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ABSTRACT 

Field experience and laboratory investigations have shown that dispersion is an 

important factor in miscible displacement oil recovery processes. Dispersion in these 

processes can be due to a number of mechanisms, including: molecular diffusion, 

microscopic convective dispersion and macroscopic dispersion. Recent experimental work 

performed at the Shell Canada Calgary Research Center has shown that high levels of 

dispersion can result from turbulent mixing effects occurring when the miscible solvent 

and reservoir oil exhibit a large volume change on mixing. Mixing via any one or 

combination of these mechanisms can be characterized by an effective dispersion 

coefficient. 

This dissertation describes methods for modeling displacements with dispersion 

using a compositional simulator. A standard simulator, which does not treat dispersion 

explicitly, is used as the base to which dispersion models are added. The dispersion models 

are derived from Fick's first law and second law (i.e, the diffusion equation) employing 

effective dispersion coefficients in place of the usual diffusion coefficient. The solutions of 

the diffusion equation required for these models are derived here using the Green's 

function method. 

The first law and second law models both prove capable of predicting dispersion in 

three example systems tested. The total level of dispersion predicted by the simulator is 

dependent on the level of numerical dispersion and the physical dispersion model chosen. 

Techniques for numerical dispersion control also limit the prediction of physical 

dispersion. A front tracking model based on the standard error function solution of the 

diffusion equation is developed, and is found to significantly alleviate the numerical 

dispersion problems for one dimensional simulations. 
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1. INTRODUCTION 

The process of displacing oil from reservoirs with a miscible gaseous injectant has 

been examined from many perspectives. Laboratory investigations, field experience and 

mathematical modeling have all contributed to the current state of understanding of this 

process. In this chapter, a review of the physics of miscible displacement is presented, 

including a description of recent experiments which suggest that an "enhanced dispersion" 

effect which has not been studied before may play an important role in the mixing of 

solvent and oil in the reservoir. A review of modeling techniques used for miscible flood 

simulation, and a proposal for the development and implementation of new dispersion 

models in existing compositional reservoir simulators is given. 

1.1. REVIEW OF MISCIBLE DISPLACEMENT PHYSICS 

1.1.1. PHASE BEHAVIOR 

The equilibrium phase behavior of mixtures of reservoir oil and gaseous solvent is 

of primary importance in the design of miscible displacement processes. The fundamentals 

of miscible processes are described in Stalkup (1983). For a first contact miscible process, 

the solvent mixes with the reservoir oil completely in all proportions and a single phase 

mixture results regardless of the relative amounts of the fluids. For a given oil/solvent pair, 

the minimum pressure at which all mixtures lie outside the two-phase region is referred to 

as the first contact miscibility pressure; a decrease in pressure below this point would 

result in some mixtures of oil and solvent splitting into two phases. 

It is possible to obtain miscibility at pressures lower than the first contact 

miscibility pressure via dynamic or multiple contact miscibility. One mechanism for 

achieving this is the vaporizing gas drive, in which miscibility is obtained at the front of the 
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solvent bank displacing the oil. A lean solvent which is not miscible with the oil on first 

contact is injected, resulting in the formation of two phases. The vapor phase is enriched 

with intermediate components from the oil, and as this vapor phase moves forward and 

contacts more fresh oil, the continuous enrichment allows the vapor to achieve the critical 

composition and become miscible with the reservoir oil. 

The other mechanism for achieving multiple contact miscibility is the condensing 

gas drive process, in which miscibility is obtained at the tail of a transition zone between 

the original reservoir oil and the injected solvent. A rich gas is injected, forming two 

phases and transferring some intermediates from the injectant to the oil. The equilibrium 

gas moves forward, leaving the enriched oil to be further contacted with fresh solvent until 

the oil is enriched to the point where it becomes miscible with the injection gas. For a 

typical injection gas which does not contain the middle heavy fractions present in the oil, 

the gas will enrich the oil in the light intermediate range while stripping the heavier 

fractions. This results in miscibility being achieved within the transition zone where the gas 

front behaves like a vaporizing gas drive and the tail as a condensing gas drive (Zick, 

1986). 

For the condensing gas drive, the solvent must contain intermediate molecular 

weight hydrocarbons, typically ethane through butane, to enrich the reservoir oil. The lean 

gas used for the vaporizing gas drive may be natural gas, flue gas or nitrogen. CO2 is also 

used as a solvent which attains miscibility through a vaporizing type process, however, it 

extracts much higher molecular weight hydrocarbons than lean gas solvents (Stalkup, 

1983; p. 14). The use of CO2 as a solvent also raises the possibility that two liquid, or two 

liquid plus vapor equilibria will be attained. The effect of multiple phase equilibria on the 

displacement process must be taken into account (Gardner et al., 1981). The appearance 

of an equilibrium solid phase, asphaltenes, has been observed for intermediate molecular 
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weight hydrocarbon and CO2 solvents (Bossier and Crawford, 1959; Shelton and 

Yarborough, 1977). Severe asphaltene precipitation may reduce permeability in the 

reservoir, or even cause plugging in producing wells. 

Accurate models of the equilibrium phase behavior of the reservoir oil and 

proposed solvent are required to determine if miscibility will be attained, and if so, through 

what mechanism. The extent of multiple phase equilibrium behavior and solids 

precipitation for a given oil/solvent pair must also be known for the design of a miscible 

process. The degree of mixing of oil and solvent and the rate of mass transfer between the 

phases will have an impact on process design elements such as the volume of the miscible 

slug to be injected and injection rates. The mechanisms of mixing are discussed in the 

following section. 

1.1.2. DISPLACEMENT BEHAVJO1. 

1.1.2.1. Mobility Ratio 

One of the most important factors in displacing an oil from a reservoir with a 

miscible gaseous solvent is the mobility ratio of the displacement. Mobility is defined as 

the effective permeability of the rock to a fluid phase j which is given by the total 

permeability multiplied by the relative permeability for that phase, divided by the viscosity 

of that fluid (Staikup, 1983; p. 31): 

2 Kk  

Iii 

The mobility ratio, M for any displacement process is defined as the mobility of the 

displacing fluid divided by that of the displaced fluid. For miscible processes, the gaseous 

solvent viscosity is always low in relation to the reservoir oil viscosity and the mobility 

ratio is always greater than one. Mobility ratios greater than unity are termed unfavorable 
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as the displacement front between the two fluids may be unstable, resulting in the growth 

of viscous fingers which greatly reduce the efficiency of the oil recovery process 

(Habermann, 1960). Viscous fingering is discussed in more detail later in this chapter. 

In many situations, determination of the mobility ratio is quite complex. When 

there is no mobile water, the permeability of the rock to the oil and miscible solvent will be 

equal, thus the mobility ratio will reduce to the viscosity ratio of oil to solvent. In practical 

situations, however, mixing of solvent and oil will reduce the viscosity ratio, and the 

presence of mobile water will alter the relative permeability characteristics, necessitating 

the definition of an effective mobility ratio. When there is more than one displacing front, 

the motion of any front is affected by the mobility ration across that front and also by the 

mobilities and relative sizes of the other fluid regions in the reservoir.(Stalkup, 1983; p. 

32). 

1.1.2.2. Dispersion 

Diffusion and dispersion of miscible fluids in porous media have been studied 

extensively since miscible flooding was first investigated as a means of enhanced oil 

recovery. Dispersion can have a detrimental effect on miscible displacements by dissipating 

the solvent slug sufficiently that miscibility is lost. On the other hand, dispersion can tend 

to mitigate the adverse effects of viscous fingering. The review by Perkins and Johnston 

(1963) investigates two factors affecting dispersion in porous media: molecular diffusion, 

and microscopic longitudinal and transverse dispersion due to flow through the medium. 

Macroscopic dispersion due to permeability heterogeneities on a scale larger than the 

individual pore size yet smaller than the gross reservoir features can also have a large 

impact on the fluid mixing (Stalkup, 1983; p. 32). These effects form the usual context for 

study and modeling of dispersion. 
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Greenkorn (1983; p. 190) presents a more detailed list of dispersion mechanisms in 

porous media: 

1. Molecular diffusion: normally associated with time scales longer than those required for 

dispersion due to other mechanisms. 

2. Mixing due to obstructions: tortuous flow channels in the porous medium cause fluid 

elements traveling at the same velocity to diverge in space. 

3. Presence of auto-correlation in flow paths: incomplete connectivity of the medium 

causes dispersion, as not all pores are accessible to a fluid once it has entered a particular 

flow path. 

4. Recirculation caused by local regions of reduced pressure: flow restrictions can create 

localized low pressure regions, resulting in a pressure gradient driving a fluid back into a 

region that it has flowed through already. 

5. Macroscopic or megascopic dispersion: caused by reservoir heterogeneities which alter 

the gross streamlines of the fluid. 

6. Hydrodynamic dispersion: due to the velocity profile in the pores, in which the fluid 

tends to adhere to the wall of the pore. 

7. Eddies: if flow in a channel becomes turbulent, eddy mixing will result. 

A discussion of the three main mechanisms of mixing: molecular diffusion, microscopic 

convective dispersion and macroscopic convective dispersion is given below. 

In many recovery processes, molecular diffusion is assumed to be negligible in 

comparison to other dispersive forces. In the case of lean gas injection into fractured 

reservoirs, however, diffusion can result from concentration differences between the lean 

gas in the fracture and the hydrocarbon phase in the matrix rock (Saidi, 1987). For very 
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low permeability and highly fractured reservoirs, molecular diffusion could become the 

predominant recovery mechanism (Morel et al., 1990). 

Mixing between two miscible fluids brought together in the absence of any external 

driving forces, e.g. pressure or temperature gradients, is assumed to proceed by molecular 

diffusion alone (Perkins and Johnston, 1963). This diffusive flux for any component i in a 

multicomponent mixture can be described by Fick's first law of diffusion written with an 

effective diffusion coefficient: 

(1.2) 

This equation is valid only if there is no volume change on mixing of the two fluids. The 

value of the effective diffusion coefficient depends on the local concentration of 

components in the mixture and temperature and pressure of the system (Lo and Sigmund, 

1971). Application of Fick's law for reservoir .conditions also requires that the diffusion 

coefficient be modified to account for the effects of the porous medium. Recognition of 

the analogy between electrical conductivity and diffusion in porous media allows a relation 

between the diffusion coefficient in a porous medium, D, and that in an open channel, D0, 

to be written as (Perkins and Johnston, 1963): 

D1 

D,, FO 
(1.3) 

where F is the formation electrical resistivity factor and 0 is the fractional porosity. The 

above equations describe the mixing of fluids in porous media in the absence of flow. 

Microscopic convective dispersion results from both hydrodynamic dispersion 

caused by the velocity profile within the pores and mechanical mixing caused by the 

tortuous flow path fluid elements must take through the medium (Greenkorn, 1983; p. 

184). Hydrodynamic longitudinal dispersion in thin tubes has been examined as a simple 

analog for flow within the pores of a porous medium. For the case of one fluid in a tube 
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being displaced by another fluid injected at one end of the tube, the concentration of 

injected fluid in the effluent can be determined simply by integration of the flow equation, 

provided there is no diffusion, the viscosity of the displacing fluid is equal to that of the 

resident fluid and the flow is laminar. When diffusion is considered, the size of the mixing 

zone will decrease compared to that obtained with convective dispersion alone. Taylor 

(1953) studied this phenomenon under certain conditions of tube size and fluid velocity 

such that diffusion would damp out radial concentration variations and a symmetrical 

longitudinal mixed zone would be established. The size of the mixed zone will grow as if a 

constant longitudinal dispersion coefficient for the system existed, given by the following 

equation 

22 

K,=D 
°  48D0 

(1.4) 

where a is the radius of the capillary tube. Dispersion coefficients in sand packs have been 

correlatedwith a similar relation (Perkins and Johnston, 1963) as follows: 

--=—L-+o.s'° <50 (1.5) 
•D0 FO D0 D. 

where o- is an inhomogeneity factor and d,, is the average particle size. This relation is only 

valid for fluids of equal density and viscosity. Estimates of longitudinal dispersion 

coefficients can be obtained with this equation, recognizing that fluid saturations, density 

ratio, viscosity ratio and particle size distributions will affect the magnitude of the 

coefficient. 

Flow through porous media will also cause fluids to be mixed by convective 

dispersion transverse to the direction of flow. As for longitudinal dispersion, the 

magnitude of this transverse dispersion is proportional to the average interstitial velocity. 
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A relation for the transverse dispersion coefficient, similar to that for longitudinal 

dispersion and subject to the same restrictions, is given by Perkins and Johnston (1963) as 

& = ._L + 0.0157  ucrd  ucd < 1 4 
0 D. FØ D,, ; D. 

(1.6) 

In general, at field displacement rates both microscopic convective dispersion and 

molecular diffusion may contribute to the longitudinal mixing of liquids, while molecular 

difIlision plays a larger role in the longitudinal mixing of gases. For transverse mixing in 

field displacements, molecular diffusion is the dominant mechanism of dispersion for all 

fluids (Stalkup, 1983; P. 35). 

Heterogeneities of the porous media can also cause dispersion of fluids in the 

reservoir. Macroscopic dispersion refers to mixing caused by heterogeneities of the media 

larger than core scale. This can include strata of differing permeabilities, or permeability 

and porosity variations within individual strata. Regions of higher permeability will allow 

fluids to pass more easily, thereby spreading an initially uniform fluid front. Regions of 

higher porosity or dead end pore volume create greater capacitance in the reservoir and 

thus will retard the advancement of fluids. Since the scale of these heterogeneities is larger 

than can be represented in laboratory scale displacements, the effect of this macroscopic 

dispersion generally cannot be determined in core-flooding experiments. Difficulty in 

reservoir modeling occurs when the scale of these heterogeneities is smaller than the gross 

features which may be described in .a simulation model, but are larger than core size. 

Warren and Skiba (1964) used a Monte Carlo simulation technique to show that 

dispersion in a reservoir would be increased due to permeability variations alone and that 

the scale of the heterogeneities and the distribution function of the permeabilities both 

affected the amount of dispersion. The results of these simulations show that dispersion 
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caused by permeability variations can be modeled using a convection-diffusion type 

equation with an effective dispersion coefficient. Thus fluid mixing, whether it is caused by 

molecular diffusion, microscopic convective dispersion, macroscopic dispersion, or a 

combination of mechanisms, may be characterized by an effective dispersion coefficient. 

1.1.2.3. Flow Regimes and Viscous Fingering 

As mentioned earlier, displacing oil with a less viscous solvent may result in an 

unstable displacement front characterized by viscous fingers. The geometry of the process 

and the ratio of viscous to gravity forces will determine the degree to which viscous 

fingering will occur. For example, when a less dense solvent displaces oil in down-dipping 

strata, gravity acts to keep the oil and solvent separated, provided a critical displacement 

rate is not exceeded. In experiments on unfavorable mobility ratio displacements in vertical 

cross sections, four flow regimes have been identified depending on the value of the ratio 

of viscous to gravity forces (Stalkup, 1983; p. 37). This ratio is defined by 

- u,u0L/K  
Rvig  ipgh - 

(1.7) 

where zip refers to the difference in density between the oil and solvent, L is the length of 

the cross section and h is the vertical height. The first two regimes, at low viscous to 

gravity force ratios, are characterized by a single gravity tongue of solvent overriding the 

oil. As the viscous to gravity force ratio increases, a transition region develops where a 

main gravity tongue still forms but smaller fingers of solvent penetrate into the oil. The 

final flow regime is characterized by multiple fingers of solvent throughout the cross 

section with no large tongue of solvent overriding the oil. 

When gravity does not affect the displacement, processes with favorable mobility 

ratios will have stable displacement fronts in which mixing between the fluids will take 
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place via the dispersion mechanisms discussed above. With unfavorable mobility ratios, 

however, the solvent front will become unstable and fingers of solvent will penetrate into 

the oil. The initiation of fingers is attributed to the presence of permeability heterogeneities 

(Stalkup, 1983; p. 40). As evidenced by experiments with glass bead packs, even porous 

media which are macroscopically homogeneous have microscopically random pore 

structure. These small variations in the pores are sufficient to initiate fingers in unfavorable 

mobility ratio displacements. In stable displacements, these irregularities in the flow are 

damped out by dispersion; in unstable displacements the flow irregularities are magnified 

and the fingers grow at a high enough rate that dispersion will not eliminate them. 

Once fingers are initiated, their primary growth is in length; the higher the value of 

the mobility ratio, the faster the fingers will grow. Fingers grow in width by spreading due 

to transverse dispersion and also by merging with other fingers. Longitudinal dispersion is 

generally not important in the growth of finger length, however the rate of transverse 

dispersion can have a large effect on the degree of fingering (Stalkup, 1983; p. 41). A very - 

high rate of transverse dispersion can stabilize a displacement by reducing the number of 

fingers. 

Viscous fingers result in earlier breakthrough of solvent at production wells and 

consequent poorer oil recovery compared to stable displacements. Viscous fingering can 

also be viewed as a form of fluid mixing; although the oil and solvent remain segregated, 

the degree of fingering will affect the overall fraction of solvent in a given volume of 

reservoir rock. Thus, fingering and dispersion mechanisms will both contribute to the 

mixing of fluids in the reservoir. 
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1.2. "ENHANCED DISPERSION": AN ADDITIONAL MIXING MECHANISM IN 

MISCIBLE DISPLACEMENTS 

Experimental work performed at the Shell Canada Calgary Research Center has 

indicated that additional mixing mechanisms may be active in miscible displacements 

(Sibbald et al., 1991). The two types of experiments used to examine mixing effects in 

oil/solvent contacting and the results obtained are summarized below. 

1.2.1. VISUAL EXPERIMENT 

Sibbald and his co-workers (1991) designed an apparatus to visually observe the 

process of live reservoir oil and fully miscible solvent mixing in the absence of external 

pressure and temperature gradients. 

The equipment consisted of a glass tube of rectangular cross-section, 1 x 5 mm, 

with a notch drilled in one side at the midpoint. The tube was placed in a water bath at 

reservoir temperature and pressure. Live oil was pumped in one end of the tube until it 

reached the midpoint, displacing water through the notch into the surrounding vessel. 

Solvent was then injected slowly into the opposite end of the tube until all of the water 

was displaced through the notch and the gas and oil surfaces came into contact. The 

results of this experiment showed the solvent/oil interface moving rapidly in the direction 

of the solvent-filled portion of the tube. The growth of the mixing zone indicated by this 

interface movement was quantified by evaluating effective dispersion coefficients for 

several solvents. For all solvents the interface position was found to be a linear function of 

the square root of time, indicating that the process could be described with an effective 

dispersion coefficient. The dispersion coefficients calculated from these experiments were 

found to be in the range of 0.1 to 1.0 cm2/s, several orders of mignitude larger than 

molecular diffusion coefficients. 
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A proposed explanation for this rapid dispersion (Sibbald et al., 1991) is that a 

convective mixing process was occurring on contact between the two phases. A possibly 

related effect involving the enhancement of diffusion by natural convention in supercritical 

fluids has been documented by Debenedetti and Reid (1986). A suggested driving force 

for a convective effect in the visual experiment is a negative volume change on mixing of 

the two phases. A decrease in volume on mixing at a constant pressure implies a local 

pressure decrease on mixing at a constant volume. This pressure decrease would create 

local pressure gradients driving fluids toward the mixed zone. As the solvent is more 

mobile than the oil, the solvent moved most readily into the mixed zone. The resulting 

single phase mixed fluid will grow into the region vacated by the solvent as was observed 

in the experiments. 

1.2.2. TAYLOR DISPERSION EXPERIMENT 

A high temperature and pressure Taylor dispersion apparatus was constructed by 

Sibbald et al. (1991) to further quantify the effect observed in the visual experiment. The 

equipment consisted of a length of capillary tubing with inside diameter of 0.8 mm located 

in a temperature controlled oil bath. A sample loop of capillary tubing containing live oil 

or other solute was also located in the oil bath. Solvent flowing through the capillary tube 

was diverted through the sample loop via a chromatograph switching valve, thus the slug 

of solute was carried through the tubing and dispersion with the solvent took place at both 

the leading and trailing edges of the slug. The solvent flow rate was 0.2 mL/hour and the 

length of capillary tubing downstream of the sample loop was 619 cm. 

The experiment was performed first with a live oil sample slug and ethane solvent 

at reservoir conditions of 22.75 MPa and 98.9°C. At these conditions, the two fluids are 

completely miscible and have a significant negative volume change due to mixing. A 



13 

second run was performed using n-octane as the solute slug and n-hexane as solvent at a 

pressure of 1.1 MPa and an ambient temperature of 20°C. In this case, the two fluids are 

completely miscible but exhibit no appreciable volume change on mixing. Following the 

development of Taylor (1953) for calculating dispersion coefficients under ideal mixing 

and laminar flow conditions in an apparatus of this type, approximate values of the 

dispersion coefficients for these two runs were calculated. The coefficients obtained were 

1.Ox 10-2 cm2/s for the live oil/ethane case, and 6.0x 10-a cm2/s for the n-octane/n-hexane 

case. These data indicate that an enhancement to dispersion of the type seen in the visual 

experiment was occurring in the live oil/ethane experiment which was not occurring with 

the n-octane/n-hexane pair. Although the dispersion coefficient for n-octane/n-hexane was 

larger than the usual upper limit of 104 cm2/s for liquid-liquid diffusion, it was at least on 

the same order of magnitude, while the coefficient for live oil and ethane was obviously 

much higher. 

Equation of state calculations of the volume change on mixing for these fluid pairs 

and compositional simulations of the Taylor dispersion experiment are given in Chapter 2. 

1.2.3. ENHANCED DISPERSION EFFECTS IN MISCIBLE DISPLACEMENTS 

The observed high mass transfer effects in the visual and Taylor dispersion 

experiments described above could have a significant impact on displacement behavior in 

miscible processes. The very high dispersion coefficients calculated above would most 

likely hold only for the initial contact between the oil and solvent, when the concentration 

gradients are the steepest and the largest negative volume change on mixing would be 

taking place. As the non-ideal mixing effects diminish, the mass transfer rates would 

reduce to those resulting from normal diffusion and dispersion. The initial rates are high 
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enough, however, that even if they were in effect for a short period of time, their effect 

could be significant. 

Recovery of oil trapped by capillary forces or in dead-end pores by solvent 

flooding could be improved' if enhanced dispersion effects were present. Large volume 

change on mixing when the solvent initially contacts an isolated oil droplet could lead to 

rapid mobilization of the oil. Solvent override caused by gravity segregation would be 

decreased by rapid initial mass transfer rates on contact with the oil and the degree of 

fingering in unstable displacements could be reduced. Large levels of dispersion could 

stabilize displacements even with highly unfavorable mobility ratios, eliminating unstable 

frontal advance and creating higher initial oil recoveries. 

Conventionally recognized dispersion mechanisms: molecular diffusion, 

microscopic convective dispersion and macroscopic dispersion, and unstable displacement 

effects such as gravity override and viscous fingering, have been shown to play important 

roles in miscible displacement processes (e.g. Stalkup, 1983). The enhanced dispersion 

effect due to non-ideal mixing that was observed in the Shell Canada experiments could 

potentially have a very great effect on these processes as well. It also illustrates the 

possible importance of phase behavior models capable of describing the volume change on 

mixing of oil solvent. 

1.3. TREATMENT OF DISPERSION AND VISCOUS FINGERING IN MTSCIBLE 

DISPLACEMENT RESERVOIR SIMULATION 

As shown by the above review, a generally applicable simulator for modeling 

miscible displacements must describe a variety of physical processes. Phase behavior 

models may require multiphase equilibria, component partitioning between phases and 

non-ideal mixing calculations. Flow calculations may include compressible flow, dispersion 
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due to any of the processes described above, and treatment of unstable frontal advance. 

Several surveys of the methods used for miscible displacement simulation are available in 

the literature, for example: Ewing (1988), Fayers (1987), Russell and Wheeler (1983), and 

Young (1984). 

Currently, the vast majority of simulators assume complete and instantaneous 

mixing of fluids within each reservoir grid block, with one exception being the incomplete 

mixing compositional simulator presented by Nghiem et al. (1989). Non-ideal mixing and 

transport property variations are only accounted for by inter-block variations; thus the 

resolution of the simulation is limited by the number of grid blocks used. If the 

displacement of oil in the enhanced recovery process is stable, the complete-mixing 

assumption is valid, as the displacing front is well defined and the oil in place and injected 

gas will be well mixed at the front. In both miscible and immiscible gas injection processes, 

however, frontal advance is often unstable. 

In modeling unstable frontal advance, the scale of the fingers is usually much 

smaller than the size of a grid-block used in a typical field scale reservoir simulation. 

Explicit modeling of viscous fingers is possible with fine-grid simulation of laboratory 

scale displacements; Kempers (1991), for instance, presents experimental and fine-grid 

simulation results showing generation of a dispersive mixing zone in both stable and 

unstable miscible displacements. Since fine-grid simulation of field scale processes is 

impossible, due to computational limits, those simulators that attempt to describe unstable 

frontal advance generally use lumped parameter approaches which describe the essential 

characteristics of miscible displacement without reproducing the fine structure of the 

viscous fingers. 
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A discussion of stability and numerical dispersion problems, of particular 

importance for miscible displacement modeling, and a brief review of the techniques used 

in both modified black-oil and compositional simulation of miscible processes is given 

below. 

1.3.1. STABILITY AND NUMERICAL DISPERSION 

It has been shown (Peaceman, 1977) that the solution of the discretized convection 

equation is equivalent to an exact solution of the convection-diffusion equation, with a 

diffusion coefficient dependent on grid block and time step sizes. This artificial dispersion 

term is caused by truncation of the Taylor series in the discretization scheme, and is often 

denoted as "numerical dispersion" (e.g. Aziz and Settari, 1979; p. 335). Solution of the 

discretized convection-diffusion equation is equivalent to an exact solution of the 

convection-diffusion equation, with the diffusion coefficient given by the sum of the 

physical diffusion and numerical dispersion. The exact magnitude of the numerical 

dispersion depends on the type of discretization, as well as the size of the grid blocks and 

time steps. 

Stability of an algorithm implies that errors introduced at one stage of the 

computation are not amplified by further computation (Aziz and Settari, 1979; p. 58). 

Stability and numerical dispersion are closely connected in that numerical dispersion acts 

to stabilize the difference equation. The discretization scheme commonly in use for 

reservoir simulation is backward-in-distance (upstream weighting) and either backward-in-

time (implicit) or forward-in-time (explicit). Explicit formulations generally exhibit less 

numerical dispersion, but have a time step limit imposed by stability considerations for a 

given size of grid block, while implicit methods show much higher numerical dispersion. 

Models which use implicit pressure and explicit saturation and composition (IMPES) 
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formulations are a popular compromise between fully explicit or implicit models. IMPES 

models are subject to the "throughput" stability condition, which requires that no more 

than one pore volume of material may be put through a grid block in one time step. 

Peaceman (1977) presents a thorough discussion of stability and numerical dispersion for 

various weighting schemes. 

A related problem is the grid orientation effect. When simulating an element of a• 

well pattern in the field, injection and production wells can be at opposite corners of a 

square grid pattern (diagonal grid) or at opposite ends of a single side of the grid (parallel 

grid). These two grids can give different solutions to a given problem; the finite difference 

solution converges to two different results as the grid is refined for the two orientations. 

The effect is most severe for highly unfavorable mobility ratio displacements, however, the 

presence of dispersive forces tends to decrease the orientation error (Aziz and Settari, 

1979; p. 334). 

Todd et al. (1972) proposed two-point upstream weighting of the relative 

permeabilities, which reduced both numerical dispersion and grid orientation effects for 

mobility ratios in the range of 1 to 10. Similar to this approach, Vinsome and Au (1979) 

suggest harmonic weighting of upstream mobilities. Yanosik and McCracken (1979) 

presented a nine-point discretization method for areal displacements, as opposed to the 

standard five-point scheme, which essentially eliminated the grid orientation effect for 

mobility ratios up to 50, however, nonphysical distortion of displacement fronts may also 

result with this method. 

Other higher order discretizations of the flow equations have been proposed, for 

example by Bell and Shubin (1985) and Shiralkar and Stephenson (1991). Very good 

results have been obtained for control of numerical dispersion and the grid orientation 
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effect, however, application of these schemes can result in oscillations in the solution 

unless sufficient dispersive forces exist. Research on these methods has been directed 

towards eliminating these oscillations. 

1.3.2. MODIFIED BLACK-OIL MODELS 

Over three quarters of reservoir simulation studies may be performed using 

black-oil models (Mattax and Dalton, 1990), These simulators model immiscible flow with 

fluid properties treated as functions of pressure only or as functions of pressure and 

solution gas/oil ratio. The existence of a maximum of three distinct phases is assumed: 

aqueous, heavy hydrocarbon and light hydrocarbon. The governing equations for the 

model are derived from mass conservation equations on three components: water, oil and 

gas, with the gas component existing in both the heavy hydrocarbon and light hydrocarbon 

phases. The miscible displacement simulators discussed in this section are termed modified 

black-oil models as they all use two or three components and restrict the number of 

hydrocarbon phases to one or two. 

Peaceman and Rachford (1962) presented a model which accounted for dispersion 

by using the convection-dispersion equation for mass conservation. The model is 

developed with the following assumptions: (a) two components, oil and solvent, are 

present in a single phase (complete miscibility); (b) flow is incompressible; (c) mixing is 

ideal. The dispersion tensor includes constant longitudinal and transverse dispersion terms. 

The model equations are discretized using a combination of centered-in-distance and 

backward-in-distance with centered-in-time differences. This hybrid is used to try and 

minimize numerical dispersion and oscillations in the solution. The difference equations are 

solved using a sequential implicit technique. In two-dimensional simulations of adverse 
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mobility ratio displacements, fingering effects were observed due to the input permeability 

distribution which were similar to those observed experimentally. 

Chaudhari (1971), Russell and Wheeler (1983), and Young (1984) have all 

investigated solutions of the system of equations proposed by Peaceman and Rachford. A 

number of higher order discretization schemes, primarily using the sequential implicit 

solution method were used. In some cases, negative artificial dispersion was employed to 

eliminate oscillations. Numerical dispersion and grid orientation effect were minimized by 

selecting the best discretization method for a given physical problem. These models have 

not been widely used, in part due to the perception that the convective-dispersion equation 

will over-predict oil recovery unless viscous fingers are explicitly modeled. Young (1986) 

presents evidence that this assertion is unfounded. 

Lantz (1970) described modifications to a two-phase black-oil simulator to allow 

the modeling of two component (oil and solvent) miscible displacements. The flow 

equation considering convection only was used for continuity and incompressible flow and 

ideal mixing was again assumed. An exact analogy between the equations for immiscible 

and miscible flow was developed in which bulk immiscible flow becomes bulk miscible 

flow and flow due to capillary forces became diffusive flux. Velocity dependent convective 

dispersion was not modeled. Backward-difference and central-difference implicit and 

explicit formulations were studied. The most severe limitation of the simulator was found 

to be numerical dispersion. 

The original attempt to account for the effects of viscous fingering without 

simulating the growth of individual fingers is due to Koval (1963). The treatment was 

analogous to the Buckley-Leverett equations for frontal advance and fractional flow in 

immiscible displacements. The effect of fingering was accounted for in a fully miscible, 
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two component model by employing an effective viscosity ratio to alter the fractional flow 

of solvent (volume fraction of solvent flowing). The fractional flow of solvent was defined 

as the ratio of the solvent mobility to the total mobility: 

Ic/p3 (1.8) 
k0/p0 + k,./1u3 

Under miscible conditions, k,1=S1 (j=o,$), giving 

1 s (1.9) 
1+ & —a 
p0S3 

Koval varied the solvent/oil viscosity ratio in the above equation by letting the oil viscosity 

remain unaltered, and replacing the solvent viscosity with an effective viscosity defined as 

follows: 

Pse = [s:p;" - s:p;"] - (1.10) 

where S3' is an adjustable parameter used to fit experimental data. Koval found good 

agreement to the experimental data of Blackwell et al. (1959), with the following: 

S=0.22, S=1—S=0.78 (1.11) 

Another fractional flow alteration technique was proposed by Todd and Longstaff 

(1972). They apply their method to a filly miscible, two hydrocarbon component model 

based on the convection equation without diffusion. The viscosity terms shown in 

equation ( 1.9) are replaced with effective viscosities as follows: 

Ale = PS 

(1.12) 

Pm = [s3p;" + S0p'14 ]-4 
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In this formulation, a) is a mixing parameter that may be adjusted to match experimental 

data. A value of w=O implies segregated flow, while a value of W=1 corresponds to 

complete mixing. Todd and Longstaff recommend values in the range of w=1/3 to 2/3. 

Fayers (1988), and Fayers and Newley (1988) present another model for fractional 

flow alteration, incorporating an empirical relation for the finger volume fraction. They 

define the conservation equation for solvent, with a finger volume fraction Sf and 

concentration of solvent in the finger C, as follows: 

ç4ô(SfCig(5(ffCi =0 (1.13) 

of Ox 

where the fractional flow of the finger is given by 

/ =  Sf/1pf  

S., /P"' + Sf/,uf 
(1.14). 

The finger viscosity is evaluated using a one quarter power mixing rule as in the Koval or 

Todd and Longstaff models. In this case the viscosity alteration applies only to the finger: 

p1 = [Cp;" + (i - c)p;"f 

The empirical relation for finger volume fraction is given as 

S,. = a+bC 

where the parameters a and b are constant: 

a=O.1, b=1— a=0.9 

(1.15) 

(1.16) 

(1.17) 

and the parameter a is correlated to the mobility ratio to fit experimental data. The 

following form was found to fit the data of Blackwell et al. (1959): 

a= O.42(p0/p3)°4 (1.18) 

The advantage of the Fayers model over the other fractional flow alteration models is that 

the basic physical approximations can be translated consistently to three dimensions, 
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maintaining the vectorial nature of the fingering phenomenon, thus giving more 

dependable results in field applications. 

1.3.3. COMPOSITIONAL MODELS 

In general, two classes of problems requiring compositional treatment can be 

identified (Coats, 1980). The first type includes depletion or cycling of volatile oil and gas 

condensate reservoirs. The second type includes enhanced oil recovery processes such as 

gas miscible flooding with multi-contact miscibility generated in situ. In both of these 

cases, large compositional variations in the phases can exist as a result of phase changes 

and mass transfer between phases. One distinction between these types of problems is that 

the first class usually involves phase compositions far removed from the critical point, 

while the second class generally requires calculation of phase compositions and properties 

in the near-critical region. The use of compositional simulation models is especially 

advantageous for this second class of problem, as the equation of state thermodynamic 

model provides a single, consistent source of equilibrium K-values and phase densities for 

all phases even in the critical region. 

Equation of state compositional simulators generally assume complete and 

instantaneous mixing within grid blocks and negligible dispersion, but do not assume 

incompressible flow or ideal mixing. Fussell and Fussell (1979) presented a compositional 

model using an equation of state for both phase equilibria and density calculations, as 

opposed to table lookup for equilibrium ratios. The model equations were developed by 

writing molar balances for each hydrocarbon component, assuming complete mixing and 

negligible dispersion. The total hydrocarbon mole balance, water mole balance, phase 

equilibria relations and sum of mole fraction constraints complete the model. An IMPES 

type solution scheme was used, and the flow and phase equilibria equations were solved 



23 

simultaneously using a technique to minimize the number of variables for which 

simultaneous iteration is required. Newton-Raphson iteration was used to correct the 

iteration variables. Physical dispersion was not taken into account, and no method for 

control of numerical dispersion was used. 

The same set of model equations has been treated using a variety of solution 

methods. Young and Stephenson (1983) presented an IMPES type model, while Coats 

(1980) used a fully implicit method and solved the full set of equations simultaneously; 

both use Newton-Raphson iteration to update the iteration variables. Coats used a simple 

form of numerical dispersion control by specifying that the composition of oil flowing out 

of a grid block will be the original oil composition until a gas phase forms in that block. 

Chien et at. (1985) also used a fully implicit formulation with Newton-Raphson iteration. 

Equilibrium K-values were used, instead of mole fractions, along with pressure and overall 

concentrations as the iteration variables. No numerical dispersion control was 

implemented. 

Nghiem et al. (1981) proposed an IMPES formulation, combined with a successive 

substitution algorithm which separates the solution of the flow and thermodynamic 

calculations, allowing a powerful flash algorithm to be used for the phase equilibria 

calculations. Numerical dispersion control was obtained through two-point upstream 

weighting of the compositions in the coefficients of the flow equation. 

Chase and Todd (1984) developed a model based on component mole balances 

which handled viscous fingering with a mixing parameter formulation like those used in 

the black-oil models, however table-lookup was used for equilibrium ratios, not equation 

of state calculation. A Runge-Kutta algorithm was used for solution of the equations, and 

truncation error was limited simply by choosing the maximum possible time step size. 
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Acs et al. ( 1985) derived the pressure equation from a volume balance, rather than 

as a sum of the mole balances. The equations were solved using an IMPES technique, with 

K-values and liquid densities input as tables of experimental values, and only the gas phase 

density calculated from an equation of state. For this model, dispersion was handled by 

using the lull convection-diffusion equation, requiring a dispersion tensor for each 

component. Watts (1986) also used the volume-balance approach for the pressure • 

equation. However, he neglected dispersion in the formulation and solved the equations 

using a sequential implicit technique. Iteration variable updating in both these models was 

through successive substitution. 

Collins et at. (1986) presented an adaptive-implicit model which solved the 

equations implicitly only for the grid blocks in which the iteration variables were changing 

rapidly. An IMPES solution technique was used for the other blocks. Dispersion was 

neglected in the flow equations, which were solved using Newton's method. The equation 

of state flash calculations were decoupled from the flow equations, allowing the use of a - 

robust flash algorithm. Again, no numerical dispersion control measures were given. 

More recently, compositional simulators based on the fill convective-diffusion 

equation have been developed. These are characterized by the use of higher order 

discretization schemes used to limit numerical dispersion so that the effect of physical 

dispersion present in the model can be seen. Young (1986) presented a model in which the 

dispersion coefficient equation included a viscosity gradient term to increase the size of 

the mixing zone which is characteristic of unstable displacements. The use of the 

convective-dispersion equation allows simulation of the stabilizing effect of dispersion on 

adverse mobility ratio displacements, which cannot be predicted by fractional flow 

alteration techniques. A third order discretization scheme was used by Young (1986) with 

negative artificial dispersion to eliminate oscillations. 
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Taggart and Pinczewski (1987) use the full convection-diffusion equation in the 

development of their model, however, ideal mixing and incompressible flow are assumed. 

Equilibrium phase compositions are obtained from an equation of state flash calculation. 

The model equations are discretized using a third order finite difference scheme and are 

solved via an IMPES approach. Flux corrected transport techniques are employed to 

eliminate oscillations. Chang et al. ( 1990) also use third order differencing on the full 

convection-diffusion equation, solving the resulting system with an IMPES scheme. In this 

formulation, the physical dissipative forces of capillary pressure and dispersion are relied 

upon to damp out oscillations in the solution. 

The application of fractional flow alteration techniques to compositional simulation 

of multicomponent systems has received little attention in the literature. One approach is 

given by Crump (1988), extending the Todd and Longstaff model to a multiphase, 

multicomponent compositional simulator with simplified phase behavior predictions. 

Crump notes that, for multi-contact miscible processes, the mixing parameter model is 

inadequate due to the inconsistency between the complete mixing assumption for flash 

calculations and the partially segregated flow assumption for the calculation of fluid 

mobilities. The results of this paper, and the importance of the interaction between phase 

behavior and fingering phenomena as shown by Gardner and Ypma (1984) and Gardner 

et al. (1981), indicate the need for further research on compositional simulation models 

incorporating incomplete mixing at the grid block level. 

One novel approach for modeling incomplete mixing with application to simulation 

of unstable displacements has been presented by Nghiem et al. (1989). This method 

distinguishes two flow regions in each reservoir grid block: a region where complete 

mixing occurs between the oil in place and the injected gas, and a bypassed region where 

the oil is not contacted by gas but can still flow under the influence of pressure gradients. 
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Transfer of components is allowed from the bypassed region, which is assumed to 

maintain constant composition, to the mixed region to simulate the mixing of injected fluid 

and original oil which takes place at the edges of the fingers. The transfer rate is described 

by a two-parameter model. In the work described, one parameter was fixed at a constant 

value while the other was fitted to experimental data. The bypassed oil is treated as a 

single pseudo-component, while equation of state flash calculations on the full 

multicomponent mixture are used to predict the phase behavior in the mixed region. 

Preliminary studies with this model have shown good agreement with experimental and 

fine-grid simulation data, and show superior performance over the Koval model. 

1.4. PROPOSAL FOR TREATMENT OF DISPERSION IN COMPOSITIONAL 

RESERVOIR SIMULATORS 

This dissertation investigates application of dispersion models for miscible 

displacement simulation. Physical dispersion due to molecular diffusion, microscopic 

convective dispersion, macroscopic dispersion or enhanced dispersion due to non-ideal 

mixing may all be present to some degree in a given miscible displacement system. As was 

shown in the review of physical processes, all of these dispersive forces may be described 

by an effective dispersion coefficient. Viscous fingering due to unfavorable mobility ratios 

will be present in many miscible displacements. The effect of this unstable frontal advance 

on recoveries may also be described with dispersion relationships (Young, 1986). 

In order to correctly model non-ideal mixing effects, a compositional equation of 

state simulator is required. As discussed above, dispersion in equation of state 

compositional simulation has been treated by applying the full convective-dispersion 

equation. Mixing parameter models have been applied primarily to black-oil models or 

compositional models with simplified phase behavior descriptions. 



27 

As many compositional simulators with sophisticated phase behavior modeling and 

varying degrees of numerical dispersion control have been developed based on 

discretization of the convection equation without dispersion, the approach to dispersion 

modeling taken in this work is to develop models which could be implemented within the 

framework of one of these conventional compositional simulators. An HOPES formulation 

of the compositional model equations with a provision for two-point upstream weighting 

will be used as the base to which dispersion models will be added. The use of these models 

to describe dispersion and incomplete mixing present in unstable displacement at scales 

smaller than those of a typical field scale grid block is of primary importance. 

Minimization of numerical dispersion while describing physical dispersion is also 

addressed. Higher order discretization schemes have not been investigated in this work, 

however, the models developed here would be applicable to simulators using these 

methods. 

Several works on modeling dispersion/incomplete mixing in compositional 

simulation without use of the lull convective-dispersion equation have been reported. The 

incomplete mixing compositional model proposed by Nghiem et al. (1989) was used by 

Ammer et al. (1991) to model a carbon dioxide miscible displacement in which volume 

change on mixing was significant. They report that this simulator was capable of matching 

experimental results with one fitted parameter; black-oil, pseudo-miscible and 

conventional compositional simulators were found to give less accurate matches. Barker 

and Fayers (1991) develop transport coefficients which alter the compositions of fluids 

flowing out of a large grid block in relation to the average compositions of those fluids 

within the grid block. The values of the coefficients are calculated from fine grid 

simulations of heterogeneous media. 
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Diffusion effects have been added to a conventional compositional simulator by 

Thiebot and Sakthikumar (1991). In this work, Fick's first law is used to predict diffusive 

flux across grid block boundaries, which is then added as source or sink terms in the 

convective flow equation. Hu et al. (1991) present a model of a laboratory core 

experiment in 'which diffusion from the core into a fracture (open space) is modeled with 

an analytical solution of the convective-diffusion equation and flow within the core itself is 

handled with a standard compositional formulation. 

The impetus for the approach to dispersion modeling investigated in this work 

comes from recent developments in pressure transient analysis, utilizing semi-analytical 

techniques for solution of the pressure diffusion equation. A brief discussion of these 

methods is given next, followed by the proposal to incorporate these solutions for 

dispersion modeling in compositional simulation. 

1.4.1. USE OF SEMI-ANALYTICAL MODELS IN PRESSURE TRANSIENT 

ANALYSIS 

van Everdingen and Hurst (1949) first applied the method of Laplace transforms 

for solution of the pressure diffusion equation for flow problems in reservoirs. Gringarten 

and Ramey (1973) investigated potential flow with the use of Green's function theory for 

solution of the diffusion equation, in which the differential equation is recast into integral 

form. Following this approach, Cinco-Ley et at. (1978) derived the integral equation 

formulation for the transient flow problem for a hydraulically fractured reservoir. The 

resulting solution is an integral equation in which the boundary conditions are taken into 

account implicitly. The integration was then performed numerically. This formulation is 

known as the Boundary Integral Equation Method or Boundary Element Method (BEM). 

van Kruijsdijk (1988) combines the technique of Cinco-Ley et al. with the Laplace 
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transform to obtain a considerable simplification in the formulation. The numerical Laplace 

inversion algorithm given by Stehfest (1970) was used by van Kruijsdijk to generate the 

time domain solutions. Kikani and Home (1989) use BEM with the pressure diffusion 

equation to solve a number of general reservoir problems including streamline generation 

and front tracking for steady state cases as well as application to pressure transient testing 

of arbitrarily shaped, multi-well multi-rate reservoirs. 

Boundary Integral Equation Methods for solution of linear differential equations 

will reduce the dimensionality of the problem by one; i.e., a three-dimensional problem 

reduces to a surface integral, while a two-dimensional problem reduces to a cntour 

integral. The fact that it is an integral method, which is a smoothing procedure, eliminates 

the truncation error and grid orientation effect inherent in discretization methods for 

solution of differential equations. 

1.4.2. PROPOSED INVESTIGATION OF ANALYTICAL AND SEMI-

ANALYTICAL MODELS FOR TREATMENT OF DISPERSION IN 

COMPOSITIONAL SIMULATORS 

A multicomponent, two hydrocarbon phase compositional simulator with 

component conservation described by the convective flow equation is developed as the 

base model. Phase fractions, densities, and equilibrium ratios are given by a cubic equation 

of state. 

Evaluation of diffusive flux from Fick's first law and from solutions of Fick's 

second law (i.e., the diffusion equation) is considered. The solution of the diffusion 

equation using Green's function theory for prescribed flux boundary conditions and for 

zero order or first order linear initial conditions is described. Analytical solutions and 
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semi-analytical solutions (i.e., those requiring numerical inversion from the Laplace 

domain) are derived. 

Application of Fick's first law to calculation of dispersive flux across grid block 

boundaries in the compositional simulator is considered first. Implementation of the 

solutions of the diffusion equation with various boundary and initial conditions for 

evaluation of dispersive flux within grid blocks and across grid block boundaries is then 

discussed. Use of these models for simulation of the Shell Canada visual experiment, 

Taylor dispersion experiment and a one-dimensional laboratory scale miscible 

displacement are given, and extension of the method to two dimensions is also discussed. 
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2. CONVENTIONAL COMPOSITIONAL SIMULATION OF TAYLOR 

DISPERSION EXPERIMENTS 

Some experiments that demonstrate dispersion in miscible displacement operations 

were described in Section 1.2 of the previous Chapter. The results of the experiments 

(which were conducted by Laurie Sibbald and co-workers at the Shell Canada Calgary 

Research Center) were made available for analysis in this dissertation. 

The experiments were of two types. In the first type of experiment (the "visual 

experiments" that were described in Section 1.2. 1) the mixing took place without any 

external pressure gradients. The second type of experiment (the "Taylor dispersion 

experiments" described in Section 1.2.2) involved displacement of a slug of live oil (or a 

model hydrocarbon) held in a capillary, tube with a solvent at a fixed solvent flow rate. 

Shell Canada provided access to the equation of state compositional simulator 

(EOSIM) developed at the Bellaire Research Center of the Shell Development Company. - 

This simulator has been used in modeling the Taylor dispersion experiments. (Because of 

the absence of any external driving forces and since dispersion is not included explicitly in 

the model, the simulator cannot be used to describe the visual experiments.) 

The oil used in the study was a live oil from the Virginia Hills reservoir. The phase 

behavior model for the reservoir oil and the solvents is given first, followed by the 

simulation of the Taylor dispersion experiments. 

2.1. PHASE BEHAVIOR OF MISCIBLE SOLVENTS AND RESERVOIR OIL 

The phase behavior of the fluids examined in this work will be described by the 

Peng-Robinson equation of state. A five component characterization for the reservoir oil 

will be used with component compositions as given in Table 2.1 below. 
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Table 2.1: Reservoir Oil Component Characterization 

Component Mole Fraction 

Methane 0.2608 
Ethane 0.1044 
I-Butane 0.1837 
Hypothetical - H1H2 0,3153 
Hypothetical - H3H4 0.1358 

The properties for the above pure components and others used in this work are given in 

Table 2.2. 

Table 2.2: Pure Component Properties 

Component Molecular 
Weight 

Critical 
Pressure 
(kPa) 

Critical 
Temperature 
(K) 

Acentric 
Factor 

Critical 
Volume 
(cm3/mol) 

Methane 16.04 4594.60 190.53 0.0110 98.97 
Ethane 30.07 4878.70 305.42 0.0990 147.94 
Propane 44.10 4249.50 369.82 0.1540 202.86 
I-Butane 58.12 3648.40 408.14 0.1840 262.70 
N-Hexane 86.18 3032.20 507.90 0.2980 370.57 
N-Octane 114.23 2488.10 568.81 0.3980 491.19 
H1H2 137.00 2358.67 597.49 0.4596 526.51 
H3H4 352.90 1103.61 809.50 0.9811 1524.58 

All of the equation of state calculations performed in this work were done with all 

binary interaction parameters set to zero. Tuned parameters for fitting the oil two-phase 

boundary with the Peng-Robinson equation of state were not available, and the equation 

provided adequate representation of the molar volumes of the oil/solvent mixtures which 

are of importance in this study. The phase envelope for the reservoir oil, calculated using 

the two-phase boundary program of Michelsen (1990) with the Peng-Robinson equation 

of state, and the location of the critical points for some of the light hydrocarbons used as 

miscible solvents for this oil are shown below in Figure 2.1. Clearly, the reservoir pressure 
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and temperature of 22.75 MPa and 372 K represent conditions well into the supercritical 

region for these fluids. 

As discussed in Chapter 1, the amount of volume change on mixing of oil and 

solvent is thought to affect the degree of enhanced dispersion present in a system. 

Calculations at constant pressure and temperature using the Peng Robinson equation of 

state were carried out on mixtures of oil and solvent with the volume fraction of solvent 

varying from 0 to 1. The results of these calculations are shown as a ratio of the volume of 

the mixture to the volume of the unmixed solvent and oil constituents. These results are 

shown in Figure 2.2 for ethane solvent with the reservoir oil, in Figure 2.3 for ethane 

solvent with oil represented simply by n-octane and in Figure 2.4 for the reservoir oil with 

a mixed solvent of methane and ethane. The calculations are carried out at the reservoir 

pressure of 22.75 MPa and temperatures of 98.9 °C and 20 °C. All systems show similar 
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Figure 2.1: P-T Diagram for Reservoir Oil plus Solvent Critical Points 
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behavior, with the maximum volume change ranging from about 7% for ethane and oil to 

about 12% for the mixed solvent with oil. The ethane + n-octane system is used in this 

work as a simple two component model which exhibits approximately the same negative 

volume change on mixing present in the oil + ethane system. 

The Taylor dispersion experiments were carried out for the ethane + oil system and 

for n-hexane solvent with n-octane solute. In both of these cases, the oil slug is completely 

miscible with the solvent drive fluid. Equation of state calculations on n-hexane + n-octane 

mixtures show a maximum negative volume change on mixing of less than 0.05%. The 

n-hexane plus n-octane runs were performed to provide experimental results for a system 

with negligible volume change, and therefore no enhanced dispersion effects. 
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2.2. TAYLOR DISPERSION EXPERIMENT SIMULATION 

2.2.1. MODEL DEFINITION 

The EOSIM simulator is based on a discretization of the convective flow equation, 

with the option of using single-point or two-point upstream weighting of the component 

mobilities. Dispersion is not included explicitly in the model. However, as was discussed in 

Section 1.3.1 of Chapter 1, the solution of the discretized flow equation is equivalent to an 

exact solution of the convection-diffusion equation with a diffusion coefficient dependent 

on grid block and time step sizes (Peaceman, 1977). Also, numerical dispersion of this 

kind can be controlled by "upstream weighting" in addition to modifying the grid sizes 

(Aziz and Settari, 1979). 

The Peng-Robinson equation of state is used to describe the phase behavior of the 

system, and the upstream weighting options and levels of grid refinement are varied in an 

attempt to match the experimental results. 

The capillary tube has a circular cross-section with an area of 5.0x10 3 cm2. This is 

modeled as a one dimensional system with a square cross-section, 0.0707 cm on a side. 

For the open capillary tube, porosity is of course 100%. Permeability of the open tube is 

derived through a comparison of Darcy's law and the Hagen-Poiseuille equation for 

laminar flow in a tube; Reynolds numbers for the systems investigated are less than one, 

thus flow will be in the laminar. regime. Darcy's Law for one-dimensional flow may be 

written as (Peaceman, 1977; p. 2): 

Q_kdP 

Apdx 

while the Hagen-Poiseuille equation is given by (McCabe and Smith, 1976; p. 89): 

(2.1) 
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•q R2dP 

A 8p tic 

Equating these two forms results in the permeability being given by: 

8 

(2.2) 

(2.3) 

Evaluating R from the cross-sectional area of the circular tube gives a value for 

permeability of k = 2.0x 104 darcys. A constant solvent rate of 0.2 mL/hr is specified at the 

injector, and a constant back pressure is specified at the production end. Initially, the fluid 

in the tube is assumed to have a constant pressure everywhere equal to the back pressure 

constraint. The initial fluid distribution is shown below in Figure 2.5. The upstream solvent 

leg and the oil leg have initial lengths of 120.8 cm each, and the downstream solvent leg 

has an initial length of 619.1 cm. 

Injector Producer 

Solvent Oil Solvent 

Figure 2.5: Taylor Dispersion Experiment Model Schematic 

2.2.2. SIMULATION RESULTS 

 T 

The first run of the Taylor dispersion experiment used the live oil described above 

with ethane solvent at a temperature of 98.9 °C and with a back pressure constraint of 

22.75 MPa. Effluent composition data were obtained by taking samples of live fluid 

periodically and injecting them directly into a gas chromatograph column. The 

experimental data for this run are shown in Figure 2.6 (page 41). 

The results obtained with the simulator using 114 grid blocks are shown in Figure 

2.7 on the same page. The mole fractions of the two heavy hypothetical components are 
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lumped to compare to the experimental results for the C6+ mole fraction. In this case, the 

oil slug is assumed to occupy 16 grid blocks initially, resulting in a total of 114 grid 

blocks. Two-point upstream weighting of the mobilities is used, and the model is run to a 

termination time of 22.2 hr with a maximum time step size of 500 s. This weighting 

scheme and maximum time step size are used for all the runs described in this section, as 

the single point weighting scheme was found to require an excessive number of grid. 

blocks to match the experimental results. A similar simulation run is shown in Figure 2.8 

(page 42), for a 228 grid block model. 

In these simulations, two-point upstream weighting is used to minimize the number 

of grid blocks required to model the experimental results. The inflection points present in 

the simulated effluent profiles are artifacts of the two-point scheme which arise in cases 

which exhibit large negative volume changes on mixing. As there is no method for 

describing physical dispersion in the simulator, the smearing of the fluid fronts in the 

model results is due solely to numerical dispersion. For a given time step size, the amount - 

of numerical dispersion is proportional to the size of the grid blocks, as can be seen by 

comparing the results of the simulations with 114 and 228 grid blocks. For the ethane plus 

live oil run, the amount of physical dispersion is more closely mimicked by the higher 

numerical dispersion, coarse grid block simulation. Excluding the inflections mentioned 

above, the overall shape of the profiles and level of dispersion can be modeled correctly. 

The offset of the simulated results from the experimental ones is primarily due to the fact 

that the actual length of the initial downstream solvent segment cannot be matched with a 

whole number of grid blocks when the oil slug is defined with a whole number of grid 

blocks. 

The first simulation run using 114 grid blocks for the n-hexane plus n-octane 

system is shown in Figure 2.9 (page 42). The experimental results are shown in Figure 



39 

2.10 (page 43) and the simulated results obtained with 228 grid blocks are shown in 

Figure 2.11 on the same page. The experimental results for the n-hexane plus n-octane run 

are more closely modeled by the fine grid, low numerical dispersion simulation. The 

simulations in this case also do not show any of the non-physical inflections present in the 

previous examples. 

The final two sets of simulation results for the Taylor dispersion experiments are 

shown in Figures 2.12 and 2.13 (page 44); these figures show the results of the 114 grid 

block simulation for ethane solvent plus n-octane slug, at 20°C (low volume change on 

mixing) and at 98.9 °C (high volume change on mixing) respectively. The 20 °C case is 

very similar to the n-hexane plus n-octane 114 grid block run, with the ethane/n-octane 

results showing the effects of slightly greater shrinkage. The 98.9 °C case shows the 

effects of even larger shrinkage, and also the appearance of the non-physical inflections 

caused by the interaction of the two-point upstream weighting scheme with the higher 

volume change on mixing. These results are shown here as the ethane plus n-octane 

system is used as a model system for testing the dispersion models developed in this work 

due to the similarities between this system and the ethane plus live oil system. 

The experimental results and the results of the simulations show that an 

enhancement to dispersion occurs for the ethane plus live oil case with high volume 

change on mixing, over the level of dispersion present for the n-hexane plus n-octane run 

with essentially no volume change on mixing. This illustrates the need to accurately 

predict this volume change on mixing, as well as treat physical dispersion in the simulation 

of processes involving fluids of this nature. 
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2.3. SUMMARY 

The results of the simulations show that it is possible to mimic the dispersive effect 

by choosing the appropriate level of grid refinement with a conventional compositional 

simulator. Expressions for calculating the coefficient of numerical dispersion have been 

developed for certain simplified cases (Mattax and Dalton, 1990; p. 60). The coefficients 

are found to be functions of the grid block and time step sizes, the velocity of the fluid and 

the derivatives of the fractional flow curves with respect to phase saturation. In practical 

reservoir simulation problems these quantities can vary considerably, making exact 

calculation of the coefficient of numerical dispersion impossible. Thus accurate predictive 

simulations using numerical dispersion to model physical dispersion can not be performed 

with a conventional compositional simulator. Also, this simulator cannot handle situations 

such as those present in the visual experiment in which no externally applied gradients are 

present for the system. 

Developing a compositional simulator capable of accurately describing the phase 

behavior of fluids in miscible processes, and describing mixing via dispersion, which can be 

used for predictive simulation of processes with significant dispersion is the purpose of 

this work. 
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3. RESERVOIR SIMULATION MODEL DEVELOPMENT 

The development of a computer program for simulating miscible flooding 

operations in petroleum reservoirs is described in this Chapter. The formulation presented 

by Nghiem et al. (198 1) is followed closely, although some minor modifications are made. 

The program was developed in order to have a basic tool for reservoir simulation • 

in which a variety of schemes for accounting for dispersion can be inserted. In addition to 

the ability to implement subroutines for dispersion calculations in the simulation model, it 

is also desirable to have control over the type of numerical dispersion control and 

automatic time step control schemes. 

The model is developed by first deriving the differential equation for flow in 

porous media. The source/sink terms through dispersion is introduced are included in the 

mass balance equations. The discretization of the equations and the schemes for 

controlling numerical dispersion are described. 

The assumptions employed in the model development and the approaches to 

calculating thermodynamic and transport properties are also dealt with. 

3.1. MODEL EQUATIONS  

3.1.1. FLOW EQUATIONS 

3.1.1.1. Governing Differential Equation for Flow in Porous Media 

As this model is to be used specifically for the simulation of hydrocarbon flooding 

processes, the mobility of water is not considered. Water saturation will be set to zero or 

to a constant value for all grid blocks equal to the irreducible water saturation. The flow 

equations are derived assuming two-phase multicomponent hydrocarbon flow. The 
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reservoir flow equations are derived from the continuity equation on a component basis. 

The equations express mass conservation, and symbols with a "tilde" (--) overmark should 

be understood to have mass units. These quantities will be converted to molar units for 

implementation in the simulator. 

The continuity equation for a component m is given by Aziz and Settari (1979; p. 

8) as: 

_V.Iñm 8 m 'Im (3.1) 

The mass flux may be written as the sum of the convective and dispersive fluxes: 

IiIm = XrnPU+rn (3.2) 

where the first term on the right hand side above is the flux of component m associated 

with the bulk convective flux and the second term is the dispersive flux. The dispersive 

flux may be written in a form analogous to Fick's first law as follows (Young, 1984): 

jv(x) (3.3) 

where D. is a dispersion tensor for component m. The elements of this dispersion tensor 

can contain contributions from both molecular diffusion and mechanical dispersion. Using 

equation (3.3), the mass flux for a two hydrocarbon phase system can be written as 

follows: 

Urn = XrnoPoUo + XmgPgUg - DrnoV(.Z)oXmo) - DmgV(Z)gXmg) (3.4) 

The convective flow terms are calculated according to Darcy's law for the flow of 

fluids through porous media. This has been shown to be empirically equivalent to the 

Navier-Stokes equations and is valid for Newtonian fluids with a porous medium Reynolds 

number less than one and no inertial or slip effects occurring (Greenkorn, 1983; p.8). The 
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superficial, or Darcy, velocity of a phasej flowing simultaneously with one or more other 

phases is given as (Aziz and Settari, 1979; p. 12): 

—K/cd  (vi -j,1gvz) (3.5) 
P1 

Applying this equation gives the final form of the mass flux term for two-phase 

hydrocarbon flow: 

K/c - -  Kk  rgl 
mm = XmoPo ro VP - p0gVz - XmgPg 1"9 iVF - pgVz 

- DmoV(ZJoXmo) - DmgV(ZgXmg) 

The density term for two phases in a porous medium will be 

im = q5S 0X0 + cbSgi?gXmg 

and the capillary pressure relating the gas and oil pressures is given by: 

Pog Pg J, 

(3.6) 

(3.7) 

(3.8) 

Inserting the flux and accumulation relationships into equation (3.1) gives the governing 

differential equation describing mass continuity of component m in the reservoir in terms 

of oil phase pressure, and flow and diffusion coefficients: 

 (vi  (VP+vP 2 vz)] 
L Po lug 

D oV(.ZoXm0) + V. DmgV(jgXmg) (3.9) 

- - 

= ØSJYoX,.1,0 + cbSgPgXmg) -  4. 
lot 

To generalize this equation for use in one-, two- or three-dimensional problems, it must be 

multiplied by a geometric factor, a (Peaceman, 1977; p. 7): 

one dimension: 

two dimensions: 

three dimensions: 

a= A(x) 

a= H(x,y) 

a=1 

reservoir cross - sectional area at x 

reservoir vertical height at x,y (3.10) 
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As discussed in Chapter 2, conventional compositional simulators do not explicitly 

include dispersion. For this simulator, the normal development of the flow equation in 

which the diffusion terms are removed from equation (3.9) is followed at this point, 

allowing solution of the flow equation including only convective terms. Models for 

determining diffusive or dispersive flux separately from the convective flux are developed 

in Chapters 4 and 5. These dispersion terms will be added to the convection equation as 

sources or sinks for each grid block. 

The final molar balance flow equation is derived from equation (3.9) by deleting 

the diffusion terms, multiplying through by the geometric factor given in equation (3.10) 

and dividing through by the molar mass of component m. The molar balance relating mole 

fractions in each phase to the global mole fraction is also used to allow simplification of 

the accumulation term. This gives the following result: 

V . [ (11Crc1You1mo (vi, - + V. I  cxfCkrgPgYmg  (vi, + vi - s vz)] 
PO L 1g 

= af[(;oso +pgSg)zm]aq. 

3.1.1.2. Discretized Form of Flow Equation 

(3.11) 

The flow equations are discretized to generate algebraic equations for each grid 

block. The derivatives in distance are evaluated using a backward difference discretization, 

and the derivatives in time are evaluated using a forward difference discretization. The 

differencing scheme and notation shown in the following equations is as given by Nghiem 

et al. (1981). The superscript n denotes the time level with time level n being the 

beginning of a time step, and time level n+1 being the end of a time step. The discretized 

mole balance for a hydrocarbon component m is given as: 
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L4ry' (A P.- - + Ty (, p n+1 + - .YggAz)] + q. 

= .&If41(p S +pgSg)'Z' - Ø(p0S0 + pgsgY'z} AtL 00 

(3.12) 

The transmissibility terms, T, result from the coefficients multiplying the gradients in 

equation (3.11) and the discretization process, and are defined in section 3.3.4. The 

overall molar balance for the hydrocarbon system is obtained by summing equation (3.12) 

over all the hydrocarbon components: 

A[r(tP"'-4 gAz)+](&r' +A1 — gz)]+qh 

Vb  ii+1[0n+1 (Po 0+PS2) — th(#oS00 +pgSg)] 
'  

The difference notation used in the above two equations is as follows: 

ATAP = AXTX PX + AYTYAPY + 

= - .i) - - 

Lt = (+1 ..... n 

(3.13) 

(3.14) 

where the subscript i refers to grid block indices in the x direction. The differencing shown 

in equation (3.14) for the x direction is repeated for each geometric dimension in the 

simulation, and for each phase present in any given grid block. The evaluation of the 

transmissibilities, phase compositions, saturations and densities are detailed in the 

following sections of this chapter. 

3.1.2. EQUILIBRIUM EQUATIONS 

The gas and oil phases are assumed to be in equilibrium in all grid blocks. The 

thermodynamic equilibrium condition is expressed as the equality of component fugacities 

in the oil and gas phases: 

fmo fmg' m=1 ... n0 (3.15) 
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Further equations related to the equilibrium relation are derived from material balance on 

the hydrocarbon phases or result from the definition of mole fractions and saturations 

(volume fractions). The following equations are needed to complete the specification of 

the problem. 

Zm = LYmo + VYmg (3.16) 

L= p0S0 (3.17) 
p0S0 +PgSg 

V=  PA (3.18) 
p0S0 +PgSg 

Zm = E ymo = EYmg 1 
M=1 m=1 m=1 

(3.19) 

L+V=1 (3.20) 

So+Sg+Sw1 (3.21) 

3.2. SOLUTION OF MODEL EQUATIONS  

3.2.1. OVERVIEW OF SOLUTION METHOD 

Equation (3.13) is used to solve for the pressure in each grid block. At the 

beginning of the time step, a flash calculation is performed to obtain Ymo' Ymg' V, L, p0 and 

Pg Transport properties for the calculation of the flow coefficients are also generated, and 

the well terms are evaluated. An approximate Jacobian is then constructed to allow the 

solution of the system of equations defined by (3.13). After the grid block pressures are 

calculated, equation (3.12) is solved for Zm the flash calculation is repeated and the 

saturations are calculated from equations (3.17) or (3.18) and (3.21). The implicit terms in 

the pressure equation and the Jacobian are then updated and a new pressure vector is 

calculated until convergence is achieved. 
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3.2.2. FLASH CALCULATION 

As the flash calculations for the hydrocarbon systems to be studied in this work are 

not expected to be difficult, a simple successive substitution algorithm will be used (e.g. 

Heidemann, 1983). The algorithm utilizes the acceleration procedure of Mehra et al. 

(1982) and the single- phase region determination procedure of Nghiem et al. (1983). The 

thermodynamic model used in the flash calculation is formulated as a general two-

parameter cubic equation of state. Procedures for applying the Peng-Robinson (PR) 

equation (Peng and Robinson, 1976) and the Soave-Redlich-Kwong (SRK) equation 

(Soave, 1972) are given in the following section. 

3.2.2.1. Equation of State 

The general form of the cubic two-parameter equation of state is: 

RT  a  

v— b (v+c1b)(v+c2b) 
(3.22) 

The gas constant R can be removed from the equation and from the formulas for the 

calculation of the pure component parameters by using the variable VR = v/R. This 

approach has been used by Michelsen (1990) in phase behavior programs which were 

made available in the course of this work. The calculation of the equation of state 

constants and the constants in the pure component parameter formulas are due to 

Michelsen. The equation of state is now written as: 

T aJ 

VR - bR (yR + clbR)(vR + CAR) 

The compressibility factor for a given phase 

(3.23) 

(3.24) 
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is calculated as the solution of the equation of state expressed as cubic function of this 

variable: 

Z3 +[B(ci + c2 - i)— i]z2 +[B2(C1c2 — (c1 + c2)) - B(c1 + cj+ A]Z 

- B2c1c2 _ AB) = 0 

The expression for determining the fligacity of a component m in a given phase is derived 

by substituting the pressure form of the equation of state into the following fundamental 

thermodynamic relationship: 

RTl dv - RTlnZ + RTlnymP (3.26) RTlflfm = [('XOP 
:JT,v,n•nm vj 

The resulting component fugacity formula is: 

ln1=.L(Z_1)_1n(Z_B) A +— 
yPb B 

nc -

2y1a, 
bi j=1 

b a 
(  1 —c2)lni (Z+cB  I i 
Lc1 LZ --c2B 

(3.27) 

The pure component parameters for the above equations, following Michelsen's (1990) 

approach, are calculated as follows: 

a1(fl=i+mi—fT/7,) 

= a,  

a, =a1a,(7) 

an1 = (i - 

and the mixture parameters are given by: 

(3.28) 
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aJ = y,y1a11 

1=1 j=1 

'IC 

bR - 1k 

T2 

B= 11 
T 

(3.29) 

The additional formulas required to use the SRK or PR equations are as follows. The 

relation used for the temperature dependence of the a parameter in the PR equation is the 

one in the original reference. For the SRK equation, the fit proposed by Graboski and 

Daubert (1978) is used: 

SRK: m, =0.48508+w,(1.55171- 0.15613w1) 

•PR: m, = 0.37464 + ø,(1.54226 - 0.26992w1) 

The equation of state constants c1 and c2 are calculated according to 

SRK:c=0, PR:c=1 

u= l+c 

w = —c 

u + Ju2 — 4w 
C2 =  

2 

(3.30) 

(3.31) 

CI = w/c2 

and finally the constants for the pure component a and b parameters are evaluated from: 

(u+w)(u+3)—w  
s1= +1 ;= u+w+1 

2• 

q = (1 + .Js - s )1/3 

1  

3r + u—i 

r=q+ S2 —+1 
q 

0 . = - 3w) - uw 

(3.32) 
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3.2.2.2. Flash Algorithm 

The steps of the flash algorithm are outlined below. The initial data required are 

the pressure and temperature of the flash, feed composition, and critical pressure and 

temperature, acentric factors for each component and the binary interaction parameters. 

1. Initial estimates of the K-factors are generated. At the beginning of a time step, the K-

factors for each grid block are set to the final values obtained from the previous time step. 

Within the time step, the K-factors are set to the values obtained from the previous 

iteration of the pressure equation. At initialization of the program, the K-factors are 

estimated from the empirical relationship given by Wilson (1969): 

K - exp{5.37(l+o. 1)(l—Ta/T)] 333 
P/Pa (.) 

2. Vapor fraction is calculated. A mole balance on component i, coupled with the 

constraint that mole fractions within a phase must sum to one, yields a function in terms of 

the feed composition, K-factors and mole fraction vapor in the system: 

(K—i)z,  1 
f(V)=Z[lv(K —1)] =0 (3.34) 

This equation is solved using Newton's method: 

= - 
f (01) )If P(V(1)) 

where 

f'(V) = . r (K,- 1)2 z, 

(I+ V(Kj E -  1))2 ] 

(3.35) 

(3.36) 

This approach will work as long as the K values are such that a solution for the vapor 

fraction lies between zero and one. If this is not the case, the function in (3.34) is used to 
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set the single-phase vapor or liquid fraction as follows (Nghiem et al., 1983): if f(0)<O 

then V=O, iff(1)>O then V=1; on the first iteration, the vapor fraction is set to V=O.5. 

3. Component mole fractions in each phase are calculated. 

YO=  Zi  l+Vl); 11...fl 

Y,g=Yio'c ; i=1 ... n, 

These are normalized to ensure the mole fractions sum to one: 

3/jo  
yio_—   n ' 

j=1 

_Yag• 
Yig i,, ' 

Yjg 
J=1 

(3.37) 

i=1 ... nc (3.38) 

4. Fugacity of components in each phase are evaluated. First the equation of state 

parameters for each phase are calculated from equations (3.28) and (3.29). The cubic 

equation (3.25) is solved for each phase to generate the compressibility factors, then the 

fugacities of each component in both phases are calculated from equation (3.27). 

5. Convergence check. The equilibrium criterion of equal component ftigacities in both 

phases is checked according to: 

2 

[in(io/fi)] <1014 (3.39) 

If this criterion is met, the final step in the algorithm is the calculation of phase densities as 

follows: 

z 
1= . PRT' j=o,g (3.40) 

If the convergence criterion is not met, the acceleration parameter (Mehra et al., 1982) is 

calculated as 
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g (l_I)Tg (l_I) 

g (1_I)T(g (1) - g(1_1)) 

where 

gj=lflfg-1flf0 

The K-factors are then updated according to: 

= ki  z)[(f/f)(1)] 
(l) 

and the algorithm returns to step 2. 

3.2.3. SATURATION CALCULATION 

(3.41) 

(3.42) 

(3.43) 

As discussed in 3.2.1, the water saturation will be set to zero or to a constant value 

equal to the irreducible water saturation. The saturations are calculated according to the 

constraint equations (3.17), (3.18) and (3.21). If the flash calculation yields a two-phase 

system, the oil saturation is calculated as: 

S. —°  LPg+VP0 

and the gas phase saturation is then 

Sg = 1— S - S 

If a single phase system is encountered, then 

Sg [or SO] =O 

leaving 

So [or Sg]= i - s,, 

(3.44) 

(3.45) 

(3.46) 

(3.47) 
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3.2.4. FLOW COEFFICIENTS 

The term flow coefficient refers to the transmissibility composition product seen in 

equation (3.12). The transmissibility is defined as: 

j=o,g (3.48) 

where the area is that of the interface between two grid blocks with center to center 

distance given by Al. The absolute permeability is calculated using a harmonic average of 

the two grid blocks. The other parameters in the transmissibility equation are evaluated 

using a single point upstream weighting method; that is, they are evaluated at the pressure 

and composition of the block with the higher pressure. The molar density of the phase is 

returned from the flash calculation. The relative permeability and viscosity calculations are 

described below 

3.2.4.1. Viscosity Calculation 

The viscosities of components with carbon number 6 or lower are calculated using 

the correlation of Jossi et al. (1962), derived from corresponding states and dimensional 

analysis. The viscosity of the C6 fraction is given by 

- o.000i]° = 0.1023 + °.23364PR 

+0.058533p - 0.4O758p + 0.0093324p 

The parameters in this equation are calculated from: 

[y1.1 .j 
= [,:YiMW  

PR --  yjvc.j 

zyjvi 

(3.49) 

(3.50) 

where T is in K and P is in atm. The low pressure gas mixture viscosity is calculated from 
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* - y1pM wi  

/1— y1MW 

and the individual component low pressure viscosity is given by 

= 3.4 x 1o(T/l,1)° (T/T 1) ≤ 1.5 

= 1.778 x 1O[4.58(T/71) - 1.67]6 (T/7 1)> 1.5 

TI'6 
C.'  

4:, = MW?'2 P213 
J c,j 

(3.51) 

(3.52) 

The viscosities of components or fractions characterized with carbon numbers of 7 

or higher are calculated according to a correlation given by Shealy (1988), based on an 

empirical fit of pure component, distillation fraction, whole crude oil, and bitumen and tar 

data as a function of molecular weight. The individual component viscosities are corrected 

for the effect of temperature, combined to give the viscosity of the entire C7 fraction, 

which is then corrected for the effect of pressure. Shealy also presents a mixing rule for 

combining the results of the C6 and the c7 fractions. 

3.2.4.2. Relative Permeability 

As the water phase is either immobile or not present in the simulations, only two-

phase relative penneabilities need be determined. A simple model for hydrocarbon phase 

relative permeabilities without oil or gas residual saturations is used as follows: 

k,j S'  T, j =o,g 
S. 

(3.53) 

This is similar to the approach used by Sigmund et al. ( 1979). As the oil and gas phases 

approach miscibility, the relative permeability curves approach straight lines, i.e. ft = 1 

(Nghiem et al.; 1981); under immiscible conditions, the relative permeability relation 

shows considerable curvature and a parameter of /3 = 2 may be used. 
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3.2.5. NUMERICAL DISPERSION CONTROL 

Depending on the model chosen for implementing physical dispersion, some 

mechanism for controlling numerical dispersion may be required. Evaluating the 

compositions which multiply the transmissibilities in equation (3.12) at the upstream grid 

block will be referred to as operating without numerical dispersion control. The scheme 

proposed by Nghiem et al. (1981) to control numerical dispersion, i.e., a two-point 

upstream weighting scheme for these compositions, will be used here. If i-i and i-2 are the 

two upstream grid blocks from block i, the desired composition at the interface /-'/2 is 

obtained by extrapolating the compositions in the two upstream blocks to that interface, 

using the relation 

Ali-, 
4-2 (ym.i_i - Ym,i-.2) = Ymj-i + M -,+A 

subject to the following constraints: 

and 

Ymj-1/2 ≤ max(y,j_1,y,j) 

Ym,i-1/2 ≥ min(ym,z_i,ym,,) 

(3.54) 

(3.55)-

(3.56) 

These equations will apply to both the oil and gas phases in a grid block. If only one phase 

is present, the global composition will be used. 

3.2.6. SOURCE AND SINK TERMS 

In a conventional compositional reservoir simulator, the only source and sink terms 

are the injection and production wells. For the applications considered here, dispersion or 

diffusion may be evaluated explicitly and added to the flow equation. The source/sink term 

in equation (3.12) will be the sum of the net dispersive molar flow rate and the molar flow 

rate resulting from injection or production wells. 
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q = qd,. + 

Evaluation of the dispersive term will be discussed in Chapter 5. 

(3.57) 

The molar flow rate of hydrocarbon component m flowing into or out of a grid 

block I will be given by: 

qw,m = YPQ +YgPQ (3.58) 

The rates are positive for injection wells (flow into the grid block) and negative for 

production wells by convention. For constant rate injection wells, the volumetric flow rate 

and composition of the injected fluid are specified. The density of the fluid is evaluated at 

the oil pressure of the grid block. For constant-rate production wells, the volumetric flow 

rate is specified and the composition and density are those of the ith grid block. 

For constant bottomhole pressure wells, the volumetric flow rates are given by: 

with the well index calculated from (Aziz and Settari; 1979, p. 223): 

2,rAiz  

In(i q/rw)—c 

where the mobility of a phasej is defined as 

ky 

f iji 

(3.59) 

(3.60) 

(3.61) 

and the total mobility of fluids in a grid block is defined as the sum of the mobilities of 

each phase present. For injection wells or sources, the mobility term in equation (3.60) 

will be the total mobility of fluids in the grid block. For production wells or sinks, the 

mobility will be that of the phasej in the grid block. 
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3.2.7. PRESSURE EQUATION SOLUTION 

The vector of grid block pressures is solved for by writing equation (3.13) for each 

grid block in the following form: 

= 4r?(r' —7gAz)+2'(itP:' + AF g — J,gl gEz)J+qh 

_[n+'(p0S0 +pgSg)' - f (pS0 +pgSg)°J = 0 
(3.62) 

The solution of the grid block pressures at time level n+1 is accomplished using a 

Newton-type iteration with an approximate Jacobian. Given the /th iterate of I' (i), 

the (l+1)th iterate is obtained from: 

f,)[p(z+1) - p(z)] - k o,k o.k - I ' i=1 .. 
k 

(3.63) 

The sum is taken over the ith grid block and all adjacent blocks. The elements of the 

Jacobian are given by: 

(  OFi ) =(i +k)/2 (3.64) 

and 

ii (19poj) 'OP. 

(z) =_y(r +rr (o)' Vb, +pgSg)]91 ba [,OO(P.,S,, 

k 

(3.65) 

The derivatives of the source and sink terms are derived from equations (3.57) 

through (3.60). As these derivatives are taken with respect to the lth iterate of the 

pressure at time level (n+1), terms which are evaluated explicitly will have zero 

derivatives. Thus for rate constrained wells 

 —0 

while for pressure constrained wells 

(3.66) 



62 

qh  
= 1woPo 'wgPg (3.67) 

The derivatives of the accumulation term in equation (3.68) are evaluated 

following the method of Nghiem et al. (1981), with the additional assumption of constant 

porosity. As the densities are functions of pressure and composition, true derivatives of 

the accumulation term will involve derivatives of composition with respect to pressure as 

well as derivatives of saturation with respect to pressure. An approximation to the 

derivative of the accumulation term is obtained by neglecting these terms, leaving the 

following: 

(I) 

[öqi(poSo+pgSg)1 _ c6:isoz+s 8p'1 
- 

The derivatives of density with respect to pressure are evaluated using 

gPj = [_VJ2 
D1,  

(3.68) 

(3.69) 

where the derivative of pressure with respect to volume is obtained from the form of the 

equation of state given in equation (3.23): 

81 - 1 P0 - +  a(2vR + (c1 + c2)b)  

-;;- - R •;;;;;- R(vR b)2 R((vR + CIb)(VR + c2b)) 
(3.70) 

This construction yields an approximate Jacobian which is symmetric and diagonally 

dominant. As only oil pressure is being solved for implicitly, capillary pressure and 

gravitational effects being taken into account explicitly, this formulation results in simple 

tn-diagonal matrices for one-dimensional problems and penta-diagonal matrices for two-

dimensional problems. These are easily solved using direct elimination methods. 
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3.2.8. COMPOSITION EQUATION SOLUTION 

Once the (l+1)th iterate of the pressure vector is evaluated, the composition 

corresponding to this pressure is evaluated. Defining: 

,(i+i) _Ap(l+1) — jigAz (3.71) 

and 

= Aj'' +AP:g —7,gAz (3.72) 

the composition equation is obtained by rearranging equation (3.12) to give: 

z(1+1) = 
m Vb - qS(poSo+pgSg)(z+1) 

{ Y,-, y,' A (z+i) + T'YgA (:+ i)]+q   + j. (p0S0 +pgSg)z} mo 0 

(3.73) 

The term in the denominator is evaluated from equation (3.13): 

!..q ('')(pS +pS) = A[TO-Aci,'') + 7A 1 )]+q + çL(p0S0 +pgSg)° (3.74) 

Calculating the composition in this way guarantees that the mole fractions will sum to 

unity. 

3.2.9. AUTOMATIC TIME STEP SIZE CONTROL 

In addition to the use of upstream weighting techniques for numerical dispersion 

control, IMPES techniques may benefit from the use of maximal time steps, provided they 

are less than the size required to satisfy the throughput stability criterion Aziz and Settari 

(1979; p. 156) show that for single point upstream weighting, use of a time step exactly 

equal to the stability limit can eliminate the first order term in the truncation error; they go 

on to state that " In general, truncation errors with upstream explicit transmissibility will 

be minimized by the use of the maximum stable time step". For the two-point upstream 

weighting technique, the coefficient of the first order time step size term is negative, 
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indicating that increasing the time step size will decrease the numerical dispersion. In this 

simulator several methods of automatic time step size control have been implemented. 

Solution of the flow equations for the first time step is usually easiest with a small 

time step. A user-supplied initial time step is employed here. The other user supplied 

values are minimum and maximum allowable time step sizes, and maximum changes in 

mole fraction and pressure allowable for a grid block. The maximum allowable changes 

are useful for ensuring that transient conditions that the user wishes to see are not 

obscured by the simulator taking time steps that are too large. A typical value for 

maximum allowable mole fraction change in a compositional simulator is 0.2, while the 

maximum pressure change will depend on the absolute pressures expected in the 

simulation. 

At the end of a time step, the maximum changes in pressure and composition are 

compared to the allowable limits. If any change exceeds the allowables, the time step size 

is multiplied by 2/3 for the next step. If the maximum changes are both less than 50% of 

the allowables, the time step size is multiplied by 1.5. These operations are carried out 

only within the limits set by the user for minimum and maximum time step sizes. 

As potentially large amounts of material may be transferred across a grid block 

interface through dispersion when the model is applied to enhanced dispersion problems, 

the net removal of moles of a component expected for a grid block over a time step is 

checked at the beginning of the step to ensure it will not be more than the number of 

moles initially contained in the grid block. As the dispersive rates are set explicitly, the 

exact number of moles of material to be transferred through dispersion can be calculated. 

An estimate of the moles of a component to be transferred via convection can be obtained 

using the explicit transmissibilities and the values of pressure and density existing at the 
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beginning of the time step. If a grid block is determined to have a negative mole fraction 

of a component by this calculation, the time step size will be multiplied by 2/3. 

3.3. SUMMARY 

This Chapter has presented the details of a basic IMPES type compositional 

simulator. The simulator was set up in the usual manner and therefore does not include 

dispersion explicitly in the model equations. Physical dispersion has been added as 

source/sink terms in the equations. Numerical dispersion was controlled by two-point 

upstream weighting applied to the interface compositions. 

The simulation program was used to produce the results described in Chapter 6 of 

this dissertation. 
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4. EVALUATION OF DIFFUSIVE FLUX 

The use of Fick's laws of diffusion to evaluate the diffusive flux for reservoir 

simulation is discussed in this Chapter. Fick's first law is introduced as the basis of the 

mathematical treatment of diffusion. Green's function theory is used to develop a 

consistent methodology for the solution of the diffusion equation under various initial and 

boundary conditions. The application of prescribed flux boundary conditions results in a 

semi-analytical formulation for the concentration profile which may be solved either in the 

time or the Laplace domain. Although they are not used in the dispersive flux models in 

the reservoir simulator, the prescribed flux boundary condition solutions are introduced 

here since the source functions derived for these conditions are used in the infinite media 

or impermeable boundary solutions as well. For solutions of the diffusion equation which 

depend only on the initial conditions, that is where end effects are not important or where 

impermeable boundaries exist, analytical forms for the concentration profiles are 

developed. This allows closed forms for the derivatives and integrals of the profiles to be-

derived as well. In this Chapter, the solutions of the diffusion equation are derived which 

are the tools used in Chapter 5 for formulating the dispersive flux models for the reservoir 

simulator. 

4.1. FICK'S LAWS OF DIFFUSION 

The mathematical theory of diffusion in isotropic substances is described by two 

equations adapted by Fick from the equations of heat conduction (Crank, 1975). Fick's 

first law states that the rate of transfer of a diffusing substance is proportional to the 

concentration gradient measured normal to the direction of flow, while the second law is a 

continuity equation derived from the first law. The solution of these equations to give the 

diffusive flux for use in reservoir simulation is examined in this section. 
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4.1.1. FICK'S FIRST LAW 

Fick's first law for a binary system of A and B, with a binary mass diffusion 

coefficient DAB = DBA, can be written to give the molar diffusive flux (Bird et al., 1960; p. 

502) as follows: 

= —pD48 VYA (4.1) 

For diffusion in a system of more than two components, the diffusive flux of a component 

i can be given in terms of multicomponent diffusion coefficients: 

ji = (4.2) 

The use of effective diffusion coefficients allows determination of the flux of one 

constituent of a multicomponent system while retaining the simplicity of the relationship 

for a binary system: 

I = —pDVy, (4.3) 

Evaluation of diffusive flux with this equation becomes simply a problem of determining 

the concentration gradient with distance at any point and applying equation (4.3). 

4.1.2. FICK'S SECOND LAW: THE DIFFUSION EQUATION 

The diffusion equation for one component in a multicomponent system can be 

obtained by writing the continuity relationship for component i, with the only driving force 

for component motion being the diffusive flux given by equation (4.3): 

lop, = V.D1V , (4.4) 

For constant diffusivity and density, this equation reduces to 

'9PiDv2p (4.5) 
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The solution of this equation is uniquely determined when the initial concentration 

distribution and either a constant value of concentration on the boundary (Dirichiet 

problem), or prescribed flux across the boundary (Neumann problem) is defined. Green's 

function theory is introduced in the next section as a means to systematically develop 

solutions for various initial and boundary conditions. 

4.2. THE USE OF GREEN'S FUNCTIONS FOR SOLUTION OF THE DIFFUSION 

EQUATION 

4.2.1. OUTLINE OF GREEN'S FUNCTION THEORY 

Green's function theory provides a methodology for solving linear differential 

equations with boundary conditions which consist of linear combinations of the unknowns 

and their derivatives. The procedure for solving ordinary differential equations is shown 

here. The procedure for partial differential equations is essentially the same, with the 

dimensionality of the integrals extended for additional variables. 

The method is applicable for any general differential equation of the form: 

Lu=q (4.6) 

over the interval a ≤x ≤b, where L is an nth order linear ordinary differential operator. 

The Green's function G, as yet undefined, is introduced by forming the inner product: 

GLu. This quantity is then subjected to repeated integration by parts, in terms of a dummy 

integration variable 4, until the result can be expressed in the form: 

fGLud=[ ... ]+5uL*Gd (4.7) 

where L* is the formal adjoint differential operator associated with L. A boundary value 

problem on G is definçd by setting. 
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LG=_x) (4.8) 

where 5-x) is the delta function acting with unit strength at the point x = . This 

function has the property: 

00 
f  x)h()d= h(x) (4.9) 

where h(x) is any smooth function. As a result of this property, the last term of equation 

(4,7) reduces to u(x) when the definition of equation (4.8) is invoked. Thus, substituting 

(4.8) into the last term of (4.7), and recalling the definition of equation (4.6), gives the 

result: 

fGød=[...r+u(x) (4.10) 

Specification of the boundary value problem on G is completed by requiring that G satisfy 

homogeneous boundary conditions such that unspecified boundary values of u and its 

derivatives are eliminated from the boundary term in equation (4.10). The Green's function 

G is then found by solving equation (4.8) with these homogeneous boundary conditions. 

Once G is known, the solution of the original differential equation is found by evaluating 

the integral in equation (4.10). 

4.2.2. APPLICATION OF GREEN'S FUNCTION METHOD TO THE DIFFUSION 

EQUATION 

Rigorous derivation of the treatment of the diffusivity problem with Green's 

functions is available from a number of sources, e.g. Gringarten and Ramey (1973) and 

Greenberg (1971). In this section, one possible formulation of the integral equation is 

given. 
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The differential equation (4.5) giving the molar concentration of a component i as 

a function of that component's diffusivity is identical to the heat conduction equation 

giving the temperature of a substance as a function of its thermal diffusivity. The 

formulation of the Green's function solution for this problem is taken from Carslaw and 

Jaeger (1959;p. 353). 

The Green's function will be the molar concentration of a component i at a location 

x and time t due to an instantaneous source of unit molar density of component i 

generated at x' and time r. This solution may be written 

G = f (x,x',t — r) t>r (4.11) 

From equation (4.5), the linear differential operator form of the diffusion equation is: 

11 
Lp, = [1V2 -  WIA  =0 t >0 (4.12)• 

The resulting form of the equation in G with the adjoint differential operator is 

VG= IDV2O1GO (4.13) 

Since I appears in G only in the form (t--r), G will also satisfy 

= D,v2G (4.14) 

thus, the Green's functions may be found as simple solutions of the diffusion equation. 

Casting the differential equation for diffusion into integral form via the integration 

by parts procedure outlined above results in the following solution: 

p1(x,t) = fffp (x',t = 0)G(x,x',t)dx' 

+[f5(G(xx't_ On  ( ' )8G(XX11_ )dx']dr (4.15)   p,x,r  
0 
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where the derivatives with respect to n indicate differentiation normal to the boundary. 

The first integral above reflects the response due to the initial concentration distribution, 

and is taken over the entire domain of the problem. The second integral may reflect the 

response to either a prescribed concentration on the boundary or a prescribed flux across 

the boundary of the problem domain, and is taken over the surface of the domain only. For 

a prescribed concentration boundary condition, the Green's function vanishes on the 

boundary; this is a Green's function of the first kind. For the prescribed flux boundary 

condition the Green's function normal derivative will be zero on the boundary, giving a 

Green's function of the second kind. Equation (4.15) thus provides a "master equation" 

which may be simplified systematically for the solution of the diffusion equation under 

various conditions. Once the boundary and initial conditions for a problem are set, the 

Green's function is found as the solution of equation (4.14), this is then substituted into the 

appropriate simplified form of equation (4.15), to obtain the solution for the concentration 

distribution at any time. Solutions for flux boundary conditions and some general initial 

conditions are given in the following sections. 

4.3. SOLUTIONS OF THE DIFFUSION EQUATION WITH PRESCRIBED FLUX 

BOUNDARY CONDITIONS  

4.3.1. INTEGRAL EQUATION FORMULATION 

The solution of the general integral equation (4.15) can be written in terms of a 

variation in concentration from the initial condition as follows: 

AP, (x,t) = p,(x,t) -fj'fp1(x',t = O)G(x,x',t)dx' (4.16) 

As described above, for flux boundary conditions the Green's function normal derivative is 

defined as being zero on the boundary of the domain, thus the second term in the 

boundary integral in equation (4.15) vanishes. Letting N1(xct) represent a general function 
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for the molar flux (moles/area-time) across the boundary, the normal derivative of the 

concentration can be expressed as 

Op(x',t) N(x',t)  
,3n1, 

and the integral equation can now be written 

1p1(x,t) = I [51 G(x,x',t - v)iV(x', )dx']d 

(4.17) 

(4.18) 

This is the boundary integral formulation of the diffusion equation. A convolution integral 

in time of this form has also been derived by van Everdingen and Hurst (1949) for the 

pressure diffusion equation, relating transient pressure behavior in reservoirs to volumetric 

fluid offiake. 

In general, numerical integration must be used for all but a few idealized flux 

functions in the solution of equation (4.18). Following van Kruijsdijk (1988), the Laplace 

transform of this equation may be taken to yield a considerably simplified form 

A(x,$) = ff U(X'X"S)jVi (X'2s)dx1 (4.19) 

While eliminating the integral in time, use of this formulation does pose the problem of 

Laplace inversion. The source functions for use with equations (4.18) or (4.19) are 

derived in the following sections, and application of these source functions in the integral 

equations for one and two dimensional problems are discussed. 

4.3.2. SOLUTION OF THE CONCENTRATION DIFFUSION EQUATION IN ONE 

DIMENSION 

The diffusion equation will be solved for a one dimensional domain of length Xe 

and a constant cross-sectional area. The molar flux of component i (moles/area-time) 

across each end of the domain will be given as a general function of time ,At) at x = 0 and 
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g(t) at x = Xe . For all of the problems with the flux boundary conditions, the initial 

condition is assumed to be a constant and uniform distribution of component i throughout 

the domain. 

fWH  
x=0 X= Xe 

Figure 4.1: One Dimensional Problem Geometry 

As discussed above, the integral equation will be used to give the result of the 

concentration distribution in terms of a variation from the initial condition. Specifying the 

initial condition as 

p,(x,t-0)=4' O≤x≤x (4.20) 

equation (4.16) becomes 

AP, (x,t).= p(x,t)—Pi" (4.21) . 

and the time domain diffusion equation from (4.5) may be written in one dimension 

directly for the change in concentration given in equation (4.21) as 

8ip7(x,t) =D 8 p,(x,t)  

81 
t>0 (4.22) 

The prescribed flux boundary conditions are 

f  8Ap1(x,t) 1X=0 1>0 
L Ox D. 

[8API X1)] g(t) 1>0 

46X X=X9 Di 

and the initial condition for the transformed equation may now be given as 

Ap1(x,t=o)=O 0≤X≤Xe (4.24) 

(4.23) 
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This transformation allows a consistent statement of the Laplace domain problem 

given below, where the zero initial condition is taken into account in the Laplace 

transformation of the differential equation. 

D' . 82 AÔ(x.,$) = sA(x,$) (4.25) 
Ox2 

I  8A(x,$) _/k 
ax 1x=0 

ro(x,$)]"=X, 

(4.26) 

I Ox   

4.3.3. TIME DOMAiN SOLUTION 

4.3.3.1. Infinite Media Source Function 

From equation (4.14), the differential equation to be solved for the source function 

is given by 

OG(x,t) 82 G(x,t)  

8t Ox2 
I> z (4.27) 

Carsiaw and Jaeger (1959; p. 259) present a solution based on Kelvin's treatment of 

instantaneous point sources. The response in an infinite linear region to an instantaneous 

plane source of strength unity acting at t = 0 and passing through xc parallel to the plane 

at x = 0, will be given by: 

exp[_(x - X ,)2 14D  

G(x,x',t) = 2J (4.28) 
irDt 

Gringarten (1971) derives the same relation by solving equation (4.27) using Laplace 

transformation with the following initial condition: 

G(x,t=0)=0 (4.29) 
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and boundary conditions: 

G(x, t)I = 0 

c9G(x,t) i 

Dx  x=O D. 

(4.30) 

where the second boundary condition represents a unit molar flux sink at the origin. 

4.3.3.2. Bounded Media Source Function 

The source function for a bounded one dimensional domain can be derived from 

the infinite medium source function using the method of images. The region is assumed to 

have no-flow boundaries at x = 0 and x = Xe; for the purpose of creating the image system, 

the medium is assumed to be infinite. By the process of taking images in the bounding 

planes, a distribution of sources which gives a flux condition vanishing on the boundaries 

yet retaining the required sources within the domain is obtained. For the region with a 

source located at x, the boundary at x = 0 is obtained by taking the image at -x', that is, a 

source is placed at -x' to counter the source at x'. To generate the boundary at x = Xe, the 

images of the sources at x' and -x' must be considered with respect to this boundary. 

These in turn require two images with respect to the boundary at x = 0, and an infinite 

number of coupled plane sources results. A schematic diagram of this system of images is 

shown below in Figure 4.2. 

source 

x' 

x=-2irç x=-2n.i x=O x=; 

n=2 n=1 

Figure 4.2: The Method of Images 

X=2flXe 

n=1 

x=2nx 

n=2 
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The instantaneous source function for the system of sources shown above is equal 

to the sum of instantaneous source functions for each plane source. The image series 

equation resulting from this summation will be: 

G(x,x',t) = 21 1  zLt jeXp[_(X - x)2/4D1t] + exp[_(x + x)2/4D,t]} 

OD lexp[—(x -  xf  - 2nxj2/4D11J + exp[_(x + x'- 2nx)2/4Rt]} (4.31) 

2V—Atlexp[—(x - x' + 2flXC)2/4Lt]+ exp[_(x + x' + 2nx)2/4D,t]} 

This may be rearranged to give the following 

G(x,x',t) -  1.  
2jirEt 

CO 
exp[_(x - x' + 2flXe)2/4D:t] 

+exp{_(x + x' + 2flXj2/4Djt]} 

(4.32) 

Gringarten and Ramey (1973) present a number of source functions obtained in this way 

for different geometries and boundary conditions. They use Poisson's summation formula 

(Carsiaw and Jaeger, 1959; p. 275): 

?12 2 
+2cos_exp[_k71 zt/a2]} (433) ±exp[_(x + 2na)2 /4Kt] =  ,, i a 

to transform equation (4.32), giving the source function for the finite one-dimensional 

domain with no-flow boundaries at x = 0 and x = Xe and a source at point x' as follows: 

(_n2,?Dt'\ ' n,,x' (n,zx 
G(x,x',t) = -1i+ 2exp   Icos Ico— 

X n-1 X ) X. ) 

4.3.3.3. Application of the Integral Equation 

(4.34) 

To use equation (4.34) for the one-dimensional grid block with sources at each 

end, the boundary integral in equation (4.18) over the source domain becomes simply the 
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summation of two terms: one with the source function positioned at x'= 0, and the other 

with the source function positioned at x' = Xe. The final equation for generation of the 

one-dimensional concentration gradient is then given by 

Ep,(x,t) = f{f()G(x,x'= o,t - 4+ g(4G(x,x' = x,,t - 

with the source functions defined by: 

and 

G(x,x' £", 
n=1 X X. 

G(x,x' = Xe,t) = -111 + 2 00 expIfh1t) i co \ n "fl7tX' 
- 

Xe [ X ) Xe )J 

(4.35) 

(4.36) 

(4.37) 

The solution for the change in concentration of a component at a given point x and time t 

is then obtained by numerical integration of equation (4.35), with the source functions 

given by equations (4.36) and (4.37). 

4.3.4. LAPLACE DOMAIN SOLUTION 

4.3.4.1. Infinite Media Source Function 

From equation (4.25), the differential equation to be solved for the source function 

will be given by: 

D OG(x,$) s(x,$)=0 
9x2 

(4.38) 

The solution of this equation is performed in an identical manner to the time domain 

solution, as the Laplace transform was used in that case and the result subjected to the 

inverse transform to obtain the function given in equation (4.28). The boundary conditions 

used to obtain this solution are given as: 
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= 0 

O(x,$)  Ox - 1 
- x=O D,s 

(4.39) 

and the Laplace space source function for a one-dimensional infinite region with an infinite 

plane source located at x' that results is: 

1  I exp[ —tx—x'Ijs/L] 
2 

4.3.4.2. Bounded Media Source Function 

The source function for the bounded media can also be derived using the method 

of images employed for the time domain solution. A simpler method is presented by van 

Kruijsdijk and Dullaert ( 1989), in which the equation given in (4.38) is solved over two 

regions: 

ful 0≤x≤x' 

Gr x'≤x≤xe 

U ILXI = Ix=x' 
subject to the following boundary conditions: 

o(x,$)  

Ox 

c9(x,$)  

Ox 

=0 
x=x4 

1 

D x=x .s 

(4.40) 

(4.41) 

This results in the source function for a finite one-dimensional domain with no-flow 

boundaries at x = 0 and x = x and a source at point x' as follows: 
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(x,x',$) -  1  l2cosh[(x - x')Jsi exp[—IX - x'I 1s/ r } 
- exp(2xeiJi D ) —1 

+ 2cosh[(x + x')Jsi L] 
CXP(2XeS/Di)_ 1 + exp[_Ix + X'Sii} 

(4.42) 

This result and a number of other source functions in Laplace space for reservoir problems 

in one, two, and three dimensions are given by van Kruijsdijk ( 1988). 

4.3.4.3. Application of the Integral Equation 

The integral equation for solution in the Laplace domain is shown in equation 

(4.19). Again proceeding as for the time domain solution, the boundary integral over the 

source domain reduces to the summation of two terms: one with the source function 

positioned at x'= 0, and the other with the source function positioned at x = x. The final 

equation for generation of the one-dimensional concentration gradient in Laplace space is 

given by 

iS.(x,$) = J(s)(x,x' = 0,$) + (s)(x,x' = XS) (4.43) 

with the source functions defined as follows: 

exp[xIs / D ] + exp[(2xe - x)..Js / 
(4.44) 

= 0,$) = [exp(2x \is/ r) - i] 

X., S) = exp[(xe + x)Js / D ] + exp[(x - x).js / L J  
=  (4.45) 

.J[exp(2xeJs _ ID, - i] 

The solution for the change in concentration at any point x and for any value of s may be 

obtained directly by substituting the Laplace transformed values of the flux functions into 

equation (4.43), with the source functions given by equations (4.44) and (4.45). 
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4.3.5. EXTENSION AND EVALUATION 

Some elaborations on Green's function methods for solving the diffusion equation 

with prescribed flux boundary conditions are presented in the Appendix. The Appendix 

includes details on the Laplace domain solution procedure for one-dimensional problems, 

an extension of the principal equations to two-dimensional problems and some numerical 

examples developed to evaluate the usefulness of the time domain and Laplace domain • 

solution procedures with some model flux functions. 

4.4. SOLUTION OF THE DIFFUSION EOUATION WITH LINEAR INITIAL 

CONDITIONS 

4.4.1. INTEGRAL EQUATION FORMULATION 

For problems in the infinite domain or in domains with impermeable boundaries, 

assuming no source/sink terms, the concentration response at any time will depend only on 

the initial concentration distribution. For these situations, the solution of the diffusion 

equation (4.5) given in integral form in equation (4.15) will reduce to 

p1(x,t) = fffpi(x',t = o)G(x,x',t)dx' 4.46) 

The source function G is found in the same manner as for the infinite and bounded cases 

for the prescribed flux boundary conditions. The evaluation of this integral for various 

linear initial conditions is shown in the following sections. The derivation of analytical 

forms for the concentration distribution has the advantage that closed forms for 

concentration gradients and integrals of the concentration in space may be evaluated for 

the determination of diffusive flux in reservoir simulators with minimal computational 

effort. 
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Solutions of the diffusion equation for infinite and bounded cases have been found 

by various methods including separation of variables, Laplace transforms and expansion of 

trigonometric series. Carslaw and Jaeger (1959) and Crank (1975) give solutions for 

single step function initial conditions; the form of solutions for general initial condition 

functions are also shown. Again, the Green's function formulation is used here to provide 

a single methodology for the derivation of solutions for a number of initial conditions. 

4.4.2. SOLUTION OF THE CONCENTRATION DIFFUSION EQUATION IN ONE 

DIMENSION 

4.4.2.1. Infinite Medium, Step Function Initial Condition 

The diffusion equation will be solved under the following initial condition: 

p,(x,t = O)=p, 1 

p(x,t = 
(4.47) 

The infinite media source function given in equation (4.28) will be used, thus equation 

(4.46) can be written 

xi exp[_(x - x)2/4D,tl exp[-.-.(x - xP)2/4 Lt] 
P, (X,  = $ ifr? + 

2  2J cfr' (4.48 
J 

The solution to this equation is obtained by letting 

,=(x— x')/2.%[i 

and rewriting equation (4.48) as: 

co 
pi.I  fexp(_i?)dii_ '2  

2.JrD,l xx 2.JrD,t 
2 

- OD 

x-x' 

Using the following relation with the error function 

(4.49) 

(4.50) 
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z 

=fexp(_ 772)d17 = =fexp(—??)d?i—=5exp(_7i2)d?l 

= 1— erf(z) = erfc(z) 

gives the final result for the concentration profile: 

(4.51) 

p1(X,t) = p, 2 + '°' ' 2  erfc  i J X - X1 I 
2 (2Ji (4.52) 

This is the well known error function form of the solution to the diffusion equation. 

Integrals and derivatives of the error function are given in Carsiaw and Jaeger (1959; p. 

484). Repeated integrals are evaluated with the following recurrence formula: 

2nierfcx = i" 2erfcx - 2xi"'erfcx (4.53) 

where: 

CO 
i"erfcx = fifl-'erfcd 

i°erfcx = erfcx 

1  ierfcx=—e_x2 —xerfcx 

ii = 1,2,... 

Derivatives are defined simply by: 

cb(x) = dc 

1(x) 2 - = — e 

12(x) =— 4 Xe - x2 — , etc. 

Application of these rules allows the concentration gradient to be expressed as: 

8p, (XI t) = p,.i  
Ox - 2f ex,[—(x - x1)2/4Lt] 

(4.54) 

(4.55) 

(4.56) 

The number of moles of component i in any section of the domain may be determined by 

integration of the profile, resulting in: 
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Xb 

5p(x,t)cix = P, 2(Xb - Xa)+  
2 

Xa 

{[2.JD,t / exp(-(xa - x)2/4D1t) - (Xa - x1)erfc((; - x)/2Ji)} (4.57) 

- [2VDj1 / 2rexp(-(x,, - x1)2/4D,) - (xb - x3erfc((xb - x1)/2fi)}} 

4.4.2.2. Bounded Medium, Step Function Initial Condition 

In this section, a special case in which the step is located at the midpoint of the 

bounded region is considered. A more general condition involving multiple step functions 

is considered later. The initial condition is given by: 

p,(x,t = 

= 0) A,2 

o ≤ x < Ax/2 
Ax/2<x≤Ax 

(4.58) 

The bounded media source junction is the one given in equation (4.34). Integration of this 

source function according to equation (4.46) yields the following formula for the 

concentration profile: 

p1(x,t) = Pj,I  

2 

+ 2(p,1 —Pi,2) (_1)1 1'-(2n - 1)2 ,?D,) Co  {(2n -  

r Ax2 Ax ) 
The concentration gradient will be given by 

Op,(x,t) - - 2(p,1 — p.2) (-i) ' exp 2 - 1)2 zLt ((2n - 

9x - Ax n=1 Ax2 sin( fl  x 

and the integral of the profile is: 

Xb 

 (Xa - Xb)+ 1) A-(- -p,,2) 
2 xa 

(4.59) 

(4.60) 

CO 
H) n-1 t'_(2n - 1)2 uz Isin2  D, ((2n - 1),zb ((2ii -  1) (4.61) 2ZX  1 2n - 1 exp &2Ax ) S1fl Ax 
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As was discussed in the comparison of Laplace and time domain solution procedures, the 

infinite series present in the bounded media source functions for the time domain can 

converge very slowly for small values of time. It is possible that a Laplace solution of the 

above problem may be advantageous, however, numerical inversion of the transformed 

equation requires at least 8 evaluations of the Laplace domain equation to generate a 

result for one time value. The Laplace domain solution is shown in this case only to allow 

a comparison of the time domain and Laplace domain solutions. 

The Laplace domain source function for bounded media is the one given in 

equation (4.42). The resulting concentration profile in Laplace space is: 

(X, S) - 1'i.i 11,2  +  0 t1 11.2  

2s 2s 

I x - &/2  r exp(_x - Lx/2kJs / D )] - exp(—x + Ex/2l ifs / 
Ix_&/2lI. 

—2 sinh((x - Lr/2)Js/ i) + 2 sinli((r + &c/2)Js / 

exp(2iSx./s/D,)— 1 

with the concentration gradient given by 

ó(x,$) ,' —,o  

Ox 2jb 

exp(—x + L\x/21if s / i ) - exp(—Jx - Lx/2lifs- / L) 

—2 cosh((x - ,&x/2)..,, s / i) +2 cosh((x + Ax/2)4s —IDj 

exp(2&.Js/L)-1 

and the integral of the profile is: 

(4.62) 

(4.63) 
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Xb 5(x,$)cfr - Xa) +  Aj  

-- exp(—Ixb - Ax/21%Js / i) + exp(--Ixb + &/2l.,Js/ i.) 

+exp(—x0 - Ax/ 2l.Js / - exp(—xa + &/21.Js / 

< —2cosh((x,, - Ax/2)Js / r. ) + 2 cosh((xb + Lx/2).js /-D, ) 
exp(2xjs/ D,)— 1 

2COSh((Xa ix/2).Js / i) +2 COSh((Xa + i\x/2)%Js / i) 

exp(2ixjs/ L) —1 

(4.64) 

4.4.2.3. Infinite Medium, Multiple Step Function Initial Condition 

This solution may be used for situations in which the initial condition can be 

approximated as a number of zero order (horizontal) linear segments of arbitrary length. 

The initial condition will be expressed as: 

— <x <x1 
xI < x <x2 

Xm i < X<Xm 

<X < 00 

(4.65) 

Performing the integration of equation (4.46) under these conditions with the infinite 

media source function gives the following expression for the concentration profile: 

N—I0 —D 
p,(x,t) =PI,N + i,m • i.m+1  Crfjx X.  

M=1 

(4.66) 

The expressions for the concentration gradient and integral of the profile will be given by: 
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8p(x,t) = Pj,m P"'.., exp[_(x_xm)2/41tJ 
Ox m=I 2.,/7tDt 

Xb N-I0  

fp,(x,t)dx = Xb - + 1,mPj,m+i  
2 

(4.67) 

JDit/7i•[CXP(_(Xa - Xm)2/4Dtt) - exp(—(xb - X. )2 (4.68) 

(Xb - ( 24D—,t — X.) (Xa_Xm)elfc(xa_xm) 

Xm)&fCb 

4.4.2.4. Bounded Medium, Multiple Step Function Initial Condition 

The multiple step function with impermeable boundaries at x =0 and x = x. is 

described by the initial condition 

0 < x < x1 

X1 < X < X2 

<X < Xm 

<X < XN 

The resulting concentration profile is: 

p1 (XI t) = Pi.N + 

N-I (pi,m pi,m•i)[XN !exp1_?12121t \1 Icosi—Isini m  

m=I  n=I X1,,2 ) I XN) XN )J 

The concentration gradient will be 

Op,(x,t) = (_fl2Dt' 'nnx'\ ntrc  \ 
a m p1 m+i)pI  2 Icos - sin m  

Dx XN M=1 n=I XN ) XN) I XN ) 

and the integral of the profile is given by 

(4.69) 

(4.70) 

(4.71) 
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Xb N-1 

fp,(x,t)dx = Pi.N( - ;)+ (pi.m _Pi,m+I)f (xb - X.) 

Xa m=1 XN 

X  CO _fl22Dt'\ r 
+L_-exp(  XN2 ) X )L XN) L XN )jJ 

sin  m sini I sin n;zxa  

4.4.2.5. Infinite Medium, Piecewise Linear Function Initial Condition 

(4.72) 

This solution may be used for situations in which the initial condition can be' 

approximated as a number of linear segments of arbitrary length. The initial condition will 

be expressed as: 

p,(x,t=o)=p 1 —ci<X≤X, 

p,(x,t=O)=p11 +S(x—x) x1<x≤x2 

pt(X,tO)pjm+Sm(XXm) Xm <X≤Xm+i 

p1(x,t = o) = PI,N-I + SN.I(x - XNI) XN.I < X≤XN 

p,(x,t=O)=p, N < X< 00 

where S = A,. P1,m+i  
S. XmXm+i 

The concentration profile resulting from this initial condition is: 

= P,.l +Pi,N  

2 

+ Smi(X - Xm i)) - i,m + Sm(X - xm))1e X - Xm  J 

+(Smi sm)iJD,t/2iexp{(x - Xm)2I4DtJ j 
The concentration gradient will be expressed as: 

(4.73) 

(4.74) 
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(p,m-i p,,m) 5 m_i(cn_i Xm ) 

op,(x,t) N 2Ji 

Ox - 

[ 2 

exp[_(x - Xm)/4D :t] 

(4.75) 

and the integration, again using the recurrence formulas for the error function, results in 

the following: 

Xb 

= P +PN 
f pi (x, t) dc i,l I, 2 (xb _Xa)+_{[(pi,m_i pi,m)+i51m_i(m _ Xm_i)] 

xa 2 m =1 

•[(2iit/exP[_(xa xm )2/4 iJt] - (x,,, -  xJ X. - x m erfc( \f__it )) 

_(2Lt/exP[_(xb - xm)2 /4D,t} - (xb - xm)erfcxb - Xm (s - Sm) 2j—,t ))J 

.[((D,t + (Xa - xm)2/2)erfc(xa - X. - xm)exp[—(xa xm)V4DttJ) 

((— D,t + (, Xm)2 /2)erfc Xb _ Xm) JDItJ7t(xb Xm) exp[—(x,, _ Xm)2/4Et]J] 
27) 

+ SmXm Sm Xm 1)(Xb - Xa) (Smi Sm)  (x: - x)} 

4.4.2.6. Bounded Medium, Piecewise Linear Function Initial Condition 

(4.76) 

The piecewise linear function with impermeable boundaries at x = 0 and x = XN+l s 

described by the initial condition: 
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p,(x,t = 0)=p, 1 

p,(x,t = o)=p, 1+s1(x-x1) 

0< x ≤ x1 

x1 < x ≤ x2 

p(x,t = o) = Pjm + Sm(X - Xm ) Xm < X ≤ Xm+i 

p(x,t = o) Pi,N-I 

p,(x,t= 0)plN 

Am Pi,m+i  
where S. = 

X. - Xm+i 

X .1 < X ≤ Xe,, 

X < X < X 

The concentration profile in this case will be: 

p (x,t)= 1 t,1x + IN: L(x+x+i Xm m+i) + Pi,m iXm+i Xm 

XN+ m=1tXN+1 2  

r (_n272Dt•' 1fl7iX"1 
+2I --expI  1co—I1 =iLnr I*. ) LXN+ui 

m  li±L(Sm 5m i)0 
fl1 LXN+1 

Resulting in the following formulas for concentration gradient 

Dp,(x,t) N [eXp(_n2l?Dit ' )\ (IsinOx  X q 

N+1 m=1 n=1 1 XN+I)j 

(mixm •\ .[((P,,M-1 — Pi,.) + Sm-, (x. — x.-,)) ±J (5m —srn-I ) m  

X)  XN+I 

and integral: 

(4.77) 

(4.78) 

(4.79) 
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Xb fP,(X,t)CkC = p11x1  (xb - Xa) 
Xa XN+j 

L S.  X.2 + x +1 XmXm+i ) + WL (Xm+i _ Xm )](Xb Xa) 

txN+1 t 2 ) X.1 

+2[ expt(_fl2,D,1r " b 1fl 2  I II sini sini 71X a 

= X +1 ill XN+j) XN+I )I 

Xmmi)) sin I n,i:c XN+I ( m )   m S.—. co m 
-. 1 -s  

X 1 ) fl1L X+1 )jJ 

(4.80) 

4.4.3. CONCENTRATION PROFILES FROM MULTIPLE STEP AND PIECEWISE 

LINEAR INITIAL CONDITIONS 

One possible application of the conôentration profile solutions in the infinite 

domain for the multiple step and piecewise linear initial conditions is illustrated in this 

section. The solutions are generated by first selecting the number of segments to be used, 

then generating a profile to be used as an initial condition. In this case, the initial condition 

will be given by the error function solution of the diffusion equation given in equation 

(4.52). Use of this function will allow "exact" solutions to be generated at any desired time 

to compare to the results obtained with the approximate initial conditions. 
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The approximate initial conditions are determined by first integrating the initial 

profile over each segment of the domain, using equation (4.57), to obtain an average 

concentration for each segment. For the multiple step solution, the initial concentration is 

assumed to be constant and, equal to this average for each segment; for the piecewise 

linear solution, the initial condition is given by chords connecting the midpoint of each 

segment, with the nodes defined by the average concentrations. The solutions 

corresponding to these initial conditions can then be generated using equation (4.66) for 

the multiple step initial condition, and equation (4.74) for the piecewise linear condition, 

for any value of time. 

In Figure 4.3 the results for the region O<XD<l are shown for an initial profile 

generated from a step positioned at XD=O.5. This region is divided into 6 segments for the 

1.0  , I I 

Initial Profile 

0.8 - 2 

t= 1 xl 0 \ •%\• 

0' 

0.6 
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0.4 
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0.0 

ttD=3 Xl 0 
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Multiple Step IC 

  Piecewise Linear IC 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Length, XD 

Figure 4.3: Concentration Profiles from Linear Initial Conditions, 6 Segments 

0.9 1.0 
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approximate initial condition definition. Profiles calculated at two values of elapsed time 

are shown for the multiple step and piecewise linear solutions. The results shown here 

indicate that good agreement to the exact solutions can be achieved using approximate 

initial conditions, even when only a small number of linear segments are used. In this case 

it is also apparent that the two approximate methods provide almost identical results. 

These solutions may also be used for cases in which the parameters in the diffusion 

equation change with time, or when the profile is shaped by forces other than diffusion. In 

these situations, rather than generating a number of solutions at various times from a 

single initial condition, the approximate initial condition can be re-evaluated before each 

time step; this initial condition can reflect the influence of forces other than diffusion, and 

different parameters can be used in the generation of the next profile. 

To simulate a situation of this type, the solution procedure outlined above is 

modified to allow recalculation of an approximate initial condition after each time step. 

This is done simply by integrating the profiles generated using the multiple step and 

piecewise linear solutions over each segment, as was done in the initiation step described 

above. In this case the integrals are defined by equation (4.68) for the multiple step 

solution and equation (4.76) for the piecewise linear solution. 

In Figure 4.4, the results of this calculation are shown for the same six segment 

case discussed above. The time step size used is AtD=l x 10-2. The result after one time step 

is of course the same as that shown in Figure 4.3; after three time steps the solutions have 

started to diverge slightly, although the agreement is still very good. The piecewise linear 

solution shows somewhat more spread than the multiple step solution. 
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The results shown in these figures indicate that very good representations of the 

diffusion profile may be calculated from simple stepwise linear approximations of the 

initial condition. 
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Figure 4.4: Concentration Profiles with Initial Condition Re-Evaluation, 6 
Segments, iJD=lxlO2 
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5. IMPLEMENTATION OF DISPERSIVE FLUX MODELS IN THE 

COMPOSITIONAL SIMULATOR 

In this chapter, the methods for implementing Fick's first law and the solutions of 

Fick's second law for determination of dispersive flux in the compositional model are 

developed. The fundamental method for incorporating dispersion into the simulator used 

for all of the models is the addition of dispersive flow rates as source/sink terms in the 

convective flow equation. Thus, each dispersion model can be programmed as a separate 

module, and a single main reservoir simulation model calls the desired dispersion 

subroutine when the source/sink terms must be generated. The steps in the algorithms for 

the two-dimensional application of the first law model and the approximate initial 

condition form of the second law model are given here. The front tracking model utilizing 

the second law solutions is also developed but for use in only one dimension. 

5.1. FICK'S FIRST LAW MODEL 

The Fick's first law model for dispersion developed here follows a diffusive flux 

model presented by Thiebot and Sakthikumar (1991). The form of the first law shown in 

equation (4.3) is used here, with an effective dispersion coefficient for each component in 

the multicomponent system. The dispersive flux terms are evaluated explicitly, that is from 

the conditions existing at the beginning of a time step, and are included as source or sink 

terms in the convective flow equations. A schematic diagram of the conditions existing at 

the beginning of a time step for any two grid blocks is shown below in Figure 5.1. 
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Figure 5.1: First Law Model Schematic 

The concentration gradient across the interface driving the dispersive flux is 

defined as the difference in mole fraction of a given component between the two grid 

blocks over the distance between the midpoints of the blocks. A constant value of the 

global molar density must be used in the first law equation; for this model the harmonic 

mean of the molar densities in the two grid blocks is used as follows: 

- 2p1p2 
f'avg 

pI+p2 

Applying the above definitions for concentration gradient and average density with 

equation (4.3) results in the molar flux (kmol/m2s) of a component across the interface 

being given by 

(5.1) 

A; 
ii (5.2) 

This flux is converted to a molar flow rate simply by multiplying it by the area available for 

flow across the interface, giving the following equation for molar dispersive flow rate: 

AX 

Az, 
qdj = A ØpD, (5.3) 

Should the two grid blocks have different values of porosity, a harmonic average can again 

be used. 

This value for molar flow rate is applied as a source for the block which has the 

lower mole fraction of the component, and as a sink for the block with the higher mole 
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fraction. Thus, the dispersive component molar flow rate for a given grid block will be 

equal to the sum of the dispersive component flow rates across each grid block face. The 

total component source or sink rate is obtained by summing the dispersive rate with any 

well sources or sinks of that component present in the grid block as shown in equation 

(3.57). This total component source/sink is used in equation (3.73) for solution of the 

composition in a grid block. The sum of the component flow rates for a given grid block 

gives the total molar flow rate to be used in the solution of the pressure equation giveh in 

equation (3.62). 

The advantages of this First law model are that it is easy to implement in a 

conventional simulator, and may be applied for problems in one, two or three dimensions. 

The structure of the matrix for solution of the pressure equation does not change, and any 

methods for numerical dispersion control will not be affected. As the dispersive flow rates 

are defined as constants at the start of the time step and have zero derivatives with respect 

to pressure, they do not appear in the Jacobian for the pressure equation solution. The 

accuracy of the dispersive flux predicted by the model will depend on a number of 

parameters. The size of the grid blocks in the simulation model will affect the slope of the 

concentration gradient defining the driving force for the dispersive flux. A finer grid will 

be subject to lower levels of numerical dispersion, and will result in inter-block gradients 

that model the physical concentration profiles present in the reservoir more closely than 

those resulting from a coarse grid. Numerical dispersion is also minimized by using the 

maximum time step size, up to the stability limit imposed by the throughput condition. 

The model formulation assumes that the inter-block gradients remain constant over 

a time step. For small time steps and small values of the dispersion coefficient this 

approximation may be adequate, as the amount of flattening of the profile will be 

negligible if the amount of mass transfer is small in comparison to the mass present in a 
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given grid block. For dispersion coefficients of the large magnitude possible when 

enhanced dispersion mechanisms are active, and for the longer time steps desired for 

numerical dispersion minimization, the concentration gradients may vary significantly over 

the course of a time step. When small grid blocks and long time steps are used, the 

dispersive flux across one face of a grid block may be large enough to influence the 

gradients across the other faces as well, particularly for problems in more than one 

dimension. Other possible errors may arise in the averaging of the global molar 

concentrations over two large grid blocks with widely disparate compositions. This could 

lead to overprediction of the dispersion of components from the block with lower molar 

density. 

The model as described above may be applied directly for two single phase 

reservoir grid blocks. In the case of multi-phase grid blocks in which the same phases may 

or may not be present in each block, some rules defining allowable dispersion paths must 

be used. One option is to allow dispersion based on global mole fractions regardless of the 

number or type of phases present in each block. A second option is to only allow 

dispersion within phases that are present in both blocks. Alternatively, Thiebot and 

Sakthikumar (1991) employ a hypothetical boundary layer consisting of a phase not 

present in a given grid block; dispersion is allowed into this phase until the absent phase 

appears in the grid block. The choice of treatment will depend on the type of dispersive 

forces being modeled. For diffusion alone, the second option or the boundary layer 

treatment may match the physical process more accurately. When dispersion due to a 

number of forces is considered, the application of the first option with an appropriate 

dispersion coefficient may be able to mimic a variety of mixing mechanisms present in the 

recovery process. For the studies undertaken here, fully miscible fluids are used in all 
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cases, thus the model formulation as presented initially for two single phase grid blocks is 

adequate. 

As there may be many grid block interfaces with negligible concentration gradients 

across them, a method of restricting the dispersion calculation to those blocks where it 

will result in significant effects is desirable. In this model, a minimum change in mole 

fraction across an interface is specified as an input variable. Each interface is tested at the 

beginning of the time step, and only those with mole fraction differences exceeding the 

input minimum are used for the dispersion calculation. 

5.1.1. FICK'S FIRST LAW ALGORITHM OUTLINE 

To summarize, the steps in the solution of the reservoir flow equations including 

the first law dispersion model are described below for a two-dimensional system of 

/ = 1,n grid blocks in the x direction andj = 1,n, grid blocks in they direction. 

1. At the beginning of the time step, the pressures, mole fractions and phase properties are 

all specified and all component dispersive flows are initialized to zero. 

2. Do steps 3 through 8 for eachj = 1,n,. 

3. Do steps 4 through 8 for each i = 1,n-1. 

4. For each component m with a non-zero dispersion coefficient, the difference in mole 

fraction across the interface is calculated as 

AZ. = Zm i Zm i+i (5.4) 

5. If the change in mole fraction for any component exceeds the user input value of 

minimum change for dispersion calculation, go to step 6, if not return to step 3 and 

increment i. 
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6. Calculate average global molar density for the grid blocks i and I + 1 according to 

equation (5.1). 

7. For each component m the molar flow rate is calculated as 

q = AçbPavgDm AX (5.5) 

8. These component molar flow rates are added to the component and total molar sources 

for the grid blocks i and i + 1 as: 

= - q 

q,,+1 = qm,i+i + q,, 

= q01., - q 

= qMJ+1 + q,, 

(5.6) 

9. Do steps 4 through 8 again, with i = 1,n in the outer loop andj = 1,n,-1 in the inner 

loop. Block indices in the above equations are switched from i toj. 

10. The convective flow equations and phase behavior equations are solved using the 

iterative-sequential procedure described in Chapter 3, with the component source rates 

appearing in equation (3.73) and the overall molar source rates appearing in equation 

(3.62). 

11. Once the pressure equation has converged, the resulting grid block compositions are 

used to initialize the dispersive flux calculation for the next time step. 

5.2. FICK'S SECOND LAW MODEL: LINEAR SEGMENT INITIAL CONDITIONS 

This model is developed as an extension of the concepts used in the First law 

model. Rather than treat each interface individually and assume a constant rate of 

dispersive flux over the time step, the concentration gradients across each interface are 

linked to form an approximation to the complete concentration profile. Once this step is 
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completed, the diffusion equation is solved using the approximate concentration profile as 

an initial condition and the final shape of the profile can be determined for a change in time 

equal to the size of the time step. Then for each grid block, the difference between the 

volumes under the approximate initial profile and the final profile can be used to establish 

the dispersive flow. For grid blocks of constant cross-sectional area, the difference 

between the profiles can be established as an area which represents a mole fraction/length 

product, the volume will then be given by this "area" multiplied by the cross-sectional 

area. The component molar rate will be equal to the difference between the volumes 

expressed in moles (by multiplying by the average molar density), divided by the size of 

the time step. This molar flow rate will then be input explicitly into the convective flow 

equations as source or sink terms as in the first law model. A schematic diagram showing 

example initial and final profiles is shown below in Figure 5.2. 
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Figure 5.2: Second Law Model Schematic - Approximate Initial Conditions 

The initial condition can be approximated in a number of ways. The simplest 

method is to define the initial condition as a number of horizontal linear segments, equal to 

the mole fraction of the desired component in each grid block, giving a multiple step 

function initial condition. Another method is to define gradients as for the First law model, 

connecting the midpoint of each of the grid blocks and creating a piecewise linear segment 

initial condition. These two approximations were compared with analytical solutions in 

section 4.4.3, and were found to match the exact solution profiles with reasonable 
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accuracy, thus both methods will be investigated here. It should be noted that the 

piecewise linear segment method will not have the same area under the initial condition 

curve as the multiple step function method, and it will not contain the same mass of the 

component as calculated from the convective flow equations. This will not lead to mass 

balance errors, however, as the dispersive flow rate calculation depends only on the 

difference between the final and initial profiles, not the absolute magnitudes of the 

concentrations. 

This dispersive flux model will not take into account the simultaneous convective 

movement and spreading by dispersion of a component profile, rather the amount of 

dispersive flux will be lagged by one time step behind the convective flux. As for the first 

law model, the diffusion equation must be solved over a region of constant global molar 

density. In this case, however, the density must be averaged over all the blocks active in 

the calculation, not just two blocks. A harmonic average will again be used as follows: 

1/(fl_1) 

] 

Once this density is calculated, the difference between the areas under the initial and final 

profiles over the time step may be determined. The area under the initial profile is easily 

determined. For the multiple step initial condition, the initial area for each grid block is 

simply equal to the product of the component mole fraction and the grid block length. The 

area under the final profile for this initial condition will be found from the integration 

formula given in equation (4.68) for the infinite medium or from equation (4.72) for the 

bounded medium. The integration formulas are used with Xa and xb being the locations of 

the grid block interfaces and t being the length of the time step. For the piecewise linear 

segment initial condition, the initial area in each grid block is determined from simple 
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geometric considerations as the sum of two trapezoidal regions. The area under the final 

profile will be given by the corresponding integration formulas given in equation (4.76) for 

the infinite medium or in equation (4.80) for the bounded medium. This area is converted 

into a molar flow rate using the following formula: 

A qp.,(A,nj111 - Afl1) 
(5.8) 

As opposed to the first law model, this molar flow rate already represents the dispersive 

rate for the block without having to sum the calculated rates for each interface. 

As for the first law model, a method of restricting the dispersion calculation to 

those blocks where it will have significant effects is desirable in the interest of minimizing 

computing time. Also, since the average molar density over the entire calculation domain 

must be used for the second law model, the total number of blocks used and their densities 

will have an effect on the magnitude of the calculated dispersive fluxes. When only one 

front passes through the reservoir, the selection of the initial and final blocks for the 

calculation is straightforward. For the initial block, the composition in the first grid block 

in the row is used as the test composition; this composition is compared to each grid block 

down the row until a block composition is found. to differ by more than some user input 

tolerance from the test composition. This block will represent the upstream end of the 

concentration profile and a similar calculation can be done for the downstream side. This 

calculation is repeated for each component in the system, and the minimum block number 

obtained for the upstream end is set as the upstream value for all components, similarly, 

the maximum block number obtained for the downstream end is used for all components. 

When more than one front exists in the simulation, the upstream and downstream 

ends of each profile can be determined and the dispersion calculation will be performed for 

each profile. The other alternative is to locate the region which encompasses all of the 
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fronts in the simulation and perform the dispersion calculation for the entire region. This 

second option is used in this work. 

One advantage inherent in the first law method is that mass balance is ensured, as 

the amount of a component removed from one block is added to the adjoining block. For 

the second law model, conditions leading to loss of mass balance may be encountered 

when using the infinite medium forms of the diffusion equation solutions. If the calculation 

procedure as described above is applied to a complete concentration profile (i.e., one with 

zero gradients in concentration at each end of the profile) then the dispersive rates 

calculated for a given component over all of the blocks will sum to zero and mass balance 

will be maintained. Provided the user input tolerance for locating the ends of the profile is 

small enough, the calculation will include enough of the profile that any mass balance error 

will be negligible. When the profile impinges on a boundary of the reservoir, clearly it is 

impossible to include all of it in the dispersion calculation. Options available for handling 

this situation include: halting the dispersion calculation, switching the dispersion 

calculation to the first law model or to the bounded medium form of the diffusion equation 

solution, or carrying on the dispersion calculation and allowing some degree of mass 

balance error. These complications could be avoided by employing the bounded medium 

forms from the start of the simulation, however, these forms include an infinite summation 

which may require many terms to converge. The severity of the mass balance error and 

use of these options for limiting it are discussed in Chapter 6. 

5.2.1. AUTOMATIC TIME STEP SIZE CONTROL 

As discussed in Chapter 3, automatic time step size control is used to maximize the 

time step size and thus minimize numerical dispersion. For the first law model, the time 

step size control methods are unaffected, as the dispersion rate is not dependent on the 
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size of the time steps. In the second law model, however, the rate of dispersion will vary 

with the time step size. To ensure that negative compositions are not calculated due to the 

combined dispersive and convective flux of a component being too large, the call to the 

dispersion subroutine is placed within the automatic time step size control loop at the 

beginning of a time step. If a negative composition is detected, the time step is reduced 

and the dispersion calculation is redone to reflect the new time step size. 

5.2.2. TWO-DIMENSIONAL DISPERSION MODEL TECHNIQUES 

The extension of this model to problems in two dimensions may be accomplished 

via two approaches. First, the model may be used as described above for each one-

dimensional row of grid blocks in the simulation, similar to the approach taken for the first 

law model. This method has the advantage of simplicity of implementation, both in 

programming and in derivation of the required integral equations. The second approach 

would be to define the approximate initial condition in two dimensions, either as 

horizontal plane segments or as piecewise planar segments. The Green's function method 

could then be applied to the solution of the diffusion equation with these initial conditions, 

resulting in equations for the concentration profile which could be then be used to derive 

two-dimensional forms of the integration formulas. This approach would have the 

advantage of accounting for dispersive forces in both directions simultaneously. The 

multiple step initial condition could be easily extended to two dimensions as plane 

segments equal to the mole fraction in each block, however, the piecewise linear initial 

condition is not as straightforward to generalize to a piecewise planar condition. For this 

work, the method of applying the dispersion calculation to a number of one dimensional 

rows of grid blocks in a two dimensional simulation is described. 
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5.2.3. FICK'S SECOND LAW ALGORITHM OUTLINE 

To summarize, the steps in the solution of the reservoir flow equations including 

the first law dispersion model are described below for a two-dimensional system of 

i = 1,n grid blocks in the x direction andj = 1,n grid blocks in they direction. 

1. At the beginning of the time step, the pressures, mole fractions and phase properties are 

all specified and all component dispersive flows are initialized to zero. 

2. Do steps 3 through 6 for eachj = 1,n,. 

3. The grid blocks corresponding to the upstream and downstream ends of the profile are 

located. Each block i = 1,n-1 is tested to determine if a component mole fraction in that 

block differs by more than the user input tolerance from the original upstream fluid 

composition. When this block is found, the previous upstream block is designated as the 

upstream end of the profile, denoted by n1. The composition test is continued to locate the 

block corresponding to the downstream end of the profile where the component mole 

fraction differs less than the input tolerance from the original downstream fluid 

composition. This block is denoted n2. 

4. The average global molar density for grid blocks izj through n2 is calculated according 

to equation (5.7). 

5. For each block, i = n1. . .n2, and for each component m, the initial area is calculated. For 

the multiple step initial condition the initial area is given by 

4nit1a1 = ZMj 

For the piecewise linear initial condition the initial area is given by 

Ain,tiai = Ax (Zm ii + 6Zm i + Zm i+i) 

(5.9) 

(5.10) 
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The final areas area calculated from equation (4.68) for the infinite medium multiple step 

function, equation (4.72) for the bounded medium multiple step function, equation (4.76) 

for the infinite medium piecewise linear function, and equation (4.80) for the bounded 

medium piecewise linear function. 

6. The molar flow rate corresponding to the change in area is calculated from equation 

(5.8) for each component, and the total dispersive flow rate for the grid block is summed 

over all components. 

7. Do steps 3 through 6 again, for i = 1,n. Block indices in the above equations are 

switched from I toj. 

8. The convective flow equations and phase behavior equations are solved using the 

iterative-sequential procedure described in Chapter 3, with the component source rates 

appearing in equation (3.73) and the overall molar source rates appearing in equation 

(3.62). 

9. Once the pressure equation has converged, the resulting grid block compositions are 

used to initialize the dispersive flux calculation for the next time step. 

5.3. FICK'S SECOND LAW MODEL: FRONT TRACKING ALGORITHM 

This model is developed in an attempt to describe dispersive processes which may 

take place on a scale smaller than one grid block. .Solutions of the diffusion equation are 

again employed, however the initial conditions are determined not as gradients across a 

number of grid blocks, but rather as step functions at injection points or at significant 

compositional discontinuities within the reservoir. The dispersion profile resulting from the 

solution of the diffusion equation with the step function initial condition is then 

superimposed on top of the convective movement of the front, assuming a piston-like 

convective flow. The inclusion of dispersive fluxes in the source terms of the convective 
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flow equation as for the previous two models is employed only when a significant portion 

of the profile is intersecting a grid block interface. As shown in the schematic below in 

Figure 5.3, no dispersive flux across the interfaces will be taking place in the example at 

left, while dispersive flux across three interfaces will be occurring in the example profile 

on the right. 
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Figure 5.3: Second Law Model Schematic - Front Tracking Algorithm 

As for the previous model, the amount of dispersive flux over a time step is 

determined as the difference between the areas under the profile at the beginning and end 

of the time step. For the case of a constant dispersion coefficient, the profiles are 

calculated from the solution of the diffusion equation for a step initial condition given in 

equation (4.52) for the infinite medium, with the corresponding areas under the curve 

given by the integration formula given in equation (4.57). The corresponding formulas for 

the bounded medium are given in equation (4.59) and (4.61). The area under the initial 

profile is calculated by applying equation (4.57) or (4.61) with time being entered as the 

total elapsed time from the initiation of the step initial condition to the beginning of the 

time step. The area under the curve at the end of the time step is calculated using the same 

formula with time entered as the total elapsed time to the end of the time step. If a variable 

dispersion coefficient is employed, the shape of the profile may be calculated from the step 

initial condition up until the time at which the dispersion coefficient is to be changed. At 

this point, the profile is divided into an arbitrary number of segments and is approximated 

using one of the linear approximations discussed in the previous section. Once this shape 



108 

is approximated, the areas under the curve at the beginning and end of a time step may be 

determined as for the previous model. The use of a constant global molar density is again 

required for solution of the diffusion equation; the harmonic average as discussed above is 

used in this model as well. 

As for the second law model, the front tracking algorithm lags the dispersion 

calculation one time step behind the convective flow calculation. In this model the' 

interface compositions which multiply the transmissibility terms in the convective flow 

equations are modified to reflect the shape and location of the dispersion profile, this 

transmissibility modification is also lagged by one time step behind the convective flow 

calculation. In the standard single-point upstream weighting scheme, the interface 

compositions are set equal to the block average compositions. In the front tracking model, 

a component's interface composition will be set according to the value of the composition 

profile at that interface. If the profile does not cross the interface, the interface 

composition will be set to zero, regardless of the average composition ih the grid block. If-

the profile does cross an interface, the interface composition is calculated as follows: the 

amount of bulk movement of the profile through convective transport which occurred in 

the last time step is calculated from the pressure gradient and transmissibility values at the 

end of the time step. The portion of the profile which moved past the interface due to the 

bulk convective flow is then integrated to determine the number of moles of the 

component which were transferred across the interface. Finally, the constant mole fraction 

required to produce this same molar transport is calculated and used as the interface 

composition. 

To initialize the calculation, the user must input the number of fronts, their 

locations and the initial upstream and downstream compositions for each front. For a front 
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located at an injection point, the distance traveled by the piston-like convective front in 

one time step is calculated as: 

AX' _QAt (5.11) 

when the front is in the block containing the injector. When the front has traveled out of 

the first block into any grid block i, or for any other front which was not originally located 

at an injection point, this distance is calculated as: 

A _ 11( 1—)At  

AØp 1 
(5.12) 

The "active" interfaces, those which will have dispersive flux across them, are 

located by first locating the midpoint of the convective front. This is the distance that the 

initial step condition will have traveled due to the assumed piston-like, convective flux. To 

locate the downstream end of the profile, the value of concentration at each interface in 

front of the profile midpoint is calculated for the total elapsed time since the step initiation. 

When an interface is reached which has a calculated concentration less than some user 

input tolerance, that point is taken to be the downstream end of the profile. Similarly for 

the upstream end, when an interface is located which has a component concentration 

different by less than the tolerance from the original upstream composition, that is taken as 

the upstream end of the profile. 

Once the active interfaces are located, the change in area calculation is carried out 

to determine the amount of dispersive flux. This calculation is implemented in the same 

way as for the previous model, with the difference in areas being converted into molar 

rates using equation (5.8). Again, use of the integration method for determining these 

fluxes can lead to the propagation of mass balance errors. When a profile is located wholly 

within the reservoir domain, mass balance can be assured by performing the integrations 
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within a symmetrical region encompassing equal distances in front of and behind the front 

midpoint. Thus, depending on the location of the midpoint, the integration in either the 

first or last grid block will be restricted to a length less than the total length of the block. 

When the profile impinges on a reservoir boundary, a symmetrical region must still be 

used, with the length of the region being dictated by the distance the front midpoint is 

from the reservoir boundary. This will result in the dispersion calculation for the trailing 

edge of the profile being terminated prematurely. In this case, the dispersion calculation 

could revert to the first law model for the remainder of the calculation. As the magnitude 

of the inter-block dispersion in this model does not depend on the size of the current time 

step, the automatic time step size control as outlined in Chapter 3 can be used without 

modification. 

5.3.1. SECOND LAW MODEL: FRONT TRACKING ALGORITHM OUTLINE 

The steps in the front tracking algorithm for a one-dimensional system with grid 

blocks i = 1,n, grid block length 4x, and a constant dispersion coefficient are given below 

for a single front application. The steps in the calculation may be repeated for as many 

fronts as required. 

1. At the end of the time step, the pressures, mole fractions and phase properties are all 

specified and all component dispersive flows are initialized to zero. 

2. The distance that the midpoint of the front has moved during this time step is calculated 

from equation (5.11) or (5.12). The location of the front Xf is calculated as the sum of 

these steps, and the grid block that the front falls in is designated as 

3. The grid blocks corresponding to the upstream and downstream ends of the profile for 

each component are located. The downstream end is located by setting n = np .n and 

calculating the distance from the profile midpoint to the block n interface from 
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x—nAx—x1 (5.13) 

This value is input as the x-variable in equation (4.52) with a time value equal to the 

elapsed time from the step function initiation to determine the component concentration at 

that interface. If the concentration is less than the user specified tolerance, that grid block 

is designated the downstream end of the profile, n2. For the upstream end, the block 

indicator is varied from n = nt..l and equation (5.13) is again used to generate the x-

variable. In this case, when the calculated concentration differs by less than the tolerance 

from the original composition, that block is designated as the upstream end of the profile, 

ni. 

4. The average global molar density for grid blocks n1 through n2 is calculated according 

to equation (5.7). 

5. For each block,. i = n1. . .n2, and for each component m, the initial area is calculated 

from the integration formula given in equation (4.57), with; and xb input as the block 

interface locations and time input as the elapsed time to the start of the time step. The final 

area is calculated in the same way with the time input as the elapsed time to the end of the 

time step. The change in areas is converted into a molar rate using equation (5.8), and is 

designated mn for component m and grid indicator n. 

6. For each block, the molar flow rates are summed over all components to give the total 

molar rate for that block. 

7. For all blocks excluding iz1 through n2, the interface compositions are set using the 

standard single-point upstream weighting scheme. For each interface active in the 

dispersion calculation, the interface composition is set by integrating the portion of the 

profile which will cross the interface in the next time step. For grid blocks n = nj ... n2, the 

integration formula given in equation (4.80) is used to evaluate the area A under the curve 

between the points 



112 
= X - X4. 

Xa = Xb - L1Xf 
(5.14) 

The interface composition is then given by 

Zmi=A/LtXf (5.15) 

8. The convective flow equations and phase behavior equations are solved using the 

iterative-sequential procedure described in Chapter 3, with the component source rates 

appearing in equation (3.73) and the overall molar source rates appearing in equation 

(3.62). 

9. Once the pressure equation has converged, the resulting grid block compositions are 

used to initialize the dispersive flux calculation for the next time step. 

5.4. SUMMARY 

Algorithms for incorporating Fick's first law and solutions of Fick's second law 

have been described in this Chapter for treatment of dispersion in a compositional 

reservoir simulator. The first law models are readily applicable to multi-dimensional 

problems. One simple approach for two-dimensional simulation employing the second law 

models based on solution of approximate initial conditions has also been described. The 

front tracking algorithm was developed for use in only one dimension. These models are 

tested for three example model geometries in the following Chapter. 
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6. APPLICATION OF COMPOSITIONAL SIMULATOR WITH DISPERSION 

MODELS 

The models developed in the previous chapter are used here for the simulation of 

the Taylor dispersion experiment as discussed in Chapter 2, the visual experiment 

introduced in Chapter 1 and a typical laboratory slim tube test. The general compositional 

reservoir simulator described in Chapter 3 and the dispersion models described in Chapter 

5 have been coded in FORTRAN to run on the University of Calgary's network of AIX 

workstations with RISC 6000 architecture. Running on the network sometimes precludes 

the direct comparison of computing times as jobs can be run on platforms with different 

characteristics; for example the rs6000.950 file server can perform a job roughly 3 times 

faster than the rs6000.220 workstation. When run times are compared, an approximate 

correction will be applied to normalize the times to a single machine type. 

6.1. TAYLOR DISPERSION EXPERIMENT SIMULATION 

The first system studied is the experimental Taylor dispersion apparatus simulated 

with the conventional compositional model in Chapter 2. Ethane will be used as the 

solvent for all runs, and the oil slug will be modeled as n-octane or the 5 component 

reservoir oil model as described in Table 2.1. As described in Chapter 2, the apparatus is 

used to investigate dispersion at the leading and trailing edges of an oil slug within a 

stream of solvent as the slug is transported through a length of capillary tubing. A constant 

injection rate of solvent is specified at one end of the tube and a constant back pressure 

constraint equal to the initial pressure in the tube is specified at the production end. The 

physical parameters used in the simulation are shown in the following table. 
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Table 6.1: Parameters for Taylor Dispersion Experiment Simulation 

Length 
Solvent Zone 1 
Oil Slug Zone 
Solvent Zone 2 
Height and Width 
Porosity 
Permeability 
Pressure 
Temperature 
Solvent Injection Rate 

x=8.607m 
0<x< 1.208m 
1.208 < x<2.416m 
2.416 < x < 8.607 m 
zly=eiz=0.07071 cm 
100% 
2.0x104 darcy 
22.75 MPa 
372.05 K 
0.2 mL/hr 

6.1.1. FIRST LAW DISPERSION MODEL 

Clearly, to gauge the effects of the physical dispersion models accurately, the 

amount of numerical dispersion present for a given system must be quantified, and 

hopefully minimized. To provide a basis for the study, several runs of the simulator using 

the first law dispersion model were performed for the ethane + n-octane system with one 

point upstream weighting of the compositions, that is, with no numerical dispersion 

control. In this case, the amount of numerical dispersion can be minimized only by using a 

fine grid and the maximum stable time step size, as discussed in section 3.2.9. The 

maximum time step size is determined by the throughput stability criterion which requires 

that no more than one grid block pore volume of material be passed through a block in 

one time step. As discussed in Chapters 3 and 5, automatic time step control is used within 

the simulator to check that this condition is not being violated. 

A fine grid model consisting of 912 grid blocks was used for these initial runs. This 

corresponds to 128 grid blocks for the original oil slug. The simulation is run for 80,000 s 

and process variables are output every 500 s. The maximum allowable change in mole 

fraction over a time step is set to 0.8 so that the time step sizes will not be limited by this 

factor. A rough limit to the maximum time step size may be determined from the injection 
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rate and the pore volume of a single grid block; this yields a value of 85 s to be input as 

the maximum time step size. When the dispersion calculation is active, however, the 

combined dispersive and convective fluxes will most likely require that the simulator 

reduce the time steps below this level. 

Using these parameters, simulations were performed with D =0, 1O-, and 

10-2 cm2/s. The same value of dispersion coefficient was used for each component in the 

system. The minimum change in mole fraction used to limit the dispersion calculation is set 

at 10-8; this allows the calculation to be carried out well into the trailing edges of the 

profile and thus will not prematurely cut off the ends of the profile. The results of the 

simulations were found to be insensitive to the mole fraction cutoff for tests of the value 

between 10-2 and 10 -8. To give an indication of the level of dispersion which could be 

expected with the above coefficient values, profiles were calculated with the standard 

error function solution to the step initial condition. With D =0, of course, the solution is 

simply the initial step conditions translated to account for the amount of fluid injection. - 

For the non-zero coefficients the profile reflects the sum of the solutions for the two step 

initial conditions. The simulated results will differ from these profiles since the error 

function solutions do not take into account the shrinkage which will be occurring on 

mixing of the solvent and oil; however the comparison is instructive for observing the 

magnitude of the differences in the analytical profiles calculated with different dispersion 

coefficients. The results of these calculations are shown in Figure 6.1. The effluent mole 

fraction of the oil model component is plotted versus the volume of solvent injected 

expressed in reservoir cm3, that is at the pressure and temperature of the block containing 

the injector. 
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The simulated results obtained with D =0 show fair agreement with the error 

function solution in terms of location and integrity of the slug, however the edges of the 

slug are smeared to some degree through numerical dispersion. This simulated profile 

actually appears to compare quite closely with the error function solution with a dispersion 

coefficient of D = i0 cm2/s. The simulated results obtained with D = i0 cm2/s show 

some effect of the physical dispersion in addition to that associated with the numerical 

dispersion. The amount of numerical dispersion for both the D =0 and D = i0 cm2/s 

runs will be the same as both required the same number of time steps (1130) to complete 

the run. The simulation for  = 10 .2 cm2/s required more than double this number of time 

steps (2556) as the higher level of dispersive flux forced the simulator to reduce the time 

step size to avoid transferring more moles of a component out of a block during a time 

step than existed at the start of the time step. In this case non-convergence of the pressure 
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equation also caused the simulator to reduce the time step size in some instances, as the 

large number of blocks and the high dispersive fluxes make the solution of the equation 

more difficult. This large number of steps means that the level of numerical dispersion for 

this case will be higher than for the other two simulated results discussed above. 

In comparison to the error function profile, the leading and trailing edges of the 

simulated profile are located correctly. With the obviously large negative volume change 

occurring due to the high degree of mixing, as indicated by the difference in the areas 

under the profiles, it is impossible to determine if the correct amount of mixing has been 

predicted, and to what extent the numerical dispersion has influenced the final shape of 

this profile. 

The run times for these simulations were on the order of 30 minutes for the D =0 

and D = iO cm2/s runs and approximately 70, minutes for the D = 10 cm2/s run on the 
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rs6000.950 platform. 

In the interest of reducing run times, and also to allow running with roughly equal 

numbers of time steps whether high levels of physical dispersion are introduced or not, the 

two point upstream weighting in composition was investigated next. Simulated results 

with D =0 for model systems of 114, 228 and 342 grid blocks, corresponding to the oil 

slug containing 16, 32, and 48 grid blocks respectively, are shown in Figure 6.2. Again the 

error function solution with D =0 representing the width of the original oil slug is shown 

for comparison. Time step size controls were set again to allow the simulator to select the 

largest possible step sizes to minimize numerical dispersion, subject to the restriction of 

obtaining data at 500 s increments. The runs with 342 and 228 grid blocks show less 

numerical dispersion than the single point upstream weighting run with 912 grid blocks. 

Two runs were performed for the 114 grid block case: one with the simulator selecting the 

optimal time step size resulting in 333 time steps for completion', and one with the step 

length restricted, resulting in a run of 492 time steps. This was done to observe the 

relative change in numerical dispersion incurred for this system with a constant number of 

blocks but with a varying number of steps to completion. Increasing the number of steps 

by approximately 50% in this case is seen to have a noticeable, but not excessive, effect on 

the amount of numerical dispersion. 

All of the calculated profiles show an asymmetry introduced by the two point 

weighting technique, with the leading edge of a front being truncated more strongly than 

the trailing edge. This is a numerical artifact and does not reflect a physical asymmetry in 

the profile. However, this disadvantage of two-point weighting is outweighed by the 

ability to perform runs with a relatively small number of grid blocks and still have minimal 

numerical dispersion. The run times for these simulations ranged from 1.5 min for the 114 

grid block case to 13 min for the 342 grid block model on an rs6000.340 workstation; this 
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machine is roughly 25% slower than the rs6000.950 for which the single point model run 

times were reported. The remainder of the first law dispersion model test runs are 

performed with the two-point upstream weighting technique. 

Simulations were performed using the configurations discussed above for 

D = 10-2 cm2/s and D = i0 cm2/s. The results are shown in Figures 6.3 and 6.4 

respectively. Again, the error function profiles are shown for comparison. For the 

D = 10 .2 cm2/s case, the simulated profiles obtained with 228 and 342 grid blocks very 

nearly coincide, and the 114 grid block case with maximum time steps allowed actually 

shows less total dispersion than the others. When the 114 grid block model is used with 

restricted time steps is used, the amount of dispersion is increased and a much higher 

volume change on mixing effect is observed. This is the result of the combination of large 

blocks and the dispersion model creating contact between larger volumes of oil and 

solvent than will be occurring with the finer grid models. Increasing the amount of 

numerical dispersion by restricting the time steps amplifies the effect. 

All of the profiles show more truncation of the leading edge of the profile than the 

trailing edge, illustrating that the two point upstream weighting will reduce not only 

numerical dispersion, but also the physical dispersion effects. 

For the runs with D = iO-3 cm2/s, the incremental dispersion added by the physical 

dispersion model is nearly reduced to zero by the two point weighting. All of the curves 

are almost identical to those obtained with D =0 and the volume change effects seen for 

the previous case are not a factor. In this case, the total amount of dispersion is more a 

function of the number of grid blocks in the simulation than it is of the physical dispersion 

model. 
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Next, the first law model is applied to the case of ethane solvent contacting the 5 

component reservoir oil model, using the same grid block configurations as for the ethane 

+ n-octane runs. Again, the simulations were performed first with D =0 to determine how 

the simulator performed on the multicomponent system. The results of these runs are 

shown in Figure 6.5. The run times on the rs6000.340 range from 3 min for the 114 grid 

block case to 17 min for the 342 grid block case. The same trends observed in the ethane 

+ n-octane runs are observed here. 

The results for the ethane + 5 component oil with D = 10-2 cm2/s are shown in 

Figure 6.6. The number of time steps required for these runs are comparable to (although 

slightly less than) those required when no dispersion coefficient was used, resulting in run 

times of 2 min for the 114 grid block case and 13 min for the 342 grid block case. As for 

the ethane + n-octane runs, the profiles generated from the 228 and 342 grid block runs 
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Figure 6.6: Taylor Experiment Sim ulation,Ethane + 5 Component Oil, First Law 
Dispersion Model with  = 10.2 crn2/s 

are nearly identical, and the 114 grid block run shows less total dispersion than the others. - 

In comparison to the experimental results for this system presented in Chapter 2, the width 

of the dispersed zone is predicted reasonably well by the first law model, although the 

leading edge of the profile is again truncated by the two point weighting technique. The 

component mole fraction peaks predicted by the model differ significantly from the 

experimental ones, however this is due at least in part to the 5 component oil 

characterization. 

It is also noted that the non-physical inflections in the profile obtained with the 

EOSIM simulator are not seen in the profiles calculated with the model developed for this 

work. The EOSIM model uses two-point weighting on relative permeabilities and other 

phase properties as well as composition, and applies filtering mechanisms which can create 

these types of inflections when used for systems which exhibit significant volume change 
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on mixing. The simplicity of the two-point upstream weighting on composition used in the 

present work is apparently not susceptible to this problem. 

These results indicate that, for the Taylor dispersion experiment, the first law 

method can model the profiles obtained when a significant degree of physical dispersion is 

present in the system. Two-point upstream weighting techniques are valuable for reducing 

the amount of numerical dispersion in a system, however they also reduce physical 

dispersion when it is present. When smaller values of the dispersion coefficient are used, 

the numerical dispersion control technique nearly reduces the amount of physical 

dispersion to zero. 

6.1.2. SECOND LAW DISPERSION MODEL: APPROXIMATE INITIAL. 
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The second law dispersion model is tested initially for the ethane + n-octane 

system using the two point upstream weighting and grid block configurations as for the 

first law model. The mole fraction tolerance for locating the initial and final blocks of the 

profile is again set to 10-8 and a single region is used for the dispersion calculation, that is, 

the calculation is performed for a region encompassing the leading and trailing edges of 

the slug, rather than performing a separate calculation for each edge. The first runs are 

performed using the multiple step initial condition with D = 10 cm2/s; the results are 

shown in Figure 6.7. 

The model is over-predicting the amount of dispersion in this case, in comparison 

to both the error function solution and the results shown previously for the first law 

model. The high degree of mixing predicted leads to large volume changes, resulting in the 

decreasing size of the profiles in the figure. The multiple step solution to the diffusion 
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equation was shown in Chapter 4 to be adequate for several time small time steps. In the 

application here, however, the size of the time steps is large enough that over the course 

of the simulation the degree of dispersion is greatly exaggerated. The results obtained 

from this model for D = 10-3 cm2/s are shown in Figure 6.8. Although the effects are not 

as significant in this case, overprediction of the dispersion is still occurring. 

These runs were repeated with the same configuration but using the piecewise 

linear initial condition approximation. The results obtained with D = 10-2 cm2/s are shown 

in Figure 6.9. The profiles obtained in this case are much more similar to the error function 

solution and the results from the first law model than those resulting from the multiple step 

approximation. As opposed to the first law results, however, the results for the 114 and 

228 grid block cases are quite similar in this case, while the 342 grid block case shows 

more dispersion; again, the amount of volume change on mixing for the 114 grid block 
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case is strongly dependent on the number of time steps taken. As the number of time steps 

taken for both the first law and second law models are similar, differences in the profiles 

are due to the physical dispersion models. 

As discussed in Chapter 5, mass balance errors can occur when using the profile 

integration method of determining dispersive flux. The mass balance check procedures 

introduced in Chapter 3 are used over each time step, and over the course of the entire 

simulation to ensure mass is not being created or lost. The overall mass balance check 

gives a ratio of initial moles plus injected moles over final moles plus produced moles for 

each component. For these runs of the second law model, the profile was simply truncated 

at the point where it impinged on the reservoir boundary. The worst mass balance ratio for 

these runs was 0.99496, roughly 0.5%, calculated for n-octane in the 114 grid block case. 

As this amount of mass balance discrepancy will not manifest itself as a significant error in 
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Figure 6.11: Taylor Experiment Simulation, Ethane +5 Component Oil, Second 
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terms of the effluent mole fractions and other process variables, no action in terms of 

modifying the calculation was undertaken. The mass balance ratio was monitored for all 

runs to make sure that this situation did not change. 

The results obtained for the piecewise linear approximation model with D = iO 

cm2/s are shown in Figure 6.10. In this case the calculated profiles for all configurations 

are indistinguishable from those calculated with the first law model. This result shows that 

the gradients calculated for the first law dispersion model remain nearly constant over a 

time step, thus the mass transfer calculated by integrating the profiles corresponds exactly 

to that calculated from the constant interfacial gradient assumption. 

Finally, this model is applied to the ethane + 5 component oil model; the results are 

shown in Figure 6.11. As for the two component system, the second law model in this 

case predicts a somewhat higher level of dispersion than the first law model, most 
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noticeably at the mole fraction peaks. In general, the results of the two models are quite 

similar. 

The second law model with the multiple step function initial condition is found to 

over-predict dispersion for all configurations tested here. The piecewise linear initial 

condition model is found to predict higher levels of dispersion for the D = 10-2 cm2/s runs, 

but produces identical results to the first law model when the smaller dispersion coefficient 

is used. 

6.1.3. SECOND LAW DISPERSION MODEL: FRONT TRACKING ALGORITHM 

The final model tested is the front tracking dispersion model. As described in 

Chapter 5, the only additional information required to run the front tracking model is the 

number and location of the fronts, the initial compositions upstream and downstream of 

the fronts and a mole fraction tolerance used for locating the starting and ending points of 

the profile for the dispersion calculation. Due to the nature of the transmissibility 

adjustment calculation, the interface compositions may at times be set considerably higher 

than the average block composition. To avoid computational problems created by 

attempting to remove more moles of a component from a grid block than exist in that 

block at the start of the time step, the mole fraction tolerance cannot be set as low as that 

used for the previous models. Values on the order of 0.1 to 4% have been used 

successfully; the runs reported here have been performed with a tolerance of 2%. 

Initial tests were performed using the front tracking model in conjunction with the 

two point upstream weighting technique. These were done in an attempt to minimize 

numerical dispersion for those grid blocks which fall outside of the region being modified 

by the front tracking model. The calculated profiles for these cases were found to have 
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inflections, flat spots or even oscillations in places. The runs reported here were thus all 

performed using the single point upstream weighting technique. 

The ethane + n-octane system was simulated first using the same configurations of 

114, 228 and 342 grid blocks, as well as a 57 block model which corresponds to 8 grid 

blocks for the original oil slug. The results for these runs are shown in Figure 6.12. For all 

the runs with this model, a much higher number of time steps were required as compared 

to the other models. This resulted in run times of 1, 3, 12 and 26 min for configurations 

with 57, 114, 228 and 342 grid blocks respectively on the rs6000.340 platform. All of the 

calculated profiles show close agreement with the error function profile for the initial 

portion of the leading edge. 

A common feature in all of the profiles is the inflection point in the leading edge, 

although this inflection is not as noticeable for the 57 grid block model. This is the result 
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of the symmetrical region requirement on the calculated dispersion profile. When the 

leading edge of a profile contacts the end boundary of the model, the region of the trailing 

edge of the profile available for the dispersion calculation is reduced to maintain symmetry 

of the profile. For the first front, which makes up• the leading edge of the entire profile 

plotted in the figure, the inflection point occurs when the midpoint of the front moves past 

the end of the reservoir and the dispersion calculation ceases for that front. The abrupt 

cutoff seen in the trailing edge of the profile is the result of interaction between the two 

front-tracking calculations. In order to avoid having the interface compositions for a given 

block calculated from two different profiles, the second profile is restricted to ensure that 

the domain for its calculation does not interfere with the domain for the first profile. This 

factor, combined with the symmetrical domain restriction, results in errors in the 

calculation of the second profile. 

This calculation scheme shows good results for the location of the leading edge of 

the profile, even with a small number of grid blocks. Clearly, it cannot be used when two 

fronts are near enough to each other that interactions between the two will be taking 

place. Further results using this model for single front applications are included in the 

following two sections. 

6.1.4. DISPERSION MODEL SUMMARY FOR THE TAYLOR DISPERSION 

EXPERIMENT SIMULATIONS 

Due to excessive run times, it was not feasible to use the single point upstream 

weighting technique for this problem geometry and therefore use of the two point 

weighting method for numerical dispersion control is implicit in the results summarized 

here. The first law and second law piecewise linear models proved most capable of 

simulating the level of dispersion observed in the Taylor dispersion experiments. When a 
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process with a lower level of dispersion is simulated, the accuracy of the results depends 

more strongly on the number of grid blocks used in the simulation. The second law 

multiple-step dispersion model was found to greatly over predict the dispersion level with 

both dispersion coefficients tested. The front tracking model was found to perform 

adequately for the leading edge of the profile, however interactions between the two front 

tracking calculation regions resulted in unpredictable results for the second profile. 

6.2. VISUAL EXPERIMENT SIMULATION 

As outlined in the introduction, the visual experiment apparatus was designed by 

Sibbald and co-workers (1991) to observe the process of live reservoir oil and fully 

miscible solvent mixing in the absence of external temperature and pressure gradients. This 

absence of pressure gradients precludes the use of conventional compositional simulators 

for modeling the experiment, as there are no driving forces for the convection equation. 

This section describes modeling efforts combining the compositional simulator with the 

dispersion models developed in Chapter 5. 

The equipment consisted of a glass tube of rectangular cross-section, 1 x 5 mm x 

30 cm in length, with a notch drilled in one side at the midpoint. The tube was placed in a 

water bath at reservoir temperature and pressure. Live oil was pumped in one end of the 

tube until it reached the midpoint, displacing water through the notch into the surrounding 

vessel. Solvent was then injected slowly into the opposite end of the tube until all of the 

water was displaced through the notch and the gas and oil surfaces came into contact. 

This system is modeled as a rectangular tube initially containing solvent in one half and oil 

in the other, with contact between the phases at the midpoint. A constant pressure solvent 

injector, constrained at the initial pressure of the system, is positioned at the solvent end of 

the tube, and a similar oil injector is positioned at the other end. The tube length is set to 
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80 cm to avoid end effects interfering with the profile generation. The permeability is 

determined in a similar manner to that described for the Taylor dispersion experiment in 

Chapter 2. In this case, an analogy is drawn between the pressure drop equation for flow 

in a narrow slit of width Wand thickness 2B (Bird et. al., 1960; p. 62): 

Q 2BWAP  

3pAx 

QB2AP 

A3pEtx 

and Darcy's law: 

Apr 

resulting in the permeability being defined as: 

B ' 

3 

(6.1) 

(6.2) 

(6.3) 

Again, the ethane solvent and n-octane or 5 component oil models will be used for the 

simulations. The physical parameters for the model are shown in the following table. 

Table 6.2: Parameters for Visual Experiment Simulation 

Length 
Initial Solvent Zone 
Initial Oil Zone 
Height 
Width 

Porosity 
Permeability 
Pressure 
Temperature 

x = 80 cm 
0 < x< 40 cm 
40 < x < 80cm. 

zlz = 1 mm 

Ay = 5mm 
100% 
8.3333x104 darcy 
25.2 MPa 
373.15 K 
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6.2. 1. FIRST LAW DISPERSION MODEL 

As for the Taylor dispersion experiments, the effects of grid block sizing and 

numerical dispersion control schemes are investigated for each of the physical dispersion 

models. The information reported by Sibbald et. al. (1991) showed that dispersion 

coefficients on the order of 0.1 to 1.0 cm2/s were observed in the visual experiment 

apparatus. The models are tested here with a value of D = 1.0 cm2/s and are run for 40 s 

with process variables recorded every 2 s. The majority of the results are presented as 

plots of solvent mole fraction vs. tube length at the termination time of the experiment. 

The first model runs were performed for the ethane + n-octane system using the 

first law model with single point upstream weighting on model configurations of 20, 40 

and 80 grid blocks. The minimum mole fraction tolerance for the dispersion calculation is 

again set to 10-8, and the maximum time step size is set to 2 s in correspondence with the 
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process variable output frequency. The resulting profiles are shown in Figure 6.13. The 

three profiles are nearly identical; the 80 grid block model profile shows some slight 

oscillations that are not visible in the other solutions. The 20 and 40 block models both 

require 34 time steps to complete, resulting in run times of 2.9 and 3.1 s respectively on 

the rs6000.340 platform. The 80 grid block model requires 74 time steps for a run time of 

16.1 s. Very similar results are observed for the model runs using the two point upstream 

weighting technique, the only difference being a somewhat more pronounced oscillation in 

the 80 grid block model profile. These results are shown in Figure 6.14. 

It should be noted that these profiles are asymmetrical about the initial interface 

position at 0.4 m because the solvent is more mobile than the oil. When the volume of the 

mixed zone decreases, more fluid flows from the solvent side of the tube to the center than 

from the oil side, resulting in the profile being shifted towards the oil side of the midpoint. 
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6.2.2. SECOND LAW DISPERSION MODEL: APPROXIMATE INITIAL 

CONDITIONS 

The second law dispersion model is tested for the same configurations as the first 

law model. The results obtained using the multiple step function initial condition are 

shown in Figure 6.15 for the single point upstream weighting case. For these model 

configurations, the profiles obtained with the two point and single point weighting 

techniques are indistinguishable, thus only one set of results is given. 

All configurations required 34 time steps for this model, giving run times of 2.3, 

4.6 and 8.8 s for the 20, 40 and 80 grid block runs respectively. This model predicts higher 

levels of dispersion for all configurations than the first law model, with the 80 block run 

coming closest to the previous predictions. Much more variation in the results with grid 

block numbers is also noted. As for the Taylor dispersion experiment simulations, this is 
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the result of the steps in the initial condition generating high levels of dispersion, even with 

the small time step sizes. The oscillations detected in the 80 block run of the first law 

model were not evident in this case. 

The second law model using the piecewise linear initial condition was tested next; 

the results are shown in Figure 6.16. With this model, the three profiles are again nearly 

identical, the level of dispersion is similar to that predicted by the first law model, and no 

oscillations are observed in any of the solutions. Again, 34 time steps are required for the 

completion of each model run, resulting in run times of 2.4, 4.9 and 9.4 s for the 20, 40 

and 80 grid block runs on the rs6000.340. 

6.2.3. SECOND LAW DISPERSION MODEL: FRONT TRACKING ALGORITHM 

Finally, these model configurations are tested with the front tracking algorithm. 
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Results obtained with the two point and single point versions were essentially identical 

thus only one set of results is discussed here. The simulated profiles are shown in Figure 

6.17. The profiles in this case are characterized bya single oscillation or inflection near the 

front midpoint for all configurations. The initial third and final third of the profiles lie close 

to the positions predicted by the other dispersion models. As for the other models, these 

all require 34 time steps to run to completion, with run times of 1.5, 3.6 and 6.9 s on the 

rs6000.340. 

The oscillations result from the calculation of the interface composition from the 

profile determined as the solution of the error function. At the start of the simulation, the 

front midpoint will move to the right as more solvent is injected into the system. The 

composition at all block interfaces will be determined by integration of the portion of the 

profile located on the left side of the interface as long as the front midpoint is moving to 
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the right. This can lead to inconsistencies. Since fluid is being injected from both ends of 

the tube, the bulk movement of fluid across an interface may be in the opposite direction 

to the movement of the front midpoint. In its current form, the front tracking dispersion 

model cannot handle situations of this type, and is strictly applicable only when the bulk 

movement of the entire front is in a single direction. 

6.2.4. DISPERSION MODEL SUMMARY FOR THE VISUAL EXPERIMENT 

SIMULATION 

The original experimental results obtained from the visual apparatus shown by 

Sibbald et. al. (1991) include plots of the oil/solvent interface position vs. time. It was the 

"root of time" shape of these curves that lead to their characterization by dispersion 

coefficients. A plot of various solvent iso-concentration lines has been made from the 

results of the 80 grid block configuration of the second law piecewise linear initial 

condition dispersion model. The curves are generated by locating the position of the 

desired solvent concentration by linear interpolation from the output data file at 2 s 

intervals. The plot is shown in Figure 6.18. The curves show the correct characteristic 

"root of time" shape, and also show that the leading edge of the solvent profile, the 2% 

through 10% curves, travels more quickly than the trailing edge. This illustrates the 

greater mobility of the solvent, allowing it to move more quickly into the oil side of the 

tube than the oil moves into the solvent side. 

Finally, several runs were performed for the ethane + 5 component oil model 

system, using the optimum settings for each model determined from the previous runs. 

These are 40 grid block configurations for the first law and second law piecewise linear 

models, and 20 grid blocks for the front tracking model. The profiles calculated for this 
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system exhibit the same trends as the ethane + n-octane system The results are shown in 

Figure 6.19. 

For the visual experiment simulations performed here, the first law and second law 

piecewise linear models are found to give the most consistent results over the range of 

grid block configurations tested. Of these two, the second law piecewise linear model 

showed no tendency towards the oscillations that the first law model developed with the 

larger number of grid blocks. The second law multiple step model was found to over-

predict the amount of dispersion unless a large number of grid blocks was used. The front 

tracking model has to be considered unsuccessful for use in the specialized situation in 

which there is the possibility that portions of the front will have different directions of bulk 

movement. In terms of simulation running times, the models ranked from fastest to 

slowest are: front tracking model, first law, second law multiple step and second law 
0.25 

0.05 

0.00 

Solvent: 02 
Oil: 08 Solvent Concentration: 2% 

0 5 10 15 20 25 30 35 

Time (s) 

Figure 6.18: Solvent Isoconcentration Line Movement in the Visual Experiment 
Simulation 
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piecewise linear. Although, for these simulations the differences in running times are small. 

6.3. . SLIM TUBE SIMULATION 

The final one dimensional system tested is a standard slim tube experimental 

apparatus. This system will be modeled as a tube of square cross section, filled with some 

form of packing and initially saturated with oil. A constant rate solvent injector is 

positioned at one end of the tube and a constant back pressure production well is placed at 

the other end. The ethane solvent and n-octane or 5 component oil model systems will be 

used for these simulations as well. The same values of the dispersion coefficient will be 

used as for the Taylor dispersion experiment simulations, as they represent a possible level 

of enhanced dispersion for these fluids which exhibit a high negative volume change on 

mixing. The temperature and pressure of the Taylor dispersion experiment will also be 

used. The physical parameters used for the simulations are shown in the following table. 
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Table 6.3: Slim Tube Simulation Parameters 

Length 
Height and Width 
Porosity 
Permeability 
Pressure 
Temperature 
Solvent Injection Rate 

x= 12.15 m 
4y=Az=O.42608 cm 
36.5% 
6.0 darcy 
22.75 MPa 
372.05 K 
7.06 mL/hr 

6.3.1. FIRST LAW DISPERSION MODEL 

As for the Taylor dispersion experiment simulation, the characteristics of the 

system must be investigated in order to specify a configuration which minimizes numerical 

dispersion yet allows reasonable run times. The first runs of the program were performed 

for the ethane + n-octane system with the dispersion model turned off. Configurations of 

50, 100 and 200 grid blocks were used with the 2 point upstream weighting technique, 

and a 400 grid block model with single point upstream weighting was also investigated. 

The time step size controls are set to allow the simulator to select the maximum possible 

time steps, subject to the constraint that the process variable output frequency is set to 

500 s. The results for all cases shown in this section are plotted as mole fraction at the 

effluent plotted vs. the pore volumes of fluid injected. 

The results for these initial runs are shown in Figure 6.20. The 50 grid block model 

shows too much numerical dispersion to be useful in evaluation of the physical dispersion 

models; the other three configurations will be used so that the effects of number of grid 

blocks and numerical dispersion controls on the dispersion models can be investigated. 

The 200 block configuration with 2 point weighting shows the lowest level of numerical 

dispersion, followed by the 400 block single point model and finally the 100 block two 

point model. 
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The initial test of the first law dispersion model is done with the 100, 200 and 400 

grid block models described above for a dispersion coefficient of D = 10-2 cm2/s. As for 

the Taylor dispersion simulations, an error function solution is generated as a comparison 

for the profiles calculated using the dispersion models with the simulator. Again, the error 

function solution cannot be considered an exact solution that the others should conform 

to, as it does not take into account any fluid shrinkage effects. The results of these runs 

are shown in Figure 6.21. 

For each configuration, the number of time steps required to run to completion is 

approximately the same (within 10%) as for the runs with no dispersion model, thus the 

amount of numerical dispersion should be the same in each case. The models employing 

the two point upstream weighting show only a small increase in the total amount of 

dispersion when the physical dispersion model is added: As was seen before, the numerical 
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Figure 6.21: Slim Tube Simulation, First Law Dispersion Model, D = 10-2 cm2/s 

dispersion control also acts to reduce physical dispersion present in the simulation. The 

single point model, however, appears to give a more realistic level of dispersion in 

comparison to the error function solution. The run times on the rs6000.320h for these 

models are 2.7, 8.8 and 30.5 min for the 100, 200 and 400 block cases respectively. 

The same runs were performed next with the dispersion coefficient set to 

D = 10-3 cm2/s; the results are shown in Figure 6.22. The differences between the profiles 

for all configurations calculated in this case and those calculated with no dispersion model 

at all are extremely small. As this level of dispersion is so close to that already present due 

to numerical dispersion, the physical dispersion models have negligible effects on the 

profiles. 

The model is tested next on the ethane + 5 component oil system. The base case 

with no dispersion model is run for the 100, 200 and 400 grid block models. The profiles 
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Figure 6.22: Slim Tube Simulation, Ethane + n-Octane, First Law Model, D = i0 cm2/s 

are similar to those obtained for the ethane + n-octane case, however the 400 block model 

with single point weighting appears to have a more greatly dispersed solvent profile in the 

multicomponent case than for the two component case. These results are shown in Figure 

6.23, along with the results obtained for this system using D = 10 .2 cm2/s. 

As for the ethane + n-octane case, the two point weighting technique reduces the 

physical dispersion to such a degree that the total dispersion is almost identical to that 

obtained with no physical dispersion model at all. For the 400 block model with single 

point weighting, the dispersion model has a significant effect. The number of time steps 

required to complete the runs is reduced somewhat when the dispersion model is 

employed as the pressure equation is more easily solved when the fronts are more diffuse; 

the change in number of time steps is small enough, however, that it should have little 
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Figure 6.23: Slim Tube Simulation, Ethane + 5 Component Oil 

effect on the degree of numerical dispersion present for the no dispersion and dispersion 

model cases. 

The results of these simulations indicate that for this slim tube geometry, the use of 

numerical dispersion control also limits the physical dispersion introduced by the first law 

model, thereby under predicting the dispersion of the front. When single point upstream 

weighting is used, the physical dispersion model can correctly predict the dispersion of the 

front, however, the numerical dispersion problem can only be countered by using fine 

grids and optimal time step sizes. 
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6.3.2. SECOND LAW DISPERSION MODEL: APPROXIMATh INITIAL 

CONDITIONS 

The second law dispersion model is tested first with the multiple step initial 

condition. Again the minimum mole fraction tolerance for carrying out the dispersion 

calculation is set to 10-8 and the simulator is configured to select the maximum possible 

time steps. The profiles calculated for the ethane + n-octane system with D = 10-2 cm2/s, 

using the model configurations as in the previous section, are shown in Figure 6.24. 

In this case, the 400 grid block model with no numerical dispersion control (single 

point weighting) has greatly over predicted the amount of dispersion in the system. The 

configurations employing the two point upstream weighting technique produce profiles 

which approximate that given by the error function, however, their shape is a strong 

function of the number of grid blocks used. The final shape of these profiles is the result of 
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1.2 

the multiple step function dispersion model over-predicting the level of dispersion, and the 

two point weighting technique reducing the total dispersion generated as numerical and 

physical dispersion. The run times on the rs6000.320h were 2, 9, and 46 min for the 100, 

200 and 400 block models. 

The results of the calculation for. these models using D = i0 cm2/s are shown in 

Figure 6.25. In this case the 100 and 400 block models over-predict the amount of 

dispersion, and the 200 block model approximates the error function profile only by virtue 

of having the correct amount of numerical dispersion. 

The second law piecewise linear dispersion model is examined next, using the same 

model configurations and simulator parameters as for the multiple step model. The 

calculated profiles for the ethane + n-octane system using D = 10-2 cm2/s are shown in 

Figure 6.26. For the models employing the two point upstream weighting technique, the 
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profiles are identical to those calculated with the first law model. The 400 block single 

point configuration shows slightly more dispersion with this model than with the first law 

model. As for the first law model, the numerical dispersion control scheme counters the 

effect of the physical dispersion model. Run times for this model were 2, 7 and 23 min for 

the 100, 200 and 400 block models on the rs6000.340. 

The runs for D = 10-3 cm2/s were performed with this model as well; the results 

are shown in Figure 6.27. As expected the results are essentially identical to those 

generated from the first law model. One point of interest is that the profiles calculated 

using the two point upstream configuration with the multiple step and the piecewise linear 

model variations are nearly identical when D = 10 cm2/s, yet show significant differences 

when D = 10-2 cm2/s. This shows that the numerical dispersion control scheme reduces 

physical dispersion effects when they are below a certain magnitude, but will not eliminate 

S
o
l
v
e
n
t
 
M
o
l
e
 
Fr

ac
ti

on
 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

I I 

nd 
2 Law Dispersion Model 

Piecewise Linear IC 

D = i0 2 cm2/s 

Solvent: 02 

Oil: CS 

100 Blocks, 2 Pt. 388 Steps /1 
200 Blocks, 2 Pt. 691 Steps i 

400 Blocks, 1 Pt. 883 Steps I' 
Error f'n Solution if 

I I 

/ 

!; q 

ii 
II 

0.6 0.7 0.8 0.9 1.0 

Pore Volumes Injected 

Figure 6.26: Slim Tube Simulation, Second Law Piecewise Linear Dispersion 
Model, D = 10-2 cm2/s 

1.1 1.2 



149 

So
lv
en
t 

M
o
l
e
 
Fr
ac
ti
on
 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

I I 

nd 
2 Law Dispersion Model 

Piecewise Linear IC 

D = cm2/s 

Solvent: 02 

Oil: 08 

100 Blocks, 2 Pt. 
200 Blocks, 2 Pt. 
400 Blocks, 1 Pt. 

  Error fn Solution 

413 Steps 
695 Steps 
825 Steps 

I I 

06 0.7 0.8 0.9 1.0 

Pore Volumes Injected 

Figure 6.27: Slim Tube Simulation, Second Law Piecewise Linear Dispersion 
Model, D = 1O cm2/s 

very high levels of physical dispersion. 

12 

6,3.3. SECOND LAW DISPERSION MODEL: FRONT TRACKING ALGORITHM 

Finally, the front tracking model is applied to the slim tube model simulation. As 

described in the Taylor dispersion experiment simulation section, the only additional 

information required for this model is the initial front location, the compositions upstream 

and downstream of the front, and the mole fraction tolerance for locating the starting and 

ending points of the profile. The initial front location is at x = 0, the injection point for the 

tube; the upstream composition is thus the composition of the solvent being injected and 

the downstream composition is that of the oil initially in the tube. The mole fraction 

tolerance is set at 2% as for the Taylor dispersion simulations. 
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The front tracking model is tested for configurations of 25, 50, 100 and 200 grid 

blocks. The initial test is done with the two point upstream weighting technique for the 

ethane + n-octane system with D = 10-2 cm2/s. The results of these runs are shown in 

Figure 6.28. The 25 block model apparently gives insufficient resolution for this problem, 

however the position of leading edge of the profile compares well with that obtained for 

the 400 block single point model configuration using the first law or second law piecewise 

linear models. The other three profiles approximate the error function profile reasonably 

well, although the tailing of the trailing edge of the profile is a strong function of the 

number of grid blocks used. Calculation times ranged from 0.5 to 20 min on the 

rs6000.320h workstations. 

These calculations are repeated with the same system configurations but with the 

single point upstream weighting technique. These results are shown in Figure 6.29. 
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Although the interface mole fractions for the blocks over which the profile is calculated to 

be active are set according to the interface integration scheme and will not be affected by 

the normal single point or two point techniques, the blocks which fall outside of the 

dispersion calculation zone will affect the leading and trailing edge of the profile. In this 

case the single point scheme is seen to create more tailing off of the trailing edge of the 

profile. There is very little, if any, difference in the leading edges of the profiles. 

The calculations are performed next using the same configurations for the ethane + 

n-octane system with D = 10-3 cm2/s. As the differences between the single point and two 

point cases described above were small, the single point technique is used for the 

remaining runs, as it required fewer time steps. The calculated profiles are shown in Figure 

6.30. In this case again, the 25 block model has inadequate resolution to track the front. 

The other three configurations show good results as far as placing the leading edge of the 
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Figure 6.30: Slim Tube Simulation, Front Tracking Dispersion Model, Single Point 
Weighting with D = 10-3 cm2/s 

profile, while only the 100 and 200 block models maintain enough control on the trailing 

edge of the profile. When the profiles are examined in terms of the number of blocks they 

extend over, however, even the 25 block model performs well, as the majority of the 

profile is contained within about 4 grid blocks. 

Finally, the ethane + 5 component oil system is modeled using these model 

configurations and a dispersion coefficient of D = 10-2 cm2/s. The results are shown in 

Figure 6.31. The same trends regarding leading edge and trailing edge shape and 

placement are observed in this case as for the two component examples. 

6.3.4. DISPERSION MODEL SUMMARY FOR THE SLIM TUBE SIMULATION 

The runs with D = 10-2 cm2/s yielded the following results. With the two point 

upstream weighting technique, the first law and second law piecewise linear models were 
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1.1 12 

found to under-predict the level of dispersion. The second law multiple step dispersion 

model provided approximately the right magnitude of dispersion. For the single point runs, 

the first law and second law piecewise linear models were found to predict the level of 

dispersion correctly, while the second law multiple step dispersion model over-predicted 

the dispersion. The front tracking model allowed accurate calculation of the leading edge 

of the profile for a range of grid block refinements, and could predict the shape of the 

trailing edge as well with an adequate number of blocks. 



154 

7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. CONCLUSIONS 

Three methods have, been investigated, for the modification of a conventional 

compositional simulator based on the convective flow equation to allow the explicit 

treatment of dispersive processes. The fundamental technique used for all three models is 

the addition of dispersive flow rates as source/sink terms in the convective flow equation. 

This approach has proved capable of modeling convective-dispersive processes within the 

framework of an IMPES type compositional simulator. Advantages of this approach over 

modeling with a fill convection-dispersion equation include reduced computational costs 

and enhanced computational stability. Some conclusions drawn regarding the different 

dispersion models are: 

1. The Fick's first law model as presented by Thiebot and Salcthikumar (1991) can be 

used to predict dispersion in a variety of systems in one, two or three dimensions. The 

total amount of dispersion predicted by this model will be the sum of the physical 

dispersion and numerical dispersion (truncation error); thus the dispersion prediction will 

depend on grid block refinement and time step sizes. Techniques used to limit numerical 

dispersion can also limit the amount of physical dispersion generated from the first law 

model. The results of the model increase in accuracy with increasing grid refinement and 

decreasing time step size. 

2. The Fick's second law model developed in this work is derived as a one-dimensional 

technique, but can be applied as a series of one-dimensional calculations to rows of grid 

blocks in two or even three dimensions. The multiple step approximate initial condition 

applied with this model is found to over-predict the level of dispersion in cases involving 

large time steps and/or high dispersion coefficients. The piecewise linear approximate 



155 

initial condition used with this model is capable of modeling convective-dispersive 

processes in the three system geometries studied. 

3. For some conditions, primarily for fine grids with low dispersion coefficients and small 

time step sizes, the results of the second law piecewise linear model coincide with those 

obtained using the first law model. However, for other conditions, the results diverge and 

this model can reflect interactions between gradients across two faces of a grid block or 

the changing concentration gradient across an interface over the course of a time step. 

This model also did not show any oscillations in the solution which occurred in some cases 

with the first law model. 

4. The conclusions in 1, regarding numerical dispersion, also apply for the second law 

approximate initial condition models. 

5. The second law front tracking model is applicable to systems of one dimension only. It 

is capable of locating the leading edge of a flowing dispersive front accurately even when a 

relatively coarse grid is used. The shape and location of the trailing edge of the profile is 

not as accurately predicted. 

6. The front tracking algorithm is not as generally applicable as the other two models, 

failing to give good results in situations where two fronts are interacting, or when a weak 

or variable convective component of the flow exists. 

7. The front tracking algorithm includes numerical dispersion control inherent within the 

calculation scheme, thus is not as sensitive to grid block and time step size variations. 
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7.2. RECOMMENDATIONS 

The primary recommendation stemming from this work is that the degree of 

numerical dispersion in a model system must be well characterized before attempting to 

add a physical dispersion model. The ability of numerical dispersion control schemes to 

limit predicted physical dispersion must be taken into account. 

The first law model and second law piecewise linear model show similar 

computation times and comparable results. The possible smoothing effects exhibited by 

the second law model may make it a more desirable choice. This second law scheme may 

also be extended to fill two-dimensional solution of an approximate initial condition 

profile. The Green's function methodology can be used as described in Chapter 4 to derive 

an analytical expression for the concentration profile in two dimensions. As for the one-

dimensional case, this profile can be integrated over a grid block to determine the number 

of moles of a component in that block, and the determination of dispersive flux to or from 

the block can be carried out using the methods given in Chapter 5. This would give the 

advantage of accounting for concentration gradients in both directions on the magnitude 

of dispersion. Since the calculation methodology would be the same as for the one 

dimensional model, the major difficulty in applying this method is in the definition of an 

integrable approximate initial condition in two dimensions. Multiple plane segments equal 

to the mole fraction in each block would lead to over-prediction of dispersion as in the 

multiple step one dimensional model. A piecewise planar analog to the piecewise linear 

initial condition would be required. 

The second law front tracking dispersion model performed well for maintaining the 

definition of a front over a small number of grid blocks in a flowing system. Complications 

in the physical system as shown in this work, however, caused deterioration in the model 
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performance. Although field scale simulations require more than one dimension, a model 

of this type can be useful for laboratory simulations or situations in which dispersion in 

one direction is dominant. Increasing the sophistication of the interface composition 

calculation may improve the prediction of the trailing edge of the profile, for example by 

calculating the bulk movement of the front for each interface, rather than only for the front 

midpoint. 

The equation of state calculations in this dissertation primarily affected the 

volumes of the flowing fluids, since at no point did the simulated reservoir conditions 

result in two equilibrium hydrocarbon phases. It would be of interest to pursue the 

dispersion model approach of this thesis in cases where phase separations occur, at least in 

some reservoir blocks. Some of the formalism required to do so has been outlined in 

Chapters 3 and 5 of this dissertation. 
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APPENDIX 

EXTENSION AND EVALUATION OF GREEN'S FUNCTION METHODS 
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A. 1. ONE DIMENSIONAL LAPLACE DOMAIN SOLUTIONS 

The Laplace domain solution procedure was outlined in Section 4.4.4 of this 

dissertation. The details of obtaining a solution for a specific boundary flux are described 

here. The flux function must be approximated numerically by a function with a known 

Laplace transform. This may be accomplished using a piecewise linear approximation. In 

this approach, the value of a function F(t) is known for a number of values oft as shown 

in the following table. 

t 

TO 

7; 

Tk 

TN 

F(t) 

F(T0)=F0 

F(TI) =F 

F(Tk)=Fk 

F(TN)=FN 

(A.1) 

The original function is approximated by chords between these known points. The 

approximating function is defined by the following equations: 

fk(t)= FL,  + Fk (t - 2_I) T≤t≤7;;k=1,N (A.2) 

p F,— F1  

k k—I 

(A.3) 

As the function F(t) defined in this way is piecewise continuous, it has a Laplace transform 

given by 

F(S) = f e_3tf1(t)dt + fe_st f2(t)dt+. + fefk(t)dt 
TkI 

TN co 

+• . •+ f e fN(t)'t + f e--"f,,+, ( t) dt 
TN-1 TN 

(A.4) 
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The Laplace transform of the approximating function may be found by substituting the 

linear function segments defined in equation (A.2) into equation (A.4). As these functions 

are only defined for 1:5 7, the shape of the functionfN .,J(t) must be assumed. 

Assuming the function is constant for all times greater than TN, that isfN+I(t) = FN, 

the Laplace transform for the piecewise linear function approximation from equation (A.4) 

becomes 

F(s) = F e_T0 +4±Pk(e_:T1 - e_sTk) (A.5) 

Two other common treatments for the function extrapolation are to assume the function 

has a zero value for all times greater than TN, or that the slope of the function is constant 

and equal to the slope of the last segment for all times greater than TN. The resulting 

transform equations are given in equations (A.6) and (A.7) for the zero value and the 

constant slope assumptions respectively. 

e_3T0 r N'pk(e- e_ST?1F(s) = F0 +41 T*1 - eTk )] - F - 
S 

-.To + -4IN -i E (e_ST*1 - e_3Tk + p eTh1 
S L= N 

(A.6) 

(A.7) 

Having obtained the Laplace transform of the flux function from one of the 

equations above, the solution for the concentration gradient in Laplace space may be 

found from equation (4.43). To obtain the solution in terms of time, the Laplace domain 

solution must be inverted numerically. 

A review of methods for numerical inversion of Laplace transforms is given by 

Davies and Martin (1979). Several methods provide high levels of accuracy over a wide 

range of test functions, although no single method gave optimum results for all purposes. 

As a compromise between ease of implementation and accuracy, the algorithm presented 
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by Stehfest (1970) is used here. The applicability of this algorithm for transforming the 

boundary integral with various flux functions is discussed in Section 4.5, where results for 

the time domain and Laplace domain formulations are compared. 

For a given time t, one concentration value pi is generated from N values of 

concentration in Laplace space 4(s), j = 1,N, according to the following formula: 

iiN / 1 in. _ i .in 
p,I%t) = — V1p4 j=1 

where 

\ 

where the weighting function Vj is calculated from 

min(j.W/2) kN12 (2k)! 
V1 = ()(N/2)+J 

k=(j+1)/2 (N/2 - k)!k!(k - k)!(2k - 

(A.8) 

(A.9) 

The number of terms N used in the expansion must be even, and the accuracy of the 

algorithm increases with increasing N. The values of the weighting function for several 

values of N are shown below in Table A. I. As can be seen from this table, machine 

precision limits are quickly reached, and a practical upper limit of N = 8 is found for single 

precision computing, N= 16 for double precision. 

To generate one value of concentration at point x and time 1, eight values of 

are calculated from equation (4.43), with Sj j1n2/t. These values are then summed 

according to equation (A.8), with the appropriate weighting functions given by equation 

(A.9), to give the desired value p(t). 
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Table A. 1: Stehfest Algorithm Weighting Coefficients 

Number of Coefficients 

j 4 8 12 16 

1 -2.0000000 -0.3333333 -0.016666666666667 -0.0003968253968254 

2 26.0000000 48.3333300 16.01666666666670 2.133730158730160 

3 -48.0000000 -906.0000000 -1247.000000000000 -55 1.0166666666670 

4 24.0000000 5464.6670000 27554.33333333330 33500.16111111110 

5 -14376.6700000 -263280.8333333330 -812665.1111111110 

6 18730.0000000 1324138.700000000 10076183.76666670 

7 -11946.6700000 -3891705.533333330 -73241382.97777780 

8 2986.6670000 7053286.333333330 339059632.0730160 

9 -8005336.500000000 -1052539536.278570 

10 5552830.500000000 2259013328.583330 

11 -2155507.200000000 -3399701984.433330 

12 359251.2000000000 3582450461.700000 

13 -2591494081.366670 

14 1227049828.766670 

15 -342734555.4285710 

16 42841819.42857140 

the same steps as those outlined in the previous section for the one-dimensional problem. 

Application to a two-dimensional problem is shown below. 

The diffusion equation will be solved for a rectangular region of dimensions Xe by 

ye, again with the molar fluxes of component i across the block boundaries given as 

general functions of time. A schematic of the problem geometry is given in Figure A. 1, 

below. 
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X= 0 
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30 — g(t) 

X=Xe 

Y=O 

Figure A. 1: Two Dimensional Problem Geometry 

A.2.1. TIME DOMAIN SOLUTION 

The diffusion equation given in equation (4.22) for the one dimensional problem 

can be extended to the two dimensional problem, assuming equal diffusivity in both 

directions, as 

DEp,(x,y,t) = ra2 Ap,(x,y,t) + ö2 Ap,(r,y,t)l 

at Ox2 0y2 I (A.10) 

The prescribed flux boundary conditions corresponding to the molar fluxes shown in 

Figure A. 1 are written in the same form for each boundary as those given in equation 

(4.23) for the one dimensional problem. The zero initial condition again applies. 

To solve this problem with the sources distributed over the boundaries of the 

region, equation (4.18) is written as: 
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Ltp1(x,y,t) = 
r'=. 
L $ ff()G(x,y,y',t_ çx' = o)4v'+ 5 g(r)G(x,y,y',t_ r,x' = (A.11) 

Oy'=O y'=O x'=x 
+5a(r)G(x,y,y',t_ r,y' = O)'+fb( )G(x,y,y',t— çy' = Ye)'1dr 

The source functions for this equation are obtained as described for the one-dimensional 

problem. Gringarten and Ramey (1973) give the source function for a two-dimensional 

rectangular region with prescribed flux at the boundaries as follows: 

00 (_n21?D/'l j'nzx' ) \ j'nrc'1 
G(x,x',y,y',t) ={[1+2exP  2 co  X) co - 

X , Xe , ! XL -n=1 X j 

(_fl2 Dt n*,' nny 
x 1+2exp1 2 co co 

2: ye ,) ( yc ) { y, 

(A.12) 

The final equation for the two-dimensional concentration profile may be obtained 

by substituting the appropriate source functions into the inner integrals in equation (A. 11), 

and performing the integrations analytically. The component fluxes are assumed to be - 

evenly distributed along the block boundaries (i.e. constant with respect to the space 

variable), thus they may be taken outside the spatial integrals. Performing these steps 

yields an equation which is simply the summation of two orthogonal one-dimensional 

solutions. The two-dimensional concentration profile equation may be written as: 
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A.2.2. LAPLACE DOMAIN SOLUTION 

The two-dimensional diffusion equation in the Laplace domain corresponding to 

the one dimensional case given in equation (4.25), again assuming equal difflisivity in both 

directions, may be written as: 

Otc(x,y,$) = D.18 b(x,y,$) + 2 A(x,y,$)1 (A.14) 

'[ 8x2 0y2 J 

Again, the prescribed flux boundary conditions corresponding to the molar fluxes shown 

in Figure A. 1 are written in the same form for each boundary as those given in equation 

(4.26) for the one dimensional problem. 

The Laplace space boundary integral form, equation (4.19), for this case may be 

written: 

y.=y. y,=y. 

A(x,y,$) = fj(s)(x,y,y',s;x' o)dy' + f g(s)ZT(x,y,y? $S;X1 = xjdy' 
y'=O y=O 

X'=x. 

+ f a(SRX'Y'Y " s;y' = o)fr' + (s)G(x,y,y',s,y' = 

The source functions for this equation are obtained as described for the one-dimensional 

problem. van Kruijsdijk (1988) gives the Laplace space source function for a two-

dimensional rectangular region with prescribed flux at the boundaries as follows: 

(A.15) 
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(x,y,x' 1 ,y',$) = { 1  120h/sh11  
2L; J/ D, exp(2y,is/L)-1 +exp[—Iy—y'I4s/i] 

+ 2cosh[(y +y')%jsi " [y +y'Is/ ]]+ ± 2 con,zx / x6)con' / Xe) 
exp(2y's/t)-1 + exp 

VslDi +(nnlX')2 

[2cosh[(Y_Y')s/D, + (nn /X6)2 Lp(2y$/ +( I/x)2)_l+ex JY YI 5/ R +( i X')2 ] 
2cosh[&+"51D + (nn /x)2] 

s/ +(,/ x.)2)_ 1 +exP[_IY+Y'Is/ +( 1/x.)2 exP(2Ye ]1} 
(A.16) 

As for the time domain solution, the final equation for the two-dimensional concentration 

profile in the Laplace domain, obtained by substituting the appropriate source functions 

into equation (A. 15), is simply the summation of two orthogonal one-dimensional 

solutions. The two-dimensional concentration profile equation may be written as: 

Qpj(x,y,$) J(s)(x,r' = O,$)+(s)(x,x' = x,, s) (A 17) 

= O,$)+b(s)'(y,y' = y1,$) 

with the source functions given by equations (4.44) and (4.45). 

Extending this analysis to three-dimensional rectangular grid blocks, the 

concentration distribution equations may be written directly as the summation of three 

orthogonal one-dimensional solutions. 

A.3. TIME DOMAIN/LAPLACE DOMAIN SOLUTION EVALUATION 

From the development of the model equations shown in the previous sections, it 

can be seen that the two main advantages inherent in the Laplace space solution of the 

diffusion equation are: removal of the time integral in the boundary integral formulation, 
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equation (4.18), and the elimination of the infinite summation terms in the source 

functions, e.g. equation (4.34). The obvious disadvantage of the method is that the 

Laplace space solution must be inverted numerically to obtain the time domain solution. In 

order to use the Laplace domain solution with confidence, the applicability of the Stehfest 

Algorithm for the numerical inversion of the Laplace space concentration profiles must be 

verified. 

In this section, results of the time domain solution procedure and the Laplace 

domain solution procedure are compared for five different flux functions. As the solutions 

for the two and three dimensional problems are simply obtained by superposition of the 

one dimensional solutions, the method will be validated for the one dimensional case only. 

As discussed earlier, the flux functions must be extrapolated from the last known 

time value to infinity in order to use the Piecewise Linear Approximation (PLA) for the 

Laplace transform. Two extrapolation techniques were found to give good results: the 
constant value extrapolation, and the constant slope extrapolation. Results obtained using 

both of these methods are examined in this section. 

A.3.1. RESULTS OF CONCENTRATION PROFILE CALCULATIONS 

For the five cases studied, a component flux is defined for one end of the one 

dimensional grid block, at x = 0, while the other end at x = Xe is considered impermeable. 

The concentration profile in the time domain is given by equation (4.35), with the source 

functions given by equations (4.36) and (4.37). The concentration profile in Laplace space 

is given by equation (4.43), with the source functions given by equations (4.44) and 

(4.45). 
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The concentration profile solutions are given in terms of the following 

dimensionless units: 

Dt p,(x,t) 

fD(D) =  tDT' XD X. , CD   

The simplest case is that of a constant flux function: 

(A.18) 

(A.19) 

As both the flux and the slope of the flux function are constant, both extrapolation 

methods for the Piecewise Linear Approximation yield the same results. Another 

consequence of the constant slope flux function is that the PLA will yield the exact 

Laplace transform of the flux function, thus any discrepancies in the solution profiles will 

be due to the Stehfest algorithm. The concentration profiles calculated using the time 

domain and Laplace domain solution techniques for this case are shown in Figure A.2 for 
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Figure A.2: Concentration Profiles - Constant Flux Function 
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several values of dimensionless time. As seen in this figure, the concentration profiles are 

virtually indistinguishable. 

The next case studied is the ramp flux function with constant slope: 

fD(tD)tD (A.2Q) 

The calculated concentration profiles for this case are shown in Figure A.3. As expected, 

the Laplace domain solution with the constant slope extrapolation matches the time 

domain solution more closely than with the constant value extrapolation. Again, the PLA 

with the constant slope extrapolation will yield the exact Laplace transform of the flux 

function; the small variation in the solutions with this extrapolation method are due to the 

Stehfest algorithm. The somewhat larger errors associated with the constant value 

extrapolation are due to the combined effects of the extrapolation method and the 

inversion algorithm. 
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Figure A.3: Concentration Profiles - Ramp Flux Function 
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Figure A.4: Concentration Profiles - Square Root Flux Function 

The third function tested is a square root form: 

(A.21) 

In this case, the results of the Laplace domain solutions depend on the number of points 

used in the Piecewise Linear Approximation. In order to reduce the errors introduced by 

the PLA, the flux function must be approximated by a sufficiently large number of line 

segments. For times up to tD = 1, it was found that the flux function could be adequately 

approximated with 25 points in the PLA. This value was used to generate the 

concentration profiles shown in Figure A.4. Again, the Laplace domain solution with the 

constant slope extrapolation is found to agree more closely with the time domain solution 

than the constant value extrapolation method. 
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Stehfest (1970) indicates that the Laplace inversion algorithm is not expected to 

give accurate results for functions with discontinuities or oscillations in the vicinity of the 

time for which the value of the function is desired. The effect of discontinuous or 

oscillatory flux functions on the accuracy of the diffusion equation solutions are examined 

next. 

The discontinuous function chosen is a single step function. Roumboutsos (1988) 

has shown that the Piecewise Linear Approximation and the Stehfest algorithm may be 

used with functions of this type, provided the step is smoothed in some manner. 

Allowance for defining the step function with a finite slope is made here. The flux function 

is defined as: 

q O≤tD ≤ID 

≤ tD ≤ D2 
tDtDI 

tan (5 

0 D≤tD 

t1 =1D1 {1—(q/2)tans] 

t2 _ tD1 [1+(q/2)tanS] 

(A.22) 

In this case, we let q = 1 and tD = 1. The amount of smoothing of the function depends on 

the value chosen for 8, a value of 8=00 gives the step function with no smoothing, while 

a value of 5 = 450 would give a ramp function with constant slope. Values of 8 = 0.1 °, 5 

= 10 and 8= 5° are tested here. 

For the Laplace domain solutions, the flux function is divided into three segments 

for the PLA corresponding to the three regions defined in equation (A.22). The time 

domain solutions are generated using the step function with no smoothing. 

The effect of the slope chosen to smooth the step function is shown in Figures A.5 

through A.7. In each of these figures, the calculated concentrations for five different 
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values of XD are shown as a function of dimensionless time. These plots are shown in 

Figures A.5, A.6, and A.7 for 6 values of 0.10, 1° and 50 respectively. As the final 

segment in the PLA has a constant value, both extrapolation methods yield identical 

results; thus, only one Laplace solution curve and one time domain solution curve are 

shown in each plot. 

From Figure A.5, it can be seen that the sampling method of the Stehfest algorithm 

causes oscillations in the solution with time when a small value of 5 is used. For values of 

5 less than 0. 10, these oscillations are even larger. The effect of increasing S is to decrease 

the amplitude of these oscillations; at 5= 5° the oscillations are almost completely 

damped. Even without oscillations, the Stehfest algorithm gives erroneous results for the 

step function at times close to the step time, as shown in Figure A.7. Using a value of S 

= 50 to smooth the step function, however, the Stehfest algorithm may be used to 

approximate the time domain solution at times greater than 1D from the step time. 

The calculated concentration profiles for five dimensionless times greater than 

= 1 as functions of dimensionless length are shown in Figure A.8. As can be seen in 

these plots, the profiles in the transition period between t = 1 and 1D =2 are not modeled 

accurately by the Laplace domain solution, however it does provide a good approximation 

to the steady-state solution. 

The final flux function studied is a sine form: 

fD(tD) = sin(2, tD) (A.23) 

Based on the results obtained for the other flux functions, the PLA with 30 points is used 

for the function approximation in this case. The calculated concentration profiles are 

shown in Figure A.9. The results through one half cycle time tD = 0.5 show reasonable 

agreement between the Laplace domain and time domain solutions. After this time, 



180 

however, the errors in the Laplace solution continue to increase; after one hill cycle time, 

the Laplace domain solution fails to even follow the trends exhibited by the time domain 

solution. 
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A.3.2. SUMMARY OF LAPLACE AND TIME DOMAIN CALCULATIONS OF 

CONCENTRATION PROFILES 

As noted earlier, the Laplace transform of the boundary integral equation was 

introduced to eliminate the numerical integration of the convolution integral in time, with 

the resulting formulation requiring numerical Laplace inversion instead. A comparison of 

the program execution times, for the generation of concentration profiles at six values of 

tD = 0.01, 0. 1, 0.2, 0.3, 0.4, and 0.5, using the time domain solution method and the 

Laplace domain solution methods with both extrapolation techniques are shown below in 

Table A.2. The execution times are for a DOS based PC with an 80386 processor and an 

80387 math coprocessor. 

Table A.2: Execution Times for Concentration Profile Generation 

Solution 
Method 

Flux Function 
Constant Ramp Square 

Root 
Step Sine 

Time Domain 4:49.08 4:50.45 4:37.21 4:13.15 5:25.22 
Laplace Domain 
(Constant Value) 

2.47 2.58 3.46 3.85 3.90 

Laplace Domain 
(Constant Slope) 

2.53 2.58 3.58 3.90 4.01 

The execution times reflect the difficulty of performing numerical integration of the 

convolution integral with the infinite sum present in the source function. A standard 

Romberg integration routine is used for the evaluation of the convolution integral (Press et 

al.; 1986). At the small values of dimensionless time used in these calculations, the infinite 

sum requires a large number of terms to converge; the repeated evaluation of these sums 

in the numerical integration scheme uses considerable computation time. For larger values 

of tD, the sums converge in just a few terms, resulting in much faster computation times. 

The Laplace inversion technique performs at the same speed regardless of the value of t,. 
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It can be concluded that the Laplace domain solution method will proceed more quickly 

than the time domain solution, with the magnitude of the computation savings depending 

on the value of time for which a solution is desired. 

The Laplace domain solution techniques may be used with reasonable accuracy for 

flux functions approximating any of the functions studied in this comparison except for 

oscillatory functions. The appearance of discontinuities in the flux function must be 

examined to determined if the desired value of concentration is at a point in time removed 

far enough from the discontinuity to allow solution with the step smoothing procedures 

described here. 

A.A. FLUX EVALUATION WITH THE TIME DOMAIN AND LAPLACE DOMAIN 

SOLUTIONS 

For both solution methods, the final step in obtaining the concentration profile is a 

numerical one: for the time domain solution it is a numerical integration, for the Laplace 

domain it is the numerical Laplace inversion. If the gradient of a profile calculated in the 

domain is required, the Laplace space expression may be differentiated analytically and this 

result inverted numerically. Similarly, the Laplace space profile expression may be 

integrated to determine the number of moles present in a given region, and again the 

resulting expression can be inverted numerically. 


