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Abstract 

Linear Prediction (LP) is a low-dimensional method of representing speech that is 

commonly used for both speech and speaker recognition. There are many alternative 

representations of LP that outperform it in recognition tasks, one of which is referred to 

as Line Spectrum Pair (LSP) frequencies. An extension of LP that more closely models 

what is happening in the human ear is a method called Perceptual Linear Prediction 

(PLP). This method has also been shown to outperform the LP method. In this thesis I 

will show that it is possible to represent the PLP parameters in the alternative LSP 

representation that is analogous to that of the LP method, creating a more powerful set of 

psychoacoustic parameters for recognition purposes, for both speaker and speech 

recognition applications. 
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CHAPTER ONE: BIOMETRICS 

1.1 Introduction 

The human body is an amazing and unique thing. It can truly be said that the mold is 

broken after each one of us is born; not two of us are exactly alike. There are several 

distinguishing characteristics that each one of us possesses that make us different from 

everybody else. The human body houses various "signatures" that can be used to 

distinguish one person from another. What is even more amazing is that the human brain 

has the ability to identify, process and analyze, and make use of much of this information. 

Pattern recognition is the process of extracting information out of the environment around 

us for some purpose. Human beings make most of their critical decisions based on 

patterns. Meaningful information is collected and analyzed from the input our senses 

provide. When a sound is made and a person hears it, the following happens: the "sound" 

comes in the form of pressure waves. These waves are carried through the air and make 

contact with the ear. They travel through the outer, middle, and inner ears, where they 

encounter auditory structures that convert the sound wave energy to electrical energy, and 

the information that is extracted is passed up to the brain through a series of complex 

neural pathways. 

It is desirable to be able to process and analyze vast amounts of information using a 

computer in the same way that a human being is capable, and to the same degree of 

accuracy, or better. But the process of pattern matching can be extremely complex, 
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particularly in the case of speech and speaker recognition, and not enough is understood 

about how it should be done. Since the human body is an already working model that is 

able to perform many of the tasks that we would like to automate, it makes a great deal of 

sense to simulate these human pattern recognition and decision-making abilities using 

what knowledge we have, and adding to this as our knowledge of how the human body 

works increases. Unfortunately, there is still so much that is unknown about the inner 

workings of the brain and the complex neural pathways that carry information to higher 

brain centers. The processes that occur from the ear to the brain and within the brain itself 

are still largely a mystery. This lack of information about how the human body works 

prevents us from adequately modeling these processes. As advances in biology and 

psychology are made, however slowly, these mysteries are being solved little by little, but 

there is still a vast amount that needs to be discovered. Luckily, engineers, statisticians, 

and mathematicians are not without their tricks. Signal processing, probability and 

statistics, and data mining techniques are some of the powerful tools that are used by 

researchers for pattern matching. 

1.2 Biometrics 

Biometrics are measurable biological data that can be reliably reproduced by the person 

from whence it came. In particular, these biometrics are those target "signatures" of an 

individual that make them unique. Biometrics are typically analyzed statistically to 

distinguish one person from another, which means that the biological data must be 

obtained such that it uniquely characterizes that person. This data can be a measurement 

of a physical feature or repeatable behavior of the individual. Pattern matching can be 



3 

performed on biometrics in order to decide which biometrics are unique to a given 

individual. 

Physical biometrics are measurements of physical features of a person. These features 

cannot be changed through a conscious mental effort on the part of the individual, 

although certain behaviors can, in fact, change the physical characteristics over time, 

such as smoking, poor nutrition, or poor posture. Because physical biometrics are reliably 

reproducible, they are somewhat more reliable than behavioural biometrics, which are 

discussed next. Some physical biometrics that are commonly used for recognition 

purposes include the iris, fingerprints, face, and hand and finger geometry. 

The behavioural characteristics of a person are the repeatable aspects of their actions and 

behaviors that can be measured and analyzed for unique identification. Speaking, hand-

writing, and walking are examples of such actions. These measurable behavioural 

characteristics of a person are what define the behavioural aspect of biometrics. 

Achieving high recognition and' verification of an individual based on behavioral 

biometrics is somewhat more difficult than using physical biometrics. Behaviors can be 

changed dramatically without much effort on the part of the individual, and can even be 

changed involuntarily and without the individual's knowledge. Even if someone tries very 

hard to reproduce the same behavior, it will never manifest itself in exactly the same way 

twice. Therefore there is a great deal more variation in the behavioral biometrics of a 

person, making it harder to capture and recognize these behaviors. In addition, behaviors 

will gradually change over time as a person continually adapts to changing environments 
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and preferences, as well as physical conditions such as the effects of aging. Temporary 

behavioral changes may come about due to illness or a change in mood. The behavioral 

biometric of speech is the focus of this thesis. 

1.3 Speech Analysis 

Speech is a complex grouping of sounds, and contains a lot of various pieces of 

information. It contains both information about what is being said and who is saying it. 

The information that a person is trying to communicate is the primary characteristic of 

speech. The meaning conveyed within the speech is referred to as lexical content, and 

includes the words and vocabulary of the speech as well as the language that is being 

spoken. The way in which something is said is also apparent. It is sometimes possible to 

tell whether a speaker is happy, sad, or angry, and whether a person is tired, healthy, or 

sick. In addition to what a person is saying, speech also contains information about who 

is speaking. The characteristics of someone's voice are unique to that person. When a 

friend calls you on the phone, you recognize who they are even though you can't see 

them: you recognize them by their voice. Other information about the person talking is 

also evident, such as whether the person is male or female, whether they are young or 

old, whether they smoke or not, and what kind of accent they have. 

The goal of speech analysis is to extract one or more of the aforementioned pieces of 

information for some useful purpose. For example, it might be useful for someone to be 

able to dictate a letter to a computer by speaking into a microphone and have the 

computer translate the spoken words into text and place them into a word processor 
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document. Similarly, as a security measure, it might be useful to have a secure system 

verify the identity of a person by their voice before giving them access to sensitive data. 

As the first step of speech analysis, an utterance is produced by a speaker and is captured 

in the form of a waveform. An utterance is a complete unit of talk, bounded by silence. A 

waveform is a digital representation of the utterance that can be analyzed by a machine. 

Then speech signal processing is used to extract the aforementioned pieces of information 

from the waveform, which are referred to as "features" of the speech. These techniques 

are discussed in chapter 3. Using these features in some meaningful way is done using 

pattern matching and classification techniques, which are introduced in a general way in 

chapter 2 and are described in more detail in a speaker recognition context in chapter 4. 

1.4 Problems Associated with Speaker Recognition 

Because speech is a behavioral biometric, it is extremely variable and thus is hard to 

adequately characterize using computers. As already mentioned, there is still so much we 

don't know about speech production, and there is even more we don't know about how 

speech is processed by the human brain. Due to this lack of knowledge, and sometimes 

due to a lack of the necessary vast amount of computing power, current speaker 

recognition systems are far from perfect. The variability that is encountered naturally in 

speech can be a problem. The range of this variability can be somewhat broad and is 

difficult to capture and take into account. In addition, extraneous background noises are 

always mixed in with speech and it is extremely difficult, if not impossible, to isolate and 
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separate only the speech for analysis. These issues make it necessary to continue to find 

better ways of making speaker recognition work. 

1.5 Overview of Thesis 

In speech analysis, computations are performed to extract parameters, or features, that 

represent the speech and capture the characteristics of the speech that we are trying to 

represent, while ignoring those aspects of the speech that are unimportant. Four sets of 

parameters in particular are the focus of this thesis, all of which are described in detail in 

chapter 4. The first set of features are very commonly-used and are typically used in 

speech analysis. They are known as Linear Prediction Coefficients (LPC) (Makhoul, 

1996), (Makhoul, 1975). They are obtained through a technique that is known as signal 

processing, which is discussed in chapter 3, and are modeled after a series of piecewise-

joined acoustic tubes that crudely represent the vocal tract. 

Another important set of parameters are known as Line Spectrum Pair (LSP) frequencies 

(Itakura, 1975), which are features that have originally been used for speech data 

compression. These features are an alternative representation of LPC parameters, 

meaning that they are computed directly from LPC parameters. As will be discussed in 

chapter 4, this alternative representation has many advantages over the LPC 

representation (Soong and Juang, 1984). As with all features, LSP frequencies are a low-

dimensional representation of high-dimensional speech data. This low-dimensionality 

allows for quicker transfer of data across networks and through cellular phone technology 

(Campbell et al., 1991). To transfer the speech across a channel, the speech is first 
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compressed into LSP frequencies at one end. The LSP frequencies are then transferred 

to the other end, where they are reconstructed (or decompressed) into an approximation 

of the original speech. 

It has been only in more recent years that these Line Spectrum Pair frequencies have been 

used for speaker recognition tasks. Because they are so highly effective in speech 

compression, they are very effective at characterizing the underlying speech and are 

therefore a good candidate for speaker recognition. Clearly, LSP frequencies have a lot of 

potential and their properties need to be further explored. 

The third set of parameters come from psychoacoustics, which is a field of study in which 

the perceptual experiences of humans is combined with the observed physical behavior of 

the ear to create synthetic models of the human auditory system. While these models are 

somewhat limited, they more accurately represent the physical processes with the human 

ear. The parameters known as Perceptual Linear Prediction (PLP) coefficients 

(Hermansky, 1990) are based upon this research, and have a great deal in common with 

LP coefficients. PLP coefficients are simply an extension of the LP coefficients. The 

computation of the PLP coefficients requires several steps, the last of which is a similar 

procedure used to obtain the LPC parameters, as will be described in chapter 4. They 

have been shown to be more effective in speaker recognition tasks than LPC under 

certain conditions. The higher the number of PLP parameters used, the more speaker-

specific voice characteristics are represented. 
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This thesis presents a novel representation of the PLP method, which is evaluated in a 

text-independent speaker identification task. It is the purpose of this thesis to see if the 

enhanced properties of the LSP frequencies can be successfully applied to the PLP 

method in the same way as in the LP method, thereby deriving a new, more powerful and 

robust psychoacoustic speaker recognition method. Because LP and PLP are used in both 

speaker and speech recognition, the benefits gained by the new PLP-LSP method would 

also carry over into the domain of Speech Recognition. In addition, since many of the 

other psychoacoustic methods share the same computational similarity with the LP 

method that the PLP method has, it is likely that this novel representation can be applied 

to those methods as well. 

This thesis is organized as follows. Chapter 2 introduces the concepts of pattern-

matching, data mining, and modeling and classification. Then the concepts'of speech and 

speaker recognition are discussed. 

Chapter 3 presents the mathematical theory and signal processing procedures that are 

used to analyze speech and extract meaningful information from it for recognition 

purposes. 

In chapter 4, some of the most common recognition methods are surveyed, and the well-

known LPC, LSP, and PLP features are discussed in more detail. 
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Chapter 5 presents an experiment in which the performance of the LPC, LSP, PLP, and 

extended PLP-LSP features are evaluated and compared in a text-independent speaker 

recognition task. 

In chapter 6, the results of this experiment are discussed. 
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CHAPTER TWO: PATTERN MATCHING IN SPEECH 

2.1 Pattern Matching and Classification 

Researchers in electrical engineering and mathematics disciplines have done a good deal 

of research on the analysis of signals. A signal is a detectable physical quantity or 

impulse by which information can be transmitted. Speech can be thought of as a signal, 

which means that all the techniques used for signal processing can be used for analyzing 

speech. The patterns extracted from the speech can then be used with well-known pattern 

matching and classification techniques. Speech can also be thought of as "random", 

which means that probabilistic and statistical techniques can be applied to it (Stark and 

Woods, 2002). In fact, many signal processing and statistical methods are combined 

when performing pattern recognition on speech. 

In pattern matching, the idea is to build a "model" of what we are trying to represent. A 

model is an object that can be made comparable to other objects to determine their 

similarity. Similarity measures usually come in the form of some sort of distance metric. 

We say that objects that are "close" to one another are more similar and objects that are 

further apart are less similar. To build a model, it is necessary to define a set of 

characteristics that the model should represent, so that objects of similar characteristics 

will be "closer" to one another than objects that have differing characteristics. 

The characteristics, or attributes, of an object are usually extracted in the form of an 

ordered set of measurements. These values are referred to as features, and the group of 
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features is called a feature vector. A very simple example of a comparison that can be 

defined between these feature vectors is Euclidean distance. 

For example, suppose we have three two-dimensional points in space (x, y): c = (2,3), 

d= (10,5),  and e= (1,1).  The points can be thought of as feature vectors, which 

represent their physical position in Euclidean space. The Euclidean distance between two 

points a and b is defined as: 

d(a,b) = .j(a - b)2 + (a - b)2 (1.1) 

Using this metric, the Euclidean distance between c and d is 8.24 units, the distance 

between c and e is 2.2361 units, and the distance between d and e is 9.8489 units. 

Here the units are not important. What matters are the relative distances between the 

different points. It is easy to see that points c and e are closer to each other than either 

one is to point d. 

2.2 Classification 

Classification is an important part of pattern matching. In classification, each observation, 

or member instance, within a data set is said to belong to one of a set of classes. A set of 

"predictor" attributes, which will be referred to as "features" in this thesis, and a "goal" 

attribute is assigned to each observation. The goal attribute indicates what class the 
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observation belongs to, and the features are the values that are used to predict the goal 

attribute. 

The main idea is to define a set of rules that will characterize the relationship between the 

features and the goal attribute, using a set of known observations and their known goal 

attributes, in order to use this relationship to classify future observations that we have not 

yet seen, and whose goal attributes are unknown. These unknown goal attributes are 

predicted from their corresponding known features using the relationship derived 

between the known features and their corresponding (known) goal attributes that were 

used to define the relationship in the first place. The relationship we are trying to obtain 

obviously depends on how well suited the features are to the task at hand. For example, if 

the goal is to determine the diagnosis of someone's illness, the decision must be based on 

things like the person's symptoms and family medical history, not their name or social 

security number. 

The process of defining a relationship between the features and the goal attributes of the 

observations is known as training, and the accuracy of the found relationship to actually 

predict the category, or class, of future observations is known as testing. A set of data is 

obtained and split randomly into two sets: the training set and the testing set. The set of 

data in the training set is used to discover the relationship between the features and their 

goal attributes, and the relationship that is discovered is then used to predict the goal 

attributes of the set of data in the testing set. The predicted goal attributes are compared 

to the actual goal attributes of the test set, which are effectively unknown instances that 
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the training phase has not seen, and based on how many goal attributes were correctly 

predicted, an accuracy is computed. This reveals how well the relationship that was 

selected actually determines goal attributes based on features. It is the goal of 

classification to maximize this accuracy in the test set, so that when real-life data is input 

to the system, where the goal attribute is not known in advance, it will be correctly 

classified. 

2.3 Speech and Speaker Recognition 

As already mentioned, speech contains information about both what is being said, and 

who is speaking. This is true because it is possible for a human being to determine each. 

A person is capable of knowing what is being said by someone whose voice they have 

never heard before, and are also capable of understanding what is being said by someone 

whose voice is familiar who has never said that phrase to them before. 

Speech recognition and speaker recognition are two of the main goals of speech analysis. 

In speech recognition, the objective is to determine what is being said. It is usually 

desirable to use information about what is being said and to ignore information about 

who is speaking. In speaker recognition, the objective is to determine who is speaking. It 

is primarily desirable to use information about who is speaking and ignore information 

about what is being said. In some cases, however, it is also important to determine what 

is being said as a secondary goal. 
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2.3.1 Identification and Verification 

In both speech and speaker recognition, there are two different objectives, which are 

identification and verification. In what follows, identification and verification will be 

discussed largely in the context of speaker recognition. 

2.3.1.1 Speaker Recognition: Identification and Verification 

Speaker recognition encompasses both speaker identification and verification. The goal 

of speaker identification is to identify an unknown speaker out of a group of possible 

known speakers. The known speakers have voice models which are stored in a database. 

These voice models represent the unique characteristics of each person's voice who has 

enroled in the system. Typically, an utterance belonging to the unknown person is 

presented to the speaker identification system. The utterance is analyzed and the resulting 

voice data is compared to the speaker models that are stored in the database of known 

speakers through a one-to-many matching process. The desired outcome is to find the 

speaker model that is most likely to have generated the unknown speaker's input 

utterance, thereby identifying the identity of the unknown speaker. It is also possible that 

none of the voice models matches the unknown speaker's voice. As a database increases 

in size, not only does the task become much more time-consuming and tedious, but the 

chances of finding more than one stored speaker whose voice model is very close to the 

unknown speaker also increases, creating ambiguity and increasing the rate of false 

identification. 
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A target unknown speaker may be unaware of his or her involvement in the speaker 

identification process. Depending on the situation, it may be assumed that the input 

speech is of variable quality. For example, the sample voice data could have been 

obtained over a telephone wire or in the middle of a noisy airport. Furthermore, multiple 

voices may have been captured in the same data, thereby making it harder to separate out 

the target individual's voice patterns. When a speaker is aware of his or her involvement, 

the quality of the speech tends to be higher since the identification process is more likely 

to occur in a more controlled environment. Speakers may consciously or unconsciously 

make an extra effort to enunciate more clearly and speak at a more audible volume. 

The speaker verification problem is somewhat less computationally expensive than the 

speaker identification problem. Here, a speaker claims an identity and then a match is 

performed against the corresponding speaker model of the target speaker. In other words, 

a one-to-one matching process is performed, at which point a binary decision is made. If 

the distance, or distortion, between the utterance of the unknown speaker and the target 

voice model falls within a certain threshold of closeness to the target voice model, the 

speaker is accepted as having that identity, otherwise they are rejected. This type of 

system is used when someone wishes to gain access to some restricted service, such as . 

logging on to a network or taking money out of a bank machine. 

2.3.1.2 Open vs Closed Set Systems 

In an open-set system, an unknown speaker may or may not be one of a set of known 

speakers, which are those with speaker models that are recognized by the system. This is 
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generally the case in forensic and police applications. Therefore it may be the case that 

a reference model for an unknown speaker may not exist in the database. In this situation 

it is necessary to provide a way for the system to decide that an unknown speaker is not 

close enough to any of the speaker models in the system, and be rejected outright. This is 

done by providing a threshold test that can be used to determine how close a match must 

be before the speaker is classified as being one of the known speakers. If the threshold 

test fails, the system may report that the speaker's identity could not be determined, that 

more speech input data is necessary for an adequate decision to be made, or that the 

speaker is definitely not one of the speakers recognized by the system. In a closed-set 

system, it is assumed that an unknown speaker is one of a set of speakers recognized by 

the system, meaning that all users of the system must have a speaker model in the 

database. 

2.3.1.3 Text-Dependent and Text-Independent Verification 

Verification is somewhat more complicated than identification, especially in a text-

dependent context. The more specific details of speaker verification are discussed in this 

section. 

2.3.1.3.1 Text-Dependent Speaker Verification 

In a text-dependent speaker verification system, a user is required to say a specific 

password phrase that has been prompted by, and hence is known by, the system in order 

to be accepted. Not only does the system consider the unique speaker-discriminatory 

characteristics of the user's voice, but it must also determine whether or not the user 
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actually said the phrase the system prompted. This means that even if a user's voice 

matches one of the speaker models within the database, he or she will not be granted 

access to the system unless they have spoken the correct phrase, which is why the phrase 

is sometimes referred to as a "combination lock" phrase. Randomized phrase prompting, 

which is where the system randomly selects a password phrase each time it is accessed, is 

used to further enhance security. The underlying idea behind randomized phrase 

prompting is that it will make it more difficult for an imposter to gain false access to the 

system via an arbitrary tape-recording of a target speaker's voice, since the imposter will 

not be able to guess in advance what the prompt phrase will be. In addition, the specific 

idiosyncrasies of the person's voice are now tied to the context of a particular phrase. In 

other words, the unique characteristics of the person's voice that manifest themselves 

within the context of the lexical content within the phrase spoken are now used to 

determine similarity. Mimicry and falsification are more easily thwarted because random 

samples of the unique speaker characteristics of that voice are no longer adequate to gain 

access. These kinds of system are more secure than text-independent speaker verification 

systems for the reasons just mentioned. 

An even more robust method is to collect a number of different phrases or a number of 

words, such as digits, at the time of enrollment of the target user that can be concatenated 

into new words and phrases at the time of verification. That way, an imposter cannot 

guess what the prompt phrase will be even if they somehow had access to the enrollment 

phrases beforehand. Unfortunately this improvement is not entirely bullet-proof either 

since there exist sophisticated electronic recording devices that can reproduce key words 
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in some requested order. Some of the speech segmentation methods used in Automatic 

Speech Recognition (ASR) may be useful for this purpose, especially if the system 

constructs new words and phrases based on old words and phrases. A description of some 

of these segmentation methods is given later on is this chapter in section 2.3.1.3.4.2. This 

may also be useful to simply try and align important corresponding speech events that are 

similar in two different utterances of the same phrase. 

It is important to realize, however, that dissecting a set of utterances and then 

recombining them in new ways results in phrases in which phonemes and syllables will 

not always occur in natural ways, much like listening to the output produced by a Speak-

and-Spell. This unnatural formation of new utterances results in information that is not 

necessarily characteristic of a given speaker, and thus contributes to increased error. The 

field of speech synthesis deals with such issues, in general. 

A text-dependent recognition system requires the features that are extracted from the 

user's voice to contain both unique speaker-discriminatory characteristics and features 

containing information about the lexical structure of what was said. In this case, several 

speaker models are usually obtained for a single speaker. Each model represents the 

speaker saying a particular phrase, where each phrase is known to the system. When the 

system prompts an unknown user to say a phrase, it will pick a phrase that matches one of 

the speaker models for the target speaker. This model will then be used for classification. 

2.3.1.3.2 Text-Independent Speaker Verification 
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In text-independent speaker verification, only speaker-discriminatory characteristics of 

the user's voice are considered, regardless of what has been said. In a text-independent 

system, any arbitrary tape-recording of the target speaker would allow them access into 

the system. While these systems are not as secure and constrained as text-dependent 

systems, it is more difficult to achieve a high accuracy from these. This is because there 

are no stipulations on what the user is saying, and so it is more important that the features 

that are extracted from the user's voice are independent of the lexical content of the 

speech. A larger range of vocal tract behaviors need to be modeled in order to adequately 

capture a complete model of the speaker's unique voice characteristics. Luckily, there are 

certain portions of the speech that we can exploit to this end. For example, regions of a 

speech signal that are more highly voiced, such as those areas associated with vowels, 

contain more highly speaker-discriminatory characteristics than regions of the speech 

signal that are less voiced, such as those areas associated with consonants. Some systems 

make use of a voicing detection algorithm (Campbell and Tremain, 1986), (Nemer and 

Goubran, 1997) to detect these regions of higher voicing, and only make use of these 

portions of the speech for recognition. 

2.3.1.3.3 Speaker Modeling and Classification 

A speaker recognition system is required to recognize certain target individuals. There 

are two major processes that must take place. First, a user of the system must be enrolled. 

Enrolment, which is known as the training phase, is the process of making a user known 

to the system. The system usually requires several utterances to be spoken, which are 

used to create a model of the user. Speech signal processing techniques are used to 
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extract highly speaker-discriminatory features. These features as a whole make up the 

parameters that are unique to that person. 

In the testing phase, a user will be presented to the system, having made an identity 

claim. The system will require the user to say a particular phrase. The speaker model 

matching the claimed identity will be retrieved from the database of speaker models and a 

classification procedure will be performed to find out "how close" the given utterance is 

to the speaker model. A threshold measure is used to determine whether the utterance is 

"close enough" to the model to accept the user as being who they claim to be or not. If 

they are accepted, access to the system will be granted. If they are rejected, they will not 

gain access to the system. To do this, it must create one or more models of each person. 

The models are what represent the speaker, and are used to compare unknown speakers to 

see how well they match up. These comparisons are done in the classification stage. 

Clearly, the choice of features, the method of representing the speaker model, and the 

choice of classifier is terribly important. Certain modeling methods work far better in 

combination with certain classification schemes, and work very poorly with other 

classification schemes. So, although a set of features may capture a speaker's unique 

voice characteristics very well, a poor method of comparison between the model and an 

input utterance from an unknown user may either fail to admit a valid user, or may fail to 

reject an invalid user. The worth of a classification system is normally judged based on 

the percentage of times it fails versus the percentage of times it passes the test correctly. 

Too many failures are unacceptable in a real-life application that will be used to gain 
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access to a secure system, such as the bank. This judgement call is made in different 

ways, depending on the purpose of the application. 

Although the focus of this thesis is speaker identification, some of the difficulties in 

achieving high success rates in speaker recognition systems are more easily seen in a 

text-dependent context, which will be described next in a verification setting. 

2.3.1.3.4 Text-Dependent Speaker Verification System 

As already mentioned, the system usually requires several utterances to be spoken, which 

are used to create a model of the user. Speech signal processing techniques are used to 

extract highly speaker-discriminatory features. These features as a whole make up the 

parameters that are unique to that person. In the case of a text-dependent system, 

additional features are required that contain information about the lexical content of the 

utterances. The system must ensure that the speaker said what it told them to say. Figures 

2.1 and 2.2 show the typical stages in the enrolment and verification procedures of a 

speaker verification system. 
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In the testing or verification phase, a user will be presented to the system, having made an 

identity claim. The system will require the user to say a particular phrase. The speaker 

model matching the claimed identity will be retrieved from the database of speaker 

models and a classification procedure will be performed to find out "how close" the given 

utterance is to the speaker model. A threshold measure is used to determine whether the 

utterance is "close enough" to the model to accept the user as being who they claim to be 

or not. 
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There are two important computations that must be made in a verification system: False 

Accept Rate (FAR) and False Reject Rate (FRR). The FAR is a measure of the rate of the 

number of speakers that were accepted by the system when they shouldn't have been. 

When a person is falsely accepted by the system, this means that their identity did not 

really match the target speaker's identity in real life, but the system thought it did, and 

thus granted them access to the system as the target speaker. The FRR is a measure of the 

rate of the number of speakers that were rejected by the system when they shouldn't have 

been. When a person is falsely rejected by the system, this means that their identity 

matched the target speaker's identity in real life, but the system thought it didn't, and thus 

rejected them. It is highly desirable for a speaker verification system to have both a very 

low FAR and ERR, but in most cases it is clearly more important to place a stronger 

emphasis on a lower FAR, perhaps at the expense of an increased ERR. In general, if the 
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FAR is decreased, the FRR will increase, and vice versa. Depending on the 

application, this inverse relationship can be adjusted to suit the situation. 

2.3.1.3.4.1 Verification Threshold 

The verification threshold, which decides whether a distance or distortion measure is 

small enough (or "close" enough) to pass, is very important. There are several ways in 

which the verification threshold can be determined. In some systems, thresholds are 

hand-picked, and in others the thresholds are computed and updated as each new speaker 

enrols into the system. The latter is more robust because the threshold for every person is 

"tightened up" according to the properties of the other speaker models in the database, 

making the system all the more secure, at least internally. However, recalculation gets 

tedious as the database size increases, because the threshold must be recomputed for each 

person that has already been enrolled, as well as for the new person that is being enrolled. 

2.3.1.3.4.2 Speech Segmentation 

In a text-dependent speech recognition system, the lexical content of two different 

utterances must be compared to see if they match. However, no two utterances of the 

same phrase will be exactly alike, even if the utterances were made by the same person. 

Several factors, such as the rate at which someone is speaking and the manner in which 

they speak (for example, a person can whisper or sing and they can be angry, sad, or 

excited) can vary the timing and behavior of the speech events in the speech signals. In 

addition, factors such as accent and intonation can change the way in which speech is 

manifested. So, to perform matching between two speech signals, it is necessary to 
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somehow align like speech events. One way of doing this is to segment the utterance 

into smaller "molecules" or "atoms", such as phonemes, syllables, or words. These 

portions of speech can be used directly for recognition purposes or can be used as anchor 

points around which we can refine our analysis. Speech must be segmented into 

comparable units that can be reliably reproduced. The branch of speech analysis for 

which this is the main goal is Automatic Speech Recognition (ASR), which attempts to 

determine what has been said regardless of who said it (speaker-independency). This task 

can be extremely difficult, not only because of intraspeaker variability, but also because 

of interspeaker variability. Intraspeaker variability refers to the variability of 

pronunciation by one speaker. Shorter-term variability, such as coarticulation, is a big 

problem. Coarticulation is the pronunciation variation that is encountered in the speech of 

a single person and is explained in the section on segmentation of speech using the 

phoneme in this chapter. Also, if a person gets sick, the way their voice sounds changes 

temporarily. Longer-term variability, such as aging, must also be taken into account. A 

system must be able to adapt to the changes in a person's voice that occur as a result of 

getting older. Interspeaker variability includes differences in accent, intonation, gender, 

and age. Interspeaker variability is an asset in speaker recognition because it helps to 

separate one speaker from another. 

Typically, frame analysis is first used to detect the endpoints of the selected speech units, 

such as phonemes, syllables, or words, at which time the variable-length anchor points 

can be placed for further analysis where necessary. Most systems that perform speech 

segmentation in the literature used fixed frame lengths and do not bother with a refined 
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variable-length analysis. This frame analysis is described in more detail in chapter 3. 

The following discussion helps explain why it is difficult to match the content of two 

different speech signals, even in the absence of noise and other extraneous factors. 

2.3.1.3.4.2.1 The Phoneme 

Traditionally, linguists have chosen the phoneme as the smallest speech unit. All speech 

sounds can be constructed using phonemes. Every different language has its own set of 

phonemes. The term "phoneme" usually refers to an individual speech sound that is 

specific to a given language, and the term "phone" refers to an individual speech sound 

independent of any language. The way in which a phoneme is produced depends on how 

the different places along the vocal tract are shaped and positioned, which is described in 

chapter 3. 

Every utterance can be broken down and expressed in terms of its atomic set of phonemic 

units. The phoneme is a popular sub-word speech unit that has been widely used for 

many years (and is used still today) in segmentation schemes for ASR. However, in 

practise, machines still have an extremely difficult time matching the phoneme 

recognition accuracy that trained phoneticians are able to accomplish, without a lot of 

overhead and complexity. The phonemes defined in linguistics are canonical, whereas in 

practise, phonemes that are manifested in speech waveforms hardly ever conform to the, 

canonical representation. This wide variation is due to many factors, including intonation, 

accent, pronunciation variation, and coarticulation. Coarticulation occurs when a 

phoneme's behavior is dictated by the neighboring phonemes surrounding it. The way a 
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phoneme sounds changes according to its context with respect to its neighboring 

phonemes. A phoneme that occurs in one context may sound entirely different, or may 

not be heard at all, in another context. For example, there are roughly 46 phonemes in the 

English language alone, but there are over 64,000 different phonemic contexts, not even 

taking into account the pronunciation variation that occurs across different speakers due 

to accent, regional dialect, etc, or the fact that a word or phrase is never spoken the same 

way twice by the same person. Clearly, trying to capture and model this vast amount of 

information is a difficult, and probably infeasible, task. Luckily, text-dependent speaker 

recognition does not require such a detailed representation of information. Only the data 

within a target key phrase or phrases are modeled, making the task somewhat easier. 

An example of coarticulation can be seen when comparing the words "brother" and 

"elephant". The phoneme 1.6 / in  "el" at the beginning of the word elephant sounds 

different in the "er" in brother. The / e / assimilates with the liquid phoneme In resulting 

in a change in the way it sounds based on the context in which it is found. Because of the 

sheer amount of pronunciation variation that arises due to coarticulation, even for a single 

person, the amount of training data required to capture and model this information is 

huge and usually infeasible, except for restricted tasks. 

In recent years, alternatives to the phoneme as a speech unit for segmentation have been 

explored. Words have been revisited, and syllables have been explored. Diphones and 

tniphones have also been popular recently. The properties and use of the syllable, which is 

made up of one or more phonemes, have been explored by researchers such as Steve 
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Greenberg (Greenberg and Kingsbury, 1997), (Shastri, Chang, and Greenberg, 1999), 

(Greenberg, 1998), (Kingsbury, Morgan, and Greenberg, 1998), Nelson Morgan 

(Kingsbury et al. 1998), Brian Kingsbury (Kingsbury et al. 1998), Hugo Meinedo, 

(Meinedo and Neto, 2000), (Meinedo, Neto, and Almeida, 1999), and others. 

2.3.1.3.4.2.2 The Word 

The word was one of the very first speech segmentation units, used by some very early 

researchers. However, it turned out to be a bad choice for a segmentation unit in the 

context of ASR since there are far too many words within a given language to have to 

train on to be able to adequately capture every possibility, although there are some who 

have used it more recently as a speech segmentation unit, such as (Stoicke and Shriberg, 

1996), (Martens et al., 2002). This problem does not exist on the same scale for text-

dependent speaker recognition because, once again, the number of words needed are 

limited to those within the target phrases that are modeled for a given speaker. 

Some research that has been done on the segmentation of speech into word units brings to 

light a few very important issues regarding text-dependent speaker recognition in general. 

The word-segmentation approach was taken in (Higgins and Porter, 1991) for text-

dependent speaker recognition. Rather than simply train speaker models on fixed, pre-

trained phrases to be chosen randomly as a prompt to an unknown user of the system, 

Higgins et al. trained the speaker models on various words which formed a small 

vocabulary. A user would then be prompted to utter a phrase consisting of a 

concatenation of randomly chosen words from this vocabulary. They stated that although 
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there was benefit in having a small number of fixed phrases, and therefore a shorter 

time enrolment and high accuracy, the system was vulnerable because of its 

predictability. A larger set of phrases would provide more of the necessary randomness 

and high system accuracy, but it would mean an excessive enrolment time. 

Most systems, however, cannot adequately achieve high success using the randomized 

phrase prompting strategy described above. According to (Higgins and Porter, 1991), 

"words occur in the test material in contexts that did not occur in the enrolment material. 

The context in which a word is spoken influences its pronunciation through 

coarticulation, caused by limitation in the movement of the speech articulators. These 

unmodeled coarticulations contribute to the measured dissimilarity between the input 

speech and the claimant's word templates, increasing the likelihood of rejecting valid 

users." (p. 89). Thus, as with phonemes, but to a lesser extent, word segmentation does 

not adequately address the issue of coarticulation directly. 

It is important to understand that in ASR in particular, it was found that training on words 

was much too difficult since there were far too many words in one language alone to train 

them all and to be able to adequately capture all the necessary data to be able to recognize 

any and every word that could potentially be uttered by someone. In addition, as with 

phonemes, interspeaker variability further hindered these systems. It was used early on 

and abandoned for these reasons. However, in the context of an automatic speaker 

verification system, as already mentioned above, it is a more reasonable choice (apart 

from the randomized phrase prompting that Higgins was trying to achieve) since we have 
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a more limited set of possible words, and they are all being uttered by the same 

speaker. Thus, the problems associated with interspeaker pronunciation variability would 

actually aid a system such as this because these variations would help distinguish one 

person from another more readily. 

2.3.1.3.4.2.3 The Syllable 

Many have argued that the syllable is a better choice for speech segmentation than the 

phoneme. Steven Greenberg has done a good deal of in-depth research concerning the 

syllable. He discusses use of the syllable in speech segmentation in (Greenberg and 

Kingsbury, 1997), (Shastri et al., 1999), and (Greenberg, 1998). 

In (Shastri et al., 1999) Greenberg discusses some of the reasons why the phoneme is a 

poor choice for speech segmentation, and why the syllable is a better alternative. In 

recent years, most ASR systems for the English language derive lexical information from 

a speech signal using phonetic segmentation. The automatic segmentation and labeling of 

an acoustic signal at the level of the phone is not very accurate, as compared to the 

segmentation and labeling done by trained phoneticians, due to coarticulation and 

variation in pronunciation. The performance of such systems deteriorate as they move out 

of a controlled environment and are put to use in a more realistic setting, fraught with a 

variety of environmental and linguistic conditions. He argues in (Greenberg, 1998) that 

little attempt has been made to provide an alternative lexical representation to the phone 

that is organized either above or below the level of the phone. However, it has been 
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shown that ASR systems based on the syllable, a more lexically stable model, are more 

accurate than systems using only phonetic segmentation. 

To show why this is, Greenberg explains the anatomy of a syllable and addresses the 

problem of variation in pronunciation from an ASR perspective in (Greenberg, 1998). 

According to Greenberg, "In spontaneous speech, the phonetic realization often differs 

markedly from the canonical, phonological representation. Entire phoneme elements are 

frequently dropped or transformed into other phonetic segments". (p. 51). Greenberg 

suggests that while these phenomena appear complex and arbitrary at the level of the 

phoneme, the patterns of deletions and substitutions become systematic when placed 

within the framework of the syllable. The syllable can be dissected into three parts: the 

onset, the nucleus, and the coda, respectively. Most English syllables take on one of the 

following forms (where C stands for a singular or complex consonantal cluster and V 

stands for a singular or multiple adjacent vowels): CVC, VC, CV, V. 

The onset of a syllable is typically consonantal, or made up of one or more consonants. It 

generally "survives" the changes brought about by coarticulation and varying 

pronunciation that afflict the nucleus and coda. The onset seems to dictate pronunciation 

of the rest of the syllable. It tends to approximate the canon, especially when it is 

complex, or made up of two or more consonantal segments, despite varying speaking 

conditions, and the more standard the articulation of the onset (or the higher the degree to 

which it approximates the canon), the higher the probability that the nucleus and coda 

will be also be pronounced in a canonical fashion. In general, the pronunciation of one 
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part of the syllable is affected by the pronunciation of the other parts. Greenberg 

suggests that this implies that the specific mechanism responsible for pronunciation looks 

beyond the individual phonological "atomic" building blocks to a higher level of control 

such as the level of the syllable, or even a level beyond the syllable. 

The nucleus is vocalic, or made up of vowels. Nuclei are "chameleons" because they 

often deviate from the canonical and are thus capable of taking on a number of different 

vocalic appearances. This generally results in a substitution of one vocalic appearance 

with another, as opposed to a deletion altogether as is more common with the coda, since 

the deviation from the canon is likely to preserve the nucleus' vocalic form. 

Finally, the coda is the portion of the syllable that is most likely to get disposed of by 

means of deletion or transformation into a segment that assimilates with and flows into 

that of the following syllable's onset. Unlike the onset, the complexity of the coda has no 

significant affect on the likelihood of a canonical pronunciation. 

In light of this research, it seems reasonable to conclude that all three components are 

responsible for the phenomenon of coarticulation. The nucleus and coda make up the 

bulk of the coarticulation, and the onsets, both of the current syllable and the one 

following, are what dictate the manner of coarticulation. It follows, then, that the best 

way to perform syllable segmentation would be to train on and identify syllable onsets. 

Furthermore, there is evidence to suggest that auditory neurons are most likely to be 

responsive to the initial portion of a signal (Shastri et al., 1999). Arguments can be made 
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for training on the nucleus as opposed to the onset, as in (Mahadeva Prasanna, 

Gangashetty, and Yegnanarayana, 2001), which would, in fact, be better suited to speaker 

verification applications. As will be discussed later, the more sonorant portions of a 

speech signal, associated with the vowels, or nuclei, contain more speaker-discriminatory 

information, though perhaps at the expense of lexical content discrimination. 
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CHAPTER THREE: SPEECH SIGNAL PROCESSING 

Analyzing speech in its digital form to extract meaningful data is comprised of several 

complex steps. A digital speech signal is first recorded and is then broken down into 

several segments called frames, and analyzed frame by frame using signal processing 

techniques. Signal processing allows a time-domain signal to be broken down into its 

frequency components, or bases, much like a coordinate in Euclidean 3-space can be 

broken down and represented in terms of the principle axes, which are the x-axis, the y-

axis, and the z-axis (Gaswami and Chan, 1999). Once a signal is broken down into its 

frequency components, operations can be performed on these components to manipulate 

the signal and extract information that was otherwise hidden in the time-domain 

representation. The signal processing analysis yields meaningful features, which are used 

to model and classify a signal, depending on the application. 

3.1 Speech Production 

Speech is produced when air is pushed through the vocal tract, making contact with the 

various articulators that are shown in figure 3.1 (Campbell, 1997). As the speaker is 

saying a phrase, the shape of their vocal tract changes gradually over the duration of the 

utterance. The process of continually moving the different components of the vocal 

apparatus from one configuration to another results in the differing speech sounds that 

occur over the course of the utterance. The behavior of each articulator manifests itself in 

the corresponding portion of the speech signal. At the lips, which is the end of the line, a 

pressure wave is produced. 
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Figure 3.1: Places of articulation. (Campbell, 1997) 

From this figure it is clear that there are many different. structures involved in the 

production of speech. There are many complicated combinations of articulator positions 

and movements at different points along the vocal tract, which help produce the different 

sounds of human speech. 

3.1.1 Voicing and Voicelessness 

As air is pushed through the vocal cords, the position of the vocal folds makes a 

difference in the way a sound is manifested. When air passes through the vocal folds and 

they vibrate, the sounds are said to be voiced. This usually happens because the vocal 

folds are brought close together but are not completely closed. Voicing occurs in vowels 
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and some consonants. Vowels are sonorous, or highly voiced, syllabic sounds. 

Different vowel sounds are produced with different shaping and placement of the tongue 

and lips. When the vocal folds do not vibrate, the sounds produced are said to be 

voiceless. In this case, the vocal folds are positioned farther apart. Voicelessness occurs 

in consonants. 

3.1.2 The Speech Signal 

As previously mentioned, speech is produced when air is pushed through the vocal tract, 

producing a pressure wave at the lips. When performing speech analysis, this pressure 

wave is captured as a discrete digital signal by a recording device, such as a microphone. 

The continuous analog signal is converted to a digital signal through sampling, which can 

then be interpreted and manipulated by a computer. The speech signal, or waveform, is 

the machine's representation of the speech utterance, and can henceforth be broken down 

and analyzed. 

Figure 3.2 (Gaswami and Chan, 1999) illustrates the digital sampling of a continuous 

signal function. A continuous signal is sampled by taking the value of the function at 

uniformly-spaced intervals in time. These discrete sample values are the digital 

representation of the original signal and are stored in a vector as a sequence of values. 
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Figure 3.2: Sampling of a continuous function. (Gaswami and Chan, 1999) 

As can be seen in figure 3.3 (http://www.ling.mq.edu.au/-rmannell/sph3021epg/sam.pdf), 

the changes in the configuration of the vocal tract across the utterance are reflected in the 

speech waveform itself. There are areas of greater excitation, or voicing, interchanged 

with areas of less excitation, including possible areas of silence and non-speech sound. In 

general, regions that are more voiced are found to contain a higher degree of speaker-

discriminatory information than regions that are less voiced. 

speech waveform 
100 110 120 130 140 150 160 170 180 190 200 

Figure 3.3: Speech waveform. 
(http://www.ling.mq.edu.aul-.rmannell/sph302/epg/sam.pdt) 
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Because of this gradual evolution of the vocal tract, the signal is said to be quasi-

stationary, which means that it changes gradually over its course, or is slowly time-

varying. In other words, the signal contains transient events that cannot be predicted even 

using past statistics. While the signal is doing one thing at time t, it is behaving 

completely in a completely different manner at time t + n. While the speech signal is 

globally non-stationary, or continually changing over its entire duration, it is locally 

stationary. This means that very small regions of the signal appear to be stationary, and 

are not changing. From a signal processing perspective, this has important implications. 

These implications will be explained later on in this chapter. 

A speech signal, then, can be thought of as a sequence of piecewise functions, where each 

function f (x) corresponds to a locally stationary region of the speech waveform: 

f1(x)+f2(x)+...+f(x) (3.1) 

These functions, as well as the regions of the speech waveform they correspond to, are 

unknown and cannot be predicted. No two utterances are exactly alike, even if they came 

from the same person. It is nearly impossible for a person to exactly repeat the same 

cycle of articulator movements that produced an utterance. 
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3.2 Speech Signal Processing 

3.2.1 Fourier Analysis 

Fourier analysis converts a signal from one domain to another domain. The original 

domain is referred to as the time or spatial domain, and the transform domain is referred 

to as the frequency or spectral domain. This transformation breaks a signal down into its 

frequency components. When a signal is transformed to the frequency domain, 

information that was otherwise hidden in the time domain is revealed, and operations can 

be performed on the frequency representation to manipulate or extract information from 

the signal. The Fourier method is one of the most powerful techniques available for 

signal analysis. In speech signal processing, the frequency domain is the domain from 

which features are extracted for the classification and pattern matching tasks described in 

chapters 2 and 4. 

There are multiple methods of performing Fourier analysis. However, it is only possible 

to use one of these methods for speech signal processing, which consequently introduces 

complications in the analysis of the speech. These issues are discussed in what follows in 

this chapter. First, each method of Fourier analysis is explained, and a reason is given for 

why it cannot be used for analyzing speech signals. Each of the four Fourier methods are 

presented in pairs of equations, the first of which transforms a signal from the time 

domain to the frequency domain, and the last of which transforms from the frequency 

domain back to the time domain. Thus, the equations are inverses of each other. These 

equations, as well as an introduction to signal processing, are found in (Gaswami and 

Chan, 1999) and (Oppenheim and Schafer, 1989). 
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3.2. 1.1 Continuous Fourier Analysis 

Fourier analysis includes two methods of analysis, the Fourier series, and the Fourier 

transform. These methods are applied to analog signals (as opposed to digital signals), 

meaning that they are both defined for use with continuous, rather than discrete, 

functions. 

The Fourier series is applicable to periodic signals and is given by: 

p(t) = a keJkwOt 

k=-

where the Fourier coefficients 0k are computed by: 

1 10+T 
a k = .11 p(t)e_ )0t 

0  

(3.2) 

(3.3) 

The ak are the coefficients of the Fourier series, and the period is T = 27r/w0. In 

addition, w0 is the fundamental frequency. The fundamental frequency is usually the 

strongest frequency that appears in the sound, and seems to most closely indicate the 

perceived pitch of the total sound. Note that equation 3.2 takes a signal from the time 

domain to the frequency domain, and equation 3.3 is the inverse, which takes the 

frequency domain back to the time domain. 
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The Fourier transform is an extension of the Fourier series. It can be applied to aperiodic 

functions that are defined on the real line by allowing the period T of a periodic function 

to extend to infinity. It is given by: 

= J°° p(tt)e_t'dt1 

and its inverse to get back to the time domain is: 

Pp(t) = fr(co)e 0da 

(3.4) 

(3.5) 

Once again, equations 3.4 and 3.5 are the inverse of each other. Clearly, the computation 

of the Fourier series coefficients ak and the Fourier transform requires integration, and 

therefore the signal must be represented as an analytic function f(x) that can be 

integrated. However, most of the signals that we encounter in real life, including speech 

signals, cannot be represented as such. No signal f(x) is known for a given input speech 

signal, and none can be predicted. 

3.2.1.2 Discrete Fourier Analysis 

In cases where continuous Fourier analysis is not applicable, it is possible to convert the 

signal from analog to digital by sampling the original signal and obtaining a discretized 

signal. In digital form, the discrete-time Fourier series and the discrete-time Fourier 
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transform can be computed directly and used to obtain a frequency domain 

representation. These produce an approximate spectrum of the original analog signal. 

The Discrete-Time Fourier series is given by: 

N-i 

f(n) = ceke 

k=O 

1 N-i 
cxk = 

and the Discrete-Time Fourier transform is as follows: 

j(ai) Ef(n)e 

(3.6) 

(3.7) 

(3.8) 

f(n)= if(o)e"dw (3.9) 

If a discrete signal is aperiodic, it can be considered to be a periodic signal with period 

N = Co. In this case we extend the discrete Fourier series analysis to the discrete-time 

Fourier transform (DTFT), similar to the extension in the analog domain. In DTFF, only 

the time variable n is discretized. The frequency variable w remains continuous. To 
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transform from the time domain to the frequency domain, a summation is taken, but to 

get back to the time domain from the frequency domain, an integral must be calculated. 

Unfortunately, the DTFT can only be applied to signals that are infinite in length, or more 

specifically, have an infinite number of input samples, which we rarely encounter in real 

life, such as speech signals in particular. A speech signal will always have a finite 

number of samples, since even the original analog signal is finite in length. 

The only remaining choice is the Discrete Fourier Transform. It is a version of the DTFT 

that acts on finite-length time and frequency domain representations. In the DFT, the 

frequency domain is sampled to produce a discretized spectrum. It is thus the equivalent 

to the set of equations (3.6 and 3.7) given for the Discrete-Time Fourier Series. Thus, for 

speech signals, the Discrete Fourier Transform (DFT) must be used. 

3.2.2 Short-Time Frequency Analysis (Time-Frequency Analysis) 

As already mentioned, while the speech signal is globally non-stationary, it is locally 

stationary, which means that the local spectrum corresponding to each change in the 

speech as a result of the change in the vocal tract is different from other parts of the 

signal. It is necessary to analyze each of these local regions of the speech, since they 

contain information about the behavior of the vocal tract and thus information about the 

characteristics of the lexical content and speaker's voice characteristics at that point in 

time. 
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For example, in speaker recognition, the unique characteristics of a person's voice are 

exhibited in different ways across the speech signal. Regions of voicing contain different 

information than regions that are not voiced. Furthermore, not all regions of voicing (or 

non-voicing) are alike. Phonemes, which are the basic building blocks of speech, or 

syllables, make up multiple different speech sounds, each of which contains its own set of 

information about the person's voice characteristics. Therefore, it is necessary to analyze 

each local speech sound or region in order to adequately capture all the necessary 

information about a person's voice that is being exhibited. The same is true in speech 

recognition, in which multiple speech sounds are combined to form a speech utterance, 

containing information about what the person said, and this speech information is 

distributed across the speech signal in differing ways. 

Since it is necessary to extract information out of local regions of speech, signal 

processing cannot be performed over the entire waveform all at once. The reason for this 

is as follows. The Fourier spectrum only contains frequency-domain information, and 

does not contain any time-domain information. This becomes problematic because in 

complex signals, it is impossible to tell, by just looking at the frequency-domain, what 

part of the original time-domain signal is responsible for producing what characteristics 

in the frequency-domain. This is illustrated with the following example, taken from 

(Gaswami and Chan, 1999). 
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In the top part of figure 3.4 (Gaswami and Chan, 1999) is a time-domain function. It is 

a truncated sinusoid with a frequency of 4H-z. Note that there are spikes at around t = 0.7 

and t = 1.3 seconds. The bottom of the figure shows the frequency-domain representation 

of this sinusoid. The dominant spike in the frequency-domain is due primarily to the 

sinusoid, while the smaller ripples along the frequency axis are due primarily to the 

perturbations, or delta functions (which are sharp changes) in the time-domain. 
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Figure 3.4: (Above) Sinusoid with spikes at 0.7 and 1.3 seconds. (Below) Frequency 
spectrum of the above sinusoid. (Gaswami and Chan, 1999) 

If only the frequency-domain representation were considered, it would be impossible, 

from this information alone, to point out the locations at which the time-domain delta 
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spikes occurred, even though it is clear that there is evidence that they are there 

somewhere. So, analyzing the frequency information of a small region of the time-

domain, which is what is required in speech analysis, is impossible when performed on a 

frequency representation of the entire time-domain because the frequency components of 

the entire signal as a whole are mixed together. The time information is lost. 

If a Fourier analysis were performed over a spatial signal that varies too greatly, the 

analysis would not adequately characterize the details of the fine harmonics of localized 

areas of the waveform, and important information would be lost or obfuscated. The 

spectra of successive vocal tract changes would be intermixed. Thus, it is necessary to 

perform a local analysis, referred to as a short-time Fourier transform, in order to 

combine the time-domain and frequency-domain information. This can be done by 

breaking down the signal into smaller frames of analysis to capture this local spectral 

information, where each frame is analyzed separately. 

3.2.3 Frame Analysis 

To perform a short-time frequency analysis on the speech signal, it is reasonable to break 

the signal up into several short, successive segments, or frames, and analyze each frame 

individually and independently, each containing its own segment of the signal. This 

procedure is known as frame analysis. The length of the segments can be fixed or 

varying. In applications with varying frame lengths, the varying frame lengths are usually 

used once a preliminary fixed-frame analysis has been performed to detect important time 

events. Once these time events have been located, they can be used as anchor points 
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around which a variable-length frame can be constructed for further analysis of the 

new segments of interest. 

The choice of the length of a frame is important. If the frame is too large, it will suffer 

from the problems described above, in that it will not be possible to determine which 

portions of the time-domain that the frequency-domain behavior corresponds to. If the 

frame is shorter than the ideal length, we can still obtain reasonable spectral results from 

a frequency analysis. However, if a frame is too short, it will not contain enough 

information to be of any use. The frame must be long enough to capture meaningful data. 

In speech applications, frame lengths are usually 10 to 20 ms long. These lengths are 

apparently not long enough to cause the problems that frame analysis and short-time 

frequency analysis are meant to avoid, and are still long enough to capture interesting and 

useful information. Figure 3.5 (Hermansky, 1990) depicts the framing of a speech signal. 
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Figure 3.5: Frame analysis. (IIermansky, 1990) 

3.2.4 Frame Windowing 

3.2.4.1 Gibbs Phenomenon 

Consider a square wave function f(x), as shown in figure 3.6. The square wave travels 

along at 1 for awhile, then makes a sharp transition to -1 and continues at - 1. The sharp 

corners or transitions made from 1 to -1 are discontinuities in the function. 
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Figure 3.6: Square wave. 

Suppose the fourier transform f '(x) is taken on f(x). Now suppose we want to 

reconstruct the original signal f(x) from f '(x) by taking the inverse fourier transform. 

However, what we end up with is a function g(x) that is not equal to f(x), as shown in 

figure 3.7. g(x) contains ripples, caused by what is called "ringing", or a sharp 

overshoot, in the frequency domain. These ripples are magnified in places where the 

sharp discontinuities in f(x) occurred. This is known in signal processing as the Gibbs 

Phenomenon. In figure 3.7, part (a) shows the original signal f(x), part (b) shows the 

reconstructed function g(x), and part (c) shows the g(x) plotted over top of f(x) to 

make the ripples and artifacts more readily apparent. 



50 

(a) Square wave discontinuities in f(x). 

(b) Reconstruction of the square wave g(x) from fourier representation f '(x). 
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(c) Reconstructed function g(x) overlaid on original function f(x). 

Figure 3.7: (a), (b), and (c) depict Gibb's phenomenon at signal discontinuities. 

The more the number of terms K used in the Fourier series calculation, the more like the 

original signal the approximation becomes. As shown in figure 3.8, increasing the 

number of K terms decreases the severity of the ripples in g(x), but even when the 

number of terms is extended to infinity, the ringing, and subsequently the ripples, never 

quite disappear (http://cnx.rice.edu/content/m10687/latest/). As shown in figure 3.8 

(http://cnx.rice.edu/content/m10687/latest/), the ripples get narrower but do not get 

shorter. Thus, as the number of coefficients K approaches infinity, the reconstructed 

signal is the same as the original except at discontinuities. 
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Figure 3.8: Fourier series approximations to the square wave using different 
number of Fourier coefficients K. (http://cnx.rice.edu/content/m10687/latest/) 

This behavior is highly undesirable. Clearly, g (x) contains data, or artifacts, that were 

not present in the original signal f(x). Thus, using f '(x) to perform any kind of feature 

extraction of the signal, where f '(x) really represents g (x) and not f(x), will mean 

analyzing information that is not representative of the true input signal, and therefore the 

results will be unexpected and inaccurate. 
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3.2.4.2 Framing and the Gibbs Phenomenon 

Now, consider a frame of a speech signal, f(x), shown in figure 3.9. It is highly unlikely 

that f(x) will be periodic, so we will assume that it is aperiodic. However, when 

performing a discrete fourier transform on the signal f(x), it is assumed that f(x) is 

really periodic, as shown in figure 3.10. 

Figure 3.9: Frame containing f(x) 

Since f(x) is really aperiodic, sharp discontinuities appear everywhere one period meets 

the next. In figure 3.10, two periods of a framed signal have been placed side by side. 

Where they meet the signal has a jump discontinuity, meaning that it does not make a 

smooth transition into the next period. Due to the Gibbs Phenomenon, this will result in a 

fourier representation of a signal that contains artifacts that are not really there, which 

will give us feature vectors that represent something other than what was intended. 
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Discontinuity 

Period 2 Period 1 

Figure 3.10: f(x) represented as being periodic. Two periods of f(x) are shown. A 
sharp discontinuity occurs where period 1 meets period 2. This will result in the 
Gibb's phenomenon occurring in the frequency domain. 

The solution is an operation called "windowing". Windowing is necessary to taper off the 

signal due to the discontinuities that occur at the endpoints of the signal segment, making 

it appear periodic and removing the ringing that otherwise would have occurred. 

As shown in figure 3.11, the portion of the signal within a frame is multiplied with a 

window function in the time domain to produce the resulting windowed signal. Typically 

a Hamming window is used for this, which is defined by: 

w(n) = s(n)I0.54 - 0.46 cos(.] 
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where s(n) is the signal at time n and N is the length, or number of samples, of the 

signal. 

The resulting signal is tapered off at the endpoints. Since the window is concentrated in a 

narrow band of frequencies around the middle of the frequency spectrum at w = 0, the 

frequency response of the windowed signal will still behave in a similar manner to the 

frequency response of the original unwindowed signal, but now the discontinuities have 

been removed and signal processing analysis can be performed to obtain the local 

spectral information of the signal segment contained within the frame. 
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Figure 3.11: Windowing of a signal. A signal (top left) is multiplied with a Hamming 
window (top right) to produce a windowed signal (bottom). 
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Applying a window to f(x) yields a windowed version h(x), in which the right and 

left portions of the signal within the frame are "tapered off", while the portion of the 

signal in the middle of the frame is roughly what it used to be. 

Period  Period 3 Period 1 

Figure 3.12: f(x) has been windowed to obtain h(x). Three periods of b(x) are shown. 
Sharp discontinuities between adjacent periods are now minimal. 

Now, h(x) is no longer aperiodic but is periodic. Thus, when the discrete fourier 

transform is performed on h(x), it actually represents h(x) and not some signal p(x) 

that contains introduced artifacts. 

3.2.5 Frame Overlapping 

Figure 3.13 shows two adjacent frames of the original signal after they have been 

windowed. The two frames are now in an appropriate state for fourier analysis. There is 

still a problem with the analysis of f (x) and f2 (x), however. While we avoided 

introducing information that was not there (due to the Gibbs Phenomenon) by windowing 

f, (x) and f2 (x), we have effectively lost information due to the windowing operation. 

The information that existed where the first frame makes a transition into the next is 

largely lost due to the tapering effect of the window function. This is especially 
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pronounced where f1 (x) meets f2(x). The tapering effects of the windowing 

operation are especially strong at the beginning and end of a given frame. Therefore, 

where two frames meet, there is hardly any information left at all. 

12(x) 

Figure 3.13: (Above) Two adjacent frames, fi(x) and f2(x). (Below) The same two 
frames after windowing. 

To account for this, a third frame is introduced to capture f3(x) , which straddles f (x) 

and f2(x) as shown in figure 3.14. 
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Figure 3.14: Overlapping frames 
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This places f3(x) in a position such that the information that was lost where f1(x) and 

f2(x) met will be most strongly represented (i.e. - in the middle of the frame) after the 

windowing operation has taken place. 

In this way, the overlapping frames capture whatever information is lost between two 

adjacent frames, and all of the information that was present in original signal f(x) is 

taken into account. A frame that overlaps two adjacent frames will then capture the 

interframe information that was otherwise lost in the transition from one frame to the 

next. 
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CHAPTER FOUR: SPEECH MODELING 

Speech and speaker recognition have been around for several decades. Many of the 

techniques for extracting the desired characteristics of speech that were used 30 years ago 

or more are still in common use today, with slight variations. While more robust methods 

of recognition have come about by combining several different feature vectors into one 

feature vector, most of the advancements in speech and speaker recognition have come 

about by moving from template speech and speaker models to increasingly complex 

hybrid statistical methods of modeling speech. 

This chapter is organized as follows. First, the issue of background noise is briefly 

addressed. Then, an overview of the main features explored in this thesis is given. 

Finally, a brief discussion of some of the classifiers and recognition systems that are 

commonly used for speaker recognition is given. Features and classifiers are discussed 

separately because there are so many different combinations of features and classifiers in 

the literature. 

4.1 Noise 

Like most signal and image processing operations, voice analysis is often subject to noisy 

input data. Artifacts that are extraneous to the task at hand become integrated into the 

speech data at the time of recording. In other words, there will never be a case when only 

the target person's voice is present in a voice recording. Noise comes in many different 

forms, from interference from the recording device, creating static or white noise, to more 
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natural background sounds such as other people's voices, traffic, birds chirping, a baby 

crying, or a cough or sneeze can be considered noise. It is an extremely difficult task for a 

computer to be able to separate all the noise from the target speaker, and in most cases, it 

is impossible. If noise is present at the time of training, it will be erroneously considered 

to be a characteristic of the speech content or the speaker's voice. When testing, any input 

data that would otherwise be correctly classified could be rejected because this same 

noise may not be present in the test data. In other words, what should be modeled isn't 

being modeled correctly. Similarly, when test data contains noise, what should be tested 

isn't being tested correctly. 

The statistical modeling methods that are described later are more robust under noise than 

non-statistical methods because they allow for slight variations in the data that may be 

due to noise. While there is much research on the subject of dealing with noise in speech 

analysis directly, it is not within the scope of this thesis, and will only be referred to 

briefly in relation to the statistical modeling methods that are relevant to the material 

herein. 

4.2 Speech Characteristics 

Feature extraction is performed for several reasons. First, it greatly reduces the 

dimensionality of the problem. A frame of speech that contains 320 samples may have a 

set of features representing this frame having only have 12 or 13 coefficients. Thus a 

computationally infeasible problem becomes possible and much more realistic. Second, 

only the characteristics that apply to the task at hand are used in the analysis. For 
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example, speech data contains information about both who is speaking and what is 

being said. If the task is speech recognition, we would ideally like to remove the speaker-

specific information, leaving only the speech content information. 

Interestingly, many of the techniques used in speech recognition are also used in speaker 

recognition. The reason for this is because in most features, and despite much effort to 

the contrary, there is both speech content and speaker-specific information present. 

Ideally, in most situations, the two would be decoupled entirely. However, this is not 

entirely possible. There is still much that is not known about the complexities of speech, 

and many of the fundamental assumptions that are made about how the process of air 

being pushed through the vocal tract produces speech sounds are incorrect or limited. 

4.2.1 Linear Prediction (LP) Coefficients 

Linear prediction (LP) (Makhoul, 1996), (Makhoul, 1975) is an autoregressive method of 

feature extraction. This means that what the speech is doing at time t is determined by 

what the speech was doing at times t - N to t —1, so the previous behavior of the speech 

is used to predict the future behavior. It has the effect of smoothing the spectral envelope 

of the speech. In other words, the complex local fluctuations of the input speech 

waveform are somewhat smoothed away. This is somewhat desirable because some of 

these fluctuations are probably due to noise. 

Linear Prediction is one of the most powerful and important methods of deconvolution 

and parameterization of the source and filter. The source, or excitation, is the driving 
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force of speech production. It is the air that is pushed from the lungs through the vocal 

tract. The filter is the vocal tract itself. As the air is pushed through, it changes the air 

pressure that is created by the force of the air. By the time the air is expelled from the 

lips, the air pressure creates waves of sound that reflect the vocal tract changes that took 

place. LPC is explained in detail in (Campbell, 1997) and (Hermansky, 1990). It is one of 

the most commonly used features in the literature. It is often either used directly or is the 

basis of further feature extraction 

(http://www.isip.msstate.edu/publications/courses/ece_8463/ 

lectures/current/lecture_16/lecture_16.pdt). In fact, the autoregressive idea is used in a 

slightly different way in many psychoacoustic features, which are discussed later on in 

this chapter. 

Linear prediction is based on the idea that the vocal tract can be modeled by a series of 

nonuniform, piecewise acoustic tubes that are joined together. 

Figure 4.1 (Campbell, 1997) shows a crude acoustic tube model that is used to model the 

vocal tract. Adjacent sections of the tube vary in shape and diameter. The excitation 

signal, or source, is the driving force of speech production. It passes through the vocal 

tract, or filter, from left to right, to produce a speech sound s(n). Most speech models, 

including linear prediction, attempt to decouple the source from the filter as a preliminary 

step. 
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Figure 4.1: Acoustic tube model. (Campbell, 1997) 

The all-pole LP models a signal s(n) by a linear combination of its past values and a 

scaled present input. In the time domain, it is as follows: 

s(n) = - Z  (ak * s(n --  k) + G * (ii) (4.1) 

where s(n) is the present output, ck are the prediction coefficients, s(n - k) are the past 

outputs, G is a gain scaling factor, and u,, is the present input, which corresponds to the 

human vocal tract excitation. This is simplified further because in speech applications, 

only the vocal tract, or filter, is kept, and therefore the input u is generally removed 

since it is unknown. Thus we get equation 4.2, which now depends only on past outputs: 

(n) = - E  (ak *s(n_ k)) (4.2) 
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Now the problem of estimating cik is easier because the source and the filter have been 

decoupled. The source, u,, is not modeled by these prediction coefficients, and thus, by 

ignoring it, it is probably reasonable to assume that some sort of valuable speaker-

dependent information that is present in the excitation signal has been lost. The linear 

prediction coefficients are typically found using a mean-square estimate. It has been 

found that minimizing the error signal e(n) in this way produces a flat, or band-limited 

white magnitude spectrum of the error signal, which can be defined as being the 

difference between the actual signal s(n) and the estimated reconstruction of the signal 

using the prediction coefficients, s(n): 

e(n) = s(n) - (n) = s(n) + Z (ak * s(n - k)) (4.3) 

Using s(n) above, the LP Z-domain transfer function is as follows: 

G G 

1+ V (ak * z) - A(z) 
(4.4) 

where A(z) is known as the inverse filter. A(z) is used to derive a set of features called 

Line Spectrum Pair frequencies, which is described in section 4.2.2. 

One criticism that has been made about LPC is that the underlying assumption about the 

piecewise acoustic tube is incorrect, or inadequate. For example, the acoustic tube model 
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is static, whereas in reality, the human vocal tract is always changing shape. However, 

the beauty of LPC is in its simplicity, especially when unknown terms such as u,, can 

simply be factored out of the equation altogether. 

4.2.2 Line Spectrum Pair (LSP) Frequencies 

Line Spectrum Pair (LSP) frequencies are an alternative spectral representation of the 

linear prediction coefficients, and are discussed in (Soong and Juang, 1984). In (Soong 

and Juang, 1984) the use of LSP frequencies in speech data compression is discussed and 

some of their main properties are described and proven. An explanation of Line Spectrum 

Pair frequencies is also given in (Itakura, 1975). 

Line spectrum pairs are essentially a representation of ptlorder coefficients of the inverse 

Z-domain filter A(z) of the LP all-pole representation as follows: 

Let 

A(z) = [P(z) + Q(z)] 

Then 

(4.5) 

P(z) = A(z) + * A(z') (4.6) 
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Q(z) = A(z) - * A(z') (4.7) 

where P(z) and Q(z) are (p+1)-order symmetric and antisymmetric polynomials whose 

zeros are mapped onto the unit circle in the Z-domain. The zeros of the polynomial P 

and the zeros of the polynomial Q are interlaced with one another. The frequencies at 

which these zeros occur are the LSP frequencies. The zeros of the P polynomial are 

computed using the discrete cosine transform (DCT), whereas the zeros of the Q 

polynomial are computed using the discrete sine transform (DST). 

The DCT is defined as follows: 

XkCoS(j(k+)) 

and the DST is defined as: 

n-I 

f = xk sin( (j+ 1)(k+)) 
k=O 

(4.8) 

(4.9) 

The DCT and DST are each similar to the DFT, but they both use real numbers and are 

roughly twice the length of the DFT. The DCT operates on data with even symmetry and 

is equivalent to the real parts of the DFT. The DST operates on data with odd symmetry 

and is equivalent to the imaginary parts of the DFT. 
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LSP frequencies have traditionally been used for speech data compression and 

quantization. One example of where they are used is in the well-known CELP cell phone 

data compression (Campbell, Tremain, and Welch, 1991), (Campbell, Tremain, and 

Welch, 1990). The LSP frequencies have been shown to be more stable than their LPC 

representation, therefore yielding higher accuracies in recognition applications. 

According to (Soong and Juang, 1984), LPC coefficients are inappropriate for 

quantization for several reason. They have a large dynamic range and are prone to filter 

instability problems, whereas LSP parameters have a well-behaved dynamic range and 

the property of filter stability. 

Figure 4.2 (Zheng, Song, Li, Yu, and Wu, 1998) illustrates the relationship between the 

zeros of the P and Q polynomials and the corresponding transfer function H(z) . The 

closer together two adjacent zeros, the more of a peak is seen in the transfer function. 

(Zheng et al., 1998) exploits this relationship between the zeros of the polynomials and 

the transfer function H(z) to derive a new set of distance metrics for LSP features. 

However, this technique is not within the scope of this thesis. 
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Figure 4.2: Zeros of P and Q polynomials and their relationship to the all-pole 
transfer function H(z). (Zheng, Song, Li, Yu, and Wu, 1998) 

It has been shown (http:IImi.eng.cam.ac.uk/-ajr/SpeechAnalysis/nodel.html) that when a 

root of such a polynomial is close enough to the unit circle, it represents a formant. 

Formants, which are perceptually defined, correspond to the physical property of the 

frequencies of the resonances of the vocal tract. Formants are distinguishing components 

of human speech. They are the characteristic harmonics that identify vowels to the 

listener and allow the listener to distinguish between vowels 

(http://encyclopedia.thefreedictionary.com/Formant). Since the roots of P(z) and Q(z) 

lie directly on the unit circle, they represent formants. The angle at which a root lies is 

close to the fundamental frequency of the corresponding formant. 
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This has been explored in (Ribeiro and Trancoso, 1996). More specifically, P(z) 

represents the portions of the acoustic tube model where the glottis is closed, and Q(z) 

represents the portions of the model where the glottis is opened. The interleaving of the 

roots of P(z) with the roots of Q(z) around the unit circle is done to make the vocal 

tract model stable. 

As stated in (Ribeiro and Trancoso, 1996), "the closer two consecutive LSP coefficients 

are together, the narrower the bandwidth of the corresponding pole of the vocal tract 

filter" (p. 307), and the higher the spectral peak. The further apart they are, the flatter the 

spectral peak. So, while "formants are marked by two close LSP coefficients, spectral tilt, 

or the slope of the spectrum, is primarily marked by LSP coefficients which are farther 

apart." (p. 307). This can be seen in figure 4.2. 

According to (Ribeiro and Trancoso, 1996), "the roots of P(z) have been named as 

position coefficients, because the closed glottis model is the best approximation for a 

lossless approximation of the vocal tract filter. Hence, whenever formants are present, 

one can find a correspondance between the roots of P(z) and the locations of the formant 

frequencies. The roots of Q(z), on the other hand, have been called difference 

coefficients, because of their role in marking the presence and absence of a formant by 

their closeness to a position (P(z)) coefficient." (pg. 307). 
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4.2.3 Psychoacoustic Features 

Psychoacoustics is a science where data is gathered qualitatively on the perceptual 

auditory experiences of humans in order to try and gain a better understanding of how the 

human auditory system processes complex sounds. This data can be used to build 

synthetic models of the human auditory system, but direct physiological observation is 

limited to the outer, middle, and inner ears. Processing that occurs at higher neural 

centers cannot yet be studied in any great detail. 

4.2.3.1 The Relationship Between Frequency and Position 

The basilar membrane in particular has been the topic of much interest and research in 

the field of speech analysis. The ear's ability to analyze complex acoustic signals and 

target specific sounds in the presence of noise has led researchers to try and map out the 

inner workings of the ear. Figure 4.3 (Goldstein, 1999) shows a cross-section of the inner 

ear, in which the basilar membrane can be seen. 
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Basilar membrane 
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membrane 

Organ of Corti 

Figure 4.3: Inner ear cross-section. (Goldstein, 1999) 

The combined movements of the basilar membrane and the tectorial membrane, which 

sits on top of the basilar membrane, in addition to the motion of the fluid within the inner 

ear, generates an electrical signal that is transmitted to the auditory nerve fibers and on up 

into higher neural centers of the brain. 

4.2.3.2 Hermann von Helmholtz (Resonance Theory) 

Hermann von Helmholtz was the first scientist to propose the idea that certain parts of the 

ear are responsible for dealing with specific frequencies (Morgan and Gold, 2000), 

(Goldstein, 1999). Using the knowledge that the basilar membrane is narrow at one end 

and wider at the other, Helmholtz hypothesized that the basilar membrane is made up of a 
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series of adjacent fiber strips (much like a xylophone) that start narrow at the base and 

get wider as they move toward the apex. He proposed that each fiber strip was tuned to a 

specific frequency, such that high frequencies would set long fibers into vibration and 

low frequencies would set short fibers into vibration, much like the strings in a piano, 

where each fiber is able to resonate independent of the others. The cilia on a stimulated 

fiber strip would then be bent, causing only the transduction of these vibrations into 

electrical signals to be passed upward. 

Helmholtz' theory has been found to be incorrect. It was later found that large regions of 

the basilar membrane react to sound stimulus because the basilar membrane's fibers are 

connected and thus cannot act independently of other fibers. However, his work inspired 

others, such as George Bekesy, to use his ideas as a springboard for other work. 

4.2.3.3 George von Bekesy (Traveling Wave Theory) 

Bekesy (Morgan and Gold, 2000), (Goldstein, 1999), (Bekesy, 1942) performed an 

experiment on the basilar membrane to find out how it behaves when stimulated by 

vibrations of different frequencies. He explored the behavior of the basilar membrane not 

only by directly observing the reaction of the basilar membrane itself, but also by 

constructing a model of the cochlea. The cochlea was constructed to support the fact that 

the basilar membrane is narrower and more stiff at one end and wider and less stiff at the 

other. 
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Figure 4.4 (Hermansky, 1990) depicts a filterbank of synthetic filters with a trapezoidal 

shape. These are what are used by Hynek Hermansky in his PLP analysis, which is 

discussed in section 4.2.3.8. Although these filterbank shapes were derived empirically 

from testing the limits of the ear, they are not necessarily those applied by the physical 

ear. Several researchers have proposed various other filter shapes to model what the ear is 

doing. As shown in the figure, several bandpass filters cover the perceptible region of the 

frequency-domain spectrum. Thus, a given range of frequencies is filtered through any 

filters that cover that region, and are analyzed separately from other frequencies that do 

not lie within this bandpass region. 

1.0 

0.0 

1 129 

Figure 4.4: A filterbank of trapezoidally-shaped filters. (Hermansky, 1990) 



75 

This would mean that the ear is able to break down a complex signal into its different 

frequency components, much like the Fourier transform. Many researchers have 

performed experiments to explore the nature of these auditory filters. 

4.2.3.5 Masking 

Suppose a tone is introduced to a person, and a second tone is introduced later on. If the 

second tone is intense enough, it can mask, or decrease, the person's perception of the 

first tone. This phenomenon in human auditory perception is called masking. A tone can 

more readily mask a tone that it is closer to in frequency than one that is further away. In 

addition, a tone can more readily mask a tone that is at a higher frequency than itself, 

rather than a tone that is at a lower frequency (Goldstein, 1999). 

4.2.3.5.1 Harvey Fletcher (Critical Bands) 

Harvey Fletcher (Morgan and Gold, 2000) performed a series of experiments to further 

test the frequency-specific positioning characteristics of the basilar membrane by trying 

to find the bandwidths and spectral positions of the auditory filters in the proposed 

filterbank. To do this he performed an experiment that is referred to as simultaneous 

masking, which exploits the masking phenomenon that was described above. 

In Fletcher's simultaneous masking, a test tone plus wideband noise is presented to a 

listener. The wideband noise is centered at the frequency of the test tone. The test tone is 

decreased in intensity until it can just barely be perceived, and decreasing the intensity 

any further would make it so that the tone could no longer be perceived. The intensity at 
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which the tone is no longer perceived is referred to as the threshold intensity. It is the 

lowest intensity needed for the person to be able to hear the tone in the presence of noise. 

The noise bandwidth is then decreased, causing a decrease in the power of the noise, and 

the intensity threshold of the test tone is recomputed. No change occurs in the intensity 

threshold of the test tone until ae "critical band" is reached. As the noise bandwidth is 

decreased further and further from this critical band, the intensity threshold decreases as 

well. 

t 
Test Tone 

t 
Bond of 

Noise 

Test Tone 

t 
Test Tone 

Critical Band 

Frequency 

Frequency 

Frequency 

Figure 4.5: Narrowing noise bandwidth to find the critical band. 

The idea is that a small bandwidth of noise will contribute a small amount of masking to 

the test tone, and the intensity threshold will be smaller in the presence of this noise (i.e. - 
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it is easier to hear the tone than if there is a wider bandwidth of noise). As the 

bandwidth of the noise increases, more masking is applied to the test tone, increasing the 

amount of intensity needed for the person to perceive the tone. This increase in intensity 

threshold eventually levels off beyond the critical band, since noise outside of the critical 

bandwidth no longer has any effect on the test tone, supporting the idea of a filterbank of 

bandpass auditory filters. When a person is trying to perceive a tone in the presence of 

noise, the auditory filter with a central frequency that is closest to the frequency of the 

test tone is used to filter out all noise outside of the filter and only pass the noise and test 

tone within the filter. Thus it is only this noise that has any masking effect on the tone. 

It has been found that the bandwidths of the auditory filters increase with increasing 

central frequency. It has also been found that the auditory filters increase in size with 

increasing central frequency. 

These experimental findings were later confirmed by other researchers, such as Egan and 

Hawke (Egan and Hake, 1950). Although these experiments have yielded information 

about the bandwidths and frequency positions of the filters, they have unveiled nothing 

about the shapes of the filters themselves. Experiments performed to approximate the 

shapes of the auditory filters are briefly described in section 4.2.3.7. 
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4.2.3.6 Natural Frequency Scale of the Ear (Bark Scale) 

In (Schroeder, 1977), Schroeder explains that the frequency resolution of the ear is 

around 1.5mm, and that the total length of the basilar membrane from the base to the 

apex is roughly 35mm. This gives around 24 critical bands and thus 24 auditory filters. 

Schroeder explains that the ear has its own natural frequency scale, which corresponds to 

equal distances along the basilar membrane. This is referred to as the Bark scale. A 

frequency f is warped into a Bark z by: 

f = 600 * sinh() (4.10) 

Thus, the human perception of sounds at different frequencies is not linear. This has 

implications for critical bands. Bandwidths of critical bands with a central frequency 

below 500 Hz are constant. Above 500 Hz, the bandwidths increase in a roughly 

logarithmic fashion as functions of the central frequency of the bandwidth. This follows 

Weber' s law, which states that our peripheral senses tend to follow a logarithmic law of 

sensation in response to a stimulus. 

4.2.3.7 Auditory Filter Shapes 

Over the years, theoretical auditory filter shapes, as well as the methods that have derived 

them, have become increasingly more complex. 
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First, a set of psychoacoustic measurements are obtained. A tone, whose frequency is 

varied between 400 to 1400 Hz, is presented to a listener. A rectangular high-pass band 

of noise is present from 1200 Hz to 1400 Hz, and a rectangular low-pass band of noise is 

present from 400 Hz to 600 Hz. The intensity threshold of the listener's perception of the 

tone is computed at each frequency of the tone. 

A derived auditory filter shape must match these psychoacoustic intensity thresholds. 

Several filter shapes have been proposed that approximate the results. Fletcher first 

proposed an ideal rectangular filter shape, although he knew this was an erroneous 

assumption. The results obtained from a rectangular filter shape deviate the most from the 

psychoacoustic results. He chose to use this filter anyway because the particular shape of 

the filter did not matter in the calculations he was performing (Morgan and Gold, 2000). 

The problem with this method of obtaining a filter shape is that, while the fixed, absolute 

filter shapes could be predicted, arbitrary filter transfer functions could not be designed 

directly from the psychoacoustic measurements. 

Roy Patterson (Patterson, 1976) did some important work on deriving auditory filter 

shapes that could have this arbitrary filter transfer function. He began by varying the 

width of the rectangular noise bands, while keeping the tone frequency fixed. For each 

change in the bandwidth of the noise, the intensity at which the tone was just barely heard 

was computed. From this, he was able to build a mathematical representation of the 

relationship between the noise and the predicted filter, and was able to compute a 

magnitude function of the transfer function of the filter, with the assumption that the 
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auditory filters were centered around the frequency of the test tone. He was unable to 

derive the phase of the filter from this. He also found that the band of noise interfered too 

much with the detection of the tone when the noise bandwidth got too close to the 

frequency of the tone. In addition, he realized that the assumption that human auditory 

filters were centered around the tone to be detected was incorrect, meaning that the 

central frequency around which the filter is positioned is not always equal to the 

frequency of the test tone. 

Patterson accounted for these problems by using notched wideband noise, in which 

listening that was off-frequency caused the noise to shift so that the total masking of the 

noise stayed the same. From this, Patterson constructed a symmetric filter which has 

parameters that can be selected arbitrarily, which accurately approximates the 

psychoacoustic measurements. 

H(f)I2 1  
- [( f /c)2 + IF 

(4.11) 

Other filter derivation methods that have been explored include Gamma-tone filters and 

Roex filters (Morgan and Gold, 2000). These are not discussed here. 

4.2.3.8 Perceptual Linear Prediction (PLP) Coefficients 

Hermansky's Perceptual Linear Predictive analysis of speech exploits many of the 

aforementioned psychoacoustic properties of human hearing and is a popular feature that 
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had been used in many ASR systems (Blermansky, 1990). The procedure for analyzing 

a frame of speech to yield a set of PLP coefficients is described briefly next. 

Hermansky begins by applying a hamming window to the time-domain speech signal 

within the frame to prepare it for frequency-domain analysis. The windowed signal is 

taken to the frequency domain using Fourier analysis, and the power spectrum is 

computed: 

P(w) = Real[S(v)]2 + Jrnag[S(a.))]2 (4.12) 

Next, a filterbank of auditory filters are constructed, simulating what has been found 

about the basilar membrane's response to sound stimuli. Each auditory filter is quasi-

trapezoidal in shape. The full filterbank is shown in figure 4.6. 
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Figure 4.6: The shape of Hermansky's auditory filters. 
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First, the critical bands are computed in Bark frequencies, and then the filters themselves 

are built around them. Given the central frequency of a critical band, the auditory filter is 

built using: 

o for C≥<- 1.3 

102.50.5) for - 1.3 ≤ Q≤ -0.5 

1 for -05≤Q≤O.5 

i0' °" ° for 0.5 ≤ 92 ≤ 2.5 

0 for ≤.≥ 2.5 

(4.13) 

The frequency boundaries of each of the critical bands of the filters are warped using 

Schroeder's Bark ( z ) to Frequency ( f ) equation: 

f = 600 sinh(.) (4.14) 

This is equivalent to warping the power spectrum P(w) along its frequency axis into 

Bark frequencies, and then applying the auditory filters directly, rather than inverse 

warping them. 

Next, Hermansky approximates the nonequal sensitivity of human hearing at different 

frequencies using equation 4.15: 
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E(v) =  {(w2 +5.68 *101 ),,04] 

[(w2 +63 * 106 )2 (a)2 +038 * 101 )(w6 +9.58 *1026)] 

In human hearing, the stimulus at one frequency will be perceived as louder than another 

stimulus of the same intensity that is at a different frequency. The resulting auditory 

filterbank is then convolved with the power spectrum P(w). 

(a))) = E(w)® ( (w)) (4.16) 

An approximation to the power law of hearing is next applied, which is computed by: 

c1 (92  = (≤2 )033 (4.17) 

Finally, the pre-processed frequency spectrum (≤) is transformed back to the time-

domain, and linear prediction coefficients are extracted to yield an all-pole autoregressive 

model of the speech. This gives us the PLP coefficients. This autoregressive property of 

the PLP features is similar to that of the LPC features, a property that is exploited to 

create the experimental PLP-LSP features in chapter 5. 

Perceptual Linear Prediction coefficients are used quite often for automatic speech 

recognition. Speaker-dependent information is largely stripped away, leaving the 

linguistic content, given that the autoregressive model is of a low order. Hermansky has 
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reported that PLP coefficients of order 5 yields these characteristics best. Higher orders 

contain speaker-specific as well as lexical content. 

4.3 Classifiers 

In figure 4.7 (http://www.haifa.il.ibm.com/Workshops/Speech2003/papers/IBM_03 .pdO, 

a timeline is shown that depicts the shifting trends in the choice of classifiers for speaker 

recognition. As shown, there has been a shift from template classifiers to statistical 

classifiers in response to a shift from smaller databases recorded under more pristine 

laboratory conditions to larger databases recorded under more realistic, spontaneous, and 

noisy conditions. Some of the more commonly used classifiers will be briefly described 

in this section. 
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DTW, VQ 
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Aural & spectrogram Matching 
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Small Databases 
Cleaned, controlled speech 

Large Databases 
Realistic, tJnconstraint speed 

Figure 4.7: Classifier timeline 
(http://www.haifa.il.ibm.com/Workshops/Speech2003/papers/IBM_03 .pdt) 

This general shift from template to statistical classifiers has resulted in marked 

improvements in speech and speaker recognition in recent years. Not only are statistical 

models more robust under noise, they are more flexible in allowing for slight variations 

that were not seen in the training speech data. As already discussed, for speech 

recognition applications especially, there are usually too many variations to be able to 

adequately capture within the training set. It would take enormous amounts of input data 

in order to do a half-decent job, and the computational expense is unrealistic. 
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4.3.1 Template Classifiers 

Template classifiers model a given class using what is called a template. The template is 

considered to be the most representative instance of all observations belonging to that 

class. Therefore, when classifying a new unknown observation, a distance measurement 

is performed between the new observation and the template observation. 

For exemplar-based systems, there are a few variations of this idea. An exemplar is one 

of several observations belonging to a class. The first, called "nearest neighbor", is where 

a new observation is compared to all observations of all the classes. The observation is 

said to belong to the class containing the observation that is nearest to the new 

observation. The second method, which is called k-nearest neighbor, is a variation of the 

first. It is the same idea, only this time the observation is said to belong to the class 

containing the k closest observations to the new observation. Finally, the centroid method 

is where the centroid of all the observations is computed and is used as the representative 

observation. The new observation is then compared with the centroids of all the classes to 

see which one it is closest to. One issue with this method is that the centroid is usually 

not actually seen in the training data, and therefore is somewhat synthetic. However, if it 

lies within the boundaries of the physical space within which the class lies, then it 

probably doesn't make much difference. 

4.3.1.1 Dynamic Time Warping (DTW) 

Speech is a time-dependent process. Several utterances of the same word are likely to 

have different durations, since they are never spoken in the same way or at the same rate. 
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Most algorithms that process time series data need to compute some sort of similarity 

between the time series. Euclidean distance or some extension is commonly used. 

However, Euclidean distance can be an extremely "brittle" distance measure. The reason 

why Euclidean distance may fail to produce an intuitively correct measure of similarity 

between two sequences is because it is very sensitive to small distortions in the time axis. 

Comparing two utterances of the same word in time using a distance measure will not 

work since they do not correspond at the same points in time. Consider the left part of 

figure 4.8 (Keogh and Pazzani, 2000): 

Figure 4.8: (Left) Linear alignment of two sequences. (Right) Time-warped 
alignment of the two sequences. (Keogh and Pazzani, 2000) 

In the figure, two sequences are being compared, one on the top and one on the bottom. 

The two sequences have approximately the same overall shape but those shapes are not 

exactly aligned in the time axis. A time alignment must first be performed in order to 

obtain a global distance between two speech patterns (represented as a sequence of 

vectors). The non-linear alignment in part B would allow a more sophisticated distance 

measure to be calculated. 
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Dynamic Time Warping (Keogh and Pazzani, 2000), 

(http://www.dcs.shef.ac.ukLstu/com326/sym.html) is a method for achieving such 

alignments that has been used for a long time in speech processing. However, the 

algorithm is very computationally expensive, and usually takes too long to be of any 

practical use in a real-world application. 

The idea behind the algorithm is shown in figure 4.9 

(http://www.dcs.shef.ac.uk/—stu/com326/sym.html). 
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Figure 4.9: Dynamic time-warping alignment of two different utterances of the word 

"Speech". (http://www.dcs.shef.ac.uk/stu/com326/sym.htm1) 

In figure 4.9, two different utterances of the pattern "Speech" are being time-aligned. 

There are two axes: the vertical axis represents the first form of the pattern, and the 
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horizontal axis represents the second. Each frame (or feature vector) of the vertical 

pattern creates a row in the 2D matrix, while each frame of the horizontal pattern creates 

a column. A path must be found through the matrix, starting at the lower left index and 

ending at the upper right index, such that the distance between the two patterns at each 

2D index is minimized. To find the best matching path, and ultimately the best global 

distance between the two patterns, it is highly inefficient to consider all possible paths 

through the matrix. The best matching path between the two can be discovered much 

more efficiently by imposing a few simple rules: 

• matching paths cannot go backwards in time 

• every frame in the input must be used in a matching path 

• local distance scores are combined by adding to give a global distance 

Clearly the path through the matrix is not linear, and thus illustrates how the time axis 

must be warped to align the two patterns in time. 

4.3.1.2 Vector Quantization (VQ) 

Vector Quantization (VQ) (Pop and Lupu, 2002), (http://www.data-

compression.com/vq.htm1) is the process of taking a large set of feature vectors and 

producing a smaller set of feature vectors that represent the centroids of the distribution, 

i.e. points spaced so as to minimize the average distance to every other point. 
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We begin by visualizing a set of feature vectors in 2-dimensional space. These are 

represented by the x's in figure 4.10 (Pop and Lupu, 2002). A codebook is built around 

these feature vectors. It consists of a set of Voronoi regions. For each region there is a 

codeword, or codebook vector, that acts as a representative vector for all the feature 

vectors that lie within that particular Voronoi region. This is known as quantization. All 

feature vectors are mapped onto one of the codebook vectors. 

Voronoi 
Regioi 

Figure 4.10: A 2-dimensional codebook. Dots are codewords, x's are feature vectors, 
and the shaded area is a Voronoi Region. (Pop and Lupu, 2002) 

The most common and simplest codebook training algorithm is the Linde-Buzo-Grey 

(LBG) algorithm given in (http://www.data-compression.comlvq.html), so named for the 

authors who created it. In the algorithm, a codebook is trained by first starting with one 

big Voronoi region and one single codebook vector that is at the center of all the feature 
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vectors. A distortion measure (usually a Euclidean distance or squared-error distance) 

is computed from the codebook vector to each of the feature vectors within the Voronoi 

region. The average distortion is the mean of all the distortions over all the Voronoi 

regions that exist at a given time. The Voronoi region is then split in half and two new 

codebooks are chosen for the two new Voronoi regions such that the average distortion 

between the codebook vectors and the feature vectors that lie in the Voronoi regions is 

minimized. This region splitting and refitting of codebook vectors is continued until the 

desired number of Vornoi regions is reached. This results in a codebook similar to the 

one shown in figure 4.10. The codebook represents the best fit to the training vectors that 

were supplied for that person. The larger the number of regions, the better the speaker 

model representation. 

Although there are several methods that can be used to construct a codebook for a 

speaker, such as self-organizing maps or simulated annealing, it has been found that there 

is only a marginal difference in accuracy between the codebooks constructed using each 

of the methods. The LBG algorithm, which is described in (http://www.data-

compression.comlvq.html), is commonly used in the literature since it is the simplest. 

In the testing phase, an input test utterance is obtained from the unknown user and the 

feature vectors are extracted in the same way as those that were used to generate the 

codebook. These feature vectors are then encoded using the target speaker's codebook. A 

distortion measure is computed between each input feature vector and the codebook 

vector that is representative of the corresponding Voronoi region in which the feature 



92 

vector lies. The average distortion over all the distortion measure between each feature 

vector and its associated codebook vector is obtained. 

There are three different types of VQ that have been used in speech analysis: single-

section (Pop and Lupu, 2002), multi-section (Pop and Lupu, 2002), and matrix (Burton, 

1985) VQ. The details of these are not described here. 

4.3.2 Statistical Classifiers 

Statistical classifiers are better-suited to realistic speaking environments and have gained 

much popularity in the last couple of decades. It is well-known that Gaussian Mixture 

Models (GMM) are one of the most flexible classifiers for text-independent speaker 

recognition and therefore they are able to achieve higher recognition performance in a 

more realistic setting. This is because they are more able to model variations in the 

speaker's voice samples than other classifiers, and are also more able to take into account 

noisy environments. Other statistical classifiers, such as pdf-based methods, only make 

use of a single pdf component, whereas the GIMM makes used of several, thereby 

allowing it to more tightly model a broader range of voice characteristics. Hidden 

Markov models (BMM) (Rabiner and Juang, 1986), (Yun and Oh, 2000), (Rabiner, 1989) 

and 11MM hybrids (Nakamura and Markov, 2004), (Boite and Ris, 1999) model temporal 

information, and are therefore better suited to text-dependent speaker recognition, in 

which pattern-matching the lexical content of an utterance is more important. For text-

independent tasks, GMIM's are a better choice than HIMIM's. HMIVI's are not in the scope 

of this thesis and are not discussed. 
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4.3.2.1 Probability Density Function 

The normal Probability Density Function (PDF) (Stark and Woods, 2002) is a good 

approximation to real-world density functions. It is one of the simplest parametric 

models, being characterized by a mean and variance. There are several methods of 

comparing one PDF to another directly. These include the Mahalanobis distance, the 

Divergence measure, and the Bhattacharyya distance, each of which is described briefly 

in this section. 

An n-variate normal PDF is defined as: 

p(x) = (2r)2IC exp[_ (x - )T C'(x - (4.18) 

Classifers that make use of such distortion comparisons are represented by a covariance 

matrix and a mean vector as a PDF. 

4.3.2.1.1 Mahalanobis Distance 

Ignoring the factor of — 1/2, the argument of the exponent in equation 4.18 is referred to 

as the Mahalanobis distance 

(http://www.unesco.org/webworld/idams/advguide/Chapt9_3.htm) between x and 1u. 

According to (Campbell, 1997), "the loci of points of constant density are hyperellipsoids 

of constant Mahalanobis distance to 1u. Samples drawn from a multivariate normal 
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density tend to cluster. The center of the cluster is determined by the mean vector, and 

the shape of the cluster is determined by the covariance matrix". As shown in figure 4.11 

(Campbell, 1997), groups of samples that exhibit high variance are more stretched and 

elliptical in shape, while groups of samples that exhibit low variance are more circular in 

shape. 

2 

class 2 class 1 

Figure 4.11: Ellipsoidal clustering of two different classes based on Mahalanobis 
distance. (Campbell, 1997) 

4.3.2.1.2 Divergence Measure 

Divergence (Kailath, 1967) is a measure of distance or dissimilarity between two classes 

based upon information theory and is defined as follows: 

tr[(C - C)(CJ1 - C')]+ tr{(C7' - CJ')SST] (4.19) 
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where C, and C are covariance matrices, S = p, - is the difference in means, and 

iii is the Divergence. The Divergence is a sum of a size component and a shape 

component, respectively. More specifically, it is a sum of the average shape and 

difference in size of the two PDF' s being compared. 

The Divergence Shape component is: 

J,'= tr[(C - CJ)(CJ1 - C')] (4.20) 

while the remainder of equation 4.19 corresponds to the size. In some cases, only the 

shape component is used in the distortion measure. 

4.3.2.1.3 Bhattacharyya Distance 

As with the Mahalanobis distance and the Divergence measure, the Bhattacharyya 

distance (Kailath, 1967) directly compares the estimated mean vector and covariance 

matrix of a test segment with those of the target voice model. It is defined as: 

( 

d2 = 1 1n 
B2 

C1+C1 

2 -1 1 +C J (p — ii) (4.21) 
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As with the Divergence measure, the Bhattacharyya distance is the sum of a shape 

component and a size component, respectively. 

4.3.2.2 Gaussian Mixture Model (GMIVE) 

GMM classifiers (Reynolds, Quatieri, and Dunn, 2000), (Xiang, Chaudhari, Navratil, 

Ramaswamy, and Gopinath, 2002) use probabilistic measurements to determine class 

membership, or how "likely" it was that the class generated the new observation. The 

Gaussian probability distribution function (pdf) is a common statistical classifier used for 

speech and speaker recognition. Given a set of data, it is possible to estimate the 

parameters for a Gaussian pdf that best fits the data. 

A single Gaussian pdf describing a k-dimensional random variable X has the form: 

g(x)= 1  exp_(x _p)TC 1(x_ iu)) 

(2)z)2IC 

where C is the covariance matrix, ICI is its determinant, and p. is the mean vector. 

(4.22) 

A more sophisticated extension of the Gaussian pdf is the Gauss mixture pdf. A Gauss 

mixture pdf is a weighted sum of a collection of distinct Gaussian pdf s. 

An n-variate Gaussian density is defined as: 



1 
1 exp(_(x_Iij)Tq1(x_iuj)) 

(2,z)2ICjIi 

p(x12) = p,b(x) 

where 

p = 1 
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(4.23) 

(4.24) 

(4.25) 

and where b (x), i = 1,..., M are the component densities and p is the weight of the jth 

mixture component. 

When used as a classifier, this is referred to as a Gaussian Mixture Model (GMM), where 

each training observation is interpreted as having been generated by one of the Gaussians. 

The Gaussian mixtures are built around the input training data in a best-fit manner. This 

is accomplished using the Expectation-Maximisation (EM) algorithm (Moon, 1996) in an 

iterative fashion to estimate the parameters of each Gaussian. 

GMIVI's are used in both speech and speaker recognition. In speaker recognition, they are 

commonly used in text-independent applications because of their flexible nature and their 
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ability to take into account slight variations in the data, as well as noise. In speech 

recognition they are commonly used in conjunction with Hlvllvlts. 

4.3.2.3 Neural Networks 

Neural networks (Lawrence, Bums, Back, Tsoi, and Giles, 1998), (Kasuriya, 

Wutiwiwatchai, Achariyakulpom, and Tanprasert, 2001) are also frequently used in 

speech analysis. However they are often not used on their own. Used in combination with 

statistical methods, such as HMilvIs, they make a very powerful hybrid classifier. These, 

as well as GMM-UMM hybrids (RodrIguez, B., RuIz, B., GarcIa-Crespo, A., and GarcIa, 

F., 1997), (Huang, Chen, and Chang, 2002), (Vandecatseye and Martens, 2003) have 

yielded enormous gains for speech recognition applications in particular. Such hybrids 

are generally used for text-dependent recognition, however, because of the ability of the 

HMM to model temporal information, such as lexical speech content. 

A neural network is made up of a set of nodes that are interconnected. These nodes are 

primitive models of neurons in the brain. The inputs to a node are processed and produce 

an output. The output can be fed as input to another set of nodes. This output is referred 

to as the "activation" of the neuron, and is analogous to the firing response of a neuron. 

Figure 4.12 depicts a typical node. 
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Input 2 

Input 3 

Output 

Figure 4.12: A simple node, or neuron, in a neural net. 

The node's activation output is computed from its activation function as follows: 

activation = I Input1 * w1 (4,26) 

The activation function can be made to ensure that the activation output falls within a 

legal range. For example, a node can be defined to accept binary inputs and deliver a 

binary output. This can be accomplished through normalization or some sort of 

thresholding. 

A neural network contains several layers of nodes. The first layer is called the input layer. 

This layer accepts input from input training feature vectors to be introduced into the 

network. The point of a neural net is to associate these inputs with some output. The 

training of the neural net updates the inputs and outputs of each of the nodes such that all 

training inputs generate their desired outputs. The last layer is the output layer, which 

generates the desired output. There can be 0 or more hidden layers in between the input 
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and output layers. The layers are connected as shown in figure 4.13. The 1st layer 

feeds the 2nd layer and so on up until the last layer. 

Figure 4.13: A connected neural network, with one input layer, one hidden layer, 

and one output layer. 

A common method of training a neural net is called backpropagation. In backpropagation 

(http://www-gpi.physik.uni-karlsruhe.de/pub/robertlDiplom/node8 .html), the input is 

presented to the input layer and propagates through each of the layers to the output layer, 

at which point the weights of the nodes of each layer are updated in a backward fashion. 

This is repeated until a suitable error has been achieved. 
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CHAPTER FIVE: SPEAKER RECOGNITION USING PLP-LSP FEATURES 

While LSP features have traditionally been used for speech data compression, they have 

recently been shown to be effective for speaker recognition applications. As already 

mentioned in chapter 4, they have been shown to be a better choice than LPC features 

(Soong and Juang, 1984) in terms of stability and robustness under noise. While LSP 

features are starting to be considered for recognition applications, there is still much 

ground that hasn't been covered. Can the LSP frequencies be calculated for features other 

than LPC features for speaker recognition purposes? Do they add enhanced properties to 

the underlying features? This chapter addresses such questions. In particular, LSP 

frequencies of PLP features (PLP-LSP) are the main focus. PLP features were chosen 

because of their psychoacoustic nature, and their autoregressive similarity to LPC 

features. In my opinion, features that more closely follow the human model, which 

obviously works very well, need to be further explored. 

As already mentioned in chapter 1, it is desirable to simulate what the human body is 

doing because it is an already working model of the pattern matching we are trying to 

accomplish. PLP coefficients were chosen for this experiment for several reasons. First, 

they are psychoacoustic in nature and try to simulate what the human ear is doing. 

Second, they already yield quite a high success rate, outperforming LPC coefficients in 

many recognition tasks, both in the literature (Hermansky, 1990), 

(http://www.asel.udel.edu/ics1p/cdrom1vol3/706/a706.pdf) and in my own experiments 

which are described in section 5.2. Third, they have an autoregressive property that is 
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similar to LPC coefficients. It is this autoregressive similarity to LSP that prompted 

me to try representing PLP coefficients in an alternative LSP representation. 

Note that there are other psychoacoustic features having roughly the same set of 

computational steps as PLP but with minor differences, such as the shape of the auditory 

filters in the filterbank, that do seem to outperform PLP. However, the idea is to see if the 

alternative LSP representation can be computed for one set of features within this class, 

namely PLP, to improve its recognition performance. This would make it highly likely 

that similar benefits can be gained for other features within that class. So, PLP is a 

reasonable choice of feature for this purpose. 

The experiment discussed in this chapter compares the recognition performance of LPC, 

LSP, PLP, and PLP-LSP features in order to answer two questions. First, do PLP-LSP 

features outperform PLP features? And second, how do PLP-LSP features compare to 

LSP features? Do they do better, worse, or about the same? LPC features are included 

simply to illustrate that PLP outperforms them. A more direct question might be, given 

that PLP features outperform LPC features, do PLP-LSP features similarly outperform 

LSP features? 

In (Campbell, 1997), Joe Campbell explained many key concepts in speech signal 

processing for speaker recognition. He performed a set of speaker recognition 

experiments in which he explored the effectiveness of different combinations of features 

and classification schemes. The experiments were done in a loosely text-dependent 
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manner using the YOHO speech corpus, and yielded high results. His highest 

accuracies came from using 10th-order Line Spectrum Pair (LSP) Frequencies in 

conjunction with a Divergence Shape distance measurement. 

5.1 Joe Campbell's Experiment 

In (Campbell, 1997), several combinations of different features and classifiers were 

evaluated using various pattern-matching techniques in a semi-text-dependent 

identification experiment. Among the features were Log Area Ratios, Reflection 

Coefficients, and Line Spectrum Pair frequencies, all of which are discussed in some 

detail in the paper. Each is derived from the initial LPC coefficients and is considered an 

alternative representation of these features. The speaker recognition performance of these 

features was tested using two different types of classifiers: a pdf was used first with a 

Bhattacharyya distance metric and then with a Divergence distance metric, both of which 

are described in chapter 4. The best results came from using LSP frequencies with a 

Divergence Shape distance metric. The correct identification rate for the LSP/Divergence 

Shape combination was around 98.9%, which is quite a high rate of success. 

I describe it as semi-text-dependent because, though the speaker models were trained 

using several utterances of the same phrase for each speaker, a test utterance to be 

classified was not explicitly matched on lexical content. This means that while attempts 

were made to identify an unknown person by finding a best match to those speaker 

models in a database of speakers, there was no check to ensure that the phrase being 

spoken was the same phrase that was trained on. 
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5.1.1 Speech Database 

The YOHO speech corpus (Campbell and Reynolds, 1999), 

(http://wave.ldc.upenn.edu/Catalog/readme_files/yoho.readme.html) is a database of 138 

speakers (108 males, 30 females) set in a semi-noisy office environment. The speakers 

have varying geographic origins and thus have varying accents and intonations. Quiet 

occasional background noise is present, such as the odd telephone ringing or a fan 

blowing. The database was constructed specifically for speaker recognition tasks. Its 

vocabulary consists of two-digit numbers spoken continuously in sets of three. An 

example of such a phrase is "twenty-two, sixty-four, thirty-six". The corpus is divided 

into training and testing sets for each speaker. The training set consists of four enrolment 

sessions per speaker, each containing 24 utterances. The testing set consists of 10 

sessions per speaker, each containing four utterances. In (Campbell, 1997), only 44 of the 

138 speakers were used for the speaker recognition task. 

5.1.2 Overview 

In this section, each of the steps in the classification pipeline, such as framing, frame 

windowing, feature extraction, and modeling and classification, will be described in the 

context of the experiment in (Campbell, 1997). Since the best results were gained from 

using LSP frequencies and the Divergence Shape metric I will discuss these only, 

although substituting one of the other sets of features or the Bhattacharya distance 

measure would be trivial. 
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5.1.3 Enrolment and Identification 

As mentioned in chapter 2, there are two main stages in a speaker identification system, 

which are enrolment and identification. 

In the enrolment stage, the training utterances are each analyzed using signal processing 

techniques to yield several LSP feature vectors for each utterance. All the feature vectors 

that are computed for each utterance are combined to create a speaker model. This model 

then represents the target person. The system in this experiment is an open system, which 

means that it is possible for people to make use of the system who haven't enroled. 

Therefore an unknown test speaker is not guaranteed to have an existing voice model. In 

(Campbell, 1997), target speakers and test speakers are randomly selected from a larger 

set of speakers and are compared, which may result in a comparison of a test utterance 

coming from a speaker that does not have a speaker model present in the set of target 

speaker models. 

In the identification stage, an input utterance is obtained from an unknown person. 

Feature vectors containing the LSP frequencies are extracted from the input utterance and 

are used for comparison with each of the speaker models that are stored in the system in 

order to determine which model the utterance is closest to. The utterance is then 

classified as having come from the speaker to which the model belongs. 

In this experiment, 44 people were used for training and testing. Each of the four training 

sessions were used for training, and each of the ten testing sessions were used for 
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identification. A one-to-many matching procedure is used to compare a test utterance 

against every voice model in the database, and the closest match is considered the 

identity of the unknown test speaker. 

5.1.4 Speech Processing Procedure 

The speech processing procedure will be explained from start to finish in order to 

illustrate an example of how it is done in general. 

5.1.4.1 Signal Processing 

To process an input speech waveform, the signal is first broken up into adjacent, 

overlapping frames. Each frame has a duration of 20ms and adjacent frames overlap by 

lOms. 

A voicing analysis was performed in (Campbell, 1997) on each frame to determine 

whether the signal segment within that frame is voiced or not. Note that this voicing 

analysis was performed specifically in the system in (Campbell, 1997) but is not 

necessarily a standard procedure in general. In their experiment, only frames that contain 

voiced data were used for analysis and modeling because voiced portions of speech 

contain more highly speaker-discriminatory information. As mentioned in chapter 2 in 

the section on syllables, the most sonorant portion of the syllable is the nucleus, and thus 

this would be the portion that would contain the most speaker-specific information. 
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5.1.4.2 Frame Windowing 

Frames to be used in the speech analysis are windowed using a Hamming window. As 

mentioned in chapter 3, windowing is necessary to taper off the signal due to 

discontinuities that occur at the endpoints of the signal segment. These discontinuities are 

undesirable for signal processing analysis in the frequency domain. Once a frame has 

been windowed, it is ready for any signal processing and feature extraction that needs to 

be performed on it. 

5.1.5 Features 

An autoregressive computation is performed on the windowed signal within these voiced 

frames to obtain Linear Prediction Coefficients (LPC). In Campbell's paper, the 

bandwidth of the formants is expanded by 15Hz. This is achieved by multiplying each 

term by a value 0 < y < 1. In this case (Campbell, 1997): 

= 0.994 (5.1) 

This effectively shifts the poles of the all-pole transfer function of the autoregressive LPC 

model radially towards the origin. Next, the LPC coefficients are converted to Line 

Spectrum Pair (LSP) frequencies, which are used to create the voice models that are used 

for the modeling and classification of each speaker. 

The LPC features were computed using the Durbin-Levinson recursion (Campbell, 1997), 

which computes not only the final linear prediction coefficients but also the intermediate 
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reflection coefficients. These intermediate coefficients can be used as a feature 

themselves and are considered to be another alternative representation of the LPC 

features, but are not considered in this thesis. 

The LPC coefficients were converted to Line Spectrum Pair Frequencies. The algorithm 

for converting LSP Frequencies is given in (Soong and Juang, 1984) and is mentioned in 

chapter 4. 

5.1.6 Speaker Modeling and Classification 

As already mentioned, the Divergence Shape classifier, which is described in chapter 4, 

was used for modeling and classification. Essentially, a covariance matrix and mean 

vector is computed for the training utterances for a given speaker, which represents the 

speaker model. Classification is performed by computing a distortion (Divergence Shape) 

between two covariance matrices and their respective mean vectors. 

5.2 Previous Experiments 

Prior to the main experiment that is the focus of this chapter that tests the novel PLP-LSP 

technique, I performed several other experiments in order to get a feel for some of the 

different features and methods that have been mentioned throughout this thesis and 

within the experiment in (Campbell, 1997) in particular. 

Some of my earlier experimentation includes text-independent speaker identification, 

text-independent speaker verification, and text-independent speech identification 
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(phoneme identification). The first two experiments were done using LSP frequencies 

and using the TIMIT speech corpus, which contains spontaneous conversational speech 

over the telephone, and was created primarily for speech recognition purposes, as 

phonetic and word segmentation have been performed on it. However, it can also be used 

for speaker recognition. 

I started by trying to reproduce the procedure in (Campbell, 1997). I tested the three 

features (Log Area Ratios, Reflection Coefficients, and Line Spectrum Pair frequencies) 

using both the Divergence and Bhattacharyya methods. I tried the Divergence measure 

and compared it to the Divergence Shape component, and did the same for the 

Bhattacharyya measure. I found that the Divergence measure outperformed the other 

methods, including the Divergence Shape measure. I eventually switched to Vector 

Quantization. I had used this classifier for a class project and found it to perform better 

than the Divergence measure, I, too, found that LSP frequencies were the best choice of 

feature due to higher recognition rates. I then switched from identification to verification 

using the Vector Quantization with LSP. Both speaker recognition experiments had 

similar results to each other and to (Campbell, 1997). As already mentioned, (Campbell, 

1997) had an identification accuracy of around 98.9%. 

The speech recognition experiment was done comparing PLP with LPC, and then also 

testing PLP-LSP, using the TIMIT speech corpus. While the phoneme identification 

accuracies were quite low (probably due to the simplicity of the experiment), the PLP-

LSP features outperformed the PLP features, which was what I was trying to discover in 
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the course of that particular experiment. These results proved promising, which 

prompted me to test the novel PLP-LSP features in a speaker recognition task. 

5.3 PLP-LSP Experiment 

In this experiment, which is the focus of this chapter (and this thesis), I use Joe 

Campbell's Divergence Shape recognition experiment as a template for comparison of 

the four features mentioned. However a VQ classifier similar to the one described in (Pop 

and Lupu, 2002) was used in lieu of the Divergence classification method since the VQ 

method yielded better results in the evolved experiments that I performed in the past. My 

VQ classifier yielded very similar results to Joe Campbell's Divergence shape classifier 

for the LSP features. My experiment yielded 98.2%, whereas Joe Campbell's experiment 

yielded 98.9%, using the YOHO speech corpus. 

In addition, the order of the features was increased to match that commonly used in the 

literature for PLP coefficients. This experiment was performed in order to explore how 

well each of the four features performs on a text-independent identification task. Text-

independent speaker recognition is much more difficult a task than text-dependent 

speaker recognition because the classifier must be trained to recognize the person from 

any arbitrary utterance from the target speaker. 

In this chapter, a description of the experiment will be given. Because an overview of the 

steps taken to perform the speech analysis as described in chapter 3 was given as an 

example of a typical speech processing pipeline in my description of the experiment 
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performed by (Campbell, 1997), these steps will be omitted here. Even though LSP 

frequencies were used in that description, any features can (and will) be substituted in 

their place. Because the LPC, LSP, and PLP features have already been discussed in 

chapter 3, the details of their computation are omitted here. The computation of the PLP-

LSP features is discussed briefly. 

5.3.1 Speech Database 

The YOHO speech corpus (Campbell and Reynolds, 1999), 

(http://wave.ldc.upenn.edu/Catalog/readme_files/yoho.readme.html) was used for this 

experiment. As mentioned, (Campbell, 1997) used only 44 of the 138 speakers for the 

speaker recognition task, as will be the case in this experiment. 

5.3.2 Overview 

The purpose of this section is not only to describe the text-independent speaker 

identification method used in this experiment but also to illustrate each of the steps in the 

classification pipeline, such as framing, frame windowing, feature extraction, and 

modeling and classification. 

5.3.3 Enrolment and Identification 

In this experiment, 44 people were used for training and testing. Each of the four training 

sessions were used for training, and each of the ten testing sessions were used for 

identification. A one-to-many matching procedure is used to compare a test utterance 
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against every voice model in the database, and the closest match is considered the 

identity of the unknown test speaker. The speaker identification task was performed four 

separate times, each time using one of the four features. The resulting identification 

accuracies are tabulated and discussed in chapter 6. 

5.34 Speech Signal Processing 

As in (Campbell, 1997), the signal is first broken up into adjacent, overlapping frames. 

Each frame has a duration of 20ms and adjacent frames overlap by lOms. 

The voicing analysis they used is omitted from my experiment. I chose not to use the 

voicing decision in the end because it only improves the recognition by a marginal 

amount, as suggested by J. Campbell (personal communication, August 4, 2002). So, all 

frames are used in the analysis. 

5.3.5 Features 

The four features used in this experiment are LPC, LSP, PLP, and the novel PLP-LSP 

features. Each of the features is of order 20. According to (Hermansky, 1990), lower-

order PLP features preserve the lexical content of the speech while ignoring, to a large 

extent, the speaker-dependent voice characteristics found within the speech. Higher 

orders contain much more speaker-specific information, which is what is required for 

speaker recognition applications. It is common to use an order as high as 20 for PLP. 
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In the case of LSP frequencies, an autoregressive computation is performed on the 

windowed signal within these voiced frames to obtain Linear Prediction Coefficients 

(LPC). Recall that in Campbell's paper, the bandwidth of the formants is expanded by 

15Hz. This is achieved by multiplying each term by a value 0<1<1, as in equation 5.1. 

This step was not performed in my experiment because I didn't want to introduce an 

added layer of complication to the LPC coefficients. I wanted to keep them as raw as 

possible so as not to introduce more variables into the experiment that might confound 

the results. 

The LPC coefficients were computed using the Levison-Durbin algorithm, and then 

converted to LSP frequencies using the technique in chapter 4. 

In order to derive the PLP-LSP features, the PLP features are transformed to LSP 

frequencies using the same procedure as that used on the LPC features. A description of 

the computation of the PLP coefficients is given in chapter 4. Because the last step of the 

PLP computation is an autoregressive calculation, much like the computation of the LPC 

features, this transformation to the LSP representation in the context of PLP features 

makes sense. 

5.3.6 Speaker Modeling and Classification 

As already mentioned, the Divergence classifier was replaced with a VQ codebook 

because the VQ method yielded higher accuracies in this experiment. The following is a 

description of the modeling and classification procedure used in this experiment. 
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5.3.6.1 Overview 

Using information from (Pop and Lupu, 2002) and (http://www.data-

compression.com/vq.html), I constructed a single-section vector quantization speaker 

verification system using the LBG training algorithm (http://www.data-

compression.com/vq.html) and used a one-to-many matching scheme on 44 speakers 

from the YOHO database. Although there are several methods that can be used to 

construct a codebook for a speaker, such as self-organizing maps 

(http://www.cis.hut.fi/projects/ide/publications/html/mastersJV97/node3 .html) or 

simulated annealing (Lu and Morrell, 1991), it has been found that there is only a 

marginal difference in accuracy between the codebooks constructed using each of the 

methods. I used the LBG algorithm, which is described in (http://www.data-

compression.com/vq.html) since it is the simplest. Each LSP feature vector that is 

extracted from an input speech waveform is used to train the codebook for a speaker. The 

codebook with the smallest average distortion to each input feature vector (using a 

Euclidean distance measure) is the codebook that is used as the speaker model for that 

person. To test an unknown person against a target speaker, an input test utterance is 

obtained and the same feature extraction technique is used to obtain a set of LSP 

frequency feature vectors for the unknown person. These feature vectors are encoded in a 

speaker's codebook and the average distortion measure is computed. This value is then 

compared against the distortion measure of every other speaker's codebook, and the 

identity of the speaker with the codebook having the smallest distortion is deemed to be 

the identity of the unknown test speaker. 
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CHAPTER SIX: RESULTS AND CONCLUSIONS 

The experiment in chapter 5 was performed to determine two things. First it was 

performed to see if the new PLP-LSP features outperform the traditional PLP features in 

a text-independent speaker identification task. Second it was performed to see how the 

new PLP-LSP features compare to the traditional LSP features computed directly from 

LPC features. Specifically, since PLP features outperform LPC features, do PLP-LSP 

features also outperform LSP features? 

Table 6.1 shows the percent correct identifications for 44 people from the YOHO 

database using 20th-order LPC, LSP, PLP, and PLP-LSP features. 

Table 6.1: Percent correct identification for the four features from the experiment 

in chapter 5. 

LPC PLP LSP PLP-LSP 

88.737 93.977 98.182 96.08 

6.1 PLP-LSP versus PLP 

Clearly, the PLP-LSP features outperform the LPC and PLP features in terms of 

identification accuracy. Therefore the alternative LSP representation of the PLP method 

was a success. The benefits of the LSP frequencies have been extended to the PLP 

features. The new PLP-LSP method is a more robust psychoacoustic choice for text-
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independent speaker recognition. These results are very encouraging, and ultimately it 

is likely that the PLP-LSP method will be a better choice than PLP for other speaker and 

speech recognition tasks as well. It is also likely that the LSP transformation will work 

for various other features with autoregressive components, hopefully yielding increases 

in recognition performance in various different areas of speech analysis. It is unclear 

whether LSP frequencies can be computed for other features in general, such as those that 

do not share the autoregressive property seen in LPC and PLP features. Can they be 

massaged into a form in which such a transformation makes sense? If so, perhaps they 

too can benefit from the enhanced properties of the LSP frequency representation. 

6.2 PLP-LSP versus LSP 

When compared to the traditional LSP features, the PLP-LSP features performed worse. 

However, it is uncertain whether the traditional features are more able to adequately 

model the speaker-discriminative properties of speech outside of this experiment. The 

two are very close and more rigorous testing would have to be performed to determine if 

one is indeed better than the other. 

6.3 Conclusions and Future Work 

6.3.1 Statistical Significance 

To compute the statistical significance of the difference between the accuracies of the 

PLP-LSP vs PLP and PLP-LSP vs LSP features, I used Student's two-tailed t-Test. The 

test is designed to compare two population means based on their distributions at some 
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level of confidence. Normally a confidence level of 95% or 99% is used. A test 

statistic is computed between the two populations and this value is compared to the value 

in a lookup table. The appropriate table row is found by computing the Degrees of 

Freedom (dO and is found in the column corresponding to the chosen level of confidence. 

The test statistic is computed as follows: 

t= 
(meanPLPP - meanPLP)-J 

stdDevPLP- LSP 2 + stdDevPLP2 

Where n is the number of speakers. The df is computed as: 

df= 
[(s12 /n1) + (S22 /n2 )]2 

(s12 In, )2 + (s22/n2)2 

- n1-1 1i2 1 - 

(6.1) 

(6.2) 

In this case, the number of speakers for each population, n and n2 , are the same. Given 

that we chose a confidence level of 95%, if the test statistic is less than the value in the 

lookup table, the difference between the means is said to be insignificant, with 95% 

confidence. This means that there is also a 5% chance that the difference is actually 

significant. On the other hand, if the test statistic is greater than the value in the lookup 

table, the difference is said to be significant, statistically speaking. 
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In my experiment I have found the difference in accuracies of the PLP and the PLP-

LSP features to be insignificant at 95% confidence using Student's T-test. On the other 

hand, the difference in accuracies of the PLP-LSP and the LSP features was found to be 

significant at 95% confidence. The numbers used to determine the significance of the 

difference between the accuracies of each is as follows: 

For the case of PLP-LSP versus PLP, given that: 

meanPLPP = 96.0795 

stdDevPLPP = 7.01737 

and 

meanPLP = 93.9773 

stdDevPLP = 8.86458 

In our case n is equal to 44, and t was found to be: 

t = 1.23341 

with 

df = 81 

This is lower than the t-value of the table for 81 degrees of freedom at 95% confidence 

which is t=1.664 (Weiss, 2004) (pg. A-li), which means that the difference between 

PLP-LSP and PLP is not significant. 
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For the case of PLP-LSP versus LSP, given that: 

meanPLPP = 96.0795 

stdDevPLPP = 7.01737 

and 

mean p = 98J818 

stdDevLSP = 3.97535 

then t is computed as: 

t = 1.72903 

with 

df =68 

This is higher than the t-value of the table for 68 degrees of freedom at 95% confidence 

which is t=1.668 (Weiss, 2004) (pg. A- 11), which means that the difference between 

PLP-LSP and LSP is significant. 

I found this result surprising. I expected, or hoped, that the opposite would be true. That 

is, I was hoping that the difference between the PLP-LSP features and the PLP features 

would be significant, and the difference between the PLP-LSP features and the LSP 

features would be insignificant. 
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6.3.2 Conclusions 

6.3.2.1 Benefits of PLP-LSP 

One might ask what the benefit of the PLP-LSP features is if it isn't significantly better 

than the PLP features and also can't outperform the already well-known LSP features. 

The first, and most important point, is that this experiment was performed primarily to 

see if the LSP representation could even be computed for the PLP features, and if so, to 

see if any improvement was gained over the original representation from using the novel 

LSP representation. This experiment has shown that both of these things are possible. So 

it is at least a step in the right direction. Discovering what relationship PLP-LSP had with 

respect to LPC and LSP was only a secondary goal, to see where it fit into the known 

picture. 

Secondly, PLP is only one of several psychoacoustic features. There are other 

psychoacoustic features that seem to do better than PLP, and also have the autoregressive 

property. Essentially, these psychoacoustic features all share a common set of steps, but 

with minor differences, such as the shape of the auditory filters in the filterbank. So, 

given that the "PLP-LSP is better than PLP" relationship is established, it is highly likely 

that there exist other psychoacoustic features that probably do outperform LSP, given that 

they have been converted to their LSP frequency representation themselves. This is yet to 

be seen, but is obviously a plausible avenue to explore in the future in light of my results. 
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Third, there is no reason to believe that there aren't other, non-psychoacoustic 

features that can be enhanced in this fashion. The only reason a psychoacoustic feature 

was selected was because of the fact that it tries to simulate the behavior of the human 

ear, which already performs speaker recognition very well. So the same argument holds 

for these features. 

And finally, PLP is generally a better option than LPC for speech recognition 

(Hermansky, 1990) as well as speaker recognition 

(http://www.asel.udel.edu/ics1p/cdrom1vol3/706/a706.pdf), only more so (Hermansky, 

1990). In speech recognition, much lower feature vector orders are used (say, around 8 or 

less) because the speaker-specific information tends to be suppressed at these levels. So, 

while PLP-LSP wasn't significantly different in terms of accuracies from LSP in speaker 

recognition, this may not be the case in speech recognition. Perhaps the gap between PLP 

and LPC would widen even more, and the PLP-LSP might surpass the LSP. 

Clearly, the experiment performed to explore the primary objective, which was to find 

out whether PLP-LSP outperforms PLP, and the secondary objective, which was to find 

out whether PLP-LSP outperforms LSP, has raised more questions, and the results are by 

no means conclusive. Had the PLP-LSP actually outperformed LSP, some of these 

questions would still need to be addressed. Much more research needs to be done in order 

to find the answers and what magnitude they have. This, however, is not in the scope of 

this thesis, and so I leave it to future research. 



122 

In addition to the above points, I would like to discuss the possibility of using the 

PLP-LSP and LSP features together in a multiple classifier approach. It is a combination 

that would likely yield significantly higher success rates. 

6.3.2.2 Multiple Classifier Approach 

In the case where we have several non-homogeneous classifiers, each of which gives 

differing classification results, it is possible to combine these methods in a multiple 

classification scheme. The idea is that because the properties of each classifier are 

different, where one classifier fails, the other classifiers may succeed. Thus a scheme can 

be employed to determine the combined verdict of several classifiers, such as a majority 

vote, borda count, sum rule, or other (Parker, 2001), even using only two classifiers. The 

idea of a combined classifier scheme is that its overall performance should be higher than 

that of any individual classifier that it is made up of, hence generating a more powerful 

classification scheme. To determine whether the LSP and PLP-LSP classifiers are non-

homogeneous and to what extent, I performed the following computation: for each 

speaker, I compared the classification result of the LSP classifier with that of the PLP-

LSP classifier for every test utterance. A count was taken of the number of times the LSP 

classifier classified correctly but the PLP-LSP classifier classified incorrectly, and vice 

versa. The results are shown in table 6.2 below. 
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Table 6.2: Percent of Time One Method Outperforms the Other 

PLP-LSP LSP 

17.4603 82.5397 

This table shows how often PLP-LSP correctly classified an utterance for a speaker when 

LSP did not, and vice versa. The numbers are a percent of the total number of times one 

classifier was correct and the other was not. The table shows that there are clear 

differences in the classification outcomes of each of the classifiers, which means that 

these are likely good candidates for use in a combined classifier scheme and would 

probably significantly increase the success rate. 
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