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Abstract

Why should a user’s computer be trusted at all? We propose a new model of
the computer, Babel, that makes a user’s computer appear as it normally would,
but is actually untrusted to the point where it cannot run the code installed on it.
Each computer, each process, speaks a different language, and a translator on the
network is needed to allow a user’s computer to execute code. This has enormous
implications. The user gets continuous protection, and multiple kinds of protec-
tion, with no need for security updates or patches. At the same time, the user ef-
fectively has an adjustable control that they can set based on their risk assessment
and need for privacy. Babel can work perfectly well alongside existing systems,
and opens new markets for security.

1 Introduction
A deeply-ingrained assumption about security is that, somehow, the very computer we
are trying to defend is magically reliable enough to determine whether or not it has
been compromised. This is akin to asking a person whether or not they’re sane – if
they’re not, how would they know? In computer terms, malware like rootkits provides
similar uncertainty. Even if we ignore the possibility of malware actively hiding, it may
coexist with security software that is blind to its existence, like anti-virus software that
lags in detection or has not been updated in recent memory.

Part of the problem is that our computers have too much autonomy to execute code,
legitimate or malicious, with no questions asked. Computers can get themselves and
their users into a lot of trouble as a result: running malware, becoming a node in a
botnet, allowing sensitive information to be sent out, letting code exploits in.

We propose instead that the user’s computer be perpetually, inherently untrusted.
A user’s computer (desktop, mobile) looks exactly as it does now. A user can install
software on their machine, and their data can be anyplace – local, remote – as it is now.
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The fundamental difference is that the computer is physically incapable of directly
executing any instructions in the installed software, whether the software is malicious
or legitimate. The software must be translated piecewise by (one or more) network
servers. Because each computer and even each process within the computer effectively
speaks a different “language” of instructions, we refer to this system as Babel.

Take an extreme example. For each instruction executed, the user’s computer up-
loads that instruction (which it can’t make sense of) to a server, which translates it into
a small snippet of code the computer can run; this process keeps iterating to execute
the program. In a straightforward implementation, the translation may equate to de-
cryption; each computer, or each process within the computer, can have its own unique
decryption key known by the server, automatically adding diversity. (The key could
potentially change during execution too.)

This case is but the tip of the iceberg in terms of Babel. Section 2 presents the
full model along with the positive effects in terms of security. It is followed by ways
to address the inevitable performance issues in Section 3. Section 4 analyzes the dark
side of Babel and what (new) attacks and concerns arise, and our preliminary imple-
mentation results are given in Section 5. Finally, Sections 6 and 7 contain related work,
and our conclusions and future work, respectively.

2 Babel and Its Security Effects
We can divide Babel’s full model into an examination of what happens at each end (the
client and server sides) and also how clients and servers interact. We follow that with
some example deployment scenarios.

2.1 Client Side
The client side refers to the user’s machine or device. Pragmatically, the client side
must have the ability to run at least some minimal amount of software to provide a
basic level of operating system support. We envision that the client side would have a
very small, non-updateable kernel burned into ROM, able to provide system services
and communicate on the network. In operating system terms, this would be a nano- or
picokernel, not only small but possible to thoroughly audit for security flaws, or even
formally verify (e.g., seL4 [36]). Its singular function with respect to code execution
is to send instructions from programs, instructions it cannot interpret, to the server and
execute the translated code that comes back.

2.2 Server Side
Most of the interesting work in Babel happens on the server side. The most basic
server implementation would simply be a translation service, where a client sends
instructions for the server to translate, decode, or decrypt into a form the client can
understand. (This translation, and all server-side functionality, can be sandboxed or
otherwise access-restricted to limit the effect of any software flaws in the server.)
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However, translation servers have access to a stream of instructions before they are
executed by the client, leaving the server uniquely positioned for many possibilities
beyond rote translation. The server can act as a behavior monitor or behavior blocker,
comparing the instructions in the stream to dynamic malware signatures. As a simple
example, a server could watch for system calls redolent of an appending virus. Sim-
ilarly, assuming the server knows what code is being executed and stores a record of
its past executions, the server may perform anomaly detection [31] to flag any variance
that might be attributable to malware. Depending on the amount of code that the client
sends to the server at a time (Section 3), the server may also be able to check for static
malware signatures [5, 52].

There is no reason the server cannot dynamically modify the code as it translates.
Servers could add in code, that is run on the client side, to check and enforce data
access restrictions on the client; the server can be a remote reference monitor [1], in
a sense, that emits code to the client to implement the security policy du jour. High-
security servers may automatically introduce timing noise into the translated code to
make some covert channels difficult to exploit [37]. Software patches, long a bugbear,
for which large companies require infrastructure to satisfy massive demand [25], may
be dynamically applied instantly to all clients by pushing the updates to translation
servers.

A translation server also has the advantage of scale. A single server may be trans-
lating instructions for a large number of clients, and as a result has a far more global
view of what code is executing where. Perhaps equally important is the ability to de-
tect when previously-unknown code is running; it may be indicative of a new legitimate
software release, but may also flag new (or repacked) malware [42]. Furthermore, dif-
ferent translation servers can share information amongst themselves to construct an
even bigger picture.

We have assumed thus far that the user experience from the client side would be
unchanged, albeit slower. The user could install software locally, could have data both
local and remote. If we relax that assumption, client-side software could reside on the
server side, where the server could pre-translate it or maintain it in some form amenable
to easy translation (similar in concept to slim binaries [23]), rather than perform so
much work on demand. Obviously, the translation server would also be in a position
to enforce software licensing agreements, a foreshadowing of problems we return to in
Section 4.

2.3 Betwixt Client and Server
The Babel model offers a wide range of options when it comes to interactions between
clients and servers. Foremost is the fact that different servers may have different prop-
erties:

Proximity. Although we have not discussed performance as yet, network latency is
clearly going to be a problem, if not the problem. It stands to reason that servers
that are physically located closer to the client will likely perform better for in-
struction translation. As it happens, suitable facilities are either in existence
or being constructed: consider the distributed data centers that Google builds,
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Figure 1: Sample Babel deployment scenarios. Solid lines are untranslated instructions
and dashed lines are translated instructions.

for example [28]. This is also an opportunity for ISPs, particularly “last mile”
providers, to offer another (monetizable) service to their customers.1

Security. Translation servers can have radically different security properties, from
straightforward translation to high-security data access verification and addi-
tion of anti-covert-channel jitter. Some servers may have more extensive or
frequently-updated malware signatures than others; some may err on the conser-
vative side and flag more suspect bits of code at the risk of more false positives.
Basically, Babel allows users choice, the ability to select a server based on their
perceived risk.

Pricing. We advocate the use of an open protocol for Babel, admitting a variety of
translation servers to peacefully coexist. Free, freely-accessible servers are pos-
sible, although the computing infrastructure to support a large number of geographically-
disparate clients is financially daunting. Companies and organizations, of course,
can run their own in-house translation servers. We also foresee servers that are
subsidized by advertisement, where the server’s dynamic translation would pe-
riodically insert code to display ads. A translation server (with or without ads)
would fit well into a subscription model, presumably where servers with more
desirable properties would command a higher price. Babel enables entirely new
security markets.

Ideally, one property a server should have is trustworthiness. We routinely delegate
trust without hesitation; who has not shrugged and accepted a nagging software update?
In Babel, however, there is no a priori reason to assume that the client should trust the
server to provide a correct, unadulterated translation.

A client requiring higher security can multicast their translation request to multiple
servers, ensuring that they receive the same translation back from all servers; naturally,
this assumes that the servers in question translate the same way. (A client wanting se-
curity and reliability may contact servers known to translate differently, for an approx-
imation to N-version programming [3]; multivariant execution [51] is also related.) An
alternative to multicast is a trust-but-verify variant. Here, a client would primarily rely

1Translation may be pushed out further by an ISP to cable modems or router/firewall devices the ISP
supplies to customers, as they are often fully-capable computers themselves.
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on a single server, but relay the resulting translation to another, more trusted server for
verification.

It may, however, be unacceptable for a single server to see the full code stream from
a client, in which case a client may alternate its requests between multiple servers, or
send different code slices to different servers.

Again, this time through the possibility for using multiple translation servers, Babel
allows security to be adjusted appropriately to risk.

2.4 Example Scenarios
To make Babel’s model more concrete, we consider three possible (but by no means
exhaustive) deployment scenarios.

First is the case of a typical home user (Figure 1a). It is not a high-security environ-
ment but a low-maintenance one, where the user may have a lack of skill, inclination,
or time to maintain security on their computer, so they delegate that task to Babel’s
translation server. A single server, perhaps part of an ISP service, is sufficient here
from a trust and performance point of view.

Figure 1b illustrates the second scenario, a café and a mobile device. The overall
need for security may be the same as for the home user, but the context is riskier: the
nearest, best-performing translation server is untrusted and belongs to the café. The
client, noting the change in wireless network, switches to a trust-but-verify configura-
tion; the café server is used for translation and running code, but a copy of the café
server’s translations is transmitted (by the client’s kernel) to an outside, trusted, but
more distant server that verifies the untrusted translation. The outside server cannot
block code execution in this case, but can signal the client that a malicious/suspect
translation has been given to it.

Finally, the third case (Figure 1c) is a high-security deployment, such as a bank,
a government, or a military installation. The client multicasts to multiple translation
servers, which perform the same translation but are under different administrative con-
trol; this yields not defense in depth, but defense in breadth. The higher-security trans-
lations dynamically add access control checks according to the site security policy, and
some jitter to confound covert channel use.

3 Making Babel Faster
The obvious performance bottleneck for Babel is network latency. On one hand, this
can be dismissed: Babel targets the networks of the future more so than the present.
On the other hand, there are a number of optimizations that can be employed to bring
this “future” a little closer. We can categorize these optimizations in three groups.

First, the round-trip time between client and server can be reduced. It is reasonable
to expect that the client would maintain a local translation cache that would store trans-
lations made by the server for hot traces like loops (like the fragment cache in [8]);
this reduces those round-trip times to zero. The server could also maintain a transla-
tion cache if necessary, although dynamic translation time is likely to be dwarfed by
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network latency. An intermediary cache, similar to a web cache [7], may also be useful
for translations of commonly-executed code.

Second, we can translate larger chunks of code at a time than single instructions.
This can be a boon to performance, as our WAN results in Section 5 show. This can
leverage groupings of instructions used in compiler technology – basic blocks, ex-
tended basic blocks [41], slices [56, 58], even functions – but it is not yet clear which
is the best choice. There is an additional problem, that the client would have to have
some understanding of the code in order to (for example) break code into basic blocks
precisely, unless the code is appropriately prepackaged for the client, or the client can
use some heuristic instead, like always sending the next N bytes of instructions. A
related optimization is branch prediction [38, 39], where the server might return extra
translated instructions in anticipation of a control flow change.

Third, we can reduce the amount of network traffic. There is prior work on small
instruction sets that are compressed [11] or specialized to particular applications [22],
which accomplishes the goal of reducing network traffic but also fits in well with Ba-
bel’s theme of multiple instruction set “languages.” Another option is where the server,
upon being asked to translate a chunk of instructions, either dynamically optimizes the
code to make it smaller [4] or (if there are no side effects) executes the code on the
server side and simply sends the result back to the client. The latter would be attractive
particularly for resource-constrained mobile devices.

4 Attacks and Concerns
As might be expected, Babel is no silver bullet and may be attacked in a number of
ways. Looking first at traditional attacks, the Achilles’ Heel of Babel is obviously its
reliance on network access. Any successful denial of service affecting the network
would not compromise security per se, but would render Babel unusable. Similarly, an
active eavesdropper able to garble Babel traffic would yield a similar but more targeted
result.

A man-in-the-middle attack is another traditional concern. A client would defi-
nitely want to authenticate the server. Would a server need to authenticate clients?
Sometimes. A for-profit translation server would to avoid freeloaders, and a high-
security server would to make it more difficult for an adversary to see what additional
features are being added to translated code.2 Depending on the perceived level of risk,
a verification server that can be queried by an adversary leaves open the possibility
that an adversary will learn how they can circumvent the translation verification, akin
to malware writers testing against anti-malware software or spammers testing against
anti-spam software. Here again, the verification server would want to authenticate the
client. However, a free, open-source translation server, or an organization’s internal-
only server could conceivably have no such need.

Passive eavesdropping is again traditional, a threat that can be countered by use of
encryption for all Babel communications. From an OPSEC point of view, the mere fact
that a device is in use – even if the details cannot be discerned – gives away information

2We emphasize “more difficult” rather than “impossible” as this is really just security through obscurity.
But perhaps that’s not a such a bad thing: see Pavlovic [46].
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to an adversary. Babel is especially vulnerable in this respect, because even computer
usage that would currently be “local only” would need instruction translation and thus
network traffic in Babel. This is another area where Babel can be adjusted based on risk
assessment: a typical home user would likely have no need to care about this weak-
ness, but a high-security deployment could inject chaff into the Babel communications.
A related issue is that instruction execution’s external manifestation on the network
may provide another form of covert channel, and a high-security version may require
countermeasures, like those discussed in [24].

Nothing is more traditional than exploitable bugs, of course. The programs being
translated have no guarantee that they are devoid of bugs. The advantage Babel brings
to the table in this regard is – as mentioned – the ability to dynamically patch a flawed
program as it executes.

Security at the server endpoint is paramount, but perhaps the bigger concern is one
of privacy. We are now accustomed and maybe even inured to our data being collected
and mined for advertising or other motives; our activity on keyboard, mouse, webcam,
and microphone being a target for yet more data gathering [6]; even our inactivity
possibly being telling [30]. Babel allows servers the potential to go a step further, to
be able to construct a complete picture of everything happening on a client computer
down to the instruction level. High-security deployments may view this extra ability to
monitor activity as boon and not bane, but this opinion may not be widespread outside
this niche.

Countermeasures that can be taken on the client side would likely take one of two
forms, trading performance for privacy. First, as mentioned in Section 2.3, a client
could try to avoid giving a single server a complete view of code execution by switching
between servers or sending only partial code slices (but servers could still collude).
Secure program partitioning [61] may find application here as well. A programming
style for applications involving multiple threads of execution with a high degree of
inter-thread communication [15] may make the job of a nosey server more difficult
too. Second, a client may try to hide its identity using an anonymity network (e.g.,
Tor [18]). Recent work fingerprinting machines with surprising accuracy using leaked
incidental information [20, 60] may make this a fool’s game, though. Until a full Babel
system is built, it is hard to ascertain with any precision how effective these defenses,
or how grave the privacy breaches, will be.

One final concern is that the ability to closely monitor execution may lead to mis-
sion creep, demands to watch for more than attacks against the user and malware run-
ning on the user’s computer. Enforcement of software licenses, mentioned earlier, is
one distinct possibility. The potential to record all actions on a computer, accidental
actions, actions started but thought better of and not taken, is troubling and warrants
more consideration.

5 Preliminary Experiments
The goals of our initial proof-of-concept implementation were twofold. First, we
wanted to know how programs would perform, more specifically how Babel’s net-
work activity would impact performance. Since the network activity will dominate the
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Table 1: Number of instructions
Instruction Counts

Program Static Dynamic
pwd 30 62
ls 521 35364
fortune 201 2629
md5sum 117 30526

Table 2: Execution time (ms) without Babel
Program Average Std.Dev. Median
pwd 0.73 0.63 1.00
ls 12.03 0.48 12.00
fortune 319.73 1.21 320.00
md5sum 48.40 8.30 53.00

results, we have used a virtual machine on the client side rather than invest time de-
veloping a custom kernel yet. Second, we wanted to use the initial implementation to
“smoke out” hidden problems in the Babel model and see how they might be addressed.

For these preliminary experiments, we have implemented a basic Babel client us-
ing Dis [57, 59], the virtual machine for the Inferno [19] operating system. Dis is
a memory-centric virtual machine, primarily using memory addresses for operands,3

with fixed-size,4 12-byte long instructions. System calls, apart from a few operations
like thread creation and termination that are explicit VM instructions, manifest them-
selves as functions implemented within a Sysmodule. This latter feature unfortunately
complicates the job of Babel’s translation server when monitoring system calls, re-
quiring extra communication to ascertain which module and which function are being
called. We begin there, at the translation server implementation, then move to the client
side, the client-server interaction, then the results.

5.1 Server Implementation
Our translation server is written in Python and has two main tasks: translation of in-
structions and detection of malicious activities. The translation is performed on basic
blocks, i.e., sequences of straight-line code without any jump or conditional branch
instructions.

Three different types of detection have been implemented. First, static analysis.
Since our server is currently not privy to the full executable image or large chunks
of code (chunk sizes are discussed in Section 5.4), and does not have direct access
to the client’s memory, our prototype system instead allows the server to occasionally
request data from the client. This data may be in the form of bytes of the client’s

3As opposed to registers or a stack.
4Despite what the VM specification says.
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memory or a hash thereof (for privacy), which the server compares to a list of static
malware signatures. Second is dynamic analysis, where the server monitors sequences
of system calls for malicious activity. Effectively this means the server is looking for
dynamic malware signatures. Third is a hybrid static/dynamic approach, where the
server looks for static signatures in the stream of instructions that are being translated.
This is very fine-grained monitoring, and as we translate blocks of instructions, the
server may actually detect a signature some instructions in advance of their execution
on the client.

5.2 Client Implementation
On the client, Dis was modified to create a communication channel to the translation
server using Inferno’s Styx protocol [47] when the system starts. The client uses that
to implement the communication protocol described below (Section 5.3).

Inferno normally has a virtual machine for all the processes. As Babel needs a
different instruction set per process, we also modified Dis such that each process has
an associated table, mapping instruction opcodes to the functions within the VM im-
plementation that implement them, allowing us to change the mapping (Section 5.3).
The original Dis bytecode is thus unrunnable by a remapped instruction set, which is
where the server’s translation comes to the rescue. As we are interested in the net-
work overhead, the dominant factor, the server’s translation is simply an exclusive OR
currently.

5.3 Client-Server Interaction
When booting the operating system, a Babel client connects to the translation server
via TCP. This connection persists during the entire execution of the operating system,
and the client will attempt to reconnect if the connection is dropped.

The client and server communicate via messages, which are listed in Appendix A;
in general, a message GETX is replied to by an X message. (Future protocol versions
will use a denser, binary format for the messages too.)

The client requests a new VM for each process that is started. When our server
receives a GETVM message, it creates a unique sequential vmid, randomly selects a key,
stores the vmid and key for future translations, and sends a VM reply. The client is then
able to construct an instruction opcode mapping table for that process.

5.4 Results
The client machine in all cases, and the server in the localhost experiments, was an Intel
Celeron 1.5GHz (32 bit) with 2GB RAM, running Ubuntu 10.04, kernel 2.6.32-40 (32
bit). The server for the LAN experiments was an Intel Core i5 2.5GHz (64 bit) with
8GB RAM, running Mint 12, kernel 3.0.0.14 (32 bit with PAE). Finally, the server for
the WAN experiments was an Intel Core2 2.4GHz (64 bit) with 4GB RAM, running
Scientific Linux 6.1, kernel 2.6.32-131 (64 bit).
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Table 3: Local Babel execution (times in ms)
Program Chunk Size Average Std.Dev. Median
pwd 60 40.47 0.92 40.00
pwd 120 40.83 1.07 41.00
pwd 240 42.47 0.72 42.00
ls 60 9445.03 63.99 9432.00
ls 120 9675.10 37.21 9674.00
ls 240 10697.80 36.59 10699.00
fortune 60 852.23 182.80 776.50
fortune 120 839.37 202.57 763.50
fortune 240 824.70 172.87 767.50
md5sum 60 7889.57 32.86 7889.00
md5sum 120 7466.37 30.05 7460.00
md5sum 240 7978.30 92.96 7958.00

Table 4: Bytes transmitted and chunk sizes

Program Chunk size
60 bytes 120 bytes 240 bytes

pwd 5653 7159 10759
ls 3195243 4605456 9846191
fortune 186472 345876 457416
md5sum 2463263 3616346 4629139

In terms of networking, the LAN was wired, 100Mbps. For the WAN configuration,
the client side was 25Mbps download and 2.5Mbps upload, maximum (the server side
was much faster, but the client side was the limiting factor here).

The benchmark programs and their properties are given in Table 1, and Table 2
shows the time to execute each without Babel. The “ls” command was run on a direc-
tory containing 100 files, and “md5sum” was run on 100 files with 1124 bytes total.
All times reported here are measured in milliseconds, and all experiments are repeated
30 times. The number of executed instructions include those within functions from
external modules, such as “system calls.”

The initial scenario consists of local execution, i.e., both client and server run on the
same physical machine. The network latency is minimized in this case. The average
time for local execution is shown in Table 3.

The latency is obviously relative to the amount of data being transmitted. We per-
formed experiments with different chunk sizes. As the server currently replies with the
instructions within a single basic block only, excess data sent is ignored by the server.
So, bigger chunks would increase the amount of data without bringing any advantage
to the execution.5 The amount of bytes transmitted for each chunk size is listed in

5Unless larger translations can be done. Some earlier experiments we did used extended basic blocks that
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Table 5: Babel WAN execution (times in ms)
Program Chunk Size Average Std.Dev. Median
pwd 60 837.30 111.05 798.50
pwd 120 828.50 51.24 822.50
pwd 240 672.63 23.81 672.00
ls 60 203884.30 16857.89 199721.50
ls 120 183539.67 5472.08 183093.00
ls 240 169911.10 2460.09 169632.50
fortune 60 14779.33 2764.76 14664.00
fortune 120 12627.30 2395.97 12199.00
fortune 240 11416.33 2106.74 10858.00
md5sum 60 161536.53 6096.49 161543.00
md5sum 120 145680.37 4704.59 145590.00
md5sum 240 124914.23 5985.44 123146.50

Table 4.
Comparing the local execution with the original execution (without Babel), we no-

tice that the system becomes, depending on the program being executed, up to about
900 times slower. This apparently huge delay is, in fact, comparable to the differ-
ence between interpreted and compiled code execution [49]. As our system essentially
performs code interpretation, seeing this delay for an initial implementation is not un-
acceptable.

However, the latency when working in a WAN environment (Table 5) causes our
system to become almost unresponsive. An action as simple as listing a directory of
100 files takes about 3 minutes to complete. This scenario clearly points to the need
for better network access.

This argument can be demonstrated by the latency in a LAN environment (Ta-
ble 6), with much higher bandwidth than the WAN environment. In these experiments,
we were able to achieve performance close to the local execution. In fact, in some
cases LAN execution did perform better than the local execution. Further observation
indicates that the server specification (Intel i5 2.5GHz), compared to the client (Intel
Celeron 1.5GHz), favored the LAN experiments over the local, when the amount of
communication was relatively small.

Some latency issues are no doubt exacerbated by the need for callbacks to allow the
server to identify system calls, which is an unexpectedly nontrivial process in the Dis
virtual machine. Table 7 shows the number of callbacks for each benchmark program.
Solutions we are considering range from changing virtual machines, to modifying Dis,
to implementing a trusted client-side monitoring thread that provides extra information
without extra traffic.

could be guarded with conditional instructions and thus be longer. These reduced the network latency and
increased the chance of a client getting a hit in the local translation cache. Unfortunately, they have been
temporarily removed to facilitate detections on the server side.
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Table 6: Babel LAN execution (times in ms)
Program Chunk Size Average Std.Dev. Median
pwd 60 36.63 1.62 36.00
pwd 120 37.77 0.62 38.00
pwd 240 41.20 0.83 41.00
ls 60 10803.70 292.88 10744.50
ls 120 11151.50 400.29 11038.00
ls 240 13110.87 448.89 12868.50
fortune 60 669.93 300.92 588.00
fortune 120 712.87 395.83 545.00
fortune 240 756.07 295.86 647.00
md5sum 60 9098.47 468.32 9247.50
md5sum 120 8463.97 603.99 8506.50
md5sum 240 9343.23 264.14 9396.00

Table 7: Number of callbacks
Program Callbacks required
pwd 11
ls 128
fortune 210
md5sum 2366
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6 Related Work
There is relatively little directly related work that we have found. In a way, this is not
surprising, as networks are only just arriving at the point where they can start handling
tasks like Babel.

Historically, there are likenesses to thin clients and dumb terminals, except Babel
clients are not simply I/O devices. Parallels to the idea of a computer utility like Mul-
tics [16]6 can be seen, but while the need for a computer utility for the general public
may not have been established back then, the need for computer security for the gen-
eral public is firmly established now, as are security business models involving ongoing
subscriptions. Also loosely related is the old NeWS windowing system [29], as that al-
lowed programs to be implemented with code on both the server and client, and the
client sent code to the server.

The closest historical reference is perhaps Thimbleby [55], who envisioned a means
for standalone computers to deal with viruses, by making ‘each machine unique: in-
compatible with everything else’ [55, page 112]. His method presaged instruction set
randomization, but also made patching software ‘practically impossible’ and was never
suggested to counter any threats beyond viruses or to be used on networked machines.
His model also did not prevent a computer from running a program in its entirety, once
it was installed and was privy to the machine’s ‘password.’

On the client side, our need for a tiny kernel suggests the applicability of microker-
nels, some classic examples of which are Chorus [50], Mach [27], and MINIX [53].
There is other related work in the sense of building a very small kernel (e.g., exoker-
nel [21] or JX [26]) and/or a secure kernel (e.g., Singularity [32]). Google’s Chrome
OS [54], a.k.a. Chromium OS, also provides a lightweight operating system on the
client side, effectively making the browser the operating system. This is heavyweight
in comparison to Babel’s client side. Also, Chrome OS assumes that software and data
are in the cloud, whereas Babel is not restricted that way.

On the server side, security software has been moving to the cloud for several
years now, especially in the anti-virus area (e.g., [13, 42]). This can be manifested
as a traditional anti-virus scan simply pushed into the cloud. CloudAV [43, 44], for
example, has a lightweight anti-virus client on the end host whose anti-virus is a local
cloud service running multiple anti-virus programs. Martignoni et al. [40] built a cloud-
based behavioral analysis system that enhanced the realism of the analysis environment
by shunting selected system calls back to an end user’s machine, but only for detection
purposes; the code was not actually being run on the client side as Babel does.

Other systems, developed for mobile devices, have looked to offload intensive se-
curity processing from smartphone to cloud. One of CloneCloud’s applications is per-
forming virus scanning in the cloud [14], but apart from this application, the over-
all thrust of their work is load balancing in general and not security. Jakobsson and
Juels [33] suggest sending activity logs from a client to trusted servers, but their post-
mortem detection lacks immediacy of protection, and even their notion of doing the log
analysis in real time would be less powerful than Babel’s ability to view and modify the

6A contemporary 1965 Multics-related paper presciently remarked: ‘If every significant action is
recorded in the mass memory of a community computer system . . . the daily activities of each individual
could become open to scrutiny.’ [17, page 245]. This relates to our privacy concerns in Section 4.
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full instruction stream. Paranoid Android [48] replicates the state of an entire mobile
device in a virtual environment on a server, by recording system calls on the mobile
device and transmitting them to the server for replication. The server can then apply
multiple (heavyweight) security analyses on its replica. Babel’s model is much broader
than this; with access to view and possibly alter the full instruction stream trace, a Ba-
bel translation server can implement Paranoid Android as a subset of its functionality.
In addition, potentially sensitive local data need not leave the client side in Babel.

There are clear connections between Babel’s translation process and instruction
set randomization (ISR), where “instruction set” must be interpreted liberally, as the
technique has been shown to be applicable for higher-level languages as well [12]. Kc
et al. [34] proposes a hardware based implementation, in which a special register is used
to store a encryption/decryption key. Code is decrypted during execution by a XOR
operation between the instruction loaded and the aforementioned key. RISE [9, 10],
on the other hand, does not require special hardware. RISE’s implementation using
Valgrind encrypts the executable with a pseudorandom key (of arbitrary size, generated
for each process) during load time and decrypts it during runtime. A key distinction
between Babel and ISR is that Babel is trying to protect computers from themselves as
well as outside attackers, and the general Babel model can provide a wide variety of
security checks that ISR alone cannot.

Babel may also be seen from other viewpoints. First, as a kind of program shep-
herding [35], except Babel’s shepherding process is remotely-located and is able to
watch for far more security breaches than just control flow attacks. Second, it may be
categorized as software-as-a-service (SaaS), but we argue that that labeling is incor-
rect. Following the definition given by Armbrust et al. [2, page 50], there admittedly
is some overlap in our Babel variant where software is stored on the server, but this
minor variant is not the main idea of Babel, where we want the user’s ability to have
local software and data unimpinged. While their definition of SaaS includes local soft-
ware execution, they qualify that by restricting it to situations where they ‘run software
locally but control use via remote software licensing.’ While Babel’s servers are in a
position to enforce licensing, it is by no means their primary task. Third, Babel can
pessimistically be seen as the ultimate in “walled gardens” [45], and while Babel could
be applied in the controlling way that implies, this is not intrinsic to the Babel model,
which can equally well be applied in an open manner.

7 Conclusion and Future Work
Babel is a fundamental transformation of what a user’s computer is. By making the
user’s computer inherently untrusted, incapable of running its own code, we open the
door to an untapped landscape of possibilities. Translation servers can provide contin-
uous monitoring of code that the user runs, can exploit scale, and can alleviate the need
for security updates and patches being continually thrust upon the user. Furthermore,
the user need not trust a single translation server, and is empowered to select configu-
rations that reflect their (or their organization’s) risk and privacy posture. Babel plays
nicely beside existing systems, and will work even if everyone isn’t using the Babel
model.
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Admittedly, there are research challenges yet to be addressed. Performance, in
particular – we will be working to mitigate this using techniques mentioned here, but
ultimately the network will have to catch up for Babel to be fully deployed. Power-
constrained mobile devices will also be problematic due to the necessity of constant
transmission and reception. New attacks may be possible. This is only the beginning
of the road for Babel.
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A Message Types
GETVM

Format: GETVM,pid
Client requests a virtual machine specification. pid is the process id in the client
machine, currently for logging only.

VM
Format: VM,type,vmid,data
Response for a GETVM message. This message currently returns XOR as the only
valid type, as the VM is created by XOR operations. vmid is the unique identifier
for that virtual machine, and data contains the key used to encrypt the VM.

GETCHUNK
Format: GETCHUNK,data
Sends a “chunk” of data for translation.

CHUNK
Format: CHUNK,data
Returns a block of translated instructions. In Inferno, each instruction is 12 bytes
long. We send an extra byte containing flags, which consist of markers for special
operations that the client must perform. Currently, we only use 1 bit for callback
operations, as described below.

GETCB
Format: GETCB,instruction,pc

19



When a translated instruction is marked as “callback”, before its execution the
client should send a GETCB message to the server. This provides an opportu-
nity for the server to obtain current information about the client status before a
sensitive instruction is performed. instruction contains the instruction to be
executed and pc is the program counter that refers to that instruction.

CB
Format: CB,pc
Response for GETCB, indicating that the callback operation is finished.

GETDATA
Format: GETDATA,address,type request
This message allows the server to request extra data from the client. address
identifies where in the client memory the data should be gathered and type request
identifies the format of the data. Currently, the server can request a string, a list
of strings, or a hash value. This is used, for example, when the server detects
that there is a call to a function within a module and needs extra information to
decide if that is a system call (i.e., a call to module Sys). It could also be used to
check for static malware signatures in the client’s memory.

DATA
Format: DATA,data
Response for GETDATA, where the client sends data from its current state to the
server.

FINISH
Format: FINISH,vmid
Finishes the execution of a VM within the server.

FINISHED
Format: FINISHED,vmid
Simply acknowledges that a FINISH message was received and processed.
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