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ABSTRACT

For the optimal combination of heterogeneous data, three methods, namely, space domain
least-squares collocations (LSC), frequency domain input output system theory (I0ST) and
least-squares adjustment in the frequency domain (LSAFD), are theoretically and numerically
compared. Numerical computations show that results obtained by using only a single data set
deviate from those obtained by combining two types of data, which suggest that adding a

second data type to the input gives a strong control condition to the solutions of the problem.

The accuracies of the results obtained by both IOST and LSC methods are very close but the
first method has much higher efficiency than the second one. Non-isotropic PSD functions
can be easily used by the IOST but the LSC requires isotropic covariance functions. Based on
numerical results, this study shows that using non-isotropic PSDs gives better results than
using isotropic ones. The LSAFD method requires less a priori information than the other two
methods, but it only improves the accuracy of the data type that has poorer accuracy (geoid
height in our case). Results from the real data processing show that after optimal combination
of altimeter and shipborne data, about S0% of the input noise level can be suppressed.
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CHAPTER ONE
INTRODUCTION AND RESEARCH BACKGROUND

1.1 Research Background

Detailed knowledge of the fine structure of the marine gravity field has potential
applications in marine geodesy, geophysics, oceanography, marine resources, navigation,
etc. The traditional method of acquisition of gravity data is by gravity measurements.
Offshore gravity measurements have been carried out on board of ships and have been used
for local marine gravity field determination. This is, however, a slow and costly process.
In most cases, offshore gravity measurement is a by-product of seismic reflection profiling.
The precision of this type of marine gravity survey usually falls between 2.0 and 5.0 mgal.
If a survey is especially designed for gravity, precision of marine gravity measurements
better than 1.0 mgal can be obtained (Hayling, 1994). To date, shipbome gravity
measurements are still far from covering all offshore areas because of their excessive
workload and high cost. Therefore, their distribution is very inhomogeneous. On the other
hand, as a by-product of seismic profiling, the accuracies of many marine gravity

measurements are not sufficient for geophysical prospecting.

Satellite altimetry gives observations of sea surface heights that are approximately
equivalent to geoid heights and are very useful in mapping the ocean geoid and thus for
studying the marine gravity field. It generated a new data set with unprecedented spatial and
temporal coverage of the global oceans. The altimetric measurements have improved both
the horizontal resolution of the oceanic geoid and its accuracy. The precision of altimeter
measurements ranges from 20 cm (GEOS-3) to 2.4 cm (TOPEX/POSEIDON). The

accuracies of altimetry observations range from about 65 cm (Seasat) to 14 cm



2
(TOPEX/POSEIDON). The densest ground track separation of the satellite altimeter is
about 2 - 3 km at 60° Jatitude, which was achieved during the GEOSAT Geodetic Mission
(GM) phase (Seeber, 1993). The new data sets acquired from satellite altimetry have led to
extensive studies on the determination of detailed marine gravity field for more than two
decades and has led to great new understanding of the Earth's gravity field; e.g., see Koch
(1970), Kahn and Bryan (1972), Rapp (1985), Balmino et al. (1987), Hwang (1989),
Basic and Rapp (1992), Sandwell (1992), Zhang and Blais (1993) and Zhang and Sideris
(1995). In nearly all the previous studies of using satellite altimetry data to derive the
gravity field, shipborne gravity was used only as an independent source for checking the
quality of the computed gravity anomalies rather than as an additional data set.

The computation of marine gravity anomalies from shipbome gravity measurements is
simple and straightforward while the computation of the geoid height from gravity data is
somewhat complicated. Gravity anomaly (or disturbance) can be computed from the gravity
observation by subtracting the corresponding normal gravity, which is produced by a
previously selected normal reference field. For the computation of the local geoid height,
Stokes’ integral (or Hotine’s integral) or the least-squares collocation method are usually
employed. Because the satellite altimetry gives observations of sea surface heights that are
approximately equivalent to geoid heights, the computation of marine geoid heights from
altimetry observations is straightforward. The determination of gravity anomalies from the
satellite altimetry, which is categorized as an inverse problem in physical geodesy, can be
done by the inverse Stokes integral (or the inverse Hotine integral) or by the least-squares
collocation method. This inverse problem is an improperly posed problem (Moritz, 1980)
and with unstable solutions. Efforts should therefore be put to the regularization of this
improperly posed problem when altimeter data are used to compute gravity anomalies.
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Discussions on regularization techniques in physical geodesy can be found in, e.g.,
Neyman (1985), Rauhut (1992) and Moritz (1980).

The computation of the marine gravity anomalies from altimeter data using the inverse
Stokes operator method has been done by, e.g., Balmino et al. (1987). The derivation of
marine gravity disturbances from altimeter data using the inverse Hotine approach has been
done by, e.g., Zhang and Blais (1993, 1995), and Zhang and Sideris (1995). The Hotine
kernel is much simpier and has certain numerical advantages compared to the Stokes kemel
(Zhang and Blais, 1993; Jekeli, 1979). Three ways of modifying the inverse Hotine kemel
using FFT techniques are discussed in Zhang and Blais (1993). These modified inverse
Hotine formulas have high efficiency in computations because they are based on FFT
techniques. The accuracies of the recovered gravity disturbances using inverse Hotine
methods will depend on the noise levels of the altimeter data, the errors in the reference
field, modelling errors and numerical techniques, etc. Zhang and Blais (1995) has shown
that a precision of about 8 mgal was obtained for the recovered gravity disturbances in the
Labrador Sea area by inverting one year averaged GEOSAT data using the inverse Hotine

approach.

The alongtrack vertical deflections can be computed by differentiating the altimeter sea
surface height (Sandwell, 1984 and 1992; Sandwell and McAdoo, 1990). After averaging
vertical deflections of individual alongtrack profiles, averaged geoid height and gravity
anomaly can be derived from these averaged vertical deflections. In using this
differentiation procedure, the derivative operator acts as a high-pass filter that suppresses
the long-wavelength orbital errors and other long-wavelength errors. Therefore, no cross-

over adjustment is needed if the differentiation procedure is employed.
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In areas where altimetry data and shipborne gravity anomalies are available, these two types
of data (heterogeneous data) could be combined to determine the gravity field quantities
(geoid height and gravity anomaly). The combination of different types of data can be
hopefully used to improve the accuracies of the determined quantities of the gravity field.
Simulation studies have confinmed that this combination can usually produce estimates with
high accuracies (Li and Sideris, 1995). Two papers on combining altimeter and shipbome
data for practical determination of the local marine gravity field have been written by
Arabelos and Tziavos (1990a) and Hwang and Parsons (1995). In their computations, they
employed the least-squares collocation technique. In this study, we will explore different
methods for such tasks.

Several numerical methods for gravity field determination using heterogeneous data have
been investigated by many authors. Among these methods, least-squares collocation,
frequency domain adjustment and input-output system theory are well recognized (e.g.,
Moritz, 1980; Barzaghi et al., 1993; Vassiliou, 1986; Schwarz et al., 1990; Sideris, 1996;
Sanso and Sideris, 1995).

Least-squares collocation (LSC) is an optimal estimation method that offers many
theoretical advantages and has been widely used in physical geodesy. The application of
conventional (space domain) LSC in physical geodesy was discussed in detail by Moritz
(1980). Its practical applications in gravity field modeling can be found in, e.g.,
Tscheming (1974), Rapp (1985), Knudsen (1987a, 1991) and Basic and Rapp (1992).
The advantage of conventional LSC is that optimal use is made of the available data
(homogenous data type or heterogeneous data types) without gridding in advance. A fast
(frequency domain) LSC method, which is aiming to overcome the computational
difficulties with conventional LSC, was studied by, e.g., Eren (1980) and Bottoni and
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Barzaghi (1993). The fast LSC solution requires that the input data be gridded.
Consequently, the corresponding covariance matrices take the form of Toeplitz matrices.
The advantage of using fast LSC method is that a considerable gain in computation time
and storage is obtained in comparison with conventional LSC. Yet, the fast LSC is
suffering from edge effects in comparison with conventional LSC, and requires that the
data be gridded.

In practice, least-squares collocation is quite accommodating with data types allowed and
estimated quantities but relies on a-priori information about the field (normally an isotropic
covariance function). The use of LSC in gravity field determination by combination of
beterogeneous data needs the auto- and cross-covariances of the signals as well as the noise
variances of the observations. Theoretically, the covariance functions for different
quantities of the gravity field should be self-consistent (Jordan, 1972). Here ‘self-
consistent’ means that the signal covariance functions for different quantities of the field
should be derived from a single covariance function (e. g., the covariance function of the
disturbing potential) by rigorous covariance propagation. The practical covariance functions
could be computed empirically using observations. If covariance functions for different
quantities are all computed independently by employing the observed data, then the
covariance functions may not be strictly self-consistent. Since there usually are not enough
data available for all empirical covariance computations — for example, we may have
enough altimetry data for geoid height covariance computation, but not enough gravity data
for gravity anomaly covariance and geoid-gravity anomaly cross-covariance computation -~
we need to derive some covariance and cross-covariance functions from an empirical one.
In this later case, self-consistent covariance functions (or analytical models) should be
used. Some self-consistent covariance functions that could be used for local gravity field
modelling were presented by Jordan (1972). Some global gravity field covariance models,
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which can be adjusted according the local empirical covariance values to fit the local
applications, were presented by Tscherning and Rapp (1974).

Spectral techniques have been widely applied in processing of large data sets in physical
geodesy for decades. Previous work on using spectral technique for gravity field
determination provided no emror estimates of the results (Zhang, 1993; Olgiati, 1995).
Sideris (1996) showed that error prediction in spectral methods is possible provided that the
input signals and their errors are stochastic variables with known power spectral densities
(PSDs).

A frequency domain adjustment method, hereafter termed least-squares adjustment in the
frequency domain (LSAFD), was studied by Barzaghi et al. (1993) for gravity field
determination using heterogeneous data. The frequency domain adjustment method needs
the observation spectra and noise PSDs of the data (Barzaghi et al., 1993; Sideris, 1996).
The observation spectra can be obtained easily from the observations using FFT. The
theoretical foundation embedded in the frequency domain adjustment technique is that all
data types contributing to this adjustment should satisfy some condition equations or, in

another words, should be self-consistent.

Input-output system theory (IOST) has been investigated for its physical geodesy
applications by several authors, e.g. Sanso and Sideris (1995), Sideris (1996), Li and
Sideris (1995) and Wu and Sideris (1995). Detailed discussions on IOST could be found in
Bendat and Piersol (1980, 1986). The use of input-output system theory in local gravity
field determination assumes that signal and noise PSDs of the data are known. Sideris
(1996) and Sansd and Sideris (1995) showed that the input-output system theory is
formally equivalent to least-squares collocation. In practical applications, the covariance



7
functions used by the least-squares collocation method have an isotropic structure, yet, the
PSDs used by input-output system theory can be 2-D anisotropic functions. This difference
between least-squares collocation and input-output system theory introduces some
approximation errors to the least- squares collocation method.

The combination of altimeter data from different missions for gravity field recovery using
LSC has been done by many authors, e.g. Rapp (1985), Basic and Rapp (1992) and
Arabelos and Tziavos (1995). LSAFD and IOST can also be used for the combination of
these altimetry data. Error estimates of the predicted geoid heights by combination of
altimeter data from different missions using either space domain or frequency domain
methods can be obtained. Geoid heights obtained by combination of different altimeter
missions could further be combined with shipbome gravity anomalies using the methods
mentioned above to improve the accuracies of geoid height and gravity anomaly
predictions. The use of the LSC method in the combination of altimeter data from different
missions has the advantage that it uses directly all the available data despite the differences
in resolution of different altimetry missions. Yet, the use of LSAFD and IOST for the
combination of data from different altimeter missions requires that all the data be reduced to
the same resolution (gridded with the same spacing). Numerical experiments and
comparisons of these three methods by combining data from different altimeter missions
should be carried out.

Some simulation computations have been done to intercompare the conventional LSC,
IOST and LSAFD methods (Li and Sideris, 1995). Further simulations and the application
of these three methods to real observations remain to be done in this thesis. While in
simulation studies we were able to use exact signal and noise PSDs, in real applications this

is not possible because we can not obtain exact signal and noise PSDs from observations.
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The main problem in real applications is therefore how to effectively estimate the signal and
noise PSDs from real data. Sailor (1994) discussed methods for altimetry data spectral
analysis and signal and noise PSDs estimation in profile analysis. How 2-D signal and
noise PSDs of the altimetry data can be estimated remain a problem to be investigated and
tested.

1.2 Thesis Objective

The main objective of this research is to study methods used in the determination of local
marine gravity field using heterogeneous data. Tests are made with geoid heights and
gravity anomalies, using simulated observations and real data. Different methods, i.e.,
input-output system theory, least-squares collocation and frequency domain adjustment will
be employed and explored in this study. Theoretical comparison of these three methods will
be carried out. Results obtained using the different methods with simulation data and real
data will be intercompared. The results obtained by combining heterogeneous data will also
be compared to those obtained by methods using a single input data type.

1.3 Outline of the Thesis

The thesis consists of seven chapters. The basic contents of each chapter are outlined

below.

Chapter 2 discusses briefly the altimetry data records, marine gravity data records and the
techniques for preprocessing of altimetry and shipborne data. Preprocessing is an essential
step for further handling of the data. The preprocessing of the altimetry data includes
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editing of the data from original data records, along track data interpolation, data stacking
(averaging), crossover adjustment and gridding.

Chapter 3 outlines the theoretical foundations and mathematical formulas used for the
combination of heterogeneous data. These models include the single-input single-output
system, the multiple-input multiple-output (or single-output) system, least-squares
collocation and frequency domain adjustment. Theoretical discussions of these three
methods will be given.

Chapter 4 describes the techniques for the estimation of signal and noise power spectral
densities and covariance functions. The estimation of the signal PSDs and covariances is
essential for the adjustment results. Two methods for the computation of PSDs and
covariances are presented. The modeling of the local gravity field (residual field) is
discussed in detail.

Chapter 5 gives the results of simulation studies. Simulated observations corrupted with
uniform distributed and Gaussian noises are used for this study. Results are intercompared
using different methods in each case. Internal accuracies and external accuracies are

investigated and compared.

Chapter 6 presents the results obtained using real data from two test areas. The first test
area is the Central Mediterranean area with 60 x 60 data points that are ona 5' x 5' grid.
Altimetry data used in this test area is from the ERS-1 mission. The second test area is in
the Labrador Sea area with 30 x 30 data points that are given on a 10' x 10’ grid. The
altimetry data used in this area are from the GEOSAT Exact Repeat Mission (ERM).
Results obtained using IOST, LSC and LSAFD are compared. The geoid height predictions
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obtained by combination of heterogeneous data are also compared with those obtained by
single input data type (i.e., the results computed by gravity anomaly).

Chapter 7 summarizes the findings of this study and gives the main conclusions and

recommendations for further research.
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CHAPTER TWO
PREPROCESSING OF ALTIMETRY AND SHIPBORNE DATA

Original altimeter raw data are distributed in the form of GDR (Geophysical Data Record) or
OPR (Ocean Product Record) which are stored on CD-ROMs. Due to acquisition or
recording problems such as excessive noise, signal dropout, losses of signal due to
transducer malfunction, etc., spurious and/or degraded data signals might exist in the
record. In a preprocessing stage, to derive geoid height observations from the GDRs or
OPRs, altimetry data have to be (a) edited to reject spurious and/or degraded data and land
data, (b) corrected for environmental and geophysical effects, (c) stacked to produce mean
tracks to suppress time-dependent errors, (d) corrected for stationary sea surface (SST)
effects, and (e) crossover adjusted to remove (or suppress) the radial orbital errors. Finally,
to meet the requirements of the spectral method, the altimetry derived data also have to be
gridded.

The shipborne data are subjected to errors such as navigation errors, Eotvos effects,
mislevelling of the platform, datum errors, system calibration errors, scale factor
inaccuracies, coordinate errors, as well as vibration and thermal stress noise (Zhang,
1993). For combination of the altimeter and shipborne data, the reference system used in
both data sets should be consistent. For those points with repeated observations, the
averaged values will be used.

This chapter will discuss these preprocessing problems of the altimeter and shipborne data.
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2.1 Altimetry Data

21.1 GEOSAT, ERS and TOPEX/POSEIDON Altimetry Missions

The GEOSAT altimeter mission, which consists of a Geodetic Mission (GM) phase and an
Exact Repeat Mission (ERM) phase, was launched in 1985 (Cheney, et al., 1991). In the
GM phase GEOSAT accumulated hundreds of millions of observations of the sea level with
an average cross-track spacing of approximately 4 kilometers that are of significance for
marine gravity field studies. Because of the military significance of the GM, most of the sea
level data (especially those of the northern hemisphere) collected during the GM phase are
classified. The ERM of GEOSAT covered 62 complete 17-day repeat cycles. The ERM data
have been distributed for scientific studies to the scientific community (Cheney et al., 1991).
The following are some characteristics of the GEOSAT GM and ERM data (Cheney et al.,
1991; Seeber, 1993):

Precision: 3cm

Accuracy: 50cm

Along-track ground separation
GM phase: 10 km

ERM phase: 10 km
Equatorial cross-track ground separation

GM phase: 4 km

ERM phase: 164 km

In this context, precision is the ability to determine changes in sea level over a distance

limited by the along-track resolution. The accuracy is the uncertainty of the geoid or sea level
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measurement when expressed in geocentric coordinates (1 standard deviation).

The ERS missions (Battric, 1993; Seeber, 1993) are a series of remote sensing satellites
launched in the 1990's, in order to investigate the environment and improve the marine
gravity field in global and local applications, and to ensure long-term continvity of the data.
The ERS-1 was launched in 1991 and the ERS-2 satellite was successfully :aunched in
1995. The ERS-1 mission consists of a 3-day repeat cycle, a 35-day repeat cycle and a
168-day repeat cycle. The main drawback of a 3-day cycle in geodetic applications is the
wide separation of the radar altimeter tracks. The majority of the ERS missions are
performed in a 35-day repeat cycle (multidisciplinary phase). The 168-day repeat cycle
(Geodetic Phase) of the ERS-1 mission offers a high density of altimeter ground tracks and
is thus favored for the measurement of mean-sea levels and the ocean geoid. Some

characteristics of the ERS-1 mission are as follows (Battric, 1993; Seeber, 1993):

Precision: 10 cm (10 cm is the designed precision, actually 4-cm precision is obtained)
Accuracy: 25cm
Along-track separation
3-day repeat cycle: 10 km
35-day repeat cycle: 10 km
168-day repeat cycle: 10 km
Equatorial cross-track separation
3-day repeat cycle: 900 km
35-day repeat cycle: 84 km
168-day repeat cycle: 18 km
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The TOPEX/POSEIDON mission is dedicated to space oceanography and was launched in
1992 into 2 10-day repeat orbit to make precise and accurate observations of the sea level
for several years using satellite altimetry. It carries a GPS receiver for precise orbit
determination. Some characteristics, which are of interest in this study, of the
TOPEX/POSEIDON mission are as follows (AVISO, 1994; Seeber, 1993):

Precision: 2.4 cm

Accuracy: 14 cm

Along-track separation: <10 km
Equatorial cross-track separation: 314 km

2.1.2 Editing and Stacking of Altimetry Data

Data editing refers to those pre-analysis procedures that are designed to detect and eliminate
spurious and/or degraded data signals that might have resulted from acquisition and
recording problems such as excessive noise, signal dropout, loss of signal due to
transducer malfunctions, etc.

Satellite altimetry measures the distance from the satellite to the ocean surface. These
measurements offer an exciting possibility for the determination of the gravity field both on
global and local scales. The sea surface height (SSH), which does not, in general, deviate
from the geoid undulation by more than a few meters, can be obtained by differencing the
ellipsoid height of the satellite and the altimetry range measurements. The altimeter range
measurements recorded in GDRs or OPRs were corrected only for instrumental effects by
the altimeter data processing center (AVISO, 1994; Battric, 1993; Cheney et al., 1991).
They should be also corrected for environmental, geophysical and sea state bias effects by
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the users for using them for further studies. Preprocessing, in this context, is to prepare
altimeter and shipbome data that will readily act as the input of the combination techniques
described in chapter 3. Therefore, the preprocessing of altimeter data includes extracting
altimeter data for a given area of interest; removing land, spurious and degraded data from
GDR or OPR records; correcting for environmental, geophysical and sea state bias effects
such as wet and dry troposphere, ionosphere, oceanic and body tide, etc.; suppressing the
time-dependent component of SST and removing its stationary part from the altimeter
record; removing or suppressing radial errors; and finally gridding.

In editing altimetry GDRs or OPRs, some criteria have been selected for rejecting spurious
data (Tables 2.1 - 2.3). The value for each comection that should be made to the altimeter
range measurement has already been given in the GDRs or OPRs. Some correction terms
have more than one value available. In this case, which value to use depends on the user’s
choice. To obtain altimeter sea surface height, we applied the corrections for wet and dry
troposphere, ionosphere, solid tide, oceanic tide and electromagnetic bias to the altimeter
range measurements. For those correction terms with multiple values available, the value
based on insitu measurements are first considered. If the value based on the insitu

measurement is not available, some other values will be used.

After applying the above corrections to the altimeter range measurements, we can obtain the
sea surface height (SSH). The SSH consists of geoid height, the time -dependent and time -
independent sea surface topography, the radial orbit errors, the errors due to improper
environmental, geophysical corrections, and measurement noise. In order to enhance the
signal-to-noise ratio and remove data gaps from one-per-second sea surface heights derived

from altimeter range measurements, the sea surface heights from individual profiles have
been stacked (averaged).
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We will describe briefly the altimeter products of the three altimetry missions, i.e.,
GEOSAT GDRs, ERS OPRs and TOPEX/POSEIDON GDRs, because of their relatively
high measurement accuracies and wide availability compared to earlier altimetry missions
such as Seasat.

The GEOSAT T2-GDR data set for each measurement consists of 34 fields (Cheney et al.,
1991). The OPR data set for each measurement of ERS-1 consists of 49 fields (Dumont and
Stum, 1993). The TOPEX/POSEIDON GDR data set for each measurement consists of 132
fields (AVISO, 1994). All these data sets are time records and consist of the following
groups of elements (Cheney et al., 1991; Dumont and Stum, 1993; AVISO, 1994):

1) Time

2) Location

3) Altitude

4) Attitude

5) Altimeter range

6) Environmental correction (such as tropospheric corrections, ionospheric corrections,
etc.)

7) Significant wave height (SWH)

8) Backscatter coefficient and Automatic Gain Control (AGC)

9) Geophysical quantity (such as mean sea level, geoid height, tidal effects, etc.)

10) Brightness temperature

11) Flags.

For more details of the elements included in each group, see AVISO (1994), Cheney et al.
(1991) and Battric (1993).



Table 2.1 Data Editing Criteria For GEOSAT T2-GDR
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Land data are rejected

-100 m < sea surface height (H) < 100 m

0 < standard deviation of H<0.1 m
-10m<H-Geoid < 10 m

Off-nadir angle (Attitude) < 1.3 deg.

0.25 dB < Automatic Gain Control (AGC) <25 dB

Table 2.2: Data Editing Criteria for ERS-1 OPR

Land data are rejected

745 000 < altitude < 825 000 m

standard deviation of altitude <40 cm

6 dB < backscattering coefficient < 30 dB

-130 m < sea surface height < 100 m
-Sm<oceantide<5m

-1 m < body tide < lm

-0.5 m < tidal loading < 0.5 m

-2 500 mm < dry tropospheric correction < -1 900 mm
-500 mm < wet tropospheric correction < -1 mm
-400 mm < ionospheric correction < - 1 mm
-500 mm < electronic bias correction <0 mm

O0mm< siggiﬁcance wave height < 15 000 mm
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Table 2.3: Data Editing Criteria for TOPEX/POSEIDON GDR

TOPEX POSEIDON

Nval_H_Alt > 5 (10 Hz heights) Nval_H_AIlt > 15 (20 Hz heights)
RMS_H_ Alt < 100 mm (10 Hz heights) RMS_H_Alt < 175 mm (20 Hz heights)

check ocean/land and ice distribution conditions (bit number 2 and 3 of Geo_Bad_1
flag) to retain only ocean data

-130 000 mm < CNES one per second satellite altitude (HP_Sat) - One per second

altimeter range (H_Alt) < 10 000 mm

-2 500 mm < dry troposphere correction (Dry_Cor) < -1 900 mm

-500 mm < wet troposphere correction (Wet_Corr, Wet_H_Rad) <-1 mm

-400 mm < Doris ionosphere correction (fono_Dor) <0 mm

-4 00 mm < Topex ionosphere correction (Tono_Cor) < 40 mm

-5 000 mm < ocean tide (H_Eot_CR, H_Eot_Sch) < 5 000 mm

-500 mm < loading tide (H_Lt_CR, H_Lt_Sch) < 500 mm

-1 000 mm < solid earth tide (H_Set) < 1 000 mm

-15 000 mm < polar tide (H_Pol) < 15 000 mm

-500 mm < sea state bias cormrection (EM_Bias_Corr_K1, EM_Bias_Corr_K2) < 0

mm

0 mm < significant wave height (SWH_K) < 11 000 mm

7 dB < Ku band sigma naught (Sigma0_K) < 25 dB

0 deg < waveform attitude (Att_ Wvf) <0.3deg

Note: Nval_H_Alt is the number of valid points used to compute the range over one
second; RMS_H_ALlt is the root mean square of difference for ten per second altimeter
range from H_Alt.
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Data editing criteria are usually selected according to experiences and personal preferences.
Different criteria are applied for editing altimeter from different missions. Tables 2.1, 2.2
and 2.3 give for each parameter of GEOSAT GDR, ERS-1 OPR and TOPEX/POSEIDON
GDR respectively, the lower and upper boundary of the range out of which an altimeter
measurement is to be removed. These criteria can be found in Wang and Rapp (1992),
Demmou et al. (1995) and AVISO (1994). For more detailed explanation of each term given
in the above tables, the altimeter data manuals, i.e., AVISO (1994), Battric (1993) and
Cheney et al. (1991), should be referred to.

For GDRs and OPRs, several values may have been provided for some elements of the
environmental correction. Generally, which value to use depends on the user's decision. It
is recommended that the value that has been computed based on in situ satellite observations
be used (Cheney et al., 1991). When the value based on in situ observations is not
available, other values will be used.

The stacking of altimeter data means that the altimeter derived SSHs are averaged over some
chosen repeat cycles. Because the repeat profile measurements are not given on exactly the
same points, an interpolation procedure is needed. To do this, we first select for each track
a cycle that has the most measurements as the reference cycle. Then, interpolation is carried
out for each other repeat cycle, respectively, to obtain the corresponding observations at the

reference points for each other repeat cycle. In this study, a cubic spline interpolation
algorithm is employed. After interpolation, all cycles for each track are simply averaged to
obtain stacked SSH. The standard deviations of the stacked SSH are also computed
simultaneously in the averaging process.
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2.1.3 Radial Orbit Error and Crossover Adjustment

The range measurement of the satellite altimeter consists of signal, systematic errors and
random noise. Among the error sources, the radial orbit error is the largest part of the
altimeter error budget (Houry et al., 1994), and has its dominant energy at zero frequency
(the bias), and at a frequency of one cycle per revolution with wavelength of approximately
40 000 km (Sandwell, 1984).

While a rather sophisticated model of the radial orbit error is required for global evaluation
of altimetry data (Moore and Ehlers, 1993; Schrama, 1989; Knudsen, 1993; Houry et al.,
1994), a simple p-parametric polynomial model is sufficient in regional applications.
Commonly used, such regional models include the bias model, the bias-tilt model and the
quadratic model (Lenk et al., 1995). We used the bias-tilt modei (p=2) to describe the radial
orbit error in this study. The bias-tilt model can be written as:

Ar=a+bp 2.1

where Ar is the radial orbit error, [ is the longitude or time difference between the running
point and a reference point of the cycle, and a and b are unknown parameters to be
determined. These parameters can be determined from the discrepancies of the sea surface

heights at the crossovers of ascending and descending tracks.

In local areas, a cross-over adjustment has been used to determine the parameters in the
radial orbit error model and then to remove the orbital error from altimetry sea surface
heights (Knudsen, 1987a and 1987b).
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At a cross-over point, the cross-over discrepancy (north going track minus south going
track) is then

where hj-hj is a cross-over difference; aj, bj, aj and bj are the unknown bias and tilt
parameters; {; and M; are the coordinates along i-th and j-th track of cross-over points,
respectively (Knudsen, 1992). More details on cross-over adjustment can be found in, e.g.,
Knudsen (1987a and 1987b), Tai (1988), Vermeer (1993), Schrama (1989), Fukuda (1990)
and Wunsch (1991).

Relative longitudes or relative time can all be used as coordinates y; in eq. (2.2). We used
relative longitudes as the coordinates in the cross-over adjustment. Cross-over discrepancies
are computed for stacked sea-surface heights. By cross-over adjustment, the bias and tilt
parameters are determined for each track. Then, the stacked altimeter data are corrected using
the bias and tilt parameters. Thus the track related radial orbital errors are significantly
reduced. But the adjusted altimeter data still include the effects of the stationary SST, which
should be removed if the altimeter data are used as geoid height observations.

2.1.4 Effect of Sea Surface Topography

Satellite altimeter data contain information about both the geoid and the sea surface
topography (SST). For the purpose of gravity field recovery using altimeter data, the SST
must be removed from the altimeter data. SST consists of a time-dependent component and a
time-independent component (stationary part). The effect of the time-dependent component
on the altimeter measurement can be substantially suppressed by stacking of repeat tracks,
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while that of the stationary part cannot. The time-independent component of the SST,
which is about 2 m in magnitude, is modeled by a spherical harmonic series as follows
(Engelis, 1987; Denker and Rapp, 1990; Knudson, 1993):

SST(9,1) = ggoct‘g“ cos A+ 55T sin jA)P(sin¢) 2.3)

where C3°' and §3°7 are fully normalized SST spherical harmonic coefficients; ¢ and A
are the spherical coordinates of the point at which the SST is to be computed; P;(cos¢) is a
fully normalized Legendre function.

Several such harmonic expansion models for the stationary SST are currently available
(e.g., Engelis, 1987; Denker and Rapp, 1990). In this study, the stationary SST is
computed using the Denker and Rapp model that has a maximum degree and order of 10.
The value of the stationary SST is then subtracted from the altimeter data to obtain the

altimeter geoid observation.
2.2 Shipborne Data

The shipbomne data in the Labrador Sea area used in this study are from the same files as
used in Zhang (1993). The shipbome data records include coordinates and their accuracies
of the observation points, observed value of the gravity referred to IGSN71 and their
accuracies, terrain corrections and their accuracies, free air anomaly and Bouguer anomaly
referred to GRS67. The values of the observed gravity given in the data records were
referred to IGSN71 and have already been corrected for solid tide errors, oceanic tide errors

and Eotvos effects. For more details on the format of these marine gravity data records, see

Zhang (1993).
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Since the altimeter data are referred to the GRS80 system, we use the following formulas to
reduce the values of the free air anomaly referred to GRS67 to those referred to GRS80:

Agcrsso = BBcrser + Yarser — Yarsmo 24)
Ycrser = 978031.8(1 +0.0053024sin? @ — 0.0000059sin>(2¢)) mgal 2.5
¥ ersao = 978032.7(1+0.0053024 sin? @ — 0.0000058sin*(29)) mgal (2.6)

where @ is latitude. For some points, repeat gravity measurements are available, but for
some other points no repeat measurement is available. For those points with repeat

observations, we averaged all the repeat measurements.

2.3 Gridding of Altimetry and Shipborme Data

Crossover adjusted altimetry sea surface heights are given at approximately equally spaced
intervals along the altimeter subsatellite tracks. The intervals of the data between tracks are
much larger than those of the data along tracks. The shipbormme gravity anomalies are
usually given at irregularly distributed points. For our studies, we need regularly
distributed data to use spectral methods. Thus one of the important aspects of preprocessing
of the altimetry and shipborne data is the gridding of the data. Gridding is a procedure
whereby point values of sea surface heights and gravity anomalies are predicted at the
nodes of a grid using irregular observations.

A dedicated study on gridding of altimetry data was done by Cruz (1983), and several
gridding methods were studied and compared there. We chose the least-squares collocation
method for data gridding, because it has the advantages of taking into account the data
accuracy estimates and providing accuracy estimates of the predicted values (Cruz, 1983).



24
The covariances used in the least squares collocation gridding procedure were derived by
linear interpolation from a table of covariances that were computed empirically from the real
irregular data. Only neighbouring data around the prediction grid are used in the gridding
process. Figures 2-1 and 2-2 show the empirical functions used to grid altimeter and
shipborne data in the Labrador Sea area.

Covariance

Fig. 2-1: Empirical covariance function of altimeter data used for gridding
in the Labrador Sea area
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Fig. 2-2: Empirical covariance function of gravity data used for gridding
in the Labrador Sea area




CHAPTER THREE
DISCUSSION OF OPTIMAL COMBINATION TECHNIQUES

This chapter discusses optimal combination techniques used for gravity field recovery by
combination of heterogeneous data. In the first two sections, the single-input single-output and
the double-input double-output systems are discussed. Section 3.3 discusses the least-squares
collocation technique and section 3.4 presents the frequency domain adjustment method.

3.1 Single-input Single-output System
Input-output system theory has been widely used in science and engineering applications;

detailed discussions can be found in, e.g., Bendat and Piersol (1971). An ideal (noise free)
single-input single-output system in the space domain can be illustrated as in Fig. 3-1.

X —9 b |—y

Fig. 3-1: An ideal single-input single-output system, x is the noise free input, h is the system

response, y is the system output.

In convolution form, the system in Fig. 3-1 is

y =x*h (3.1)

where * denotes the convolution operator. This convolution can be efficiently evaluated in the

frequency domain, where eq. (3.1) takes the form
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F{y}=F{x}F{h} (3.2)

Here F denotes the Fourier transform operator.

Examples of single-input single-output systems in physical geodesy are the computation of
geoid undulations from gravity anomalies (or disturbances) by Stokes’ (or Hotine's) integral,
the computation of gravity anomalies (or disturbances) by the inverse-Stokes (or inverse-
Hotine) integral, the computation of the components of the deflections of the vertical by Vening
Meinesz' formula, the computation of gravity anomaly by inverse-Vening Meinesz' formulas,
etc. Two examples of single-input linear systems used in physical geodesy are shown in Fig.
3-2.

rAg—p S |—eN N—-=f sl (—pa

Fig. 3-2: Two examples of single-input single-output systems: Stokes’ and inverse-Stokes'
integrals, N is the geoid height, Ag is the gravity anomaly, S and S are Stokes' and
inverse-Stokes kernels, respectively.

In convolution form, the systems shown in Fig. 3-2 can be written as

N=Ag+S 3.3)
Ag=N=S-! (3.4)

The corresponding frequency domain expressions of egs. (3.3) and (3.4) are
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F{N}=F{Ag]F{S} 3.5

F{Ag)=F{N}F(s™} (3.6)

The FFT technique can be used for evaluation of these convolutions with great efficiency. Such
discussions have been presented by Strang van Hees (1990) where the forward Stokes'
formula was evaluated by FFT techniques, and by Zhang and Blais (1993) where the inverse

problem was tackled using FFT techniques.

Until recently, spectral methods provided no error esumates of the output (Zhang, 1993;
Olgiati, 1995). The problem of error estimation associated with spectral methods was
discussed in Sideris (1987) and Schwarz et al. (1990) and was recently tackled by Sideris
(1996). In the later paper, it is clearly shown that error estimates can be derived for the results
using spectral methods, provided that the input signals and their errors are stochastic variables

with known PSDs. Fig. 3-3 shows a single input-output system with input and output noise.

n e
v x
(D) —» & | y

Fig. 3-3: A single-input single-output system with noise; x is the input signal, n is the input

noise, y is the system output, n is the output error and y is the noise free output.

In convolution form, the system shown in Fig. 3-3 can be written as

y=(x+n)*h+e (3.7)
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The corresponding frequency domain expression of eq. (3.7) is

F{y} = F{x+n}F{h} + F{e} (3.8)

Leaving aside the derivations and following Sideris (1996), taking into account the data noise,
we can represent Stokes’ formula in spectral form by the input output system theory with noise

as follows:
F(N} = Py (Pogsg + Pos, ) " FlAg} (3.9)
Po(N) =Py ~Prusg(Pagsg + Pon, ) Pagn (3.10)

where Nis the estimate of geoid undulation; Pyy and P, are the auto-signal PSDs of geoid
undulation and gravity anomaly, respectively; P,_,_ is the PSD of the Ag-noise; Py,, = Pien

is the cross-signal PSD between geoid undulation and gravity anomaly; Pw(ﬁ) is the error
PSD of the estimated N; superscript * denotes complex conjugate. This solution has been

obtained by minimizing P, in the same manner as in Section 3.2,

Similarly, we have the following expressions for the "inverse-Stokes formula”:

F(Ag} =Py (Pay + P, ., ) 'FIN} (3.11)
Poo(A8) = Pogrg = Pogu(Pry + P ) ' Priag (3.12)

Here P, (Ag) is the error PSD of the estimated gravity anomaly and P, is the PSD of the N-

noise.
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3.2 Double-input Single-output System

The double-input linear system has been described in detail by Bendat and Piersol (1986). A
noise free double-input single-output linear system is shown in Fig. 3-4.

X, ~——=! b Y.

X, == p

2

y:
Fig. 3-4: An ideal double-input single-output system

In this study, we are actually interested in double-input single-output systems with noise,
which take the geoid height and gravity anomaly observations as noise-corrupted input signals
and their estimations as the output. These double-input single-output linear systems with noise

are shown in Fig. 3-5 and Fig. 3-6.
v
N, e,

B
N—-—b@———b a —\

Ag———> £ a

N,

n, .
Fig. 3-5: Double-input single-output system representation for computation of geoid height by
combination of altimeter and shipborne gravity data; h' and Ag' are geoid height and

gravity anomaly observations, respectively.



In convolution form, the system shown in Figure 3-5 is

N = (N+4n;) *a; + (Ag+n,) *a; + ¢, (3.13)

The corresponding frequency domain expression for eq. (3.13) is

F{N} = F(N+n,}F{a;} + F{Ag+ n;}F{a;} + F{e;} (3.14)
n,
. Ag ez
N b b, -
Ag
Agt
Ag b, Ag,
n,

Fig. 3-6: Double-input single-output system representation for computation of the gravity

anomaly by combination of the altimeter and shipborne data.

In convolution form, the system shown in Figure 3-6 is

Ag = (N+ny) *b; + (Ag+ny) *b; +e2 (3.15)

In the frequency domain, eq. (3.15) takes the form

F{Ag} = F{N+m}F{b;} + F{Ag+ n}F{b:} + F{e;} (3.16)
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In general, egs. (3.13) and (3.15) can be written as

y = h'*b, + Ag'+b, +e 3.17)

where y can be either N or Ag.

Let the capital letters denote frequency domain values and the small case letters denote the
spatial domain quantities. In the frequency domain, (3.17) takes the form

Y=HB, + AGB, +E (3.18)
It can be rewritten as
E=Y-#HB, + AGB,) (3.19)

By multiplying E by E* and taking the expectation, the system output noise PSD is

Pcc (Y) = Pyy - BlPh'y -BZPAg'y “"B:Pyhv +B;B1Ph'h' + B:szAg'h'
~B3P,sg +BByPyay +B3B,Pyy sy (3.20)

By minimizing P_(Y) over all possible choices of B, and B,, we obtain the optimal transfer
functions. These optimal transfer functions yield optimum linear least-squares prediction of Y
from noisy data h' and Ag' (Bendat and Piersol, 1986; Wu and Sideris, 1996). The optimal
transfer functions B, and B, can be obtained by setting the following partial derivatives equal to

Ze10:
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3BL(Y) _

BB; =0 (3.21)
dP..(Y)

=(Y) _ 2
3B 0 (3.22)

Assuming that the input noises n, and n, are uncorrelated and that signal and noise are
uncorrelated and solving the above equations, we obtain the following optimal estimates:

Y =B,H +B,AG (3.23)

_ (Pagag + PnAgnAg Py = PrgnPyag (3.24)
(Pu, + Py JPagag + Paygnpg )= Prag P

B,

o Pon+Papn, Pyag = PragPyn
(Ban +Po, 0, JPagag +Po, o, ) [ Prag

B, (3.25)

P..(Y) = P, =[B,[ (B, +Pyn, )+ BBPagy + BB Py, ~[By* (Pygag +P, agnag) (3:26)
Pys = [Bi[* (Pun + Payay )~ BiB:Pagn — B3BiPrsg + By (Pugag + Pagpas,) (3.27)

where Y is the estimate of the spectra of y, which can be either h (i.e. N) or Ag; Py,, P, are
the auto-power spectral densities of h and Ag, respectively; Ppa=P,,, is the cross-power
spectral density between h and Ag; P,,, P,,, are the cross- power spectral densities between y
and h, and y and Ag, respectively; P, , and P, s ¢ the noise PSDs of h and Ag,
respectively; P,(Y) is the prediction error PSD of Y; P;; is the estimate of auto-PSD of y and
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P@--P:w is the estimate of the cross-PSD between Ag and N. It is clear that the IOST

solution depends on the signal-to-noise ratios.

For detailed derivation of the above equations, see Sideris (1996) and Wu and Sideris (1996).

The above expressions can also be written in an equivalent stepwise form (Sideris, 1996):

%, =P, Pn H (3.29)
Y = ¥, + Py Prag (AG — Py PH) (3.30)
Py, = Pypg — PP Prs, (3.31)
Pagag = Pagag = PagnPin Poag (3.32)
P.(Y) =Py, —PyPuP,, ~ P, Pp Pr =P ~P, Pl Bl (3.33)
Py = yhPh-hlP;h -Egﬁ;sldzﬁé.z = Pihih -FAB.P.;:M-P:SP (3.34)
P, 5, = PaghPin Paag (3.35)
Pyes = PaoacPagacPuy . (3.36)

In this form, the contribution of each input can be computed sequentially in the same manner as
in sequential LSC in the space domain. We see that when noise is present at the input and
output stage, the frequency domain solution of the IOST is formally equivalent to LSC. More
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details on JOST in physical geodesy can be found in Sideris (1996), Schwarz et al. (1990) and

Sanso and Sideris (1995).
3.3 Least-squares Collocation

The application of conventional (space domain) LSC in physical geodesy has been discussed in
detail by Moritz (1980). Its practical applications in gravity field modeling can be found in,
e.g., Tscherning (1974), Rapp (1985) and Basic and Rapp (1992). A fast (frequency domain)
LSC method was studied by Eren (1980) and Bottoni and Barzaghi (1993). The advantage of
using fast LSC method is that a considerable gain in computation time and storage is obtained
in comparison with conventional LSC when gridded data are available. We will use
conventional LSC in this study.

Assuming that the Earth's gravity field is a stochastic process and that signal and noise are not

correlated, we have the mathematical model of conventional LSC for gravity field modeling
using altimetry-derived geoid heights h' and shipborne gravity anomalies Ag’ as

h _ Chh ChAg Chh CMg th 0 -1 b
{AS}—I:CA@- Cmgvjl{[cm Cm:l"'[ 0 Dm]} Ag’ (3.37)
—_ Chh CMg th 0 -1 Ch‘N
00=Cor-fCe C”"‘"ﬂ% Cm]+[ 0 DWD [cg-u] 38
Cwm C D, 0 NTCu
csmmcuton (S S o] [Cn] v

where C.(N) and C.(Ag) are the predicted error covariance matrices of N and Ag, respectively;
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Cans Cigag are auto-covariance functions of geoid height and gravity anomaly, respectively;
Chasg =Cagn is the cross-covariance function between geoid height and gravity anomaly;
C =Cpn and Cugr =Cyy e covariance functions between signals (N and Ag,
respectively) and geoid height observations; Cy,.. =C gy and C,.pp. =C,..,, are covariance
functions between signal and gravity anomaly observations; Dy, and D,,, denote the auto-

covariance matrices for the geoid height and gravity anomaly observation errors, respectively.

LSC gives optimal estimates, i.e. having minimumn error variances, in the sense of satisfying

the minimum condition

where vector v consists of the estimated signals and the measuring noises and C is the
covariance matrix of v. For more details on LSC, Moritz (1980) should be consulted.

3.4. Least-squares adjustment in the frequency domain
Let H', AG', Y, N, and N,, represent again the spectraof h’, Ag’, y, n, and n,,, respectively.

For each frequency component, we may write the following observation equations in the

frequency domain:
H' B! Nn H N,
{A } ) {BE‘}“{NM} ) {AG}+{Nos} (3.41)

where
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Bi'=1
, ifY= 4
B;: =2 + v } = (342

1

Bl=
L 2y +v2 ., ifY=AG (3.43)

B;' =1

B[ and B;' are perfectly known transfer functions; H and AG are the spectra of the signals of
the observations h' and Ag', respectively; and u and v are the frequencies in two directions
corresponding to x and y, respectively.

Assuming that the input signals are completely deterministic and the input noises are stochastic
variables, we have the optimum solution for each frequency, which is obtained by requiring

that the frequency domain least-squares principle

Ny CriynaNn + NagCxign 2gNag = min

is fulfilled, as follows:
. P, n, Bl . P, . B3 .
Y=gt BH+ opop "2 B,AG
B,“P, AgBag +B; Py B Pu Aghag + B3 P,,h,,h
BZP _ B3P, ,
= (1+ =20 )R H 4(1+— 282818, AG (3.44)
B PnAgnAg 1% npnp
1 1 1
(Y)=( )" =( + ) (3.45)
ee Banhnh ngu“nu Pe:nb.e:uh Pe:nAg.e:nA‘

where P, , and P, . are the noise PSDs of h' and Ag), respectively; P.(Y) is the prediction



37
error PSD of Y; P, .., and P, sgeny, AC the corresponding contributions to the output
noise PSDs from the input noise PSDs of geoid height and gravity anomaly, respectively.
More details on the LSAFD can be found in Barzaghi et al. (1993) and also in Sideris (1996).

3.5 Discussion

The LSC is an optimal estimator that offers many advantages and is quite accommodating in
terms of the data types and estimated quantities. The assumption for the LSC method is that the
mean values of both observations are equal to zero. Thus, the data should be centred before
using LSC. The data can be either gridded or irregularly distributed. The use of LSC requires a
priori information about the field, i.e., the isotropic covariance functions. The estimate relies
on the a priori information as well as the noise covariances of the input data. Thus, the
estimation of signal and noise covariances is a prerequisite of the LSC method. How these
covariance functions can be obtained will be addressed in Chapter 4.

Assumptions for the IOST method are the same as for collocation, i.e., that both signal and
their errors are random variables with known PSDs, which are the Fourier transforms of the
covariance functions. The solution of IOST depends on this a priori information. Signal PSDs
can be obtained, as described in the next chapter, from the corresponding covariance functions
using the FFT method or can be computed directly from the data. A theoretical comparison of
LSC and IOST was done by Sansd and Sideris (1995). The multiple-IOST solution is formally
equivalent to stepwise LSC solution. Therefore, the multiple-IOST solution can be computed in
a stepwise manner. The biggest disadvantage of LSC is that it requires matrix inversion, which
is very slow and memory eating when a large data set is dealt with. The frequency solution of
the IOST requires no such inversion, however. There is similarity between the LSC and the
TOST in that both methods depend, to some extend, on the same a priori information (the PSD



38
is the Fourier transform of the covariance function).

Two differences should be mentioned here. First, the dimensions of the covariance matrices
used in the methods are not the same. The dimension of the covariance matrix used in LSC is
bigger than that used in IOST (for computing the PSD). Second, the IOST method can use
non-isotropic PSDs without any difficulty in the practical computations, but, LSC usually
requires isotropic covariances. Using non-isotropic covariances in LSC will make LSC even
more difficult to implement. The estimation of signal and error PSDs will be discussed in the

next chapter.

The covariance (or PSD) functions used in LSC (or IOST) are usually derived from
observations and may have been adjusted to fit some analytical covariance (or PSD) function
models. If the analytical models do not represent the reality, then using model derived

covariance (or PSD) functions may lead to worse results be obtained.

LSAFD assumes that only the input noises are random variables; no a-priori stochastic
information about the signal is needed. The LSAFD method employs the noise PSDs and
assumes the transfer functions are perfectly known (Sideris, 1996). The noise PSDs are used
to adjust the observation spectra and to weight the contributions of each data set. The
differences between IOST and LSAFD are mainly that the IOST method has two functions, one
is to filter input signals and the other is to combine them optimally, while the LSAFD method
only conducts the weighted averaging (Wu, 1996). In this sense, better results can be expected
with IOST method due to its filtering function.
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CHAPER FOUR

POWER SPECTRAL DENSITY AND COVARIANCE ESTIMATION

An important issue in using the LSC, IOST and LSAFD methods is the determination of the
a-priori information, i.e., the estimation of the signal and noise covariance and associated
PSD functions. This chapter discusses the estimation method employed for such tasks. The
first section highlights the basic concepts of covariance, correlation and power spectral
density and their relations. Section 4.2 presents empirical covariance function estimation and
modelling. Section 4.3 presents the techniques for PSD estimation. Finally, section 4.4
describes the error PSD estimations.

4.1 Concepts of Correlation, Covariance and Power Spectral Density

This section highlights sonie concepts related to correlation, covariance and power spectral
density functions, as well as their relations. For more details, Bendat and Piersol (1980,
1986) and Sideris (1984) should be consulted.

The two dimensional correlation function of two ergodic stationary functions f,(x,y) and
£5(x,y) is defined as

K, (x",y" )= Elf;(x,y)f,(x+x",y +y')} 4.1)

where E{} is the mathematical expectation operator. If f;(x,y)=f(x,y), then
K,,(x',y)=K,,(x',y') and it is called the auto-correlation function. Otherwise,

K,,(x',y") is the cross -comrelation fanction. If K, ,(x',y') =K, ,(y/x'*+y'?), the random

functions f; (x,y) and f;(x,y) are said to be isotropic functions.



For discrete data, the corresponding discrete correlation function is defined as

K, (k1) = E{f, i, ), (k + 1,1+ )} = lim ——"S S £,(1,)f,.)) 4.2)
N:": M iz0 =0

where M and N are the number of data points along x and y directions, respectively and k and
1 are wave numbers along x and y directions, respectively.

The covariance function of fj(x,y) and f;(x,y) is defined as
Cl,z(X' rY' )= E[[f1(x: Y) - fll[fz(x +x' Y+ Y' )- ‘f-z]} 4.3)

where f, and f, are the mathematical expectations of f;(x,y) and f,(x,y), respectively. If
fi(x,y)=H(x,y), then C, ,(x',y')=C,,(x',y’) and it is called the auto-covariance function of

f,(x,y). Otherwise, it is called the cross-covariance function. If f, =f, =0, we call f,(x,y)
and f,(x,y) centred functions. For centred functions, their covariance function and correlation

function are identical, i.e.,
C.(x',y) =K, ,(x",y’).

For discrete data, we have
Cy2 (k1) = E{[f, (i, j) — £, M, G )~ F,

1 1 M=IN-i - -
= lim —— f@,)-ff,(k+i,l+7-f 4.4
M N a§) j;\:0[ 1@ - X (k+i,1+ ) —1,] (4.4)

The power spectral density is defined as the frequency domain equivalent of the correlation
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function. The power spectral density function of a random function describes the general

composition of the data in terms of the mean square values of its power spectrum. The power
spectral density function P, ,(u, v) of two random functions f;(x,y) and £(x.,y) is the Fourier

transform of the corresponding correlation function K, ,(x',y') (Bendat and Piersol, 1980,

1986; Sideris, 1984):

P,,(u,v)=[T[TK,,(x, Y)e.muwy’d"dy (4.5)
For discrete data,

. 11
P,,z(m,n)-Ehn:_; T:T—yFI(m,n)Fz(m,n) (4.6)

where T, and T, are the data lengths along the x and y directions, respectively.

For centred random functions, the power spectral density function can also be written as

Pyo(u,v) = [Z[7C, ,(x,y)e™ ™" dxdy (4.7)

Again, Py 5(u,v) is called the auto-power spectral density function if f;(x,y)=f(x,y), and the
cross-power spectral density if fi(x,y) and f,(x,y) are different.

Equations (4.5) and (4.7) are useful if PSD functions are to be computed from known

correlation or covariance functions.
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4.2 Estimation of Signal Covariance Functions

The successful use of LSC relies on reliable estimation of the signal and error covariances.
This section discusses the estimation and modelling of the covariance function. Some
analytical global covariance models for gravity field quantities were developed by Tscherning
and Rapp (1974). We termed these models as Tscheming/Rapp models. Tscherning/Rapp
models will be used in this study. Some self-consistent Jocal covariance function models were
discussed by Jordan (1972). In local applications, a long-wavelength field (e.g., the
OSU91A model field) is usually removed from the observations and the residual field is dealt
with. The removed field is afterwards added back to the adjusted quantities. This technique is
called the remove-restore technique. Goad et al. (1984) discussed the computation of the local
empirical gravity anomaly covariance function. The estimation of the local empirical
covariance function using altimetry'and gravity anomaly data was discussed by Knudsen
(1987a).

4.2.1 Computation of Empirical Covariances
4.2.1.1 Direct Method

This method is used to compute the empirical covariance directly from the data. Formulas
presented in the previous section can be applied in cases where given functions f;(x,y) and
f,(x,y) are analytical continuous functions or discrete values of these functions are known on
the infinite x-y plane. In real world applications, we usually only have discrete sampled data
within a finite area. Therefore, we should rewrite the above formulas so that they are suitable
for real world applications. Assuming that discrete grid values of f;(x,y) and f;(x,y) are given
in a rectangular area of the size of T, T, with grid spacings of Ax and Ay along x and y
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directions respectively, and that f; (x,y) and f,(x,y) are centred, we could write the following

covariance estimator
1 | M-i-kN-1-1

CialkD) =Kpa(k) = M—kKN-1 __2;,, j;ofi(i,.l)fz(i +kj+1) (4.8)

where M=T,/Ax, N=T,/Ay. If we substitute geoid height observations for f,(i,j) and f,(i,j),
we get the empirical covariance estimator for the geoid height. If gravity anomaly
observations are substituted for f,(i,j) and f,(i,j), we have the gravity anomaly empirical
covariance estimator. If we substituted the observation values of geoid height for f;(i,j) and

gravity anomaly for f,(i.j), we have the estimator for the empirical cross-covariance of the

geoid height and the gravity anomaly.
4.2.1.2 Indirect Method

Because the covariance function and the power spectral density of a zero mean field are a pair
of direct and inverse Fourier transforms, the covariance function can be computed simply

from the known PSD through the following expression:

Ca(k,) =F'{B,(u,v)} (4.9)

4.2.2 Models for Covariance Functions of the Gravity Field

In this subsection, we discuss the modeling of the covariance functions for the gravity field.
In covariance function modeling, analytical covariance functions are determined from
empirical values. Various covariance function models for gravity ficld modeling, such as
second and third order Markov models (Jordan, 1972), the logarithmic model, the Poisson
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model, the Hirvonen model (Moritz, 1980) and the Tscheming/Rapp model (Tscherning and

Rapp, 1974), have been proposed. Among these models, the Tscherning/Rapp model is the
most widely used one.

We work with the residual gravity field, which is obtained by subtracting quantities produced
by some reference field from the corresponding observations. Further more, we centralize the
residual field by subtracting from the residual observations the corresponding mean value.
The reference field can be any one of the known geopotential-model-produced fields. We use
the OSU91 geopotential model field as the reference field. Thus, the residual observations for
gravity anomaly and geoid height are

Ag = Agobs - Agret‘

GM 3% ., & = = . —
= Agops ——3 2 (0 —1)(=)" X(CppycosmA + SypSinmA )P, (cos©) (4.10)
R n=2 R m=0
GM3¥ a3 o — - . =
=hy —— 3 (=)" I(C,pcosmA + S, sinmA)P,,, (cosO) (4.11)
RY 1=2 R m=0

where a=6378137 m, GM=3.9860044 x 10! m’s-2, and 7y is the normal gravity. The other
symbols in the above expressions are well known and will not be explained in more detail.

We use the Tscherning/Rapp model in this study. The corresponding covariance function
between two points separated by distance Ap for the residual field can be represented as:

C(Ap) = Cern (Ap) +C; 1 (AP) 4.12)

where C_,,(Ap) is the covariance function associated with errors of the spherical coefficients
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of the reference model, and C;,.(Ap) is the covariance function associated the

Tschermning/Rapp model of the reference field. More specifically, the three covariance
functions used by LSC for our task at hand can be written as:

360 ao
Cin(P.Q) = gze.,(h,h)sn*'P,(cosur)+ 23:6<lr.,(h,h>s"“P..(cosw> (4.13)
Cagng(P,Q) = z_lze.,mg.Ag)S"*zP (cosy)+ _);6? (Ag, Ag)S™?P, (cos ) (4.14)
Cpn(P.Q) = ):,e (Ag,h)S™'P, (cosw) + zc (Ag,h)S**'P, (cosy) 4.15)
n=2 n=36

where €,(h,h), £,(Ag,Ag) and €, (Ag, h) are degree variances associated with errors of the
reference field, and o,(h,h), ©,(Ag,Ag) and 6,(Ag,Ag) are signal degree variance
computed using the Tscheming/Rapp model. The error degree variances associated with the
reference field can be computed using the following expressions:

e.(h, h)- e (T,T) (4.16)
e.(Ag,Ag) =& RZ) &.(T,T) @.17)
e (Ag,h) =2 YR n-l 1,7 (4.18)
e (T, T)= (GM ? );u(ei..m +eom) (4.19)

where €_,, and €_,, are the standard deviations of the fully normalized potential coefficients



C... and S, respectively.

The signal degree variances associated with the residual field can be obtained by the following
formulas:

oult b =0, (T.T) 4.20)
5.(Ag, 88) = (“I'{'})z 6.(T,T) @“.21)
on(Ag,h)=“7‘R—1-o..(T,T) 4.22)
G, (T, T) = A 4.23)

n-1)(n-2)(n+24)

here A is a global parameter with a value of 425.28 mgaP

The covariance functions expressed by eq.(4.10) through (4.23) are global. In local gravity
field computation, these global functions are usually adjusted to fit the local characteristics of
the field. A method for such adjustment was discussed by Knudsen (1987a). The adjustment
of the global model is done by estimating the values of three parameters and then using these
three parameters in the model. These three parameters are the Bjerhamar radius Ry, local
variance (or covariance) value A and a scaling factor a. The estimation of the three
parameters is done by fitting the global model to the empirical covariance values for the local
area. The 0. parameter is used to scale the error degree variance of the reference field (i.e. the
OSU91A model in this study) so that they represent the quality of the approximated potential
coefficients set in the Jocal area. For more details on the adjustment of the local covariance



function model, cf. Knudsen (1987a, b).
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Fig. 4-1: Covariance function of residual geoid height for simulated data
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Fig. 4-2: Covariance function of residual gravity anomaly for simulated data
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Fig. 4-3: Cross-covariance function between residual geoid and residual gravity for simulated
data

In the simulation studies, we computed the covariance functions by Fourier transforming the
isotropic PSD functions. The isotropic PSDs were computed by averaging the FFT-derived
PSDs (i.e., PSDs computed by the direct method discussed in the following section) over all
azimuths. Figures 4-1 to 4-3 show the signal covariance functions of the simulation data.

For our two test areas with real data, we used in the Central Mediterranean area strictly self-
consistent (or analytical) covariance functions and in the Labrador Sea area pure empirical
covariance functions. More specifically, in the Central Mediterranean area, the covariance
functions were computed by fitting the empirical covariance functions to the Tscherning/Rapp
model and thus they are self-consistent. In the Labrador Sea area, the covariances functions
were computed from FFT-derived PSDs, without fitting them to analytical models. These
covariance functions for different quantities may not satisfy the mathematical relationships
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between different quantities, thus they may not be self-consistent. Figures 4-4 through 4-6

show the empirical and analytical covariance functions in the Central Mediterranean area. The
empirical functions have been computed directly from the data. The analytical ones have been
computed through the Tscherning/Rapp model described above.

Figures 4-8 through 4-9 show the covariance functions in the Labrador Sea area. These
covariance functions have been computed from the corresponding PSD functions. No model

fitting was carried out for these covariance functions.
4.3 Estimation of Signal Power Spectral Densities

This section briefly describes the PSD estimations. Like covariance estimations, there are
basically two types of PSD estimation methods. One operates directly on the data set to yield
a PSD estimate and is called the direct method. The other, Fourier-transforms the cormelation
or covariance function to obtain the PSD function and is called the indirect method.

4.3.1 Direct Method

The direct approach, also termed the periodogram method (Marple, 1987), yields the PSD
estimate by taking the squared magnitude of the Fourier transform of the finite data set. This
method can be formulated as

By (m,m) = =i, n)F () 4.24)

7y

where F,;(m.n) and F,(m,n) are discrete Fourier transform of f; (x,y) and f;(x,y), and * is the

complex conjugate operator.
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4.3.2 Indirect Method

An alternative method of the PSD estimation is first to make an estimation of the comrelation
(or covariance), and then perform a Fourier transform to obtain the PSD estimate. This
method is also termed correlogram method. This method can be formulated as

P, ,(m,n)=FK,,(k, 1} (4.25)

To control the effects of sidelobes in the spectral estimator, windows should be used. Thus,
the most general form of the correlogaram method takes the form

P, ,(m,n) =FK ,(k,hw(k, 1)} (4.26)

where w(k,l) is an appropriate window function (Marple, 1987; Sideris, 1984).

The two methods presented in this section have similar behavior and similar gross
appearance, although some visual differences in the fine detail of the spectral shape will be
apparent (Marple, 1987). Because they yield similar statistical characteristics, often the
method selected is the one that may be computed most efficiently.

Both non-isotropic and isotropic signal PSDs will be used in the real data processing and the
corresponding results will be compared. Figures 4-10 through 4-15 show the PSD functions
used in the two test areas. The non-isotropical PSD functions are computed by the direct
method and the isotropical ones are computed by the indirect method.
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Fig. 4-10: Isotropic PSD function of geoid height for the Central Mediterranean area

/o
4.
>

O
Q)
LA W75
ol N

PN
OO SALLS
) 0.!"'11'

f 4
I04/1)]

o v/
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Fig. 4-12: Isotropic PSD function of gravity anomaly for the Central Mediterranean area
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Fig. 4-13: Non-isotropic PSD function of gravity anomaly for the Central Mediterranean area



10*LoglO(PSD) 15

Fig. 4-14: Non-isotropic PSD function of geoid height for the Labrador Sea area

70
60 y R
NN\
10*Log(PSD) 50 PR CAXY

DR
OO
‘ . » N \\\'
QOIS
QO ..’0\\ -\\\\‘\\\\'
(SRR
(A SN RO

o

AN
RO

-30

AN
~ N
~

30
20
Wave number (Lat.) N 10

Wave number (Long.)

Fig. 4-15: Non-isotropic PSD function of gravity anomaly for the Labrador Sea area




57
4.4 Error Covariance and Error PSD

As stated in chapter two, in the application of LSC one needs to know the error covariances
of geoid height and gravity anomaly observations, and in the use of IOST and LSAFD one
needs to know the error PSDs of the observations. Usually observation errors are assumed to
be white noise, and the variance of the white noise error can be approximately obtained from
the observation accuracies. The corresponding error PSDs can be computed from the error
covariances. For a white noise model with a given noise variance, the error covariance matrix
is a constant diagonal matrix. The corresponding PSD function matrix is also a constant
diagonal matrix.

When repeat observations like altimeter data are available, we can take advantage of the repeat
observations to estimate the error PSDs following some more strict mathematical calculations,
as discussed by Sailor (1994). Sailor presented one dimensional error PSD formulas for
alimetry profile analysis. These one dimensional formulas can be easily extended to two

dimensions.

If the observed sea surface height for two repeat tracks is b (i,j) and hy(i,j) (corrupted by

white noise) then the observation can be represented as

h, (i,j) = N(,j) +n (1.j) 4.27)
hl(ilj) = N(ilj) +nl(ili) (4‘28)

where N(i,j) is the common geoid height signal which does not vary with time (or repeat
tracks), n,(i,j) and n,(i,j) are independent realizations of the white noise process, which is
assumed to be statistically independent of N(i,j). If we subtract eqs. (4.28) from (4.27), we
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get differential sea surface height observations of repeat track k and |

b (i,§) =hy (i,j) - by (i,§) =0, (i, ) -y (i, §) (4.29)

The noise PSD can be computed through the PSD of the differential sea surface as

-

P, (uv)=P,(u,v)=P,(uv)==P, , (uv) (4.30)

N =

If h(i,j) is the value of M repeat ERMs, then

I I U I
h(i,j) = M l:2=:1h,;(1,1) NG, j) + Mélnk(m) 4.31)

Thus, the PSD of the mean value can be expressed as

P_(u,v)=Py(u,v) +-—L1;I-f’n(u,v) =P, (u,v)+P.(u,v) 4.32)

where lA’N(u,v) and P (u,v) are the signal geoid height PSD and the noise PSD of the

averaged observations, respectively.

For the altimetry sea surface height observations, these formulas can be used for error PSD
estimation. As for gravity anomaly observations, we do not have repeat observations, but
only data with error variances. An effective but non-rigorous way of estimating noise PSDs

in practice is to approximate the noise PSDs by simple stationary models (Sideris, 1996).

In simulation studies, we used uniform distribution and Gaussian distribution noise models to

generate two sets of noise-corrupted data to compare the effects of different noise character on
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the results. We used white noise models in the real data processing, both for altimeter and

shipborne data. We were unable to use the method discussed above in this section to compute
directly the noise PSDs of the altimeter, because no original repeated track data were used
since gridded data were already available in the test area.



CHAPTER FIVE
SIMULATION STUDIES

This chapter describes the simulation studies and presents their results. The LSC, IOST and
LSAFD methods are intercompared using simulated observations. The purpose of the
simulation study is to investigate the estimates obtained using each of the three methods with
data with different noises. Simulation computations also allow us to compare the internal

and external accuracies of the estimates.
5.1 Generation of Simulation Observations

For simulation studies, we first computed a set of gridded geoid heights using the
coefficients of degree 37 to 360 of the OSU91A model. The corresponding spectra of these
simulated sets of geoid heights were obtained using the 2D FFT method. The gravity
anomalies on the same grids were computed by employing the geoid spectra so that the
simulated geoid heights and gravity anomalies be self-consistent. To simulate noisy
observations, uniform distributed and Gaussian noises were generated and added to the
calculated geoid height and gravity anomaly signals, respectively, to simulate observations.
Using these simulated observations, the three techniques discussed above were employed
to determine the gravity field quantities.

For our simulation study, geoid height signals on 66 x 66 points in an area of 11° x 11°
with grid spacings of 10' x 10' were generated. Gravity anomalies were also generated on

the same grid as the geoid heights. For each of the two types of noises, noise levels with
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variances of 0.01 m2, 0.25 m? and 1.0 m? were assumed for geoid height, and noise levels

with variances of 9 mgaP, 36 mgaP and 100 mgal® were assumed for gravity anomalies.
The

corresponding noise covariance and the noise PSD functions are diagonal matrices of
constant elements, respectively. Thus we generated three sets of observations for geoid
height and gravity anomaly, for each type of noise assumption. Using different estimation
techniques on these simulated data, it enabled us to: a) numerically intercompare the results
obtained by different methods; b) investigate the responses of each methods to the input
noise level; ¢) compare the response of the estimates to different types of input noises; d)
compare internal and external estimation errors.

Table 5.1 gives the statistics of the simulated field. Figures 5-1 through 5-3 give 3D graphs
of simulated geoid heights and gravity anomalies, input uniform distribution noises added
to the geoid heights and gravity anomalies, and the corresponding simulated noisy
observations, respectively. Figures 54 and 5-5 give 3D graphs of Gaussian distribution
input noises added to the geoid heights and gravity anomalies, and the corresponding
simulated noisy observations, respectively.

Table 5.1 Statistics of the simulated field

Max. Min. Mean S.D.
Geoid (m) 3.44 2.44 0.00 1.09
Gravity (mgal) 68.66 -48.21 0.00 16.42
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Fig. 5-2: Uniform disttributed input noises for geoid undulation and gravity anomaly,
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Fig. 5-4: Gaussian distributed input noises for geoid undulation and gravity anomaly,
respectively
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5.2 Results From Simulated Observations Corrupted by Uniform Distributed

Noise

Gridded geoid heights and gravity anomalies on 66 x 66 points were predicted employing the
techniques of LSAFD, LSC and IOST with these simulated data. To avoid edge effects, the
predicted results were compared with the simunlated true values only in the inner 34 x 34

points.

Tables 5.2 and 5.3 give the statistics of standard deviations (S.D.), RMS errors, minimum
errors and maximum errors of predicted geoid heights and gravity anomalies using LSC,
IOST and LSAFD under different input white noise levels. These statistics are based on
external prediction errors of the estimates, which are obtained by taking differences between
estimates and true values. For easier visualization purposes, the RMS errors are also plotted
in Figures 5-6 and S-7. In Figure 5-6, the vertical axis represents geoid RMS errors and the
horizontal one represents input anomaly RMS noise. In Figure 5-7, the vertical axis
represents gravity anomaly RMS errors and the horizontal one represents input geoid RMS
noise. We did not plot the S.D. results because these values are very close to the
corresponding RMS errors, as shown in Tables 5.2 and 5.3. This similarity implies that there
is no bias in the predicted geoid heights and gravity anomalies for all the cases. We observe
from Tables 5.2 and 5.3 that all three methods have performed smoothing of geoid height and
gravity anomaly observations. This observation can be seen more easily in Figures 5-6 and 5-
7.

Plotted in Figures 5-8 through 5-13 are 3D graphs of geoid height and gravity anomaly
prediction errors (predicted values minus true values) for different methods. The
corresponding input data are those plotted in Figures 5-1 through 5-3. These figures enable
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Fig. 5-7: Comparison of RMS errors of predicted gravity anomalies using different

methods and different values of input undulation noise and input gravity noise
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Geoid Und. Pred. Error For LSC: m

Fig. 5-8: External geoid height prediction errors for LSC (input data are those plotted in
the Figures 5-1 through 5-3)
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Geocid Und. Pred. Error For LSAFD: m

Fig. 5-10: External geoid height prediction errors for LSAFD (input data are those plotted
in the Figures 5-1 through 5-3)
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Fig. 5-11: External gravity anomaly prediction errors for LSC (input data are those plotted
in the Figures 5-1 through 5-3)
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Grav. Anom. Pred. Error For IOST: mgal

Fig. 5-12: External gravity anomaly prediction errors for IOST (input data are those plotted
in the Figures 5-1 through 5-3)
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Fig. 5-13: External gravity anomaly prediction errors for LSAFD (input data are those
plotted in the Figures 5-1 through 5-3)
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us to see in detail the behavior of the prediction errors.

By observing Figures 5-6 and 5-7, we see that gravity anomaly estimates obtained using the
LSAFD method show only a weak improvement over the observations, while geoid height
estimates show a significant improvement over the observations. This is simply because the
noise level of gravity anomaly observations is much lower than that of geoid height
observations in our simulated data. This also would imply that if noise levels between geoid
undulation and gravity anomaly do not match each other, the accuracies of the estimation
obtained for the data type with higher input noise level, after combination with the data type
of lower input noise by using the LSAFD method, can have significant improvement over its
observation. The combination using the LSAFD will not give much improved estimation to

the data type with lower input noise level.

Comparing the external RMS errors of the estimates associated with different input noise
levels, we observe that with the significant increase of the noise level of input data, the RMS
errors of the geoid height and gravity anomaly estimates obtained using LSC and IOST
methods increased only slightly. That is, the LSC and IOST methods are not very sensitive to
input noise levels. Yet, the LSAFD method is more sensitive to noise levels. Therefore, we
may conclude that the LSC and IOST methods are preferable to the LSAFD method in the

sense that they better suppress input errors.

When we compare the results obtained using the IOST and the LSC, we see from Figures 5-6
and 5-7 that in all cases with different input noise levels, the IOST method always produces a
little better results (less RMS error) than the LSC technique. This is understandable because
the IOST employs detailed signal PSD information (non-isotropic PSD functions), while the
LSC uses only approximate signal PSD information by having the covariance function
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isotropicaly structured (see Sections 4.2 and 4.3). This observation leads to the conclusion

that the IOST method slightly outperforms the LSC technique as far as accuracy is concerned.
In addition, the IOST method is based on spectral techniques, thus, its use has the well-
known advantage of saving computer time over the conventional LSC technique. Our
experiments show that the LSC method takes about 2 days for the computation of the gravity
anomaly and geoid height on 66 x 66 points. The IOST and LSAFD methods take only

several minutes to complete the same task.

If we observe the behavior of the external RMS prediction errors vs. input noise levels in
Tables 5.2 and 5.3, we see that the ratios of prediction error to input noise for the IOST
method are 40% ~ 43%, 28% ~ 37% and 17% ~ 25% for gravity anomaly and 20% ~30%,
6% ~ 10% and 3% ~ 6% for geoid undulation. We conclude from these ratios that the input
noise of the gravity anomaly and geoid undulation are significantly suppressed by the optimal
combination (JOST) of two types of data. This optimal combination is especially useful for
suppressing high-level input noise. For example, when the RMS value of the input noise of
the geoid undulation was 0.1 m, we obtained estimation of geoid height with noise level
suppressed by 70% to 80%. But when the RMS value of the input noise of the geoid
undulation was 1.0 m (which is considered to be a considerably high noise level for
altimetry-derived geoid undulation), the noise level of the estimation of the geoid undulation
obtained by IOST method was suppressed by 94% to 97% as compared to its input noi-se
level. This behavior is particularly interesting when the high noise level altimetry data from

the earlier missions are to be combined with the new lower noise data.

Internal and external accuracies are two important indices for evaluation of the reliability of
the estimation results. In practice, only internal prediction error will be available. The intermal
estimation errors for the LSC can be computed using egs. (3.38) and (3.39). The internal
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estimation errors for IOST and LSAFD can be obtained by first computing the error PSDs

using equations (3.26) and (3.45), respectively, and then transforming the error PSDs to
covariances using FFT. Tables 5.4 and 5.5 present some test comparisons between internal
and external prediction errors for the case of uniform-distributed input noises.

Table 5.4: Comparison of Extenal and Intemal RMS Error for Geoid Height
Estimation (Input Noises Are Assumed of Uniform Distribution)

RMN§ of. Input Prediction Error (m)
(1)
s | o LC 1osT LSAFD
m m
"Ext.. Int. ~ Ext. Int. ~Ext. Int.
3.0 0.1 0.02 X 0.01 002 | 003 |
6.0 1 0.03 | 002 | 0.03 | 0.04 |__0.04
10.0 0.1 0.03 0.03 003 ] 003 ] 005 | 005
6.0 0.5 005 | 006 | 002 0.04 0.06 0.06
10.0 0.5 0.06 005 | 003 ] 005 0.08 0.07 |
3.0 1.0 0.05 X 003 | 003 0.04 0.04
6.0 1.0 | 007 0.07 0.06 0.05 0.06 0.06
10.0 1.0 0.08 0.03 0.06 0.07 0.08 0.09 |

Table 5.5: Comparison of External and Internal RMS Error for Gravity Anomaly
Estimation (Input Noises Are Assumed of Uniform Distribution)

RMN§ o? Input Prediction Error (mgal)
Q18¢
Ag N SC 10ST LSAFD
(mgal) | (m)
" EXt. Int. "Ext. Int. | Ext. | Int
30 ] 0.1 16 | 20 12 | 13 29 | 2.
— 6.0 | 0.1 2.1 2.2 1.7 2.0 5.6 5.2 |
 10.0 0.1 2.5 2.1 ) 2.1 8.1 8.1
— 3.0 | 035 | 1.7 2.1 1. 1.4 2.9 3.0 |
6.0 0.5 24 | 2.7 2.2 2.1 39 | 59 |
10,0 | 0.5 | 26 2.4 25 K 91 | 9.7 |
30 | 1.0 1.7 19 I3 | 16 | 30 3.0
6.0 1.0 2.4 2.5 2.2 2.2 5.9 6.0
10.0 T.0 2.6 29 | 26 2.8 935 | 98
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From Tables 54 and 5-5 we see that in many cases both the internal and external errors are

the same, though there are cases where intemal and extemal errors differ a little. This
observation along with the fact that in Figures 5-8 through 5-13, no bias and systematic
errors existed in the estimate, would imply that in the real world applications where the true
values are not known, and thus the external estimation error can not be computed, the internal
accuracy can give a reliable picture of the estimation errors.

5.3 Resuits From Simulated Observations Corrupted by Gaussian Distributed

Noise

To investigate the effects of different noise characteristics on the prediction errors, Gaussian
noise with the same noise levels as the uniform distributed noises used previously are also
used to generate the simulated observations for both geoid and gravity anomaly at the same
grids. Simulated data with Gaussian distribution input noises are shown in Figures 54 and 5-
5.

Using the Gaussian noise corrupted data, geoid heights and gravity anomalies were estimated
using the three methods. Tables 5.6 and 5.7 show the statistics of the extemal errors of the
estimates. Figures 5-14 through 5-19 show the detailed prediction errors for geoid height and
gravity anomaly, respectively. Tables 5.8 and 5.9 present some test comparisons between

internal and external prediction errors.

From Tables 5-8 and 5-9 we see that in many cases both the internal and external errors are
the same, though there are cases where internal and external errors differ a little. These facts
have already been observed in Section 5.2 where uniform distribution data noise were used.
Thus, we may conclude that in real data processing where input noise can be modeled by
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white noise models (this is almost always true for geodetic data) the internal accuracy can

give a reliable picture of the estimation errors.

By comparing the results obtained for the uniform distribution noise corrupted data with
those obtained for the Gaussian noise corrupted data, we see that the external prediction
errors are almost the same when the input noise levels are the same in both cases. There are

only little differences for the internal prediction errors in both cases.

Similar observations as in Section 5.2 can be seen from the results for the Gaussian noise
data. Because the simjlarities between the results obtained for both uniform distribution noise
and Gaussian noise corrupted data, we will not discuss in more detail the resuits obtained
from the Gaussian noise corrupted data. Similar conclusions can be drawn here as in the

previous section.
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Geoid Und. Pred. Error For LSC: m
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Fig. 5-14: External geoid beight prediction errors for LSC (input data are those plotted in
the Figures 5-4 and 5-5)

Geoid Und. Pred. Error For IOST: m
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Fig. 5-15: External geoid height prediction errors for IOST (input data are those plotted in
the Figures 54 and 5-5)
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Geoid Und. Pred. Error For LSAFD: m

Fig. 5-16: External geoid height prediction errors for LSAFD (input data are those plotted
in the Figures 54 and 5-5)
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Fig. 5-17: External gravity anomaly prediction errors for LSC (input data are those plotted
in the Figures 5-4 and 5-5)



Grav. Anom. Pred. Error For IOST: mgal
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Fig. 5-18: External gravity anomaly prediction errors for IOST (input data are those plotted
in the Figures 5-4 and 5-5)

Grav. Anom. Pred. Error For LSAFD: mgal

Fig. 5-19: External gravity anomaly prediction errors for LSAFD (input data are those
plotted in the Figures 5-4 and 5-5)



Table 5.8: Comparison of External and Internal RMS Ermror for Geoid Height

Estimation (Input Noises Are Assumed of Gaussian Distribution)

RMS of Input Prediction Error (m)
Noise
Ag N LSC TOST LSAFD
(mgal) (m) _
Ext. | Int Ext_| Int “Ext. Int.
30 | 0.1 0.02 0.01 0.01 0.01 0.02 | 002 |
6.0 0. | 002 | 001 002 | 002 | 004 | 004 |
10.0 0.1 0.03 | 0.02 002 [ 003 | 005 | 005 |
3.0 0.5 005 | 005 [ 003 X 0.04 | 0.03
60 | 05 | 006 | 005 | 004] 004 | 005 [ 005
100 | 05 006 | 0.05 005 | 005 | 008 | 0.08
30 | 1.0 008 | 008 | 003 003 | 003 | 003
60 | 10 | 008 | 0.08 005 | 004 | 006 | 006
10.0 L.0 008 | 0.09 006 |0 0.09 | 009

Table 5.9: Comparison of External and Internal RMS Error for Gravity Anomaly
Estimation (Input Noises Are Assumed of Gaussian Distribution)

RMS of Input Prediction Error (mgal)
Noise .
Ag N LSC TOST LSAFD
(mgal) | (m)
T Bt T Tne T BExt T Tt T BExt. T Tnc
3.0 0.1 2.0 2.0 13 _ L4 238 2.8 |
6.0 | 0.1 2.7 2.5 L7 1.7 54 53|
100 | 0.1 33 | 3.1 20 | 2.1 9.2 8.7
3.0 0.5 21 | 1.9 1.4 1.4 3.1 3.1
6.0 0.5 2.9 3.0 2.1 1.9 6.1 5.0 |
—10.0 0.5 3.7 34 2.8 2.9 10.0 90 |

30 T T0 T 2T T 2T 13 T4 1 30 1251
6.0 1.0 3.0 3.2 2.2 2.2 6.1 6.0
10.0 1.0 ~ 3.7 3.5 3.1 3.0 10.1 100 |
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CHAPTER SIX

PROCESSING OF REAL DATA

This chapter presents test results obtained using real data in the Central Mediterranean area
and the Labrador Sea area. Results obtained by different methods are compared. Results
corresponding to using different a priori input information will also be presented and
compared.

6.1 Data and a Priori Information

The altimeter data used for the Central Mediterranean area (33.08° to 38.0° of latitude and
16.0° to 20.92° of longitude) are from the ERS-1 Geodetic Mission (GM). We employed 60
x 60 points with a spacing of 5' x 5' in the computations. The altimeter and marine gravity
data used in this area have been provided by Professor I. N. Tziavos of the University of
Thessaloniki, Greece, in gridded form; see also Tziavos et al. (1996).

The shipborne data used for the Labrador Sea are have been provided by Dr. J. A. R. Blais.
The altimeter data used for the Labrador Sea area are from GEOSAT ERMs. The altimeter
data were first edited according to the criteria given in Table 2.1. All the 62 exact repeat
tracks available were stacked. Crossover adjustments were carried out by employing bias/tilt
radial orbital error model. Gridded data for geoid height and gravity anomaly on 30 x 30
points with spacing of 10' x 10’ were obtained by least squares collocation produce. We
chose the least-squares collocation method for data gridding, because it has the advantage of
taking into account data accuracy estimates and providing theoretically accuracy estimates of
the predicted values (Cruz, 1983). The covariances used in the least squares collocation
gridding procedure were derived by linear interpolation from a table of covariances that was
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computed empirically from the real irregular data. These covariance functions are shown in

Figures 2-1 and 2-2. Only neighboring data around the prediction grid were used in the
gridding process.

The OSU91A geopotential model field is removed from the data. The SST effect is computed
using the spherical coefficients model of Denker and Rapp (1990) and is subtracted from the
data. The mean value of the data for the area is subtracted to obtain a centred field. Figure 6-1
shows the altimeter and shipborne data for the Central Mediterranean area. Shown in Figure
6-2 are the altimeter and shipborne data for the Labrador Sea area.

For the Central Mediterranean area, the empirical signal covariances are first computed from
the gridded data, and then fitted to the Tscherning/Rapp model described in 4.2 to obtain self-
consistent local covariance functions. In doing so, covariance functions are isotropicaly
structured. These covariance functions have been shown in Figures 44 to 4-6. Two
methods, i.e., the direct method and the indirect method, which have been described in 4.3,
are used in computing the signal PSDs that are required by the IOST method. Using the
indirect method, we get isotropic signal PSDs from the isotropic covariance functions. Using
the direct method, we have non-isotopic signal PSDs. Gravity filed quantities determined by
IOST using the PSDs computed by these two methods are compared.

The signal covariance functions for the Labrador sea area are computed using the indirect
method. That is, we first computed the signal PSDs from the data spectra using the direct
PSD estimation technique, then transformed the PSDs to covariance functions. In order to
obtain isotropic covariance functions, the FFT-derived PSDs have been averaged over all
azimuths before transforming them to covariance functions. The PSDs used in IOST are

these non-isotropic ones.
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Fig. 6-1: Altimeter geoid height and shipbome gravity anomaly in the Central Mediterranean
area
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Fig. 6-2: Altimeter geoid height and shipbomne gravity anomaly in the Labrador Sea area
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We assumed the input noise of the altimeter and shipborne data is white noise.

6.2 Results From the Central Mediterranean Area

This section presents and discusses the estimation of the marine geoid and gravity anomaly in
the area of Central Mediterranean. The LSC predictions for both geoid heights and gravity
anomalies have been provided by Professor Tziavos of the University of Thessaloniki,
Greece. The job of predicting geoid height using gravity only as input using Fast Collocation
(FC) and One Dimensional FFT (IDFFT) have also been carried out by Professor Tziavos
(Tziavos et al., 1996).

The high efficiency of the IOST and LSAFD over the LSC is indicated by the fact that for
processing the 60 x 60 points using LSC requires about 36 hours for geoid height and
gravity anomaly computations, while using the spectral methods (i.e., IOST and LSAFD)

requires only several minutes.

6.2.1 Comparison of Internal Error Estimates for Different Methods

Table 6.1 shows some test results of the error estimates of the predictions for geoid height
and gravity anomaly using IOST, LSAFD and LSC. White noise is assumed here for the
input data. In the Central Mediterranean area, the noise level of about 10 mgal for the gravity
data is considered reasonable based on some previous studies (Tziavos et al., 1996). So we
first used 100 mgal? as the input noise variance for the shipborne data. To investigate the
effects of using incorrect input noise variance on the results, we then used 25 mgal® as the
input noise variance. For the altimeter data, we used only 100 cm? as the input noise
variance. This value is based on the preprocessing of the results.
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The spectral methods give a single error estimate for the whole prediction area because of the
use of stationary error covariance functions. That is, all the points are predicted with the same
error estimate. In using the space domain method (LSC), however, different error estimates
for each point are obtained because LSC can handle non-stationary data noise, i.e., having
different error variance at different points. For this reason, Table 6.1 gives the ranges of the
error estimates for geoid height and gravity anomaly predictions obtained by LSC. The
meaning of some abbreviations appearing in the tables and figures below are as follows:

OBS: Observation;

LSC - OBS: LSC prediction minus Observation;

IOST - OBS: IOST prediction minus observation;

LSAFD - OBS: LSAFD prediction minus observation;
IOST - LSC: IOST prediction minus LSC prediction;

IOST - LSAFD: IOST prediction minus LSAFD prediction;
LSC - FC: LSC prediction minus FC prediction;

LSC - 1DFFT: LSC prediction minus |DFFT prediction;
FC - IOST: FC prediction minus IOST prediction;

IOST - IDFFT: IOST prediction minus 1DFFT prediction;
FC - LSAFD: FC prediction minus LSAFD prediction;
LSAFD - 1DFFT: LSAFD prediction minus 1DFFT prediction;
OBS - FC: Observation minus FC prediction;

OBS - 1DFFT: Observation minus 1DFFT prediction;

From Tables 6.1 through 6.4 we observed that the prediction errors by IOST and LSC are
close and much smaller than the corresponding input noise levels. This means that these two
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methods filtered the observations to the same extent, and predictions with approximately the

same accuracies have been obtained by the two methods. The error estimates for geoid height
predictions using LSAFD are smaller, especially for the case when 5 mgal noise level is
assumed for the shipbome data, than those using IOST and LSC. This is resulted from
unrealistic weighting the two data sets by using unrealistic noise PSDs. As being pointed out
previously, LSAFD depends completely on the noise PSDs to weight data. When a lower but
unrealistic noise level is assumed for the shipbome data, it means that we trusted the
shipbomne data too much and gave an unrealistic weight to the data. Consequently, a false
accuracy estimate has been obtained for LSAFD.

Table 6.1: Internal prediction accuracies for IOST, LSAFD and LSC for the Central

Mediterranean area
Input noise ’ Prediction accuracy
Method Geoid (m) Gravity (mgal) Geoid (m) Gravity (mgal) |
I0ST 0.10 10.0 0.057 4.46
0.10 5.0 0.054 2.90
LSAFD 0.10 10.0 0.040 9.38
0.10 5.0 0.024 4.89
LSC 0.10 10.0 0.030 - 0.060 |4.43 -5.78
0.10 5.0 0.020 - 0.050 | 2.51 -- 3.99

When we compare the gravity prediction errors by different methods we see from Table 6.1
that the error estimates by LSAFD are much bigger than those by IOST and LSC, and very
close to the input noise levels of the gravity observations. This would imply that almost no
improvement has been obtained for the gravity anomaly predictions in using LSAFD. The
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reason of this behavior relies again in the fact that the LSAFD method depends completely on

the input noise levels of the two data types to weight their contributions to the adjusted
results. Because the assumed noise level for shipbome data is much lower that that of the
altimeter data, the shipborne data are more trusted that the altimeter data. Therefore, the
accuracies of the shipborne data should have no obvious changes after applying LSAFD
adjustment. The IOST and LSC methods have both filtering and adjustment functions.
Therefore, always better predictions can be obtained by them.

6.2.2 Comparison of Geoid Height and Gravity Anomaly Predictions
Obtained by Different Methods

Tables 6.2 through 6.4 give some statistics for differences of geoid height predictions
employing different methods, while Tables 6.5 through 6.7 show statistics for the
differences of gravity anomaly predictions.

From Tables 6.2 through 6.4 we see clearly that the geoid height predictions by combination
of two types of data (i.e., altimeter and shipborne data) using IOST, LSC and LSAFD are
significantly different from those obtained using only shipbome data as input. The
differences between the results obtained using the same input data type(s) but employing
different methods are small. Comparing the root-mean-square (RMS) difference values with
the standard deviation (S.D.) values, we see that there is no significant bias between the
results obtained using IOST, LSC and LSAFD. The RMS and S.D. values show that a
significant bias occurred between predictions obtained by combinations of two types of data
and those obtained by use of only a single input data type. By comparing the RMS
differences between results of IOST, LSC and LSAFD (Tables 6.2 - 6.4) with the internal
prediction errors shown in Table 6.1, we see that the RMS difference values are smaller than
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the internal prediction errors in all cases, which would mean all the three combination

methods give, to some extent, consistent and reliable results. Therefore, either method can be
employed for the task of prediction of geoid height by combination of two types of data.

Table 6.2 Differences of geoid height estimates from LSC and other methods (input noises
are n,=0.10 m and n,,~10.0 mgal, respectively)

Max diff. (m) | Min diff. (m) | RMS diff. (m) S.D. (m)
LSC - IOST 0.113 -0.123 0.029 0.029
LSC - LSAFD 0.087 -0.105 0.014 0.014
LSC - 1IDFFT 0.562 -0.750 1.008 0.222
LSC - FC 0.537 -0.708 0.922 0.236
LSC - OBS 0.374 -0.426 0.075 0.075

Table 6.3 Differences of geoid height estimates from IOST and other methods (input noises
are n,=0.10 m and n,,=10.0 mgal, respectively)

Max diff. (m) Min diff. (m) | RMS diff. (m) S.D. (m)
IOST - LSC 0.123 -0.113 0.029 0.029
IOST - LSAFD 0.125 -0.188 0.030 0.030
IOST - 1IDFFT 0.667 -0.832 1.012 0.231
IOST - FC 0.642 -0.804 0.926 0.244
IOST - OBS 0.314 -0.302 0.057 0.057

From Tables 6.5 through 6.7 we see that the RMS differences between the gravity anomaly
predictions obtained by IOST and LSC are close, while the RMS differences between the
results obtained by LSAFD and IOST, and those between the results obtained by LSAFD and
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LSC are much bigger. This observation indicates that the gravity anomaly predictions

produced by LSAFD significantly deviate from the resuits obtained by IOST and those by
LSC. The IOST and LSC methods give close result because they use the same or similar
information (the PSD functions used by IOST are the frequency domain equivalents of the
covariance functions used by LSC). The deviations between the results obtained by LSAFD
method and those by IOST and LSC methods can be explained by that IOST and LSC have
both filtering and adjustment functions, but LSAFD has only one function, that is the
function of adjustment. The RMS and S.D. values are close which means that no bias
occurred between the results obtained by different methods. These results are consistent with
those obtained through internal prediction errors and can also explained by the same reasons
as given in the above section. We did not compute gravity anomalies using a single data type
(i.e., altimeter data), because it is known that the expected prediction accuracies are generally
not as good (about 8 mgal RMS, as shown in Zhang and Sideris, 1996).

Table 6.4 Differences of geoid height estimates from LSAFD and other methods (input
noises are n,=0.10 m and n,,=10.0 mgal, respectively)

Max diff. (m)| Min diff. (m) | RMS diff. (m) S.D. (m)

LSAFD - LSC 0.105 -0.087 0.014 0.014
LSAFD - IOST 0.188 -0.125 0.030 0.030
LSAFD - IDFFT 0.550 -0.709 1.011 0.222
LSAFD - FC 0.518 -0.680 0.924 0.236

LSAFD - OBS 0.378 -0.394 0.070 0.070
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Table 6.5 Differences of gravity anomaly estimates from LSC and other methods (input
noises are n,=0.10 m and n,,~=10.0 mgal, respectively)

Max diff. | Min diff. (mgal)| RMS diff. S.D. (mgal)
(mgal) (mgal)
LSC - I0ST 10.64 ~10.04 2.99 2.83
LSC - LSAFD 25.51 -30.86 4.17 4.04
LSC - OBS 18.81 -43.38 4.29 4.18

Table 6.6 Differences of gravity anomaly estimates from IOST and other methods (input
noises are n,=0.10 m and n,,=10.0 mgal, respectively)

Max diff. Min diff. (mgal) RMS diff. S.D. (mgal)
(mgal) (mgal)
IOST - LSC 10.04 -10.64 2.99 2.83
IOST - LSAFD 32.85 -36.74 5.13 5.13
IOST - OBS 26.15 -41.27 3.71 3.71

Table 6.7 Difference of gravity anomaly estimates from LSAFD and other methods (input
noises are n,=0.10 m and n,,=10.0 mgal, respectively)

Max diff. Min diff. (mgal) RMS diff. S.D. (mgal)

(mgal) (mgal)
LSAFD - LSC 30.86 -25.51 4.17 4.04
LSAFD - IOST 36.74 -32.85 5.13 5.13

LSAFD - OBS 18.14 -19.36 3.87 3.87
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6.2.3 Effect of Signal-to-Noise levels

To test the effects of the input noise levels on the predictions, input noise levels with RMS
values of 10.0 mgal and 5.0 mgal for gravity anomalies are assumed. As have been pointed
out before, the noise level of 10 mgal is a reasonable value for the gravity data in the Central
Mediterranean area. The dependency of the internal prediction errors on the signal-to-noise
levels can be observed from Tables 6.1 and 6.10. These tables show that the internal
prediction errors depend on the input signal-to-noise levels of the gravity anomaly. This

observation is consistent with those made in the simulation studies.

Tables 6.8 and 6.9 show some statistics of the predictions with different input noise levels.
We see from Table 6.8 that the RMS differences for geoid height predictions obtained
between different methods increased when input noise levels of the gravity anomaly are
changed from 10 mgal to 5 mgal. A 5§ mgal noise level for gravity anomaly does not match
the real situation in the Central Mediterranean area (Tziavos et al., 1996). The above
observation would then imply that the consistency between the results by IOST, LSC and
LSAFD depends on to what extent the input noise variance used in computation matches
reality. A smaller discrepancy between the results obtained by different methods also means
that better accuracy has been obtained for the results. Therefore, we conclude from the above
observation that better results can be obtained for the geoid height estimates by the three
methods when correct error variance information is used. This conclusion has also been
obtained in the Labrador Sea area tests (see Section 6.3 below). From Table 6.9, however,
we see that the consistency between the gravity predictions obtained by IOST, LSC and
LSAFD is better for the case of using 5 mgal input noise than for the case of using 10 mgal

input noise level for the input gravity anomaly.
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Table 6.8: Differences of geoid height estimates for different input noise levels of gravity

anomaly

Input noise Max diff. | Min diff. IRMS diff. S.D.

Geoid (m) | Gravity (mgal)] (m) (m) (m) (m)
LSC -IOST 0.10 10.0 0.113 -0.123 0.029 0.029
0.10 5.0 0.197 -0.253 0.058 0.058
LSC - LSAFD 0.10 10.0 0.087 -0.105 0.014 0.014
0.10 5.0 0.123 -0.193 0.027 0.027
IOST -LSAFDy  0.10 10.0 0.125 -0.188 0.030 0.030
0.10 5.0 0.268 -0.306 0.063 0.063

Table 6.9: Differences of gravity anomaly estimates for different input noise levels of gravity

anomaly

Input noise Max diff. | Min diff. [RMS diff. [ S.D.

Geoid (m) | Gravity (mgal)] (mgal) | (mgal) | (mga) | (mgal)

LSC-IOST | o0.10 10.0 1064 | -1004 | 2.99 2.83
0.10 5.0 721 | -800 | 234 | 229

LSC-LSAFD|  0.10 10.0 2551 | -30.86 | 4.17 4.04
0.10 5.0 21.56 | -2067 | 321 3.16

IOST-LSAFD  0.10 10.0 3285 | -3674 | 5.3 5.13
0.10 5.0 2641 | 2683 | 352 3.52
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6.2.4 Comparison of Predictions Obtained Using PSDs Computed by Direct

and Indirect Methods

As it has been discussed in chapter 4, the signal PSDs can be computed through two
methods (the direct method and the indirect method). Table 6.10 gives the internal
prediction errors for geoid height and gravity anomaly using different PSDs in IOST and
Table 6.11 gives statistics of the differences of the predictions obtained by using these two
types of PSDs.

Tables 6.10 and 6.11 enable us to compare the differences of the predictions when using two
types of signal PSDs in JOST. From Table 6.10 we see that the internal accuracies associated
with using signal PSDs derived by the direct method are better than those associated with
using the indirect method. This observation is very interesting. Theoretically, on the one
hand, the indirectly computed signal PSDs are preferable, because the covariance functions
for different quantities, which were used as the input of the indirect method, have been
adjusted to fit the Tscheming/Rapp model so that they are self-consistent. Thus the indirect
method derived PSDs also satisfy these relationships while the PSD functions for different
quantities computed by the direct method may not. On the other hand, however, signal PSDs
computed by the direct method are non-isotropic. The unadjusted PSDs (i.e., the non-
isotropic PSDs) are surely more close to reality because the real gravity field is a non-
isotropic field. The non-isotropic PSDs can be handled in IOST just as easy as the isotropic
ones. The second aspect may explain the fact that higher accuracies for the predictions have
been obtained by using PSDs computed by the direct method.

Comparing Table 6.10 and Table 6.11 we see that the RMS differences of the predictions
obtained using two types of PSDs are smaller than the estimation errors of the results, which
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would mean that, especially for geoid computations, we could use signal PSDs computed by

either method.

Table 6.10 Comparison of intemnal prediction accuracies for [OST using covariance derived
PSDs and observation spectra derived PSDs

IOST PSDs are derived from PSDs are derived from
covariances observation spectra
Input noise Internal accuracy Internal accuracy
Geoid (m) ] Gravity (mgal) | Geoid (m) | Gravity (mgal) | Geoid (m) | Gravity (mﬂ
0.10 10.0 0.057 4.46 0.045 2.85
0.10 5.0 0.057 2.90 0.040 2.26

Table 6.11 Statistics of the differences (estimates obtained using covariance derived PSD
minus estimates obtained using data spectra derived PSD) of the estimates

obtained using different PSD information in IOST (input noises are as the same

as stated in Table 6.3)
Max diff. Min diff. RMS diff. S.D.
Geoid (m) 0.094 -0.112 0.028 0.028
Gravity (mgal) 7.34 -10.64 1.10 1.10

6.2.5 Examining the Details of the Differences of Predictions Obtained
Using Different Methods

To investigate in more detail the behavior of the differences between the results obtained by
different methods, Figures 6-3 through 6-9 were plotted to illustrate these differences.
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Figure 6-3 shows the differences between geoid estimates obtained by LSC, IOST and
LSAFD and the altimeter geoid observations. From this figure we see that all the graphs
show some common diagonal stripes. These stripes are obviously altimeter track related.

Figure 6-4 shows detailed differences between geoid predictions obtained by different
combination methods. We observed from this figure that these differences are smoother than
those shown in Figure 6-3, which means that all three methods yield comparable results. No
diagonal stripes appeared in Figure 6-4, which indicates that after the combinations, the
adjusted field are free from track-related errors. There is some weak dependency on the
behavior of the observed field for the differences of predictions obtained by different
methods.

Figure 6-5 shows the differences between gravity estimates and gravity observations. Figure
6-6 gives the differences between gravity estimates obtained by different methods. We see
from Figure 6-5 that graphs (a) and (b) are very similar but they are quite different from
graph (c). This means that the adjustments to the gravity observations done by the IOST and
LSC are almost the same. The reason for this similarity between the results obtained by the
IOST and LSC relies on the fact that they used the same a-priori information. Because
LSAFD did not use a-priori information, the difference show in graph (c) of Figure 6-5 is
therefore quite different from those shown in (a) and (b). There are some patterns, which are
obviously related to the observed field, in graphs (a) and (b). But these patterns do not
appear in graph (c). The reason is that the covariance (or PSD) functions used by LSC ( or
IOST) methods have been fitted to the Tscherning/Rapp model. This fitting process adjusted
the a-priori information and thus the method was not be able to reproduce the observed field
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Fig. 6-3: Differences between geoid estimates and geoid observations

102



103

-0.050 0.000 0.050
Unit: m

Fig. 6-4: Differences between geoid predictions obtained by LSC, IOST and LSAFD
methods
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a) LSC - OBS

b) IOST - OBS
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Fig. 6-5: Differences between gravity anomaly estimates and gravity anomaly observations
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Fig. 6-6: Dlﬁ‘eotglslm between gravity predictions obtained by LSC, IOST and LSAFD
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(b) OBS - 1IDFFT__
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Fig. 6-7: Differences between geoid observations and geoid estimates obtained using only
shipborne data
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Fig. 6-8: Differences between geoid estimates obtained by FC and those obtained by LSC,
IOST and LSAFD
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(b) IOST - 1DFFT

(c) LSAFD - 1DFFT
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Fig. 6-9: Differences between geoid estimates obtained by 1DFFT and those by LSC, IOST
and LSAFD
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using these new a-priori information.

Graphs (b) and (c) in Figure 6-6 show also some patterns that are related to the observed
field. We do not see these patterns in graph (c). The same reason given above can also be
used here to explain these observations.

Figure 6-7 shows the difference between altimeter geoid observation and the geoid estimates
obtained using a single input data type only, that is shipbome data. Plotted in Figures 6-8 and
6-9 are the differences between the geoid predictions obtained by combination of two types of
data and those obtained by using single input data type (gravity anomaly). We see from the
latter two figures that there are significant differences between the geoid predictions obtained
using two types of data and those obtained using single data type only. The magnitudes of the
differences shown in Figures 6-8 and 6-9 are much bigger than those shown in Figures 6-3
through 6-6. Another observation we can get from Figures 6-8 and 6-9 is that these
differences are not of random characteristic. This observation indicates that using gridded
gravity anomaly alone in the local area for geoid height prediction on the same grid may
produce significantly biased predictions. The reason lies on that the gravity anomaly data
contains only short wave length contributions of the field, while geoid height should contain
longer wavelength contributions of the field. Using gridded gravity data only for geoid
computation on the same grids causes the resulting loss of geoid height long wavelength

information.

6.3 Results From the Labrador Sea Area

This section describes the test results from the Labrador Sea area. JOST, LSAFD and LSC
are used in this area. No single input prediction has been done for this area. The data used in
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this area have been discussed before in this thesis. The input noise levels are assumed 0.15 m

for GEOSAT data and 10 mgal for the shipborme data, respectively, based on our
preprocessing results.

Table 6.12 gives the error estimates of the results. From this table we see that the internal
prediction errors for geoid height by the three methods are close and much smaller that the
corresponding input noise levels. This would mean that these three methods filtered and/or
smoothed the observations to approximately the same extent, and that the prediction of geoid
height with approximately the same accuracies has been obtained in this area by the three
methods. The error estimates for gravity anomaly predictions obtained by LSAFD are much
bigger than those by IOST and LSC, and very close to the input noise levels of the gravity
observations. We have already observed this behavior in the error estimates for LSAFD in
Table 6.1. This would imply that hardly any improvement has been obtained for the gravity
anomaly predictions by using LSAFD. -

Tables 6.13 and 6.14 show the differences of geoid height and gravity predictions obtained
employing IOST, LSAFD and LSC. From Table 6.13 we can see that some significant
deviations exist between the geoid predictions obtained by LSAFD and those obtained by
IOST and IOST. The reason is the same, as explained in the previous section. The same
observations made in Tables 6.2 through 6.4 can still be made here for IOST and LSC; the
IOST and LSC give close results and the RMS difference values between IOST results and
LSC resuits are smaller than the intemal prediction errors in all cases. From Table 6.14 we
see that the RMS differences between the gravity anomaly predictions by IOST and LSC are
close, while the RMS differences between the results obtained by LSAFD and IOST, and
those between the gravity results obtained by LSAFD and LSC are much bigger. This
observation has been already observed in the Central Mediterranean area.
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To investigate the effects of using different input noise levels on the results, we assumed
incorrect noise levels of 0.10 m for the altimeter data and of 5 mgal for the gravity data,
respectively, and the repeated the computations. Tables 6.15 and 6.16 show some statistics
on the predictions for different input noise levels. Observing these two tables, we see that the
RMS differences between geoid height predictions obtained by different methods increased
when the input noise levels deviated from the correct values, even though the incorrect values
are smaller than the correct values. This fact would still indicate that the consistency between
the results by IOST, LSC and LSAFD depends on what extent the input noise levels are
estimated and used correctly, as stated in section 6.2.3. Only noise levels that match the real
situation will give consistent results between different methods. Therefore, the closer the
estimated input noise levels to their correct values, the better the resuits can be expected.

Table 6.12: Internal prediction accuracies for [OST, LSAFD and LSC for the Labrador Sea

area
Input noise Prediction error
Method Geoid (m) Gravity (mgal) Geoid (m) Gravity (mgal)
I0ST 0.15 10.0 0.065 3.56
0.10 5.0 0.069 4.84
LSAFD 0.15 10.0 0.064 9.30
0.10 5.0 0.054 8.83
LSC 0.15 10.0 0.051 - 0.078 | 3.16 - 5.07
0.10 5.0 0.059 - 0.083 | 4.00 - 6.24
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Table 6.13 Comparison of geoid height estimates for LSC, IOST and LSAFD (input
noises are n,=0.15 m and n,,=10 mgal)

Max diff. (m) | Mindiff. (m) | RMS diff. (m) S.D. (m)
LSC - IOST 0.210 -0.174 0.032 0.032
IOST - LSAFD 0.380 -0.447 0.105 0.105
LSC - LSAFD 0.412 -0.488 0.111 0.110
LSC - OBS 0.161 -0.144 0.030 0.030
IOST - OBS 0.129 -0.159 0.029 0.029
LSAFD - OBS 0.511 -0.343 0.112 0.112

Table 6.14 Comparison of gravity anomaly estimates for LSC, IOST and LSAFD (input

noises are as the same as stated in Table 6.13)

Max diff. Min diff. RMS diff. S.D.
(mngal) (mgal) (mgal) (mgal)

LSC - IOST 14.10 -10.174 3.43 3.43
IOST - LSAFD 23.81 -27.34 9.24 9.24
LSC - LSAFD 18.93 -23.10 8.86 8.86
LSC - OBS 12.79 -13.63 3.51 3.51
JIOST - OBS 12.95 -15.10 3.25 3.25
LSAFD - OBS 25.69 -22.31 9.12 9.12




Table 6.15: Differences of geoid height estimates for different input noise levels
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Input noise Max diff. | Min diff. [RMS diff. | S.D.
Geoid (m) | Gravity (mgal)]  (m) (m) (m) (m)
LSC -IOST 0.15 10.0 0210 | -0.174 | 0.032 0.032
0.10 5.0 0.337 | -0.303 | 0.050 0.50
LSC-LSAFD| 0.15 10.0 0412 | -0488 | 0.111 0.110
0.10 5.0 0.576 | -0.593 | 0.146 0.146
IOST -LSAFD}  0.15 10.0 0.380 | -0447 | 0.105 0.105
0.10 5.0 0.519 | -0.621 | 0.153 0.153
Table 6.16: Differences of gravity anomaly estimates for different input noise levels
Input noise Max diff. | Min diff. %RMS diff. | S.D.
Geoid (m) | Gravity (mgal)] (mgal) | (mgal) | (mgal) | (mgal)
LSC -IOST 0.15 10.0 14.10 | -10.174 | 3.43 3.43
0.10 5.0 15.61 -14.44 3.72 3.72
LSC-LSAFD| 0.15 10.0 18.93 -23.10 8.86 8.86
0.10 5.0 18.25 -30.28 9.00 9.00
IOST-LSAFDy  0.15 10.0 23.81 -27.34 9.24 9.24
0.10 5.0 18.67 -23.10 8.25 8.25

From Table 6.16, we see that the consistency between the gravity predictions obtained by
IOST, LSC and LSAFD because, in most cases, slightly worse when we change the variance

values of both input noises from their correct values to incorrect values. The internal

prediction errors shown in table 6.12 show no clear dependency on the input signal-to-noise

levels.
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CHAPTER SEVEN
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

1) Optimal estimates of gravity field quantities can be obtained by optimal combination of
multiple data types using either space or spectral techniques. Comparisons of the geoid
height predictions obtained using two data types and those obtained by using a single data
type (gravity anomaly only) show that significant deviations existed. The combination of
two types of data gives much better results than the use of only one data type. This
suggests that for a local area, if multiple data types are available, all the data types should
be incorporated into the solution.

2) Previous computations of gravity field quantities using spectral methods usually provided
no error estimates of the results. This has been considered, in fact, as a disadvantage of the
spectral methods. The numerical computations carried out in this study suggest, however,
that reliable error estimates of the results using spectral methods can be obtained. The
space domain method (LSC) provides different error estimates for each grid point. In
using spectral methods, however, a single error estimate is obtained for all the grid points
because stationarity has to be assumed for the input errors.

3) When using LSC, isotropic signal covariance functions are assumed. The use of isotropic
signal functions in LSC makes the computations much simpler than using non-isotropic
ones. When using the IOST method, non-isotropic PSDs can be used without increasing
the difficulty and the complexity of the computations. Numerical testing carried out in this
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study shows that using non-isotropic signal PSDs (derived by the direct method) in IOST

gives better results than using isotropic ones (derived by the indirect method), according to
the internal prediction errors. This can be explained by the fact that the real gravity field is
actally non-isotropic. Since IOST can easily handle non-isotropic PSDs, which are more
close to reality than isotropic ones, and better results have been obtained by using non-
isotropic PSDs than using isotropic ones, we suggest that the non-isotropic PSDs should
be used along with IOST. Note also that the dimensions of the matrices of the a priori
information used by LSC and IOST are different. The dimension of the covariance matrix
used in LSC are much bigger than the corresponding PSD matrix used by IOST. This is

one reason why the LSC takes longer to compute.

4) Among the three methods, IOST and LSC give close resuits for both geoid height and
gravity anomaly predictions, which can be explained by the fact that they use the same a
priori information. LSAFD gives, to some extent, different results than IOST and LSC,
which can be explained by that the LSAFD method has only one role, that is to carry out a
combination adjustment employing input noise PSDs, while IOST and LSC have both
filtering and adjustment functions. These two characteristics of [OST and LSC ensure that
always more reliable results can be expected from IOST and LSC than LSAFD.

5) Numerical tests show that the prediction errors of the results depend on the reliability of
the a priori information and also slightly on the signal to noise ratios.

7.2 Recommendations and Future Plans

1) Geoid heights obtained by a combination of data from different altimeter missions could
be further combined with shipbome gravity anomalies using the methods investigated



herein to improve the accuracies of geoid height and gravity anomaly pred:cnonsl?:he
use of LSC for the combination of altimeter data from different missions has the
advantage that it can use all the available data with varying resolutions. Yet, the use of
LSAFD and IOST for the combination of different altimeter missions requires that all the
data be reduced to the same resolution. This problem can be overcome by employing the
hybrid FFT/integration technique proposed in Sideris (1995b) or the wavelet
multiresolution analyzing techniques studied in Li (1996).

2) The LSC, IOST and LSAFD can be used for gravity field recovery by a combination of
any number of data types that are related to the gravity field. We tested only with two
commonly available data types (geoid height and gravity anomaly) in this study. Numerical
experiments and comparisons of these three methods for the optimal combination of data
from different altimeter missions as well as from airbome gravimetry are also planned for

the near future.

3) As it has been pointed out in Chapter 1, the use of geoid gradient instead of geoid height
as input offers us many advantages when dealing with altimeter data. The derivative
operation (to obtain geoid gradients from sea surface height observations) acts as a high-
péxss filter. This operation suppresses the long-wavelength radial orbit errors and other
long-wavelength errors in the SSH, and also enhances the short-wavelength signals of
the gravity field. No crossover adjustment is needed for the altimeter data if geoid
gradients are used. Further studies on the combination of geoid gradients with other
types of data using LSC, IOST and LSAFD should be done.

4) The noise PSDs of the altimeter-derived geoid height should be obtainable by using the
method described in section 4.4. We used gridded data for such computations in the
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Labrador Sea area, and unfortunately, were not able to obtain reasonable noise PSDs.

We think that this failing is due to the use of gridded data. The gridding procedure
smoothed the observed field (suppressed the noise) and produced non-random noises for
the gridded observations. The method used for computing the noise PSDs, however,
requires that the noises present in the observations be random noises. Therefore, we
should consider using the observations directly in the computation of the noise PSDs.
An extensive study on noise PSD estimations using real data should be carried out.

5) Numerical experiments and comparisons of these three methods and other methods such
as the wavelet transform for the optimal combination of data from different altimeter
missions are also planned for the near future.
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