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Abstract

Improving patient flow is a critical aspect of quality management in emergency departments

and other healthcare settings. By improving the flow of patients in healthcare facilities, we

can decrease wait times and boost patient and staff satisfaction. Many patients face physical

pain and suffering while waiting for treatment in healthcare facilities. Long wait times may

also result in treatable illnesses and injuries becoming chronic conditions. This dissertation

includes three main chapters, corresponding to three essays on understanding and improving

patient flow in outpatient clinics and emergency departments. In some outpatient clinics,

lab tests must be completed before the clinic appointment, as doctors need to have the test

results when seeing a patient. Achieving this tight coordination of a patient’s testing and his

or her subsequent doctor’s appointment may be difficult in a facility where many physicians

share the same testing resources. The second chapter presents a mixed-integer programming

(MIP)-based approach to reduce the likelihood of a patient not completing testing in time

for the clinic appointment. In the third chapter, we focus on improving patient flow in

emergency departments by looking at the physician scheduling problem. We show that the

scheduling of physicians has a direct impact on the waiting time of patients. Chapter 4

presents a new crowding measure in emergency departments that is based on patient volume

and mix of patients. We assess the relevance and significance of the proposed measure.
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Chapter 1

Introduction

Healthcare systems and healthcare operations have received substantial attention lately,

but many times not for good reasons. For example, long wait times have become a seri-

ous global phenomenon in many healthcare facilities. Healthcare operations problems are

not constrained to developing countries. Over the past decade, for example, Canada has

always ranked below other members of the Organisation for Economic Co-operation and

Development (OECD) on several key indicators of patient flow and the related performance

measures. This thesis focuses on patient flow, and its main goal is the improvement of flow

in healthcare facilities, so that they do not experience unnecessary waits.

In order to further motivate the need for such study, we call attention to a 2017 report

released by the Canadian Institute for Health Information (CIHI (2017)) comparing the

healthcare performance of 11 countries which suggests that Canada has the highest patient

wait times for visiting family doctors, specialists, and emergency department physicians.

Moreover, the CIHI (2017) reports that: less than half (43%) of Canadians could get a

same- or next-day appointment with their family doctor or at their regular place of care the

last time they needed medical attention, compared with top-performing countries like New

Zealand (76%) and the Netherlands (77%); access to after-hours care is also more difficult

in Canada than in most other countries, with only 1 out of 3 patients being able to receive

medical care in the evenings, on weekends or on holidays without going to the emergency

department; and, Canadians visit emergency departments more often than people in other

countries, and have the longest reported waiting time for service.
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Still in CIHI (2017), it seems that the healthcare service design is corrupted by its own

performance problems. For example, more than 40% of Canadians said that the last time

they visited an emergency department, it was for a condition that could have been treated by

their regular providers if they had been available. That is not surprising given that Canadians

also report the longest wait times for specialists, with more than half (56%) of treatment

seekers waiting longer than 4 weeks to see a specialist, compared with the international

average of 36%.

A way for improving patient flows is to increase the availability of resources (medical

doctors, nurses, healthcare equipment, etc.). Unfortunately, there are important costs asso-

ciated with healthcare resources which creates pressure for a careful and wise use of them.

That is where Operations Management and Operations Research can help to make the right

trade-off between cost and quality of service, in order to ensure that resource availability,

usually constrained by a limited budget, is of the right kind at the right place and closely

matching patterns of patient demand. There are different levels of decisions making for im-

proving performance and patient flow. These levels are classified as strategic, tactical, and

operational level. At the strategic level, the interest is centred on determining the best num-

ber of healthcare resources, while at the tactical level the focus is on about making better

use of the existing resources. That latter is the focus on chapters 2 and 3 of this thesis,

although in two different healthcare settings. Finally, strategic, tactical, and operational

levels need deeper understanding of current and future demand. In order to improve the

flow of patients, we first need to know what goes into the healthcare facility on a daily basis

and second examine the relationships between patient flow and performance metrics. That

is the focus on chapter 4 in this thesis.

1.1 Patient flow and the related literature

In this section, we discuss patient flow and the related literature. First, we review studies

that have addressed flow of patients and the consequences of delay. In the second part, we

review studies that have addressed the problem at the strategic level to identify and remove

bottlenecks. In the third part, we concentrate on the tactical level and review studies that

2



have focused on a better allocation of available capacity to meet patient demands. Finally, the

fourth part of this section concentrates on the operational level and patient flow management.

1.1.1 Patient flow and the consequences of delay

Reducing delays experienced by patients can produce dramatic improvements in access to

service, treatment outcomes, and patient satisfaction. This section presents what is known

about the patient flow and consequences of delays for patients.

Decreased access to health care

The first consequence of delays is that patients’ ability to access care will be compromised.

Access is influenced by many factors, but from the patient’s perspective, the most important

measure is how long they must wait to receive care. For example, Sills et al. (2011) did a cross-

sectional study from November 1, 2007, to October 31, 2008, at a single, academic children’s

hospital emergency department. They sought to determine if ED crowding is associated

with decreased access to care for children. Good access to care was defined as receipt of an

indicated process within 1 hour of arrival. Nine crowding measures were used. The results

suggested that two measures of ED crowding (total patient-care hours and number arriving

in 6 hours) are consistently associated with access to care in the ED for pediatric patients.

The first consequence of the long wait times in emergency departments is that a significant

proportion of patients may leave the hospital without being seen by a physician. Ding et al.

(2016) suggested that EDs should make every effort to reduce the LWBS rate because these

are the patients who are the least likely to receive care elsewhere. Rowe et al. (2006) studied

the acuity level, reasons, and outcomes of patients who leave without being seen (LWBS).

The study took place at the University of Alberta Hospital and Stollery Children’s Hospital

EDs in Edmonton, Alberta, Canada. A total of 711 (4.5%) of 15,660 registered emergency

patients left without being seen. The majority of LWBS patients (73%) had triage level 4

(Less urgent) and 5 (Non-urgent). The major reason was identified as long waiting time

(44.8%). Overall, 60% of LWBS cases sought medical attention within one week, 14 patients

were hospitalized, and one required surgery. A study done at a public hospital in Los Angeles

3



county showed that 46% of the patients who left the ED without visiting a physician were

assessed to need immediate evaluation, and 11% were hospitalized during the subsequent

week (Stock et al. (1994)).

Compromised quality of care

Patients value timely diagnostics, as early diagnosis will result in better treatment out-

comes and reduce mortality rates. Neal et al. (2015) did a systematic literature review to

examine whether the increased time to diagnosis and treatment in symptomatic cancer is

associated with poorer outcomes. They found that the diagnosis of symptomatic cancer

is likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis

and improved quality of life, although these benefits vary between cancers. The cancers

with more reports of an association between shorter times to diagnosis and more favourable

outcomes were breast, colorectal, head and neck, testicular and melanoma.

Several studies have shown that the odds of a patient experiencing a medical error increase

when EDs are more crowded. For example, Epstein et al. (2012) examined the association

between ED crowding and preventable medical errors for three diagnostic categories: acute

myocardial infarction, asthma exacerbation, and dislocation requiring procedural sedation.

They found that those patients seen during higher levels of ED crowding, the occurrence of

medical errors was more than twofold higher. The relationship was shown to be non-linear,

with most errors occurring at the highest crowding level. Shayne et al. (2009) studied the

effect of ED crowding on undergraduate and graduate emergency medicine (EM) education.

They reviewed possible positive and negative effects on each of the six recognized Accredi-

tation Council for Graduate Medical Education (ACGME) core competencies. They found

that less faculty supervision of learners leading to increased errors and decreased patient

safety.

Lower patient satisfaction

Several studies have reported a strong and inverse relationship between patient satisfac-

tion and wait times in different healthcare facilities.

In outpatient clinics, for example, Kreitz et al. (2016) examined how patient wait time

4



relates to level of satisfaction and likelihood to recommend an orthopedic clinic to others.

Data was collected at a single orthopedic clinic from June 2011 through October 2014. They

reported that minimizing wait times in the orthopedic clinic may improve patient satisfaction

but may not affect their likelihood of recommending the practice to others. Zopf et al. (2012)

studied factors related to patient/family satisfaction in an academic pediatric otolaryngology

clinic. Patients and families were surveyed following clinic encounters between May, 2010

and April, 2011. They found that examination room wait times and reception area wait

times are associated with overall satisfaction and should be minimized.

In the ED setting, according to Gallup’s 2002 patient loyalty database, patients who said

they were ”very satisfied” with their emergency department experiences reported waiting an

average of 16 minutes. ”Satisfied” patients waited an average of 35 minutes. Patients who

were ”somewhat dissatisfied” with their experiences waited 72 minutes on average, and ”very

dissatisfied”patients waited 92 minutes. Gallup research concluded that a wait time of about

one hour or less is necessary to achieve some level of patient satisfaction. Thompson et al.

(1996) assessed the impacts of actual waiting time, perception of waiting time, information

delivery, and expressive quality on satisfaction scores. During a 12-month study period, a

questionnaire was administered by telephone to a random sample of patients. Respondents

were asked several questions concerning waiting times (ie, time from triage until examination

by the emergency physician and time from triage until discharge from the ED), information

delivery (eg, explanations of procedures and delays), expressive quality (eg, courteousness,

friendliness), and overall patient satisfaction. They found that providing information, pro-

jecting expressive quality, and managing waiting time perceptions and expectations are more

effective strategies to achieve improved patient satisfaction in the ED than decreasing actual

waiting time.

1.1.2 Improving patient flow at the strategic level

An often suggested approach to improve patient flow in healthcare facilities is to increase

associated resources for providing the care, such as number of hospital beds and number of

physicians and specialist physicians. At the strategic level, healthcare decision-makers need

to find the best number of resources to use in their healthcare facility.
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Several studies have addressed improving patient flow at the strategic level. For example,

Dreesch et al. (2005) suggested that health planners and decision-makers have to ensure that

the right number of people, with the right skills, is at the right place at the right time to

deliver health services for the population needs, at an affordable cost. They recommended

that the methods chosen to estimate human resources requirements must reflect the political

and economic choices and social values that underlie a particular health care system. They

reviewed several approaches used to estimate requirements for human resources for health,

such as needs-based, target-based, and utilization-based. In the needs-based approach, the

number and type of health services to be delivered are estimated based on the health needs of

the population. In the target-setting approach, the number and types of services are set by

health authorities as specific targets, at various levels of care, considering the current level of

technology, the demand of the population for certain services, and the various services already

performed by health workers. The utilization-based approach usually takes the current level

of health services utilization as being appropriate to meet the health needs and projects the

future requirements of the health workforce based on future changes in the structure of the

population.

Lamarche et al. (2011) examined whether a patient’s experience with primary care ser-

vices and use of services vary with the availability of health resources. The study captured the

experience of 3,319 primary care users in five Quebec administrative regions in Canada. The

patients’ experience of care was recorded through a questionnaire that rated the accessibility,

continuity and responsiveness of their primary care services and gathered their self-reported

utilization of health services. In no case were positive ratings of services and greater use

of them associated with greater resource availability. They concluded that simply adding

resources runs the risk of diminishing, rather than improving, users’ healthcare experience.

Rabinowitz et al. (1999) studied the direct and long-term impacts of increasing the number

of family physicians in rural and underserved areas. They reported that policy-makers and

medical schools can have a substantial impact on the shortage of physicians in rural areas.
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1.1.3 Improving patient flow at the tactical level

The tactical level suggests making better use of the resources already available and tar-

gets changes to the organization of health systems and the delivery of services. There are

sometimes more effective and less expensive approaches to improve patient flow at the tacti-

cal level. Adding resources will have a marginal effect on improving patient flow if changes

have not first been made to the organization of the systems (Romanow (2002)).

At the tactical level, there are several analysis tools than can be used to make better

use of the resources, such as simulation models, queueing analyses, and optimization models.

Below we review several studies that have used these tools at the tactical level.

Simulation models

Simulation models have been widely used to evaluate proposed changes in the delivery of

health care. For example, Hung et al. (2016) constructed a discrete event simulation model

to test different pediatric emergency department staffing scenarios. Simulation of an addi-

tion of a hospital volunteer and a second triage nurse demonstrated reductions in pretriage

waiting time and the proportion of patients waiting longer than 30 or 60 minutes for pre-

triage. Simulation of an extra physician shift to the staff schedule demonstrated reductions

in length of stay for patients of all triage categories. Rohleder et al. (2008) applied discrete

event simulation modelling to test different improvement alternatives for reducing wait time

and congestion at an orthopedic outpatient clinic. They examined optimized staffing levels,

better patient scheduling, and an emphasis on staff arriving promptly. Coelli et al. (2007)

used discrete event simulation in the analysis of a mammography clinic for defining opti-

mal operating conditions, indicating the most adequate capacity configurations and equip-

ment maintenance schedules. The results showed that a large impact over patient waiting

time would appear in the smaller capacity configurations. Cótẽ (1999) developed a discrete

event simulation model to investigate the relationship between examining room capacity

and patient flow across four clinic-based performance measures. They showed that increased

resource utilization does not necessarily imply longer waiting lines nor longer patient flow

times.
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Queueing analyses

Queueing analysis is also a key tool in healthcare resource plannings. For example,

Cochran and Roche (2009) used queueing models to find the staffing levels of different emer-

gency department areas. Bruin et al. (2007) used queuing theory to investigate the bottle-

necks in the emergency care chain of cardiac in-patient flow. The goal was to determine

the optimal bed allocation over the care chain given a maximum number of refused admis-

sions. They found that refused admissions are primarily caused by unavailability of beds

downstream the care chain.

Queuing analyses and simulation models each have their advantages. Queuing models are

easier to use and require less data. However, discrete event simulation allows us to model the

details of patient flows in more complex healthcare settings. Simulation is used in chapter 3

of this thesis to model patient flow in an ED facility. However, we will not explore queueing

analyses further in this thesis.

Mathematical models: The technique used in chapters 2-3

A key element in improving patient flow through healthcare systems is that the schedule

of care providers matches with the time-varying patient demand. Mathematical modelling

is a commonly used technique to find the best schedule of care providers, such as nurses

and physicians. For example, El Adoly et al. (2018) proposed a mathematical model for

the nurse scheduling problem. The objective was minimizing the overall hospital cost while

taking into consideration the governmental rules and hospital standards. The results showed

the superiority of the obtained schedule to those generated manually by the supervisor head

nurse in terms of improving nurses’ satisfaction as well as reducing the overall overtime cost.

Azaiez and Al Sharif (2005) suggested a zero-one linear goal programming (LGP) approach

for scheduling a number of nurses in a 4-week period. The scheduling problem contained a

total of 11 scheduling sets of constraints. These include balanced schedules, fairness con-

siderations, and nurses’ preferences, in addition to ergonomic considerations, and staffing

requirements. The objective function was to minimize the sum of the weighted deviations

from the constraints. Beaulieu et al. (2000) proposed a mathematical programming approach
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to construct a six-month schedule of physicians in the emergency room. They partitioned the

constraints of the model into four following categories: compulsory constraints, ergonomic

constraints, distribution constraints, and goal constraints. The objective of the proposed

model was to minimize the overall deviations from the constraints.

We use a mathematical modelling approach at the tactical level in chapter 2 and chapter

3 of this thesis, although in two different healthcare facilities. In chapter 2, we develop a

mixed-integer programming (MIP)-based approach for assigning time slots to the physician

clinics in outpatient clinics. In chapter 3, we propose a two-stage stochastic mixed-integer

programming (MIP) for scheduling physicians to improve patient flow through emergency

departments.

1.1.4 Improving patient flow at the operational level

Improving patient flow at the operational level has extensively studied in the literature.

For example, Barak-Corren et al. (2017) suggested an automatic hospitalisation prediction

model to reduce delays in transferring an admitted patient from the ED to an inpatient de-

partment. They found early clinical decisions such as testing for calcium levels to be highly

predictive of hospitalisations. They estimated that the use of the prediction system in the

studied ED can save more than 250 patient hours per day. Nguyen et al. (2011) studied the

problem of missed patient appointments in a resident continuity clinic to determine patient

characteristics and healthcare outcomes. They found that the disproportionate frequency

of missed appointments in the resident continuity clinic is explained by patient factors and

practice discontinuity, and that patients with frequent missed appointments demonstrated

worse health care outcomes. Min and Yih (2010) addressed the problem of scheduling pa-

tients with different priorities in a surgical facility with finite capacity. They formulated

this problem by using a stochastic dynamic programming model. A structural analysis of

the proposed model was conducted to understand the properties of an optimal schedule pol-

icy. They found that the consideration of patient priority results in significant differences in

surgery schedules from the schedule that ignores the patient priority. Wilper et al. (2008)

studied the trends and predictors of wait times in U.S. emergency departments between 1997

and 2004. They found ED closures and an increase in total ED visits as the main reasons of
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longer ED waits. Between 1994 and 2004, the number of U.S. ED visits increased from 93.4

million to 110.2 million annually, while the number of EDs fell by as much as 12.4 percent.

They suggested that prolonged ED waits have serious impacts on the quality of care, such as

prolonged pain and suffering, patients leaving without seeing a physician, and dissatisfaction

with care.

When making resource planning for several years, it is necessary to consider how patient

flow may change over that period of time. That is a necessary input for all decision levels

and will be the focus on chapter 4 of the thesis.

1.2 Outline of the dissertation

This dissertation includes three main chapters, corresponding to three essays. Table 1.1

positions the three chapters of this thesis in relation to the three decision levels for improving

patient flow.

Chapters of 

the thesis 
Objective Decision level(s) 

Healthcare 

setting 
Analysis tool 

Chapter 2 
& 

Chapter 3 

Making better use of the 
existing resources 

 
Tactical level 

Outpatient clinic 
& 

Emergency 
department 

Combinatorial 
optimization 

& 
Stochastic programming 

and Simulation 

Chapter 4 
Deeper understanding of 

current and future demand 

Strategic, tactical, 
and operational 

levels 

Emergency 
department 

Regression analysis 

 

Table 1.1: Improving patient flow from three decision levels

At the tactical level, we address two problems: 1) A doctor-clinic assignment problem in

medical outpatient clinics (Chapter 2), and 2) A tactical scheduling problem of physicians

in emergency departments (Chapter 3). In both problems, we consider the strategic level

decision as a constraint, as it is the result of several internal and external factors like political

and economic choices and social values. However, we still provide some insights to identify

and remove bottlenecks at the strategic level. Finally, chapter 4 concentrates on emergency
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department patient flow and propose a new crowding measure that is a necessary input for

all decision levels. We summarize each chapter as follows.

Chapter 2: Coordinated lab-clinics: A tactical assign-

ment problem in healthcare

In some medical outpatient settings, it is desirable to perform patient diagnostic testing

just before the appointment with the physician, effectively linking the testing to the clinic

appointment. If testing resources are shared by several physicians, it becomes difficult to

assure that testing is completed in time (with some probability) due to the variation in

testing requirements across patients and types of clinics held concurrently. To address this

tactical-level doctor-clinic assignment problem, we develop a mixed-integer programming

(MIP)-based approach for assigning time slots to the physician clinics. The approach maxi-

mizes the minimum service level across blocks of time to reduce the likelihood of a patient not

completing testing in time for their clinic appointment. A branch-and-price heuristic proce-

dure is proposed to solve practical problem instances, and numerical examples are presented

to show the efficiency of this model. Two mini-cases based on clinics’ actual operations are

provided. The results of the mini-cases suggest that the proposed scheduling method will

bring important improvements to these systems. This chapter is based on Zaerpour et al.

(2017).

Chapter 3: Physician scheduling to improve emergency

department patient flow

Emergency department (ED) crowding has become a serious concern worldwide that may

impact treatment outcomes, patient satisfaction, and access to high-quality medical care.

In this chapter, we develop a two-stage stochastic mixed-integer programming (MIP) for

scheduling physicians to improve patient flow through emergency departments. Scheduling

ED physicians has traditionally been built around physicians’ preferences, regulatory and
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work constraints. A more effective method is a procedure to achieve an overall hourly

balance between patient arrivals and ED physicians’ productivity while taking into account

the traditional constraints. We define an ED physician’s productivity as the number of

new patients seen per hour by that physician. The study of ED physicians demonstrates

significant differences among physicians in terms of their productivity. Furthermore, the

analysis of hourly productivity rates suggests that ED physicians evaluate significantly more

patients early in a shift, and few at the end of a shift. We found no significant relationship,

however, between ED crowding and physicians’ productivity. Finally, we provide a case

study and develop a simulation model to evaluate the impact of the near-optimal stochastic

MIP solution on reducing patient wait times. The results of the case study suggest that our

proposed schedule will reduce the average wait time of patients. This chapter is based on

Zaerpour et al. (2018b).

Chapter 4: A new definition of crowding in emergency

departments: patient volume and patient mix

In this chapter, we present a new crowding measure for emergency departments (EDs)

that is based on patient arrivals and the mix of patients. The most commonly used crowding

measure is patient volume, which ignores the mix of patients visiting EDs. However, identi-

fying patient mix is of great importance for strategic and operational planning in EDs. We

define ED crowding as the number of patients arriving to EDs from each group. To capture

the patient mix arriving to EDs, we propose a patient classification system based on patient

demographics and diagnostic information.

A crowding measure is usable and meaningful if, first, we can estimate the arrival patterns

of its suggested variables and, second, it has significant impacts on ED performance metrics.

To examine these two conditions for the suggested crowding definition, we use data from five

hospitals in February, July and November for the years of 2007, 2012, and 2017 in the city

of Calgary, Alberta, Canada. Our primary goal is to examine arrival patterns of all patients

as well patients at each group. We find meaningful arrival time patterns of patients as well
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as types of patients in EDs. To show the relevance of our suggested ED crowding metric,

we then examine the relationships between the two crowding variables and performance

metrics. The performance metric dimension is based on commonly-used metrics of system

performance, including both time-based and quality measures. The regression results suggest

that number of ED arrivals is the main predictor of time-based ED performance measures.

Patient mix is, however, the key predictor of quality of care in EDs. The regression results

show the relevance and significance of our crowding definition that is based on both patient

arrivals and mix of patients. This chapter is based on Zaerpour et al. (2018a).

Chapter 5: Summary and conclusion

Finally, chapter 5 summarizes the results of previous chapters and provides potential

future research questions.
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Chapter 2

Coordinated lab-clinics: A tactical

assignment problem in healthcare

2.1 Introduction

In some medical outpatient settings, it is desirable to perform diagnostic tests on a

patient just before the patient’s appointment with a physician, effectively linking the testing

to the appointment. For example, a patient who has an appointment with a respirologist

will undergo pulmonary function testing by a respiratory therapist in a pulmonary function

laboratory. Ideally, the testing is performed only just prior to the patient’s appointment with

the respirologist, as the physician needs to have current test results in hand when seeing a

patient, but patients should not have to arrive a long time before their appointment in order

to have testing done.

Achieving this tight coordination of a patient’s testing and his or her subsequent doctor’s

appointment may be difficult in a facility where many physicians share the same testing

resources. During a week in such a facility, each physician holds one or more clinics, which

are scheduled blocks of time during which a physician sees patients by appointment. The

physical space available to see patients limits the number of clinics that can run at the

same time at the facility, but since the weekly clinic schedule is based to some degree on

physician preferences, there may be more clinics held on some half-days than on others.

Some physicians may hold general clinics where they see any type of patient within their
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specialty, while other physicians hold clinics for patients with a particular condition that

is in their subspecialty area of expertise. Physicians also vary on the number of new and

follow-up patients they want to see during a clinic. Different physicians thus see different

numbers and types of patients in a given half-day clinic. However, the variety in patient

types can mean that each patient requires a different type of pre-appointment testing that

takes a different amount of time to complete. The amount of, and variation in, the testing

requirements generated by patient appointments across concurrently scheduled clinics may

not be considered when the week’s schedule of clinics is set up. A poor clinic schedule can

yield an uneven workload on the testing facility, making it more difficult to complete testing

in time for the patient’s appointment. This can lead to lower quality of care as well as result

in friction between physicians and testing staff. An approach to clinic scheduling that takes

into account the varying testing requirements generated by concurrently scheduled clinics, as

well as the limited availability of the resources required to complete that testing, is therefore

needed.

This research is motivated by the example of outpatient respirology facilities in hospitals

that are part of Alberta Health Services in Alberta, Canada. Currently, administrators divide

a period (usually a week) into blocks of time of a few hours each day (half-days) and within

each block schedule clinics of particular types to be run by assigned physicians. For the sake

of stability, these periods have similar assignments for each block for a relatively long time.

Hence, decisions are made with a long horizon in mind. Although at the operational level

there are adjustments with respect to the order in which physicians see patients and the type

of patient (new or returning) a physician sees, administrators would like to have schedules

set up in such way that there would be a high probability that the resulting mix of patients

that have appointments in each block of time would be able to finish the required lab tests

before their appointment. This is the problem we address.

It is important to stress that the problem under consideration is that of assigning doctors

to clinics and clinics to blocks of time in a period (usually a week). The assignments are

repeated period after period until there is a major reason for reviewing the assignments

(possibly a new hire or the introduction of a new clinic). This is a tactical level problem

and should not be confounded with the operational level problem of scheduling patients in
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a given block (ordering the patients to be treated).

More specifically, our research problem is the following: given the available testing time in

each block of the period, what is the assignment of physicians’ clinics to each block that will

maximize the minimum service level over all blocks in a period while satisfying physicians’

preferences for types and blocks for their clinics? Although there are different perceptions

of service level, which will be reviewed in the next section, we define the service level for

a block as the probability that the sum of all patients’ testing times assigned to a block is

less than or equal to the available testing time. This performance metric assures that the

probability of not completing any given patient’s testing prior to their appointment will be

as similar, and as small, as possible.

Although this study is motivated by the problems that we have observed at respirology

lab-clinics, and for ease of exposition and consistency we will continue with that example

throughout, more generally our study provides an approach for assigning servers in any type

of demand centers that share a predetermined amount of a service resource that provides

a time-sensitive activity to those demanders, who send independent requests for varying

amounts of service. Outside the healthcare setting there are several variations of the prob-

lem, for example, cold temperatures and deicing problems can cause delays in airports. A

limited amount of deicing equipment is available for airfield pavement and aircraft anti-icing

operations. To avoid or reduce delays due to the need for anti-icing, it would be valuable to

assign flights to runways, taxiways, and time slots such that all planes can be anti-iced prior

to their scheduled departure time. The human resources (HR) department of a particular

business school assigns blocks for dealing with specific tasks (e.g., safety and ergonomic re-

lated concerns are only dealt with from Tuesday to Thursday during morning times, while

paycheck related issues are dealt with every afternoon) and the HR department wants to

choose what specific tasks should be assigned to each block in order to minimize the chance

that requests are not met within the block allotted time - the backroom of the HR depart-

ment is analogous to a testing-lab in the respirology clinic case. In some tax revenue agencies

in France, different types of ”tax-payer requests” are assigned to different blocks where the

tax-payer deals first with a general administrative worker who proceeds with assessment,

organization of documents, checking basic validity of claims etc., and then, when the general
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pre-work is done, sends the client to talk to the particular field expert related to the re-

quest. Back to the healthcare setting, for small surgical interventions and some MRI exams

where recovery is relatively fast compared to the length of a block, the problem of assigning

doctors-clinics to particular blocks of time will create needs for recovery rooms.

In this study, we address a tactical-level problem for assigning time slots to the physician

clinics. First, we propose a MILP with the objective of maximizing the minimum service level

across blocks of time. As a second step, a branch-and-price heuristic procedure is proposed

to solve practical problem instances.

This study has three key contributions. Firstly, it shows the potential of operations

research (OR)-based studies as helpful decision making tools for real-world healthcare prob-

lems. Secondly, it demonstrates and evaluates the implementation of the branch-and-price

algorithm for the doctors’ assignment problem or any assignment problems in any type of

demand centers that share a predetermined amount of a service resource. The third con-

tribution is a method for facility managers to decide on the required lab capacity or the

common resource at the strategic level.

The rest of this chapter is organized as follows. In section 2.2, we define more precisely the

coordinated lab-clinics problem and review the relevant literature. In section 2.3, we describe

the properties of the problem. In section 2.4, the mathematical formulation for the model

is first developed, and then the complexity of the problem is discussed. A branch-and-price

heuristic is proposed to solve practical examples in section 2.5. In section 2.6, two mini-case

studies from two respirology clinics within the Alberta Health Services (AHS) are provided.

Finally, we conclude in section 2.7 with a discussion and further research suggestions.

2.2 The coordinated lab-clinics problem and related

literature

In healthcare, many scheduling studies are focused on outpatient appointment scheduling,

with the goal of finding an appointment system for which a particular measure of performance

is optimized (e.g., Baron et al. (2016); Samorani and LaGanga (2015); Zacharias and Pinedo
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(2013); White et al. (2011); Kucukyazici et al. (2011)). The lateness and interruption level

of doctors are two doctor-related parameters studied (see, e.g., Klassen and Yoogalingam

(2008); Cayirli and Veral (2003)). However, the outpatient appointment scheduling problem

is focused on the operational level of scheduling, whereas the coordinated lab-clinics problem

addresses the tactical level. A problem that is more closely related to the lab-clinics schedul-

ing problem is medium-term surgical block scheduling, where a cyclic schedule is determined

to assign doctors to blocks over a time period (see e.g., Guerriero and Guido (2011); Fei et al.

(2009); Gupta (2008)). In both problems, the strategic level decision acts as a constraint,

as the number of physicians and the available time in each block has already been decided.

The operational level of both scheduling problems, where the sequence of patients will be

determined, occurs after the tactical level. Figure 2.1 summarizes the main problems on

each decision level in the surgical block and the lab-clinics scheduling processes.

The coordinated lab-clinics problem The surgical block problem

Strategic Level
Determining the number of physicians

and testing capacity
Determining the total OR time dedicated

to each surgical specialty

Tactical Level
Assigning doctors to clinics

to maximize service level
Allocating surgical

specialties to ORs to maximize utilization

Operational

Level
Sequencing patient testing and clinic

appointments
Sequencing patients in each OR

Figure 2.1: Stages in the surgical and the lab-clinics scheduling processes

Van Houdenhoven et al. (2007) applied bin-packing and portfolio techniques to assign

surgeries to blocks with the objective of minimizing the probability of overtime. The bin-

packing algorithm suggested in Van Houdenhoven et al. (2007) can also be used to solve

heuristically our assignment problem for a given service level. Although real-sized problems

are solvable when applying the exact solution proposed herein, the heuristic approach can be,

with minor modification, used after applying our method for obtaining the time distribution.

Latorre-Núñez et al. (2016) proposed an integer linear programming model to address the

surgery scheduling problem considering not only the assignment of surgeries to operating

rooms, but all the resources required for each surgery (human and material), and the recovery

beds. They then developed a metaheuristic based on a genetic algorithm to deal with larger-
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sized instances. Silva et al. (2015) addressed surgery scheduling and resources assignment in

an operating room. They applied an integer model and integer programming based heuristics

to maximize the use of the operating rooms. Min and Yih (2010) proposed a stochastic

optimization method to find an optimal surgery schedule of elective surgery patients with

uncertain surgery operations.

The surgery scheduling problem has been studied with varying objective function for-

mulations. Two typical objective functions, however, are minimizing patient waiting time

before undergoing major or minor operations and maximizing the utilization of the operat-

ing theatre (see, e.g., Saadouli et al. (2015); Choi and Wilhelm (2014); Hans et al. (2008);

Lamiri et al. (2008)). Hans and Vanberkel (2012) used frequency of overtime to compute the

operating room utilization level. The frequency of overtime definition is very similar to the

service level defined in this study. They defined the frequency (or accepted risk) of overtime

as the probability that the total surgery time duration is greater than the amount of allotted

time.

Nurse scheduling problems and physician scheduling problems are also closely related

to this research, because they deal with personnel scheduling. For example, Azaiez and

Al Sharif (2005) suggested a zero-one linear goal programming (LGP) approach for schedul-

ing a number of nurses in a 4-week period. The scheduling problem contained a total of

11 scheduling sets of constraints. These include balanced schedules, fairness considerations,

and nurses’ preferences, in addition to ergonomic considerations, and staffing requirements.

The objective function was to minimize the sum of the weighted deviations from the con-

straints. Carter and Lapierre (2001) interviewed physicians from six hospitals located in

greater Montreal, Canada, in order to understand the characteristics of the schedules. They

then developed a mathematical programming technique to produce better schedules and

reduce the time needed to build them. Beaulieu et al. (2000) proposed a mathematical pro-

gramming approach to construct a six-month schedule of physicians in the emergency room.

They partitioned the constraints of the model into four following categories: compulsory con-

straints, ergonomic constraints, distribution constraints, and goal constraints. The objective

of the proposed model was to minimize the overall deviations from the constraints.

In the nurse scheduling problems, maximizing personnel satisfaction and minimizing
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salary cost are often considered as two objectives to achieve simultaneously (See e.g., Dowsland

(1998)), while emergency physician schedules are driven by personal preferences (See e.g.,

Ferrand et al. (2011)). However, the coordinated lab-clinics problem studied in this chapter

is focused on providing a proper service level.

Our coordinated lab-clinics problem can be cast as an assignment problem in which

doctors are assigned to run clinics in specific blocks of time. Each doctor assigned to a clinic

will see a certain number of patients with different testing requirements, and the type of clinic

run by each doctor in a given block determines the total testing time required. Assignment

problems are a well-studied topic in combinatorial optimization. The original version of the

assignment problem is to find a one-to-one assignment of a number of tasks, jobs, or activities

to an equal number of agents, machines, or resources in order to minimize the total cost of

the assignments. However, many variations of the original problem have been developed

since it was introduced by Votaw and Orden (1952) (see. e.g., Pentico (2007) for a review

on different versions of the assignment problem), and it has numerous application areas. For

example, Domenech and Lusa (2016) developed a mixed integer linear programming model

to assign teachers to courses, taking their preferences into consideration. Each teacher can

choose his/her working time preference (the hours of every day of the week that s/he can

teach). The model is used to solve the teachers-courses assignment problem in order to

balance teachers’ load and maximizing teachers’ working time preferences. Gelareh et al.

(2015) addressed a truck dock assignment problem with operational time constraint. In the

truck dock assignment problem, our goal is to find an assignment of the trucks to the docks

such that the number of deliveries being processed is maximized while meeting the arrival and

the departure times of every truck (as well as capacity of the cross dock). They developed

a branch-and-cut algorithm to solve real-life size instances in a reasonable time. Carello

and Lanzarone (2014) considered the problem of assigning patients to nurses for home care

services. They developed a cardinality-constrained robust assignment model that takes into

account uncertainty in patients’ demands as well as continuity of care, which requires that

a patient is always cared for by the same nurse. Tànfani and Testi (2010) addressed the

problem of determining the assignment among wards and operating rooms during a given

planning horizon, together with the subset of patients to be operated on during each day.
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They presented a mixed integer linear programming model to minimize a cost function based

upon a priority score, that takes into account both the waiting time and the urgency status

of each patient. The version of the assignment problem that is most closely related to the

lab-clinics problem is a three-dimensional assignment problem, where we assign n tasks to

m agents over a set of t time periods; during each time period, each task has to be assigned

to one agent, and each agent can process at most one task (see e.g., Ćustić et al. (2015);

Hahn et al. (2008)). In the lab-clinics problem, a set of clinic types has to be assigned to

a set of doctors over a planning period. Each doctor has a certain demand for each clinic

type. If a doctor d ∈ {1, . . . , D} is assigned to clinic type c ∈ {1, . . . , C} in block b, he/she

must visit a certain number of patients. This group of patients induces a service time in the

lab, coming from a known distribution. However, the performance measure studied in this

study is service level, a non-standard measure in the assignment literature.

Another problem closely related to the one presented herein is the Multiple Subset Sum

Problem (MSSP) (e.g., Caprara et al. (2000)) - in section 2.4.2, the MSSP is shown to be

a special case of the coordinated lab-clinics problem and therefore, any polynomial time

algorithm that could solve the latter problem could be used for solving the former. The

goal of the MSSP is to select a subset of items with different weights from a set of given

items and pack them into knapsacks such that the overall weight of the items packed in

the knapsacks is maximized. The MSSP is a special case of the multiple identical knapsack

problem in which the value of each item is equal to its weight and all knapsacks have the same

capacity. Martello and Toth (1984) proposed a mixed dynamic programming and branch-

and-bound approach for the subset sum problem with only one knapsack. Caprara et al.

(2003) suggested a polynomial-time 3/4-approximation algorithm to solve the MSSP. They

show that the running time of the proposed method is linear in the number of items and

quadratic in the number of knapsacks.

2.3 Problem description

The objective of the coordinated lab-clinics scheduling problem (CLCSP) is to maximize

the minimum service level over all blocks, i.e., the max-min objective. Alternatively, we
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could change the objective to maximize the overall service level over all blocks, i.e., a max-

sum objective. The main difference between the two solutions would be on the blocks with

worst service level, as the max-sum solution to this problem may leave blocks where too

many patients are quite dissatisfied with the service level provided. That is, although the

overall sum of the service level is maximized and thus better than that obtained by a max-min

objective, the number of unhappy patients may be a too high price to pay to achieve it. Note

that, in our problem, patients care strongly if they receive the full service in the same block,

giving less weight to the total amount of time to finish the service if that does not imply

returning another day. Table 2.1 summarizes the notation used in the description of the

problem. A block b is one of the time-divisions of the work week, which are non-overlapping

and cover the whole working period. Typically, there are different types of clinics held in

a given block. Doctors assigned to clinics in a particular block visit a certain number of

patients. This group of patients induces a total testing time in the lab with an expected

service time and variance. The mean and variance of testing time in a block depends on

doctors, but also on clinics in that particular block due to the fact that the number of patients

a doctor visits in a clinic type might be different from another doctor-clinic pair. Each block

may have a different available testing time because of different amounts of personnel and

testing lab resources available in that block.

Table 2.1: Notation for the lab-clinics problem

d ∈ {1, . . . , D} index of doctors, where D represents number of doctors
b ∈ {1, . . . , B} index of blocks, where B represents number of blocks
c ∈ {1, . . . , C} index of clinics, where C represents number of clinic types
Tb the available testing time in block b
t̄dc the mean of testing time induced by doctor d in clinic type c
vdc the variance of testing time induced by doctor d in clinic type c
µb the mean of total testing time induced in block b
Wdc the demand of doctor d for clinic type c
Rc the requirement of clinic type c over all blocks
V the testing time variance set
S the testing time standard deviation set
ybi 1 if element i is chosen from sets V and S for block b, 0 otherwise
Zdb 1 if doctor d has a preference to work during block b, 0 if indifferent
xdbc 1 if doctor d is assigned to clinic c in block b, 0 otherwise
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There is a pre-agreement on the number of new and follow-up patients seen by doctor

d in clinic type c before the doctors’ schedule is made.These numbers are quite stable over

a long period of time. The number and type of patients seen by doctor d in clinic type c

determine the testing time requirement for that particular doctor-clinic combination, which

is the convolution of some random variables. As a numerical example, suppose we have

doctor d1 visiting 1 new and 2 follow-up patients in clinic type c1. Furthermore, the mean

and variance of the required testing times are (80, 900) and (60, 800) for the new and follow-

up patients, respectively. We can now compute the mean, t̄d1c1 , and the standard deviation,
√
vd1c1 , of testing time induced to the test room by doctor d1 in clinic type c1, which is

t̄d1c1 = 80 + 2 ∗ 60 = 200 and
√
vd1c1 =

√
900 + 2 ∗ 800 = 50.

Having the expected testing times of all doctor-clinic combinations, one can now compute

the total expected time needed in a block. For example, if in a given block doctor d1 performs

clinic c1 and doctor d2 performs clinic c2, then the total expected time needed for testing

would be t̄d1c1 + t̄d2c2 . Note that a doctor-clinic combination provides a certain number of

patients to the lab regardless of the block in which the clinic takes place.

Any block has a limited number of possible doctor-clinic combinations. Each doctor

operates at most C clinics, and a block has at most D doctors. Thus,
∑D

i=0

(
D
i

)
Ci is the

(theoretical) maximum number of possible doctor-clinic combinations in a block. Each pos-

sible doctor-clinic combination induces a total testing time that is the summation of random

variables.

Hence, we can pre-compute an ordered set V = {V1, . . . , Vu≤∑D
i=0 (D

i )Ci} that collects the

different possible testing time variance, where u represents the cardinality of the set. From

V one may obtain set S = {S1, . . . , Su} with a corresponding order to V such that Vi = S2
i ;

that is, set S collects the possible standard deviations. These two constructs will be very

helpful for the formulation below. As a simple numerical example, suppose we have two

doctors running two types of clinic. Table 2.2 gives t̄dc and vdc, the mean and the variance

of testing time for each doctor-clinic pair.
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d \ c 1 2

1 (3,4) (5,5)
2 (2,7) (6,9)

Table 2.2: The mean and the variance of testing time for each doctor-clinic combination,
(t̄dc,vdc)

The total number of doctor-clinic combinations in a block is equal to
∑2

i=0

(
2
i

)
2i = 9. We

can now compute and order the variance set V for all these 9 doctor-clinic combinations,

which is V = {0, 4, 5, 7, 9, 11, 12, 13, 14}. From V one may obtain set S, by taking the square

roots; that is S = {0, 2, 2.2, 2.6, 3, 3.3, 3.4, 3.6, 3.7}.

A major issue with these two sets is that it could be possible, just by coincidence, that

there are cases of times resulting in equal values for the mean but different variances. We are

assuming that times are coming from real numbers and such coincidences would be unlikely,

and in the event it happened then it is always possible to differentiate times after some

numbers of decimal places so that for all practical purposes the results would not suffer.

2.4 Mathematical formulation

In this section, we formulate the problem of maximizing the service level, given the

problem constraints. The service level is the probability that the sum of all patients’ testing

times assigned to block b is less than or equal to the available testing time, that is Pr(µb +

ωSb ≤ Tb). This value of ω tells us the number of standard deviations that Tb is away from the

mean. Calculating the service level requires the mean and the standard deviation of the total

testing time induced to the testing lab, which are the results of our model. However, for any

given service level we can compute the corresponding value of ω and therefore, maximizing

the minimum service level within all blocks is the equivalent of maximizing the deviation

from the mean. In order to formally state the problem mathematically, we define xdbc to be 1

if doctor d is assigned to clinic c in block b, and zero otherwise. The binary decision variable

ybi is equal to 1 if element i is chosen from sets V and S for block b, and zero otherwise.

The model presented below is a typical max-min type of formulation, and the variable

ω represents the least number of standard deviations away from the mean that we can
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guarantee. We want to determine the schedule of clinics for B blocks of time that maximizes

the minimum service level while meeting all constraints as explained below.

CLCSP: Maximize ω (2.1)

s.t.
D∑

d=1

C∑
c=1

xdbct̄dc = µb ; b = 1, . . . , B (2.2)

D∑
d=1

C∑
c=1

xdbcvdc =
∑
i

ybi Vi ; b = 1, . . . , B (2.3)

µb +
u∑

i=1

ω ybi Si ≤ Tb; b = 1, . . . , B (2.4)

C∑
c=1

xdbc ≤ 1 ; d = 1, . . . , D; b = 1, . . . , B (2.5)

B∑
b=1

xdbc ≥ Wdc ; d = 1, . . . , D; c = 1, . . . , C (2.6)

C∑
c=1

xdbc ≥ Zdb ; d = 1, . . . , D; b = 1, . . . , B (2.7)

D∑
d=1

B∑
b=1

xdbc = Rc ; c = 1, . . . , C (2.8)

u∑
i=1

ybi = 1 b = 1, . . . , B (2.9)

xdbc, ybi ∈ {0, 1} (2.10)

ω ≤ ω(max) (2.11)

Constraint (2.2) and constraint (2.3) calculate the mean and the variance of total testing

time induced to the test room for each block b. Constraint (2.4) links the objective func-

tion and constraints. This constraint assures the deviation from the expected testing time

required for each block b is less than or equal to the available testing time for that given

block. Constraint (2.5) states that each doctor can run a maximum of one clinic type in each

block. Constraint (2.6) guarantees that the number of times a doctor performs a particular

clinic over all blocks is at least equal to the demand of the doctor for that particular clinic.
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Constraint (2.7) ensures that doctor d works in block b if he/she has a preference to work

in that block (Zdb = 1). If a doctor has a preference not to work in a block, we can add a

constraint to our model to ensure that no clinic is assigned to the doctor in that particular

block. The requirement for the total number of clinics of type c is guaranteed by constraint

(2.8). Finally, constraint (2.9) says that each block must have a single mean and variance.

We set an upper bound to the value of ω to ω(max) beyond which the problem is, for all

practical matters, unconstrained. For example, a setting of ω(max) = 4 gives an upper bound

of at most four times the standard deviation from the mean. Note that the assumption of

normality of testing times makes the translation of ω into service level very easy, which would

not be true if the lab time distribution was coming from a different distribution. Nonetheless,

maximizing ω is equivalent to maximizing service level independent of the distribution it is

coming from.

2.4.1 Linearization of the quadratic constraint

In the formulation above, constraint (2.4) is quadratic, where each term in the summa-

tion is a product of ω and ybi, two decision variables. We therefore propose the following

formulation that includes the linearization of the quadratic constraints, a standard approach

for products of a continuous and a binary variable. We reformulate the problem exactly as

a MIP by replacing constraint (2.4) with the following linearization constraints:

µb +
u∑

i=1

y′bi Si ≤ Tb; b = 1, . . . , B (2.12)

y′bi ≤ ω(max)ybi (2.13)

y′bi ≤ ω (2.14)

y′bi ≥ ω − ω(max)(1− ybi) (2.15)

xdbc, ybi ∈ {0, 1} (2.16)

y′bi ≥ 0 (2.17)

ω ≤ ω(max) (2.18)
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In constraint (2.12), ω ybi is replaced by a non-negative variable y′bi. If ybi is zero, then

by constraints (2.13) and (2.17) y′bi = 0. If ybi = 1, then by constraints (2.14) and (2.15)

y′bi = ω. Hence this is an exact reformulation of the problem with linear constraints.

2.4.2 Problem complexity

CLCSP can be regarded as a generalization of the Multiple Subset Sum Problem (MSSP)

which is defined as: given a set of items I, each item i ∈ I with weight wi, and a set of

identical knapsacks K with capacity C, determine items to be packed in each knapsack such

that the sum of the item weights in every knapsack does not exceed the knapsack capacity

c and the overall sum of the weights of the items packed is as large as possible.

Starting from the parameters given for an instance of problem MSSP, we assign values I

to be the doctor-clinic combination (dc), setting t̄dc to zero for all combinations of dc, and

the length of each testing block C. Remove all constraints related to doctors’ preferences

and apply an algorithm that solves the CLCSP. Use the returned solution as the solution to

Problem MSSP, thus demonstrating that the CLCSP is as complex as the MSSP. Garey and

Johnson (1979) have shown that the decision version of the MSSP is NP-complete in the

strong sense. Clearly, allowing for stochastic weights for each item and heterogeneous sizes

of knapsacks (blocks) only further complicates the problem.

Direct solution methods, such as the mixed-integer programming method, are able to

solve small instances of the lab-clinics scheduling problem. For real-sized problems we pro-

pose and apply in our numerical tests a branch-and-price procedure which integrates column

generation with branch-and-bound. We next focus on our proposed column generation ap-

proach, after which the branch-and-bound procedure on columns to obtain an integer solution

will be explained.

2.5 A column-generation based approach

To deal with the complexity of the problem and solve practical examples, a Column-

Generation (CG) based algorithm will be proposed. The column generation approach was

first introduced by Dantzig and Wolfe (1960). CG-based algorithms have often been de-
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veloped for set-partitioning constraints. Therefore, the mixed-integer programming model

constructed in section 2.4 will be first reformulated as a set-partitioning problem.

2.5.1 Suitable model for Column Generation (set-partitioning model)

Let us define a column j as an assignment of doctors to clinic slots. Furthermore, a

feasible column must respect the constraint that each doctor can run a maximum of one

clinic type. We also define a binary decision variable xj to be 1 if column j is accepted,

and zero otherwise. The rest of the notation for the set-partitioning model is summarized in

Table. 2.3.

Table 2.3: Notation for the set-partitioning model

E(Tj) the mean of total testing time induced by column j
σj the standard deviation of total testing time induced by column j
Ξ Set of all feasible columns
pbj 1 if plan j is scheduled in block b, 0 otherwise
edcj 1 if doctor d is assigned to clinic c by column j, 0 otherwise

The set-partitioning model of the coordinated lab-clinics scheduling problem is presented

below:

I) The master problem

Maximize ω (2.19)

s.t.∑
j∈Ξ

edcj xj ≥ Wdc ; d = 1, . . . , D; c = 1, . . . , C (2.20)∑
j∈Ξ

xj pbj E(Tj) = µb ; b = 1, . . . , B (2.21)

µb +
∑
j∈Ξ

ω xj pbj σj ≤ Tb; b = 1, . . . , B (2.22)∑
j∈Ξ

xj pbj = 1 ; b = 1, . . . , B (2.23)

∑
j∈Ξ

D∑
d=1

edcj xj = Rc ; c = 1, . . . , C (2.24)

xj ∈ {0, 1} (2.25)
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The problem is again maximizing the service level given the problem constraints, but it

is now expressed in terms of the new xj decision variable. Constraint (2.20) ensures that

the number of times a doctor performs a particular clinic over all blocks is at least equal to

the demand of the doctor for that particular clinic. Constraint (2.21) calculates the mean

of the total testing time induced in block b. Constraint (2.22) assures that the deviation

from the expected testing time required for each block b is less than or equal to the available

testing time for that given block. Constraint (2.23) ensures that only one plan is assigned to

each block b. Finally, the requirement for the total number of clinics of type c is guaranteed

by constraint (2.24).

Note that constraint (2.22) is again quadratic, because each term in the summation is a

product of ω and xj. We now apply the same approach proposed in the previous section to

linearize the quadratic constraints.

Maximize ω (2.26)

s.t.∑
j∈Ξ

edcj xj ≥ Wdc ; d = 1, . . . , D; c = 1, . . . , C (2.27)∑
j∈Ξ

xj pbj E(Tj) = µb ; b = 1, . . . , B (2.28)

µb +
∑
j∈Ξ

x′j pbj σj ≤ Tb; b = 1, . . . , B (2.29)∑
j∈Ξ

pbj (x′j − ω(max)xj) ≤ 0; b = 1, . . . , B (2.30)∑
j∈Ξ

pbj x
′
j − ω ≤ 0; b = 1, . . . , B (2.31)

ω +
∑
j∈Ξ

pbj (ω(max)xj − x′j) ≤ ω(max); b = 1, . . . , B (2.32)∑
j∈Ξ

xj pbj = 1 ; b = 1, . . . , B (2.33)

∑
j∈Ξ

D∑
d=1

edcj xj = Rc ; c = 1, . . . , C (2.34)
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ω ≤ ω(max) (2.35)

x′j ≥ 0 (2.36)

xj ∈ {0, 1} (2.37)

In our column generation approach, we make use of the linearization of the master prob-

lem presented above.

II) The subproblem

In order to ensure the feasibility of each column in the master problem, the following

constraints must be respected:

C∑
c=1

edcj ≤ 1 ; d = 1, . . . , D; j ∈ Ξ (2.38)

C∑
c=1

pbj edcj ≥ Zdb; d = 1, . . . , D; b = 1, . . . , B; j ∈ Ξ (2.39)

B∑
b=1

pbj = 1 ; j ∈ Ξ (2.40)

Constraint (2.38) states that each doctor can run a maximum of one clinic type in each

column. Constraint (2.39) ensures that each column j assigned to block b respects the

working time preferences for that given block. Finally, constraint (2.40) ensures that each

column generated in each iteration is assigned to only one block.

2.5.2 Initial restricted master problem

In the above, we have presented the set partitioning formulation. The column generation

method starts with an initial feasible solution to the LP relaxation of the restricted master

problem that is only a subset of the columns. Note that the LP relaxation of the restricted

master problem can be obtained by replacing the following constraint with constraint (2.37):

0 ≤ xj ≤ 1 (2.41)
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Selection of an appropriate initial solution has an important impact on the efficiency of

the column generation procedure. We propose a binary integer programming model to find

a set of initial columns for the LP relaxation of the restricted master problem.

C∑
c=1

xdbc ≤ 1 ; d = 1, . . . , D; b = 1, . . . , B (2.42)

B∑
b=1

xdbc ≥ Wdc ; d = 1, . . . , D; c = 1, . . . , C (2.43)

C∑
c=1

xdbc ≥ Zdb ; d = 1, . . . , D; b = 1, . . . , B (2.44)

xdbc ∈ {0, 1} (2.45)

The solution can be regarded as a set of initial feasible plans that respects the demand

of each doctor for every clinic type as well as their working time preferences.

2.5.3 Pricing problem

We now solve the restricted master problem with the initial columns to obtain the ob-

jective value ω and dual multipliers π. Given an optimal solution to the restricted master

problem, dual variables (π1
dc, π

2
b , π

3
b , π

4
b , π

5
b , π

6
b , π

7
b , π

8
c ) are associated with constraints (2.27)

to (2.34) in the respective order. Then, the reduced cost of a new column j is given by:

C̄j = Cj − Zj =

0 +
D∑

d=1

C∑
c=1

π1
dc edcj −

B∑
b=1

π2
b pbj E(Tj)−

B∑
b=1

π3
b pbj σj −

B∑
b=1

πt
b pbj −

C∑
c=1

π8
c

D∑
d=1

edcj (2.46)

where πt
b =

∑7
i=4 π

i
b; b = 1, . . . , B, which is the sum of dual prices of restrictions (2.30)

to (2.33).

Since only a subset of the columns is available and the enumeration of all feasible columns

and calculation of Cj−Zj is a time consuming task, this cannot be checked explicitly. Thus,

we may instead solve the following pricing problem to generate a new column with positive

reduced cost.
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Maximize C̄j (2.47)

s.t.
C∑
c=1

edcj ≤ 1 ; d = 1, . . . , D; j ∈ Ξ (2.48)

C∑
c=1

pbj edcj ≥ Zdb; d = 1, . . . , D; b = 1, . . . , B; j ∈ Ξ (2.49)

B∑
b=1

pbj = 1 ; j ∈ Ξ (2.50)

Note that the pricing problem aims to determine values of edcj, pbj, E(Tj), and σj for

one column. However, constraint (2.49) is quadratic, because each term in the summation

is a product of variables edcj and pbj. To linearize this constraint, we decompose the above

pricing problem into B subproblems, each one corresponds to one block. For example, pricing

problem 1 is related to block 1 implying that the new generated column is assigned to block

1, that is p1j = 1. As an example, the pricing problem 1 is formulated below.

Maximize C̄j (2.51)

s.t.
C∑
c=1

edcj ≤ 1 ; d = 1, . . . , D; j ∈ Ξ (2.52)

C∑
c=1

p1j edcj ≥ Zd1; d = 1, . . . , D; j ∈ Ξ (2.53)

The set of pricing problems can now be solved separately for each block and the column

with highest reduced cost enters the master problem. In other words, each pricing problem

generates the best feasible column for each block b. Now the goal is to select the column

with the highest reduced cost over all blocks and add the new column to the restricted

master problem. The column generation algorithm terminates when no more columns with

a positive reduced cost can be found.
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2.5.4 Branching

If the values of all decision variables are integral, the optimal solution is obtained for

the master problem. If the optimal solution satisfies all the constraints except the binary

one, it can be regarded as an upper bound for the master problem. In this case, branching

on the decision variable xj has to be established. Branching on column variables can be

achieved in our problem because of solving the pricing problem for each block individually

and including constraint (2.33) in the master problem. To speed-up the process, we can

stop branching when the gap between the upper and lower bounds becomes smaller than

a certain threshold. The lower bound is obtained by taking the maximum of the optimal

objective values of all of the current leaf nodes. This speed-up technique can greatly reduce

the computations required.

One can now define the branch-and-price algorithm as follows:

The branch-and-price algorithm

Step 0: Generate a feasible set of columns by solving the proposed binary integer pro-

gramming model (Constraints (2.42) to (2.45)).

If no feasible solution is found, the branch-and-price procedure is ended because no feasible

weekly schedule can be obtained.

Step 1: Solve the LP relaxation of the restricted master problem with the initial columns

to obtain the objective value ω and dual multipliers π.

Step 2: Solve the pricing problem suggested in section 2.5.3 to find a column with positive

reduce cost. If such a column is found, then add the column to the restricted master

problem and return to Step 1. Otherwise, go to Step 3.

Step 3: Check for the integrality constraint. If one is violated, then perform the branching

operation suggested in section 2.5.4. Create two new branches on the largest fractional

column. Add the branching constraints to the restricted master problem and return to

Step 1.
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2.5.5 Computational experiments

In this section, we test the computation time of the column generation based method

through randomly generated experiments, comparing the branch-and-price method with the

direct approach using a MILP solver. All experiments were performed on a Lenovo Y50

Laptop (Intel Core i7 / 8GB RAM/ Windows 10). The branch-and-price algorithm was

written in Eclipse Java Mars 4.5. The optimization software used in branch-and-price and

MILP is CPLEX optimization studio 12.6.3.

For the randomly generated experiments, we solved 4 different combinations of doctors,

blocks and clinics, and for each combination we generated 25 random instances, for a total

of 100 instances solved. Table 2.4 shows the combinations of doctors, blocks, and clinics in

the first column. The second column presents in two sub-columns the service level and CPU

time for the branch-and-price approach. The third column presents similar sub-columns for

the MILP optimization. The last column presents the average optimality gap. We note that

the average optimality gap is less than 0.003, and the results do not suggest any particular

trend of the gap as a function of the size of the problem.

Size of problem
Branch-and-Price MILP

Average gap*
Service level % Time Service level % Time

2× 5× 2 99.97 less than 1s 99.98 2s 0.0001

3× 5× 2 99.13 less than 1s 99.4 14s 0.0027

4× 6× 3 99.64 less than 1s 99.74 53s 0.001

5× 7× 4 99.93 less than 2s 99.96 1220s 0.0003

*Average gap=
∑

Optimality gap/n, where optimality gap is the difference between the

MILP and the branch-and-price results.

Table 2.4: Comparison of the two approaches

If only a minimum service level suggested by the clinic administrator needs to be satisfied,

we can add a stopping criteria to stop the proposed algorithm when there is a feasible

schedule with higher service level than the suggested one. This probably could reduce the

computations required. Note that there is, however, a possibility of finding no feasible

schedule if the suggested service level is greater than the optimal service level.
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2.6 Case study: two respirology lab-clinics facilities

2.6.1 Mini-Case I: Hospital A

Our first study is based on data gathered from the operations of coordinated respirology

lab-clinics at a hospital that is part of the AHS system. Respirology clinics are scheduled

for a half-day (3 to 4 hours) and separately for each physician. There are currently nine

physicians running three types of clinics. Table 2.5 gives the demand of each doctor for

each clinic type (Wdc), as well as the mean and standard deviation of testing time induced

by doctor d in clinic type c, that is (t̄dc,
√
vdc). Clinics 1, 2, and 3 represent the general

respirology, pulmonary hypertension, and neuromuscular clinics, respectively. Each doctor

runs at most two types of clinics in all blocks. The maximum theoretical available pulmonary

function testing time remains the same Monday through Friday for all blocks and is nine

hours.

d \ c 1 2 3

1 4, (95, 32.26) - -
2 2, (114, 30.83) - -
3 1, (135, 32.06) - -
4 2, (142, 35.29) 1, (151, 38.27) -
5 1, (112, 29.17) 2, (124, 31.08) -
6 2, (126, 30.82) - 1, (146, 33.12)
7 1, (117, 35.39) - 1, (146, 33.12)
8 1, (140, 32.35) 2, (134, 32.64) -
9 3, (119, 30.46) - -

Table 2.5: The demand of each doctor for each clinic type Wdc, as
well as the mean and standard deviation of testing time (t̄dc,

√
vdc)

Currently the clinic schedule at Hospital A is as shown in Table 2.6. Given that there

is a constant nine hours of lab time available on each half-day, the current clinic schedule

might be expected to be somewhat more evenly distributed across the week. However,

physicians have other professional commitments that limit their availability to run clinics at

the hospital. The current schedule may thus reflect physicians’ preferences for which half-

days to run their clinics, although they may be open to schedule changes. The current service

level and expected utilization of the test room in each block are also shown in Table 2.6.
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b Mon Mon Tue Tue Wed Wed Thur Thur Fri Fri

c Morn Aft Morn Aft Morn Aft Morn Aft Morn Aft

Clinic 1 d1,d2 d2,d3,d4 d6 d1,d5 d6,d7,d9 d9 d1,d4,d8 d1,d9

Clinic 2 d5 d4,d5,d8 d8

Clinic 3 d6,d7

Objective value(ω) 4 0.38 4 2.02 2.20 1.41 4 4 4 4

Service level % 100 64.8 100 97.83 98.61 92.07 100 100 100 100

Expected utilization % 38.70 95.37 23.33 54.07 75.74 63.14 67.03 22.03 70.18 39.62

Table 2.6: Current schedule at hospital A

We are interested in finding a schedule of the clinics that maximizes the minimum service

level over all blocks given the available laboratory testing time for each block. We will com-

pute the solution without considering doctors’ preferences. This gives us the improvement

possible if doctors’ schedules were completely flexible. Since the problem could not be solved

using a MILP solver directly, we have used the column-generation based approach discussed

previously. The current schedule implemented at the hospital sets a lower bound on the

optimal solution. Service level is measured by its proxy: the minimum number of standard

deviations above the mean testing time. Table 2.7 summarizes the optimal solution with

the clinic scheduling for each doctor. The differences between the current and the optimal

schedules are shown in bold in Tables 2.6 and 2.7.

b Mon Mon Tue Tue Wed Wed Thur Thur Fri Fri

c Morn Aft Morn Aft Morn Aft Morn Aft Morn Aft

Clinic 1 d1,d2 d2,d4 d6 d3 d1,d5 d6,d7,d9 d9 d1,d4,d8 d1,d9

Clinic 2 d5 d4,d5,d8 d8

Clinic 3 d6 d7

Objective value(ω) 4 4 4 4 2.20 4 4 4 4 4

Service level % 100 100 100 100 98.61 100 100 100 100 100

Expected utilization % 38.70 47.40 46.29 52.03 75.74 38.33 67.03 49.07 70.18 64.44

Table 2.7: Optimal solution with the clinic scheduling for each doctor

Solving the problem with the current schedule at Hospital A shown in Table 2.6 gives

a service level of 0.38, or 64.8%. However, the optimal schedule can dramatically improve

the service level. The optimal solution shown in Table 2.7 leads to a service level of 2.20,
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or 98.61%. Table 2.7 also shows expected utilization of the test room in each block. A

comparison of the current schedule with the optimal schedule reveals that only four changes

of clinic times, involving doctors 3, 5, 7, and 8, would be required. In reality, it may be

difficult for hospital administrators to persuade all four physicians to move a clinic. However,

even if fewer than four physicians agree to do so, there will be marked improvement in the

achieved service level. For example, moving doctor 5’s clinic from Monday afternoon to

Tuesday morning will by itself increase the service level to 92.07%. Figure 2.2 shows the

improvement possible due to moving one, two, three, or four of these clinics.
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Figure 2.2: Possible improvements due to shifting one, two, three, or four clinics

Figure 2.3 shows the test room expected utilization of the current and optimal schedules

in each block. The average utilization over all blocks is 54.92% for both schedules. The

figure shows that the variability of the utilization rates is lower for the optimal schedule.
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The exercise of optimizing service level is that of reducing utilizations’ departure from

the mean utilization. A side effect of improving service level is the homogenization of doc-

tor/clinics’ workload.

2.6.2 Mini-Case II: Hospital B

Here we use data gathered from the operations of the coordinated respirology lab-clinics

at another AHS hospital. We perform sensitivity analysis on the fraction of the theoretical

time a lab is available (α), as will be explained below.

Again, the respirology clinics need to be scheduled for a half-day and separately for each

physician, with up to nine clinics held on the same half-day (one block of time). Three types

of clinics are held. Table 2.8 gives the demand of each doctor for each clinic type (Wdc), as

well as the mean and standard deviation of testing time induced by doctor d in clinic type c,

that is (t̄dc,
√
vdc). Each doctor runs at most two types of clinics in all blocks, where clinics

1, 2, and 3 represent the oncology, general respirology, and interstitial lung diseases clinics,

respectively.

d \ c 1 2 3

1 2, (122, 30.51) - -
2 3, (138, 32.38) 2, (130, 38.50) -
3 1, (122, 30.51) 2, (86, 29.10) 1, (162, 31.11)
4 - 5, (118, 30.28) -
5 - 4, (132, 34.49) 1, (102, 31.16)
6 - 1, (122, 30.51) -
7 - 1, (118, 30.28) -
8 2, (100, 28.30) - 5, (158, 38.19)
9 1, (88, 30.09) 2, (127, 36.94) -

Table 2.8: The demand of each doctor for each clinic type Wdc, as
well as the mean and standard deviation of testing time (t̄dc,

√
vdc)

Table 2.9 shows the maximum theoretical available testing time of each test room in every

block b, Tb. There are currently 4 test rooms working at the same time at Hospital B. We

define α as the fraction of the theoretical available testing time that is usable testing time.

That is, α times the theoretical time available gives the potential actual time availability.
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b Mon Mon Tue Tue Wed Wed Thur Thur Fri Fri

Morn Aft Morn Aft Morn Aft Morn Aft Morn Aft

3.5 4.5 3.5 4.5 3 4 3.5 4.5 3.5 4.5

Table 2.9: The maximum theoretical available testing time (hours) in block b (Tb)

Currently the clinic schedule at Hospital B is as shown in Table 2.10.

b Mon Mon Tue Tue Wed Wed Thur Thur Fri Fri

c Morn Aft Morn Aft Morn Aft Morn Aft Morn Aft

Clinic 1 d1 d2 d2 d1 d3 d2 d9 d8 d8

Clinic 2 d2,d4 d2,d4 d3,d4 d6,d7 d5,d9 d5,d9 d3,d4 d4 d5 d5

Clinic 3 d3 d8 d8 d8 d8 d8 d5

Expected utilization % 29.52 49.35 59.52 49.62 74.86 56.14 59.52 28.51 27.62 21.48

Table 2.10: Current schedule at hospital B

The proposed branch-and-price method is applied to solve the problem with the maximum

theoretical available testing time (α = 1). Table 2.11 summarizes the optimal solution when

all theoretical available testing time can be used.

b Mon Mon Tue Tue Wed Wed Thur Thur Fri Fri

c Morn Aft Morn Aft Morn Aft Morn Aft Morn Aft

Clinic 1 d1 d2 d1 d3 d2 d9 d8 d2,d8

Clinic 2 d2, d4,d5 d2, d4 d3, d4 d6, d7 d9 d5 d9,d3 d4 d4, d5 d5

Clinic 3 d3 d8 d8 d8 d8 d8 d5

Expected utilization % 45.23 49.35 59.52 36.85 56.52 42.39 60.59 28.51 41.66 34.25

Table 2.11: Optimal solution (α = 1.0)

The solution leads to a doctor scheduling scheme that guarantees a service level of 3.65

over all blocks. Solving the problem with the current schedule shown in Table 2.10 gives the

service level of 2.56. For all practical purposes both solutions provide a service level near

100%. However, the fraction of the theoretical available testing time may be substantially

lower than 1.0 due to factors such as setup times between patients, patients who have poor

mobility or need to repeat a test procedure, language comprehension difficulties, etc.
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Figure 2.4 shows the service levels of the current and the optimal schedules for values

of 0.5 ≤ α ≤ 1.0 (in steps of 0.05). The service level for each α is obtained by using the

corresponding ω from a standardized normal distribution. In Figure 2.4 it can be seen that

the performance of the optimal schedule is quite robust, but relatively small departures from

the full theoretical amount of time available for testing leads to poor service levels with the

current schedule that can be dramatic for values of α ≤ 90%.
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Figure 2.4: Sensitivity analysis on the fraction of theoretical available testing time.

A potential insight from this case is that lab capacity may be unnecessarily high to cope

with the effects of the lack of a systematic approach to optimize the scheduling of doctors

and clinics. Figure 2.5 shows the service level that can be achieved with a smaller amount

of testing time. Even if testing time is reduced by 70%, a service level of at least 97% can

still be achieved.

 

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

70% 75% 80% 85% 90% 95% 100%

Ac
hi

ev
ab

le
 s

er
vi

ce
 le

ve
l (

%
)

% of initial testing time available

Figure 2.5: Required testing time in the lab.
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Although this study addresses a tactical level problem, clinic administrators may use the

results obtained in this phase to decide on the lab capacity at the strategic level.

2.7 Conclusion and future research

In this chapter, we have formulated Problem CLCSP and provided a MILP formulation.

The optimization version of the problem was shown to be NP-hard, and a branch-and-price

approach was proposed for solving larger instances. We then applied our approach to two

real situations.

Our two case studies have implications for the implementation of our assignment approach

by facility managers in practice. Since the scheduling method allows clinic management to

demonstrate to physicians the improvements in testing performance that would result if

changes in the clinic schedule were made, it is a management tool that has the potential to

persuade physicians to improve the coordination of their clinics. The first case study suggests

that in some situations the performance of the current schedule can be greatly improved with

only minimal changes. This is extremely important, since doctors are often constrained by a

schedule of teaching, research, or service requirements in addition to their clinical activities

(and their personal lives). Hence in many settings it is difficult for most doctors to be

flexible concerning the timing of their clinics. If moving only one or two clinics, out of

many, can be shown to achieve a significantly higher standard of service for patients seen

within a shared facility, there is both a strong argument and a strong incentive for doctors

to collaborate to find a way to make those changes. In the other case study, we have shown

that an optimal schedule can robustly preserve a very high service level when lab capacity is

decreased. Managers who are looking for ways to reduce spending without damaging either

the patient experience, the quality of care delivered, or the quality of lab staff work-life can

achieve greater efficiencies while reducing pressure on lab staff and providing greater job

satisfaction for doctors who rely upon timely lab results for better diagnosis and treatment

of their patients. Since the model proposed in this research only covers the tactical phase of

the coordination problem, further studies can address the problem of patient sequencing in

the test center at the operational level.
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Chapter 3

Physician scheduling to improve

emergency department patient flow

3.1 Introduction

Emergency Department (ED) crowding has become a serious and growing international

crisis that may impact the quality and access of health care (Hoot and Aronsky (2008)).

Crowding in EDs is associated with long wait times, which result in decreased quality of

care, decreased patient satisfaction, and higher number of patients who leave without being

seen (LWBS). Patients who go to EDs need medical examination by a physician, and a faster

diagnosis can result in better treatment outcomes. Evidence shows that patients who wait

for an average of 30 minutes or less tend to be satisfied (McKinnon et al. (1998)). Shaikh

et al. (2012) found that 50% of patients are willing to wait up to 2 hours for a care provider

before leaving the ED without being seen. A study at a public hospital in Los Angeles

county showed that 46% of the patients who left the ED without visiting a physician needed

immediate evaluation, and 11% was hospitalized during the subsequent week (Stock et al.

(1994)).

ED wait times can get reduced when sufficient numbers of resources are available to meet

the demand for emergency care. In this chapter, we focus on the physicians who assess

and treat the patients at EDs since they predominantly determine the productivity of an

ED. We define productivity as the speed at which new patients are seen by physicians. In
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particular, we study the assignment of individual physicians to the shifts of a given schedule.

Traditionally, physician schedules in EDs are built around physician preferences, regulatory

constraints and work constraints. One important aspect that is ignored in the literature is

that the productivity of individual physicians is different. Consequently, the assignment of

physicians to shifts has a direct impact on the waiting time of patients to be assessed by

a physician. We take this aspect into consideration when solving the physician scheduling

problem.

To illustrate the relevance of our work, let us consider a case study for one of the four

EDs in the city of Calgary (AB), Canada. Canada does not perform very well when it comes

to ED wait times. In fact, it ranked last among 11 OECD countries in 2013, with 26%

of patients who waited over four hours (Health at a Glance 2013: OECD Indicators). For

our case study, we have data available over a two-year time period from August 2013 to

July 2015. The hourly trend of patient wait times for each day of the week is presented in

Figure 3.1. Each blue dot represents the actual wait time of an ED patient for the initial

assessment by a physician, while an orange dot represents the average patient wait time

during a given hour of the day. The hourly trend shows a 24-hour cycle with a peak after

midnight that decreases toward the morning and rises again in the afternoon. It is interesting

to note that there is no significant difference in the pattern of wait times during weekdays

and the weekend.

 

  
Figure 3.1: ED patient wait times (hourly trend)

43



The amount of time a patient waits to be seen by a physician varies significantly over

different time periods of the day. Therefore, we have a closer look at the hourly demand for

emergency care as well as the number of physicians scheduled per hour of the day (there are

13 shifts scheduled every day of the week). Similar to the waiting time, we do not see any

significant differences between the number of arrivals over the days in a week (see Figure 3.2).

 Figure 3.2: ED arrivals (hourly trend)

When looking at the number of physicians scheduled at each hour, there are always 13

shifts scheduled in a day with the same starting and ending hour. Consequently, we only

report the average arrival rate per hour over all days in Table 3.1 as well as the number of

physicians working at the ED for each hour of a day. Furthermore, this table includes the

ratio of these two numbers since this indicates the average demand to assess new patients

for each emergency physician.
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Table 3.1: Average arrivals per hour vs. number of physicians working in each hour

Even though the number of physicians scheduled to work in a particular hour of the day

is always the same, the productivity of the ED is not. This is because the productivity of the

ED equals the sum of the productivities of the physicians who are scheduled to work during

a particular hour. Figure 3.3 shows the productivity for all physicians who have worked at

least 90 shifts over the two-year time period.
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When the heterogeneity among physicians is not taken in consideration in the physician

scheduling problem, this can have serious consequences for the observed wait times by pa-

tients who need emergency care. Besides including the heterogeneity among physicians, we

also include the stochastic nature of the ED patient arrivals and the physicians’ produc-

tivity. In section 3.2, we review the related literature. Section 3.3 discusses the physician

productivity in our case study. In section 3.4, we introduce our notations and develop a

stochastic mixed-integer programming (MIP) formulation of the problem. In section 3.5, we

first propose an L-Shaped heuristic to solve the physician scheduling problem, followed by a

bounding technique to assess the solution quality. In section 3.6, we use the data from an

emergency department within the Alberta Health Services (AHS) for our numerical study.

Finally, we conclude in section 3.7 with a discussion and further research suggestions.

3.2 Review of related literature

There exists a substantial body of literature on the scheduling problem of ED physicians.

To the best of our knowledge, no one has studied the heterogeneity among physicians to meet

the time-varying patient demand. Most models in the literature focus on the problem formu-

lation with the inclusion of certain constraints (related to physician preferences, regulatory

constraints, work constraints, etc.) and the authors propose different solution techniques for

their models. For example, Carter and Lapierre (2001) presented the characteristics of the

ED physician scheduling problem based on six hospitals in Montreal, Canada. Then, they

developed a mathematical programming model to construct the schedule of ED physicians.

The objective function was to find a feasible solution or to minimize the cost of violating

constraints if no feasible solution found. Beaulieu et al. (2000) proposed a mathematical

programming approach to construct a six-month schedule of physicians in EDs. They parti-

tioned all constraints into the four following categories: compulsory constraints, ergonomic

constraints, distribution constraints, and goal constraints. The objective function was to

minimize the overall deviations from the four types of constraints. Gendreau et al. (2007)

first proposed a series of generic constraints to describe physician scheduling problem in EDs

and then discussed four solution techniques for this problem, namely tabu search, column
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generation, mathematical programming, and constraint programming. Ferrand et al. (2011)

devised a cyclic schedule for emergency department physicians using an integer programming

approach. The main contribution of this study was formulating specific constraints associ-

ated with holidays, work assignments, and vacation requests. They also surveyed physicians

after implementation of the new schedule to assess the quality of their suggested schedule.

They reported that the new schedule provided predictability and well-balanced work pat-

terns. Cabrera et al. (2001) applied an agent-based simulation to find the optimal ED staff

configuration, i.e. doctors, triage nurses, and admissions personnel. Patient wait time and

patient throughput were proposed and tested as two performance metrics. Brunner et al.

(2009) proposed a mathematical model to address the shift scheduling problem in EDs where

shifts can start at any pre-defined period in the planning horizon. The objective function of

the proposed model was to cover the demand with regular hours first, then with overtime,

and finally with outside hours when the first two options are exhausted.

Another stream of literature that is related to our study addresses the workforce schedul-

ing problem with heterogeneous workers. Workforce scheduling is a common problem which

has to be performed in any service or product based company. The problem is to schedule

a number of employees to a set of tasks or work shifts while taking into account employees’

skills and preferences, demand needs, and other applicable requirements. In the case of het-

erogeneous workers, the processing time of a task is dependent to the worker assigned to the

task or each employee can perform only some of the tasks. Recently, there have been more

studies in the field of operations research that acknowledge a heterogeneous workforce to

narrow the gap between research and practice. For example, Benavides et al. (2014) propose

a scatter search-based heuristic to solve the flow shop scheduling problem with heteroge-

neous workers, where the processing time of an operation depends on the assigned worker,

e.g., an established agent processes a task (on average) faster than a new agent. Stolletz and

Zamorano (2014) develop a rolling planning horizon-based heuristic to solve a tour schedul-

ing problem for agents with multiple skills who work at check-in counters in airports. Agents

with lower skill levels cannot be assigned to cover higher skill requirements, e.g., only ex-

perienced agents are allowed to operate different computer systems at check-in counters.

Maenhout and Vanhoucke (2013) studied an integrated nurse staffing and shift scheduling
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problem, where each nurse has different skill categories. Hojati and Patil (2011) studied the

scheduling of heterogeneous, part-time employees of a service organization. Each employee

is only available during certain hours of certain days, and have skills to perform only specific

tasks.

To the best of our knowledge, the workforce scheduling problem that is most relevant to

our problem is the construction of multi-skilled staff schedules in call centers. The hetero-

geneous workforce scheduling problem in a call center aims to find the schedule of agents to

match a time-varying customer demand while keeping cost under control. There is a vast

body of literature on personnel scheduling in call centers. However, most studies assume

that agents are homogeneous with a common service rate. For example, Excoffier et al.

(2016) applied a joint chance-constrained program to the workforce scheduling problem in a

single-class, single-skill call center with uncertain call arrivals. Robbins and Harrison (2010)

developed a mixed-integer stochastic program for scheduling call center agents to meet a

global service level constraint while the arrival rate is uncertain. Mehrotra et al. (2010) pro-

posed an intra-day schedule updating methodology to manage the trade-off between labor

costs and service levels. The underlying business context was a call center, where all agents

have the skills to handle only a single type of call. However, several studies address the

heterogeneity among agents in call centers. For example, Ibrahim et al. (2016) conducted an

empirical study of service times in a large call center with heterogeneous agents and multiple

call types. They report that, for a given call type, the service-time distribution depends on

the individual agent. Furthermore, they found that the average service time for a given agent

and a given call type varies significantly over time. Mehrotra et al. (2012) examined several

routing strategies in a call center for determining which calls should be handled by which

agents, where each agent has different performance metrics in terms of average call handling

time and call resolution. Gans et al. (2012) performed an empirical analysis to quantify

different aspects of agent heterogeneity such as learning effects, agent by-agent differences,

shift fatigue, and system congestion. Their proxy for heterogeneity in this study was the

agents’ service times.

It is a common presumption that higher productivity can only be achieved by a sacrifice

in patient satisfaction. However, a study conducted by Boffeli et al. (2012) suggests that
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physicians can in fact be productive while at the same time creating a satisfying patient

experience. They measured the productivity of 22 physicians as well as their patient expe-

rience scores. They found that a relatively equal number of physicians fell into each of 4

quadrants – strong productivity/strong satisfaction, strong productivity/weak satisfaction,

weak productivity/strong satisfaction and weak productivity/weak satisfaction. Each indi-

vidual emergency physician has a specific patient per hour (PPH) rate that is dependent on

different factors, such as resident subspecialty and years of training (Brennan et al. (2007);

Dowd et al. (2005); Deveau et al. (2003)). Batt and Terwiesch (2014) studied the effects

of crowding on service time in emergency department and Fast Track (FT) area. The FT

area is an express lane for low acuity patients. The service time of a patient was defined as

the time from when a patient is placed in a treatment bed to when treatment in the ED is

complete. They focused solely on the waiting room census as the measure of ED load. They

found that the slowdown effects tend to dominate in the emergency department, while in the

FT area, the effects of slowdown and speed up balance out. In the ED, they showed that

service time first increases then decreases with load as the relative strength of speed up and

slowdown mechanisms shifts. In the next section, we test the relationship between physi-

cians’ productivity and crowdedness using our dataset from the case study. Furthermore, we

know that physicians’ productivity decreases significantly on an hourly basis over the course

of a shift (Joseph et al. (2018); KC and Terwiesch (2009); Caldwell (2001)).

3.3 Physician productivity in our case study

The most relevant discriminant between physicians to decide which physician to assign to

a particular shift is their individual productivity. Therefore, we first study this characteristic

in more detail based on our case study before we mathematically formulate our physician

scheduling problem. In particular, we examine if physicians’ productivity decreases over

the course of a shift and whether physicians become more productive when an ED is more

crowded.
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3.3.1 Decay of productivity over time

As mentioned at the end of section 3.2, physicians will assess less new patients as they

progress through their shift (i.e., physicians are more productive at the beginning of a shift

compared to the end). This is also observed in our case study. Figure 3.4 displays Box-

and-Whisker plots of the hourly shift productivity from 52 physicians in 7-hour shifts. It

is apparent that physicians show a significant decline in productivity between the first and

second hour of their shift, and in the final hour of their shift. They have the highest average

productivity of 3.53 patients in the first hour of the shift. This number decreases to an

average of 0.91 patients during the last hour of the shift.
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Figure 3.4: Hourly shift productivity. Median in green and Mean in blue

3.3.2 Relation between productivity and crowdedness

Next, we examine the relationship between ED crowdedness and physician productivity.

In the ED, there are several crowding measures, such as waiting room census, ED in-service

census, and waiting for admission census. The waiting room census represents the number of

patients in a common room waiting to visit an ED physician. The ED in-service census is the

number of patients under treatment. Finally, the waiting for admission census represents the

number of patients admitted to hospital, but must wait in the ED for an available inpatient

bed. As suggested by Batt and Terwiesch (2014), we focus only on the waiting room census

as the measure of ED crowding in our analysis. Batt and Terwiesch (2014) suggested that ED

physicians focus only on this crowding measure as the waiting room census is visible to ED
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physicians on electronic dashboards. Another reason for choosing waiting room census is that

it has no upper bound compared to in-service and waiting for admission census measures.

The later two crowding measures are limited by the number of available beds in the ED and

as a result show lower variabilities.

Figure 3.5 plots the productivity in the first hour for one of the physicians who was

scheduled for the highest number of shift during the studied period (based on 237 shifts)

versus the ED crowdedness which is measured as the number of patients in the waiting area.

Each blue dot represents the starting productivity of the physician, while an orange dot

represents the average productivity when ED crowdedness is within a certain range.
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Figure 3.5: ED crowdedness vs. physician’s productivity

Based on this figure, the physician’s productivity does not seem to be dependent on

the ED crowdedness. It is important to stress that Batt and Terwiesch (2014) studied the

effects of crowding on service time, however we are examining the impacts of crowding on

physician’s productivity.

To capture the waiting room census in any given hour, we divide the study period into 1-

hour intervals. During the same hours, we then record the actual productivity of physicians

who were scheduled in those hours. For our analysis, we select 10 physicians who were

scheduled for almost an equal number of shifts (90-100 shifts). First, we perform a multiple

linear regression analysis with two set of independent variables, namely waiting room census

variable and physicians’ indicator variables. We find that the model predicts 42.0% of the

variance in productivity (p-value=0.0001). Table 3.2 displays coefficient values of the the
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measure of ED crowdedness and physicians’ indicator variables with their significance levels.

The results suggest that the best predictor of productivity is the physician indicator variable.

The ED crowding measure is not significantly associated with the productivity. Based on

these results, we can conclude that physician productivity is at least not linearly associated

with ED crowdedness.

Variable Coefficient value β (SE) 

Intercept 4.72*** (.12) 
Waiting room census -.007(.006) 

MD1 -1.03***(.15) 
MD2 -1.33***(.16) 
MD3 -.61***(.15) 
MD4 -1.01***(.14) 
MD5 -.84***(.15) 
MD6 -1.41***(.15) 
MD7 -1.11***(.16) 
MD8 -2.10***(.15) 
MD9 -.43**(.15) 

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level 

                              Dependent Variable: Productivity 

 
 

Table 3.2: The relationship between productivity and crowdedness

However, Batt and Terwiesch (2014) suggested that the ED first speeds up and then

slows down as load increases from low to high. They used an accelerated-failure-time (AFT)

model with a log-normal distribution that relates the log of service time for a patient to

the load variable and control variables such as the patient-visit specific covariates (e.g.,

age, gender, race, triage level, and chief complaint). Next, we use the proposed model by

Batt and Terwiesch (2014) to examine the relationship between ED crowding measure and

productivity. The model predicts 40.2% of the variance in productivity (p-value=0.0001).

Table 3.3 displays coefficient values of the the measure of ED crowdedness and physicians’

indicator variables with their significance levels. Again, the results suggest that the best

predictor of productivity is the physician indicator variable. The ED crowding measure is not

significantly associated with the productivity. Based on these results, we can conclude that

physician productivity is not associated with ED crowdedness. Note that Batt and Terwiesch

(2014) studied service time that is different from our productivity variable. Service time of

a patient is the total time to complete all tasks that includes all laboratory, radiology, and
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medication orders. In terms of productivity, they also suggested that physicians are rarely

seen running through the halls of the ED or performing specific procedures faster when ED

is crowded. We should also note that physicians know that ED has limited capacity in terms

of testing equipment and inpatient bed availability. Therefore, physicians are aware that

they will only shift the bottlenecks form the wait room to other ED areas by adjusting their

clinical behavior and become more productive when ED is crowded.

Variable Coefficient value β (SE) 

Intercept 1.50*** (.04) 
Waiting room census -.002(.002) 

MD1 -0.25***(.04) 
MD2 -0.33***(.05) 
MD3 -0.13***(.04) 
MD4 -0.25***(.04) 
MD5 -0.20***(.04) 
MD6 -0.38***(.04) 
MD7 -0.27***(.05) 
MD8 -0.59***(.04) 
MD9 -.12*** (.04) 

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level 

                            Dependent Variable: ln(Productivity) 

 
 

 
 

Table 3.3: The relationship between productivity and crowdedness

3.3.3 Modeling of physician productivity

From the data we observe the productivity (or PPH rate) of each physician for each

hour of the shift. Based on this, we were not able to fit a theoretical distribution that

describes the likelihood to assess a certain number of new patients in each hour. Therefore,

we decided to investigate the time between initial assessments during each hour of the shift.

It turns out that a lognormal distribution provides a statistically significant fit to describe

the length of this time period. Consequently, we can derive a probability distribution for

the productivity in a certain hour as follows: Let X
(k)
it denote the time (in minutes) between

the initial assessment of patient i and the previous patient assessed by physician k during

the t-th hour of her shift. As mentioned before, this random variable follows the lognormal

distribution. Furthermore, let Y
(k)
t represent the productivity of physician k during the t-th
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hour of her shift. Consequently,

P (Y > y) = P (

y+1∑
i=1

Xi ≤ 60) and P (Y = y) = P (Y > y − 1)− P (Y > y) (3.1)

The sum of lognormally distributed random variables with the same parameters is reason-

ably approximated by a lognormal distribution again. We set the first and second moment

of this lognormal distribution such that the first and second moment of Y (according to

Eq. (3.1)) results in the same numbers as observed in the data. This means that we have an

empirical distribution for Y , such that our problem formulation in the next section should

be distribution free as well.

3.4 Problem description

In this section, we formulate the physician scheduling problem. The objective function of

the physician scheduling problem is to minimize the total hourly mismatch between patient

demand and physicians’ productivity.

3.4.1 Introduction of notation

The model presented in this study incorporates uncertainty associated with ED arrivals

and physician productivity for finding the optimal assignment of physicians to a given sched-

ule that minimizes the overall hourly mismatch between time-varying patient arrivals and

physician-dependent productivity. We do this through a stochastic programming formula-

tion. Before entering the mathematical formulation, we introduce the notation as summa-

rized in Table 3.4.
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Table 3.4: Input parameters and decision variables

i ∈ {1, . . . , I} index of physicians

j ∈ {1, . . . , J} index of days over the planning period

k ∈ {1, . . . , K} index of shifts

t ∈ T = {0, . . . , 23} index of time dividing the day (in hourly intervals)

s ∈ {1, . . . , S} index of scenarios

ps probability of scenario s

Wi maximum number of shifts physician i can work during the planning period

Asjt number of patients arriving in interval t of day j in scenario s

λjt average number of arrivals in interval t of day j

Psin productivity of physician i during the nth hour of the shift in scenario s

fkt n if nth hour of shift k is at time t

Msjt mismatch between arrivals and productivity in interval t of day j in scenario s

Zij 1 if physician i has a preference to work on day j, 0 if indifferent

xijk 1 if physician i is assigned to shift k of day j, 0 otherwise

Furthermore, each shift belongs to one of the following sets: KD, the day shifts, KE, the

evening shifts, KN , the night shifts.

3.4.2 Mathematical Formulation

Next, we formulate the problem of minimizing the total hourly mismatch between pa-

tient arrivals and physician productivity over the planning period, respecting the problem

constraints.

Minimize
S∑

s=1

J∑
j=1

∑
t∈T

ps Msjt (3.2)

s.t.

As10 −
K∑
k=1

I∑
i=1

xi1k Psifk0 ≤ Ms10 ; s ∈ S (3.3)

Asjt +Msj(t−1) −
K∑
k=1

I∑
i=1

xijk Psifkt ≤ Msjt ; j = 1, . . . , J ; t ∈ T − {0}; s ∈ S (3.4)
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Asj0 +Ms(j−1)23 −
K∑
k=1

I∑
i=1

xijk Psifk0 ≤ Msj0 ; j = 2, . . . , J ; s ∈ S (3.5)

I∑
i=1

xijk = 1 ; j = 1, . . . , J ; k = 1, . . . , K (3.6)

K∑
k=1

xijk ≤ 1 ; i = 1, . . . , I; j = 1, . . . , J (3.7)

J∑
j=1

K∑
K=1

xijk ≤ Wi ; i = 1, . . . , I (3.8)

K∑
k=1

xijk ≥ Zij ; i = 1, . . . , I; j = 1, . . . , J (3.9)∑
k∈KE

xi(j−1)k +
∑
k∈KN

xi(j−1)k +
∑
k∈KD

xijk ≤ 1 ; i = 1, . . . , I; j = 2, . . . , J (3.10)∑
k∈KN

xi(j−1)k +
∑
k∈KN

xijk ≤ 1 ; i = 1, . . . , I; j = 2, . . . , J (3.11)

Msjt ≥ 0 ; j = 1, . . . , J ; t ∈ T ; s = 1, . . . , S (3.12)

xijk ∈ {0, 1} (3.13)

Constraints (3.3) to (3.5) calculate the hourly mismatch between patient demand and

physicians’ productivity. The left-hand side of the constraints (3.3) to (3.5) represent the

patient demand minus the number of patients treated in time period t, where the patient

demand is the sum of new patients arriving in the time period t and patients still waiting

from the previous time period t − 1. Constraint (3.6) ensures that exactly one physician is

assigned to each shift of the period. Constraint (3.7) makes sure that a physician is assigned

to at most one shift per day. Constraint (3.8) states that each physician i works at most

Wi shifts over the planning period. Constraint (3.9) ensures that physician i works on day

j if she has a preference to work on that day (Zij = 1). If a physician has a preference not

to work on a day, we can add a constraint to our model to ensure that no shift is assigned

to the physician on that particular day. Constraint (3.10) guarantees that a physician who

is assigned to an evening or a night shift will not be assigned to a day shift on the next

day. Finally, constraint (3.11) states that a physician assigned to a night shift must not be
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assigned to a night shift on the next day.

Our model with a finite number of scenarios can form a full deterministic mixed integer

program. However, with many realizations, the problem becomes quite large. Therefore, al-

gorithms such as branch and bound become inefficient for solving such a large-scale stochastic

program. For real-sized problems, we propose and apply a L-Shaped procedure that benefits

from the decomposition algorithm of Dantzig and Wolfe (1960). The L-shaped method is a

technique to solve a stochastic program where random variables take finitely many values.

3.5 The L-Shaped Algorithm

The L-Shaped method was first introduced by Van Slyke and Wets (1969) for two-stage

stochastic integer programs. Our scheduling problem can be formulated as a two-stage

stochastic programming problem with binary variables in the first stage and continuous vari-

ables in the second stage This allows us to separate the variables into two sets of deterministic

(first stage) and stochastic (second stage). Therefore, the MILP constructed in the previ-

ous section will be first decomposed into a master problem (MP) where a feasible physician

scheduling is made, and a series of sub-problems (SP) where the mismatch is calculated for

each scenario.

I) Master problem (first-stage)

The master problem is the LP relaxation of the original problem with only deterministic

variables. Let v denote the major iterations of the algorithm. In the formulation below,

variable θ, along with the optimality cut (constraint (3.15)), are used as appropriate approx-

imations of the second stage.
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(MP): Minimize θv (3.14)

s.t.

EvXv + θv ≥ ev (3.15)
I∑

i=1

xvijk = 1 ; j = 1, . . . , J ; k = 1, . . . , K (3.16)

K∑
k=1

xvijk ≤ 1 ; i = 1, . . . , I; j = 1, . . . , J (3.17)

J∑
j=1

K∑
K=1

xvijk ≤ Wi ; i = 1, . . . , I (3.18)

K∑
k=1

xvijk ≥ Zij ; i = 1, . . . , I; j = 1, . . . , J (3.19)∑
k∈KE

xvi(j−1)k +
∑
k∈KN

xvi(j−1)k +
∑
k∈KD

xvijk ≤ 1 ; i = 1, . . . , I; j = 2, . . . , J (3.20)∑
k∈KN

xvi(j−1)k +
∑
k∈KN

xvijk ≤ 1 ; i = 1, . . . , I; j = 2, . . . , J (3.21)

0 ≤ xvijk ≤ 1 (3.22)

II) The subproblem (second-stage)

(SP): Minimize
∑
t∈T

J∑
j=1

Msjt (3.23)

s.t.

As10 −
K∑
k=1

I∑
i=1

xi1k Psifk0 ≤ Ms10 ; s ∈ S (3.24)

Asjt +Msj(t−1) −
K∑
k=1

I∑
i=1

xijk Psifkt ≤ Msjt ; j = 1, . . . , J ; t ∈ T − {0}; s ∈ S (3.25)

Asj0 +Ms(j−1)23 −
K∑
k=1

I∑
i=1

xijk Psifk0 ≤ Msj0 ; j = 2, . . . , J ; s ∈ S (3.26)

Msjt ≥ 0 ; j = 1, . . . , J ; t ∈ T (3.27)

We now define the binary L-shaped algorithm as follows:
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The binary L-shaped algorithm

Step 0: set v = 0.

Step 1: Solve the MP and let (xv, θv) be an optimal solution.

If v = 0 (no optimality cuts), remove θ from (MP) and set θ0 = −∞.

Step 2: For s = 1, . . . , S solve the SP.

Let πIv
s , πIIv

tjs , and πIIIv
js be the dual multipliers of the SP optimal solution associated with

constraints (3.24), (3.25), and (3.26), respectively. Define

EvXv =

∑S
s=1 ps(π

Iv
s

∑K
k=1

∑I
i=1 xi1kPsifk0 +

∑J
j=1

∑23
t=1 π

IIv
sjt

∑K
k=1

∑I
i=1 xijkPsifkt +

∑J
j=2 π

IIIv
sj

∑K
k=1

∑I
i=1 xijkPsifkt) (3.28)

ev =
S∑

s=1

ps(π
Iv
s As10 +

J∑
j=1

23∑
t=1

πIIv
sjt Asjt +

J∑
j=2

πIIIv
sj Asj0) (3.29)

Let ωv = ev − EvXv. If θv ≥ ωv, then stop with the optimal solution given by xv.

Otherwise, set v = v + 1, add optimality cut to equation (3.15), and return to Step 1.

Step 3: Begin branch-and-cut algorithm. Create two new branches; Check if there are

any violated cuts and return to Step 1.

Assessing the quality of a candidate solution plays a fundamental role in stochastic op-

timization. We apply a Monte Carlo bounding technique described in Mak et al. (1999)

to evaluate the quality of our candidate solution. Let’s consider the following stochastic

program

SP : z∗ = minEf(x, ξ)
x∈X

, (3.30)

where f is a real-valued function that determines the cost of operating with decision x

under a realization of the random vector ξ. Denote an optimal solution and the optimal

value of (SP) as x∗ and z∗, respectively. Let ξ1, ξ2, ..., ξn be an independent and identically

distributed (iid) sample from the distribution of ξ. A sampling approximation of (SP) is
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given by

SPn : z∗n = minx∈X 1/n
n∑

i=1

f(x, ξi) (3.31)

Mak et al.(1999) showed that a lower bound on z∗ can be obtained by interchanging

minimization and expectation

Ez∗n ≤ z∗ (3.32)

Hence, the lower bound on the true solution, z∗, can be obtained by solving the original

problem, SPn, for multiple times, each with independently generated scenarios.

L̄(nl) = 1/nl

nl∑
j=1

z∗jn (3.33)

where z∗jn = minx∈X 1/n
n∑

i=1

f(x, ξij).

Given a candidate solution x̂ and a sample size n for (SPn), an upper bound on the

optimal value of (SP) can be obtained by:

z∗ ≤ Ef(x̄, ξ) (3.34)

The upper bound in Eq. (3.35) comes from suboptimality of x̄. A straightforward estimate

of Ef(x̂, ξ) is the standard sample mean estimator shown below:

Ū(nu) = 1/nu

nu∑
i=1

f(x̂, ξi) (3.35)

We can now define an approximate (1 − 2α)-level confidence interval for the optimality

gap at x̂ as

[0, [Ū(nu)− L̄(nl)]
+ + ε̂u + ε̂l] (3.36)

where ε̂u and ε̂l represent the standard errors.
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3.6 Computational Results

Our case study is based on data gathered from an emergency department that is part

of the Alberta Health Services (AHS) system in Alberta, Canada. we have data available

over a two-year time period from August 2013 to July 2015. We are interested in finding

the assignment of physicians to shifts that minimizes the total mismatch over all days in

a planning period of four weeks considering all constraints discussed in the mathematical

formulation section. To capture physicians’ productivity, we include 52 physicians who were

scheduled for more than 90 shift during the studied period. There are currently 13 shifts

scheduled every day of the week in the studied ED. Therefore there are in total 28 x 13 =

364 shifts in the planning period of four weeks. To build a fair schedule, we allow all 52

physicians to work for the same number of shifts during four weeks which means 364/52

= 7 shifts per each physician. We will compute the solution without considering physician

preferences. This gives us the improvement possible if physician schedules were completely

flexible.

3.6.1 Solution quality and optimal schedule

In this section, we first evaluate the quality of stochastic solutions in order to find a rea-

sonable number of scenarios. Afterwards, we compare the solution of the proposed stochastic

programming model to that of the deterministic model for our case study.

We can obtain a better solution if the number of scenarios increases, but the compu-

tational cost of finding that solution increases as well. We evaluate the quality of three

candidate solutions for 10 batches of sampled scenarios with sizes of 20, 40, and 60. For each

candidate solution, we calculate the 95% confidence interval on its optimality gap based on

the bounding technique discussed in the previous section. The upper bounds for the three

candidate solutions x̄20, x̄40, x̄60 are computed by solving the deterministic versions of the

MIP model presented in section 3.4.2. Table 3.5 displays the quality of the three candidate

solutions. It can be seen from this table that we can improve the solution quality and obtain

tighter confidence intervals for the optimality gap if we increase the number of scenarios.

Therefore, we will solve the stochastic programming model using 60 sample realizations of
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the physician productivities and patient arrivals.

Candidate solution x̄20 x̄40 x̄60

Number of scenarios 20 40 60
Number of batches 10 10 10

Confidence interval (95%) [0,3701] [0,1905] [0,811]

Table 3.5: Optimality gap for the three candidate solutions

Since the problem could not be solved using a MILP solver directly, we have used the

L-shaped approach discussed in Section 3.5. The L-Shaped algorithm model was coded in

Eclipse Java Mars 4.5 and solved with CPLEX Optimization Studio 12.6.3 on a Lenovo Y50

Laptop (Intel Core i7/ 8GB RAM/ Windows 10). The solution leads to a physician schedul-

ing scheme that gives the total mismatch of 21,420 over the planning period of four weeks.

To emphasize the negative consequences of not considering the physicians’ productivity in

the physician scheduling problem, we construct a random feasible physician schedule. Solv-

ing the problem with the random schedule gives the total mismatch of 34,532 over the same

period, an increase of 61% compared to the optimal schedule.

3.6.2 Simulation

Next, we use a simulation model to determine if considering physicians’ heterogeneity in

the scheduling problem has a meaningful impact on the wait times. We develop a simulation

model in Java to investigate the impact of the near-optimal stochastic MIP solution on

reducing patient wait times. We run the simulation over 280 days using the same distributions

for patient arrivals and physicians’ productivity. We consider the initial two days as the

warm-up period of the simulation model. In particular, we are interested to compare the

average wait times of three schedules: the optimal schedule, the random schedule, and

deterministic schedule. The deterministic schedule is constructed by solving the deterministic

version of the problem where all stochastic variables are fixed at their mean values.

The average hourly waits for the three schedules are shown in Figure 3.6. Comparing

the optimal schedule to the random schedule we see that ignoring the heterogeneity among

physicians in constructing ED physicians’ schedule leads to increased unnecessary wait times
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experienced by patients. The simulation results suggest that the optimal schedule can reduce

the average wait time over all hours by over half an hour compared to the random schedule.

When compared to the deterministic schedule, the optimal schedule can decrease the overall

average wait time over 10 minutes which illustrates the importance of the stochastic model.

 

  Figure 3.6: Average hourly wait times for the three schedule

3.6.3 More insights: physician clustering

Finally, we examine ED physicians clustering into some groups based on their average

productivity rates. In reality, it may be difficult for hospital administrators to implement

the optimal schedule if we assume that each individual physician is different than others.

ED physicians often have teaching, research, and family responsibilities that reduce their

availability. Hence it might be difficult for most ED physicians to be flexible concerning

the timing of their working shifts. Clustering ED physicians can improve the flexibility in

selecting among ED physicians when constructing the schedule. In this section, we examine

the effects of having two, three, five, and fifty-two clusters on reducing the average wait

time. For each clustering scenario, we first find the optimal schedule of physicians using the

proposed two-stage stochastic program and second determine the average hourly wait times

using the simulation model.

In the case of two clusters, we divide our physicians into two equal groups of slow and

fast physicians as shown in Figure 3.7. The productivity of physicians in each cluster is a
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random variable whose mean and standard deviation are calculated using the productivity

of the twenty-six physicians belonged to that cluster. In the case of fifty-two clusters, we

assume each physician has a specific productivity performance that is a random variable with

a known distribution discussed before. Furthermore, we examine the impacts of considering

three clusters (slow, medium, and fast) and five clusters (very slow, slow, medium, fast, and

very fast) on reducing wait times. The three clusters are also shown in Figure 3.7.
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Figure 3.7: Two or three clusters of ED physicians in our case study

Figure 3.8 shows the average hourly wait times for the different number of clusters. We

find the highest average wait times over all hours in the case of two clusters. The wait times

are decreased when the three clusters of physicians is considered. However, the average

wait time is still higher (over 13 minutes) compared to the fifty-clusters. The results of

the five clusters is, however, roughly the same as the wait times of the fifty-two clusters.

These suggest that hospital administrators do not need to consider the productivity of each

individual physician in constructing the ED schedule.
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Figure 3.8: Average hourly wait times

3.7 Conclusion and future research

In this study, we have formulated the scheduling problem of physicians to minimize the

total hourly mismatch between patient arrivals and physicians’ productivity. We defined

productivity as the speed at which new patients are seen by physicians. The scheduling of

physicians has a direct impact on the waiting time of patients because of the heterogeneity

among physicians in terms of their productivity. The analyses of hourly productivity rates

suggested that ED physicians evaluate significantly more patients early in a shift, and few at

the end of a shift. We found no significant relationship, however, between ED crowdedness

and physicians productivity. Besides including the heterogeneity among physicians, we also

include the stochastic nature of the ED patient arrivals and the physicians’ productivity in

our formulation.

Next, we developed a simulation model to investigate the impact of the stochastic MIP

schedule on reducing wait times. The results showed that the optimal solution can reduce

average wait time compared to the schedule constructed based on the existing physician
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scheduling literature. We concluded that the wait times can be reduced when the produc-

tivity of the ED lines up with the numbers and timing of when patients present to the

emergency department. Finally, we examine the effects of physicians clustering in reducing

wait times. We found that clustering ED physicians based on their productivity rates can

improve flexibility in building the schedule while optimizing the flow of patients.

In this research, we only discussed the physician scheduling problem. Further studies can

address the staffing problem and the shift-scheduling problem at the strategic level.
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Chapter 4

A new definition of crowding in

emergency departments: patient

volume and patient mix

4.1 Introduction

Although there is a large body of literature on the causes and effects of crowding in

emergency departments (EDs), there is no standard definition of crowding. The most com-

monly crowding measure used in the literature is the number of patient arrivals (Hwang

et al. (2011)). However, the number of ED arrivals may remain the same over years, while

the patient mix changes through time. A new crowding measure that includes both pa-

tient arrivals and patient mix can provide important information to predict ED resource

requirements more accurately.

In this chapter, we present a more comprehensive crowding measure that includes both

number of patients and patient mix. We define ED crowding as the number of ED patients

from each group. To classify emergency department visits for identifying the patient mix,

we propose a patient classification system (PCS). The proposed PCS separates the patient

population into 880 homogeneous groups using four types of variables: age, gender, triage

level, and disease. An ED crowding measure becomes applicable if, first, the arrival patterns
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of its suggested variables can be predicted and, second, it is relevant. Thus, forecasting ED

crowding at different hours of the day is our primary goal in this study. To demonstrate

the relevance and significance of the proposed crowding metrics, we then examine the effects

of the two crowding variables on ED performance metrics. Patient wait time for the initial

assessment by a physician, total length of stay, and number of re-visits within 72 hours are

our variables for the ED performance metrics. The first two variables are commonly used

time-based ED performance metrics, while the last one is a quality-based ED performance

measure. The suggested ED crowding variables and the proposed performance measures are

summarized in Table 4.1.

 
Crowding Variables

• Number of  patients

• Patient mix

Performance Metrics

• Wait time

• Length of  stay (LOS)

• Revisits within 72 hours

Table 4.1: Crowding variables and performance measures

We therefore address the following research questions:

Research Question 1: Can we forecast ED crowding?

We can further divide the first research question into the following two sub-questions.

Research Question 1a: Is there an arrival time pattern of patients in EDs? Has it

changed through time?

Research Question 1b: Is there an arrival time pattern of types of patients in EDs?

Has it changed through time?

Research Question 2: Are there any relationships between crowding variables and

performance metrics? Should the crowding measure be redefined by adding the patient mix?

To address the above research questions, we use data on all admissions to emergency de-

partments in February, July and November for the years of 2007, 2012, and 2017 in the city

of Calgary, Alberta, Canada. The dataset includes five hospitals as case study sites, where

four are adult EDs and one provides care for sick children. One of the adult-focused EDs was
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opened in 2013. Data has been extracted from two data sets: (i) National Ambulatory Care

Reporting System (NACRS); (ii) Discharge Abstract Database (DAD). NACRS collects de-

mographic, administrative, clinical and service-specific data for ED visits, and DAD contains

demographic, administrative and clinical data for hospital inpatient discharges. Our final

database includes the following information on 237,366 patient visits:

i. Patient information: age, gender, date and time of triage

ii. Diagnostic information: Canadian triage and acuity scale (CTAS) and international

classification of diseases (ICD10)

iii. Performance metrics: wait time (the time between triage and the physician’s initial

assessment), total length of stay, and whether this is a re-visit within 72 hours of last

ED discharge

The results of this study will be of interest to health providers as well as the operations

research community. Although strategic and operational planning in EDs are normally based

on averages, the changes in the profile of patients are also of great importance. This study

is the first large scale analysis of its type, and findings can be applied for developing optimi-

sation models, in special queueing-based models, on emergency departments. This research

has three key contributions. Firstly, we propose a patient classification system for classifying

emergency department visits. Secondly, we examine arrival patterns to find whether the ar-

rivals of patients as well as each group of patients can be predicted in a specific time period.

The third contribution is an exploration of the relationships between ED crowding variables

and ED performance metrics. The remainder of this chapter is organized as follows. We

review the related literature in section 4.2. Section 4.3 presents the patient classification

system (PCS), which is followed in section 4.4 by application of the PCS to the case study

and the findings. Finally, we conclude in section 4.5 with a discussion and further research

suggestions.
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4.2 Literature review

In this section, we review two strands of literature that are relevant to the two dimensions

shown in Table 4.1: studies on the ED crowding that address patient arrival patterns and/or

changes in the mix of arrivals over time, and literature on the ED crowding and its impact

on the performance measures.

Number of patients and patient mix are our two proposed variables for the ED crowding.

Identifying variables that contribute to ED crowding help policy makers to better understand

and manage crowding. Hwang et al. (2011) conducted a systematic review of crowding

measures in EDs. They found that the most commonly crowding measures used are numerical

counts or percentage of patients (as arrivals, in the waiting room, at triage or registration,

by acuity, etc.). To the best of our knowledge, no one has suggested a crowding measure that

is based on both patient arrivals and mix of patients. The most related crowding measure

in the literature to our proposed metric is the number of patients at each acuity level (See

e.g., Bullard et al. (2009)). However, the ED acuity scores alone do not provide important

information about patients other than their levels of urgency. Our proposed ED crowding

includes patient volume and patient mix.

Classifying emergency department visits in several homogeneous groups is the initital

step in determining the mix of ED patients. Williams and Crouch (2006) conducted a

systematic literature review of emergency department patient classification systems (PCS)

for the years 1985-2004. The purpose of these PCSs was to group patients based on their

nursing care needs. 12 ED PCSs were identified in this systematic review. However, only

three classification systems appeared to the nurses to be valid tools and provided consistent

results across different EDs. These three PCSs were the ED patient classification matrix

(Butler (1986)), the Conners tool (Conners (1994)), and the Jones dependency tool (JDT)

(Crouch and Williams (2006)). All these classification tools are, however, developed based

on nurse staffing requirements to predict nursing workload. In this study, we develop a PCS

based on patient demographics (age and gender) and diagnostic information (triage level and

disease code) that has more general applicability. The characteristics of patients and their

reasons for ED visits are important to address a wide range of strategic decision problems in
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emergency departments, such as resource and financial planning. The proposed PCS allows

us to identify the mix of patients visiting EDs in a specific time period.

As already discussed in the previous section, the primary goal of this research is to ex-

amine the arrival patterns of the proposed ED crowding metrics. There are several studies

that have examined patterns of patient arrivals in emergency departments. For example,

Carvalho-Silva et al. (2017) used two years of ED arrivals data to first examine arrival

patterns and then build forecasting models based on time series, such as moving average, ex-

ponential smoothing, Holt-Winters, and autoregressive integrated moving average (ARIMA).

They analyzed the arrivals to the ED regarding the month of the year, the day of the week

and the time of the day. The results suggested that the greatest demand is in February (533.7

arrivals per day) and on Monday (567.6 arrivals per day), and during the day there are two

peaks for increased demand: at the start of the morning and early afternoon. The best fore-

casting model for the test period was the ARIMA based on the mean absolute percentage

error. McCarthy et al. (2008) analyzed one year of ED arrival data from an academic ED.

The results showed that hour of the day is the most important predictor in ED arrival rates.

Seasonal factors, however, did not statistically influence patient arrivals to the ED. Some

studies addressed the changes in patterns of patient arrivals over a longer time period. For

example, McNaughton et al. (2015) used a sample of U.S. emergency department data from

2006 to 2012 to identify hypertension-related ED visits and evaluate the changes over time.

They reported that 23.6% of all adult ED visits that occurred during the 7-year study period

were hypertension-related visits, with an annual percentage growth rate of 5.2%. Lewis et al.

(2015) focused on U.S. ED toothache visits by 20-29 year-olds during 2001-2010. They used

data from the National Hospital Ambulatory Medical Care Survey (NHAMCS). The average

annual increase in ED visit rates was 6.1% for toothache. The results also suggested that

42% of all 20-29 year-olds ED visits were toothache visits. They concluded that younger

adults with a chief complaint of toothache increasingly rely on EDs. Morganti et al. (2013)

studied the evolving role of EDs in the U.S. health care system using a mix of quantitative

and qualitative methods. They analyzed ten years of data to evaluate the changing patterns

of health care utilization and delivery in 60 communities nationwide. The main finding was

that office-based physicians are increasingly directing complex patients to EDs rather than
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managing these patients themselves. Herring et al. (2013) examined the increasing use of

the ED by patients with life-threatening illness in California from 2002 through 2009. They

reported that total annual ED visits increased by 25%, from 9.0 million to 11.3 million, but

high-intensity ED visits increased by 87% from 778,000 to 1.5 million per year. These results

suggested that more complex patients are going to EDs as an alternative to care outside

EDs. All of these studies have examined the arrival patterns of the total patient population

or only a specific group of patients. However, it is also important to study the patient mix

to identify what types of patients arrive to EDs. In this study, we investigate whether there

exists a pattern of arrivals for a group of patients as well.

Finally, we examine the effects of the two crowding variables on ED performance metrics

to show the significance of the proposed crowding definition. Over the last decade, there

have been several studies on crowding and its impact on performance metrics in EDs. For

example, Ajmi et al. (2015) performed a continuous 10-day mapping exercise to record patient

paths through a pediatric ED. The objective was to identify crowded situation indicators

and bottlenecks. They identified the wait time for a hospital bed as the greatest source

of delay in patient flow. Martin et al. (2011) performed a patient flow mapping through

an Australian ED for a continuous 84-hour (3.5 days) period. The goal was to identify

bottlenecks that contribute to overcrowding. The long waiting time for a bed request for

a patient to exit from the ED was the main reason for overcrowding. Welch et al. (2007)

designed an integrated tracking system to track patients’ progress throughout their ED visit.

They analyzed the data from 39,704 ED encounters for a 1-year period to determine relevant

patterns that might affect staffing and operational efficiencies. They found that patients

seen during less busy times, in the middle of the night, had a higher acuity. Radiology and

laboratory utilization were highly correlated with ED arrivals, and the higher the acuity, the

greater the utilization. These existing efforts to understand and improve ED performance

metrics usually occur within a relatively short period of time and in one ED. It is unclear

whether their findings would be valid in a longer time period and across conditions within

EDs. In this study, we use the data from several EDs over several years, which may provide

results that are more generalizable. We should also note that the definition of crowding in

this study is different than the above references.
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4.3 Characterising the patient

The initial step in identifying patient mix is to classify patients into homogeneous sets

such that patients that belong to the same group have similar characteristics and diagnoses.

How many attributes should be used to classify emergency department visits? Having a huge

number of attributes may weaken the practicality of the classification and reduce its usability,

and some classes may contain very few cases. If, on the other hand, very few attributes are

included, each group has significant variability. Thus, there is always a trade-off to find the

best number of attributes. We separate patients into a reasonable number of groups based

on patient demographics (age and gender) and diagnostic information (CTAS and disease

code). Our patient database includes various items of patient information. We selected age

and gender as the most salient attributes, as summarized in Table 4.2 below.

  Patient information                  
Age Gender 

1- 0-1 year 
2- >1-18 years 
3- >18-65 years 
4- >65 years 

1- male 
2-female 
 
 
 

 Table 4.2: ED patient demographics

There are many different reasons for an ED visit, but for all patients coming to the

emergency room, a rapid assessment will be done to determine the urgency level of that

patient. A triage nurse initially asks an ED patient about his/her complaint and takes the

patient’s vital signs. The triage nurse will then assign the patient a triage level, which

is a proxy of waiting time for that patient (Horwitz et al. (2010)). We use the Canadian

triage and acuity scale (CTAS) and the international classification of diseases (ICD-10 codes)

shown in Table 4.3 to identify the ED patient’s diagnostic information. Appendix A lists

the 22 ICD-10 codes with their definitions. We should note that a patient can have multiple

diagnoses in a single visit. However, we only consider the primary diagnosis in our analysis.

There will be somewhat similar resource consumption for patients with the same combination

of triage level and diagnosis, although the diagnoses within a CTAS or ICD10 category can

be quite wide-ranging.
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Diagnostic information 
CTAS Disease code  

1-Resuscitation 
2-Emergent 
3-Urgent 
4-Less urgent 
5-Non-urgent 

 
Refer to ICD-10 codes list 

(22 broad categories)  

 Table 4.3: ED patient diagnostic information

The proposed PCS assigns a numeric code number to each patient which provides distinct

information about that patient. The code begins with a digit representing the age group

of the patient, followed by a digit that is the gender code, followed by a digit to identify

the CTAS of the patient, and finally two digits (01-22) representing the primary diagnosis

code of the patient. For example, assume a patient has arrived in the ED with the following

attributes: 15 years old (age group 2), female (gender group 2), triage code 3, and is primary

diagnosed with respiratory infection (diagnosis group 10). Here the coding number would

be 22310.

4.4 Application of the PCS to the case study

A total of 237,366 patients arrived to seek care in the Calgary EDs during the nine months

examined (February, July and November for the years 2007, 2012, and 2017). Demographic

characteristics of the patients and their diagnostic information are shown in Table 4.4.
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Variable Total % within group Variable Total % within group 

Age  CTAS  
0-1 year 7.3 CTAS 1 1.1 

>1-18 years 20.3 CTAS 2 27.8 
>18-65 years 56.4 CTAS 3 47.3 

>65 years 15.9 CTAS 4 20.9 
Gender  CTAS 5 2.9 

male 50.6 Disease codes  
female 49.4 1) A00-B99  4.6 

  2) C00-D49  0.5 
  3) D50-D89  0.4 
  4) E00-E89  1.3 
  5) F01-F99  5.7 
  6) G00-G99  1.8 
  7) H00-H59  1.2 
  8) H60-H95  1.3 
  9) I00-I99  4.4 
  10) J00-J99  8.3 
  11) K00-K95  6.9 
  12) L00-L99  2.7 
  13) M00-M99  4.5 
  14) N00-N99  4.7 
  15) O00-O9A  2.0 
  16) P00-P96  0.3 
  17) Q00-Q99  0.1 
  18) R00-R99  21.9 
  19) S00-T88  24.5 
  20) U00–U99  0.0 
  21) V00-Y99  0.0 
  22) Z00-Z99  2.8 

 
Table 4.4: ED patient demographic characteristics and their diagnostic information
(n=237,366)

There are 4 age groups, 2 dimensions for gender, 5 CTAS levels, and 22 disease codes.

Therefore there are in total 4 x 2 x 5 x 22 = 880 groups. Patients in each group share

common properties, while members in different groups tend to be dissimilar to each other

in one dimension or more. During the three months examined in 2007, 576 of 880 patient

types visited EDs in the city of Calgary. The number of groups with a nonzero arrival rate

increased to 637 during the same period in 2017, an increase of about 10%. The histograms

of the number of groups with various number of ED arrivals in the three months of the years

of 2007, 2012, and 2017 are shown in Figure 4.1.
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Figure 4.1: Histograms of groups by number of arrivals during the research period

It is important to know what types of patients arrive to emergency departments. Iden-

tifying the most frequent ED users, their characteristics and diagnostic information help

hospital administrators in the processes of resource planning to meet the needs of different

segments of patients. Figure 4.2 is a multi-level hierarchical pie chart that separates the

patient population based on gender, age, CTAS, and disease attributes. Each level is rep-

resented by one circle, with each pie wedge size indicating the relative size of a dimension.

The most frequent ED visits belongs to patients with the coding numbers of 31318 (>18-65

years, male, urgent triage level, and disease code 18: “symptoms, signs and abnormal clinical

and laboratory findings”) and 32319 (>18-65 years, female, urgent triage level, and disease

code 19: “injury, poisoning and certain other consequences of external causes”) with 8,376

and 7,348 patients in the population, respectively. The most requested specialties for pa-

tients with disease codes 18 and 19 were cardiologists and orthopaedic surgeons, respectively.

Electrophysiologic test, chest X-ray, and abdominal ultrasound are the popular procedures

required for patients with disease codes 18. Electrophysiologic test, repair injured skin, and

X-ray are the common procedures needed for patients with disease codes 19.
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Figure 4.2: Separation of patients in the research period

Next, we examine the relationships of patient groups with sizes greater than 100 pa-

tients to some commonly used ED evaluation variables shown in Table 4.5. Examinations

of the evaluation variables indicate that patients with classification code 32415 (>18-65

years, female, resuscitation triage level, and disease code 15: “pregnancy, childbirth and the

puerperium”) have shown the highest percentage of revisits. The highest averages of length

of stay and lab tests turnaround time belong to those patients with 32205 (>18-65 years,

female, emergent triage level, and disease code 05: “mental, behavioral and neurodevelop-

mental disorders”) and 21310 (>1-18 years, male, urgent triage level, and disease code 10:

“diseases of the respiratory system”) codes, respectively. The descriptions of diagnosis codes

and total population results are also summarized in Table 4.5. Those with classification code

42201 (>65 years, female, emergent triage level, and disease code 01: “certain infectious and

parasitic diseases”) have the highest percentage of inpatients.
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             Patients group                  
 
Evaluation variable    

Group with 
highest 

Value of 
variable 

Diagnosis code description Total population 
Value of variable 

Revisits (%) 32415 51.8 Pregnancy, childbirth and the 
puerperium 7.8 

Average length of stay(mins) 32205 458 Mental and behavioral 
disorders 361 

Average lab tests turnaround time(mins)   21310 295 Respiratory diseases 110 
Inpatients (%) 42201 69.9 Certain infectious and 

parasitic diseases 11.5 

 

 Table 4.5: ED evaluation variables and patient groups

From the case study analysis, we can address the research questions stated above.

4.4.1 RQ1: Can we forecast ED crowding?

Having the arrival patterns is necessary from an operational viewpoint to adjust staffing

levels such that schedules are appropriate for what might be significantly different patterns

of patient arrivals over time. We use patient arrivals and the patient mix to examine the

patient flow in EDs through time. The first research question can be therefore divided into

two sub-questions.

RQ1a: Is there an arrival time pattern of patients in EDs? Has it changed

through time?

Figure 4.3 displays the total number of arrivals into Calgary emergency departments

in February, July and November for the years 2007, 2012, and 2017. The results show an

increase of 47% in the average number of ED visits from 2007 to 2017. Furthermore, there

seems to be a seasonal pattern in the arrivals data, with the highest number of arrivals

belonging to the month of July and the lowest in the month of February.
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Figure 4.3: ED patient arrivals by month for 2007, 2012, and 2017

Next, we examine daily arrival pattern to find which hour of the day results in the highest

arrivals. The hourly trend of arrivals for each day of the week is plotted in Figure 4.4.
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Figure 4.4: ED patient arrivals (hourly trend)

Figure 4.4 shows a 24-hour cycle with a peak around midday that decreases toward

the evening and rises again throughout the morning. It is interesting to note that there is

79



no major difference between the pattern of arrivals during the week and on the weekend,

although the average number of ED visits is higher on Mondays, followed by Sundays.

Forecasting demand for ED resources is contingent upon the arrival distribution of in-

coming patients. Most queuing formulas are based on the assumption that the arrival times

of patients follow a Poisson process because of its mathematical convenience. We examine

this assumption by using a chi-square goodness-of-fit test. We calculate the hourly arrival

rates over a time span of 24 hours, as the data suggests that hour of the day is the most

important predictor in ED arrival rates. To remove the seasonal component in the data, we

have chosen one month, February. We hypothesize that the number of patient arrivals in

each hour follows a Poisson distribution whose mean is the average number of arrivals during

that hour of all days in February. This gives a total of 28 arrival data points for each hour

of the day in February in a given year.

H0a: The number of arrivals per hour follows a Poisson distribution

The chi-square goodness of fit is used to test the null hypothesis for each hour in each

of the three years of data, for a total of 72 tests. The computed P -values are greater than

the significance level α=0.05 in 93% of the tests (67 out of 72) indicating that one can not

reject the null hypothesis. Time intervals h1 and h8 in 2007, h13 in 2012, and h22 and

h23 in 2017 did not pass the chi-square test. The conclusion is that the Poisson process

is a reasonable assumption for predicting hourly arrival distributions of incoming patients.

Figure 4.5 compares the average hourly arrival rates of February in the years 2007, 2012,

and 2017, showing an increasing similar trend on arrival rates per hour over years. The

overall average hourly patient arrivals has increased from 28 patients in February of 2007 to

36 patients in February of 2012 and 43 patients in February of 2017.
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Figure 4.5: Average hourly arrivals in February of 2007, 2012, and 2017

ED average hourly visit rates with the sample standard errors (SE) calculated across the

days of February in the years 2007, 2012, and 2017 are summarized in Table 4.6.

Time Average ED visits (SE) 
February 2007 

Average ED visits (SE) 
February 2012 

Average ED visits (SE) 
February 2017 

h0 21.1 (0.8) 24 (3.5) 26.5 (2.6) 
h1 16.1 (3.4) 19.5 (2.4) 20.6 (3.1) 
h2 14.3 (2.2) 14.8 (1.3) 17.1 (3.1) 
h3 12 (2.0) 15.7 (2.0) 17.6 (1.6) 
h4 11.2 (1.9) 15.4 (1.9) 17.2 (2.1) 
h5 10.8 (1.6) 13.1 (2.6) 12.8 (2.5) 
h6 12.6 (1.7) 14.9 (2.0) 16.6 (3.0) 
h7 16.7 (2.2) 21.7 (1.8) 25.6 (4.3) 
h8 23.2 (3.8) 30.4 (2.3) 34.8 (3.3) 
h9 32.4 (3.4) 42.9 (4.5) 51.4 (4.1) 
h10 37.3 (2.9) 48 (3.6) 59.5 (4.5) 
h11 38.7 (2.9) 54.4 (3.3) 60.6 (6.1) 
h12 39.2 (3.3) 49.3 (4.9) 60.4 (3.8) 
h13 39.2 (3.2) 50.1 (4.3) 59.6 (3.8) 
h14 36.8 (3.3) 50.8 (4.1) 55.9 (5.2) 
h15 36.8 (4.0) 44.1 (4.3) 49.4 (4.9) 
h16 35.1 (3.0) 44.2 (3.4) 54.5 (4.7) 
h17 34.6 (3.6) 46.7 (3.2) 56.1 (3.2) 
h18 31.8 (3.6) 47.9 (3.3) 56.7 (3.0) 
h19 35.1 (2.7) 48.8 (2.1) 63.1 (4.2) 
h20 33.8 (3.7) 43.8 (2.8) 52.2 (4.2) 
h21 31.2 (4.0) 39.5 (2.5) 50 (4.3) 
h22 33.8 (3.5) 35.8 (3.3) 41.5 (5.0) 
h23 28.1 (2.3) 31.7 (3.6) 32.7 (3.5) 

 
Table 4.6: Emergency departments hourly visit rates with standard errors
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RQ1b: Is there an arrival time pattern of patient types in EDs? Has it changed

through time?

There are 880 patient types based on the PCS proposed in the previous section. Fig-

ure 4.6 displays the number of patient types that visited Calgary emergency departments in

February, July and November for the years 2007, 2012, and 2017. Similar to the ED arrival

pattern, there seems to be a seasonal trend in the number of patient mix that visits EDs.

The peak occurs in July, while the lowest belongs to the month of November. This suggests

that the arrival time pattern of patient mix can be different than the arrival pattern of overall

patients.
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Figure 4.6: Patient mix by month for 2007, 2012, and 2017

Next, we examine daily arrival patterns for an example patient group to find which hour

of the day results in the highest arrivals. We select the patient group with the coding

numbers of 31318 (>18-65 years, male, urgent triage level, and disease code 18: “symptoms,

signs and abnormal clinical and laboratory findings”), which has the most frequent ED visits

during the studied period. The hourly trend of arrivals for each day of the week for patients

from this group is plotted in Figure 4.7. Similar to ED arrival pattern, Figure 4.7 shows a

24-hour cycle with a peak around midday that decreases toward the evening and rises again

throughout the morning. But dissimilar to the total arrivals, the average number of arrivals

for patients in this group is higher on Tuesdays, followed by Mondays. This figure suggests
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that hour of the day is the most important predictor of arrivals even for patients from one

group.
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Figure 4.7: ED arrivals for group with the coding numbers of 31318 (hourly trend)

In the previous section, we showed that the Poisson process is a reasonable assumption

for predicting hourly arrival distributions of incoming patients. In this section, we examine

whether Poisson distributions can be used to predict hourly arrivals of patients from one

group. This is important in understanding the variation of arrivals even in a given hour of

the day.

H0b: The arrivals of a particular patient group in a given hour of the day follows a Poisson distribution

To test the null hypothesis, we examine hourly patient arrivals of the 5 largest groups in

February 2007, 2012, and 2017 (5 groups x 24hrs x 3yrs = 360 chi-square tests). Table 4.7

lists times of the day that we have to reject the null hypothesis (27 out of 360). The last

column of Table 4.7 then shows the number of times that the Poisson distribution fits the

hourly arrivals for each group. The results suggest that using the Poisson distribution is a

reasonable assumption even in predicting hourly arrivals for a particular group of patients.
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             Year                 
 
Group  

2007 2012 2017 Passed the test 
(out 0f 72 times) 

31318 h4, h13, h23 h5, h9 h2, h3, h5 64 
32319  h4, h6, h18, h21 h13, h14, h17 h2 64 
32318 h1, h12 h6 - 69 
31319 h1, h9 h16 h7, h14 67 
31218 h4, h20 h9 - 69 

 
Table 4.7: Times of the day that the null hypothesis is rejected

4.4.2 RQ2: Are there any relationships between crowding vari-

ables and performance metrics? Should the crowding mea-

sure be redefined by adding the patient mix?

In the previous section, we presented the two ED crowding variables and examined their

patterns of arrivals. In this section, we first present and examine the changes in the values

of performance metrics in five hospitals as case study sites. Four are adult EDs, whereas ED

5 provides care for sick children. Hospital 4 opened its adult-focused emergency department

in 2013. In the second part of the section, we then assess the relationships between the two

crowding variables and the suggested performance metrics to show the significance of the

proposed crowding metrics.

ED performance metrics

The first performance measure suggested in this study is the average percentages of

revisits within 72 hours of the last ED discharge, which is a proxy of quality of care in each

ED. Over the three months examined in 2007, 2012, and 2017, we find a decrease of 1.9%

in average percentages of revisits (from 9.5% in 2007 to 7.6% in 2012) followed by a 0.9%

decrease in 2017 (6.7% in 2017).

The next two performance measures studied over the same time period are average length

of stay and average wait time. The length of stay (LOS) is the difference between the first

contact (triage time) and admission time for inpatients or departure time for all others. The
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wait time is, however, calculated by the difference between the first contact (triage time)

and the time of initial assessment by a physician. Figure 4.8 compares the average LOS with

average wait time in all EDs over the three months examined in 2007, 2012, and 2017. The

results show opposite trends between average LOS and average wait time over the examined

period. It seems that opening of the new hospital could change the upward trends in waiting

times in 2017. However, it is interesting that opening the new hospital did not decrease

average patients’ LOS in 2017 compared to 2012, as might be expected.
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Figure 4.8: Average length of stay (LOS) vs. average wait time

The relationships between the crowding variables and suggested ED performance

metrics

So far, we have presented the proposed crowding variables and performance metrics. In

this section, we perform a series of multiple regression analyses to assess the relationships

between crowding variables and ED performance metrics. The data from four adult EDs in

February 2017 is used to examine the relationships across conditions/locations of different

EDs (sample size = 4(EDs) x 28(days) = 112). We use the data from February since the

number of arrivals and the month indicator variables were highly correlated. The predictor

variables and multiple regression models are then validated using the data from November

2017. First, we examine how well number of patients, patient mix, and location of hospital’s

ED predict patient wait times. The wait time is the time of triage to the physician initial

assessment time.
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H0c: There is no relationship between wait time and the number of patients, patient mix, and ED location

A series of multiple linear regression analyses are carried out to test the null hypothesis.

If a predictor in regression is statistically insignificant, we remove that variable and repeat

the test. This procedure continues until all predictors are statistically significant at the 5%

level. Table 4.8 displays the coefficient values of the model predictors and their significance

levels for the first and final runs, coming from both the original and validation sets. The

final regression results of both the original and validation samples suggest that the best

predictor of wait time is the number of arrivals. Patient mix and ED conditions/locations

are not significantly associated with the wait time. The original model explains 95.5% of

the variation in wait time (F(1,111)=2980.8 and p-value of less than 0.001). The validation

model explains 91.7% of the variation in wait time (F(1,111)=1399.2 and p-value of less than

0.001).

 Original model Validation model 

 Variable Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Intercept 19.86 – -56.24 – 
Arrivals  0.42*** 0.53*** (0.2) 0.57* 0.55*** (0.3) 
Patient mix 0.02 – 0.46 – 
Hospital 1 -5.73 – 5.48 – 
Hospital 2 3.26 – 6.51 – 
Hospital 3 -6.62 – 4.45 – 

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level 

 

 

 

 

  

Table 4.8: Coefficient values and standard errors (SE) for wait time predictors

Second, we examine whether the patient LOS depends on the number of patients, patient

mix, and ED location. The patient LOS is the total time a patient spends in the ED from

the time of triage to the time that a disposition decision is made.

H0d: There is no relationship between LOS and the number of patients, patient mix, and ED location

The final regression results of the original model shown in Table 4.9 suggest that the key

predictors of LOS are number of arrivals and ED location. ED location in a particular is the

only predictor of LOS in the validation model. The original model explains only 19.8% of

the variation in LOS (F(3,108)=10.1 and p-value of less than 0.001). The validation model

also explains only 24.2% of the variation in LOS (F(3,108)=12.8 and p-value of less than
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0.001).

 

 Original model Validation model 

 Variable Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Intercept 221.71*** 203.03*** (61.3) 208.61*** 276.89*** (12.2) 
Arrivals  0.48** 0.38** (0.3) 0.21 – 
Patient mix -0.36 – 0.26 – 
Hospital 1 26.00** 30.64*** (14.9) 34.02*** 38.33*** (17.0) 
Hospital 2 11.80 15.50** (14.6) 47.09*** 50.67*** (17.0) 
Hospital 3 -4.00 – 17.92 24.40*** (17.0) 

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level 

 
Table 4.9: Coefficient values and standard errors (SE) for LOS predictors

Finally, we assess whether the number of revisits within 72 hours, which is a proxy for

quality of care, depends on the number of patients, patient mix, and ED condition/location.

H0e: There is no relationship between quality and the number of patients, patient mix, and ED location

Table 4.10 displays coefficient values of the model predictors and their significance levels

for the first and final runs, coming from both the original and validation sets. The final

regression results of both the original and validation samples suggest that the best predictor

of revisits are patient mix and ED condition. The original model explains 88.8% of the

variation in revisits(F(4,108)=243.8 with p-value of less than 0.001). The validation model

explains 88.8% of the variation in revisits(F(4,108)=247.3 with p-value of less than 0.001).
 

 Original model Validation model 

 Variable Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Coefficient value β  
First run 

Coefficient value β (SE) 
Final run 

Intercept 1.19 – -0.72 – 
Arrivals  4.38E-03 – 0.01 – 
Patient mix 0.03 0.05*** (0.01) 0.05 0.05*** (0.01) 
Hospital 1 0.97 1.19** (1.14) 1.07 1.22*** (1.19) 
Hospital 2 1.36* 1.53** (1.15) 1.62** 1.74*** (1.20) 
Hospital 3 1.54* 1.70*** (1.17) 1.45 1.62*** (1.21) 

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level 

 

 

Table 4.10: Coefficient values and standard errors (SE) for quality of care predictors

The regression results suggest that the patient mix can not be ignored in defining an ED

crowding measure. Thus, we define ED crowding as the number of patients arriving into EDs

from each group. As already discussed, our proposed ED crowding metrics can be predicted

by the Poisson distributions.
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4.5 Conclusion and future research

In this study, we introduced a new crowding measure for emergency departments (EDs)

as functions of patient arrivals and mix of patients. The most commonly used crowding

measure in the literature is patient volume that ignores the mix of patients visiting EDs.

To show the applicability and significant of the suggested ED crowding variables, we first

examined the arrival patterns of incoming patients and types of patients and second assessed

the relationships between crowding variables and performance metrics. We used data from

five hospitals in February, July and November for the years of 2007, 2012, and 2017 in the

city of Calgary, Alberta, Canada.

In terms of ED patient arrivals, we found a seasonal pattern in the arrivals data with the

highest number of arrivals in the month of July and the lowest in the month of February.

We found that the hour of the day is the key predictor of ED arrivals. However, there was

no major difference between the pattern of arrivals during the week and on the weekend.

Moreover, the statistical tests showed that the Poisson process is a reasonable assumption

for predicting hourly arrival distribution of incoming patients. In terms of patient mix, the

data showed a seasonal trend in the patient mix arrivals with the peak occurring in July.

However, the lowest number of patient mix belonged to the November that was dissimilar

to the trend of arrivals. Next, we examined the arrival rate probability distribution as a

function of patient type. The results suggested that the Poisson distribution is a reasonable

assumption even in predicting hourly arrivals for a particular group of patients.

To examine the significance of the crowding metrics, we then assessed the relationship

between the crowding metrics and performance metrics. We found the following: i) the

number of ED arrivals is a predictor of wait time and total length of stay, and ii) patient

mix is a predictor of quality of care in EDs.

ED crowding measures have been widely studied in the literature. Despite the negative

impact of patient mix on the quality of care discussed in this study, we find no measure in the

ED literature of crowding that includes the patient mix. We concluded that a new definition

of crowding should include both patient arrivals and patient mix, and therefore we defined

ED crowding as the number of patients arriving into EDs from each group. Further studies
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can develop a quantitative ED crowding measure that is based on both patient arrivals and

the patient mix.

89



Chapter 5

Summary and Conclusion

5.1 Summary

Improving patient flow and providing high service quality are the major challenges in

healthcare facilities. It is important to define and evaluate service quality, although patients

might have different perceptions and expectation of service quality. The aim of this disser-

tation was to understand, evaluate, and improve the flow patients as well as the quality of

services in emergency departments and outpatients clinics. We addressed two tactical-level

problems in chapters 2 and 3 of to improve patient experiences in healthcare services. In

chapter 2, we studied a doctor-clinic assignment problem in medical outpatient clinics, and

in chapter 3, we focused on a scheduling problem of physicians in emergency departments.

At the operational decision level, we introduced a new crowding measure and showed the

importance of applying that in emergency departments. We summarize each chapter as

follows.

In chapter 2, we addressed the doctor-clinic assignment problem in coordinated lab-clinics

settings in order to improve the service level. we defined the service level as the probability

that the sum of all patients’ testing times is less than or equal to the available testing time.

We provided two mini-cases based on clinics’ actual operations. The results showed that

our proposed scheduling technique can bring important improvements to these systems. We

understand that doctors are often constrained by a schedule of teaching, research, or service

requirements in addition to their clinical activities. However, the results suggested that
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moving only one or two clinics, out of many, can bring a significantly higher standard of

service for patients. The optimal schedule was also more robust to changes in lab capacity.

In chapter 3, we studied the scheduling problem of physicians to improve patient flow

through emergency departments. We developed a two-stage stochastic mixed-integer pro-

gramming to formulate the problem. We then presented a case study and a simulation model

to evaluate the impact of the near-optimal stochastic MIP solution on reducing patient wait

times. We showed that our proposed schedule can reduce wait times by matching hourly

patient arrivals and ED physicians’ productivity during each hour.

In chapter 4, we presented a new crowding measure in emergency departments based on

patient volume and mix of patients. To show the significance of this measure, we examined

the relationships between the two crowding variables and some commonly used ED perfor-

mance metrics. The results suggested that number of ED arrivals is the key predictor of

time-based ED performance measures. Patient mix is, however, the key predictor of quality

of care in EDs.

5.2 Future outlook

In this section, I highlight some potential research questions and briefly picture the future

works.

While we have studied the tactical level of coordinated lab-clinics setting in chapter 2,

several research questions remain open. Further studies can address the problem of patient

sequencing in the test center at the operational level. At the strategic level, one can find

the optimal number of physicians and the available time required in the test center. Im-

plementation of the findings is our next step in this research. We are working closely with

respiratory clinics at a hospital in the city of Calgary, Alberta, Canada to improve service

quality. Patient pulmonary function testing (PFT) is linked to the clinic appointment in

that different types of tests must be completed prior to the patient’s appointment with the

respirologist.

In chapter 3, it is also interesting to study the shift scheduling problem and staffing

at the strategic level by considering the differences among ED physicians in terms of their
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productivity rates. We are working with an emergency department scheduler in the city of

Calgary to implement the findings of this chapter.

In chapter 4, we have discussed the negative impact of patient mix on the quality of care.

Further studies can develop a quantitative ED crowding measure in EDs that is based on

both patient arrivals and the patient mix.
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Appendix A: ICD-10-CM Codes

ICD-10 Codes 

1. A00-B99    Certain infectious and parasitic diseases 

2. C00-D49    Neoplasms 

3. D50-D89    Diseases of the blood and blood-forming organs and certain disorders 

involving the immune mechanism 

4. E00-E89    Endocrine, nutritional and metabolic diseases 

5. F01-F99    Mental, Behavioral and Neurodevelopmental disorders 

6. G00-G99    Diseases of the nervous system 

7. H00-H59    Diseases of the eye and adnexa 

8. H60-H95    Diseases of the ear and mastoid process 

9. I00-I99      Diseases of the circulatory system 

10. J00-J99      Diseases of the respiratory system 

11. K00-K95    Diseases of the digestive system 

12. L00-L99    Diseases of the skin and subcutaneous tissue 

13. M00-M99    Diseases of the musculoskeletal system and connective tissue 

14. N00-N99      Diseases of the genitourinary system 

15. O00-O9A      Pregnancy, childbirth and the puerperium 

16. P00-P96      Certain conditions originating in the perinatal period 

17. Q00-Q99    Congenital malformations, deformations and chromosomal abnormalities 

18. R00-R99    Symptoms, signs and abnormal clinical and laboratory findings, not 

elsewhere classified 

19. S00-T88    Injury, poisoning and certain other consequences of external causes 

20. U00-U99  Codes for special purposes 

21. V00-Y99    External causes of morbidity 

22. Z00-Z99    Factors influencing health status and contact with health services 
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Latorre-Núñez, G., Luer-Villagra, A., Marianov, V., Obreque, C., Ramis, F., and Neriz, L.

2016. Scheduling operating rooms with consideration of all resources, post anesthesia

beds and emergency surgeries. Computers and Industrial Engineering, 97, 248–257.

100



Lewis, C. W., McKinney, C. M., Lee, H. H., Melbye, M. L., and Rue, T. C. 2015. Visits to

US Emergency Departments by 20 to 29 Year-olds with Chief Complaint of Toothache

during 2001-2010. Journal of the American Dental Association, 146 (5), 295–302.

Maenhout, B. and Vanhoucke, M. 2013. An integrated nurse staffing and scheduling analysis

for longer-term nursing staff allocation problems. Omega, 41 (2), 485–499.

Martello, S. and Toth, P. 1984. A mixture of dynamic programming and branch-and-bound

for the subset-sum problem. Management Science, 30 (6), 765–771.

Martin, M., Champion, R., Kinsman, L., and Masman, K. 2011. Mapping patient flow in

a regional Australian emergency department: a model driven approach. International

Emergency Nursing, 19 (2), 75–85.

McCarthy, M. L., Zeger, S. L., Ding, R., Aronsky, D., Hoot, N. R., and Kelen, G. D. 2008. The

challenge of predicting demand for emergency department services. Academic Emergency

Medicine, 15 (4), 337–346.

McKinnon, K., Champion, P. D., and Edwards, R. H. T. 1998. The outpatient experience:

Results of a patient feedback survey. International Journal of Health Care Quality As-

surance, 11 (5), 156–160.

McNaughton, C. D., Self, W. H., Zhu, Y., Janke, A. T., Storrow, A. B., and Levy, P. D. 2015.

Incidence of hypertension-related emergency department visits in the United States, 2006

to 2012. American Journal of Cardiology, 116 (11), 1717–1723.

Mehrotra, V., Ozlük, O., and Saltzman, R. 2010. Intelligent procedures for intra-day updating

of call center agent schedules. Production and Operations Management, 19 (3), 353–367.

Mehrotra, V., Ross, K., Ryder, G., and Zhou, Y. 2012. Routing to manage resolution and

waiting time in call centers with heterogeneous servers. Manufacturing Service Operations

Management, 14 (1), 66–81.

Min, D. and Yih, Y. 2010. Scheduling elective surgery under uncertainty and downstream

capacity constraints. European Journal of Operational Research, 206 (3), 642–652.

Morganti, K. G., Bauhoff, S., Blanchard, J. C., Abir, M., Iyer, N., Smith, A., Vesely, J. V.,

Okeke, E. N., and Kellermann, A. L. 2013. The Evolving Role of Emergency Departments

in the United States. RAND Health Quarterly, 3 (2).

101



Neal, R. D. et al. 2015. Is increased time to diagnosis and treatment in symptomatic cancer

associated with poorer outcomes? Systematic review. British Journal of Cancer, 112 (1),

92–107.

Nguyen, D. L., DeJesus, R. S., and L., Wieland. M. 2011. Missed appointments in resident

continuity clinic: patient characteristics and health care outcomes. Journal of Graduate

Medical Education, 3 (3), 350–355.

Pentico, D. W. 2007. Assignment problems: A golden anniversary survey. European Journal

of Operational Research, 176 (2), 774–793.

Rabinowitz, H. K., Diamond, J. J., Markham, F. W., and Hazelwood, C. E. 1999. A program

to increase the number of family physicians in rural and underserved areas: impact after

22 years. Internal and Emergency Medicine, 281 (3), 255–260.

Robbins, T. R. and Harrison, T. P. 2010. A stochastic programming model for scheduling call

centers with global Service Level Agreements. European Journal of Operational Research,

207 (3), 1608–1619.

Rohleder, T. R., Lewkonia, P., Bischak, D. P., Duffy, P., and Hendijani, R. 2008. Using

simulation modeling to improve patient flow at an outpatient orthopedic clinic. Health

Care Management Science, 14 (2), 135–145.

Romanow, R. 2002. Building on values: the future of health care in Canada. The Future of

Health Care in Canada, Final Repor. Regina, SK.

Rowe, B. H., Channan, P., Bullard, M., Blitz, S., Saunders, L. D., Rosychuk, R. J., Lari, H.,

Craig, W. R., and Holroyd, B. R. 2006. Characteristics of patients who leave emergency

departments without being seen. Academic Emergency Medicine, 13 (8), 848–852.

Saadouli, H., Jerbi, B., Dammak, A., Masmoudi, L., and Bouaziz, A. 2015. A stochastic

optimization and simulation approach for scheduling operating rooms and recovery beds

in an orthopedic surgery department. Computers and Industrial Engineering, 80 (0), 72–

79.

Samorani, M. and LaGanga, L. R. 2015. Outpatient appointment scheduling given individual

day-dependent no-show predictions. European Journal of Operational Research, 240 (1),

245–257.

102



Shaikh, S. B., Jerrard, D. A., Witting, M. D., Winters, M. E., and Brodeur, M. N. 2012.

How long are patients willing to wait in the emergency department before leaving without

being seen? Western Journal of Emergency Medicine, 13 (6), 463–467.

Shayne, P., Lin, M., Ufberg, J. W., Ankel, F., Barringer, K., Edwards, S. M., DeIorio, N.,

and Asplin, B. 2009. The effect of emergency department crowding on education: blessing

or curse? Academic Emergency Medicine, 16 (1), 76–82.

Sills, M. R., Fairclough, D., Ranade, D., and Kahn, M. G. 2011. Emergency department

crowding is associated with decreased quality of care for children with acute asthma.

Academic Emergency Medicine, 57 (3), 191–200.

Silva, T., De Souza, M., Saldanha, R., and Burke, E. 2015. Surgical scheduling with simul-

taneous employment of specialised human resources. European Journal of Operational

Research, 245 (3), 719–730.

Stock, L. M., Bradley, G. E., Lewis, R. J., Baker, D. W., Sipsey, J., and Stevens, C. D. 1994.

Patients who leave emergency departments without being seen by a physician: magnitude

of the problem in Los Angeles County. Annals of Emergency Medicine, 23 (2), 294–298.

Stolletz, R. and Zamorano, E. 2014. A rolling planning horizon heuristic for scheduling agents

with different qualifications. Transportation Research Part E: Logistics and Transporta-

tion Review, 68, 39–52.
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