
Oracles and Queries that are Su�cient for

Exact Learning

Nader H. Bshouty
�

Richard Cleve
�

Ricard Gavald�a
y

Sampath Kannan
z

Christino Tamon
�

Abstract

We show that the class of all circuits is exactly learnable in randomized expected

polynomial time using weak subset and weak superset queries. This is a consequence

of the following result which we consider to be of independent interest: circuits are ex-

actly learnable in randomized expected polynomial time with equivalence queries and

the aid of an NP-oracle. We also show that circuits are exactly learnable in determin-

istic polynomial time with equivalence queries and a �p
3
-oracle. The hypothesis class

for the above learning algorithms is the class of circuits of larger|but polynomially

related|size. Also, the algorithms can be adapted to learn the class of DNF formulas

with hypothesis class consisting of depth-3 ^-_-^ formulas (by the work of Angluin

[A90], this is optimal in the sense that the hypothesis class cannot be reduced to DNF

formulas, i.e. depth-2 _-^ formulas).

We also investigate the power of an NP-oracle in the context of learning with

membership queries. We show that there are deterministic learning algorithms that

use membership queries and an NP-oracle to learn: monotone boolean functions in

time polynomial in the DNF size and CNF size of the target formula; and the class of

O(logn)-DNF\O(logn)-CNF formulas in time polynomial in n. We also show that,

with anNP-oracle and membership queries, there is a randomized expected polynomial-

time algorithm that learns any class that is learnable from membership queries with

unlimited computational power.

Using similar techniques, we show the following both for membership and for equiv-

alence queries (when the hypotheses allowed are precisely the concepts in the class):

any class learnable with unbounded computational power is learnable in determin-

istic polynomial time with a �
p
3-oracle. Furthermore, we identify the combinatorial

properties that completely determine learnability in this information-theoretic sense.

Finally we point out a consequence of our result in structural complexity theory

showing that if every NP set has polynomial-size circuits then the polynomial hierarchy

collapses to ZPPNP .

�Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4, E-mail:

hlast namei@cpsc.ucalgary.ca. Research supported in part by NSERC of Canada.
yDepartment of Software (LSI), Universitat Polit�ecnica de Catalunya, Pau Gargallo 5, 08028 Barcelona,

Spain, E-mail: gavalda@lsi.upc.es. Supported in part by ESPRIT project ALCOM II and by DGICYT,

project number PB92{0709.
zUniversity of Arizona, Tucson, AZ 85721, E-mail: kannan@cs.arizona.edu. Supported by NSF grant

CCR 91-08969

1

1 Introduction

One of the outstanding open problems in computational learning theory is whether or not the

class of DNF formulas is learnable in polynomial time in any \reasonable" learning model.

We focus on this problem as well as the (apparently) more di�cult problem of learning the

class of all boolean circuits.

In the PAC learning model [V84b], it is an easy result that if P = NP then there is an

e�cient learning algorithm for the class of DNF formulas as well as the class of circuits. As

explained by Pitt and Valiant [PV88], the idea behind the algorithm is that, given a suitable

(polynomial) number of examples, it su�ces to �nd any member of the class being learned

that is consistent with all the examples. With the aid of an NP-oracle, this can easily be

accomplished in polynomial time.

In the models of exact learning with membership and/or equivalence queries [A88], such

a result is not as straightforward. For example, if equivalence queries are permitted, merely

�nding a member from the class being learned which is consistent with the results of all
queries made so far is not necessarily a good choice for the next equivalence query; ex-
ponentially many such queries may be required to �nd the target concept in some cases.
Nevertheless, Gavald�a [G93] recently showed that if P = NP then the class of circuits is
learnable in deterministic polynomial time with equivalence queries.1

In this report, we show that the class of circuits is learnable in randomized expected
polynomial time with equivalence queries and the aid of an NP-oracle. We also show that
circuits are learnable in deterministic polynomial time with equivalence queries and a �p

3-
oracle. Note that the above yields an alternative approach to deriving Gavald�a's [G93] result.
(We are currently unaware of any deterministic learning algorithm that, with equivalence

queries and the aid of an NP-oracle, can learn even the class of DNF formulas in polynomial
time|even if the equivalence queries are allowed to be arbitrary circuits.)

The hypothesis class for the above learning algorithms is the class of circuits of larger|
but polynomially related|size. Also, the algorithms can be adapted to learn the class of DNF
formulas with hypothesis class consisting of depth-3 ^-_-^ formulas (by the work of Angluin
[A90], this is optimal in the sense that learning DNF using polynomially many samples is

impossible when the hypothesis class is DNF formulas, regardless of the computational power

of the learner).
More in general, we also study how much a powerful oracle can help in learning from

queries. Take any class that is learnable from a polynomial number of equivalence queries and

unlimited computing power. We show that, when the hypotheses are restricted to be from the

same class, there is an algorithm that learns in polynomial time using equivalence queries
and a �p

3-oracle. Furthermore, there is a known combinatorial property that completely

characterizes learnability in this sense: the \approximate �ngerprints" in [A90]. Angluin
showed that the negation of this property is necessary for a class to be learnable with

1When we say that a class is learnable without mentioning a hypothesis class, we mean that target class

and hypotheses class are the same; otherwise, we explicitly mention which class of hypotheses is used. By

\polynomial time" learning we mean that the running time is polynomial in the number of variables and

the size of the shortest representation in the class for the target function. Precise de�nitions are given in

Section 2.

2

equivalence queries and unlimited power; here we show that it is also su�cient.

Learning models where the learner has an NP-oracle (or �
p
3-oracle) are admittedly quite

generous, so some motivation for this work is in order. Many of the queries that have been

proposed in learning theory are also quite powerful in the sense that implementing them is

computationally di�cult. For example, when the concept class is DNF formulas, implement-

ing an equivalence query, given the target formula in hand, is an NP-hard problem. Angluin

[A88] also introduced the subset query (where a negative counterexample is requested) and

the superset query (where a positive counterexample is requested). We show that if both

subset and superset queries are available then they can be used to simulate an NP-oracle

as well as equivalence queries. In fact we require only the weak variants of these queries

whereby the learner need only be told if there is a counterexample without actually being

given one. Therefore, from the above result, it follows that the class of circuits, as well as

the subclass of DNF formulas, is learnable in expected polynomial time from weak subset

and weak superset queries alone. In this case, the hypothesis class for DNF formulas is
that of depth-3 formulas, but both ^-_-^ and _-^-_ forms are used. (Note that these latter

algorithms do not use any oracles in addition to their weak subset and weak superset queries.)
Next we consider learning problems where the learner can make membership queries (but

no equivalence queries) and has access to an NP-oracle. We show that (in the terminology
of [B93]) the number of membership queries required to learn a boolean function is bounded
by a polynomial in its monotone dimension, dual monotone dimension, DNF size, and CNF

size. Two corollaries of this are that with an NP-oracle and membership queries: monotone
functions are learnable in time polynomial in their DNF size and CNF size; and n-variable
O(log n)-DNF\O(log n)-CNF (which generalizes depth O(log n) decision trees2) is learnable
in time polynomial in n. We also show some lower bounds on the number of membership
queries required (regardless of the computational power).

Then, we show that any class of functions that is learnable from membership queries with
unlimited computational power is learnable from membership queries with an NP-oracle in
randomized expected polynomial time, and with a �p

3-oracle in deterministic polynomial
time. As in the case of equivalence queries, we also identify the combinatorial property that
determines learnability from membership queries and unlimited computing power.

Our approach in showing that any class learnable from membership queries is learnable
from membership queries in randomized expected polynomial time with an NP-oracle is

based on the following observation. If a class is learnable from membership queries then, at

each stage during the learning process, there must be an assignment that is not zero or one
on most of the functions consistent with the data known so far. We then can probabilistically
estimate two threshold functions, and show that with high probability a point that is distinct

on the two thresholds is a \good" assignment that eliminates a large portion of the functions.

The probabilistic estimation of two threshold functions employs the approximate uniform
generation of Jerrum et al. [JVV86].

Finally, we show an application of our results to structural complexity theory. Watanabe
[W94] has observed that our results about learning with equivalence queries and an NP-oracle

imply the following complexity theoretic result: if every NP set has polynomial-size circuits

2Kushilevitz and Mansour [KM91] have shown that depth O(logn) decision trees are exactly learnable

with high probability using membership queries.

3

then the polynomial hierarchy collapses to ZPPNP. (This improves the previous result of

Karp and Lipton [KL80] where �
p
2 appears in place of ZPPNP.)

Let us comment on a particular technique used in this paper. For our results concerning

learning with equivalence queries and an NP-oracle, our approach builds on the investigation

of the query complexity of learning by Kannan in [K93]. Kannan shows that, for circuits,

there exist \good" equivalence queries, whose responses are guaranteed to eliminate at least

a polynomially small (i.e. (1
n
)O(1)) fraction of the remaining concepts3. Finding these good

equivalence queries may not be feasible (in polynomial time), although this can be done in

polynomial space by an exhaustive search. Using the results of Jerrum et al. [JVV86] about

\approximate uniform generation" we show how to construct these good equivalence queries

with high probability with the aid of an NP-oracle.

Goldman et al. [GRS93] also employ results about \approximate uniform generation"|

and a closely-related problem, \approximate counting"|in a di�erent learning context:

learning a total order on a set in time polynomial in the size of the set. This can always
be accomplished with a quadratic number of membership queries, but, by an approximate

counting technique, Goldman et al. reduce the \number of mistakes" in the on-line model
[L88] to O(n log n). It is well known [L88] that learning in the equivalence query model
implies learning in the on-line model. Our equivalence query algorithms depart slightly from
the standard model in that they use NP or �p

3 oracles, but they all carry over to the on-line
model by giving the on-line algorithms access to the same oracles.

2 The Learning Model

We consider learning scenarios where the concept class C consists of a set of boolean functions

of the form f : f0; 1gn ! f0; 1g. When n is �xed, we say that C is over f0; 1gn. Associated
to the class there is a representation method for the functions, that we will make clear in
each case. Speci�c representations that we focus on are DNF formulas and boolean circuits.
Sometimes we limit the class to those functions having some representation of size at most s
| for example, DNF formulas with n inputs and size at most s. In this case, we call the
resulting class s-bounded.

In the exact learning model the \learner" asks the \teacher" (oracles) certain types of
questions (queries) about the target function f . The goal of the exact learning algorithm is

to halt after time polynomial in n and the size of the shortest representation for f in the

class, and output a representation h that is logically equivalent to f . By \size", in general
we mean bit-size, although for formulas and circuits we implicitly use the closely related

measure given by the number of gates.
Consequently, the running time allowed to the learning algorithm depends not only on f

itself but on the representation method that is chosen. For example, DNF formulas for a
function may be exponentially larger than the smallest circuit computing it. Hence, if we

insist on expressing f as a DNF formula we may be allowing more time for learning than if

we are looking for a small circuit for f .

In this paper we will study the following types of queries. In an equivalence query, the

3The algorithms in [K93] also use membership queries; however, these can be removed from the algorithms.

4

learning algorithm supplies any function h as input to an equivalence oracle, and the reply of

the oracle is either \YES", signifying that h � f , or a counterexample, which is an assignment

b such that h(b) 6= f(b).

In a membership query, the learning algorithm supplies an assignment b as input to a

membership oracle, and the reply of the oracle is the value of f at b, i.e. f(b).

In a superset query (subset query), the learning algorithm supplies any function h as input

to a superset oracle (subset oracle), and the reply of the oracle is either \YES", signifying

that f) h (h) f), or a counterexample, which is an assignment b such that h(b) 6= f(b) = 1

(h(b) 6= f(b) = 0). The weak superset query (weak subset query) is a superset query (subset

query) that does not return a counterexample.

Note that, initially, the learner has no knowledge about f other than its membership to

the target class. Learning must succeed against any valid choice of counterexamples by the

teacher.

Unless stated otherwise, functions used as inputs to Equivalence, Subset, and Superset
queries are represented in the same way that the class that we are trying to learn. Sometimes,

learning may be too hard under this restriction. Then we may allow queries taken from a
larger hypothesis class, or expressed according to its representation method. When this
occurs the hypothesis class will always be explicitly stated.

To express our results, we will mention the following complexity classes. The classes in
the polynomial hierarchy f �p

k;�
p
k gk � 0 are de�ned inductively as follows: �p

0 = �p
0 = P ,

�p
k+1 is the class of all languages accepted by nondeterministic polynomial-time machines

that query an oracle in �p
k, and �p

k is the class of languages whose complements are in �p
k.

Note in particular that �p
1 = NP .

Also, a ZPP machine is a randomized polynomial-timemachine with the following prop-
erty: on every input, either it accepts with probability at least 3=4 (and halts without output

with probability < 1=4), or it rejects with probability at least 3=4 (and halts without output
with probability < 1=4). The class ZPP is the subclass of NP languages accepted by ZPP
machines. The class ZPPNP is de�ned analogously by allowing ZPP machines to query
NP oracles.

3 Learning with Equivalence Queries and anNP-Oracle

In this section, we describe a new randomized technique for learning in expected polynomial
time with the aid of an NP-oracle and equivalence queries. The main result of this section
is Lemma 5, and Theorem 7 highlights two speci�c consequences of the result: namely,

algorithms that, with the aid of an NP-oracle, can accomplish the following learning tasks

in probabilistic polynomial time:

� DNF formulas of size s using equivalence queries with hypotheses that are depth-3

^-_-^ formulas of size O(s n2= log2 n).

� Boolean circuits of size s using equivalence queries with hypotheses that are circuits
of size O(sn + n log n).

5

Our algorithms are weak versions of the so-called \halving algorithm", that we describe

brie
y.

For a set of concepts C over f0; 1gn, the majority concept it the unique concept that

contains exactly those elements of f0; 1gn which belong to at least one half of the concepts

in C. To learn a concept class C, the halving algorithm starts asking an equivalence query

with the majority concept of C. If the answer is \YES", it stops. Otherwise, by de�nition

of majority concept, the counterexample received is also a valid counterexample for at least

half the concepts in C; therefore, the number of candidates to be the target function is at

least halved. In the second round, the halving algorithm makes an equivalence query with

the majority concept of only those concepts that were not discarded in the previous round,

again shrinking by one half the candidate space. In the worst case, the algorithm has to ask

log jCj queries before the candidate space is reduced to only one element, which must be the

target concept.

The halving algorithm may be di�cult to implement for several reasons. At some step,
the required majority concept may have no representation within our hypothesis class; or

all its representations may be exponentially large with respect to the computation time we
are allowed; �nally, the majority concept may have some short representations but �nding
any of them may be computationally too expensive. For this reason, we settle for a weaker
requirement: instead of discarding half the concepts at every round, we discard some fraction
� > 0, possibly smaller than 1=2.

De�nition: Let C be a concept class and � 2 [0; 1
2
]. A hypothesis f is �-good for C if any

counterexample to an equivalence query of f eliminates at least a fraction � of the elements
of C.

De�nition: For a concept class C over f0; 1gn, x 2 f0; 1gn, and b 2 f0; 1g de�ne C(x;b)

to be the concepts from C for which f(x) = b. More formally C(x;b) = ff 2 Cjf(x) = bg.
This de�nition can be extended to a collection of labeled examples I � f0; 1gn � f0; 1g, i.e.
we can de�ne CI = ff 2 C : (8(x; b) 2 I)f(x) = bg. So CI is the set of concepts in C that
properly classify all examples in the labelled example set I. Also let
C(x;b) = jC(x;b)j=jCj and

Cx = min(
C(x;0);

C
(x;1)). So

C
(x;b) is the fraction of C that classi�es example x with label b.

A weak version of the halving algorithm repeatedly queries a hypothesis that is �-good for
the set of concepts not discarded before. Starting with concept class C, after i queries the

number of concepts left is at most (1��)ijCj, so at most ln jCj= ln(1
1��

) � 1
�
ln jCj equivalence

queries are required to isolate the target concept.
In order to generate �-good hypotheses, we use ampli�ers. The concept of ampli�cation

was �rst investigated by Moore and Shannon [MS56], Valiant [V84a], and Boppana [B89].

De�nition: Let 0 � p0 < p < q < q0 � 1. A (boolean) function G(y1; : : : ; ym) is a
(p; q)! (p0; q0) ampli�er if:

(a) When y1; : : : ; ym are each independently set to 1 with probability at least q,
Pr[G(y1; : : : ; ym) = 1] � q0;

6

(b) When y1; : : : ; ym are each independently set to 1 with probability at most p,

Pr[G(y1; : : : ; ym) = 1] � p0.

The use of ampli�cation functions in learning theory was considered by Goldman, Kearns,

and Schapire [GKS93]. Then Kannan [K93] observed connections between ampli�cation and

equivalence queries in learning algorithms. In [K93] there is an exponential-time algorithm

that learns boolean circuits and DNF formulas using both membership queries and equiva-

lence queries of polynomial size. In fact, equivalence queries alone su�ce by the following

lemma.

Lemma 1: Let G(y1; : : : ; ym) be a (�; 1��)! (2�2n; 1�2�2n) ampli�er. Let C be a concept

class over f0; 1gn and f1; : : : ; fm be functions selected from C independently and uniformly

at random. Then, with probability at least 1 � 2�n, G(f1; : : : ; fm) is �-good for C.

Proof: Note that, if � �
C(x;1) � 1 � � then, if x is returned as a counterexample to any

equivalence query, a �-fraction of the elements of C are guaranteed to be eliminated.
Now, let x be any value for which
C(x;1) < �. Then, if x is returned as a counterexample

to some fi for which fi(x) = 1, less than a �-fraction of the elements of C will be eliminated;
otherwise, more than a �-fraction. For a fi 2 C chosen uniformly at random, Pr[fi(x) =
1] < �. Therefore, since G(y1; : : : ; ym) is a (�; 1� �)! (2�2n; 1� 2�2n) ampli�er,

Pr[G(f1; : : : ; fm)(x) = 1] < 2�2n:

Thus, the probability that less than a �-fraction of the elements of C are eliminated when x
is returned as a counterexample is < 2�2n.

A similar argument applies for any x such that
C(x;1) > 1 � �.
Therefore, the probability that there exists an x 2 f0; 1gn which, when returned as a

counterexample to the equivalence query G(f1; : : : ; fm) eliminates less than a �-fraction of

the elements of C, is less than 2n � 2�2n = 2�n.2

Lemma 2 [B89, K93]:

(a) The function MAJORITY(y1; : : : ; y48n) is a (
1
4
; 3
4
)! (2�2n; 1 � 2�2n) ampli�er.

(b) De�ne A(y1; : : : ; ym) as a (2n= log n)-ary ^ of (2n= log n)-ary _s of distinct variables.

(Thus, the number of inputs to the formula is m = 4n2

log2 n
.) Then A(y1; : : : ; ym) is a

(1
n2
; 1� 1

n2
)! (2�2n; 1� 2�2n) ampli�er.

Statement (b) above is a sharpening of a similar result in [K93] but the proof follows along
similar lines described below.

Proof: We will use Cherno� bounds on the tails of distributions to prove the above

lemma. The following version of the Cherno� bound is taken from Raghavan [R90]. Let
X1;X2; : : : ;Xn be independent Bernoulli trials with Pr[Xi = 1] = pi; pi 2 (0; 1). Let X =Pn

i=1Xi and � =
Pn

i=1 pi. Then for � > 0

Pr(X > (1 + �)�) <

"
exp(�)

(1 + �)(1+�)

#�
= F+(�; �): (1)

7

Under the same hypothesis as above, for � 2 (0; 1],

Pr(X < (1� �)�) < exp(���2=2) = F�(�; �): (2)

To prove statement (a) note that if each 48n random variables are chosen with each

pi = 1=4, then the probability that the sum of the random variables exceeds 24n is given

by F+(12n; 1) = (e=4)12n < 2�2n. Similarly, if 48n random variables are chosen each with

pi = 3=4, then the probability that the sum of the random variables falls below 24n is given

by F�(36n; 1=3) = e�2n < 2�2n.

To prove statement (b) note that if pi �
1
n2

then the probability that any particular

_-gate will compute a 1 is upper-bounded by (1=n2) � (2n= log n) � 2=n log n, by the union

bound. The probability that all of the _-gates will compute a 1 (and hence the circuit will

compute a 1) is upper-bounded by (2=n log n)2n=logn which is upper-bounded by 2�2n. If

pi � 1 � 1
n2

the probability that a particular _-gate will not compute a 1 is upper-bounded
by (1=n2)2n= logn = 2�4n, and the probability that some _-gate will not compute a 1 is
upper-bounded by (2n= log n)2�4n which is no more than 2�2n. 2

From the above results, and noting that MAJORITY(y1; : : : ; y48n) is computable by a
circuit of size O(n log n), and A(f1; : : : ; fm) is a depth-3 ^-_-^ formula when f1; : : : ; fm are
DNF formulas, the following can be concluded.

Corollary 3: Given exponential computing time, the following learning tasks can be ac-
complished with polynomially many queries:

(a) Learning DNF formulas of size s using equivalence queries that are depth-3 ^-_-^
formulas of size O(s n2= log2 n).

(b) Learning boolean circuits of size s using equivalence queries that are circuits of size
O(sn + n log n).

This establishes information-theoretic solutions to two important learning problems. Kannan

[K93] notes that the computational di�culty in implementing the above learning algorithms

is in uniformly selecting the formulas from C, which is, in general, exponentially large4. Of
course, polynomial space is achievable by an exhaustive search.

In order to implement the above in polynomial time using an NP-oracle, we use a result

of Jerrum et al. [JVV86] concerning approximate uniform generation, which appears as

Theorem 4 below.

De�nition: Let � be a probability distribution on a discrete probability space
 and
S �
. Then � is uniform on S if, for all ! 2
: �[!] = 1=jSj if ! 2 S; otherwise, �[!] = 0.

Also, for � 2 (0; 1], � is approximately uniform on S with tolerance � if, there exists a c > 0

such that, for all ! 2
: (1 + �)�1c � �[!] � (1 + �)c if ! 2 S; otherwise, �[!] = 0.

4In fact, the work of Pitt and Valiant [PV88] implies that, when C consists of DNF formulas of size

p(n) (consistent with some counterexamples), the sampling step cannot be accomplished in polynomial time

unless P = NP .

8

For our particular applications of the following theorem, we will use sets of the form CI

where I is a set of labelled examples and CI is the set of all concepts that agree with sample

I, possibly imposing some size bound s. Then the class fCIgI is obtained by ranging over

all sets I. However, the theorem applies to more general contexts.

Theorem 4 [JVV86]: Let fCIgI be an indexed family of s-bounded sets (i.e., all the

elements of CI have length at most s.) Suppose that there is an algorithm that, on input f

and I, determines whether or not f 2 CI in time polynomial in jIj and s. Then there exists a

probabilistic algorithm that uses an NP-oracle and, on input I and �, runs in time polynomial

in jIj, s, and log ��1 and outputs f according to a distribution that is approximately uniform

on CI with tolerance �.

We cannot apply Theorem 4 directly to select f1; : : : ; fm for Lemma 1, because the

sampling provided by Theorem 4 is not exactly uniform. The following lemmas imply that

approximately uniform sampling su�ces.

Lemma 5: Let C be a concept class over f0; 1gn, and let U be an approximately uniform
generator for C with tolerance �. Let f be the random function output by U . If x 2 f0; 1gn

with
C(x;b) � � then the probability that f(x) = b is at most �(1 + �)2 for any � � 0 and

b 2 f0; 1g.

Proof: Suppose x 2 f0; 1gn such that
C(x;b) � � for some � and for some b. Then if a
function f is chosen uniformly at random from C, Pr[f(x) = b] � �. Since U can at most
oversample the functions f such that f(x) = b by a factor of (1 + �)2, if f is the output of

U , Pr[f(x) = b] is bounded by �(1 + �)2. 2

Lemma 6: Let G(y1; : : : ; ym) be a (�; 1��)! (2�2n; 1�2�2n) ampli�er. Let C be a concept
class and U an approximately uniform generator for C with tolerance �. If f1; : : : ; fm are
selected independently using U then, with probability at least 1 � 2�n, G(f1; : : : ; fm) is

�=(1 + �)2-good for C.

Proof: The proof is immediate from Lemma 5. For any x 2 f0; 1gn that has
C(x;0) �

�=(1 + �)2, Pr[fi(x) = 0] � �. Thus the probability that G(f1; : : : ; fm)(x) = 0 is at most

2�2n. A similar analysis holds when the `0' is replaced by a `1'. Thus applying Lemma 1 the
result follows. 2

Theorem 7: The following learning tasks can be accomplished with probabilistic polynomial-

time algorithms that have access to an NP-oracle and make polynomially many queries:

(a) Learning DNF formulas of size s using equivalence queries that are depth-3 ^-_-^

formulas of size O(sn2= log2 n).

(b) Learning boolean circuits of size s using equivalence queries that are circuits of size

O(sn + n log n).

Proof: Take the ampli�ers provided by Lemma 2 and apply them to the output of the

generator of Theorem 4, with (say) � = 1. By Lemma 6, an equivalence query that is

9

logn
4n2

-good (for part (a)) and 1
16
-good (for part (b)) is generated with probability 1� 2�n. 2

In the next corollary we show that the previous results hold under a perhaps much weaker

distribution.

De�nition: Let � be a probability distribution on a discrete probability space
 and

S �
. Then � is q-bounded uniform on S if, for all ! 2
: �[!] � q=jSj if ! 2 S; otherwise,

�[!] = 0.

Corollary 8: Let q be a polynomially bounded function of n. Then the following learning

tasks can be accomplished with probabilistic polynomial-time algorithms that have access

to a q-bounded uniform distribution generator and make polynomially many queries:

(a) Learning DNF formulas of size s using equivalence queries that are depth-3 ^-_-^

formulas of size O(sn2= log2 n).

(b) Learning boolean circuits of size s using equivalence queries that are circuits of size
O(sn + n log n).

Proof: Let C be the concept class to be learned. Note that a q-bounded uniform distri-

bution can oversample by a factor of at most q. So, as in Theorem 7, take the ampli�ers in
Lemma 2 and apply them to the output of a q-bounded uniform distribution. By Lemmas
5 and 6, with probability at least 1� 2�n, we get an equivalence query that is �=q-good. So
after m = q

�
log jCj steps we �nish learning with probability at least 1�m2�n. 2

4 Learning with Subset and Superset Queries Only

In this section we show that there exists a randomized algorithm that learns boolean circuits
and DNF formulas from weak subset and weak superset queries only. We do this by showing
that equivalence queries and an NP-oracle can both be simulated by weak subset and weak

superset queries. Then we can appeal to the results from previous sections to claim the
stated result.

Lemma 9: Weak superset and subset queries can simulate an NP-oracle.

Proof: Given a circuit h, it is easy to see that h � 1 if and only if the answers to
WeakSuperset(h) and WeakSubset(h) are \YES". 2

Lemma 10: Weak superset and weak subset queries with boolean circuits can simulate

equivalence queries.

Proof: Clearly, an equivalence query can be replaced by a subset query and a superset

query. We show that weak subset queries can simulate a given subset query Subset(h).
If the answer to h as a weak subset query is \YES", return \YES". Otherwise, �nd a

counterexample as follows. For x 2 f0; 1gn, let hx be the function hx(y) = h(y) ^ (y < x),

10

where < denotes lexicographical ordering. By doing binary search on x, with at most n weak

subset queries of the form hx we can �nd a counterexample for Subset(h). Note that circuits

for hx are at most O(n) larger than those for h, so the slowdown in the simulation is a small

polynomial. The proof for Superset queries is analogous, using hx(y) = h(y) _ (y < x). 2

Theorem 11: The classes of boolean circuits and DNF formulas are learnable in randomized

polynomial time from weak superset and weak subset queries with circuits only.

Proof: Combine the lemmas above with results from the previous sections. 2

For learning DNF, the hypothesis class in this theorem can be chosen to be depth-3

formulas. Queries with hypotheses of the form hx as used in Lemma 10 can be made depth-3

^-_-^: it is easy to express predicate \y < x" as ^-_-^ formulas of size O(n2) and, for

Superset queries, apply distributivity once. Note however that the query WeakSubset(h)

used in Lemma 9 is a depth-3 ^-_-^ formula.

5 Learning with Equivalence Queries and a �
p
3-Oracle

In this section, we prove the following theorem.

Theorem 12: The following learning tasks can be accomplished with deterministic polynomial-

time algorithms that have access to a �p

3-oracle:

(a) Learning DNF formulas of size s using equivalence queries that are depth-3 ^-_-^
formulas of size O(sn2= log2 n).

(b) Learning boolean circuits of size s using equivalence queries that are circuits of size
O(sn + n log n).

Our tools are: Lemma 1, from Section 3; Theorem 13, due to Sipser (who also credits
P. G�acs) [S83], stated below; and Theorem 14, due to Stockmeyer [S85], stated below.

Theorem 13 [S83]: Let fCIgI be an indexed family of s-bounded sets. Suppose that there
is an algorithm that, on input f and I, decides whether or not f 2 CI in time polynomial

in jIj and s. Then there exists a polynomial p and a predicate P such that, on input I,

a; b 2 f0; 1gp(jIj+s), r 2 f0; :::; 2sg, and � > 0, P (I; a; b; r; �) is computable in time polynomial

in jIj, s, and 1
�
, and such that, for any I, r, and �:

� If jCIj � (1 + �)�1r then�
8a 2 f0; 1gp(jIj+s)

� �
9b 2 f0; 1gp(jIj+s)

�
P (I; a; b; r; �)

evaluates to 1 (true).

� If jCIj � (1 + �)r then�
8a 2 f0; 1gp(jIj+s)

� �
9b 2 f0; 1gp(jIj+s)

�
P (I; a; b; r; �)

evaluates to 0 (false).

11

By using a �
p
2-oracle to make repeated calls to the predicate in the above theorem with

di�erent values of r 2 f0; :::; 2sg, the following can be concluded.

Theorem 14 [S85]: Let fCIgI be an indexed family of s-bounded sets. Suppose that there

is an algorithm that, on input f and I, decides whether or not f 2 CI in time polynomial in

jIj and s. Then there exists a deterministic algorithm that uses a �
p

2-oracle and, on input I

and �, runs in time polynomial in jIj, s, and 1
�
, and outputs a number r 2 f0; :::; 2sg such

that

(1 + �)�1jCI j � r � (1 + �)jCIj:

Lemma 15: Let fCIgI be an indexed family of s-bounded concepts such that, for each I,

there is an nI � jIj such that CI consists of concepts of the form f : f0; 1gnI ! f0; 1g.

Suppose that there is an algorithm that, on input I and f : f0; 1gnI ! f0; 1g, decides
whether or not f 2 CI in time polynomial in jIj and s. Then there exists a polynomial q
and a predicate Q such that, on input I, c; d 2 f0; 1gq(jIj+s), � > 0, f : f0; 1gnI ! f0; 1g, and

r 2 f0; :::; 2sg, Q(I; c; d; �; f; r) is computable in time polynomial in jIj, s, and 1
�
and such

that, if (1 + 1
16
�)�1jCI j � r � (1 + 1

16
�)jCIj then:

� If f is �-good for CI then�
8c 2 f0; 1gq(jIj+s)

� �
9d 2 f0; 1gq(jIj+s)

�
Q(I; c; d; �; f; r)

evaluates to 1 (true).

� If f is not �
2
-good for CI then

�
8c 2 f0; 1gq(jIj+s)

� �
9d 2 f0; 1gq(jIj+s)

�
Q(I; c; d; �; f; r)

evaluates to 0 (false).

Proof: As a technical convenience, assume � is su�ciently small so that

1 � � � (1 + 1
8
�)�1(1 � 3

4
�)(1 + 1

16
�)�1

1 � �
2
� (1 + 1

8
�)(1� 3

4
�)(1 + 1

16
�):

For each index I and (x; y) 2 f0; 1gnI � f0; 1g, let CI[f(x;y)g = ff 2 CI jf(x) = yg.
Let P be the predicate in Theorem 13. If f is �-good for CI then

(8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � (1� �)jCIj
�

which implies

(8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � (1� �)(1 + 1
16
�)r

�
which implies

(8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � (1 + 1
8
�)�1(1� 3

4
�)r

�

12

which implies that the statement

(8x 2 f0; 1gnI)
�
8a 2 f0; 1gp(m+s)

� �
9b 2 f0; 1gp(m+s)

�
P
�
I [f(x; f(x))g; a; b;

�
1� 3

4
�
�
r; 1

8
�
�

evaluates to 1 (where m = jI [f(x; f(x))gj).

If f is not �
2
-good for CI then

: (8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � �
1 � �

2

�
jCI j

�

which implies

: (8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � �
1� �

2

�
(1 + 1

16
�)�1r

�

which implies

: (8x 2 f0; 1gnI)
����C

I[f(x;f(x))g

��� � (1 + 1
8
�)(1� 3

4
�)r

�
which implies that the statement

(8x 2 f0; 1gnI)
�
8a 2 f0; 1gp(m+s)

� �
9b 2 f0; 1gp(m+s)

�
P
�
I [f(x; f(x))g; a; b;

�
1� 3

4
�
�
r; 1

8
�
�

evaluates to 0 (where m = jI [f(x; f(x))gj). Therefore, it su�ces to set

Q(I; (x; a); b; �; f; r) = P
�
I [f(x; f(x))g; a; b;

�
1� 3

4
�
�
r; 1

8
�
�
:2

Proof of Theorem 12: By Theorem 14, we e�ciently can �nd an r 2 f0; :::; 2sg such

that (1 + 1
16
�)�1jCI j � r � (1 + 1

16
�)jCIj. By the appropriate application of Lemma 1 and

Lemma 2, we know that there exists an f of the appropriate type and size l that is �-good.
Thus, for the predicate in Lemma 15, we have�

9f 2 f0; 1gl
� �
8c 2 f0; 1gq(jIj+s)

� �
9d 2 f0; 1gq(jIj+s)

�
Q(I; c; d; �; f; r):

Also by Lemma 15, if a particular candidate for f is not at least �
2
-good then

:
�
8c 2 f0; 1gq(jIj+s)

� �
9d 2 f0; 1gq(jIj+s)

�
Q(I; c; d; �; f; r):

This permits an f that is at least �
2
-good to be found by sequentially �xing one bit of f at

a time (existentially quantifying on the remaining bits of f) and evaluating the statement

using the �p
3-oracle.2

The algorithms in this and the previous sections are based on the existence of \good"

hypotheses that discard many candidate functions no matter what counterexample they
receive. It turns out that this is not only a su�cient condition but a necessary one.

In [A90], Angluin proved that several concept classes (such as �nite automata, context-
free grammars, and CNF and DNF formulas) are not learnable from a polynomial number of

equivalence queries, even with unbounded computational power between queries, provided

13

that the hypotheses used are taken from the same class. These results in [A90] are proved as

follows: First, de�ne a general combinatorial property (there called approximate �ngerprints)

saying that \good" hypothesis will fail to exist at some point of the learning process no

matter how cleverly queries are asked. Second, show that the above mentioned classes have

approximate �ngerprints.

Next we show that approximate �ngerprints characterize learnability by equivalence

queries in an information-theoretic sense, and furthermore, that for any class learnable in

this sense the computational power needed is at most that of a �p
3-oracle.

These results are proved for the notion of polynomial-time learning used in [A88, A90],

that applies also to in�nite concepts. In this setting, an algorithm is said to run in polynomial

time if the time used at any moment of its execution is at most a �xed polynomial of (1) the

length of the shortest representation for the target concept, and (2) the maximal length of

any counterexample received so far.

De�nition: Let C be an in�nite class of concepts containing functions f0; 1g? ! f0; 1g.
We say that C is p-evaluable if the following two tests can be made in polynomial time:

� Given y, is y a valid representation for any function in fy 2 C?

� Given y satisfying the �rst check, and x 2 f0; 1g?, is fy(x) = 1?

De�nition: For a language L, L�n is the set L \ f0; 1g�n. For a class of concepts C, C�n

is the class f L�n : L 2 C g.

The following is a modi�ed version of Angluin's de�nition of approximate �ngerprints:

De�nition [A90]: A class C has approximate �ngerprints if there exist polynomials p1 and
p2 such that for every polynomial q and in�nitely many n there is a concept class Tn � C

with

� Tn is p1(n)-bounded (i.e., has some representation of size � p1(n)),

� T�p2(n)
n contains at least two sets, and

� no hypothesis in the class C of length at most q(n) is 1
q(n)

-good for T�p2(n)
n .

This de�nition is di�erent from that in [A90] in two respects. First the de�nition in [A90]

reads \for all su�ciently large n" instead of \for in�nitely many n". Intuitively, to prove
non-learnability it is enough to force superpolynomial running time in each algorithm at

in�nitely many lengths. Second, to have a bounded search space we use T�p2(n)
n in two

places where [A90] used Tn. Again, Angluin's proof goes through with these changes, and

the approximate �ngerprints she �nds for dfa, nfa, cfg, and CNF and DNF formulas also
witness these properties.

Theorem 16: Let C be any p-evaluable class, and consider algorithms that make only

equivalence queries with hypotheses in C. The following three statements are logically

equivalent:

14

1. C is learnable from a polynomial number of equivalence queries of polynomial size (and

unlimited computational power).

2. C does not have approximate �ngerprints.

3. There is a deterministic polynomial-time algorithm that learns C using a �
p

3-oracle

and equivalence queries.

Proof: \1 implies 2" was by proved by Angluin as the main technical tool in [A90].

\3 implies 1" is immediate since in exponential time we can solve the �
p
3 queries without

increasing the number of queries. So we only have to prove that \2 implies 3", that is, give

a learning algorithm for C assuming that it lacks approximate �ngerprints.

Let f be a concept in C. The size of f is by de�nition the length of the shortest

representation in C for f . For a natural number n, we say that \n is large enough for f" if

� f has some representation of size at most n, and

� any concept h 6= f whose size is at most that of f di�ers from f in at least one string
of length � n.

We �rst describe an algorithm A that reads as input a natural number n, and has the
following properties:

P1: Whenever A outputs a representation, it is an exact representation for f .

P2: If A(n) receives only counterexamples of length at most n, and n is large enough for

the target, then A(n) always outputs some representation.

P3: For every n, A(n) always halts, and it does so in time polynomial in n and the length
of the longest counterexample received.

Later we will remove the need for input n.
Fix p1(n) = p2(n) = n and let q be the polynomial provided for p1 and p2 by the

assumption that C does not have approximate �ngerprints.

Let f be the target function. Algorithm A assumes that n is large enough for f and
builds a set I of pairs (x; f(x)), thus making sure that the target function is still in CI.

Set I is initially empty. Suppose that at a certain moment C�n
I contains more than one

set. This is easily checked with an NP oracle. Then, the assumption that C does not have

approximate �ngerprints guarantees that there is some representation h of length at most
q(n) that is 1

q(n)
-good for C�n

I . By Lemma 15, algorithm A can �nd such an h in time

polynomial in n using an oracle in �p
3. Then, A queries h as an equivalence query. If the

counterexample x received has length greater than n, A(n) stops without output; if jxj � n,
A(n) adds (x; f(x)) to I.

If no h is answered \YES" after q(n) ln jCj queries, either C�n
I is empty, or it contains

at most one set. In the �rst case, n is not large enough for the target concept. In the
second case, the �p

3 oracle can be used to �nd some representation of size n for that set. If

15

an equivalence query with that representation is not answered \YES", again n is not large

enough.

This concludes the description of algorithm A.

To learn C if a large enough n is not known in advance, it is enough to execute A(i)

sequentially with inputs i = 1, 2, 3, 4, : : : If A(i) outputs some representation, output it

and halt. If A(i) halts without output, ask for equivalence the i representations of length

log i before moving to i+ 1.

Correctness is clear because any representation output by any A(i) must be correct

(property P1). For termination, note that each A(i) is terminating (property P3) and that i

never exceeds by more than an exponential the length of the shortest correct representation.

To discuss the time complexity, let N be the size of the target concept, n the minimum

such that A(n) outputs a representation, and li the length of the longest counterexample

received by A(i). Note why n and N need not coincide: n can be smaller than N , because

A(n) makes hypotheses of size up to q(n), and also greater than N , if n is still not large
enough according to the de�nition above, or if the teacher provides counterexamples whose

length exceeds N . For the argument we distinguish two cases:
Case 1: n � N . Each run of A(i) with i � n takes time polynomial in i and li, i.e.,

polynomial in N and maxiflig.
Case 2: n > N . Let i be such that N � i < n and assume that A(i) does not terminate

successfully. By property P2 , either the teacher provides a counterexample of length greater

than i, even if shorter counterexamples exist, or i is not large enough for the target. In
the latter case, there is another concept of size N or less that di�ers from the target in no
string of length i or less; hence, A(i) must receive a counterexample of length greater than i
also in this case. The running time of A(i) for all such i is polynomial in i and li > i, i.e.,
polynomial in maxiflig.

In summary, each run A(i) takes time polynomial in N and maxiflig, and there are at
most maxifN;maxifligg runs. So the new learner runs in polynomial time. 2

6 Learning with Membership Queries

In this section we show how to eliminate equivalence queries using membership queries
and an NP-oracle and provide some matching lower bounds for the number of membership

queries needed. We also provide a characterization similar to Theorem 16 for learning with

membership query alone. Finally we show that classes learnable via membership queries
and unlimited computational power are also learnable using membership queries and an NP

oracle in randomized expected polynomial time.

First we describe some upper bound results in learning with membership queries alone.

Lemma 17: Let C be a concept class over f0; 1gn. Let L1 and L2 be two exact learning
algorithm which uses equivalence and membership queries to learn C. Suppose that any

hypotheses h1 and h2 issued by both are known to satisfy h1 6� h2 (except on the last step).
Then there is an algorithm that uses membership queries and the NP oracle to learn C.

16

Proof: The idea (which appeared implicitly in [BC92]) is to run L1 and L2 in parallel

until the �rst equivalence query is issued by each, say h1 and h2 (respectively). Since we

know h1 6� h2, we can use the NP oracle to �nd a c such that h1(c) 6= h2(c) (this takes

n NP queries). One membership query at c will establish which algorithm may continue

its execution (we suspend the other). We then repeat the process again until the continued

algorithm issues its next equivalence query. By assumption, the suspended equivalence query

and the new one are still not equal. Again we use the NP oracle to �nd a counterexample for

one of them, and so on. In this way we never ask any equivalence query but at the expense

of n NP queries and one membership query.2

De�nition: Let f be a boolean function over f0; 1gn. Then we let d(f) = sizeDNF (f)

be the minimum number of terms in a DNF that represents f . Similarly we de�ne c(f) =

sizeCNF (f) to be the minimum number of clauses in a CNF that represents f . These two

size measures are polynomially related to the standard size measure of the number of bits

required to represent a boolean function in a DNF or a CNF form.

Let C be a concept class over f0; 1gn. In [B93], a measure called the monotone dimension
m(C), and its dual (called the dual monotone dimension m@(C)), are de�ned. It was proven
that there is an algorithm to learn any f 2 C that uses d(f)m(C) equivalence queries

and n2d(f)m(C) membership queries. More importantly any hypothesis h issued by this
algorithm satis�es h) f . There is also a dual algorithm to learn any f 2 C that uses
c(f)m@(C) equivalence queries and n2c(f)m@(C) membership queries. Also any hypothesis
h@ issued by this algorithm satis�es f) h@.

We observe that if we run both algorithms from [B93] in the manner as in the previous
lemma, then the hypotheses issued by both algorithm will never be equal except when they
are equal to the target function. Hence we can conclude the following.

Theorem 18: Let C be a concept class. Then there is an algorithm that learns C using

n(n+ 1)(d(f)m(C) + c(f)m@(C)) membership queries and (n+ 1)(d(f)m(C) + c(f)m@(C))
calls to the NP oracle.

Proof: The factor of (n + 1) in the number of calls to the NP oracle is to account for 1

call to check if the two hypotheses are equal and n calls to �nd a counterexample if they are

not equal.2

Corollary 19: The following classes are learnable from membership queries and the NP
oracle in time polynomial in n and d(f) and c(f) where f is the target function.

1. Monotone boolean functions.

2. The class O(log n)-CNF
T
O(log n)-DNF.

Proof: For (a), we note that as shown in [B93] monotone boolean functions satisfy
m(C) = m@(C) = 1. For (b), we have the fact that the class O(log n)-CNF is known

17

to have polynomial (in n) monotone dimension while the class O(log n)-DNF is known to

have polynomial (in n) dual monotone dimension (see again [B93]). 2

Let LMQk be the set of s-bounded concept classes C which are learnable using at most nk

membership queries (and unlimited computational power). Each concept class C in LMQk

has the following property: given a set of labeled examples I � f0; 1gn � f0; 1g, there is an

algorithm that, on input f and I, decides whether or not f 2 CI
5. This decision algorithm

must run in time polynomial in jIj and s.

Fact 1: If C 2 LMQk then for any subset C 0 � C we have C 0 2 LMQk.

We call a point a 2 f0; 1gn k-good for C if
Ca � n�k(1� 1=jCj).

Fact 2: Let C 2 LMQk. Then for any C 0 � C with jC 0j � 2 there is a 2 f0; 1gn which is

k-good for C 0.

Proof: Assume there is C 0 � C so that for all a 2 f0; 1gn a is not k-good for C 0, i.e.

C

0

a < n�k(jC 0j � 1)=jC 0j. We will show that C 0 =2 LMQk which (by the fact above) will

imply C =2 LMQk. Let A be an arbitrary learning algorithm for C 0 which uses at most nk

membership queries. Consider the following adversarial strategy for answering queries by A:
given the query MQ(a), answer b 2 f0; 1g so that
C

0

(a;b)
< n�k(jC 0j � 1)=jC 0j. This strategy

allows A to eliminate only < n�k(jC 0j � 1)=jC 0j fraction of C 0 each time. So after nk steps

A can only eliminate < jC 0j � 1 elements of C 0 implying there are at least two concepts
remaining uneliminated. Since A is arbitrarily chosen, C 0 =2 LMQk as required.2

As a corollary to the second fact we get that any subset C 0 � C, with jC 0j � 2, has a
membership point a 2 f0; 1gn which satis�es

C
0

a �
1

2
n�k:

Theorem 20: There is a randomized expected polynomial time algorithm with access to
an NP oracle that learns any C 2 LMQk using at most n2k membership queries.

Proof: Let C 2 LMQk. Set N = nk, � = 1=16N and m = N2. We say a membership

point a is a �-splitter for C if
Ca � �. The r-th threshold function on n variables THn
r is

de�ned as

THn
r (x1; :::; xn) =

(
1 if

Pn
i=1 xi � r

0 otherwise

Let U be an approximately uniform distribution on C with tolerance � = 1. By a similar
argument as in Lemma 5, we claim that U can undersample by a factor of at most (1+ �)�2,

i.e. if
C(x;b) � � then PrU [f(x) = b] � �(1 + �)�2. We sample independently m functions
from C according to U , say F = ffig

m
i=1 2U Cm.

De�ne T1 = THm
�m(F) and T2 = THm

(1��)m(F). We prove that with high probability the

event T1 6� T2 occurs. Since C has a k-good a 2 f0; 1gn, i.e.
Ca � (2N)�1, the event T1 � T2

5Recall that CI = fh 2 C : (8(x; b) 2 I)(h(x) = b)g; see Section 3.

18

implies T1(a) = T2(a). By Cherno� bounds (equation (2) Section 3) we get

Pr[T1(a) � T2(a)] = Pr[T1(a) = 0] + Pr[T2(a) = 1] < 2F�(m=8N; 1=2) � 2e�
(N):

Thus with probability 1 � e�
(N) we have T1 6� T2. Next we show that conditioning on

T1 6� T2, the event that for all a 2 T1�T2,

C
a � (32N)�1, occurs with high probability.

Calling the latter event A, by the union bound and Cherno� bounds (equation (1) Section

3) we have

Pr[A j T1 6� T2] �
X

a2T1�T2

Pr
h
T1(a) 6= T2(a) ;

C
a < (32N)�1 j T1 6� T2

i

� 2nF+(m=32N; 1) � 2ne�
(N):

The probability that we failed (at some step) to locate a (32N)�1-splitter is at most Pr[T1 �

T2] + Pr[A j T1 6� T2] � e�
(n).
We use the NP oracle (for the second time) to �nd a (32N)�1-splitter a 2 f0; 1gn, which

allows progress to be made in learning. We run the above for N2 times. The probability

that at every step we succeed to locate a (32N)�1-splitter (for di�erent invocations of C)
is at least 1 � N2e�
(n) � 1 � e�
(n). Thus with probability 1 � e�
(n) we will �nish (i.e.
reduce C to one element) within N2 = n2k steps. 2

Putting together some of the previous results, we can give a precise characterization of

learnability with membership queries alone, very similar to that of Theorem 16.

Theorem 21: Let C =
S
n>0 Cn be any p-evaluable in�nite concept class, with each Cn over

f0; 1gn. The following are equivalent:

1. There is a k such that, for every n, Cn 2 LMQk.

2. There is a k such that, for every n and every C 0 � Cn with jC 0j � 2, there is some
k-good assignment for C 0.

3. There is a deterministic polynomial-time algorithm that learns C using a �p

3-oracle

and membership queries.

Proof (Sketch): \1 implies 2" is Fact 2; \2 implies 3" is proved in a way completely
analogous to Theorem 20: At any point in the run of the algorithm, let CI be the set

of functions in Cn consistent with the answers seen so far. Then, use the �p
3-oracle to

deterministically generate a k-good assignment for CI . \3 implies 1" is immediate. 2

Next we provide some lower bounds on the number of membership queries needed for

learning some concept classes. To the best of our knowledge, these lower bound statement
are the �rst of its kind.

Theorem 22: We have the following two lower bounds.

19

1. Any algorithm that learns monotone boolean functions with membership query requires

at least
(maxfc(f); d(f)g) queries where f is the target function.

2. Any algorithm learning any class C with membership queries requires at least

(maxfm(C);m@(C)g) queries.

Proof (Sketch): For (1), we use an adversarial argument on the following class of monotone

read-twice DNF formulas C = ff jf =
Wk
i=1 Ti _ Tg. For each i, 1 � i � k, let Ti =Vik

j=(i�1)k+1 xj. The last term T consists of all variables except that it is missing exactly one

variable from each of Ti. For the lower bound argument we give away to the learner all Ti,

1 � i � k, but not T . Suppose the learner asks MQ(a). a cannot be all one in any Ti since

f is one and the learner knows this already. If a contains more than one zero in some Ti
then the adversary says FALSE i� a falsi�es all of Ti, 1 � i � k, and TRUE otherwise. This

conveys no information about T since a falsi�es T . Hence the learner must ask membership
queries where there is precisely one zero in each Vi. There are (n=k)

k such questions and the

adversary may answer FALSE except for the last one. We omit the proof that the maximum
of c(f) and d(f) is at most maxfk + 1; (n=k)kg.

For (2) we consider the monotone clause T =
Wn
i=1 xi and the following class C = fT (x�

a)ja 2 A � f0; 1gng. We claim that any learning algorithm using membership query alone
requires at least m(C) queries. Here we even assume that the learner has the knowledge of

A. First we assert that any membership query c must be such that c 2 A. Otherwise if
c =2 A then T (c� a) = 1 (since c� a 6� 0) for all a 2 A. So now the adversary may say YES
for all a 2 A asked by the learner except for the last one. 2

Remark: Angluin, Hellerstein, and Karpinski [AHK93] have shown that monotone read-

once formulas are exactly learnable from membership queries alone. The proof of Theorem
22(1) rules out the possibility for monotone read-twice DNF (since the CNF size might be
exponentially large).

7 Applications to Structural Complexity Theory

Watanabe [W94] has observed that a consequence of Theorem 7(b) in Section 3 is an im-
provement of the following result of Karp and Lipton [KL80].

Theorem 23 [KL80]: If every NP set has polynomial-size circuits then the polynomial

hierarchy collapses to �p

2.

It is clear that ZPPNP is contained in �p
2 but the other direction of containment is not known

(and would be surprising). Watanabe has observed the following, and we reproduce a sketch

of his proof below.

Theorem 24 [W94]: If every NP set has polynomial-size circuits then the polynomial
hierarchy collapses to ZPPNP.

20

Proof (sketch): Suppose that every NP set has polynomial-size circuits. Thus, in partic-

ular, SAT has polynomial-size circuits.

First, it is shown that that, for each n, one can construct a polynomial-size circuit deciding

SATn (i.e., the set of strings of length n in SAT) by a ZPPNP computation. The idea is

as follows. By Theorem 7(b), it is possible to construct the circuit for SATn in random

polynomial-time time using an NP-oracle and asking equivalence queries. Thus, the �rst

result follows if one can simulate a teacher answering equivalence queries in PNP.

For a given circuit (description) f , we need to construct a counterexample with respect

to SATn (i.e., an element in the symmetric di�erence between L(f) (where L(f) is the

strings accepted by f) and SATn. A counterexample is either an x 2 SATn � L(f), or an

x 2 L(f) � SATn. The �rst type of counterexample can be found using an NP-oracle to

evaluate:

(9v)(9w)(juvj= n ^ f(uv) = 0 ^ uv 2 SATn and w witnesses this fact)

for a series of pre�xes u. On the other hand, the latter type of counterexample can be found
by using an NP-oracle to evaluate:

(9v) (juvj = n ^ f(uv) = 1 ^

a standard binary search using f fails to �nd a satisfying assignment of uv)

for a series of pre�xes u. Thus, with an NP-oracle, we can simulate a teacher for circuits
recognizing SATn.

After having a ZPPNP-uniform circuit family for SAT, we can replace any quanti�ed

(with a single quanti�er) circuit expression with an unquanti�ed circuit expression with only
a polynomial blow-up in size. By repeating this process a constant number of times, we can
evaluate any quanti�ed (with any constant number of quanti�ers) circuit expression.2

Acknowledgments

We are grateful to OsamuWatanabe for pointing out an interesting application of our results,
and for permitting us to include it in this paper (in Section 7). We also thank Dana Angluin,
Sleiman Matar, and Vijay Raghavan for helpful comments. Finally we thank the anonymous

referees whose comments greatly improve the presentation of our paper.

References

[A88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319-342,

1988.

[A90] Dana Angluin. Negative Results for Equivalence Queries. Machine Learning,

5:121-150, 1990.

[AHK93] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning Read-Once

Formulas with Queries. Journal of the ACM, 40(1):185-210, 1993

21

[B89] Ravi Boppana. Ampli�cation of Probabilistic Boolean Formulas. In Advances in

Computing Research, 5:4, pages 27{45, 1989.

[B93] Nader Bshouty. Exact Learning via the Monotone Theory. In IEEE Foundations

of Computer Science, pages 302{311, 1993.

[BC92] Nader Bshouty and Richard Cleve. On the Exact Learning of Formulas in Paral-

lel. In Proceedings of the 33rd Symposium on Foundations of Computer Science,

pages 513{522, 1992.

[G93] Ricard Gavald�a. On the Power of Equivalence Queries. In Proceedings of EU-

ROCOLT '93, pages 193{203, Oxford University Press 1994.

[GKS93] Sally Goldman, Michael Kearns, and Robert Schapire. Exact Identi�cation of

Read-Once Formulas using Fixed Points of Ampli�cation Functions. SIAM Jour-

nal on Computing, 22, 1993.

[GRS93] Sally Goldman, Ronald Rivest, and Robert Schapire. Learning Binary Relations
and Total Orders. SIAM Journal on Computing, 22:5, pages 1006{1034, 1993.

[JVV86] Mark Jerrum, Leslie Valiant, and Vijay Vazirani. Random Generation of Combi-
natorial Structures from a Uniform Distribution. Theoretical Computer Science,
43, pages 169{188, 1986.

[K93] Sampath Kannan. On the Query Complexity of Learning. In Proceedings of the

Sixth Annual Workshop on Computational Learning Theory, pages 58{66, 1993.

[KL80] Richard M. Karp and Richard J. Lipton. Some Connections Between Nonuni-
form and Uniform Complexity Classes. In Proceedings of the 12th Annual ACM

Symposium on Theory of Computing, pages 302{309, 1980.

[KM91] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees using the Fourier
Spectrum. In Proceedings of the 23rd Annual ACM Symposium on Theory of

Computing, pages 455{464, 1991.

[L88] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New

Linear-Threshold Algorithm. Machine Learning, 2, pages 285{318, 1988.

[MS56] E.F. Moore and C. Shannon. Reliable Circuits Using Less Reliable Relays. J.

Franklin Inst., 262, pages 191{208, 281{297, 1956.

[PV88] Leonard Pitt and Leslie Valiant. Computational Limitations on Learning from

Examples. Journal of the Association for Computing Machinery, 35:4, pages

965{984, October 1988.

[R90] Prabhakar Raghavan. Lecture Notes on Randomized Algorithms. Research Re-

port, IBM Research Division, RC15340 (#68237), 1/9/90.

22

[S83] Michael Sipser. A Complexity Theoretic Approach to Randomness. In Pro-

ceedings of the 15th Annual ACM Symposium on Theory of Computing, pages

330{334, 1983.

[S85] Larry Stockmeyer. On Approximation Algorithms for #P . SIAM Journal on

Computing, 14:4, pages 849{861, 1985.

[V84a] Leslie Valiant. Short Monotone Formulae for the Majority Function. J. Algo-

rithms, 5, pages 363{366, 1984.

[V84b] Leslie Valiant. A Theory of the Learnable. Communications of the ACM,

27(11):1134{1142, November 1984.

[W94] Osamu Watanabe. Personal communication, 1994.

23

