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Abstract

MLqE is an extension of MLE which introduces a distortion parameter q to MLE to make

the estimation more adaptive. The purpose of this thesis is to examine MLqE for specific

distribution models. Particularly, for exponential and standard gamma distributions, we look

at their asymptotics, finite sample performance in terms of efficiency and robustness, and the

choice of the distortion parameter q. We investigate these aspects of MLqE, compared with

MLE, in parameter estimation and tail probability estimation through both Monte Carlo

simulation and a real data analysis. Our results show that, when exponential or standard

gamma models are concerned, MLqE and MLE perform competitively for large sample sizes

while MLqE outperforms MLE for small or moderate sample size in terms of reducing MSE.

In addition, MLqE generally has better robustness properties than MLE with respect to

outlying observations.
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Chapter 1

INTRODUCTION

In this chapter, we give some background to the estimation methods under consideration. In

Section 1.1, some fundamental theory and results of maximum likelihood estimation (MLE)

are reviewed. In Section 1.2, we introduce the nonextensive entropy theory, which is the

basis of maximum Lq-likelihood estimation (MLqE), and its scope of application. Following

that, MLqE is introduced in Section 1.3. Finally Section 1.4 aims to briefly illustrate the

organization of the thesis.

1.1 Maximum Likelihood Estimation (MLE)

MLE was recommended, analyzed and vastly popularized by R. A. Fisher between 1912 and

1922, although it had been used earlier by Gauss, Laplace, Thiele and Edgeworth.

Let Y be a random variable with distribution of known type up to some unknown finite-

dimensional parameter θ. Denote the probability distribution function (p.d.f.) of Y by f(·; θ).

Suppose we have independent and identically distributed (i.i.d.) sample values y1, y2, · · · , yn

from this distribution. Define the likelihood of θ, given data y1, · · · , yn, as

L(θ; y1, · · · , yn) = fY1,··· ,Yn(y1, · · · , yn; θ) =
n∏
i=1

f(yi; θ)

The value θ̂ that maximizes the likelihood L(θ; y1, · · · , yn) is defined as the MLE. The MLE

is used to estimate θ based on data values. Often, it is found that ∂L

∂θ̂
= 0 and ∂2L

∂θ̂2
< 0.

These relationship may help find maxima, but one also needs to check boundary values of θ.

In practice it is often more convenient to work with the logarithm of the likelihood function,

called the log-likelihood function: lnL(θ; y1, · · · , yn) =
∑n

i=1 ln f(yi; θ). One can also use

optimization methods to find θ̂ = arg max
θ̂∈Θ

L(θ; y1, · · · , yn), with Θ denoting the parameter
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space of θ. The MLE will be the same regardless of whether we maximize the likelihood

function or the log-likelihood function, since log is a monotonically increasing transformation.

For many models, the MLE can be found as an explicit function of the observed data

y1, · · · , yn. For many other models, however, no closed-form solution to the maximization

problem is known or available, and the MLE has to be found numerically using optimization

methods. For some problems, there may be multiple estimates that maximize the likelihood.

For other problems, no MLE exists (meaning that the log-likelihood function increases with-

out attaining its supremum).

MLE has some desirable properties including that the distribution of θ̂ is known and is

narrowly distributed around the true value of θ. Increasing the sample size n will improve

the estimate and guarantee its efficiency. MLE has no optimum properties for finite samples

in the sense that (when evaluated on finite samples) other estimators could have greater

concentration around the true parameter value, however, MLE possesses a number of attrac-

tive limiting properties. As the sample size increases to infinity, sequences of MLEs have

following properties:

(1) Consistency: sequence of MLEs(in univariate) converges in probability to the value

being estimated.

(2) Asymptotic normality: the distribution of MLE(in multivariate) tends to the Gaus-

sian distribution with mean θ and covariance matrix the inverse of the Fisher infor-

mation matrix.

(3) Efficiency: MLE achieves the Cramér-Rao lower bound when the sample size tends

to infinity. This means that no consistent estimator has smaller asymptotic variance

than the MLE (or other estimators attaining this bound).

(4) Second-order efficiency after correction for bias: with θ of dimension p, a second-order

“bias-corrected” MLE of θ can then be obtained as θ̃ = θ̂−K̂−1∗Â∗vec(K̂−1), where

K̂ = K|θ=θ̂, K = [−kij]i,j=1,··· ,p with kij the element of the inverse of the (expected)

2



information matrix and Â = A|θ=θ̂ with A defined as follows. With l(θ) the (total)

log-likelihood based on a sample of n observations, A = [A(1) | A(2) | · · · | A(p)], where

A(m) = [k
(m)
ij − (kijm/2)]i,j=1,··· ,p with k

(m)
ij = ∂kij/∂θm and kijm = E(∂3l/∂θi∂θj∂θm).

Using the bias-corrected MLE θ̃ of the parameter is extremely effective.

MLE is commonly used in statistics. Large sample theory guarantees that MLE is asymp-

totically efficient, which means that when the sample size is large, MLE is at least as accurate

as any other estimator. MLE is used for a wide range of statistical models, including linear

models and generalized linear models, exploratory and confirmatory factor analysis, struc-

tural equation modelling, and so on.

1.2 Nonextensive Entropy Theory

In the late 1940s, Claude Shannon established the information theory which became one

of the major scientific advances in the last century. The Shannon’s information theory has

been successfully applied in a variety of scientific areas including statistics. The key point

of Shannon’s information theory is the so called Shannon’s entropy defined as H(X) =

−E[log p(X)]. Here p(x) represents the p.d.f. of random variable X.

After the Shannon’s entropy was introduced, the relationship between log p(X) and

H(X) was widely studied. A statistical model that was expected to minimize the Shan-

non’s entropy was brought by Akaike (1973) in which it was stated that the minimization of

−
∑n

i=1 log p(Xi) (empirical version of Shannon’s entropy) is equivalent to the maximization

of the log-likelihood function. Then model comparison based on the minimum description

length criterion was established by Barron, Rissanen and Yu (1998). Later, Shannon’s en-

tropy became widely used, which brought newly proposed measures of information such as

Rényi entropies. Rényi entropies use a more general definition of mean and keep additivity

of independent information; see Aczél and Daróczy (1975) and Rényi (1961).

Havrda and Charvát (1967) proposed nonextensive entropies, sometimes referred to as q-

3



order entropy. The q-order entropy is an important extension of Shannon’s entropy where the

logarithm is replaced by the more general function Lq(u) = (u1−q−1)/(1−q) for q > 0. Note

that Lq(u)→ log(u) when q → 1, recovering the usual Shannon’s entropy. Recently, q-order

entropies have been applied in different scientific areas. In thermodynamics, the q-entropy

functional is usually minimized subject to some properly chosen constraints, according to

the formalism proposed by Jaynes (1957a, 1957b). Tsallis (1988) and Tsallis, Mendes and

Plastino (1998) successfully exploited q-order entropies in physics. In statistics, Altun and

Smola (2006) concluded that the classical maximum entropy estimation and MLE are convex

duals of each other.

1.3 Maximum Lq-likelihood Estimation (MLqE)

In this section, we review an alternative parametric estimation to MLE, i.e. the MLqE.

MLqE was first introduced by Ferrari and Yang (2010) and it is based on the nonextensive

q-order entropy function introduced in the last section.

Let X1, · · · , Xn be an i.i.d. sample from p.d.f. f(·; θ) with some θ ∈ Θ. The MLqE of θ

is defined as

θ̃n = arg max
θ∈Θ

n∑
i=1

Lq[f(Xi; θ)], q > 0,

where

Lq(u) =

 log u, if q = 1,

(u1−q − 1)/(1− q), otherwise.

From the definition of Lq and L’Hôspital’s rule we can see that if q → 1, then Lq(u) →

log u, i.e. Lq(u) is a continuous function of q for any fixed u > 0. Therefore, when q is close

to 1, the value of θ̃n will be close to the MLE of θ. In this sense, MLqE extends the classic

MLE method, resulting in a general inferential procedure that inherits most of the desirable

features of traditional MLE and at the same time can improve MLE via variance reduction.

For the multivariate parameter θ = (θ1, θ2, · · · , θp), under some regularity conditions, its

4



MLqE is the solution to the following p equations system

n∑
i=1

∂

∂θj
Lq[f(Xi;θ)] = 0, j = 1, 2, · · · , p.

In this thesis, we only consider the univariate case for a natural parameter or tail probability.

Ferrari and Yang (2010) provided theoretical insights concerning the statistical usage of

the generalized entropy function. In particular, they highlighted the role of the distortion

parameter q. When the sample size is large and q tends to 1, Ferrari and Yang (2010)

established a necessary and sufficient condition to ensure asymptotic normality and efficiency

of MLqE. MLE is asymptotically efficient, however, for a small or moderate sample size, when

q is properly chosen MLqE can offer a dramatically reduced mean squared error (MSE) at the

expense of a slightly increased bias when compared to MLE. In the framework of Ferrari and

Yang (2010), MLqE has been shown through simulation to be very useful when estimating

the exponential distribution parameter and its small tail probability.

For finite sample performance of MLqE, not only the size of q − 1 but also its sign (i.e.,

the direction of distortion) is important. It turns out that for different families or different

parametric functions of the same family, the beneficial direction of distortion can be different.

In addition, for some parameters, MLqE does not produce any improvement. Ferrari and

Yang (2010) found that an asymptotic variance expression of the MLqE is very helpful to

decide the direction of distortion for applications.

To our knowledge, there are only a few papers on MLqE so far. Qin and Priebe (2013)

introduced a MLqE for mixture models using their proposed expectation-maximization (EM)

algorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Ferrari and Paterlini

(2009) applied MLqE to estimate quantiles of the Generalized Extreme Value (GEV) and

the Generalized Pareto (GP) distributions in finance. In Huang, Lin and Ren (2013), the

hypothesis testing problem for the shape parameter of the GEV distribution is investigated

using the Lq-likelihood ratio statistic, a generalized form of the classical likelihood ratio

statistic.
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1.4 Organization of Thesis

In this thesis, we attempt to examine the MLqEs of parameter and tail probability for expo-

nential distribution Exp(λ) = Gamma(1, 1/λ) and standard gamma distributionGamma(θ, 1),

both of which are important special cases of the gamma distribution Gamma(θ, 1/λ). The

standard gamma distribution is a gamma distribution with scale parameter being 1. We

examine their asymptotics, finite sample performance in terms of efficiency and robustness,

and the choice of distortion parameter q in terms of direction and value.

This thesis is organized as follows. In Chapter 2, we review the asymptotic normality of

MLqE for exponential families. For both exponential and standard gamma distributions, we

present the MLqEs of parameter and tail probabilities and derive their asymptotic variances.

Then we discuss a method of choosing distortion parameter q based on the MSE. In Chap-

ter 3, we implement Monte Carlo simulation studies to examine, for both exponential and

standard gamma distributions, the MLqE’s finite sample performance in terms of efficiency

and robustness, the accuracy of confidence intervals based on MLqE, and the choice of the

distortion parameter q. In Chapter 4, we demonstrate how to implement the MLqE through

a real data analysis. Final concluding remarks are presented in Chapter 5.

6



Chapter 2

MLqE FOR GAMMA DISTRIBUTIONS

In this chapter, we present some theoretical results on MLqE for both exponential and

standard gamma distributions. Particularly, in Section 2.1 we derive the MLqEs of model

parameters. Section 2.2 reviews some asymptotic results of Ferrari and Yang (2010) on

the MLqE for exponential families. In Section 2.3, we derive the explicit expression of

the asymptotic variances of the MLqEs. Section 2.4 is devoted to the plug-in MLqEs of

tail probabilities. Finally in Section 2.5, we discuss a method of choosing the distortion

parameter q based on MSE.

2.1 MLqEs of the Parameters in Two Gamma Distributions

2.1.1 MLqE of the parameter in exponential distribution

Let X1, · · · , Xn be an i.i.d. sample from the p.d.f. f(·;θ) with some θ ∈ Θ ⊆ Rp. The

MLqE of θ is defined as

θ̃n = arg max
θ∈Θ

n∑
i=1

Lq[f(Xi;θ)], q > 0, (2.1)

where

Lq(u) =

 log u, if q = 1,

(u1−q − 1)/(1− q), otherwise.
(2.2)

Define

U(x;θ) = Oθ log{f(x;θ)},

U∗(x;θ, q) = U(x;θ)f 1−q(x;θ).
(2.3)

Then in general, the estimating equation for the MLqE θ̃n solves

n∑
i=1

U∗(Xi;θ, q) = 0. (2.4)

7



Equation (2.4) offers a natural interpretation of the MLqE as a solution to a weighted

likelihood. When q 6= 1, (2.4) provides a relative-to-the-model reweighing. Observations

that disagree with the model receive low or high weight depending on q < 1 or q > 1. In the

case of q = 1, all the observations receive the same weight.

Ferrari and Yang (2010) has given the MLqE of the parameter in the exponential distri-

bution and investigated its asymptotic properties. Consider an i.i.d. sample of size n from

exponential distribution with p.d.f. f(x;λ) = λ exp(−λx) for x > 0 and some fixed λ > 0.

For this model, the Lq-likelihood equation (2.4) is

n∑
i=1

e−(λXi−log λ)(1−q)(−Xi +
1

λ
) = 0. (2.5)

With q = 1, the usual MLE of λ is λ̂ = (
∑n

i=1Xi/n)−1 = X̄−1. Generally, for any q > 0, the

MLqE λ̃ is the solution to (2.5) or equivalently the solution to

λ̃ =

(∑n
i=1Xiwi(Xi, λ̃, q)∑n
i=1wi(Xi, λ̃, q)

)−1
, (2.6)

where wi(Xi, λ̃, q) = e−(λ̃Xi−log λ̃)(1−q). As a result, the MLE and plug-in MLqE of the upper

tail probability α(x;λ) = e−λx are respectively α(x; λ̂) and α(x; λ̃).

2.1.2 MLqE of the parameter in standard gamma distribution

Here we consider the problem of estimating the shape parameter of a gamma distribution

when the scale parameter is known. Since any gamma distribution can be expressed in terms

of the standard gamma distribution after transformation, without generality, we assume the

scale parameter is 1; i.e. we consider estimating the shape parameter of standard gamma

distribution.

Consider an i.i.d. sample of size n from the standard gamma distribution Gamma(θ, 1)

with density f(x; θ) = (xθ−1e−x)/Γ (θ) for some θ > 0. The Lq-likelihood equation is then

n∑
i=1

e[(θ−1) logXi−Xi](1−q) [Γ (θ) logXi − Γ ′(θ)] = 0. (2.7)
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The MLqE θ̃ of θ is the solution to (2.7). With q = 1, the MLE θ̂ is the root of equation

ψ(θ) =

(
n∑
i=1

logXi

)
/n, (2.8)

where

ψ(θ) = Γ ′(θ)/Γ (θ). (2.9)

As a result, the MLE and plug-in MLqE of upper tail probability α(x; θ) = 1−
∫ x
0
yθ−1e−y

Γ (θ)
dy

with x > 0 are α(x; θ̂) and α(x; θ̃) respectively.

2.2 Asymptotics of the MLqE for Exponential Families

Consider density functions of the exponential family

f(x;θ) = exp[θTb(x)− A(θ)], (2.10)

where θ ∈ Θ ⊆ Rp is a real valued natural parameter vector, b(x) is the vector of functions

with elements bj(x), j = 1, · · · , p, and A(θ) = log
∫
eθ

T b(x)dx is the cumulant generating

function (or log normalizer). The true parameter will be denoted by θ0.

This exponential family include the exponential distribution and standard gamma dis-

tribution as special cases. For Exp(λ), θ = λ, b(x) = −x and A(θ) = − log λ. For

Gamma(θ, 1), θ = (1, θ)T , b(x) = (−x − log x, log x)T and A(θ) = logΓ (θ). Ferrari and

Yang (2010) have studied this exponential family and established the consistency and asymp-

totic normality of the MLqE. Their results are given as follows.

Consider θ∗n, the value such that

Eθ0U
∗(X;θ∗n, qn) = 0. (2.11)

Here we use qn instead of q, since we want qn → 1 as n→∞, so that the MlqE is asymptot-

ically equivalent to MLE. It can be easily shown that θ∗n = θ0/qn. Since the actual target of

θ̃n is θ∗n, to retrieve asymptotic unbiasedness of θ̃n, qn must converge to 1. Ferrari and Yang

(2010) called θ∗n the surrogate parameter of θ0. The following conditions are imposed:
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A.1 qn > 0 is a sequence such that qn → 1 as n→∞.

A.2 The parameter space Θ is compact and θ0 is an interior point of Θ.

Theorem 2.1. Under assumptions A.1 and A.2, with probability going to 1, the Lq -

likelihood equation yields a unique solution θ̃n that is the maximizer of the Lq-likelihood

function in Θ. Furthermore, we have θ̃n
P→ θ0.

When Θ is compact, the MLqE always exists under their conditions, although it is not

necessarily unique with probability one.

Theorem 2.2. If assumptions A.1 and A.2 hold, then we have

√
nV −1/2n (θ̃n − θ∗n)

D−→ Np(0, Ip) as n→∞, (2.12)

where Ip is the (p× p) identity matrix, and

Vn = J−1n KnJ
−1
n (2.13)

Kn = Eθ0 [U
∗(X;θ∗n, qn)]T [U∗(X;θ∗n, qn)], (2.14)

Jn = Eθ0 [Oθ∗nU
∗(X;θ∗n, qn)]. (2.15)

Here Jn is symmetric. A necessary and sufficient condition for asymptotic normality of

MLqE around θ0 is
√
n(qn − 1)→ 0.

Let m(θ) = OθA(θ) and D(θ) = O2
θA(θ). Note that Kn and Jn can be expressed as

Kn = c2,n
(
D(θ2,n) + [m(θ2,n)−m(θ∗n)][m(θ2,n)−m(θ∗n)]T

)
(2.16)

and

Jn = c1,n(1−qn)D(θ1,n)−c1,nD(θ∗n)+c1,n(1−qn)[m(θ1,n)−m(θ∗n)][m(θ1,n)−m(θ∗n)]T , (2.17)

where ck,n = exp{A(θk,n) − A(θ0)} and θk,n = kθ0(1/qn − 1) + θ0. When qn → 1, it is

seen that Vn → −D(θ0), the asymptotic variance of the MLE. When Θ ⊆ R1 we use the
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notation σ2
n for the asymptotic variance in place of Vn. Note that the existence of moments

are ensured by the functional form of the exponential families (Lehmann and Casella, 1998).

When q is fixed, the MLqE is a regular M-estimator (Huber, 1981), which converges in

probability to θ∗ = θ0/q. With the explicit expression of θ∗, one may consider correcting

the bias of MLqE by using the estimator qnθ̃n.

2.3 Asymptotic Variances of the MLqEs for Two Gamma Distributions

2.3.1 Asymptotic variance of the MLqE for the exponential distribution

Ferrari and Yang (2010) discussed the asymptotic distribution of the MLqE for exponen-

tial distribution. For Exp(λ0), the surrogate parameter is θ∗n = λ0/qn and a lengthy but

straightforward calculation shows that the variance of the MLqE of λ0 is

σ2
n =

(
λ0
qn

)2 [
q2n − 2qn + 2

q3n(2− qn)3

]
−→ λ20 (2.18)

as n → ∞. By Theorem 2.2, n1/2σ−1n (λ̃n − λ0/qn) converges weakly to a standard normal

distribution as n → ∞. Note that λ20 is the asymptotic variance of the MLE, i.e. the

inverse of the Fisher information. Clearly, the asymptotic calculation does not produce any

advantage of MLqE in terms of reducing the limiting variance. However, Ferrari and Yang

(2010) found that σ2
n < λ20 for some choices of qn for some finite sample sizes.

2.3.2 Asymptotic variance of the MLqE for the standard gamma distribution

Here we will derive the explicit form of the asymptotic variance of the MLqE of the shape

parameter in the standard gamma distribution given in Section 2.1.2.

Consider the standard gamma distributionGamma(θ0, 1). Again the surrogate parameter

for this model is θ∗n = θ0/qn. Written in the form of (2.10), Gamma(θ, 1) has θ = (1, θ)T ,

b(x) = (−x− log x, log x)T and A(θ) = logΓ (θ). While θ is two dimensional, it is essentially
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the one dimensional parameter θ. With ψ given in (2.9), we have

m(θ) = 5θA(θ) = ψ(θ),

D(θ) = 52
θA(θ) = ψ′(θ).

Since θk,n = [k(1/qn − 1) + 1]θ0, we have

c1,n = eA(θ1,n)−A(θ0) = Γ (θ0/qn)
Γ (θ0)

,

c2,n = eA(θ2,n)−A(θ0) = Γ ((2/qn−1)θ0)
Γ (θ0)

,

and then by (2.16) and (2.17)

Kn = c2,n
(
D(θ2,n) + [m(θ2,n)−m(θ∗n)]2

)
=

Γ ((2/qn − 1)θ0)

Γ (θ0)

{
ψ′((2/qn − 1)θ0) + [ψ((2/qn − 1)θ0)− ψ(θ0/qn)]2

}
,

Jn = c1,n(1− qn)D(θ1,n)− c1,nD(θ∗n) + c1,n(1− qn)[m(θ1,n)−m(θ∗n)]2

= −qn
Γ (θ0/qn)

Γ (θ0)
ψ′(θ0/qn).

Finally by (2.13), the variance of the MLqE of θ0 is

σ2
n = Kn/J

2
n

=

Γ ((2/qn−1)θ0)
Γ (θ0)

{
ψ′((2/qn − 1)θ0) + [ψ((2/qn − 1)θ0)− ψ(θ0/qn)]2

}[
qnΓ (θ0/qn)
Γ (θ0)

ψ′(θ0/qn)
]2

−→ [ψ′(θ0)]
−1 = {[logΓ (θ0)]

′′}−1

(2.19)

as n → ∞. By Theorem 2.2, we can conclude that n1/2σ−1n (θ̃n − θ0/qn) converges weakly

to a standard normal distribution as n → ∞. Note that {[logΓ (θ0)]
′′}−1 is the asymptotic

variance of the MLE.

2.4 Estimation of tail probabilities

Let α(x; θ) = Pθ(X ≤ x) or α(x; θ) = 1 − Pθ(X ≤ x), depending on whether we are

considering the lower tail or the upper tail of the distribution. Without loss of generality,

we only consider the upper tail of the distribution. Assume α(x; θ) > 0 for all x. Of course
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α(x; θ) → 0 as x → ∞. When x is fixed, under some conditions, the delta method shows

that an asymptotically normally distributed and efficient estimator of θ makes the plug-in

estimator of α(x; θ) also asymptotically normal and efficient. However, in most applications

a large sample size is demanded in order for this asymptotic behavior to be accurate for

a small tail probability. As a consequence, the setup with x fixed but n → ∞ presents

an overly optimistic view, as it ignores the possible difficulty due to the smallness of the

tail probability in relation to the sample size n. Instead, allowing x to increase in n (so

that the tail probability to be estimated becomes smaller as the sample size increases) more

realistically addresses the problem.

2.4.1 Asymptotic normality of the MLqE of tail probabilities

We are interested in estimating α(xn; θ0), where xn →∞ as n→∞. For θ∗ ∈ Θ and δ > 0,

Ferrari and Yang (2010) defined

β(x; θ∗; δ) = sup
θ∈Θ∩[θ∗−δ/

√
n,θ∗+δ/

√
n]

∣∣∣ α′′(x;θ)α′′(x;θ∗)

∣∣∣ ,
γ(x; θ) = α′′(x; θ)/α′(x; θ),

(2.20)

where the derivatives are with respect to θ, and gave the following results.

Theorem 2.3. Let θ∗n be the solution to (2.11) such that θ∗n → θ0 as n → ∞. Under

assumptions A.1 and A.2, if

n−1/2 |γ(xn; θ∗n)| β(xn; θ∗n; δ)→ 0 for each δ > 0, (2.21)

then

√
n
α(xn; θ̃n)− α(xn; θ∗n)

σnα′(xn; θ∗n)

D−→ N(0, 1),

where

σn =
−{Eθ0 [U∗(X; θ∗n, qn)]2}1/2

Eθ0 [Oθ∗nU
∗(X; θ∗n, qn)]

. (2.22)
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For the main requirement (2.21) of the theorem on the order of the sequence xn, it is

easiest to verify this on a case by case basis. For the exponential distribution, it can be

easily shown that if xnn
−1/2 → 0 as n→∞ then (2.21) is satisfied. However, this condition

is not easy to check for the standard gamma distribution. Note that for Gamma(θ, 1), the

upper tail probability is α(x; θ) = 1−
∫ x
0
yθ−1e−y

Γ (θ)
dy, and then by the definitions in (2.20)

β(xn; θ∗n; δ) = sup
θ∈[θ∗n− δ√

n
,θ∗n+

δ√
n
]

∣∣∣∣∣∣
∫ xn
0

∂2

∂θ2
yθ−1e−y

Γ (θ)
dy∫ xn

0
∂2

∂θ∗n
2
yθ
∗
n−1e−y

Γ (θ∗n)
dy

∣∣∣∣∣∣ ,
γ(xn; θ∗n) = sup

θ∈[θ∗n− δ√
n
,θ∗n+

δ√
n
]

∫ xn
0

∂2

∂θ2
yθ−1e−y

Γ (θ)
dy∫ xn

0
∂
∂θ

yθ−1e−y

Γ (θ)
dy

.

It is difficult to give the explicit convergence order of xn such that (2.21) holds, for which we

will rely on our simulation studies in Chapter 3. When xn →∞ too fast so as to violate the

condition, the asymptotic normality is not guaranteed, which indicates the extreme difficulty

in estimating a tiny tail probability.

2.4.2 Relative efficiency between MLE and MLqE

Theorem 2.2 shows that when (qn−1)
√
n→ 0, the MLqE is asymptotically as efficient as the

MLE. This subsection looks at the efficiency of the MLqE of tail probability when xn →∞.

Consider wn and vn, two estimators of a parametric function gn(θ) such that both

√
n(wn− an)/σn and

√
n(vn− bn)/τn converges weakly to a standard normal distribution as

n→∞ for some deterministic sequences an, bn, σn > 0 and τn > 0. Let

Λ(wn, vn) =
(bn − gn(θ))2 + τ 2n/n

(an − gn(θ))2 + σ2
n/n

. (2.23)

Ferrari and Yang (2010) defined limn→∞ Λ(wn, vn) as the bias adjusted asymptotic relative

efficiency of wn with respect to vn, provided that the limit exists. It can be easily verified that

the definition does not depend on the specific choice of an, bn, σn and τn among equivalent

expressions. Following directly from Theorem 2.3, Ferrari and Yang (2010) gave the following

result on the relative efficiency of the MLqE with respect to the MLE of the tail probability;
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i.e., when qn is chosen sufficiently close to 1, asymptotically speaking, the MLqE is as efficient

as the MLE.

Corollary 2.1. Under the conditions of Theorem 2.3, when qn is chosen such that

n1/2α(xn; θ∗n)α(xn; θ0)
−1 −→ 1 and α′(xn; θ∗n)α′(xn; θ0)

−1 −→ 1, (2.24)

then Λ(α(xn; θ̂n), α(xn; θ̃n)) = 1.

For the standard gamma distribution, α(xn; θ) = 1 −
∫ xn
0

yθ−1e−y

Γ (θ)
dy and α′(xn; θ) =

−
∫ xn
0

∂
∂θ

yθ−1e−y

Γ (θ)
dy. For sequences xn → ∞ and qn → 1 such that (2.21) holds, we have

√
nα(xn;θ̃n)−α(xn;θ0/qn)

σnα′(xn;θ0/qn)

D−→ N(0, 1) with σn given in (2.22). For a one dimensional parameter,

σn =
√
Vn with Vn defined in (2.13). Particularly for Gamma(θ, 1), σ2

n is calculated and

given in (2.19). When qn = 1 for all n, the usual plug-in estimator based on the MLE is

recovered. With the asymptotic expressions given above,

Λ(α(x; θ̂n), α(x; θ̃n)) = n[logΓ (θ0)]
′′
[
α(xn; θ0/qn)− α(xn; θ0)

α′(xn; θ0)

]2
+

[
α′(xn; θ0/qn)

α′(xn; θ0)

]2
.

Again, not as for the exponential distribution, it is not clear for the standard gamma distri-

bution which qn values will give this bias adjusted asymptotic relative efficiency Λ less than

1. Based on our simulation results in Chapter 3, we can conclude that MLqE is not more

efficient than MLE in limits, but MLqE can be much better than MLE for small sample size

due to variance reduction.

2.5 Choice of Distortion Parameter q

When estimating the parameter in either the exponential distribution or standard gamma

distribution, with qn → 1, the asymptotic variance of the MLqE is equivalent to that of the

MLE in limit, but can be smaller for small sample sizes. In this section we discuss the choice

of q such that the MLqE has reduced variance.
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Ferrari and Yang (2010) discussed the choice of q for the exponential distribution. When

estimating λ0, they observed from the expression of σn in (2.18) that (q2−2q+2)/[q5(2−q)3] <

1 for 1 < q < 1.40; thus, choosing the distortion parameter in such a range gives σ2
n < λ20.

When estimating the tail probability α(xn, λ0), the MLqE is asymptotically as efficient as

the MLE when (qn− 1)xn → 0 and one needs 0 < qn < 1 to minimize the MSE. The method

above is the main method we use to get q values in this thesis.

As Ferrari and Yang (2010) suggested, one can choose the q which minimizes an estimated

asymptotic MSE of the estimator when it is mathematically tractable. In the case of the

exponential distribution, by Theorem 2.2 and (2.18),

MSEλ̃(q, λ0) =

(
λ0
q
− λ0

)2

+ n−1
(
λ0
q

)2 [
q2 − 2q + 2

q3(2− q)3

]
. (2.25)

However, since λ0 is unknown, we consider

q∗ = arg min
q∈(0,2)

{MSEλ̃(q, λ̂)}, (2.26)

where λ̂ is the MLE. The reason why we choose interval (0,2) is due to the positiveness

of σ2
n in (2.18). This will be used in some of our simulation studies in Chapter 3, similar

to what Ferrari and Yang (2010) did for estimating the tail probability for the exponential

distribution.

Now we look at how to choose q for the standard gamma distribution. By Theorem 2.2,

the MLqE θ̃ of θ0 has asymptotic MSE

MSEθ̃(q, θ0) =

(
θ0
q
− θ0

)2

+
σ2
n

n
, (2.27)

where σn is given in (2.19) with qn replaced by q. As a result, when estimating θ0, we choose

q∗ such that

q∗ = arg min
q∈(0,2)

{MSEθ̃(q, θ̂)}, (2.28)

where θ̂ is the MLE. By Theorem 2.3, the MLqE α(xn; θ̃n) of the upper tail probability

α(xn; θ0) has asymptotic MSE

MSEα̃(q, θ0) = [α(xn; θ0/q)− α(xn; θ0)]
2 + [α′(xn; θ0/q)]

2σ
2
n

n
, (2.29)
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where σn is given in (2.19) with qn replace by q, α(x; θ) = 1 −
∫ x
0
yθ−1e−y

Γ (θ)
dy and α′(x; θ) =

−
∫ x
0

∂
∂θ

yθ−1e−y

Γ (θ)
dy. Note that α′(x; θ) is the derivative with respect to θ instead of x. Now

(2.29) can be written more explicitly as

MSEα̃(q, θ0) =

[∫ xn

0

yθ0−1e−y

Γ (θ0)
dy −

∫ xn

0

yθ0/q−1e−y

Γ (θ0/q)
dy

]2
+

[∫ xn

0

(
∂

∂θ

yθ−1e−y

Γ (θ)

)∣∣∣∣
θ=θ0/q

dy

]2
σ2
n

n

(2.30)

As a result, when estimating α(xn; θ0), we choose q∗ such that

q∗ = arg min
q∈(0,2)

{MSEα̃(q, θ̂)}, (2.31)

where θ̂ is the MLE. The choices of q in (2.28) and (2.31) will be also used in some of our

Chapter 3 simulation studies.
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Chapter 3

MONTE CARLO SIMULATION

In this chapter, we implement Monte Carlo simulation studies to examine, for both expo-

nential and standard gamma distributions, the MLqE’s finite sample performance compared

with the traditional MLE. In Section 3.1, we assess the accuracy of MLqEs and MLEs for

both parameter and tail probabilities by looking at their MSE ratio with a varying but

deterministic distortion parameter q. In Section 3.2, we assess the reliability of confidence

intervals produced by MLEs and MLqEs with data-driven optimal distortion parameter.

Section 3.3 is devoted to a robustness study of the MLqEs and MLEs.

3.1 MSE: Role of Distortion Parameter q

In the first group of simulations, we compare the two estimators of the natural parameter

in either the exponential distribution or standard gamma distribution, obtained via the

MLq method and the traditional ML approach respectively. Particularly, we are interested

in assessing the relative performance of the two estimators for different choices of sample

size by taking the ratio of the their MSEs, i.e. MSE(λ̂n)/MSE(λ̃n) for λ0 in Exp(λ0), or

MSE(θ̂n)/MSE(θ̃n) for θ0 inGamma(θ0, 1), or MSE(α̂n)/MSE(α̃n) for upper tail probabilities

α0 of either Exp(λ0) or Gamma(θ0, 1).

The simulations are structured as follows:

(i) For any given sample size n ≥ 2, B = 10, 000 of Monte Carlo samples X1, · · · , Xn

are generated from an exponential distribution with parameter λ0 (i.e. Exp(λ0)) or

a standard gamma distribution with parameter θ0 (i.e. Gamma(θ0, 1)).

(ii) For each sample, the MLqEs and MLEs of λ0 or θ0 and the corresponding α0 are

calculated.
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(iii) For each sample size n, the relative performance between the two estimators is evalu-

ated by the ratio R̂n = MSEMC(β̂n)/MSEMC(β̃n), where β denotes λ (the exponential

parameter) or θ (the standard gamma parameter) or α (the corresponding upper tail

probability) and MSEMC denotes the Monte Carlo estimate of the MSE.

To find R̂n in (iii), let ȳ1 = B−1
∑B

k=1(β̂n,k − β0)2 and ȳ2 = B−1
∑B

k=1(β̃n,k − β0)2, where

β̂n,k and β̃n,k denote the estimates based on the k-th sample with size n, k = 1, 2, · · · , B, and

β0 is either λ0 or θ0 or α0. Then we use R̂n = ȳ1/ȳ2 and the rationale is as follows. By the

Central Limit Theorem (CLT), for large values of B, ȳ = (ȳ1, ȳ2)
T has approximately a bi-

variate normal distribution with mean µ = (MSE(β̂n),MSE(β̃n))T and a certain covariance

matrix Γ . Thus we could use ȳ1/ȳ2 to estimate R̂n. The standard error of R̂n can be

computed by the delta method (Ferguson, 1996) as

se(R̂n) = B−1/2
(
γ̂11
ȳ22
− 2γ̂12

ȳ1
ȳ32

+ γ̂22
ȳ21
ȳ42

)1/2

, (3.1)

where γ̂11, γ̂22 and γ̂12 denote, respectively, the Monte Carlo estimates of the components of

the covariance matrix Γ . The standard error (3.1) is derived as followes. By the CLT, as

B →∞ we have

√
B (ȳ − µ)

D−→ N


0

0

 ,Γ =

γ11 γ12

γ12 γ22


 .

Let g(ȳ) = ȳ1/ȳ2, then by the delta method we have

√
B [g(ȳ)− g(µ)]

D−→ N
(
0, ġT (µ)Γ ġ(µ)

)
,

where ġ(µ) denotes the gradient of g(µ), i.e.

ġT (µ) =

(
∂

∂µ1

g(µ),
∂

∂µ2

g(µ)

)
=

(
1

µ2

,−µ1

µ2
2

)
.

Thus

ġT (µ)Γ ġ(µ) =

(
1

µ2

,−µ1

µ2
2

)γ11 γ12

γ12 γ22


 1/µ2

−µ1/µ
2
2

 =
γ11
µ2
2

− 2γ12
µ1

µ3
2

+ γ22
µ2
1

µ4
2

,

and as a result we can use (3.1) to estimate the standard error of R̂n.
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3.1.1 Simulation results for exponential distribution

For the exponential distribution Exp(λ0), we can estimate the true parameter λ0 and the

upper tail probability α(x;λ0). Since the latter has been presented in Ferrari and Yang

(2010), we only give the simulation results for the parameter estimation in this section.

Study I: fixed λ0 and q for parameter estimation.

Figure 3.1 displays results for λ0 = 0.5, 1, 1.5 and fixed distortion parameter q = 1.2.

The plot illustrates the behaviour of R̂n for different choices of sample size. From Figure

3.1 we find that R̂n > 1 for most sample sizes considered, i.e. n < 80. This indicates that

MSE(λ̂) is greater than MSE(λ̃) and thus MLqE clearly outperforms the traditional MLE

when sample size n < 80. When the sample size increases, the bias component becomes

more relevant and we observe that R̂n increases first from 1, reaches the peak around sample

size n = 20, and then decreases slowly down to 1 when n > 80. From Figure 3.1 we also

observe that the advantage of using MLqE for small sample sizes is more accentuated for

larger values of λ0.
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Figure 3.1: Plot of MSE ratio R̂n = MSEMC(λ̂n)/MSEMC(λ̃n) as a function of sample size n

for Exp(λ0) with λ0 = 0.5, 1, 1.5 and q = 1.2 (Study I).

Figure 3.2 shows results for λ0 = 1 and the three different distortion parameter values

q = 1.35, 1.15, 1.05. From this plot we observe that R̂n > 1 for most sample sizes considered,

i.e. when n < 90 MLqE performs better than MLE in terms of MSE. When the sample

size n increases, the R̂n value increases first from 1, reaches the peak around sample size

n = 20, and then decreases down to 1 when n > 90. Moreover, larger values of the distortion

parameter q accentuate the benefits of MLqE for relatively small sample size.
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Figure 3.2: Plot of MSE ratio R̂n = MSEMC(λ̂n)/MSEMC(λ̃n) as a function of sample size n

for Exp(λ0) with λ0 = 1 and q = 1.35, 1.15, 1.05 (Study I).

Study II: fixed λ0 and qn ↘ 1 for parameter estimation.

Figure 3.3 shows results for λ0 = 0.5, 1, 1.5 and varying qn = [1 + e0.3(n−20)]/[0.5 +

e0.3(n−20)], a decreasing function of sample size n. Note that qn is a sequence such that

1 < qn < 2 and qn ↘ 1 as n → ∞. We choose this sequence for illustrative purposes

and study R̂n for different choices of λ0. For small values of the sample size, the chosen

sequence qn is way bigger than 1 and thus produces benefits in terms of smaller variance.

As a consequence, for small sample sizes, R̂n > 1 and the MLqE outperforms the traditional

MLE in terms of MSE. In contrast, when the sample size becomes larger, qn adjusts quickly

to 1. As a consequence, for large sample sizes, R̂n is close to 1 and the MLqE exhibits the

same behaviour as the MLE. We also observe that the advantage of using the MLqE for
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small sample sizes is much more accentuated for larger values of λ0.

Figure 3.3: Plot of MSE ratio R̂n = MSEMC(λ̂n)/MSEMC(λ̃n) as a function of sample size n

for Exp(λ0) with λ0 = 0.5, 1, 1.5 and qn = [1 + e0.3(n−20)]/[0.5 + e0.3(n−20)] (Study II).

3.1.2 Simulation results for the standard gamma distribution

In this section we investigate, for the standard gamma distribution Gamma (θ0, 1), the

MLqEs of the true parameter θ0 and the upper tail probability α(x; θ0).

Study I: fixed θ0 and q for parameter estimation.

In Figure 3.4, we consider θ0 = 1, 5, 10 and fixed distortion parameter q = 1.5. Figure

3.4 shows that R̂n > 1 for very small sample sizes, i.e., n < 10, and θ0 = 5, 10. When θ0 = 1,

R̂n < 1 for any sample size. When the sample size increases, R̂n is decreasing, R̂n < 1 and

converges to 0. This indicates that the MLE is much better than MLqE for large sample
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sizes, e.g. n > 20, with fixed q = 1.5.

Figure 3.4: Plot of MSE ratio R̂n = MSEMC(θ̂n)/MSEMC(θ̃n) as a function of sample size n

for Gamma(θ0, 1) with θ0 = 1, 5, 10 and q = 1.5 (Study I).

Figure 3.5 considers fixed θ0 = 10 and the three different distortion parameter values

q = 1.35, 1.15, 1.05. From this plot we observe that R̂n > 1 for very small sample sizes,

i.e. n < 10. When sample size n increases, the R̂n value decreases slowly especially when

q = 1.05, 1.15. Moreover, larger values of the distortion parameter q accentuate the benefits

of MLqE for very small sample sizes.
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Figure 3.5: Plot of MSE ratio R̂n = MSEMC(θ̂n)/MSEMC(θ̃n) as a function of sample size n

for Gamma(θ0, 1) with θ0 = 10 and q = 1.35, 1.15, 1.05 (Study I).

Study II: fixed θ0 and qn ↘ 1 for parameter estimation.

Figure 3.6 considers θ0 = 1, 5, 10 and varying qn = [1 + e0.3(n−20)]/[0.5 + e0.3(n−20)]. When

θ0 = 5, 10, R̂n > 1 for very small sample sizes n < 7 and R̂n < 1 for sample sizes n > 10.

When θ0 = 1, R̂n < 1 for all sample sizes. For large sample sizes, e.g. n > 30, qn converges

quickly to 1 and thus R̂n converges to 1 and the MLqEs and MLEs perform equivalently.
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Figure 3.6: Plot of MSE ratio R̂n = MSEMC(θ̂n)/MSEMC(θ̃n) as a function of sample size n

for Gamma(θ0, 1) with θ0 = 1, 5, 10 and qn = [1 + e0.3(n−20)]/[0.5 + e0.3(n−20)] (Study II).

Study III: fixed α0 and q for tail probability estimation.

Figures 3.7 and 3.8 illustrate the behaviour of R̂n for different choices of tail probability

α0 and q. For relatively small sample sizes, i.e. n < 10 for q = 0.5 in Figure 3.7 and

n < 20 for q = 0.65, 0.85, 0.95 in Figure 3.8, we observe R̂n > 1 which means that the MLqE

performs better than the MLE. Such behaviour is more accentuated for smaller values of the

α0 and smaller values of the distortion parameter q. In contrast, when the sample size is

larger, the bias plays an increasingly relevant role and we observe that R̂n < 1.
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Figure 3.7: Plot of MSE ratio R̂n = MSEMC(α̂n)/MSEMC(α̃n) as a function of sample size n

for Gamma(θ0, 1) with α0 = 0.01, 0.005, 0.003 and q = 0.5 (Study III).

Figure 3.8: Plot of MSE ratio R̂n = MSEMC(α̂n)/MSEMC(α̃n) as a function of sample size n

for Gamma(θ0, 1) with α0 = 0.003 and q = 0.65, 0.85, 0.95 (Study III).
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Study IV: fixed α0 and qn ↗ 1 for tail probability estimation.

Figure 3.9 considers fixed upper tail probabilities for α0 = 0.01, 0.005, 0.003 but varying

qn = [0.5+e0.3(n−20)]/[1+e0.3(n−20)] so that qn ↗ 1 and 0 < qn < 1. For small values of sample

size, the chosen sequence qn converges relatively slowly to 1 and the distortion parameter

produces benefits in terms of a smaller variance. As a consequence, for small sample sizes,

R̂n > 1 and the MLqE outperforms the MLE in terms of MSE. In contrast, when the sample

size becomes larger, qn adjusts quickly to one. As a consequences, for large sample sizes,

the MLqE exhibits the same behaviour as the MLE. We also observe that the advantage of

using the MLqE for small sample sizes is much more accentuated for smaller values of α0.

Figure 3.9: Plot of MSE ratio R̂n = MSEMC(α̂n)/MSEMC(α̃n) as a function of sample size

n for Gamma(θ0, 1) with α0 = 0.01, 0.005, 0.003 and qn = [0.5 + e0.3(n−20)]/[1 + e0.3(n−20)]

(Study IV).
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Study V: αn ↘ 0 and qn ↗ 1 for tail probability estimation.

Figure 3.10 considers the case where both the true tail probability and the distortion

parameter change with sample size. From Study III and Study IV we observe that, in order

to produce benefit of smaller variance, one may choose relatively larger q values for smaller

α0 values and smaller q values for larger α0 values, i.e. αn decreases and qn increases as

sample size n increases. We consider sequences of distortion parameters converging slowly

relative to the sequence of quantiles xn. In particular we set qn = 1 − [10 log(n + 10)]−1

and xn = n1/(2+δ) as in Ferrari and Yang (2010). In Figure 3.10, we illustrate the behaviour

of the estimator for δ = 0.5, 1, 1.5. Smaller δ means smaller αn and thus, similar to our

observation in Figures 3.7 and 3.9, better performance of the MLqE.

Figure 3.10: Plot of MSE ratio R̂n = MSEMC(α̂n)/MSEMC(α̃n) as a function of sample size

n for Gamma(θ0, 1) with xn = n1/(2+δ), δ = 0.5, 1.0, 1.5, and qn = 1 − [10 log(n + 10)]−1

(Study V).
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Studies IV and V indicate that the choice of qn depends on the size of the probability

to be estimated. If qn approaches 1 too quickly from below, the gain obtained in terms of

variance vanishes rapidly as n becomes larger. On the other hand, if qn converges to 1 too

slowly, the bias dominates the variance and the MLE outperforms the MLqE.

3.2 Asymptotic and Bootstrap Confidence Intervals

In this section, we study the reliability of the MLqE based confidence intervals using three

commonly used methods: (a) asymptotic normality; (b) parametric bootstraps; (c) nonpara-

metric bootstraps. We compare the results with those obtained using the MLE. Again we

consider estimating λ0 for the exponential distribution and θ0 and tail probability α0 for the

standard gamma distribution, as the case of tail probability for exponential distribution has

been discussed in Ferrari and Yang (2010).

The structure of the simulations in this section is similar to that of Section 3.1, but a

data-driven choice of qn is used:

(i) For each sample, first we compute β̂, the MLE of β0, where β is either λ for the

exponential distribution or θ for standard gamma distribution. We substitute β̂ into

either (2.26) if β = λ or (2.28) or (2.31) if β = θ, and solve it numerically in order to

obtain q∗ as described in (2.26) or (2.28) or (2.31).

(ii) With q∗ calculated in (i), the MLqE β̃ of β0 is obtained. The standard errors of the

estimates are computed using three different methods: the asymptotic formula, para-

metric bootstrap and nonparametric bootstrap. The number of replicates employed

in bootstrap re-sampling is 500. We construct 95% bootstrap confidence intervals

based on the bootstrap quantiles and check the coverage of the true value β0.

We take B = 1, 000 repetitions for each simulation in this Section. The standard error

based on asymptotic formula is derived in either (2.18) (σn/
√
n) for estimating λ0 or (2.19)

(σn/
√
n) for estimating θ0 or (2.30) (square-root of the second term) for estimating α0. More
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explicitly, for the exponential distribution, the standard error of the MLqE for λ0 and upper

tail probability α(xn;λ0) are respectively

SEasy(λ̃) =
σn√
n

= n−1/2
λ0
qn

√
q2n − 2qn + 2

q3n(2− qn)3
,

SEasy(α̃) =
σnα

′(xn;λ∗n)√
n

= n−1/2
λ0xne

−λ0xn/qn

qn

√
q2n − 2qn + 2

q3n(2− qn)3

For the standard gamma distribution, the standard error of the MLqE for θ0 and upper tail

probability α(xn; θ0) are respectively

SEasy(θ̃) =
σn√
n

= n−1/2
Γ 1/2((2/qn−1)θ0)

Γ 1/2(θ0)

{
ψ′((2/qn − 1)θ0) + [ψ((2/qn − 1)θ0)− ψ(θ0/qn)]2

}1/2
qnΓ (θ0/qn)
Γ (θ0)

ψ′(θ0/qn)

SEasy(α̃) =
σnα

′(xn; θ∗n)√
n

= n−1/2
∫ xn

0

(
∂

∂θ

yθ−1e−y

Γ (θ)

)∣∣∣∣
θ=θ0/q

dy

·
Γ 1/2((2/qn−1)θ0)

Γ 1/2(θ0)

{
ψ′((2/qn − 1)θ0) + [ψ((2/qn − 1)θ0)− ψ(θ0/qn)]2

}1/2
qnΓ (θ0/qn)
Γ (θ0)

ψ′(θ0/qn)

In these formulas, q = 1 corresponds to the MLE.

3.2.1 Simulation results for the exponential distribution

For the exponential distribution Exp(λ0), we only present the simulation results for estimat-

ing the true parameter λ0 as that for tail probability has been presented in Ferrari and Yang

(2010). Without loss of generality, we take λ0 = 1.

In Table 3.1, we present the Monte Carlo means and standard deviations of the MLE λ̂

and the MLqE λ̃ over B = 1, 000 repetitions, with standard errors computed using the three

methods described above. In addition, we report the Monte Carlo average of the optimal

distortion parameter q∗. Again q∗ = 1 refers to the MLE. We examine different sample sizes

n = 15, 25, 50, 100, 500. From Table 3.1 we can see that, not surprisingly, q∗ approaches 1 as

the sample size increases. In addition, the optimal q∗ is always higher than 1 regardless of

sample size, which is consistent with our choice in Section 3.1. For all sample size considered,
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the MLqE always has smaller standard deviation and thus better performance than the MLE,

though this advantage of MLqE diminishes with increasing sample size. The MLqE also has

smaller bias than the MLE for all sample sizes considered. When comparing the standard

errors calculated using the three methods, the parametric bootstrap provides values closest

to the Monte Carlo standard deviation. The asymptotic formula gives better estimation

of standard error than nonparametric bootstrap when sample size is small (15, 25 or 50),

while the nonparametric bootstrap gives better estimation when sample size is large (100 or

500). No matter which of the three methods is used, the MLqE always demonstrates smaller

standard error than the MLE for all sample sizes considered.

Table 3.1: Mean, standard deviation and standard error of the MLE λ̂ and MLqE λ̃.

n q∗ Estimate St. dev. seasy seboot sepboot

15 1.087 0.985843 0.233474 0.241559 0.287935 0.232463

1.000 1.047873 0.244609 0.258076 0.304693 0.248623

25 1.034 1.010206 0.200986 0.223410 0.236957 0.216375

1.000 1.041656 0.206214 0.231035 0.243282 0.224222

50 1.018 1.003199 0.128298 0.138897 0.141865 0.129142

1.000 1.020331 0.130608 0.141443 0.143734 0.131644

100 1.009 1.017528 0.104521 0.107096 0.106713 0.104592

1.000 1.026400 0.105389 0.108068 0.107465 0.105755

500 1.002 1.000736 0.045950 0.046142 0.046083 0.045965

1.000 1.002474 0.046054 0.046468 0.046314 0.046336

In Table 3.2, we compare the accuracy of 95% confidence intervals for the MLE and

MLqE and report both the coverage probability/rate (Coverage) and the relative length of

intervals (RL) for MLqE over those for MLE. Here RL is the averaged ratio, over B = 1, 000

repetitions, of the interval length for MLqE over that for MLE. From Table 3.2 we observe
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that when either nonparametric bootstrap or parametric bootstrap is used to calculate stan-

dard error, the coverage probability for MLqE is always larger than that of MLE. Although

the coverage probability for MLqE is slightly smaller than that of the MLE (within 1%) when

asymptotic formula is used, the interval length is reduced for all considered cases and all the

three standard error calculation methods. The reduction in interval length is more evident

when the sample size is small. For all the sample size considered, the parametric bootstrap

provides the most accurate (closest to 95%) confidence interval followed by nonparametric

bootstrap.

Table 3.2: Coverage rate and relative length of interval (RL) for the MLqE λ̃ over MLE λ̂.

Asympt. Boot. Par. boot.

n q∗ Coverage RL Coverage RL Coverage RL

15 1.087 82.8 0.936 85.8 0.945 87.6 0.935

1.000 83.4 84.5 87.2

25 1.034 85.7 0.967 88.1 0.974 90.3 0.965

1.000 86.5 87.7 90.2

50 1.018 89.3 0.982 90.6 0.987 92.1 0.981

1.000 89.9 90.2 91.7

100 1.009 91.0 0.991 92.9 0.993 93.9 0.989

1.000 91.2 92.5 93.6

500 1.002 94.1 0.993 94.6 0.995 95.1 0.992

1.000 94.3 94.5 94.8

3.2.2 Simulation results for the standard gamma distribution

For the standard gamma distribution Gamma(θ0, 1), we present the simulation results for

estimating both the true parameter θ0 (Tables 3.3 and 3.4) and the upper tail probability

α0 (Tables 3.5 and 3.6). Without loss of generality, we take θ0 = 1 and α0 = 0.01.
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In Table 3.3, we present the means, standard deviations and standard errors of the MLE

θ̂ and the MLqE θ̃ of gamma parameter θ0. From Table 3.3 we observe a similar phenomena

as in Table 3.1. The optimal q∗ approaches 1 as the sample size increases. It is always higher

than 1 regardless of sample size, which is consistent with our choice in Section 3.1. For all

sample sizes considered the MLqE has smaller standard deviation than the MLE, though the

advantage of MLqE diminishes with increasing sample size. When comparing the standard

errors calculated using the three methods, the parametric bootstrap provides values closest

to the Monte Carlo standard deviation.

Table 3.3: Mean, standard deviation and standard error of the MLE θ̂ and MLqE θ̃.

n q∗ Estimate St. dev. seasy seboot sepboot

15 1.033 1.062884 0.220070 0.249909 0.266232 0.235482

1.000 1.044836 0.221192 0.269299 0.285963 0.265781

25 1.022 1.012154 0.165725 0.185742 0.190547 0.179941

1.000 0.999072 0.167732 0.195312 0.199735 0.196228

50 1.011 1.019137 0.100756 0.109429 0.108276 0.108026

1.000 1.012545 0.100918 0.112350 0.110712 0.114313

100 1.006 1.009953 0.075361 0.081522 0.078320 0.076018

1.000 1.006411 0.075527 0.082596 0.079111 0.078127

500 1.001 0.999521 0.037271 0.037668 0.037853 0.037382

1.000 0.998792 0.037289 0.038010 0.038082 0.037798

In Table 3.4, we compare the accuracy of 95% confidence intervals for MLE and MLqE

of gamma parameter θ0 and report both the Coverage and the RL. From Table 3.4 we

observe similar phenomena as those demonstrated in Table 3.2. The coverage probability

for MLqEs is always larger than that of MLEs when either nonparametric bootstrap or

parametric bootstrap is used to calculate standard error, while it is smaller than that of

MLEs (within 1%) when asymptotic formula is used. Regardless of sample size and method
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of calculating the standard error, the interval length of MLqEs is always reduced especially

when the sample size is small. For all the sample size considered, the parametric bootstrap

provides most accurate confidence interval followed by nonparametric bootstrap.

Table 3.4: Coverage rate and relative length of interval (RL) for the MLqE θ̃ over MLE θ̂.

Asympt. Boot. Par. boot.

n q∗ Coverage RL Coverage RL Coverage RL

15 1.033 87.3 0.928 90.5 0.931 91.7 0.886

1.000 87.8 89.4 90.9

25 1.022 89.5 0.951 91.7 0.954 92.4 0.917

1.000 89.9 91.3 92.0

50 1.011 91.1 0.974 93.5 0.978 93.8 0.945

1.000 91.3 93.2 93.6

100 1.006 92.0 0.987 94.6 0.990 94.9 0.973

1.000 92.5 94.1 94.8

500 1.001 93.2 0.991 94.8 0.994 95.1 0.989

1.000 93.6 94.7 94.9

In Table 3.5, we present the means, standard deviations and standard errors of the MLE

α̂ and the MLqE α̃ of gamma upper tail probability α0. From Table 3.5 we observe a similar

phenomena to that in Tables 3.1 and 3.3. The optimal q∗ approaches 1 as the sample size

increases. It is always smaller than 1 regardless of sample size, which is consistent with our

choice in Section 3.1. The MLqE has smaller bias and standard deviation than the MLE,

though this advantage diminishes with increasing sample size. When comparing the standard

errors calculated using the three methods, the parametric bootstrap generally provides values

closest to the Monte Carlo standard deviation, followed by the asymptotic formula.
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Table 3.5: Mean, standard deviation and standard error of the MLE α̂ and MLqE α̃.

n q∗ Estimate St. dev. seasy seboot sepboot

15 0.975 0.011633 0.005910 0.005725 0.005656 0.005891

1.000 0.011997 0.006102 0.006312 0.006043 0.006740

25 0.985 0.010302 0.004419 0.004663 0.004950 0.004236

1.000 0.010503 0.004475 0.005036 0.005167 0.004686

50 0.993 0.010376 0.002470 0.002836 0.002946 0.002799

1.000 0.010477 0.002498 0.002989 0.003022 0.002984

100 0.996 0.010110 0.001776 0.001792 0.001848 0.001784

1.000 0.010251 0.001784 0.001844 0.001884 0.001874

500 0.999 0.009987 0.000863 0.000866 0.000867 0.000865

1.000 0.009997 0.000864 0.000878 0.000873 0.000885

In Table 3.6, we compare the accuracy of 95% confidence intervals for the MLE and

the MLqE of gamma upper tail probability α0 and report both the Coverage and the RL.

From Table 3.6 we observe a similar phenomena to that in Tables 3.2 and 3.4. The coverage

probability for MLqE is always larger than that of MLE when either nonparametric bootstrap

or parametric bootstrap is used to calculate standard error, while it is smaller than that of

the MLE (within 1%) when asymptotic formula is used. Regardless of the sample size and

method of calculating the standard error, the interval length of MLqE is always reduced

especially when the sample size is small. For all the sample size considered, the parametric

bootstrap provides most accurate confidence interval followed by nonparametric bootstrap.
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Table 3.6: Coverage rate and relative length of interval (RL) for the MLqE α̃ over MLE α̂.

Asympt. Boot. Par. boot.

n q∗ Coverage RL Coverage RL Coverage RL

15 0.975 79.9 0.907 84.5 0.936 89.2 0.874

1.000 80.3 83.8 88.7

25 0.985 84.1 0.926 87.7 0.958 91.3 0.904

1.000 84.5 87.5 89.6

50 0.993 88.9 0.949 90.3 0.975 92.5 0.938

1.000 89.3 89.9 92.2

100 0.996 92.1 0.972 92.8 0.981 94.2 0.952

1.000 92.6 92.7 94.0

500 0.999 94.5 0.986 94.9 0.994 95.2 0.977

1.000 94.6 94.7 95.0

3.3 Robustness Study

The MLqE may have some robustness properties when compared with the traditional MLE.

In this section, we briefly investigate this aspect for the exponential and standard gamma

distributions.

We look at whether the MLqE is resistant to outlying observations. Particularly, for

simplicity we examine how MLqE behaves when a single outlying observation is present. For

this purpose, the α-influence function (IF) given in Beran (1977) is a suitable measurement.

The α-IF measures the change in the estimate when a component with probability α is added

to the original model. Here we use an adapted version of the α-IF proposed by Lu, Hui and

Lee (2003).

In this section, we always use the sample size n = 20. Without loss of generality, we take
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the true parameters λ0 = 1 for the exponential distribution, θ0 = 1 for standard gamma

distribution and α0 = 0.01 for upper tail probability of both distributions. We randomly

select a sample of n = 20 observations from either Exp(1) or Gamma(1, 1). Based on this

sample, we can calculate the MLE and the MLqE with a fixed q value. To calculate the

α-IF, we replace the last observation (data are not sorted) with an outlying observation x,

where x is an integer varying from 1 to 20 (large enough for both Exp(1) and Gamma(1, 1)

as an outlier). Thus the contamination rate is α = 1/n = 1/20. Now the α-IF is defined as

IF(x) =
W [(Xi)

n−1
i=1 , x]−W [(Xi)

n
i=1]

1/n
,

where W represents a functional (estimator of β) based on the data. In our simulation, W

is either the MLE β̂ or MLqE β̃ with β being λ, θ or α.

The α-IFs are averaged over B = 100 repetitions and results are presented in Figures

3.11-3.14. Figures 3.11 and 3.12 give the α-IFs of MLE and MLqE of parameter λ0 and

upper tail probability α0 in Exp(λ0), while Figures 3.13 and 3.14 give those of parameter θ0

and upper tail probability α0 in Gamma(θ0, 1). The fixed distortion parameters are chosen

in the same direction as discussed and observed in Sections 3.1 and 3.2. In another words,

we choose q > 1 for parameter estimation but q < 1 for tail probability estimation. For

the parameter estimations in Figures 3.11 and 3.13, we observe that the α-IFs of MLE and

MLqE increases in their absolute values at about the same rate when the outlying observation

increases from 0 to 20, though the MLqE performs a bit worse than the MLE. However when

looking at the tail probabilities estimators in Figures 3.12 and 3.14, MLqE performs much

better than MLE in the sense that the α-IF of MLqE increases mildly, keeps the same level or

even decreases as outlying observation increases, while that of MLE increases dramatically.
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Figure 3.11: The α-IF of MLE λ̂ and MLqE λ̃ with q = 1.5 for Exp(λ0).

Figure 3.12: The α-IF of MLE α̂ and MLqE α̃ with q = 0.95 for Exp(λ0).
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Figure 3.13: The α-IF of MLE θ̂ and MLqE θ̃ with q = 1.5 for Gamma(θ0, 1).

Figure 3.14: The α-IF of MLE α̂ and MLqE α̃ with q = 0.95 for Gamma(θ0, 1).
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To give a more complete discussion, we also present the results with q in the opposite

direction. The results with q = 0.8 (q < 1) are presented in Figures 3.15 and 3.17, while

those for tail probabilities estimators with q = 1.1 (q > 1) are presented in Figures 3.16 and

3.17. Note that the curves for MLE do not change with different q values. We observe a

similar phenomena but in opposite manners for parameter estimation and tail probability

estimation. In another words, in terms of α-IF, the MLE and MLqE perform competitively

for tail probability estimation although the MLqE is a little bit worse, while the MLqE

perform dramatically better than the MLE for parameter estimation.

The study presented in this section illustrates that the MLqE is generally more robust

with respect to outlying observations than the MLE. Also the choice of distortion parameter

q provides enough flexibility according to the purpose of an analysis. When exponential and

standard gamma models are concerned, if the concentration is on the accuracy of estimation,

then one should choose the distortion parameter q in the same direction as the optimal

value q∗; if the resistance to outliers is more important, then one should choose q in the

same direction as q∗ for tail probability estimation and the opposite direction for parameter

estimation.
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Figure 3.15: The α-IF of MLE λ̂ and MLqE λ̃ with q = 0.8 for Exp(λ0).

Figure 3.16: The α-IF of MLE α̂ and MLqE α̃ with q = 1.1 for Exp(λ0).
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Figure 3.17: The α-IF of MLE θ̂ and MLqE θ̃ with q = 0.8 for Gamma(θ0, 1).

Figure 3.18: The α-IF of MLE α̂ and MLqE α̃ with q = 1.1 for Gamma(θ0, 1).
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Chapter 4

REAL DATA ANALYSIS

In this chapter we analyze a real data set, the Guinea Pigs data. We apply the MLqE to

this data and, for the purpose of comparison, provide the results from the MLE approach as

well. In Section 4.1 we fit exponential models to the data. For the fitted model, we calculate

the quadratic error and the Gain(%) and compare them between the MLqE and the MLE

for different subsample sizes. In Section 4.2 we fit the more general gamma model to the

data and compare the fitted distributions based on the respective MLqE and MLE.

The Guinea Pigs data was presented in Bjerkedal (1960) and comprises survival times,

in days, of 72 Guinea pigs injected with different amount of tubercle. This species of Guinea

pigs are known to have high susceptibility of human tuberculosis, which is one of the reasons

for selecting them. We consider only the study in which animals in a single cage are under

the same regimen. The data (in days) are given below:

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 62

63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131

143 146 146 175 175 211 233 258 258 263 297 341 341 376.

4.1 Fitted Exponential Models

Preliminary analysis of the data shows that an exponential density is appropriate to model

its distribution. The distortion parameter q∗ is selected by using (2.26). The MLE and

MLqE (with optimal distortion parameter q∗ = 1.01) along with their standard errors are

respectively

λ̂ = 0.010018 (se = 0.00117) and λ̃ = 0.009937 (se = 0.00116).
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Here the standard errors are calculated by using the asymptotic formula σn/
√
n with σn

derived in (2.18), qn = q∗ for the MLqE and qn = 1 for the MLE. The two fitted exponen-

tial models Exp(λ̂) and Exp(λ̃) based on respective MLEs and MLqEs give the following

Kolmogorov-Smirnov(ks) test statistics and p-values:

λ̂ : ks = 0.0931, p−value = 0.2868 and λ̃ : ks = 0.0961, p−value = 0.2645.

The two high p-values (> 0.1) mean that both of the two fitted exponential models are

reasonably appropriate. In addition, the two p-values are very close which indicates that the

two gamma models fit the data equivalently well.

We examine in Figure 4.1 the fitted exponential models based on the MLE λ̂ and MLqE

λ̃, along with the histogram of the survival times. As expected from the estimates, the fitted

exponential model based on the MLqE fits the data the same as well as that based on the

MLE.

Figure 4.1: Fitted exponential distributions based on the MLE λ̂ and MLqE λ̃.
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We also examine, in Figure 4.2, the fitted models based on the MLE and MLqE by looking

at the empirical cumulative distribution functions (c.d.f.) and QQ-plots. In the two c.d.f.

plots, the dots show the empirical c.d.f. and the solid curves are the c.d.f.s of the two fitted

exponential models. In the two QQ-plots, the x-axis represents the quantiles of the fitted

exponential model Exp(λ̂) or Exp(λ̃) and y-axis represents the empirical quantiles based on

the data. From these plots we can see that the exponential model based on both MLE and

MLqE fits the data equivalently well.

Figure 4.2: The c.d.f. and QQ-plot of the fitted exponential distributions based on the MLE

λ̂ and MLqE λ̃.
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We also employ a simple hold-out procedure to evaluate the performance of the MLE

and MLqE. We draw B = 200 independent subsamples of size n∗ < n from the original data

and for each subsample compute the MLE λ̂n∗,b, optimal q∗ and MLqE λ̃n∗,b, b = 1, · · · , B.

Then the quadratic error of MLqE and MLE are defined respectively as

ε(q∗, n∗) = B−1
B∑
b=1

(λ̃n∗,b − 0.0100181)2,

ε(1, n∗) = B−1
B∑
b=1

(λ̂n∗,b − 0.0099375)2.

Now the Gain(%) is defined as

Gain(%) =

(
ε(1, n∗)

ε(q∗, n∗)
− 1

)
× 100.

The Gain(%) quantifies how much more variability is in MLE than that in MLqE. The

results are presented in Table 4.1. In the table, for different n∗ values, we give the quadratic

errors of the MLqE and MLE, the averaged optimal distortion parameter q∗ over B = 200

subsamples, and the Gain(%).

Table 4.1: MLqE and MLE of exponential parameter for Guinea Pigs data.

n∗ 10 20 30 40 50 60 70

ε(1, n∗) 7.55 · 10−6 2.78 · 10−6 1.58 · 10−6 8.23 · 10−7 4.21 · 10−7 3.55 · 10−7 7.52 · 10−8

ε(q∗, n∗) 6.88 · 10−6 2.63 · 10−6 1.50 · 10−6 7.82 · 10−7 4.08 · 10−7 3.48 · 10−7 8.31 · 10−8

q∗ 1.09 1.05 1.04 1.03 1.02 1.02 1.01

Gain(%) 9.65 5.47 5.10 4.94 3.95 1.87 -9.52

From Table 4.1 we can see that the Gain(%) decreases dramatically when subsample size

n∗ increases. It is always positive when sample size n∗ ≤ 60 but negative when n∗ = 70. Note

that a positive Gain(%) value means the variability in MLqE is smaller than that in MLE.

So when the subsample size n∗ increases, the benefit of using MLqE over MLE in terms of

reducing variability diminishes, which is consistent with our observation in the simulation
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studies in Chapter 3. The fact here that the optimal q∗ is higher than 1 also agrees with

our observations in Chapter 3. The analysis of this data shows that, for small to moderate

sample sizes, the MLqE is superior to the MLE in terms of Gain(%) for estimating the

exponential parameter λ.

4.2 Fitted Gamma Models

To demonstrate the implementation of MLqE for the standard gamma distribution, in

this section we assume that the data follows a more general gamma distribution and will

test this model assumption once parameters are estimated. Since the methodology dis-

cussed in this thesis assumes the scale parameter λ is known, we try different values λ =

0.01, 0.02, 0.03, 0.04, · · · , 0.10 and pick up the one gives the best fit to the data with Kolmogorov-

Smirnov test. For each fixed λ value, we

Step 1. Divide the data by λ to make it standard gamma distributed after re-scaling.

Step 2. Calculate the optimal q∗ (defined in (2.28)) based on the re-scaled data.

Step 3. Calculate the MLE and MLqE (with the q∗ ) based on the re-scaled data.

Step 4. Use Kolmogorov-Smirnov test to test the fitted gamma model with MLE θ̂

(MLqE θ̃) as the shape parameter and the fixed λ as the scale parameter.

Repeat Steps 1-4 for each λ value and choose the one that gives the best fit, i.e. the one that

gives the largest p-value. It turns out that λ∗ = 0.05 gives the best fit. The corresponding

MLE θ̂ and MLqE θ̃ (with optimal q∗ = 1.00134) along with their standard errors are

respectively

θ̂ = 4.341229 (se = 0.51155) and θ̃ = 4.341704 (se = 0.511606).

The standard errors are calculated by using the asymptotic formula σn/
√
n with σn derived

in (2.20), qn = q∗ = 1.00134 for MLqE and qn = 1 for MLE. Furthermore, the 99% asymp-

totical confidence intervals of θ produced by MLqEs and MLEs are (3.023807, 5.659601) and

(3.023476, 5.658982) respectively.

48



These two best fitted gamma models Gamma(θ̂, λ∗) and Gamma(θ̃, λ∗) based on respec-

tive MLE and MLqE give the following Kolmogorov-Smirnov test statistics and p-values:

θ̂ : ks = 0.1267, p−value = 0.1979 and θ̃ : ks = 0.1268, p−value = 0.1972.

The two high p-values (> 0.1) mean that both of the two fitted gamma models are reasonably

appropriate. In addition, the two p-values are very close, which indicates that the two gamma

models fit the data equivalently well.

In Figure 4.3, we examine the fitted gamma models based on the MLE θ̂ and MLqE

θ̃ along with a histogram of the survival times. As expected from the estimates, the two

gamma models fit the data equivalently well. In Figure 4.4, we look at the c.d.f. of the fitted

gamma model compared with the empirical c.d.f., as well as the QQ-plot based on the fitted

gamma model. From Figure 4.4 we observe again that the gamma model based on both

MLE and MLqE fits the data equivalently well. When compared with the fitted exponential

models, the fitted gamma models seem more appropriate.
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Figure 4.3: Fitted gamma distributions based on the MLE θ̂ and MLqE θ̃.
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Figure 4.4: CDF and QQ-plot of the fitted exponential distributions based on the MLE θ̂

and MLqE θ̃.
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Chapter 5

CONCLUDING REMARKS

The MLqE was first introduced in Ferrari and Yang (2010). It is a novel estimation proce-

dure based on the empirical version of Havrda-Charvát-Tsallis entropy. Different from the

traditional MLE, MLqE uses a more general function Lq(u) = (u1−q − 1)/(1 − q) to take

place of the log function in MLE. Note that when q → 1, Lq(u)→ log(u) and thus one can

recover the traditional MLE. As an extension of the traditional MLE, MLqE has been shown

in Ferrari and Yang (2010) to be very useful and efficient for small and moderate samples.

This thesis aims to examine this newly proposed MLqE in two important types of gamma

distributions: the exponential distribution Exp(λ) and the standard gamma distribution

Gamma(θ, 1). Our results confirm the findings in Ferrari and Yang (2010) but with a more

detailed analysis and additional robustness studies.

As special cases of the exponential family described in Ferrari and Yang (2010), the

MLqEs of parameter and tail probabilities for both exponential and standard gamma dis-

tributions obeys consistency and asymptotic normality. By straightforward calculation, the

asymptotic variances of the MLqEs are derived. As suggested by Ferrari and Yang (2010),

we examine, via simulation studies and a real data analysis, a method of choosing the distor-

tion parameter q by minimizing the estimated MSE that depends on the derived asymptotic

variance. Our results indicate that the optimal distortion parameter q∗ is always bigger than

1 for parameter estimation and smaller than 1 for tail probability estimation. Thus, the

optimal choice of q∗ is not a characteristic of the family alone but also depends on the para-

metric function to be estimated. The optimal q∗ converges to 1 as the sample size increases,

which indicates that the MLqE with optimal q∗ is asymptotically equivalent to MLE.

With a properly chosen distortion parameter q, we examine the finite sample performance
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of the MLqE compared with the MLE for varying parameters and tail probabilities in the

exponential and standard gamma distributions. Our simulation results demonstrate that

when the sample size is small and moderate, the MLqE reduces estimator variance. When

the sample size is large, the bias component becomes more relevant and the advantage of

using MLqE diminishes. Moreover, the benefit of using MLqE techniques for small sample

sizes is accentuated by taking a distortion parameter further away from 1 in the direction of

optimal value q∗.

The robustness, particularly the resistance to outliers, is examined for MLqE. Our results

show that the MLqE is generally more robust with respect to outlying observations than the

MLE. Also the choice of the distortion parameter q provides enough flexibility according to

the purpose of an analysis. When exponential and standard gamma models are concerned,

if the concentration is on the accuracy of estimation, then one should choose the distortion

parameter q in the same direction as the optimal value q∗; if the resistance to outliers is

more important, then one should choose q in the same direction as q∗ for tail probability

estimation, which is the opposite direction for parameter estimation.

Despite of the benefits of MLqE, it has its own limitations. The computation of MLqE

is a bit more complicated than the traditional MLE, especially with the calculation of the

optimal distortion parameter q∗. Also one should not expect the same benefit when using

MLqE for different models. As shown in our simulation results, the MLqE of the parameter

for the standard gamma model is not as beneficial as that for the exponential model (Figures

3.4-3.6 compared with Figures 3.1-3.3).

As a generalization of the study in this thesis, we may consider the general gamma model.

In the general gamma model, there are two unknown parameters and this two dimensional

parameter may make issues more complex both analytically and numerically. We may also

consider gamma regression model. A second direction of future study is to generalize the

MLqE method to nonparametric or even semiparametric models. As a third direction of
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future research, we would like to find the optimal q∗ value by maximizing Lq-likelihood

function over both parameter space and q simultaneously, i.e. the maximization in (2.1) with

respect to both θ and q instead of θ only. This maximizing procedure could be implemented

by using profile likelihood technique.
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[18] Rényi, A. (1961). On measures of entropy and information. Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability 1, 547-461.

[19] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of

Statistical Physics 52, 479-487.

[20] Tsallis, C., Mendes, R.S. and Plastino, A.R. (1998). The role of constraints within

generalized nonextensive statistics. Physica A: Statistical Mechanics and its Applications

261, 534-554.

56


