throughput at all when the variance of the acknowledgment path is very high [9]. 

2.4 Overlay and Peer to Peer Networks 

Closely related to the grid computing are peer-to-peer (P2P) technologies and overlay 

networks. Peer-to-peer systems are distributed systems consisting of interconnected 

nodes for the purpose of sharing resources [7]. There is generally a large focus on 

their ability to function without a central server and have transient populations of 

hosts [7]. In most cases this has been restricted to utilizing a computer's bandwidth 

and storage abilities to distribute files. One of the significant differences between 

P2P technologies and Grid technologies is grid technologies have a stronger focus 

on standardization to realize computing resources as a utility, or an infrastructure. 
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The peer-to-peer domain on the other hand has tended to consist of stand-alone 

applications that do not inter-operate [7]. 

Overlay networks and P2P systems are closely related concepts. Overlay networks 

create a virtual topology on top of an existing network or physical topology [22]. Most 

peer-to-peer systems are overlay networks because they create a virtual topology 

over the Internet to communicate or distribute data. Overlay networks tend to 

be somewhat self organizing so they can also be classed as peer-to-peer networks. 

Whether a system is referred to as an overlay network or a peer-to-peer network 

seems to be a function of the system's properties. If most of the benefits of the 

system are a function of the fact that it has its own virtual topology, it is referred 

to an overlay network. If the systems benefits are primarily from the distributed use 

of peers resources, it is referred to as a peer-to-peer system. Overlay networks have 

been used to improve the throughput and connectivity of the Internet [6] and are 

discussed more thoroughly in Chapter 3. 

2.5 Summary 

This chapter presented background on the technologies relevant to the GridFTP 

Overlay Network Service. These technologies provide the security, resource discov-

ery, data management and data transfer services required to enable the use of proxies 

to split a GridFTP connection into a series of shorter contiguous TOP segments. 

TOP has poor utilization on high bandwidth delay product links and in heteroge-

neous environments. The splitting of a connection into several shorter segments can 

improve the performance of TOP in these environments. The GridFTP Overlay net-
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work could be considered a peer-to-peer technology because it is distributing the use 

of computer memory, P2P technologies are, however, typically more resilient to tran-

sient populations and self organizing than the GridFTP Overlay Network Service is 

designed to be. 



Chapter 3 

Related Work 

There is a large body of research related to high performance data transfer. Because 

TCP is the most commonly used protocol for data transfer, there is also a great deal 

of work done on improving TCP performance on links with high bandwidth delay 

products (HBDP), high error rates, and heterogeneous networks. This research has 

included the creation of many variations of TOP, application level solutions, and new 

transport layer protocols. Due to the large volume of work in these areas, a complete 

survey is not possible here. This chapter outlines some of the work on improving 

TOP or alternative protocols for high performance data transfer. 

3.1 Variations of TCP 

TCP was originally specified in RFC 793. It has since been refined, updated and 

extended with RFCs 2581 and 3390. The TOP algorithms described in section 2.3 

were first completely implemented in TCP Reno. A great deal of research has been 

done suggesting further improvements to TOP. Some changes represented funda-

mental improvements such as Selective Acknowledgments (SACK) which was widely 

adopted. A number of modifications to TOPs congestion control algorithm have 

been suggested to overcome TOPs utilization issues in high bandwidth delay prod-

uct (HBPD) environments. Some of these changes were fundamentally different than 

the congestion control algorithm suggested in RFC 2581 such as using changes in 

26 
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round trip time (RTT) as a congestion signal whereas other simply made the existing 

additive increase, multiplicative decrease (AIMD) algorithm more aggressive. This 

section describes a small portion of these suggested changes. A full survey is not 

possible here due to the volume of research in this area. 

3.1.1 SACK 

TCP SACK [59] allows the receiver to acknowledge packets that have arrived before 

earlier sequenced packets. This allows the sender to resend just the dropped packets 

as well as new data. Without SACK) the sender must either retransmit at most 

one dropped packet per RTT or retransmit successfully received packets [29]. TCP 

SACK was originally designed to improve performance on heavily congested networks 

resulting in multiple packet drops. However, it has also been shown to improve 

performance on uncongested high-speed wide area networks when errors are clustered 

together [65]. As of 2004, studies have indicated that 68% of web servers indicated 

they were SACK enabled by sending the SACK-PERMITTED option although only 

54% actually made use of the SACK options [62]. 

3.1.2 VEGAS 

TCP Vegas [16] differs dramatically from other TCP implementations in that it does 

not rely exclusively on dropped packets to detect congestion. Other TCP implemen-

tations are dependent on actually causing losses due to congestion to discover the 

available bandwidth. 

As a TCP connection's send rate approaches available bandwidth, the packets 

for the stream will begin to fill the buffers at the bottleneck link and the sending 
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rate will become lower. At the same time, as the window size increases, the sending 

rate is expected to increase. Once the sending rate or throughput reaches available 

bandwidth, the increase in window size will only fill the buffers at the bottleneck 

link and not increase actual throughput. TCP Vegas measures the actual sending 

and compares it to the expected send rate. Vegas uses the difference between actual 

throughput and expected throughput to maintain enough packets in the buffers to 

respond to increases in available throughput while still avoiding congestion losses. It 

uses two parameters, a and 13, to decide when to increase or decrease throughput. 

So long as the difference, duff, between the expected and actual send rate is between 

the parameters a and /3, Vegas does not modify the window. If duff <a the window 

will be linearly increase while if duff > /3 the window is linearly decreased. 

The change in RTT is also used as a signal to change from slowstart to congestion 

avoidance. In addition to using changes in delay to throttle the send rate, TCP 

Vegas uses the receipt of some ACKS as a hint to check for timeouts. This results 

in significantly fewer timeouts [16]. 

The congestion avoidance mechanisms in TCP Vegas result in very consistent 

throughput and the familiar sawtooth pattern of instantaneous throughput is gone. 

This results in significantly better utilization of the link as well as considerably fewer 

retransmissions [16]. 

TCP Vegas has been shown to have significantly better network utilization over 

HBPD links [30, 50, 24] because it does not rely exclusively on packet drops as 

a congestion signal to discover available bandwidth. This avoids losses and the 

significant time required to recover from them over high RTT links. Vegas has the 

added benefit of not being biased against flows with a long RTT [63]. 
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Although Vegas avoids the performance issues associated with the time required 

to recover from loss, it can often enter the congestion avoidance phase too early, 

resulting in a long (on the order of minutes) phase of underutilization [85]. Vegas is 

rarely implemented on production systems. This may be the result of a demonstrated 

poor compatibility with TOP Reno [63]. 

3.1.3 HighSpeed TCP 

HighSpeed TOP [31] proposed to make modifications to TOP's congestion control 

mechanism for use with TOP connections with large congestion windows. The mod-

ified behavior would not take place in heavily congested environments which would 

tend to keep window sizes small. 

HighSpeed TCP takes three parameters LowWindow, High-Window, and High-P. 

When the Congestion window is less than Low-Window, the response to congestion is 

the same as the TOP congestion control algorithm as defined in RFC 2581. When 

the congestion window is larger than Low-Window, HighSpeed TOP responds more 

aggressively. The response becomes a function of the current window size determined 

via a lookup table. The function uses the variables High-Window and High-P. These 

increases and decreases in the congestion window become similar to the aggregate 

congestion window of N parallel TCP streams where N grows as a function of the 

size of the congestion window [31]. 

HighSpeed TOP does perform well in a HBDP environment, however TOP Ve-

gas still outperforms it [50]. The more aggressive increase and smaller decrease in 

window size allows HighSpeed TOP to tolerate larger loss probabilities in HBPD 

environments [19] but it also seems to make the RTT fairness problems that TOP 
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experiences even worse [50]. 

3.1.4 FAST 

Fast Active-Queue-Management Scalable TCP (FAST) [19] was developed for HBDP 

networks. Its congestion control algorithm uses queuing delay, in addition to loss 

detection as a congestion signal. The use of queuing delay in controlling the window 

size to maintain a constant number of packets in the buffers makes the algorithm 

similar to TCP Vegas [19]. 

FAST TCP was found to outperform TCP Reno as well other high performance 

TOP implementations such as HSTCP [31] on several metrics including throughput, 

fairness, responsiveness and stability [19]. Deployment issues cannot be evaluated as 

inter-protocol fairness and performance have not been published. Because FAST is 

similar to Vegas, it may suffer the same compatibility issues with Reno [63]. FAST 

has not been compared to Vegas in side by side experiments. 

3.2 Active Queue Management 

Active Queue Management (AQM) involves the routers in the management of con-

gestion in order to more efficiently manage packet drops and signal to endpoints 

that congestion is occurring. In the absence of AQM, packets are simply dropped 

when there is no buffer space available. This is referred to as a "Tail Drop" queue 

management scheme. Random Early Detection (RED) [14] queue management uses 

two queue length thresholds, minth and maxth to determine when to drop packets. 

When the average queue length is at less than minth, packets are not dropped. When 
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the average queue length is between minth and maxth the router drops packets with 

probability p, where p is determined by the average queue length and grows at the 

average queue length approaches maxth. When the average queue length is above 

maxth, packets are always dropped. 

Explicit Congestion Notification (ECN) [73] gives the router the ability to signal 

congestion by setting a CONGESTION-EXPERIENCED (CE) bit in the IF header 

for ECN enabled IP and transport protocols. The receiver then relays this informa-

tion to the sender. The transport protocol is expected to treat a packet with the CE 

bit enabled as a packet loss. This places the responsibility of managing how the CE 

signal is used onto the router. It is suggested for instance, that the CE signal should 

be based on some sort of average rather instantaneous queue size [73]. Performance 

results for RED used in conjunction with ECN indicate it does improve performance 

for bulk transfers; it has the effect of avoiding timeouts, which has the potential to 

improve performance dramatically [76]. 

3.3 Application Level Solutions 

There are a large number of application level solutions that were designed to over-

come TCPs poor performance in HBPD environments. These solutions often take 

the form of application level protocols that make some use of TCP underneath. 

Some solutions involved opening multiple TCP streams, while others use UDP for 

data transfer and a TCP connection to provide rate control. One of the big advan-

tages of application level solutions is their easy deployment. This section provides 

an overview of some of these solutions. 
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3.3.1. Striped or Parallel TOP 

Mu1TCP [21] was developed to provide differentiated service levels at the transport 

level. MulTCP modified the cwnd and ssthresh to simulate the response of N sep-

arate TOP connections. One difference from the simulation of N streams is that it 

begins by sending 3 packets for each ACK received (instead of N). MulTOP was not 

implemented to improve performance in HBPD environments but it was recognized 

that MulTOP could be useful in those environments [36] because it makes TCP more 

aggressive. 

Since MulTOP was developed, several several file transfer applications and li-

braries have made use of parallel or striped TOP. XFTP [4] and GridFTP [2] are 

both extensions of FTP that implement striped TOP at the application layer by cre-

ating multiple data channel connections. Psockets [80] is an application level socket 

library with an API similar to the standard socket libraries. The library handles 

opening and closing of sockets and reassembly of striped data. 

A large portion of the benefit of striped TOP comes from changing the response 

to losses of TOP. Several TOP streams in aggregate will more aggressively increase 

their aggregate window size and less aggressively decrease there aggregate window 

size. This allows the aggregate TOP stream to achieve a higher throughput or 

average window size with the same loss rates. The end result is that multiple TOP 

connections may receive a higher throughput than a single TOP connection with 

large TOP buffer sizes [4]. 

An application that makes use of striped TOP may receive greater performance 

at the expense of other connections. This is because TOP is designed to converge on 
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a fair allocation of bandwidth. If an application uses two TCP connections instead 

of one, it is allocating itself twice the appropriate bandwidth. 

Using parallel TOP streams also increases the effective TOP buffers sizes of the 

transfer. In practice, it is a very lengthy process to tune TCP parameters at a host 

(and it needs to be done at both ends) and it is often not done. This tends to leave 

the buffers at the default of 64KB, far smaller than the bandwidth delay product on 

many connections in scientific computing environments. As a result, striping TOP 

has also been suggested as a way to overcome poorly configured computers [80]. 

One thing that has likely restricted the adoption of striping is that an application 

or striping implementation needs to know how many TOP stripes to use. It would be 

easy to continue increasing the number of streams until bandwidth was maximized 

but it is not clear how to distinguish between effectively using the network and taking 

bandwidth from others. Models to determine the number of parallel streams have 

been developed [46] that utilize bottleneck link bandwidth, RTT and TOP socket 

buffer size. This information could conceivably be obtained from in flight transfers 

to tune the transfers as they happen. The utility of this and its implications on 

fairness have not been addressed. 

Striped TOP is useful in environments where TOP's assumption that loss is due 

to congestion does not hold, or when differentiated service is the goal. It can also be 

used to overcome poorly configured computers and has uses over high performance 

networks. Performance is also improved in HBPD networks because the effective 

AIMD algorithm is more aggressive. 
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3.3.2 SABUL 

The Simple Available Bandwidth Utilization Library (SABUL) [38], is an applica-

tion level protocol designed for high performance data transfer on HBDP networks. 

SABUL uses UDP for a data channel and TCP for a control channel. 

SABUL adjusts its send rate at a constant interval as opposed to one dependent 

on RTT in TCP. The interval for rate adjustment is 0.1 seconds. This was chosen 

by trial and error as an acceptable trade off between efficiency and fairness. At 

these fixed intervals, if the exponential moving average of the loss rate is less than a 

loss rate threshold, the inter-packet transmission time is incremented by a constant 

amount that scales to the current rate. The inter-packet transmission is reduced by a 

factor of 1/8 when the receiver notifies the sender of a loss. Any out of order packet 

is considered a loss. This amounts to a modified additive increase, multiplicative 

decrease (AIMD). 

In addition to this rate based control, sending data is stopped when the number 

of acknowledgments exceeds the maximum flow window size (which is determined 

by the application). This is an onerous requirement to put upon applications as the 

authors suggest it be set to a product based on the bandwidth. Bandwidth is often 

difficult to determine because there is no standard protocol for routers or switches 

to indicate their maximum bandwidths to end-points. 

In order for SABUL to work effectively, the loss rate threshold must be tuned to 

be higher than the physical bit error rate. This parameter appears to be a constant 

however and is not negotiated. A network topology in which there is a leg with a high 

physical bit error rate (eg. wireless) would require this to be higher than is otherwise 
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optimal. For this reason, it is unlikely SABUL would perform well in environments 

with high physical bit error rates or heterogeneous network environments in which 

some links have high physical bit error rates. 

SABUL is very effective at utilizing high bandwidth, high delay links and in 

general achieves over 90% bandwidth utilization on Gigabit wired networks. SABUL 

also meets intra-protocol fairness as well as being reasonably TCP friendly. SABUL 

has not been tested in high loss networks and due to its design, it may not be 

very effective in these environments. It also currently puts a heavy requirement on 

the application to properly set the maximum flow rate. For this reason, it is very 

effective for the high bandwidth environments it was designed for, but may suffer in 

more heterogeneous environments. 

3.3.3 RBUDP 

Reliable Blast UDP (RBUDP) [41] is another application level protocol that uses 

UDP and a TCP control socket for retransmitting packets. RBUDP is a very ag-

gressive bulk data transfer protocol. It is intended only for very high bandwidth, 

dedicated or QOS enabled networks, such as networks with dedicate light path reser-

vations. 

The application provides a send rate to the protocol. RBUDP then sends all the 

data via UDP at the specified send rate. Once data transmission is complete, a sig-

nal is sent to the receiver. The receiver then responds with the packets it is missing, 

which are then sent by the sender as the specified send rate. This process is repeated 

until the receiver has received all the packets. Knowing the appropriate send rate 

is critical because the protocol has no in transit rate discovery/adaptation mecha-
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nism. If the send rate is overestimated, overhead due to retransmission becomes very 

large [92]. 

Experimental results have shown that RBUDP can be very effective at utilizing 

bandwidth when the appropriate send rate is known. This can be difficult as it 

entails not only knowing the available bandwidth, but the capacity of the receiver 

to receive the data. For example, during their experiments, the authors noticed 

a 33% loss rate, despite using a send rate of 5% less than available bandwidth. 

The recieving computer was not capable of moving the data from kernel space to 

application memory fast enough. 

RBUDP may be effective in the environment is was designed for, when the users 

have a guaranteed QOS and the applications can discover the appropriate send rate. 

Fairness and adaptation to dynamic available bandwidth are not one of the goals for 

the protocol, making it inappropriate for traditional IF, shared networks. 

3.4 New Protocols 

New protocols have been developed for high performance data transfer that often 

perform very well in many environments in which the performance of TCP is poor. 

They are not often deployed however as the cost can be prohibitive. They require 

deploying a new protocol stack and sometimes a change to routers. There are a great 

deal of obstacles to achieve these kinds of changes. 
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3.4.1 XCP 

The eXplicit Control Protocol (XCP) [53] builds on Explicit Congestion Notification 

(ECN)[73] by adding explicit reductions and increases in bandwidth at the router. 

The general scheme of the control protocol is still AIMD, but is essentially imple-

mented at the router and XCP need not be limited to these. The decoupling of 

efficiency control from fairness control is one of the main contributions of this work 

and results in significant benefits. In TCP, the same rule (AIMD) is used to achieve 

both fairness and efficiency. In both TCP and XCP fairness is defined as if N streams 

are in contention for a bottleneck link each stream will converge on a send rate equal 

to l/Nth of the available bandwidth. .XCP has separate controllers to achieve this; 

an efficiency controller and a fairness controller. The controllers provide feedback to 

the source using the congestion headers. 

The efficiency controller computes the desired increase or decrease in aggregate 

flows (q.) for a particular link at control intervals. Control intervals are equal to the 

average RTT. The fairness controller (FC) then distributes the positive or negative 

among the flows. The FC enforces AIMD. If q is positive, it distributes the increase 

equally among the flows, if q is negative, the decrease is distributed proportionally 

to the current cwnd. Convergence to a fair distribution may stall when q 0, so the 

FC also ensures that at least 10% of the traffic is redistributed each control interval. 

The necessary changes in cwnd are relayed back to the sender in a congestion header 

in the acknowledgments. 

XCP outperforms TCP in both conventional and high bandwidth environments. 

It achieves fair bandwidth allocation, high utilization, small standing queue size, and 
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almost no packet loss. XCP can also be made TOP friendly. The main drawback of 

XOP is that it requires router support. This support is not onerous as there is no per 

flow state maintained by the router, but it is a very large obstacle to deployment. 

This deployment may still be reasonable on high-performance scientific networks [28]. 

These networks are more expensive and the extra expense in the routers can more 

easily be justified by the increased utilization. 

3.5 Split-TCP 

The under utilization of the bandwidth in long fat networks (LFNs) and heteroge-

neous networks has led to the suggestion of splitting a TOP connection into several 

TOP segments connected in series, usually with data buffered in between segments. 

Split TOP connections are one type of Performance enhancing proxy (PEP) [13]. 

PEPs are intended to mitigate performance degradation due to the characteristics of 

the link. For this reason, split-TOP implementations were first suggested for hetero-

geneous environments. Previous work in the area of split-TOP consists of analytical 

models, applications to specific physical network topologies, and, more recently, gen-

eralized split-TOP applications. 

In [25], the authors present an analysis of split TOP connections. They identify 

several factors affecting the performance of a split TOP connections such as the 

asymmetry of the links. While they do suggest that the best way to split a TOP 

connection is such that the performance of the two links are similar, they do not 

present a general algorithm as to when it is useful given a set of link characteristics. 

Their analysis also assumes identical Maximum Segment Sizes (MSS) while several 
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analytical models have pointed out that the performance of a single TCP connection 

in steady state is proportional to the ratio of MSS to round trip time (RTT) [60]. 

An analytical model of split-TCP throughput incorporating packet loss, round 

trip time, and the receiver's advertised window is presented in [82]. This model 

also does not incorporate MSS. The analysis is of throughput (number of bytes 

transferred), not goodput (number of unique bytes successfully transferred). The 

work analyzes throughput of the split connection as a function only of the 2nd 

connection. However, as pointed out in [25], this is only valid if he throughput of 

the second connection is not starved by the first. 

I-TCP [8], Snoop [10],and M-TCP protocol [17] all use proxies to enhance per-

formance in a wireless environment. The losses in a wireless environment are often 

not due to congestion and the sender unnecessarily reduces the congestion window 

size. The proxy maintains a buffer of its own and hides the losses from the sender 

so the congestion window stays open. The protocols differ in their implementation. 

For example, M-TCP uses two connections; a normal TCP connection to the base 

station and a specialized M-TCP connection from the baystation to the wireless re-

ceiver. M-TCP does not violate end-to-end semantics because it only acknowledges 

a packet to the sender once it has received one from the wireless receiver. I-TCP uses 

two separate TCP connections which may be seen as violation of TCP's end-to-end 

semantics. Snoop operates at the link layer, maintaining its own cache to retransmit 

from and suppresses duplicate acknowledgments. Because Snoop does not send its 

own acknowledgments, it also does not violate TCP semantics. [20] examines the 

use of proxies to enhance TCP performance of hybrid fibre Coaxial (HFC)networks. 

Proxy servers are used to handle access from coaxial network. A proxy system to 
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improve performance over satellite links by using two proxies (one on each side of 

the satellite link) is proposed in [12]. This effectively splits the end-to-end connec-

tion into 3 separate links. In all cases, significant improvements in performance are 

observed as a result of decoupling the higher bit error wireless or Coaxial links have 

from the high overall RTT. 

Splitting a TCP connection improves performance in several related ways. The 

most significant reason for improved throughput is that TCP uses RTT as a clocking 

mechanism to pace increases in the window size. By splitting a connection into 

two or more smaller ones, each individual connection will more aggressively increase 

the window size during both slow start and congestion control when compared to 

a single TOP connection. This results in TOP attaining steady state earlier, and 

recovering from errors more quickly. The rapid recovery from errors improves the 

performance of TOP in many instances in which TOP has poor performance. For 

example, TOP assumes that all packet drops are due to congestion. When this 

assumption is wrong, as in wireless networks, the faster recovery time dramatically 

improves performance [8]. Even in the absence of any unusual network conditions, the 

lower RTT should improve steady state performance as demonstrated from equation 

2.1. 

In addition to the benefits gained from lowering the RTT, split-TCP connections 

also obtain other significant benefits. In the case of the HFC networks, further 

optimizations of TOP are possible because of guarantees such as in-order delivery of 

packets over one of the links [20]. The locality of retransmission has been pointed 

to as a reason for improvement [84] but this would seem to have little effect on most 

networks given that less than 1% of packets are typically lost [47]. Split-TCP also 
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benefits from reducing RTT variance because the TCP segments are shorter which 

allows TOP to make more accurate RTT estimates and avoid spurious timeouts [84]. 

Some of the most significant improvements have been found to come from simply 

routing around network pathologies such as assymetry [84] or poorly configured 

computers [74]. 

3.5.1 Generalized split-TCP implementations 

The increasing complexity of the Internet has resulted in more situations in which 

TOP under-utilizes the network. This has resulted in an interest in generalized 

network split-TOP proposals [39, 57, 84, 75]. Generalized split-TOP proposals can 

be distinguished by not being designed for use on a specific physical topology, but for 

the general Internet. Decisions on where to split connections is based on some limited 

knowledge of the network, such as RTTs between hosts [57, 39], active probing [84] 

or passive probing [75]. 

Generalized split-TOP overlay networks [39, 57] have been proposed and tested 

primarily for the purposes of Web traffic. Overlay TOP [39] uses RTT exclusively 

while the strategy described in [57] uses both RTT and packet loss. These proposals 

tend to suggest using one or two fundamental characteristics of the network such 

as RTT and loss rather than actual previous file transfer performance. Neither of 

these papers addressed the accuracy required for the information used to determine 

where to split connections. This is important when using fundamental characteristics 

because adding a TOP stream to the network can increase the RTT and loss, skewing 

performance predictions by orders of magnitude [42]. 

The Logistical Session Layer (LSL) [84] utilizes a split-TOP connection by imple-
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menting an application level socket library. Although the authors claim LSL operates 

at the session layer, it is in fact a transport layer service. It is the role of the trans-

port layer to achieve cost effective transfer of data, and the ISO model requires a 

one to one mapping between session connections and transport connections [45]. An 

LSL connection has many transport (TOP) connections. 

LSL does not require kernel modification as both the socket library and the 

proxies at the end of the TOP segments run in user space. This greatly reduces the 

security concerns and makes deployment much easier. LSL utilizes network weather 

service (NWS) [91] to arrive at "good" places to split a TOP connection. This can 

be seen as a limitation as NWS utilizes active probes and has been found to be 

inaccurate on high bandwidth networks [86, 87]. 

The authors of LSL have restricted their study to differences based on RTT 

and they have not examined the effects of other network link characteristics. In 

addition, this work has restricted its study to small bandwidths and small files. One 

characteristic of many grid enabled sites is that they have considerable bandwidth, 

often of 1 Gbps or more. When bandwidth is this high, it results in other factors 

entering consideration such as the bandwidth being limited by the disk. 

Generalized split-TOP implementations tend to implicitly assume that the bulk 

transfer throughput of a split-TOP connection will be the same as the throughput of 

a normal TCP connection over the slowest link [57, 84, 75]. While this assumption 

is useful to decide where to split a connection, the throughput of the split connection 

is rarely as good as the throughput of a normal TOP connection over the slowest 

link. There are several reasons for this. 

One of the reasons for degradation of a split-TOP connection is the interaction 
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between the streams. The in-order semantics of TOP means that if a proxy node 

detects a packet loss it will not deliver any packets to the split proxy that come after 

the lost packet, even if they are in the proxy receive TOP buffer [57]. If congestion 

is experienced downstream, the proxies buffers may fill up. This will cause the proxy 

to send ACK packets with a receive window set to zero. This could conceivably limit 

the throughput of the downstream connection when it recovers and the buffers at the 

proxy are emptied out. Both of these examples point to a dependency between the 

two connections that may invalidate the assumption that the throughput will be that 

of the worst link. These effects can be minimized by increasing the TOP-buffer sizes. 

The two TOP streams may also interfere with one another on the wire. Specifically, 

the second TOP connection may interfere with the first connections ACKs. This 

possibility has received little study, possibly because most implementations assumed 

the proxy functioned as 'a router. This issue is explored in section 5.2.5 

3.5.2 End-to-End Semantics 

One argument often presented against splitting TOP connections is that it violates 

TOP's end-to-end semantics [57]. This may be important to maintain because for 

general application support because an application may assume this. It has in fact 

been pointed out this may not be strictly true [12]. The original specification for 

TOP [71] specifically states: 

"An acknowledgment by TCP does not guarantee that the data has been 
delivered to the end user, but only that the receiving TCP has taken re-
sponsibility to do so." 

While it is unclear as to whether or not this permits a TOP receiver to delegate 

the responsibility of delivering a packet to another host, because the semantics of 
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TCP do not guarantee an application has received data, it is clear that a program 

cannot be confused by any violation of TCP semantics that do occur. 

Regardless of the formal semantics for TOP, for a file transfer application the end-

to-end acknowledgment within TOP is redundant. Generally, the file transfer would 

not be considered complete unless the file was written to disk errof free. Because 

only the file transfer application can take steps to ensure the date was written to disk 

correctly, only the file transfer protocol needs to ensure that the data was actually 

received. This is in accordance with the end-to-end principal; 

"The function in question can completely and correctly be implemented 
only with the knowledge and help of the application standing at the end-
points of the communication system. Therefore providing that questioned 
function as a feature of the communication system itself is not possible. 
Sometimes an incomplete version of the function provided by the commu-
nication system may be useful as a performance enhancement" [77]. 

The end-to-end reliable data transmission semantics of a communication subsys-

tem are generally useful for congestion control, and not useful to the application [77]. 

This is because most applications are not interested only if the data was received by 

the remote process but also whether the process responded to the data in some way. 

There is, therefore, no obvious harm in putting a performance enhancing proxy at 

the transport layer. 

While it may be acceptable within TOP semantics to put a performance enhanc-

ing proxy (PEP) at the transport layer, there are reasons not to do so. TOP cannot 

make use of PEPs transparently because using PEPs implicitly assumes that bulk 

throughput is the priority of the application. This is not necessarily the case as 

other applications have other priorities. For example, interactive applications such 

as telnet or voice over IP are likely to put a priority on latency which would be 
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made worse by PEPs. This particular limitation on transport layer solutions can 

be overcome by making TCP context aware by passing information from the appli-

cation. The network specific PEP solutions for the wireless domains is effectively 

a context aware implementation of TOP [89]. Putting generalized PEPs within the 

network would likely be an expensive proposition both in terms of the actual cost of 

the hardware and the management of access to the proxies. The use of PEPs could 

be limited to certain users, but it is difficult to properly manage buffer space usage 

and authorization among users at the transport layer. The Grid Security Infrastruc-

ture (GSI), on the other hand, can alleviate this concern. GSI provides mechanisms 

for fine grained access control to a user base that crosses multiple administrative do-

mains. The addition of PEPs cannot be transparent, and the transport layer can not 

handle user based authentication properly. This suggests splitting a TOP connection 

should be done at the application layer, rather than transport layer. 

3.6 Overlay Networks 

Overlay networks have been used to improve TOP performance by changing the 

route of a connection such that the characteristics of the route taken are ones that 

TCP will perform better in. For example the new route could have a lower RTT or 

packet loss rate. Overlay networks often take the form of application level interfaces 

that are built on top of the network [6], transport [39] or application layer. 

A Resilient Overlay Network (RON) is an application level overlay that exists 

on top of an existing network [6]. Nodes in a RON monitor the performance of the 

underlying network to detect outages and reroute through other nodes on the RON 



46 

when the direct path is no longer the best (or good enough). It was designed with 3 

goals in mind: detection of network faults in less than 20 seconds, tighter integration 

with applications for routing decisions, and the abilty to express routing policy. 

By rerouting packets through peer nodes, a RON can overcome network faults 

in lOs of seconds as opposed to several minutes [6]. The RONs tighter integration 

with applications allows a RON to optimize the route based on the application's 

specific needs. Routes can be optimized based on metrics such as latency, jitter or 

throughput. An expressive policy routing algorithm allows specific administrative 

issues to be addressed as well. For example, it can be specified that commercial 

traffic must not use the Internet2 educational backbone. 

The RON architecture does not address scalability issues and the authors point 

out that a great deal of applications can still benefit from the target size of 2 to 

50 RON nodes. While the main goal of RON appears to be addressing network 

outages, it also attempts to optimize routes based on several metrics, one of which 

is throughput. 

RONs approach to improving throughput is to use formula based prediction using 

a modified version of the simple throughput model developed in [66]. This model 

assumes congestion is the limiting factor and represents an upper-bound on the 

throughput of the connection. Based on previous work examining the stability of 

available bandwidth [11, 69], RON only reroutes packets if the predicted improvement 

in upper bound is greater than 50%. RON managed to double TCP throughput in 

5% of the samples. In 2% of the samples, RON increased throughput by more than a 

factor of 5. Meanwhile only 1% received a throughput of less than 50% of the direct 

path. 
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The RON architecture will capture any performance difference to be gained by 

rerouting alone. It will not capture the gains to be made by reducing RTTs and 

recovering from losses more locally that splitting the TOP connection will. 

Overlay TOP (oTOP) [39] is an application level, overlay network designed to 

make use of the split-TOP in a manner transparent to the applications. Primarily 

targeted at web traffic, it observed improvements on 85% of the connections tested. 

The system relied on RTT exclusively to predict improvements. Although not clear 

from the poster paper, some the improvement is likely due to the connections being 

TOP buffer limited given that the client was wget. 

3.7 Summary 

This chapter outlined a small part of the large body of research on high performance 

data transfer. Because TOP is the most commonly used protocol for data transfer, 

a large portion of the work has been related to improving TOPs performance. Re-

search on TOP has often focused on specific environments such as links with high 

bandwidth delay products (HBDP), high bit error rates, and heterogeneous networks 

because TOP is more prone to poor utilization in these environments. The funda-

mental reason TOP can perform poorly is that it uses a binary congestion signal. 

New transport layer protocols that make use of better congestion signaling are very 

promising but the deployment expense is a significant barrier to adoption. Other 

high performance data transfer solutions utilize TOP at the application layer because 

it minimizes deployment expense but tend to not be as widely applicable as TOP. 

Splitting a TOP connection has generally been used in specific environments and 
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trying to generalize it at the transport layer results in applicability issues because it 

prioritizes throughput over other characteristics such as latency. 



Chapter 4 

GridFTP Overlay Network 

This chapter describes the GridFTP Overlay Network. The GridFTP overlay net-

work is a system designed to enable split-TCP connections to improve file transfer 

performance. The system consists of a set of proxies at which to split GridFTP 

connections and the services required to effectively use such a system. The require-

ments and design rationale are first discussed followed by a top down description of 

the architecture. A detailed description of each component and the reasoning behind 

the approach taken are then discussed. Finally, a distinction between the problems 

of proxy placement and proxy selection are given. 

4.1 Design Rational 

The GridFTP Overlay network enables the use of split-TCP connections to improve 

GridFTP transfers. Using an existing protocol such as GridFTP allows the system 

to be used by existing clients. This means new client software does not need to be 

developed or deployed. More importantly, it also means services already designed to 

use the pre-existing protocols can make use of the service. The system is implemented 

at the application layer which means no modifications to the kernel need to be done. 

Modifications to the kernel are much more difficult to get deployed than application 

level software. This is the reason many high performance data transfer systems are 

implemented at the application layer. Finally a system designed to make use of 

49 
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split-TCP on any network topology needs explicit information about the network to 

make routing decisions. The GridFTP overlay network presented in this thesis does 

not have dependencies with respect to a particular network information service such 

as Network Weather Service (NWS) [91] and makes use of simple passive network 

monitoring techniques. The prediction mechanism could, potentially use NWS to 

improve results [86] but it is not a requirement of the system. The GridFTP overlay 

network uses a standard interface to the network information with the ability to plug 

the best mechanism available to predict performance behind it. 

4.2 Architecture 

The GridFTP Overlay network consists of three primary components 

• split-DSI Module 

• Split Choice Service (SOS) 

• BTC Information Service 

These components have dependencies on parts of the Globus Toolkit version 

4 [33]. Predictions on the BTC of links from the BTC Information service is pushed 

into an MDS4 server. The SOS then pulls the BTC predictions to choose proxies for 

a specific transfer. The split-DSI Module requires the deployment of a GT4 GridFTP 

server. The Globus Toolkit and MDS4 are discussed in section 2.1. Figure 4.1 shows 

the software stack and dependencies of the GridFTP overlay network services. 

Figure 4.2 depicts how a file is transferred using the GridFTP overlay network. 

The client developed to use the system first queries the SOS to determine a split 
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Figure 4.1: GridFTP Overlay Software Stack 

connection giving a source A and a destination C. The SOS then queries an MDS4 

server [79], an information service provider distributed with the Globus Toolkit (see 

section 2.1), for recent bulk transport capacity (BTC) predictions for all hosts A 

through E. This information is populated on an ongoing basis by a collector of 

results from normal GridFTP transfers. In addition to BTC information, the SOS 

also retrieves information on which hosts have the split-DSI module deployed and 

therefore have the capability of acting as a proxy. If it is determined that splitting the 

connection at one or several points is beneficial, such as at point B, the SOS responds 

with the URL(s) of the appropriate split-server(s). The client then pushes its file to 

a split server at B requesting the data be forwarded to the actual destination C. In 

a similar manner, the client can pull a file from host C by requesting the server B to 
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retrieve and forward the file to it. Routing information of the split-TCP connections 

is included in the URL passed to the split server. 

4.3 Split-Data. Storage Interface Module 

The GridFTP server distributed with the Globus Toolkit v4 provides hooks to write a 

Data Storage Interface (DSI) [23]. The DSI allows developers to implement modules 

that know how to read and write from special storage systems. The DSI is passed 
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GridFTP requests such as put, get and stat and responds to them in a way specific 

to the storage device in question. A server can be configured to use only one DSI or 

the DSI can be dynamically loaded when a client requests it with the appropriate 

command. 

The split-DSI module implements a split-TOP connection on a GridFTP server 

by forwarding data from get and put requests to other split servers or a normal 

GridFTP server. The overlay module handles buffering of the data between con-

nections. This effectively splits the GridFTP connection into two or more TOP 

connections, buffering data between the two connections. In addition to buffering 

the data between connections, the split-DSI module handles the delegation of cre-

dentials, negotiation connection attributes such as buffer sizes, as well as handling 

other command that are required for seamless integration such as stat. To deploy the 

module, it needs to be compiled and placed in the library path of the GT4 GridFTP 

server. Clients will then be able to request the split-DSI functionality. A client not 

designed to explicitly request DSI functionality may still use a proxy server in which 

split-DSI functionality is the default. 

Conforming to the GridFTP protocol allows the overlay network to leverage the 

GSI single signon functionality. Each GridFTP server can be delegated a credential 

to act on behalf of the client. A proxy then uses the credential to connect to other 

GridFTP servers. This allows fine grained access control to the proxy servers without 

constant user intervention. 

The Split-DSI module gets routing information from the URL it receives from 

the GridFTP client. For example if a host wishes to retrieve a file located at 

gsiftp://hostl.domainl.ca//filel by using a GridFTP proxy server at host2.domain2, 
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it would submit a get request for the URL: 

gsiftp: //host2.domain2/gsiftp: //host 1. domain 1. ca//file 1 

The prefix gsiftp indicates that an FTP connection utilizing GSI security is re-

quested. Alternatives to this are ftp, which could be anonymous. Whether or not 

a server accepts an anonymous connection is a policy decision. Using the URL to 

pass proxy information is very important because it allows seamless integration with 

current clients. The split-DSI module has been successfully used to split GridFTP 

connections with glo bus-url- copy, unmodified GridFTP servers (as endpoints) and 

the Reliable File Transfer Service (RFT) [56]. As described in section 2.1, RFT is a 

service that allows users to submit a set of file transfers for the service to complete 

on the users behalf in a fault tolerant manner. Globus-uvi-copy is the GridFTP client 

distributed with the Globus Toolkit. The integration with current clients is critical 

for the GridFTP overlay networks usability. Many technologies are not adopted be-

cause they would require modification of numerous systems, workfiows and systems 

already in place. 

4.4 Bulk Transfer Capacity Information Service 

The BTC information service provides a prediction of achievable throughput, as 

opposed to available bandwidth. Achievable throughput is the throughput that can 

actually obtained by an application. This is affected by a variety of factors including 

characteristics of the link such as latency, maximum transmission unit and packet 

loss. In addition to network characteristics, throughput can also be affected by disk 

access speeds and the load on the computer. 
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4.4.1 TOP Throughput prediction 

The BTO service provides the prediction of achievable throughput required in order 

to make decisions on when and where to split TOP connections. There exist two 

possible approaches to predicting BTO. One can base it on the underlying charac-

teristics of the network and a model, or one can base it on past experience of the 

applications. Previous work has termed this distinction formula based (FB) versus 

history based (HB) prediction [42]. 

Utilizing underlying characteristics of the network links involves getting informa-

tion such such as MTU, RTT, loss rates, total bandwidth and available bandwidth. 

From these metrics, an algorithm could utilize the various models developed for TOP 

performance [61, 67, 18] to arrive at reasonable choices of where to split a TOP con-

nection. One difficulty in utilizing this approach comes from getting measurements. 

This level of detail about every link in the network is often not available. The TOP 

performance models may be unusually sensitive to errors in the measurement of these 

metrics. This results from the fact that one part of all the TOP models developed 

is the ratio 

MSS   
BW=RTT (4.1) 

where MSS is the maximum segment size, RTT is the round trip time, p is the 

packet loss probability. This model is discussed in section 2.3.3. 

This ratio implies that errors in RTT, MSS, and loss probability will compound 

in the ratio calculation, rather than be additive. In fact it has been shown that 

formula based predictions of the throughput of a particular flow are often off by 

orders of magnitude because the flow being predicted will increase the RTT and 
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loss experienced by all streams [42]. These formulae are also typically based on the 

assumption that the congestion window is the limiting factor. However, the most 

significant gains in splitting a connection can often be when this is not the case [74]. 

Formula based prediction was successfully used by the RON [6]. In this case, a 

simplified version of formula 2.1 in section 2.3.3 was used to determine if connections 

would achieve improved throughput. The throughput " score" of a path was given 

by: 

score = R  1.5 TT* (4.2) 

In addition to simplifying the formula, the loss rate was given a minimum value 

of 2% because the formula is more sensitive at lower loss rates. This resulted in 

successfully finding improved paths for TOP although, despite using a very conser-

vative coarse grained approach, a portion of the connections became worse rather 

than better. 

History Based prediction techniques primarily use previous experience of the 

application in question. Given the difficulty of getting accurate predictions from 

external tools, utilizing previous throughput actually experienced by applications is 

likely the most robust approach. In contrast to formula based techniques, they tend 

to be readily available assuming the application can be instrumented appropriately. 

Recent work has also indicated that even relatively simple techniques can be quite 

accurate [42] in general, as well as, for GridFTP in particular [87]. Previous work 

has shown that even simple predictors such as window based moving averages and 

medians is very unlikely to result in errors of greater than 25% for larger trans-

fers [87]. GridFTP throughput predictions can be made even more accurate when 
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used in conjunction with NWS [86]. NWS has been found to be inaccurate on high 

bandwidth (≥ lGbs) links when used alone [86, 87]. This indicates that NWS cannot 

accurately measure bandwidth but does seem to capture the non-stationarity of the 

network bandwidth. 

The GridFTP overlay service uses a hierarchical BTC information service that 

reports a prediction of BTC based on various simple prediction techniques, such as 

taking the median, using only GridFTP transfer logs. This provides unobtrusive pas-

sive monitoring of the network. The information is then aggregated and disseminated 

through MDS4 [79]. 

The BTC Information Service is similar to the system described in [87] which 

provides reasonable estimates of throughput with errors not exceeding 25% in most 

cases. It is not the intention of this thesis to suggest new history based prediction 

techniques but to test old ones with a new data set and utilize this work to select 

split points. 

4.5 Split Choice Selection Service 

The SCS determines which proxy servers to use when transferring a file between 

two sites. The SOS is currently implemented as a script that makes decisions on 

where to split a connection for a GridFTP client. The script takes as input a source 

and a destination URL. It then retrieves throughput statistics and the location of 

proxy servers from the BTC information service and chooses split points if it is 

predicted that the use of proxies will improve throughput. The SOS then returns to 

the GridFTP client a modified source URL that will use the correct splits. 
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When basing split point selection on achievable bandwidth measurements, the 

algorithm for selecting split points attempts to find the path from source to destina-

tion with split points in between that maximize the minimum BTC along the way. 

This problem has been referred to as Maximin path optimization [83]. 

The creators of the Logistical Session Layer (LSL) recognized that the Maximin 

path problem could be solved by building a minimum spanning tree for each host [83]. 

The authors use a modified greedy tree building algorithm. The authors also par-

tition many hosts into groups with similar bandwidth. This partitioning greatly 

simplifies the routing tree built and can minimize extraneous hops. This algorithm 

has a complexity of O(NlogN) for an implementation that keeps BTCs in sorted 

order. LSL is discussed further in section 3.5. 

SCS currently uses a brute force search which is not overly expensive when there 

is a small fixed number of split points used for the overlay topology, such as the one 

described in chapter 5. This would be sufficient for many grid applications. If more 

scalability was required, the LSL algorithm would be more appropriate. The LSL 

algorithm could be further scaled by creating a hierarchy of servers, all implementing 

the LSL algorithm, with some using hosts as nodes, others using domains. 

Choosing split points in the manner used by LSL and the SOS assumes that 

maximizing the minimum link capacity will result in a bandwidth somewhat similar 

to the minimum link capacity with little overhead. The main assumption used is 

that the streams do not affect one another much. This assumption is not correct 

if the streams starve each other of resources, such as buffer space at the routers, 

resulting in larger RTT, or even simply using the same operating system, interfaces 

or switches at the same time. Emulation and real world experiments indicate that 
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the two TOP streams of a split-TOP connection do affect each other. This issue is 

discussed further in chapter 5. 

There are many ways to deliver the decision of where to perform split connections 

to the client. The decision algorithm can be run on the client, on GridFTP servers, 

or as a separate service. The ideal case would depend on a user's needs and level of 

control over the computers being used. An individual user is, in some cases, more 

likely to know which resources are available to them. 

It is simplest for a user to provide information on where to split to a client. In the 

absence of an information service to provide throughput, a client can take advantage 

of split servers by using a configuration file provided by the user. The paths in the 

configuration file would be based on the user's or administrator's unique knowledge of 

the network. A separate service makes it easier for a virtual organization to aggregate 

the information, such as BTOs of links they use and split servers the group members 

have access to. In many cases the users of the system would make similar transfers, 

meaning the decisions on where to split connections and the results of these decisions 

could be cached. A separate service will also likely scale better because the SOS must 

retrieve BTC predictions for all host pairs from MDS4. If the system became large, 

a separate service would more easily be able to cache this information than clients. 

The disadvantage of a separate service is that it must be made available. If the 

network between the client and server was down clients would have to rely on caches 

of previous queries or simply not use split servers. The decision on where to split 

connections can also be made at GridFTP servers themselves. A client could simply 

query a nearby GridFTP server for a file, and that server would go directly to the 

source or use splits if necessary. The main advantage to having the GridFTP server 
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make the decisions is that unmodified GridFTP clients could use it by indicating the 

source server in the URL. The disadvantage of using the GridFTP servers in this 

way is it necessitates one split even when it would not improve performance. Instead 

of automatically going to a nearby server, the GridFTP protocol could be extended 

by the source server suggesting a split point when it receives a get or put but this 

would entail modifying the GridFTP client. 

4.6 Proxy Placement and Selection 

The use of a split-TOP service to improve data transfers requires the solution of two 

distinct problems: proxy selection and proxy placement. Proxy selection involves 

the dynamic selection of split points given the source, destination, a set of proxies 

and current network conditions. In the GridFTP overlay network, this decision 

is made by the SOS. Proxy placement addresses the problem of where to deploy 

proxies in the first place. Proxy placement determines where proxies are most likely 

to be advantageous or useful. This would likely be influenced by traffic patterns and 

network topology. 

The simplest choice for proxy placement is to simply put a proxy server every-

where there is a GridFTP server to host it. Under this deployment technique some 

GridFTP servers may get more requests to act as a proxy than can be efficiently 

served by the host. The negative effects of this can be minimized by limiting the 

number of proxies run at any one time. The fact that a specific proxy server is over-

utilized is also a useful signal for both network and system administrators. System 

administrators may wish to add more resources at that location. Network adminis-
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trators may wish to examine the causes of such high utilization of the split server. 

For example, it may indicate a machine that has poorly configured TCP buffers. 

In order to predict where proxies might be useful, models such as equation 2.1 

are useful. These models indicate that at any point in which there is likely to be 

a significant beneficial change in MSS, or loss probability on a long latency link, it 

may be beneficial to have a proxy server located there. 

4.7 Summary 

The GridFTP overlay network improves a GridFTP transfer by splitting the trans-

fer into several TOP connections in series. The information services that provide 

the proxy selection decision utilize only passive observations and are extensible al-

lowing users to develop more accurate predictors if active probing is available. The 

proxy functionality extends the widely deployed GridFTP server distributed with 

the globus toolkit. This allows the proxies to be used by unmodified clients and 

greatly simplifies deployment and allows fine grained access control to the proxies. 

Without the ability to use unmodified clients, the overlay network would not likely 

be adopted by those dependent on legacy services, workflows or applications. 



Chapter 5 

Performance Results 

This chapter presents the results of experiments that test the potential effectiveness 

of the GridFTP overlay network in improving throughput and link utilization. The 

split-DSI module's performance as proxy server is first evaluated independently in 

an emulated environment to test its response under various network conditions. The 

second section presents the performance of a GridFTP overlay network deployed at 

various sites across North America. 

5.1 Emulation Environment 

All emulation experiments were run on a cluster of HP Proliant DL145 G2 and 

DL585 servers connected by switched Gigabit Ethernet. Each DL145 has two 2.2 

GHz Opteron Processors and 2 GB of RAM. The DL585 has four 2.2 Ghz processors 

with 4 GB of RAM, The DL145s were running the Fedora Core 2 version 2.6.10-

x_FC2smp kernel. The DL145s were used as clients in the experiments. The DL585 

was running SUSE Linux 9.1 with the v2.6.5-7.151-smp kernel. 

The DL585 was used to host the Internet Protocol Traffic and Network Emula-

tor IP-TNE [15]. IP-TNE is a parallel discrete-event network simulator enabled to 

emulate traffic in real time. The emulator interacts with real hosts by acting as a 

router for the real hosts. When the emulator receives a packet from a real host, the 

packets traversal through the emulated network topology is simulated. If and when 
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the packet is intended for another real host the packet is released to the real network 

at the appropriate time. 

Using the emulator enables experiments to be conducted in a variety of network 

topologies while still using the actual protocol stack and application being evaluated. 

One of the hazards of using the emulator is that it uses a simplified model for various 

parts of the network. For example the router model in the emulator will not behave 

exactly as a router in the real world. However, the model is assumed to capture 

the most relevant aspects of the system. Even if the model does not match the real 

world exactly the emulated experiments still provide an understanding of how the 

system responds to changes in the parameters being modified, 

5.2 Emulation Experiments 

5.2.1 Goals 

The goal of the initial emulation experiments is to test the change in goodput of 

split-TCP connections under various network conditions. According to formula 2.1, 

a reduction in RTT by half should increase the throughput by a factor of two if 

the transfer is still congestion window limited and the loss remains the same. The 

goodput achieved is still constrained by the bandwidth available, but the utilization 

of available bandwidth should increase. In addition to this, the response to maximum 

transmission unit (MTU) is observed. 
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5.2.2 Metrics 

This set of experiments has two metrics; transfer time and goodput. Transfer time 

is defined as the total time required for a file transfer including connection setup 

and teardown. The time taken is the time elapsed from the moment the file transfer 

client is invoked to the moment it exits. Goodput is defined as the file size divided 

by the transfer time. Overhead is also discussed in these results. Here, overhead is 

defined as the difference in goodput between a single connection over the bottleneck 

link and a split connection that includes the bottleneck link. The bottleneck link of a 

split-connection is the link with the lowest available bandwidth. For example, given 

two links, AB and BC, in which a connection over AB has a goodput 50 Mbps and a 

connection over BC achieves a goodput 100 Mbps, the split connection utilizing both 

links should also have achieved a goodput of 50 Mbps; the same as the connection 

for AB. If the goodput of the split connection is 40 Mbps, the overhead is 10 Mbps. 

5.2.3 Topology 

The topology of the emulated network and the hardware setup for this set of experi-

ments is shown in Figure 5.1. Clients A, B and C where equipped with GridFTP [2] 

servers and gsissh and globus-url-copy packaged with the Globus Toolkit 4.0 [33]. 

All hosts were configured to route packets from the 10.x.x.x domain to the emulator. 

Since all experiments had a maximum latency of 100 ms and maximum bandwidth 

of 100 Mb per second the maximum possible bandwidth delay product was approx-

imately 20 Mb or approximately 2.40 MB. This is an approximation because the 

round trip time will be slightly higher than twice the latency due to delays at the 

router. The hosts were configured with maximum write and read buffers of 8MB 
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Figure 5.1: Simulation model [74]. 

and transfers were done using 4MB TCP buffers ensuring the receive window did 

not limit the throughput of the connection. 

Transfers were conducted from host A to host C. A split-DSI module was in-

stalled on the GridFTP server at host B and was used as a proxy for the GridFTP 

transfers. The latency (5) and MTU of links L1 and L2 and the number of simulated 

traffic streams m and n were changed to explore the parameter space. Over L1 the 

GridFTP transfer had to compete with m sources transferring to m destinations. 

Over L2 the GridFTP transfer had to compete with n sources transferring data to 

n destinations. The total capacity of both links was set at 100 Mbps and the MTU 

size was maintained at 1500 unless otherwise stated. 
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The competing traffic is modeled as on/off traffic sources. The amount of com-

peting traffic was varied by changing the number m and n source and destination 

hosts. The duration of on and off periods followed the Pareto distribution. The 

Pareto shape parameter was set to 1.4 and the Pareto scale parameter is such that 

the average on or off period was 1.5 seconds. During an on period, packets were 

sent according to a Poisson process with a mean time between generation of packets 

such that the average on rate was 5Mbps. This form of traffic was chosen to ensure 

a known amount of average background competing traffic. This allows the overhead 

to be calculated. 

Table 5.1: Experimental parameters and levels. 

Parameter Levels 

52 10:90, 30:70, 50:50, 70:30, 90:10 
L1 background utilization 10%,30%, 50%, 70%, 90% 

£2 MTU 1500, 9000 

Table 5.1 summarizes the parameters and traffic levels used in the experiments. In 

all experiments a 4GB file was transferred 5 times. This file size was chosen to provide 

results that were not affected by slowstart or caching. Three sets of experiments were 

conducted. The first experiment varied the ratio of latency (5 : 52) while keeping 

the overall latency between both links at 100 ms. 5 and J2 are the latency of L and 

L2 respectively. In this experiment the background link utilization of L and £2 by 

background traffic was kept at 50% and 0% respectively. 

The second set of experiments varied the background utilization of L from 10% 

to 90%. During this set of experiments, the latency of L and £2 was kept at 10 ms 

and 90 ms respectively. 
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In the third set of experiments, the MTU used across L2 was varied while using 

a large number of topologies drawn from the first two experiments. 

When performing experiments using an emulator, the emulator may fall behind 

in the simulation of packets destined for real hosts. In order to ensure this did 

not materially affect the results, the emulator was instrumented to monitor if it 

delivered packets on time. Both average and maximum lateness over an experiment 

were monitored. On average packets were sent early instead of late. For all tests, the 

maximum average earliness of packets was 7 s. The maximum lateness of delivery 

of any packets on one test was 7 ms. The RTT of any TOP connection during the 

experiment with a maximum lateness of 7 ms was a minimum of 100 ms so the 

maximum lateness was only 7% of the RTT. The maximum lateness of all other 

connections was less than 5 ms. 

5.2.4 Experimental Results 

This subsection compares the performance of GridFTP using a single TOP connec-

tion and split TOP connections. Three sets of experiments were run, to examine the 

effect of latency, the effect of packet loss, and the effect of MTU. 

Latency Results 

The first set of experiments examines the effects of latency on the performance of 

the GridFTP file transfers involving split TOP connections. The end-to-end latency 

was kept constant at 100 ms, but the ratio of the latency of L1 and L2 was varied. 

For example a 10:90 ratio indicates that the latency of L1 was 10 ms and the latency 

of L2 was 90 ms. L1 was the bottleneck link with link utilization of 50% due to 
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background traffic. No background traffic was run over L2. Under the same network 

conditions, a transfer was made from host A to host C both with and without using 

a proxy (IE. using a split connection) at host B . Transfers were also made from host 

A to host B and from host B to host C for comparison. 
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Figure 5.2: Plots of transfer time (left) and goodput (right) versus L, : L2 latency 
ratio. 

Figure 5.2 shows plots for the transfer time and the goodput versus the latency 

ratio of links L1 and L2 for 4 GB file transfers. The results indicate what would 

be expected from the analytical models. The analytical models use RTT instead of 

latency but RTT is usually well approximated as being twice the latency of the links. 

Isolating a busy link with a split connection provided a significant improvement over 

a single connection when the round trip time was kept short on the busy link. When 

the background link utilization of the first link was 50% and the latency ratio of 

the first and second connection was 10:90, the utilization of the remaining available 

bandwidth for the split connection was approximately 86%. This compares with 

approximately 68% utilization of remaining bandwidth in the case of a direct con-
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nection. The longer the busy link the less significant the improvement in utilization 

of remaining bandwidth. There also appears to be significant overhead in the split 

connections when the round trip time is not significantly reduced for the congested 

link. 

Link Utilization 

The second set of experiments examines the effects of background link utilization on 

the performance of GridFTP file transfers involving split TOP connections. In this 

section background utilization refers to the link utilization of background traffic. The 

background utilization of £2 is kept constant at 0% but the background utilization 

of L is varied from 10% to 90%. A link latency ratio of 10:90 is used with latency 

on L being 10 ms and latency on £2 being 90 ms. 

Figure 5.3 shows plots for the transfer time and the goodput versus the back-

ground utilization of L. The results of these experiments demonstrate where a 
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split connection can be most beneficial. As the background utilization over the first 
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link was increased, the goodput gain increased significantly. At 70% background 

utilization, a split connection achieved a goodput of 26.4 Mbps compared to the 

performance of a single connection of 19.6 Mbps. This represents a 35% improve-

ment in goodput and link utilization. When the background utilization is 90% the 

utilization of the goodput of the split and single connections were 11.1 Mbps and 

4.42 Mbps respectively; an improvement of 151%. It is also clear from both the la-

tency and background utilization experiments that the performance of the split-TOP 

connections track the performance of the bottleneck link closely although there is 

significant overhead. This indicates that the bottleneck link can be used to predict 

the performance of a split connection, but overhead must be taken into account. 

MTU Results 

The third set of experiments examines the effects of MTU on the performance of 

GridFTP file transfers involving split TOP connections. For these experiments, the 

MTU of the second connection was changed to use jumbo frames of 9000 bytes and 

the experiments were repeated. The average change in throughput on split con-

nections when compared to split connections in which the bottleneck link did not 

use jumbo frames, was approximately 3% in most cases. There was a similiarily 

small increase in throughput on single connections over the bottleneck link. An 

examination of traces of the links revealed that connections with jumbo frames in-

curred 5-6 times more packet loss. Increasing the MTU of a connection means TOP 

will increase its instantaneous throughput more aggresively during congestion avoid-

ance. This can have the effect of increasing throughput but can also increase loss. 

The increased packet loss cancelled most of the advantages of using jumbo frames. 
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Jumbo frames typically improve throughput on high-bandwidth, high-reliability net-

works [64]. They have a less predictable effect on slower networks. 

Variance Results 

Table 5.2: Standard Deviations for experiments. 

RTT Link Standard Deviation Standard Deviation 
Utilization % of mean 

Li L2 

10 90 

30 70 
50 50 
70 30 
10 90 
10 90 
10 90 
10 90 

90 10 
90 10 

90 10 
90 10 
10 90 

30 70 
50 50 
70 30 

Li L2 

50 0 
50 0 
50 0 

50 0 
10 0 
30 0 
70 0 
90 0 

0 
0 
0 
0 
0 
0 
0 
0 

30 
50 
70 
90 
50 
50 
50 
50 

Single Split 
4.69 4.28 

2.34 1.75 
3.52 2.02 
6.34 1.86 
15.34 1.49 
2.08 1.98 

5.53 6.80 
18.39 17.01 

2.25 1.61 
4.90 3.56 
5.96 7.73 
19.38 16.72 
4.74 2.72 
3.20 1.96 
3.83 2.39 
1.82 1.51 

Single Split 

47.53 34.33 
23.50 16.75 
35.06 24.12 
63.58 24:71 

70.57 6.66 
14.10 11.74 

96.84 88.39 
1430.05 526.16 
15.35 9.10 
49.32 25.54 
105.89 86.55 
1503.42 472.39 
46.92 25.31 

31.70 16.79 
38,41 19.86 
18.21 11.91 

Table 5.2 summarizes the standard deviations of the transfer times observed in 

the split and single connection transfers done for the experiments. All trials for 

a given set of parameters were run the same number of times for split and single 

connections. For most of the experiments, the standard deviation in absolute terms 

as well as a percentage of the mean is smaller for split connections. This is the case for 

most experiments including ones in which there was no improvement in throughput. 

This implies split connections often have the advantage of being more predictable in 
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addition to having improved throughput and network utilization. A more predictable 

transfer time could be beneficial to meta-schedulers in planning data movement and 

data processing tasks. Whether the magnitude of the improvement is enough to be 

useful would require significantly more study. The utility of the lower variance would 

be based on the size of the transfers and the behavior of the meta-scheduler. 

5.2.5 Overhead experiments 

The results from the experiments examining the effects of latency and link utilization 

indicated a significant amount of overhead in a split connection. There are a wide 

variety of reasons for overhead to be present. As discussed in section 3.5 there may 

be a dependency between the first and second links. This is more likely to occur on 

larger chains of split connections. This section presents an analysis of the overhead 

observed in the emulated environment. This analysis presents a series of plots of the 

TOP connections made by using data taken by running tcpdump while performing 

transfers over the emulator using the topology shown in Figure 5.1. The latency of 

L and 112 were both set to 50 ms. The utilization on L was 50% with no traffic on 

112. Several other configurations were examined and the traffic patterns were found 

to be similiar. 

Figure 5.4 shows a plot of the data connection of a single transfer from host A 

to host B as seen from host A. The plot shows the data packets sent and cumulative 

acknowledgments received over time. The y-axis represents the " sequence numbers 

of the data being sent or acknowledged and the x-axis is time. The result is a 

smoothly advancing window, with packets sent as acknowledgments are received. In 

comparison, figure 5.5 shows the data connection of the connection from host A to 
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Figure 5,4: Trace of single connection from A to B 

host B of a split connection from host A to host C using host B as a proxy. The 

result is a clearly bursty connection. The acknowledgments are received in rapid 

bursts. These bursts appear as vertical lines in the acknowledgments received line. 

In response, the connection rapidly releases new data packets to keep the congestion 

window full. 

The behavior of the link for the split connection resembles ACK-compression [93, 

88]. ACK-compression describes a state in which two or more TOP connections 

transferring data in opposite directions share a queue or buffer. The acknowledg-

ments from one connection become queued behind the data packets of the other 

connections. When the packets are finally released by the queue, they are released 

at a faster packet rate because acknowledgments tend to be smaller than data pack-
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ets. This change in the packet rate means the ACK packets no longer serve as a 

reliable clock in steady state [93]. The end result is bursty traffic and idle periods 

resulting in reduced throughput. 

ACK-compression has long been observed on two way traffic. In [93] it was ob-

served that ACK-compression can occur on a simple topology in which there are two 

TCP streams transferring data in opposite directions across the whole connection. It 

has also been observed when the two streams share buffers at the end points [54], the 

case here. ACK compression was found to exist in simulations of larger topologies [93] 

and in traces of live networks [88]. ACK compression is reduced with a delayed ACK 

strategy (acknowledging every nth packet), but this only has a significant effect with 

smaller window sizes [93]. In high performance computing environments, it is of-
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ten the case that there is very little competing traffic. In this environment, a split 

connection can cause two large TCP streams with very large window sizes that can 

experience ACK-compression. 

Figure 5.6: Trace of A to B link and B to C link on host B 

The main conditions for ACK-compression to occur are that ACK packets are 

significantly smaller than data packets, and packets from each connection are clus-

tered together [93]. The first condition is true because the connections for these 

experiments are bulk data transfers. Figure 5.6 shows a plot of both data connec-

tions' outgoing traffic for a data transfer using split-TCP as seen from host B. The x 
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axis (time) for the two plots are aligned. Figure 5.7 is a magnification of the shaded 

region in figure 5.6. The data and ACK packets from each connection are clearly 

clustered rather than interleaved. The increased burstiness that results from the 

ACK compression increased the average RTT of the AB connection from 106.3 ms 

to 111.3 ms and the maximum RTT from 114.3 to 161.8 ms. 

In order to further ensure that ACK-compression was a result of contention for 

the link between host B and the router, the link speed from host B to the router 

was changed from 100 Mbps to 200 Mbps. Figure 5.8 shows the effect on transfer 
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Figure 5.8: Plots of transfer time with link from host B to router at 100 Mbps(left) 

and 200Mbps (right) versus L1 : L2 latency ratio. 

time of changing the speed of the link connecting host B to the virtual router while 

changing the latency ratio of L and £ 2. The overhead is completely eliminated 

at all configurations. The new A trace of the first connection is shown in figure 

5.9. The burstiness is eliminated and the plot of the trace is similar the trace of a 

single connection. Goodput and RTT statistics are similar to the those of the single 

connection as expected. 

The IP-TNE emulator holds on to packets from real hosts and paces their release 

according to the emulated link speed that the real host was given. In order to ensure 

this was not materially impacting results, the packets were paced at the egress of the 

kernel, using the traffic shaping software tc [44] that is included in most distribution 

of Linux. There was no change in the behavior. Figure 5.10 shows a trace of the 

first connection as seen from host B. Because this trace was taken on host B, the 

data should appear to be acknowledged immediately under normal conditions, but 

there are clear cases in which the acknowledgments are held back. These appear as 



78 

Figure 5.9: Trace of A to B link of split connection with increased forward bandwidth 
on host B 

the places where the data and the acknowledgment lines form right angle triangles. 

These triangles can be seen at times labeled 04.85 and approximate 04.94. 

A split connection will always create two way traffic, but the existence of the 

two way traffic does not always cause overhead. Figure 5.11 shows the goodput in a 

similar topology as the previous experiments, changing link utilization and latency 

with the second connection as the bottleneck instead of the first. The overhead in a 

split connection disappears when the second leg of the connection is the bottleneck. 

Further examination revealed that the first connection still suffers ACK compression, 

while the second one does not. However, since the first connection is no longer the 

bottleneck, overall throughput is not affected. This indicates the send queue on the 
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proxy host is causing the ACK-compression. 

ACK-Compression does not seem to have been commented on in the literature 

regarding split-TCP, possibly because the shared buffers will only occur when a host, 

rather than a router is used for the proxy. Much of the literature suggest that the 

proxy behaves as a router to the extent that the traffic does not have to travel over 

the same link twice. When the proxy acts as a router, there will be no shared output 

queues. 

The fact that the ACK-compression problems only occur on the outgoing con-

nection on the proxy indicate it may be possible to avoid it by modifying the way 

packets are handled at the host. Prioritizing the acknowledgment in the egress queue 

of the proxy host will likely alleviate the situation, for example. However changes in 

the way packets are handled can have unintended side-effects. For example, it was 

pointed out in [51] that prioritizing acknowledgments can starve the low bandwidth 

link in the case of two way TCP connections with asymmetric links. 
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The results in which the second connection is the bottleneck also show that the 

split connection is faster than a single connection that only goes over the bottleneck 

link. The advantage was statistically significant but less than 10% of the overall 

throughput. Tests indicated that this was the result of the fact that the transfer 

from host B to host C is memory to disk in the case of the split connection but disk 

to disk in the case of the single connection.The single connection transfers were just 

as fast when done from memory (by copying from /dev/zero). 
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5.3 Wide-Area-Network Experiments 

A GridFTP Overlay Network was deployed at various sites across North America 

to evaluate the potential performance improvement to be gained by utilization the 

overlay network in a realistic setting. The GridFTP overlay network makes use of 

previous transfers to predict the bulk transport capacity (BTC) it can expect over 

a specific link. The predictions of BTC for a link will not always be accurate. If 

the historical data used is very intermittent, the accuracy can be expected to suffer 

even more. In addition to this, the emulated results from section 5.2.4 indicated 

significant overhead may occur on a split connection. This overhead may make 

the assumption that the BTC of a split-TOP connection will reflect the minimum 

BTC of the individual links used invalid. Given these uncertainties, it is important 

to evaluate the performance of the split-TOP connections chosen by the selection 

algorithm using network information available. This section describes the overlay 

network topology and the methodology used to evaluate the performance of the 

overlay network when using passive monitoring of intermittent data transfers. 

5.3.1. GridFTP Overlay Network Topology 

The GridFTP overlay network topology used for experiments is shown in Figure 5.12. 

It comprised ten hosts including three hosts from the University of Calgary Grid 

Research Centre (GRC), five hosts from Westgrid, one host from the University of 

New Brunswick affiliated with ACEnet, and one host from the University of Houston, 

which is part of the HP CON Grid. WestGrid and ACEnet are high performance 

computing consortia in Western Canada and Atlantic Canada respectively. The HP 
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Figure 5.12: GridFTP Overlay Network Topology [75] 

CCN Grid is an Hewlett Packard led grid computing collaboration that the GRC is 

a participant of. 

Split servers were placed at hosts grcl5 and octarine in the GRC domain as well 

as condor in the WestGrid domain. Connectivity between domains is provided by 

the CA*net4 network in Canada and the Abilene network in the United states. The 

majority of hosts on the overlay network are high performance computing facilities. 

5.3.2 GridFTP Log Generation 

Initially some of the sites used in these experiments had no GridFTP traffic between 

them. For this reason, GridFTP logs were created by transferring data at random 

intervals between the sites. This also allowed us to examine the difference between 

memory to memory transfers and disk to disk transfers. 

The arrival times of the GridFTP transfers were executed as a Poisson process 

for each source with an average inter-arrival time of 30 minutes and a randomly 
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selected destination host. These transfers alternated between disk to disk (D2D) 

transfers and memory to memory (M2M) transfers. Each host had nine alternate 

hosts to select from with either D2D or M2M transfer performed on average once 

every hour. This meant that the throughput for comparable transfers between each 

host pair was measured on average once every 9 hours. For D2D transfers a file size 

was chosen such that the transfer would take approximately 90 seconds. The range 

of file sizes available were all powers of 2 from 32 MB to 1024 MB. M2M transfers 

were accomplished by transferring data from /dev/zero on the sender to /dev/null 

for a period of 90 seconds and recording the amount of data acknowledged by the 

receiving GridFTP server during that time. 

The 90 second average transfer time was obtained by performing transfers be-

tween all host pairs and establishing that the throughput achieved was not a function 

of the transfer time. This was done to avoid the effects of slowstart and the con-

nection negotiation. Transfers with file sizes ranging from 32 MB to 2048 MB were 

successively transferred between all host pairs 5 times until the transfer took in excess 

of 240 seconds. The transfers for each host pair was plotted and visually checked for 

any obvious throughput improvements for longer transfer times. A trend of improved 

throughput for longer transfers was observed between some hosts. This improvement 

disappeared at approximately 80 seconds in the worst case. Most of the time the 

improvement disappeared significantly earlier than that. The time chosen was also 

limited by the fact that the hosts in the overlay network were production systems. 

It was important not to utilize too much of the network capacity on these systems. 

D2D transfers were intended to include the cost of disk access because not all 

data transfers are limited by network congestion. In many systems, particularly 
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those that use high bandwidth networks, the bottleneck for the transfer may occur 

during reading or writing of data to and from disk. The experiments in this work 

where conducted on live systems with a diverse group of disk and file systems. Some 

of the data was transfered from NFS or CFS mounted volumes. The use of caching 

on NFS and CFS volumes, as well as disk caching done by the operating system, 

means that what was intended to be a D2D transfer may have in fact been M2D, 

D2M or M2M. 

In order to examine the issues of disk caching, all host pairs were made to re-

peatedly transfer the same file. This was tried with file sizes ranging from 32 MB to 

2048 MB. Successively larger transfers were used until transfers took in excess of 240 

seconds. For each file, the median throughput of the subsequent file transfers was 

compared with the first file transfer in the trial. This gave a measure of improvement 

on subsequent file transfers of the same file. The median of these improvements for 

all file sizes was then taken. 

Of all hosts, only one had significant, and consistent improvement in throughput 

on subsequent transfers of the same file. This host consistently had throughput 

improvements ranging from 75% to 1100% on subsequent file transfers when transfers 

were to seven other hosts. No consistent improvement was observed on any other 

host pairs. For this reason, several copies of the files to be transferred were used on 

the host that demonstrated significant disk caching effects. It was confirmed that 

this eliminated the caching effects on that host. Due to storage space limitations, 

a sufficiently large number of files on all hosts that ensured no caching issues were 

present on any transfer was not possible. 

All transfers were performed using a GridFTP client built for the purposes of 
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these experiments using the API distributed with the Globus Toolkit. This spe-

cialized client reported performance information every time it was received from the 

destination server. Time measurements for throughput were taken by the client using 

the performance plugin from the GridFTP libraries. Connection negotiation time 

was taken into account by using the time before connections are initiated as the start 

time. 

5.3.3 Analysis of Split Point Selection 

The behaviours of three predictors of bulk transfer capacity (BTC) were collected 

to test the hypothesis that choice of predictor is irrelevant because the predictors 

would result in the same choice of proxies most of the time. Data for predictions 

made using D2D and M2M transfers using a modified exponentially weighted moving 

average (EWMA), median and moving average. 

The median of a data set W with n elements is formally defined as the value 

Xi E W such that when all X E W are sorted, an equal number of elements are 

before and after X. If n is even the median value is the average of the two elements 

X, Xk E W such that an equal number of elements are before Xi and after Xk. 

Medians were chosen because they are unaffected by outliers. 

The modified EWMA was used to respond to network outages more quickly. The 

usefulness of this quick response is questionable due to the intermittent nature of 

data points. The modified EWMA is formally defined as: 

ifX_1= 0 or X_2 = 0 

aX_1 + (1 - a)±,, otherwise 
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where a is a tunable parameter balancing noise filtering and response to material 

changes in network conditions, X_1 is the most recent value collected, and ) i- is 

the previous value calculated. For the purposes of these experiments, a = 0.3. The 

first case in the function definition has the effect of reporting an outage and a return 

of a server immediately. 

The moving average Ai is formally defined as; 

where (X_. .X_1) are the previous n values collected and n is a parameter 

representing the number of previous measurements that are used in the calculation. 

The tuning of n balances the response to material changes in network conditions 

with smoothing out noise. 

Moving average and median can both be done with a constant n which changes 

the amount of time covered by the measurement window, or the span of time in the 

window can be held constant and n can be changed. Monitoring data was collected 

based on both methods, however the performance of split connection choices was 

only tested for metrics based a constant value of n. 

At exponentially distributed intervals, the SCS service (see section 4.5) was 

queried on each host pair to determine if a split-connection was judged to be ben-

eficial. The use of an exponential inter-arrival time means that the measurements 

form a Poisson process. Under a Poisson process, asymptotically, the proportion of 

measurements that have a given state is equal to the amount of time the environment 

spends in that state. A split-connection was judged to be beneficial if the predicted 
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minimum BTC of the split connection links was greater the predicted BTC of the 

direct connection. The possible splits were evaluated based on the D2D and M2M 

throughput predictions using the median of the previous 5 measurements. D2D pre-

dictions using a modified EWMA were also tested. On any connection in which a 

split connection had a higher estimated bandwidth than the direct connection, a 

split-connection and a direct connection were performed one after the other. 

5.3.4 Results 

This section presents performance results of the GridFTP overlay network obtained 

from data collected over a period of three weeks in April 2006. Accuracy of the 

BTC predictors is presented, followed by performance of the split-TCP GridFTP 

connections chosen by the overlay network. 

5.3.5 Accuracy of BTC Predictors 

To compare the error rates of the two linear BTC predictors on a single transfer, 

percent error is defined as: 

IPredicted Throughput -  Actual Throughput  
% error = x 100 

Actual Throughput 

Table 5.3 shows the average percent error of the predicted throughput for all of the 

actual disk to disk (D2D) direct transfers for the three predictors being examined. 

D2D transfer estimates for this network have similar levels of accuracy as those found 

in [87]. This level of accuracy occurs despite using historical data with transfers 

several hours apart. The large prediction error of the memory to memory (M2M) 

metric indicates that disk I/O can have a large effect on GridFTP performance and 

attempts to predict throughput should take this into account. 
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Table 5.3: Table of Accuracy for BTC predictors 
Metric Average % error Standard Deviation 

D2D Median 22.01% 57.70% 
EWMA 22.30% 42.38% 
M2M Median 196.31% 738.13% 

The large standard deviation is a result of a long tail in the distribution. Figure 

5.13 shows a histogram of the percentage error for the D2D Median. 50 % of the 

measurements have less than 10 % percentage error. The values range up to a of 

1600 %. Approximately 1 % of the values are above the range of the graph. Figure 

5.13 is representative of the other two predictors. 
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Figure 5.13: PDF of % error for D2D Median 

5.3.6 Agreement between Metrics 

Table 5.4 shows the level of agreement on where to split connections between the 

decisions made based on the three metrics. Complete agreement implies the split 
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point selection algorithm comes to the same decision for which split point(s) to 

use. Agreement on one split or two splits implies that the three metrics result in 

agreement on what the optimal split point may be for a particular number of splits, 

but their predictions on whether or not it would be beneficial may differ. The level 

of agreement is small even though the performance results of the metrics are quite 

similar. Complete agreement when the predicted improvement was in excess of 25% 

was greater, but there still were variations. 

Agreement type % Aggreement 

Agreement on 1 split 52% 
Agreement on 2 splits 27% 
Complete agreement 33% 
Complete agreement +25% 52% 

Table 5.4: Agreement between Metric choices 

5.3.7 Overall Performance of Split-TCP Connections 

For the purposes of this work, the predicted or actual improvement of a split-TCP 

GridFTP transfer was defined as: 

- 
% improvement = S N  100 

N 

where S is the throughput of a split-TCP GridFTP transfer and N is the throughput 

of a normal single TCP connection GridFTP transfer. 

Overall performance of splitting a connection using the three predictors to decide 

where to split connections appears in Table 5.5. This is the performance of the split 

connections whenever the SCS predicts even a minimal performance improvement 



90 

Table 5.5:, Performance of Split-TCP Connections 
D2D EWMA single double 
Number of Transfers 1486 82 
Average Predicted % Imp. 66.01 85.13 
Average Actual % Imp. 46.27 12.75 
95% Conf. Radius 7.13 21.49 
Median Predicted % Imp. 27.66 46.08 
Median Actual % Imp. 5.27 -4.74 
D2D Median single double 
Number of Transfers 1832 85 
Average Predicted % Imp. 64.51 124.11 
Average Actual % Imp. 48.15 13.89 
95% Conf. Radius 6.16 21.77 
Median Predicted % Imp. 21.33 32.00 
Median Actual % Imp. 6.22 -12.26 
M2M Median single double 
Number of Transfers 1819 27 
Average Predicted % Imp. 136.58 153.75 
Average Actual % Imp. 53.45 129.94 
95% Conf. Radius 6.66 82.58 
Median Predicted % Imp. 42.20 131.78 
Median Actual % Imp. 11.80 120.78 

and makes no allowance for overhead. The performance of each predictor is divided 

up between the times it predicted a single split point and a double split points. Up to 

14 data-points were removed from the data sets because the predicted improvement of 

these points was greater than 6.5 standard deviations from the mean; this removed 

approximately 0.8% of the data points that distorted the predicted improvement 

average significantly. The value of 6.5 standard deviations was chosen becuase it 

removed the small group of measurments that clearly represented outliers. The 

number of datapoints removed varied slightly between predictors because some of 
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the predictors did not predict an improvement at these moments; they predicted 

zero throughput instead. These points are included in the rest of the results. The 

average actual improvement was approximately 48% for the D2D median predictor. 

Split-TCP connections were used whenever predicted improvement was greater than 

zero. 

The use of two proxies was very rarely predicted to improve throughput and for 

the D2D transfers, no statistically significant improvement was detectable. This is 

likely a result of the topology of the test bed. The network latency between the split 

servers was low when compared to the latency between the edges of the network. In 

this environment it is unlikely that two split points would be beneficial. The actual 

improvement of split connections using the M2M predictor was significantly better 

than the D2D predictors. This is likely because the M2M predictor is not affected by 

disk effects and can more accurately predict the effects of using two proxies because 

a proxy to proxy transfer is memory to memory. 

The M2M predictors performed slightly better than the D2D predictors for single 

split points though the improvement is not statistically significant in the case of a 

single split point. This is likely a result of the fact that M2M predictions only measure 

the network performance. A predictor that only captures network effects may be 

more accurate because a proxy can only help overcome failures in the network and 

cannot change disk effects. This is an indication that integrated network information 

services such as NWS when available could be useful. The predictive ability of the 

D2D transfers are more relevant because the data can be collected passively. The 

two D2D measurements had similar performance. The EWMA predictor had fewer 

instances in which it was predicted to improve throughput. This is likely because 
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it predicted BTCs of zero between sites more often, and this would result in no 

prediction of improved throughput. D2D predictors can be considered more relevant 

because D2D measurements are readily available from GridFTP transfer logs. M2M 

measurements would typically require active probing. Because of the similarity in 

performance of all the predictors, and the greater relevance of D2D predictors, a more 

detailed analysis of the only D2D median predictor is presented in the remainder of 

this chapter. 
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Figure 5.14: Average improvement versus predicted improvement threshold. 

Typically, a split-TOP connection would only be chosen if the predicted improve-

ment is greater than a certain threshold. This is to account for overhead. Figure 5.14 

shows what the average improvement over direct connections is for split-TOP trans-

fers for different predicted improvement thresholds. The larger the threshold used, 

the greater the average performance improvement is. For example, if a minimum 

predicted improvement of 50% is used, the average improvement achieved exceeded 

130%. 
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Figure 5.15: CDF of split-TOP connection improvements for various prediction 
thresholds 

Figure 5.15 shows the cumulative distribution function (ODF) of the probability 

that a split-connection undertaken will have a percent improvement less than some 

value, given a predicted improvement threshold. The results show that if the pre-

diction threshold is at least 50%, only 13% of the split-TOP connections perform 

worse than direct connections. In comparison, 33% of the split-TOP connections 

perform worse if the threshold is 0%. As the threshold is increased beyond 50% the 

percentage of split-TOP connections that perform worse remains about the same. 

As such a threshold value of 50% would be reasonable to use. 

Figure 5.16 shows a histogram of the number of connections that experienced 

various ranges of improvement when the minimum predicted improvement threshold 

was 50%. A majority of split connections had a 30% to 200% improvement in 

throughput. Only 13% of the connections experienced reduced throughput. 

Figure 5.17 shows a histogram of the number of host-pairs that experienced cer-
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Figure 5.16: Histogram of # connections that receive % average improvement (50% 
threshold) 

tain levels of improvement over all the connections. Superimposed on the histogram 

are the number of transfers performed by hosts in that category. In total there are 

90 unidirectional host pairs. Of these, 43 had at least one transfer which had a 

predicted improvement using a split connection exceeding the 50% threshold. 

The graph indicates that 12 of the 43 host pairs experienced reduced throughput 

on average when using split-TOP. However, these hosts only transferred 42 files in 

total for the duration of the experiment. Only three routes that experienced reduced 

throughput were selected more than three times. This implies that pathological 

cases, where the same split connection with poor performance was repeatedly chosen 

were rare. 

Four host pairs received average improvements in excess of 200% on a regular 

basis. Two of these four hosts were not configured for high performance TOP trans-

fers; maximum TOP buffer sizes were set too low. The split-TOP connections helped 
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Figure 5.17: Histogram of number host pairs and number of transfers that receive 
average improvements in various ranges (50% threshold). 

overcome this configuration error by reducing the RTT over which the small buffers 

applied. This type of configuration problem has been observed on many computers 

including HPC sites. However, not all significant gains are the result of poorly con-

figured hosts. The 380% average improvement of the one host pair was the result of 

isolating a bottleneck router on a very low latency connection. The host pair with 

538% average improvement experienced gains due to a combination of isolating the 

bottleneck and overcoming poorly configured maximum buffer sizes. 

The host pair that experienced an improvement of 870% actually predicted an 

average improvement of 1600% during a narrow time period that only included 2 

consecutive sample periods. The improvement occured only during the earlier of the 

two sample periods in which the split connection experienced an improvement of 

aproximately 1700%. There is no reason for this type of improvement between the 

host pairs in question that would remain over a period of time such as a misconfig-
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uration. The latency between the two computers is low and the TOP buffers were 

configured correctly. An examination of the GridFTP logs reveals that one of the 

hosts went down. When the host came back up there was very poor connectivity 

between the two for a period of time. The connectivity had improved by the sec-

ond test period. This indicates that the reason for the improvement was a transient 

network condition and the GridFTP Overlay network was capable of detecting and 

circumventing it by rerouting the traffic through a nearby proxy. 

5.4 Summary 

Both the emulation and wide area network experiments indicated that splitting a 

TOP connection can improve throughput in a variety of network conditions. This 

section summarizes the results from both sets of experiments. 

The emulation experiments demonstrate that the GridFTP proxy servers using 

the split-DSI module are capable of improving throughput and link utilization across 

a variety of network environments. Although changes in the latency and background 

link utilization have the expected effect on throughput, increasing the MTU does 

not always improve throughput in any significant manner. A small improvement in 

throughput was observed by separating disk and network I/O. Results also demon-

strated that although the bottleneck link can be very indicative of the throughput 

that will be achieved, significant overhead can be encountered due to ACK com-

pression occurring on the interface. Ways to anticipate or avoid this overhead could 

dramatically improve performance. It is also important to note that both the over-

head and the improvement from separating network and disk I/O may not occur on 
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different operating systems. Different networking hardware and scheduling policies 

in the operating system may change packet queueing behavior in a manner that leads 

to more, less or no ACK-compression. 

The results of the wide area network experiments demonstrate the utility of the 

overlay network. Results indicate that good decisions on where to split connections 

can be made by the Split Choice Service with very sporadic data transfer information 

that is available from GridFTP transfer logs. The specific prediction metric used 

does significantly affect the results. Throughput improvements in excess of 500% 

were achieved on some transfers and an average throughput improvement of 130% 

for all split-TCP connections was attained with a minium predicted improvement 

threshold of 50%. The GridFTP overlay network also showed that it could provide 

a mechanism to overcome transient network conditions. 



Chapter 6 

Conclusion 

The high performance computing (HPC) community is adopting the Grid computing 

paradigm. Grid computing, the presentation of computation, storage, networking, 

and instrumentation resources as a set of services, creates an infrastructure that en-

ables the quick development and deployment of scientific applications. This infras-

tructure provides the ability to federate resources to solve larger scientific problems 

and supports new opportunities for collaboration, both of which increase demands 

on the networking infrastructure. 

The physical networking infrastructure is becoming progressively more hetero-

geneous. Parts of the networking infrastructure are becoming exceedingly fast and 

there is increasing interest in scheduable quality of service guaranteed bandwidth. 

Other parts of this networking infrastructure, particularly that for networked instru-

mentation and sensors, consists of wireless network mediums which are often much 

slower and more error prone. 

TOP, the most commonly used protocol for bulk data transmission often fails to 

meet the networking demands of data-intensive, distributed scientific applications. 

TOP fails to effectively utilize networks in which connections have high bandwidth 

delay products because recovery from errors take too long. TOP has poor utilization 

in heterogeneous network environments because bit errors are incorrectly interpreted 

as congestion and the window size reduced when it is unnecessary. The poor utiliza-

tion experienced with TOP becomes worse as the latency of the connection increases. 

98 
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As scientific applications make use of more distributed resources, connection latency 

will become more of a problem. It has been recognized for some time, that as net-

works become faster, and more heterogeneous in their characteristics, TOP's ability 

to utilize the network will become worse. 

In order to overcome the poor utilization experienced using TOP, splitting a TOP 

connection has been suggested. The use of proxies to split TOP connections into 

several smaller segments with buffers between them overcomes TOP's poor utilization 

in a variety of environments. The majority of schemes developed for splitting a TOP 

connection were designed for specific environments. Using proxies to split all TOP 

connections is not practical because it would require too much memory in the routers 

and assumes that all TOP connections favour bulk transport capacity over other 

connection attributes such as low latency or reduced jitter. This means a split-TOP 

architecture requires mechanisms to discover the capacity of links and location of 

proxies, as well as, security mechanisms to manage access. 

This thesis presented a set of components that enable easy deployment of overlay 

networks that make use of split-TOP connections to improve GridFTP transfer per-

formance. The components include an extension to the Globus Toolkit v4 GridFTP 

server that supports split TOP connections, a service to estimate bulk transfer ca-

pacity and a service to determine if and where to split a connection. Together, these 

components provide the resource discovery, resource provisioning, authentication and 

authorization services required to implement split-TOP within data transfers. By 

using a widely adopted data transfer standard, the GridFTP overlay network can 

be easily integrated with existing distributed applications. A proxy server can be 

deployed by compiling a module for the widely deployed GT4 GridFTP server. Use 
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of the proxies does not require specialized clients. The proxies have been successfully 

used with a variety of GridFTP clients that were not developed with the us proxies 

in mind. 

Emulation results indicated that the proxy server developed for this thesis has 

the potential to increase throughput for GridFTP transfers in a wide variety network 

conditions. Use of the proxy servers was also shown to decrease variance in transfer 

time of GridFTP transfers on both an absolute basis and as a percentage of the 

mean. Emulation results also revealed that using a host as a proxy for data transfers 

may result in AOK-compression on some systems. This source of overhead had not 

previously been discussed in the literature. 

Results from a deployment of a GridFTP overlay network demonstrate signifi-

cant performance improvement despite using very intermittent, passive throughput 

observations to determine the routing of the split connections. Throughput improve-

ments in excess of 500% were achieved on some transfers and an average throughput 

improvement of 130% for all split-TOP connections was attainable when a 50 % 

threshold was used. The GridFTP overlay network also demonstrated an ability to 

overcome some transient, adverse network conditions. 

At some point in the future, other protocols that are more effective in transferring 

large amounts of data in wide area networks could be used in place of TOP. The 

Globus Toolkit v4 GridFTP server was developed with an eXtensible Input/Output 

(XIO) [3] library that makes it possible to replace underlying protocol modules for 

this reason. However, the replacement of TOP with protocols that more effectively 

utilize bandwidth is taking a considerable amount of time. The proxy mechanisms 

developed in this thesis are a useful way to overcome TOP's inefficiencies while 
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other protocols are being developed tested and deployed. When new protocols are 

developed the proxy mechanisms developed here can still be used to make effective 

use of on demand bandwidth technologies such as scheduable light paths. The proxies 

provide a convenient method of routing the traffic to the ingress of the light path. 

This solves the first mile problem of getting the data routed to the lightpath. For 

security reasons, it is difficult to dynamically change the routing for a specific stream 

at the operating system level. The bandwidth estimation techniques used in this 

work could also be used to achieve efficient allocation of scheduable light paths, by 

ensuring only the bandwidth available over the first mile is reserved for a transfer. 

A considerable amount of work remains to be done in this area. 

There is a substantial amount of future work related to proxy selection that re-

mains to be explored. The emulation and wide area network experiments presented 

in this thesis both indicated there can be significant overhead. Improved ways of 

predicting additional overhead from split-points could dramatically improve the per-

formance of split-TCP. Making use of previous performance in choosing proxies is 

one possibility. The possibility of dynamically changing the proxy being used dur-

ing a transfer could also be examined. The proxy being used could be changed in 

response to changes in the network conditions or observing that actual throughput 

is not matching predicted throughput. 

The implications of having a large number of split-TCP connections active con-

currently needs to be explored. Large numbers of users using proxies may change 

the performance of the GridFTP overlay network. The implications the use of prox-

ies has on the fairness of bandwidth allocation between streams also needs to be 

explored. Although the individual TCP connection will be fair, use of a proxy by 
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a user in certain situations may increase fairness issues experienced by a user not 

using proxies. In addition, more scalable algorithms to choose split points need to 

be developed. Making use of split-TOP in conjunction with parallel streams needs 

to be examined. Both split-TOP and parallel streams improve performance but it is 

not clear how complimentary the methods are. 
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