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Abstract—The Internet of Things (IoT) trend is introducing
additional devices to home networks. Home networks face the
same threats as every other network. Recently, IoT devices
have been compromised by attackers and used as staging points
for further attacks. Home users may not have the technical
capability or funding to run advanced security devices designed
to protect enterprises. Solutions to this problem exist, but in some
cases, they rely on third party cloud services or require custom
protocols to be deployed within the home network. Reliance
on third party services comes with privacy implications, as
well as the increased risk for a third party to be responsible
for securing a network they may not directly control. Custom
network protocols can effectively reduce the attack surface of
home networks, but these are not easily compatible with devices
in operation today. In this paper, we propose a new model for
protecting home networks utilizing OpenFlow enabled Access
Points (APs). The solution automatically builds least-permissive
policies for each device and subsequently enforces the policies
without requiring customized protocols. This allows the system
to protect any connected wireless device. The design allows for
a flexible deployment model and is capable of running on low
cost hardware as an all-in-one unit. We perform a complete
implementation and evaluation of the solution. The system can
effectively limit the ability for compromised IoT devices to attack
internal and external networks at a low cost to initial connection
times.

I. INTRODUCTION

A. Security and the Internet of Things

The Internet of Things (IoT) is the growing trend to connect
every device to the Internet. It is estimated that 500 billion
devices will be connected to the Internet by the year 2030
[1]. The IoT trend is connecting many devices including:
fitness devices, televisions, refrigerators, washing machines,
and alarm systems. IoT devices target both home and corporate
networks.

Increased connectivity results in additional security chal-
lenges for networks. Networks face a number of diverse
threats, including: ransomware, malware, and denial of service
attacks. Cyber attacks have sparked a new industry, the Cyber
Attack Business [2]. Enterprise and home networks are targets
for malicious actors.

The cyber security industry is growing rapidly to counter
malicious actors. The cyber security market is projected to
have an estimated value of $248 billion by the year 2023
[3]. There are many products available in the market for
advanced users and enterprises. These solutions include tech-
nologies such as Intrusion Detection Systems (IDSs) and Next-
Generation Firewalls (NGFWs) [4]. These advanced solutions
can be costly to acquire or require specialized hardware and
knowledge for proper configuration. This presents difficulties
when applying the same concepts to a home network as
assumptions cannot be made about the home user in terms of

network administration capabilities. Devices marketed towards
home users have a track record of being inadequately hardened
which has led to home users being subject to attacks. Recent
examples include the VPNFilter campaign [5] which targets
routers and is used as a staging point for future attacks.
Search engines targeting insecure network devices enable
quick discovery of improperly configured or insecure devices
[6].

The National Institute of Standards and Technology (NIST)
groups the challenges faced by IoT devices into three cate-
gories [7]: device security, data security, and privacy. Device
security is essential in preventing the device from being used
as a pivot point for further attacks. Data security refers to
protecting the Confidentiality, Availability and Integrity (CIA)
of data being generated or stored on the device. Privacy
encompasses the protection of an individuals’ privacy through
the use of an IoT device. Following the CIA model, there is a
range of security issues that impact IoT devices such as data
leakage, denial of service, and impersonation (see [8] for a
detailed discussion).

Transferring responsibility for home network protection to
Internet Service Providers (ISPs) is proposed as a solution for
addressing IoT security problems [9]. Such an approach could
effectively address insecure IoT devices being connected to
the internet. Two variations of this solution can be envisioned:
thick and thin. In the thick security model, the home user is
ultimately responsible for all network security and the Internet
Service Provider (ISP) provides no support to the home user.
In the thin security model, the ISP takes full responsibility for
the home network and is responsible for ensuring it remains
secured. However, this approach may have legal implications
for the ISP as discussed in [9]. IoT devices also encounter
availability challenges as they often rely on Cloud Service
Providers (CSPs). If a home relies on a cloud service with
no local fallbacks, it may become unresponsive or unreliable
if the upstream provider becomes unavailable. A solution is
to place an offline device in a home network to synchronize
states between local and cloud services [10]. We explore
related work and our solution to address the aforementioned
challenges in the remainder of this paper.

B. Our Work

In this work, we present the design and evaluation of a
solution to secure home networks which we call the Flow Pol-
icy Enforcer (FPE). The FPE takes a least-permissive policy
based approach to network security. This enables IoT devices
to operate as intended but restricts their network functionality
in the event they are compromised, thereby reducing the ability
for an attacker to use an IoT device to stage further attacks.
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Our approach differs from other works which require cus-
tom protocols or customization to the network infrastructure.
Some of these other works are explored in the next section of
this paper. While these solutions are able to provide security,
they would not be compatible with current networking stan-
dards out of the box. As a result, our solution is designed with
the following goals in mind:

• Vendor agnostic: It must only require a compatible access
point and not require hardware from a specific manufac-
turer.

• Compatible: There can be no modification to the end
devices or customization of network protocols.

• Automatic: User interaction is not required. Additional
functionality can be utilized by the user if they choose to
do so.

• Secure: IoT devices are limited to least-functionality
to restrict their network access in the event they are
compromised.

The FPE controls data flow through an OpenFlow enabled
Access Point (AP). Such APs are commercially available.1

As devices are connected, the FPE automatically learns least-
permissive policies for each device. After a period of time,
the learned policy is enforced on the device. This prevents a
compromised device from being used to attack other network
resources. Additionally, the FPE does not require any cloud
services for data processing and all data resides in the privacy
of the home network.

Our contributions in this paper are:
1) We present the Flow Policy Enforcer, our solution to

address the security challenges associated with IoT
devices.

2) We implement the FPE and deploy it on low-cost
hardware in a Local Area Network (LAN).

3) We present measurement of the system and demonstrate
the effectiveness of our solution.

C. Paper Organization

Background Information and Related Work is reviewed
in section II. The solution is proposed in section III and
implementation is discussed in section IV. System evaluation
is explored in section V. The work is concluded and future
work is discussed in section VI.

II. BACKGROUND AND RELATED WORK

A. Background Information

1) Software Defined Networking: Traditional network de-
vices such as routers and switches integrate the control and
data planes into a single device. The control plane makes
decisions on how network traffic should be forwarded within
the device and the data plane is responsible for performing the
forwarding actions. Software Defined Networking (SDN) [11]
is a model for separating the control plane from the data plane.
The control plane logic is brought into a centralized controller
which can make decisions based on the entire network layout.
The network devices receive forwarding instructions from the

1For example, the AT-TQ4600-OF13 by Allied Telesis

centralized controller and perform forwarding actions based
on received rules.

2) OpenFlow: OpenFlow is an SDN protocol which allows
for detailed control of the forwarding plane in network devices
[12]. For example, in a conventional switch, the control plane
and the forwarding plane are combined in a single unit.
OpenFlow allows the control plane to be configurable. By
extension, this configurability allows the forwarding plane to
perform custom actions as defined by the OpenFlow controller.
The processing pipeline of OpenFlow is defined in flow tables
and flow entries.

Flow tables are read in sequential order and allow for sets
of flow entries to be grouped together in a single table. When
a matching flow entry is found, the actions configured in the
flow entry are executed.

Flow entries are comprised of the following fields: a cookie,
priority, match fields, counters, and actions. The flow entry can
be configured to perform actions including modification of the
frame and sending it out of a specified port, group of ports,
and sending the frame itself to the network controller. A low
priority flow entry can be used as a default action in the device
to handle unknown frames.

A controller is capable of configuring the flow rules on
OpenFlow devices. Controllers can add, update, and remove
flow entries and flow tables from a central point in the network.
This allows for detailed control of network devices which
extends beyond functionality provided by standard network
protocols.

B. IoT Device Identification

Successful identification of IoT devices can be used to
provide the network with additional information. This infor-
mation could be used to restrict access or ensure that traffic
originates from a trusted IoT device. Aman et al. proposed a
data provenance protocol for identifying devices [13]. Their
work builds on the use of Physical Unclonable Functions
(PUFs) of a device. A PUF is a feature of a physical object
which can be treated as unique and unclonable. When the
IoT is initially deployed, a Challenge-Response Pair (CRP)
from the device is registered with the server. The PUFs are
used to generate and register a set of fingerprints with the
server. Future communications between the IoT device and
server require the use of the appropriate fingerprint and can
be used to mutually authenticate each other.

Meidan et al. proposed the use of machine learning clas-
sifiers to identify IoT devices based on network traffic in
their solution called ProfilIoT [14]. Given a device and a
series of sessions, a classifier is constructed for each session
of the device. These classifiers output a probability for any
input session that the input was generated by the device.
The optimal classification threshold for each of these single-
session identifiers is calculated. Finally, the optimal count of
individual single-session identifiers is calculated to provide no
false positives or false negatives for a given device. Once the
classifiers are constructed, session flows can be run through
the classifiers to identify which device is generating traffic on
the network.
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In [15], Danev et al. explore the identification of devices
based on physical layer attributes. These attributes can be the
result of manufacturing imperfections or other in-specification
or out-of-specification operation of wireless equipment. In
their survey, the authors discuss the feasibility of identifying
802.11 wireless devices based on physical attributes. Further
research is required to determine feasibility, cost and other
factors of this approach.

Our solution varies from the approaches in [13] and [14] as
we automatically build policies for any device connected to the
network. We do not require specialized hardware to identify
connection characteristics or perform machine learning based
on sets of well-known devices.

C. OpenFlow in WiFi and Security

There are some works on using OpenFlow in WiFi net-
works. For example, Vestin et al. explore the use of OpenFlow
in Wireless Local Area Networks (WLANs) in [16]. In this
work, the CloudMAC platform is composed of the following
pieces: Wireless Termination Points (WTPs), Virtual Access
Points (VAPs), an OpenFlow controller, and an OpenFlow
switch. The VAPs are virtual machines which run on a central
server and perform actions as if they were a traditional AP by
processing frames. WTPs are antennas which are used solely
for the purpose of receiving and transmitting packets. The
OpenFlow switch is controlled by the OpenFlow controller and
the controller sets up flow rules forwarding packets between
VAPs and WTPs. Performance testing done by the authors
shows that the setup has low enough latency to support
traditional wireless clients.

Porras et al. proposed a method for securing OpenFlow
flow rule changes called FortNOX in [17]. FortNOX is an
extension for the NOX OpenFlow controller and can be run as
an extension of the controller. FortNOX provides a mechanism
for a network administrator to define a policy for the network.
FortNOX ensures that new flow entries do not conflict with
the policies defined for the network. In the case of a conflict,
FortNOX performs a series of comparisons, including the
priority of the source requesting the rule to be added. An
administrator is notified in the case where a conflict cannot
be resolved.

Our solution varies from [16] as we do not virtualize the
AP functionality to an external server. Similar to [17], we take
a least-permissive policy based approach. Our solution differs
as we automatically learn and enforce policies on network
devices instead of focusing on conflicting OpenFlow rules.

D. Cloud Based Firewalls

Cloud based firewalls are another approach for protecting
networks. These firewalls utilize a cloud component for anal-
ysis and can scale in the cloud to meet customer demand.
Taylor et al. show this is a viable approach and explore the
potential impact of latency and data center locations in [18].

Shirali-Shahreza et al. introduce a cloud based solution for
protecting home networks in [19]. In this work, network pro-
tection is broken down into two main components: the enforcer
and the mastermind. The enforcer is a device which sits at the

network edge. This allows the enforcer to either allow or block
flows at the edge of the network. The mastermind is a cloud
service that communicates with and configures the enforcer.
The enforcer samples flows and sends sampled packets to the
mastermind. As the mastermind receives information from the
enforcer, it can update flow rules on the enforcer to block
malicious flows, as well as adjust the sampling rate on the
enforcer to account for networking impact of the sampling
process.

Nobakht et al. proposed a method for protecting home
networks called IoT Intrusion Detection and Mitigation (IoT-
IDM) in [20]. This approach proposes that a home user and a
Software as a Service (SaaS) provider coordinate on network
security. The devices to be monitored must be manually input
by an administrator into the IoT-IDM system. Once configured,
a virtual sensor is created over the network flow which sends
traffic to a feature extractor. The feature extractor analyzes
fields of interest to the flow and a detection unit builds machine
learning models based on the features. These models can then
be placed in a mitigation module which runs the machine
learning modules and can block flows that are considered to be
malicious. The SaaS provider is responsible for configuration
of the feature extractor and detection units to identify which
fields are of interest and which models should be built off of
acquired data.

Our approach differs from [19] and [20] as our solution
is deployed within a LAN. Avoiding reliance on third parties
allows us to avoid privacy and availability concerns associated
to cloud based solutions.

III. FLOW POLICY ENFORCER

A. System Architecture

Figure 1 is a diagram of the system architecture. The Flow
Policy Enforcer (FPE) is comprised of four components: a
web application, an SQL database, an OpenFlow controller,
and the Redis database [21].

Access PointFlow Policy Enforcer

Web Application
OpenFlow 
Controller

Redis

SQL 
Database

Open vSwitch

wlan0

eth0

hostapd

Fig. 1. Architecture of the Flow Policy Enforcer.

B. Web Application

The web application is responsible for maintaining system
state and integrity. It utilizes an SQL database for all recorded
data. The web application publishes messages to the controller
using Redis based on user interaction. For example, a message
is sent to the controller via Redis if the user decides to block
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all network access for a given device. The web application
also provides a user interface which allows users to manage
the system, modify rules, view usage statistics, and transition
device states. We will explore rules and device states in a later
section.

The web application also hosts a REST API which exposes
functionality to the OpenFlow controller. The API has two
primary endpoints:

• The access points endpoint allows the controller to re-
quest an initial set of rules and a list of managed devices
from the web application. This endpoint is also used by
the controller to register a new station to a given AP.
If a station has already been registered, its registration
is updated to point to the newly associated AP. The
registration process is used to reduce the number of flow
rules created for a given station in the event that the
system is managing multiple APs.

• The packets endpoint allows the controller to submit DNS
lookups and statistics to the web application. These data
types are submitted to the web application for processing
as it is not critical to process the data quickly.

C. OpenFlow Controller

The OpenFlow controller interfaces between OpenFlow
enabled access points, the web application, and the SQL
database. It communicates to the web application using the
REST API, receives messages from the web application via
Redis queue subscriptions, and communicates with access
points using the OpenFlow protocol.

The controller maintains a persistent connection with each
connected AP. When a connection to an AP is created, the
controller performs two main actions. First, it creates a set
of default rules on the AP. Secondly, it utilizes the access
points API endpoint to request an initial set of rules for each
station which belongs to the AP. This persistent connection is
also used when the controller receives instructions to create
or modify flow rules from the web application.

The controller maintains a list of device states in memory.
These device states are used to determine which actions the
controller should take when an unknown packet reaches the
controller through one of the default rules on the AP. If
applicable, the controller will process the packet, create a rule
to permit the connection in the access point, and inject the
permitted packet through the data plane of the access point.
This rule will be saved in the SQL database as described in
the next section.

D. Client States

Any device associated to the AP can be in one of four
states: Full Access, IoT Learning, IoT Frozen, or Blocked.
The states can be represented as a complete graph, that is, a
device can be transitioned between any two given states by the
user. The system will automatically transition clients between
the IoT Learning and IoT Frozen states once the learning time
has elapsed. In addition to the transitions, the initial state is
configurable by the user, but, by default, it sets all devices
which connect for the first time as IoT Learning.

We assume that IoT devices initially connected to the
network are not compromised. Additionally, we assume that
they will not be compromised for a period of time. By default,
we specify the learning time as 48 hours. These assumptions
are made to provide learning time for construction of per-
device policies. The automatic transition between the IoT
Learning and IoT Frozen states satisfies the automatic goal
of the system.

Full Access allows the device to have unrestricted access
to local and external networks. This is provided as an option
in case the user connects a laptop or other device for which
they do not want to restrict access. The Blocked state creates
a drop rule for the specified device to prevent it from sending
or receiving data on the network.

E. Device Policies

Each device being monitored is assigned a unique policy. A
policy is a collection of rule sets. Each rule set is a collection
of rules. By default, every policy has a default learning policy
where automatically learned rules are recorded. Optionally,
users can create custom rule sets and apply them to multiple
policies.

A rule is the collection of parameters which define allowed
communication paths for the device. Each rule is constructed
of the following elements: source MAC address, destination
MAC address, source IP address, destination IP address, port,
protocol (TCP or UDP), and direction (inbound or outbound).
The direction is used to configure the port on the correct
OpenFlow rule due to source port randomization. On outgoing
connections from the IoT device, the port is compared to the
destination port of the external server. Conversely, on incoming
connections to an IoT device, the port is compared to the
destination port to the IoT device. The technical details of
each rule are abstracted from the user in the web interface.
The devices can be assigned a custom name and icon. If the
user goes into the rule modification view, they can see the full
details of each rule.

While a device is in IoT Learning state, the FPE module
constructs policies by creating rules based on traffic generated
by the device. The goal of this approach is to generate a
minimal rule set which allows the device to function as
intended. As the device transitions into the IoT Frozen state, it
can only communicate with resources allowed by the policy.

F. AP Default Rules

When an access point first connects to the controller, it
receives a set of default rules from the controller to support
basic functionality. Table I lists the default rules.

TABLE I
DEFAULT RULES CONFIGURED ON ACCESS POINTS

Number Priority Input Output Rule

1 100 wlan0 local type=0x888e
2 100 local wlan0 type=0x888e
3 50 eth0 wlan0 dest=ff:ff:ff:ff:ff:ff
4 0 any controller match any
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Fig. 2. A screenshot of the stations page within the user interface.

Rules 1 and 2 support EAPOL packet forwarding for
authentication using WPA2 to the hostapd service running on
the access point. Rule 3 configures the forwarding of broadcast
packets from the local area network to the IoT devices; this
enables support for protocols such as DHCP. Rule 4 is a default
rule that sends any packet which does not match a higher
priority rule to the controller. Rule 4 is used by the controller
to enrol any device seen for the first time with the FPE. It also
enables the controller to handle packets which do not match
other rules.

G. Station Default Rules

TABLE II
DEFAULT RULES PER IOT DEVICE

Number Priority Input Output Rule

5 24 wlan0 controller type=tcp
source=IoT MAC

6 24 eth0 controller type=tcp
dest=IoT MAC

7 24 wlan0 controller type=udp
source=IoT MAC

8 24 eth0 controller type=udp
dest=IoT MAC

9 23 wlan0 eth0 source=IoT MAC
10 23 eth0 wlan0 dest=IoT MAC

The controller requests a list of IoT devices from the web
application. For each IoT device identified, the controller
creates a set of rules. Rules 5-8 serve to redirect any TCP and
UDP traffic to the controller. When this occurs, the controller
extracts the information from the packet necessary to construct
a rule. The controller then queries the SQL database to see
if a matching rule has been recorded. If a matching rule
is not found and the device is in IoT Learning mode, the
controller creates the rule in the AP with a priority of 25. The
priorities were chosen such that IoT Device rules would be
processed in between Rules 3 and 4 from Table I, as rules
are processed from highest to lowest priority. The learned
rule is subsequently written to the database. In the event the
device is in IoT Frozen mode and a matching rule is found, the
same process is followed with the exception that a new rule is
not written to the database. An idle timeout of 30 minutes is
configured on IoT rules to reduce the set of rules maintained
in the access point. The rule is removed from the flow table
if a packet matching the rule has not been processed within
the idle timeout.

Rules 9-10 allow other types of traffic between the station
and the network such as ARP and ICMP. It would be possible

to expand on Rules 9-10 to make them more restrictive in the
future.

H. DNS Support

Restricting rules to IP addresses may be problematic when
devices use DNS, as the destination IP address may change
on future connections. In order to address this challenge,
the system dynamically tracks DNS responses and associates
domain names with rules.

When the FPE creates an allow rule for UDP on port 53
on the inbound direction to an IoT device, it creates a flow
rule with a set of actions. First, the packet is sent to the IoT
device. Next, a VLAN tag is added to the packet and the
packet is sent to the controller. When the controller receives a
packet and parses the VLAN tag, it sends the domain names
contained within the response to the web application. The
web application records the IP addresses associated to the
domain name. This allows the web application to compare new
connection requests from IoT devices to both the initially-seen
IP addresses and the IP addresses associated with the domain
name in the datastore.

IV. IMPLEMENTATION

A. User Interface

We performed a full implementation of the FPE for evalu-
ation purposes. The web application allows the user to view
APs, stations, rules, and settings. Figure 2 is a screenshot from
the stations page within the user interface. This page shows
information such as the device, MAC address, manufacturer,
and device state. The Quick Action buttons allow the user to
transition the device between any of the states.

The user may select any station and view, modify, and delete
the rules which restrict the device to given flows once in the
IoT Frozen state. Usage information for each rule is gathered
from the AP and displayed to the user. Figure 3 is a screenshot
from the user interface and shows the bandwidth usage of one
iPerf3 [22] session between a station and a server running on
the LAN. The UI displays Home Network as the connection
type as the IP address belongs in the RFC1918 [23] range.
Otherwise, it would display Internet.

Fig. 3. Screenshot of rule representation and usage information.
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Additionally, the user may modify the default learning
time for IoT devices and the default state for new devices
connecting to the access point. The system defaults to IoT
Learning with 48 hours of learning time in order to provide
secure default configurations.

B. Implementation Details

1) Web Application: The web application was written in
Ruby on Rails, running on Ruby version 2.6.3 with the Rails
framework version 6.0.0. This framework was chosen for cross
compatibility across many platforms. The FontAwesome [24]
library was used for displaying intuitive icons in the user
interface.

2) OpenFlow Controller: The controller is a custom con-
troller written in the Go programming language. It uses
the gopacket [25] and gofc [26] libraries for packet seri-
alization and OpenFlow communication. Go compiles to a
native executable and allowed us to achieve a small memory
footprint in comparison to other commonly used OpenFlow
controllers based off of the Java programming language. Go,
in combination with the aforementioned libraries, facilitates
working with packet data and TCP connections, such as the
OpenFlow datapath. The ability to customize all OpenFlow
actions enables the controller to perform actions tailored to
the FPE design.

C. Data Flow

Figure 4 is a sequence diagram representing the communi-
cation flow for packets being processed by the FPE for the
purpose of learning or enforcing a policy. In this case, there
are no rules for forwarding the packet installed in the Open
vSwitch instance on the AP and in this example the packet
matches Rule 4 from the previous section.

Device Open vSwitch
OpenFlow 
Controller

SQL Database

1

2

3

5

4

6

7

Fig. 4. Sequence diagram for learned packets.

The steps in the data flow are as follows:
1) The wireless device sends a packet to the AP.
2) The packet is sent from the AP to the controller via an

OpenFlow PacketIn message.

3) The controller compares the MAC addresses contained
within the packet to the list of IoT devices being
managed by the controller. If a match is found, the
controller queries the SQL database for a recorded rule
matching parameters of the packet.

4) The SQL database responds to the query.
5) The controller constructs two OpenFlow Flow Modify

messages. These two messages allow for bidirectional
communication through the AP for matching packets.
The Open vSwitch interface receives the Flow Modify
messages and adds the flows to the flow table.

6) The OpenFlow Controller constructs an OpenFlow Pack-
etOut message with the packet contained within the
PacketIn message. This message is sent to the AP and
the packet is sent from the data plane in the device.

7) The OpenFlow Controller records the rule in the SQL
database.

Steps 1-6 are followed for devices in the IoT Learning or
IoT Frozen states. Step 7 would not occur for a device in the
IoT Frozen state. Additionally, steps 3-7 would not occur if a
matching rule was not found in the event the device is in the
IoT Frozen state.

D. Challenges

A number of challenges were faced during the implemen-
tation of the system.

1) Packet Loss: In an early implementation, the packet was
passed from the OpenFlow Controller to the Web Application
for processing and the PacketOut message was not utilized.
This led to the first packet of each flow being lost and required
the source to resend the packet. This led to significant delays as
it relied on the source operating system to retry the connection
after the flow was installed in the Open vSwitch. Persisting the
packet in the OpenFlow Controller until a decision was made
and then injecting it into the data plane of the Open vSwitch
alleviated this issue.

2) Bidirectional Data Flow: Each rule in the policy results
in two flows being installed in the Open vSwitch instance. This
also requires the flow to be constructed from the perspective
of the ingress and egress port. For example, assume a device
is connecting through the AP to a server. When the ingress
port is the wireless interface, the source MAC is the device
and the destination MAC is the server. When the ingress port
is the ethernet interface, the source MAC is the server and the
destination MAC is the device. Application logic was written
to create the least-permissive flow rule with respect to the
ingress and egress port.

3) Code Efficiency: Packet processing must be efficient
in order to minimize impact to devices. Significant effort
went into the codebase and methods chosen to minimize the
processing time within the OpenFlow Controller and the Web
Application.

E. Deployment

The FPE supports two deployment models. It can be run
on a server and used with any OpenFlow enabled AP in the
network. It can also be deployed on a device configured to
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run both the FPE and an AP, such as a Raspberry Pi. This
flexible design allows the FPE to protect any IoT device which
operates as a client to 802.11 wireless networks. Monitoring
communications at the AP enables the system to prevent
compromised IoT devices from attacking internal and external
resources.

The ability to use FPE with any available hardware without
customizing any protocols satisfies the goal of having a
vendor agnostic solution. The user can elect to use FPE with
the vendor of their choice or run it on low-cost hardware.
Additionally, the goal for compatibility is achieved through
the use of OpenFlow and well-defined protocols.

V. EVALUATION

We performed three different evaluations of the FPE. First,
we conducted performance testing of the system. Next, we
performed an analysis of IoT devices using the FPE. Finally,
we discuss the merits of the system in terms of security and
usability.

A. Performance Testing

1) Connection Testing: Tests were performed using a Rasp-
berry Pi 4 as an AP. Each test was performed using the same
AP in different configurations.

• Topology One uses the Raspberry Pi as an AP running
hostapd in bridge mode, without Open vSwitch.

• Topology Two uses the Raspberry Pi with Open vSwitch
forwarding rules configured. This represents a system
with the rules populated in the flow table.

• Topology Three runs the FPE in learning mode and Open
vSwitch on the Raspberry Pi.

• Topology Four runs the FPE in learning mode on a
server separate from the Raspberry Pi AP running Open
vSwitch.

In order to reset the learning mode for Topologies Three
and Four, the learned rule was erased from the database and
the flow table cleared from the Open vSwitch instance. Each
measurement was performed 10 times and the average result
was taken. The Raspberry Pi is configured using the 2.4GHz
802.11G band. The Unix time utility was used in combination
with iPerf3 sending a 500 byte message to represent the delay
a user would encounter while using the FPE to initiate a new
connection. Table III lists the results.

TABLE III
AVERAGE CONNECTION ESTABLISHMENT TIME PER TOPOLOGY

Topology Time (milliseconds)

One 106
Two 104

Three 145
Four 114

Based on the results, we see that there is a cost to using
the FPE module depending on the deployment method used.
Hostapd and Open vSwitch with flow rules installed are close
with 106 and 104 milliseconds on average, respectively. Run-
ning the FPE on the Raspberry Pi caused the initial connection

to take 145 milliseconds on average, which is an increase of
41 milliseconds over the best case. When running the FPE on
a separate server, the initial connection time was on average 8
milliseconds slower than hostapd and 10 milliseconds slower
than OpenFlow with rules already configured. It should be
noted this is for new connections that are not already in the
flow table. The FPE installs flow rules with an idle timeout of
30 minutes to enable quick reuse of existing rules.

The connection delay is less significant when put in context
of an ongoing transmission. While there is a slight delay in
setting up the flows for the first packet, subsequent packets
would follow the timing of Topology Two as the flows would
already be established.

2) Scalability Testing: We performed scalability testing of
the FPE focusing on Topologies Three and Four described in
the previous experiment. This was accomplished by writing
a custom testing framework in Go utilizing goroutines. A
goroutine is a concurrency feature in Go. For the purpose of
scalability testing, the framework was configured to generate
packets which were guaranteed to result in new rules being
learned by the system.

The physical ethernet and wireless interfaces were replaced
with virtual interfaces in the Open vSwitch instance. The
testing framework creates two primary goroutines. The pro-
ducer injects the desired number of packets on one virtual
interface and records the time of packet creation in a shared
memory location. When the consumer thread receives a packet,
it creates a new goroutine, records the current time and goes
into a waiting state. Once all of the packets have been received,
the consumers read from the shared memory location and
record the duration of time between packet injection and
packet reception.
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Fig. 5. Individual packet processing time during scalability testing.

Figure 5 displays the experiment results. Each experiment
was repeated 10 times and the average result was recorded.
For the maximum cases, the average of the maximums was
recorded.

The FPE results in higher delays per packet as the number
of new concurrent connections scales in the Raspberry Pi. It
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should be noted that this is the worst-case scenario in which
the FPE receives a large number of new connections with no
existing flow rules existing in the Open vSwitch instance. The
results of this experiment show the FPE can handle a moderate
number of new concurrent connections at a given time when
running on the Raspberry Pi and can scale to a significant
number of new connections when running on a separate server.

3) Blocked Connection Testing: We also performed an eval-
uation of system performance while blocking some connec-
tions based on Topologies Three and Four. The performance
of the system was evaluated while measuring the packet
processing time as an increasing number of connections were
blocked.

In each test, 50 new connections were created using the
same scalability testing framework as previously described.
The device was configured to be in the IoT Frozen state. Rules
were pre-created in the database but were not created as flows
in the Open vSwitch instance. This allowed us to evaluate the
performance of the system in the case where rules have been
learned by the FPE.

The number of blocked connections were increased from no
blocked connections to 25 blocked connections. As blocked
connections were introduced, they were evenly distributed in
the permitted connections. This allows a better representation
of overall performance of the system by preventing the clus-
tering of blocked or permitted connections being processed by
the FPE. For example, every second connection was blocked
when testing 50 new connections with 25 connections being
blocked.
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Fig. 6. Individual packet processing time during blocked connection testing.

Figure 6 shows the results of this experiment. As we can
see, the system can efficiently block unknown connections
while permitting learned rules to be installed in the Open
vSwitch instance and injecting the packet into the data plane.
As the number of blocked connections increases, the average
and maximum packet processing time of permitted packets
decreases. This is a result of the system performing fewer ac-
tions to process the blocked packets. Once the FPE determines
a packet is not to be permitted nor learned, as the device is in

the IoT Frozen state, the processing pipeline can immediately
stop processing. This allows for more resources to be spent on
processing the next packet in the FPE queue. This performance
improvement is noticeable when the FPE is running on the
server than when it is running on the Raspberry Pi.

B. IoT Device Analysis

1) IoT Scale: We connected an IoT scale to the FPE
for analysis. The scale uploads the user’s weight and other
information for display in a mobile phone application. Four
flow rules were recorded for the device. The four flows were:
DHCP, two DNS lookups, and one connection to an upstream
server.

The scale performed DNS lookups against the DHCP-
provided DNS server and the 8.8.8.8 DNS server. The device
failed to operate when blocked from communicating with
8.8.8.8. The scale remained functional when blocking the
device from the DHCP-provided DNS server and allowing it
to access the 8.8.8.8 DNS server. This result is interesting as
the device does not respect attributes provided by the DHCP
server and requires access to what appears to be a hardcoded
IP address. This device would lose functionality in the event
of upstream connection issues to 8.8.8.8, regardless of the
availability of alternative DNS servers. Despite the unexpected
DNS behaviour, the device did not appear to create many
connections to the internet beyond the intended purpose of
the device.

2) Smart TV: We connected a Smart TV from a well known
manufacturer to the FPE. Smart TVs have been subject to
criticism and privacy concerns [27]. The goal of this analysis
was to allow the TV stream content from a popular streaming
service and block all other connections. We obtained the list of
domain names from the streaming service website. We created
a rule set for the streaming service domains and attached the
rule set to the policy for the TV. Since the domains provided
by streaming service may use subdomains, we configured the
rule set to allow for any subdomain of the whitelisted domain
names to be used.

We noted that the Smart TV attempts many connections to
services beyond those necessary for streaming content. Based
on the DNS requests, these connections include connections
to social media services, log aggregation services, advertising
services, and other vendor-managed servers. However, we
were able to successfully block these connections and create
a least-permissive policy for the device. In the end, the policy
had nine rules: DHCP, DNS, and seven domain names for the
streaming service.

This demonstrates the value of configurability within the
FPE to address privacy concerns while still enabling an IoT
device to perform desired functionality.

C. System Discussion

1) Security: As we have seen, there is a cost to running
the FPE in terms of connection setup. The cost is reduced as
flows are reused and the initial connection time is taken within
context of a larger transfer of data.
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Suppose an attacker compromised an IoT device in each
of the topologies, and, in the case of the FPE topologies, the
device is in the IoT Frozen state. In the first two topologies,
the attacker would have full access to the local network as
there is no policy enforcement on the network traffic. This
device could be utilized to pivot and attack other internal and
external network resources.

The attacker would face a significant reduction in the ability
to pivot within the network in the cases where the FPE is
running. The compromised IoT device would be restricted to
communication to ports and services that are defined in the
policy for the IoT device. For example, if the IoT device had
never communicated via SMBv1, it would not be possible for
an attacker to utilize TCP ports 139 and 445 to execute the
exploit known as ETERNALBLUE [28] if vulnerable devices
were located in the same LAN.

2) Usability: As we have previously discussed, the goal of
the FPE is to provide a vendor agnostic solution to securing
smart homes. In order to effectively protect home networks,
the solution must be easy to setup and maintain.

The user must perform tasks such as configuring an SSID
and passphrase. The default FPE configuration automatically
protects and limits IoT devices from accessing network re-
sources beyond their initial connection requirements. Ad-
vanced users can further restrict devices to communication to
services of their choice, as we saw in the Smart TV discussion.

The solution is capable of running on a low cost Raspberry
Pi. The FPE workload can be shifted to another computer on
the network if higher performance is desired.

VI. CONCLUSION

In this paper, we have proposed a new system for securing
IoT devices within home networks. The FPE module is able
to protect the network by restricting IoT devices to least
permissive rule sets. This prevents compromised devices from
accessing internal and external network resources and reduces
the capability of an attacker to utilize a compromised IoT
device. Additionally, the Flow Policy Enforcer can be deployed
on low-cost hardware, does not rely on cloud services, and
does not rely on custom protocols. This enables the FPE to
be a plug-and-play solution that can be easily be applied to
home networks.

We focused solely on preventing a compromised device
from accessing TCP or UDP resources within a network. The
FPE could be expanded to be even more restrictive and allow
devices to only use the protocols they request during the
learning period. Furthermore, integrating a protocol such as
RFC 8520 [29] would allow for FPE to pre-populate policies
and place them in the IoT Frozen state without any learning
time required.
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