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ABSTRACT

The design and implémentation of a high -speed processor dedicated to auto-
regressive (AR) modeling is presented in this thesis. Several AR algorithms capa-
ble of operating in a real time environment are examined; “{ith the Burg algon'thr;l
being chosen as it offers a good trade-off between speed and resolution. Errors
arising in the block floating point implementation of the algorithm are discussed
and methods of reducing these errors are presented and implemented. An algorithm
that quickly and accurately performs a division operation is introduced and

included in the implementation of the Burg algorithm. \

The hardware architecture is heavily pipelined and consists of bit-slice
microprogrammable chips that can be programmed independently. This permits full
utilization of the resources by using parallel programming techniques. A high speed
complex number processor composed of two ALUs, a multiplier, two memory units
and a number of components associated with the above units is found to be thé
best trade-off between hardware complexity and speed. Using wirewrap techniques,

a prototype AR processor was developed and tested.

“Results indicate the accuracy of the overall implementation is comparable to
that of floating point implementations. The hardware implementation is capable of
performing a 16" order AR model of 128 complex data points in 5.4 ms. The

effective sampling rate is 23 kHz; real time operation for most applications.
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CHAPTER 1
INTRODUCTION

1.0 INTRODUCTION

Signal analysis is important to many different fields of sciense and can be
performed in a number of different ways. Autoregressive (AR-) modeling is an
approach to signal analysis that has received a lot of attention. It is a parametric
technique that attempts to. predict the present value of a signal from weighted past
values of that signal. AR modeling is used in a number of research areas [1,2,3] to

obtain accurate models of the processes under examination.

This modeling approach has been applied to the analysis of human speech [1]
where it has been used for word recognition and speech synthesis. These applications
require high speed microprocessors to sample and store the voice data. It would be
desirable if a high speed AR processor was developed to perform the analysis at the

same rate the data is received.

Suppression and classification of radar clutter caused by the echos generated from
the earth, weather phenomeﬁa and birds is another application of AR modeling.
* Research - indicates ‘that these echos can be accurately modeled as low order complex
AR processes [2]. AR modeling, specifically the Burg algorithm, can be applied to
produce a filter that Suppresses the clutter. Again a high speed processor capable of

performing complex arithmetic in real time would be useful.

The results in the literature [3] have shown that for small data lengths, AR

modeling tends to produce higher resolution spectral estimates than the classical

1



Fourier transform based methods of spectral analysis. The ability to provide high

resolution spectral estimates is one of the reasons for the popularity of AR modeling.

'I;he pfescnt trend in the above areas is to develop processors and systems that
operate in real time. This means operaﬁﬁg at speeds fast enough to process the data as
soon as it is received rather than storing the data for analysis at some future date. To.
perform real time speech analysis requires a processor capable of sampling at 12.5 kHz
[4]. Real time requirements tend to force designers to turn away from accurate but
computationally time consuming algorithms and implement fast Fourier transform
_(FFI‘) processors to perform spectral analysis. However, there are a number of AR
algorithms that are efficient and can be applied in a real time éituation. One such
algorithm is the Burg algorithm [3]. Its computational simplicity stems from the fact
that it operates directly on the data whereas some other AR algorithms form
covaﬁance matrices. Further it uses information already calculated from lower order
models to determine higher order model parameters. A real timé AR processor would
provide a high resolution model of the signal and would be useful in the applications

discussed.

Resolution and speed are two reasons why AR modeling should be used in a high
fesolution real time digital spectrum analyzer (DSA). The requirement of real time
means that a hardware implementation of an AR algorithm is necessary. Campbell [5]
showed that implementation of a high resolution DSA proposed by Ng [6] on a single
6309 microprocessor system was not acceptable for real time operation. Its failure was
due to time consuming address calculations. To overcome this problem a multiboard

DSA has been proposed [7,8].



The DSA, fig. 1.1, is composed of several blocks that perform spéciﬁc functions
[8]. A processing stage samples, demodulatés, ﬁlte;s and decimates the input data and
is followed by an AR stage that models the received data. To determine the frequency
spectrum of the AR model, a DFT stage is included with the frequency output being
displayed. by a video stage. A system consisting of a specialized processor for each
stage could perform the DSA function in real time. Orbay [7] has designéd and
demonstrated real time operation of a processing unit that is dedicated to performing
the FFT. The §ubject of this thesis is the design of an AR processor which is the
central element in this DSA and the next element in the DSA that requires
develoﬁment. There are many factors that must be considered if the implementation of

the Burg algorithm is to be successful. These factors are presented in this thesis.

Chapter 2 reviews AR modeling techniques and the Burg algorithm. It starts with
the basic premise of AR modehng and proceeds to develop the Levinson algorithm. A
review of the Levinson algorithm shows that it is fast but it does not have the desired
accuracy. The Burg algorithm is reviewed and exa;rﬁned. It is shown that the Burg
algorithrh is a good candidate for implementation because it is relatively fast and

accurate.

Block floating point arithmetic must be used to efficiently perfofm arithmetic
operations in hardware. Chapter 3 examines the errors associated with block floating
point arithmetic operations and methods of reducing the errors are introduced. The
methods include the use of a tree addition algorithm to reduce roundoff errors in
summations and rounding schemes to ensure the stability of the Burg algorithm. An

investigation into division algorithms is performed in order to determine a technique
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Figure 1.1 A Block Diagram of the DSA
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that will satisfy the trade-off between speéd and accuracy. It is shown that overflows

in the lattice structure can be avoided by scaling the input data by one half.

Tﬁe ‘hardware development can ber based on multiple microprocessors or a
w microprogrammable system. In Ichapter 4 thé relative merits of these two alternatives
are determined. A possible hardware cénﬁguration that is -suitable for real time
“ oﬁeration is~ proposed. This configuration is determined by examining the
com'putational1 requirements of the Burg algorithm and finding the simpliest h;a.rdware
configuration that will perform these reciuirements in real time. Wire-wrap methods,
which provide a high degree of flexibility in the physical layout and fast'dcvelopment
times, are used uto inter-connect tile actual hardware components of a prototype DSA.
This is an experimental processor and the ability to change the layout is 'an asset that

outweighs the noise problems that exist in wire-wrap prototypes.

The microprogramming of the. ‘Burg algorithm is detailed in chapter 5. The
implementation of the different parts of the algorithm ‘are discussed and attention is
given to efficient programming methods and rounding schemes that ensure stability.
The maximum theoretical clock speed is determined and the run time equation of the
Burg algorithm is ‘foﬁnd to show that the hardware designed in chapter 4 is cépable of
performing the algorithm in real time.

| Results from the hardware ,implementg.tion are examined in chapter 6. The actual
spectral estimates and run-times are compared against their theoretical counterparts and
some conclusions are made. The overall per-f‘ormance of the hardware and the block
floating point implementation of the Burg algorithm are analyzed. A brief summary is

provided and areas where improvements on speed, design and accuracy can be made,



CHAPTER 2
SPECTRAL ESTIMATION BY AUTOREGRESSIVE MODELING

2.0 INTRODUCTION

In many scientific applications [1,2,16] the determination of the spectral content
of a signal is very useful. Spectral analysis has been applied to a number of fields
mentioned in the first chapter. The chief concern in these areas is the frequency
distribution of power in the signal, better known as the Power Spectral Density (PSD).
A common approach to determining the PSD is to apply the fagt Fourier transform
(FFT) algorithm [10] either directly to the data or to the autocorrelation sequence of
the data. This technique prodﬁces adequate results for a number of situat@ons.
However, there are areas where this method provides a very poor estimate of the PSD
" due lto the fact that the resolution of the discrete Fourier transform (DFT) varies
inversely with the number of data points. Therefore other methods should be used

when examining short data records.

2.1 PARAMETRIC MODELING

The inability of the DFT to produce a high resolution spectral estimate from short
data records has led to the development of several other approaches. Among these
methods are a number of parametric techniques which attempt to model a signal as a
process in which another signal, usuaily Gausgian white noiée, is passed through a
filter. The PSD of the filter’s output is obtained and used as an estimate of the signal’s

PSD.



Threp types of models can be useci to represent a signal [10]. The ARMA model
(fig. 2.1), which consists of fegdback terms a; and feedforward terms b;, generally
provides the best estimate of an unl_cnown signal. However the ARMA algorithms are
computationally compiex and they are not suitable for real time implementation. MA
models (fig. 2.2) provide a good estimate for systems that have a finite impulse |
response but do not perform well for most other signals. Further, determining the MA
model parameters involves solving a number of non-linear equations [9]. A number of
iterative algorithms have been developed to solve for these parameters but these
algorithms are complex and convergence to a stable solution is not guaranteed [9] .

The most widely used technique is the AR model (fig. 2.3) [1]. This method
yields good spectfal results for a large class of signals that are primarily of an all-pole
nature. Some of the algorithms used in determining the parameters are computationally
efficient [3]. In light of these facts, AR modeling was chosen to be used in this real
time DSA application. The theory behind AR modeling and' which algorithms are

compuiationally efficient are outlined in this chapter.

2.2 THEORETICAL ASPECTS OF AR MODELING

The AR model assumes that the present value of the signal x(n) can be estimated

as the sum of weighted past values of the signal. This is expressed as :
i(n)=—a;x(n-1)—a, x(n-2) - - - a, x(n—-p) 2.1)

where X (n) is the estimate of x(n), a; are the AR weighting coefficients and p is the

model order.



T — a unit time delay

Figure 2.1 A Block Diagram of an ARMA Model
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Figure 2.2 A Block Diagram of a MA Model
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Figure 2.3 A Block Diagram of an AR Model

0T



11

The goal of AR modeling is to determine the coefficients a; such that the mean
" squared error (MSE) between the estimate and the signal value is minimized. This can

be expressed as:

CMSE= 3 () -2 2.2)
n= —oo )
Sul;stituting for X (n) from eqn(2.1) yields:

MSE = i x@n) - fak x(n—k))z. (23)
n= —oo k=1 )

Minimizing with respect to the coefficients a; yields the Yule - Walker

equations [10]

[ R[0] R[-11 --- R[-(p-1)] ] [ 1| [ MMSE |
R[1] R[O] -+ R[-@-2]| |« 1 o
. ' : e L 2.4)
[R[p-1] Rp-2] -+~ RO | |aq, L 0 ,
where MMSE is the minimum MSE and
v | .
R(i) = lim Y, x(n) x(n—i). .- : (2.5)

R (i) is known as the autocorrelation lag of x(n) with x(n—i) and is an even fﬁnction: "
R() =R (~). (2.6) -

The matrix in eqn(2.4) is a positive definite, symmetric Toeplitz matrix where all the
elements along any diagonal are identical. The Toeplitz nature of the matrix was
exploited by Levinson [1] in his technique of solving for a; and the MMSE . Further

refining of the Levinson algorithm by Durbin [10] yielded the well known Levinson-



Durbin algorithm. -
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The Levinson-Durbin algorithm 1s simply a highly efficient method of solving

eqn(2.4). The algorithm is initialized by

MMSEy =R (0)
- —R®)
a1 = R©)

MMSE; = (1 - |ay;1% MMSE,,.

The recursive algorithm for k =23, - -+ p is then

k-1 '
—|R(k) + Z -1, R (k-1)
l1=1

Bk = MMSE,

- %*
G =g -1V Gy Cpjpy

MMSE;, = (1 - |ag ;| MMSE,

where g; ; is the a; coefficient determined during the j * teration.

2.7
(2.8)

(2.9)

(2.10)

(2.11)

(2:12) -

This algorithm is fast when compared to the more traditional matrix inversion

techniques. Methods such as Gaussian elimination and Cholesky decomposition require

on the order of O (p3) operations to generate a solution whereas the Lévinson-Durbin

algorithm takes O (p2) operations [10]. The reduction in computational time makes this

algorithm a candidate for use in a real time environment. It has been shown by Yung

[11] that a parallel VLSI implementation of this algorithm can operate in real time.

The Levinson-Durbin algoﬁthm produces better spectral estimates than standard

FFT methods but there are some inherent limitations in the algorithm which reduce its

overall resolution [1]. Most of these limitations stem from the assumption of an infinite
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data set. In any real time application the data is finite in length, meaning that the
autocorrelation lags used in eqn(2.4) are only estimates of the true autocorrelation

" function and should be expressed as:

R =% g_: W x-i). 2.13)

Using this estimate‘ instead of the true autocorrelation lag implies that the data
outside of the finite sequence is assumed to be zero ‘which can be viewed as an
implied windowing of the signal. Tl_le windowing decreases the resolution of the
Leyinson algorithm in the same way windowing décreases the resolution of the DFT.
| The finite data lenigth indicates that the diagonal terms of the matrix in eqn(2.4) are
not exactly equal to each other. The. Levmson-Durbm algorithm prov1des an
apprommate solution to eqn(2.4) since the assumptlon of infinite data is no longer
valid. ’

If an exact solutioh to eqn(2.4) is required then the elegant solution proposed by
‘Levinson can not be used and a more generalized inversion algorithrh taking O (p3)
operations must be applied. Such algorithms may not be implementable in real time
and therefore other AR modeling approaches that retain the 'real time siaeed but

eliminate these problems must be considered.

2.3 PREDICTION ERROR FILTERS

As the next algorithm under review incorporates the use of prediction error filters
(PEF) it is useful to introduce the concept of a PEF at this point in the discussion.

Trying to predict a present value from weighted past values using eqn. (2.1) is
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equivalent to determining the output of a finite impulse response (FIR) filter run over
the data. The coefficients for this filter, shown in fig. 2.4, are the AR model parameters

7 1, aj,..a

- This filter is known as a PEF because it generates the error e(k)

associated with the prediction of the signal.

Until now, the theory has been developed on the basis that a data point can be
represented as a linear combination of past values. Th1s is known as forward pfediction
~ due to the idea that the PEF is moving forward in time. There is also the possibility of
a backward predictor. If all the data is pre;ent then a PEF can be run backward in
time giving

#np) == 5 bix(rp ). (2.14)

i =
Which means that the;present value is a linear combination of future values. The
coefficients, b;, can be found in a similar manner to that used in determining the
forward coefficients a;. When the signal under analysis is shift invariant or.
independent of time, the backward PEF simply becomes the complex conjugate of the
forward PEF, b; = ai* . This concept was exploited by Burg [3] in his algorithm to

determine the AR coefficients.

2.4 THE BURG ALGORITHM

Due to the implied windowing in the Levinson-Durbin algorithm, the overall
resolution is decreased. To alleviate this problem Burg suggested a method that made
no assumptions about the data outside of the 'signal already obtained. In Burg’s

method, the known part of the autocorrelation sequence (R,(0), R,(1),... R,(p)) is
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Y

Figure 2.4 A Block Diagram of a Prediction Error Filter
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extrapolated to produce an estimate of the unknown autocorrelation sequence
(Ry(p+1), R, (p+2) - - +), effectively removing the windowing of the data. So as not
to impose any further constraints on the sequence, Burg proposed that the resulting

time series have maximum entropy. Thus the method is known as the maximum

entropy method (MEM).

Burg’s method operates directly on the data and does not invert the
autocorrelation matrix. Burg used a forward and backwa.rd PEF to obtain information
from the signal. The use of a backward predictor' permits information to be obtained
about the points that can not be predicted by the forward PEF. when the forward PEF
is not allowed to be "run off" the data. Fig. 2.5 demonstrates what is meant by not

running off of the data.

Burg then minimized the sum of the forward e i 8lven by

€jm =x(n)+ f: a,; x(n—k), ’ (2.15)
k=1

and the backward error
. I . o
bjp=x(n=j)+ ¥ ar, x(n—j+k), (2.16)
k=1
where j is the model order and j £ »n < N. The minimization of the error

N -1 2 5
Pi= 3 lej1ul®+ 16,1 2.17)
n=j

yields the reflection coefficient
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a

a3

Xo | Xy | X3 | X3 « « « |Xn3|xylxy4] O | O

A) Initial Locations for PEFs that are Run Off the Data

ayfay| 1 L

Xo | X1 Xo| X3 | X4 v «]1XN-3 ;N_sz—l

B) Initial Locations for PEFs that are not Run Off the Data

Figure 2.5 What is Meant by the Term "Running Off of the Data



18

*

Nl ejn bjoin

aj; ==2 2.18)
JJ n =j_ D_]
where
N-1 ) ) ,
Dj= % lejaul®+ |bjgpal™ , (2.19)
n=j .

' The remaining PEF coefficients, a;;,0< i’ < j—l, ar¢ then determined using the .
Levinson recursion given in eqn(2.11). To update the errors, two prediction error
~ filters, based on eqns (2.15) and (2.16), can be applied directly to the data which is a
time consuming process. To reduce the .computational time, Burg proposed;the use of
a lattice sh'uctu1':e that makes use of the reflection coefficient and the prediction errors

of the previous stage to update the errors.
The PEF’s can be folded into the lattice structure. Substituting for a; ;" from. .
eqn(2.11) into eqn(2.15) yields

j=1 :
ejn =X(M)+ X (@ joy +aj; @Gy j) X(n—k) +a; ; x(n-p).  (2.20)
k=1

Incorporating eqn(2.16) into eqn(2.205 yields

Cjm =€jtn + a5 bjtny 2.21)
Similarly, the backward error.is given by |

bin =bjtnt +6] €1 | ' (2.22)

The lattice structure, shown schematically in fig. 2.6, is obtained using these two
equations. USiﬁg the lattice structure to update the prediction errors and recursively

computing the PEF saves a great deal of time in the Burg algorithm. In fact, this
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Figure 2.6 A Schematic Rép_resentation of the Lattice Structure
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method takes O (p2) operations to determine the PEF coefficients which implies that

the algorithm is a prime candidate for implementation in real time [10]. J

The literature indicates :that there are some inherent problems with the Burg
algorithm [10,12]. The occurrence of closely spaced Ih:ultiple peaks, line splitting [12],
ina spéctral estimate where only one peak should exist, is the most serious problem in
the Burg algotithm. Line splitting arises when the algorithm is applied to signals with
high signal to noise ratios (e.g. SNR = 40dB) and only a few data points are present
(e.g. N = 15). Frequency biasing [13] resuits when the initial phase of a sinusoid to
be modeled is non-zero and there é.re only a few data points present. Though these
limitations might appear serious, in most applications there are a sufficient numbef of
data points to mitigate these effects and a number of authors [14,15] have also
proposed methods of reducing the effects if they appear significant. As the B'urg
algorithm has better resolution than the Levinson algorithm, by removing the iihplied
windowing, and operates much faster than most matrix invefsion routines, it was

chosen as the algorithm that would be implemented in this thesis.

¢

2.5 SUMMARY

The concepts of AR modeling anq the r¢1ative strengths and weaknesses of the
Burg and Levinson algorithms have been examined in this chapter. The Burg
algorithm was chosen for implementation as it offers better resolution than the
Levinson. élgoriﬂlxﬁ and operates much ‘faster than other algorithms that incorporate

matrix inversion routines.



CHAPTER 3
BLOCK FLOATING POINT ARITHMETIC

3.0 INTRODUCTION

As the goal of this thesis is to develop a high speed implementation of the Burg
algorithm, high speed hardwaré components musf be used. Currently there are a
number of commercial chips capable of providing high speed ad@iﬁons, subtractions’
and multiplications. The vast majority of these chips operate on, and output, data that
is represented by a string of binary (1 or 0) bits in a ﬁredetermined :format known as
Fixed Point (FXP). Though a floating point (FLP) format could be used, it would be
very time consuming and inefficient. A compromise between FXP and FLP is block
floating point (Bf‘P) format. With this format the data is stored in FXP format and a
scale factor associated with a block of data is also stored. Due to this scale factor,
variable scaling can be used in BFP as opposed to the predetermined scaling that _
occurs in FXP [16]. When variable scaling is used the data is only scaled when
necessary, unlike prescaling which tends over scale the data as the prescaling value is
usually determined by some form of worst case analysis. This implies that BFP is
more accurate than FXP. As BFP still retains the speed of FXP and provides greater
accuracy, it is used in this implemenfaﬁon. As BFP ilas a finite precision it is possible
for errors to occur when an operation produces a result that exceeds the bounds of the
fixed format. How these errors occur and what 'is done to reduce their effect is

discussed in this chapter.

The operation of division is the only basic arithmetic operation that is not

performed by a dedicated chip. To perform a division, a software algorithm must be

21
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used. A number of algorithms available to berform this operation are examined and

compared in terms of accuracy, speed and ease of implementation.

3.1 FIXED POINT REPRESENTATION

In FXP a number is represented by a string series of binary bits. A common FXP
format is fractional two’s complement (FTC). The number x can be represented in

FTC notation as:

r—1 . '
X ==Sg+ Z S; 2™ 3.1)

i=1
"where -1 <x < 1 and s; are binary numbers. The number of bits, r, is limited by the

hardware that is used. In this thesis r is taken to be 16 which results in an acceptable

trade-off between numerical accuracy and hardware complexity.

3.2 BFP ADDITION

Wheﬁ adding two BFP numbers there is a possibility that the result will require
added precision. Cox;sider the addition of a nl}mber with itself. If the original value is
represented by 16 bit; then it possible that twice the original value may I;eed 17 bits to
be accurately represented. In BFP a 17 bit number must be reduced:to a 16 bit value
and the scaling factor-adjusted. With the architecture selected, this was accomplished
by scaling the original 16 bit numbers down to 15 bit values, The above addition then

produces a 16 bit result which can be represented in FXP format.

Scaling, a method of reducing the number of bits present, can be performed using
a number of techniques. In the simpliest method, down rounding, the 16 bit vaiue is

divided by two and the remainder is dropped This is accomplished by shifting the
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original value to the right by one and dropping the least significant ‘bit (LSB). A
negative bias is introduced as a result of dropping the LSB. Up rounding can be used
if a negative bias is undesirable. In this scheme, a one is added the LSB and then the
result is shifted to the right by one. This technique introduces a positive bias into the

answer because of the addition of the one :to the LLSB.

Other schemes must be employed where no bias is tolerable. The magnitude
truncation method adds the sign bit to the LSB before shifting. Assuming equal
probability of positive and negative numbers, this scheme does not introduce an overall
bias \as the negative numbers are positively biased and the positive numbers are
negatively biased. In random bit addition, a random bit is added to the LSB so that no
bias is introduced when rounding. Implementation of this scheme in hardware requires
a ran.dom bit generator in addition to the hardware used in the previous scaliﬁg

techniques.

All of the scaling schemes discussed introduce errors into the resulting 16 bit
value. These errors occur randomly and the mean, mean square, and varianc'e are used
to describe their effects. Fig. 3.1 shows the error distributions for all four schemes and
table 3.1 gives the mean, mean square, and variance of the three in terms of the weight
of the LSB (A). Though these results are given without proof, they can be easily

verified by example.

3.3 BFP SUMMATION ALGORITHMS

The 1last section focused on the errors that occurred due to a single rounding

operation. This section is concerned with how these errors grow when a large set of



Probability *

| ProbabilityA b

Error

1
— . 1 .
o 3 Lo
A A ’E o
— 0 rror A >
2 2 5 0 %‘
a) Down Rounding -
oge b U .
Probability + Probability ) Up Rounding
1 | . + .
2 7 1]
i 2 |
1 : ‘
A A
2 2

. — - | , .

_A E A

5 0 rror -5 0 Error
¢) Magnitude Truncation d) Random Bit Addition

Figure 3.1 Round-off Error Distributions for the Various Rounding.Schemes

Rz



Table 3.1 Round-off Errors Associated with Addition/Subtraction 7

Scaling Mean | Variance | Mean

Method u c? Square
Down A A2 A2
Rounding 4 16 8
Up A A A?
Rounding 4 16 8
Magnitude A2 A2
Truncation 0- 8 8
Random Bit A2 A2
Addition 0 8 8
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BFP numbers are added together to form the summation
N-1
Y= % x. : (3.2)
i=0

Clearly, the growth of thése errors will depend on the method of summation. Two
summation techr;liques, the accumulation algorithm and the tree addition algorithm, are
arialyzed in: this section to determine which one performs the best in terms of avoiding
roundoff error. o

?

3.3.1 THE ACCUMULATION ALGORITHM

When forming a summation, the most straightforward method is the accumulation
tephniqué. In this technique a number x; is added to the sum of all the previous

numbers Y;_; to form a new sum Y;
Y =Y +x | (33)

fori = 1‘° ++N —1and Y, =xo . In floating point arithmetic, the sum is permitted to
grow as successive tel;ns are added. This luxury is not present in BFP arithmetic
because when the sum overflows it must be shifted to stay within the. FXP format. In
turn all future values added to the sum must also'be scaled. The errors generated by
these“scalings are shown in fig. 3.2. The errors generated by prescaling of the numbers
before they are included in the sum are denoted by pi and the errors due tb scaling of

v

‘the sum are denofed. by €; . The roundoff error in the summation, €., is given by :

m 261

m-1 .
Eoce = 2 Emeii2 Y, X pjg2F (3.3)
i=0 ’ k=1j=2""";

where m = int (log,(NV)). The worst case mean error W,..wc can be expressed in terms



Figure 3.2 Roundoff Error Gen
for Summation
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erated in the Accumulation Algorithm
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of the mean error involved in a single scaling i, as:

m=1. m 251 .
Haecwe = Z He2™ + Z Z Haee (k)25 - - (3.4)
i=0 k'=].j=2k'l ‘ .

where W, (k) denotes the variable mean error arising from the prescalings. The last
term' contains a variable mean due to the fact that the prescaling increases with each
overflow. A relationship between this variable mean and the mean for one scaling can
be found by using the :concept of multiple scaling [16]. If a variable is scaled k times

_then the resultizig mean error (M, (k)) is:

k-1 .
Hacec (k) = .Zous 2" (3.5)
t = '
which reduces to
Hae (6) = g 2(1 = 27F). (36

Substituting this into eqn(3.4) and determining the closed form expression yields:
2 m+1 —m+'1 -
Haccwe = glls (272 1. (3.7

Using a similar analysis the worst case variance, 62, .wc, due to a single scaling, 62, is

found to be
Sacewe = %63(4'2”‘ +7 =727 — 4277 (3.8)
The mean square error is:

MSE = p2awe + 02awe ‘ - (3.9)

which becomes



4
9

4

MSE = o1

uSZ( 2m+1 _ 2—m+l )2 +

3.3.2 THE TREE ADDITION ALGORITHM

29

02 (42™m + 7~ 72 —4:272m ), (3.10)

The tree algorithm attempts to reduce the errors arising from the addition of a

large sum and a sméll data value by 6n1y adding numbers of the same magnitude. Fig.

3.3 shows the operation of the algorithm and the errors that can arise in this kind of

addition. From this figure, the roundoff error €,,, can be determined by:

T om 26! '
: - —k+1
Eiree = 2 2k 27 -
k=1i=0
Therefore the mean error V,,,, is:
m 2¢-1, ksl
Wiree = 3 20 s 2
k=1i=0
which simplifies to:
Hiree = 2m .

* By a similar analysis the variance is found to be:
62, =462 [1-2"]

The mean square error is:

MSE,,,, = 4m? p? +462 [1 - 27"].

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

A graph comparing the normalized MSE (A = 1) of the two algorithms is shown

in fig. 3.4. The biased errors arise when up rounding or down rounding schemes are

used. These errors are said to be biased because of their non-zero mean error.
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Unbiased, or zero-mean, errors occur when magnitude truncation or random bit
addition are applied. Since the MSE in the tree algorithm does not grow as qu1ck1y as
in the accumulatlon algonthm the tree algonthm was chosen to perform the requlred

summations.

3.4 MULTIPLICATION

In general, the multiplication of two 16 bit numbers results in a 32 bit number. In
FXP, this value must be refiuced to 16 bits before proceeding to the next arithmetic
operation’. This ;educﬁbn can be accpmplished by épplying one of the rounding
: procedures previousiy discu-ssed. The error distributions that occur when the various
rounding schemes are applied to the multiplicatidn [5] are shown in fig. 3.5. Again it
is useful to evalu;c}te theser errors in terms of mean, me'c{n Square, and variance values

and these qﬁantitics are shown in table 3.2.

3.5 DIVISION

Division is perfonﬁed by a software algorithm as there are no commercial chips
that are dedicated to performing “division. The speed, accuracy, and ease of
implementation must be considered in sele;:ﬁng a suitable algorithm. As most
algorithms can be classiﬁed“ as subtraction and shz‘ft or as convergenée type algorithms,
it is useful to examine an algorithm from éach type to determine their various strengths
and weakness. A convergence type division algorithm based on the Taylor series‘

expansion of (1 — x)™! was chosen.
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Scaling Mean | Variance | Mean

Method n o? Square
Dovn N Y
Rounding 2 12 3
Up AZ AZ
Rounding 0 12 12
Magnitude A 72 5A2
Truncation vy 48 24
Random Bit A E_z_ iA_z
Addition 4 48 24

34

Table 3.2 Errors Associated with Multiplication and Sequential Division
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3.5.1 SEQUENTIAL SUBTRACT AND SHIFT DIVISION METHODS

This class of algorithms can be described as the pencil and paper method [17,18].
The 6perations involved in this technique are best shown by way of an example. The
division of 13 ( the dividend ) by 4 ( the divisor ) produces a quotient of 3 and
remainder of 1 as shown in fig. 3.6. This class of algorithms produce the most
accurate answer possible with FXP arithmetic and the roundoff error distributions are
identical to those of multiplication which were given in fig 3.5 and table 3.2. These
division algorithms are accurate but slow because they are sequential in nature
meaning thét the c-urrent addition or subtraction cannot be performed until the results
of the previous operation are known. An examiﬁation of a very efficient subtract and
shift method known as the ﬁon-restoring algorithm gives an indication of the relative
speed of this type of division. From the flowchart, given in fig 3.7 [18], it can be seen
that it will require at least 5 cycles per quotient bit. Two 16 bit divisions (the
numerator in th.e Burg algorithm is complex) require close to 180 cycles to produce the
result. This method could easily require 200 cycles when initialization and sign

correction steps are included to handle signed numbers.

3.5.2 CONVERGENCE DIVISION

It is possible to perform division by iterative multiplications when a hardware
multiplier is present [17]. One such method, the Newton-Raphson method, finds the
inverse of the denominator and then multiplies the inverse with the numerator to

perform the division. The iteration equation is
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Figure 3.6 An Example of the "Paper and Pencil Method"
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Figure 3.7 The Flowchart for Nonrestoring Division
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£&;)
el =X — ——— 3.16
Xit+1 = X, | 7 o) ( )
where
f&x)=—-B. , (3.17)
X .

The root of egn. (3.17) is x = 1/B, the reciprocal of the denominator B. Taking the

derivative of (3.17) and substituting into (3.16) yields:
X4l =X 2-B X; ). . (3.18)

_This algorithm converges quadratically [17] meaning that it will only take a few
iterations to produce the recipr@cal provided there is a good initial guess. Though this
approach possesses high speed there is a problerln associated with the iniﬁal guess.
The authors of [17] indicate that the initial guess, x, must Vfall m the range
O<xy<2/B to guarantee convergence of the algorithm. To obtain an accurate initial

guess a ROM look up table is needed, thereby requiring further hardware.

'3.5.3 TAYLOR SERIES EXPANSION

The division algorithms examined have either been too time'consuming or require
additional hardware. Thus an algorithm that is both fast and impleméntable will be
independently developed. The method generates the reciprocal 1/B by forming the

Taylor series expansion of (1 — x)™!. Expanding this function in a Taylor series yields
A-xyl=1+ 3% x" (3.19) -
n=1

"where
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B=1-x (3.20)
This algorithm converges for:
-1<x <1, (3.21)

Noting that the denominator in the Burg algorithm is always positive it may be

" normalized so that:
1
5 <B <1 (3.22)
implying that x falls within the range:
1
O<x < > (3.23)

With a number system where the LSB is 2715 jt takes 15 terms in the series to
accurately form the inverse for the largest value of x, (x=1/2). The sum of all higher

order terms produces a value less than the LSB. Eqn(3.19) can be rewritten as:

15

A-xyt=1+ 3 x" (3.24)
. n=1 ’

Since x < 1/2, the summation term of eqn(3.24) is always less than one and there is no

" need to check for overflows, indicating that this algorithm could perform division at a

high speed and be easily implemented.

The algorithm was written and found to require only 21 cycles to perform the
division, a vast improvement over the 200 cycles of the non-restoring algorithm. The
roundoff error in the algorithm has yet to be examined. The generated errors are

shown in fig. 3.8 The worst case error () can be determined to be:



Figure 3.8 Roundoff Error in the Unmodified Taylor Series
used in Determining (1 — x)™1
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14 i

H .
Ewe = X X €14 x. (3.26)
i=0k=0 . '

Expressing the mean error, Hyc, in terms of the mean error of a single multiblication

W,,, we have
14 i . '
Hwe = 2 X HmX ’ (3.27)
i=0k=0
which reduces to
_ .15 _
e =15 7 - % 1-x W, (3.28)

l-x 1-x 1-x
For the region 0 < x < 1/2, this is a maximum when x = 1/2 giving:
Mwe = 301, — 2, (1 — 2715) : (3:29)
or
Hwe = 28U, . | ' (3.30)

A similar analysis yields a variance of
~ 27 2

Oijyc = ——0C, : (3.31)

where 0'3, is the variance associated with a single multiplication.

The mean square error is

59

MSE = 784p2 + 3

o2 - (3.32)

Values are shown in table 3.3 for the various rounding schemes. The error in the

unmodified taylor series algorithm for division apﬁear large when compared to the
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error in sequential subtract and shift methods of division.

One way to reduce this error is to perform the summation in the following

manner:
L -x) =2[12+x(M2 +x(12+ -+ x(U2 -i;x/2): REI) (3.33)
‘This can be recursively expressed as:
d=12+x d_y (3.34)
fori=1..14 and:
do=1/2 +x/2. (3.35)

The initial division by two ensures that there will be no overflow during the
summation and a cofresﬁonding up scaling by two is required at the end of this
procedure. Though this form may appear cumbersome, it possesses an improv;:d
roundoff behavior when compared to the previous form. The errors due to the
multiplicaﬁons and the initial scaling are shown in fig. 3.9. From this figure, the worst

case error can be determined as:

13 A
Ewe = 3, & x' +gyxth (3.36)
i=0

Again the maximum worst case mean and variance can be found by setting x = 1/2.

The mean value then becomes:
e = 24y (1 =27 +p, 274 ) (3.37)

or



Figure 3.9 Roundoff Error in the Modxﬁcd Taylor Series
- used in Determining (1 —x)"
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e = 21y, | (3.38)

The variance was found to be
4
Cdc = ?o,i (3.39)
resulting in a MSE of:
e 2 , 16 o
MSE = 4u; + —§—cm (3.40)

The mean, mean squared error, and ‘the variance of the modified Taylor series
algorithm are shown in table 3.4, Though the last form of this algorithm requires a

slightly longer time (60 cycles) it still provides a reasonable compromise between

accuracy and speed. '

3.6 OVERFLOW AND SCALING IN UPDATING THE PREDICTION ERRORS

Although overflow cannot be avoided in a number of stages in the Burg
 algorithm, proper scaling of the input data could remove the possibility of overflow in
the lattice filter. This would speed up the software as the handling of overflows can be
ignored. The goal of scaling is to remove the possibility of bverﬂow, while
maintaining the largest possible dynamic range for the input data. | To do this the
structure of the lattice must be examﬁed to determine conditions under which an

overflow might occur. The lattice updaté equations are:
€in =€i_1n tajjbj1n (341)

and



Table 3.3 Errbrs in the Unmodified Taylor Series Algorithm for Division

Scaling Mean Variance Mean
Method 1] o> Square
Down 2 2
o _3a -| 11 | 15214
ounding 16 9
Up A 11A2 1142

Rounding 4 9 9
Magnitde | 137 | 77A% | 60685A2
Truncation 2 36 1296
RandomBit | - 337 | 77A% | 60685A2
Addiion |~ 8 36 1296

Table 3.4 Error Statistics for Modified Taylor Series Division

Scaling Mean Variance Mean

Method - 13 o’ Square
bown | _A | A& | ua
Rounding 2 9 9
Up A2 A2
Rounding 0 9 9
Magnitude A TA2 4A2
Truncation 2 36 9
Random Bit A 7A2 4A2
Addition 2 36 9
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bin =bji1u1+a €1, ; (3.42)

Fro;n these equations, the worst case for overflows occurs when the magnitudes of
7ej_1’,, s Bitp-1s aj',j are close to unity. 'A resulting output value of two is then

possible. It should be noted that the Burg algorithm attempts to minimize the error
functions ej_l,,,., and ‘bj_l,,,, and therefore the only gain that can occur will happen
when e;_; ., I-)j_l,,,, are the actual ciata Values. After the first update most of th;
prediction ;:rror v;llues are theoretically’ reduced and there should be no fear of
o’verﬂow.' This indicates scaling the input data by 1/2 will remove the possibility of
overflow. ‘In a stﬁ'ct sense, this conclusion may not be valid if the input is not
primarily AR in natﬁre. In that case it might be necessary to scale th;: input data by

more than two and incorporate overflow handling into the algorithm.

3.7 SUMMARY

The implications of BFP arithmetic have been examined in this chapter. A
" summation scheme that reduce the effect of roundoff errors. A high speed division
scheme was developed that was fast and accurate; Scaling the input data by two
ensured that no o{'erﬂows occur in the lattice structure when the data was AR in

~

nature.
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CHAPTER 4
THE HARDWARE DESIGN OF THE PROCESSOR

4.0 INTRODUCTION

The Burg algorithm has been examined and found suitable for real time
ifnplementation. In designing an architecture that would permit real time operation a
number of factors must be addressed. These factors include hardware type,
configuration and the number of components. The goal of this chapter is to present a

hardware design that will permit real time operation of the Burg algorithm.

4.1 HARDWARE TYPE

Two approaches can be taken when designing high speed digital signal processing
(DSP) processors. A microprocessor based implementation or a microprogrammable bit
slice system can be developed. A custom designed VLSI chip and the use of systolic

array processors are considered to be beyond the scope of this thesis [11].

4.1.1 MICROPROCESSORS

A number of specialized microprocessors that perform digital signal processing
operations are available. An example is the TMS32010 microprocessor [19] which can
be described as state of the art in DSP microprocessors. This chip has an ALU,

multiplier, shifter, and internal memory, and operates at a clock period of 200ns.

While providing many desirable features, the TMS32010 has a number of
drawbacks symptomatic of all microprocessors. The preset instructions permit fast

software development but limit the overall performance. Though some pipelining has
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been incorporated to speed up certain operations, most instructions only use one part
of the processor such as the ALU, while the other resources sit idle. This inefficient

use of resources decreases the overall speed of the system.

Reading and writing from éxtemal memory also cause problemsf There are no
single cyclé instructions that permit external memory to be loaded into the ALU. This
will decrease the operational speed as all of the computational resources are idle.
Though this is a specific problem related to the TMS32010 chip, it brings t§ light the
I/O bottleneck associated with most microprocessors. The I/O bottleneck means that

~access to external data is slow, limiting the overall performance of the system.
Campbell [5] showed that one processor is not sufficient for real time operation of the
DSA and a multiprocessor approach would be needed. External memory that can be
~accessed by all of the proc'essors is essential to this configuration. The I/O problems
- and the inefficient use of resources a;.re two major drawbacks of microprocessors while

fast development time is the major advantage of such systems.

4.1.2 MICROPROGRAMMABLE SYSTEMS

Unlike a microprocessor, a bit-slice microprogrammable system does not have a
preset architecture or instruction set. This permits the designer to customize the
hardware and software to the task at hand. With no preset structure, the I/O can be
designed so that no bottlenecks exist. The great flexibility in designing the architecture
means that each component has its own set of control signals. The control signals

permit the use of parallel programming methods which efficiently use the resources.
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All this power and flexibility makes the microprogram developﬁent difficult.
Each of the microprdgrar.nmable components is éontrollgd through its oWn instructions.
The cc;ntrol unit must be capable of generating extremely long control words which
can easily exceed 100 bits whereas 16 bit instructibns are used in the TMS32010.
Microprograms fequire a specialized devefopmenf tool such as a meta-assembler [20]
that can systematically generate the very long control words. A downloading unit and
a control system [7,21] must be developed to handle the long control words present.
The requirements for specialized program development tools and long control words

are some of the drawbacks of these systems.

The number of chips in a microprogrammable implementation can be large. The
flexibility of being able to determine the configuration means that many of the
interconnections that are made in silicon in a microprocessor have to be manually

connected by the designer, leading to longer development times.

In summary, most of the constraints of microprocessors are exhibited during run
time while their main advantages are very fast development times and relatively few -
chips. Microprogrammable systems have faster run times while development time and
chip count are usually higher than micropropessors. In selecting a hardware type, the
main consideration in this thesis is operational speed. It was decided to use a
microprogrammable system’ as it offered the best run time performance which is the
main consideration in this design. The excessively long development times are
shortened somewhat by the use of a meta-assembler, a downloading unit and a

generalized micro-sequencer.
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4.2 MICROPROGRAMMING CONCEPTS

A microprogrammed bit-slice architecture was selected as the hardware in this
implementation. Microprogramming concepts are not commonplace and a brief

examination of these concepts is given here.

4.2.1 MICROPROGRAM CONTROL

In a microprogrammable system, control ié generally achieved by usihg a
microprogram sequéncer in conjunction with a microprog%am memory and a pipeline
register. 'i‘he task of the microsequencer is to output an address to the microprogram
memory (known as a control store (CS)) which in turn sends out control words to the
rest of the system including the sequencer. The typical sequencer, shown in fig. 4.1,
has several sources including a stack, a direct input, a program counter and a counter
from which it can generate the CS éddress. The proper address source is selected
depending on the instructions froﬁ the CS and a condition code (CC), that contains the

status of the controlled system.

The ordered structure of a CS separates the microprogrammed system from most
other control systems that use sequential logic techniques to implement control. The
instﬂxctions are simi)ly and easily changed .by chgnging the contentg of the CS. This
high degree of flexibility is one advantége of microprogrammed systems. In the
development system built by Orbay [7], static high speed RAM aﬁd start-up EPROMS

were used to implement the CS.

The last element of the control unit, the pipeline register, provides a number of

services. The overall control system, shown in fig. 4.2, the registers are clocked and
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Figure 4.1 The Typical Components of a Microsequencer
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Figure 4.2 A Microprogram Control Unit
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provide a delay in the feedback loop, thereby removing any race conditions that might
exist between the sequencer and the CS. The pipeline register also isolates the
* controller from the target system, thereby permitting the application of modular design

concepts.

4.2.2 THE BIT-SLICE CONCEPT

Bit-slice design can be described as a "building block" approach to designing
systems. The basic block is a slice of a computing element that is 4-bits wide. The
units can be cascaded together to form a larger element that meets the design
‘requirements. This approach gives the designer flexibility in selecting the appropriate
word length required. Consider the task of addressing 4K of memory which requires a
12 bit address. Cascading 3 bit-slice ALUs, each 4 bits wide, would r;leet the
addressing requirements. An extension of thé bit-slice concept, the byte slice, has an
8-bit wide slice as the fundaméntal building block. Byte slice éomponents were used

extensively throughout the design of this processor.

4.2.3 PIPELINING AND PARALLEL PROGRAMMING .

In the discussion of the control unit two advantages of pipelining were discussed.
One advantage is the isolation of the control unit from the hardware processor thereby
permjtting the control unit to opefate with a certain degree of independence. The same
concept can be incorporated within the processor to increase throughput as shown in
the following example. Fig.' 4.3a shows an processor with no intermediate pipeline
registers to hold the data that is passed between elements. As a result, only one

operation can be performed at a given time and only one element can be functional at
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a given stage of the 6perati_on. The introduction of pipeline registers, s,hown. in fig.
4.3b, permits the elements to operated independently of each other. Pipelining implies

that all of the processor elements are operating simultaneously.

'To fully realize the advantage of pipelining, parallel programming techniques are
applied. One aspect, particular to paraﬂlel programming, is the concept of overlapping
instructions which is illustrated in fig. 4.4. Once the pipeline has been filled all
resources are operating independently on part of the algorithm. The thréughput of the
system is increased as results are generated every cycle rather than every i th cycle
where i is the number of operatioﬁs peﬁoﬁned on the data. Digital signal processing
algorithms are particularly ainenablq to parallel programming techniques because of the

répetitive nature involved.

4.3 COMPUTATIONAL REQUIREMENTS OF THE BURG ALGORITHM

By examining eqns (2.16 - 2.24), the arithmetic operations in the Burg algorithm

can be broken into the basic computational functions given below. -

1) The complex multiply and add operation,
A=B+C D, ’ 4.1)

where A, B, C, D are complex variables, is used extensively in the lattice “filter
and the PEF coefficient computation. The only significant difference between the
PEF and lattice stages lies in their addressing requirements. The design of the

address generator is considered at a later stage.
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2) A magnitude squared operation,
E=|A1”>+|B % (4.2)

where E is a real variable occurs primarily in the formation of the denominator

and is used in the computation of the MMSE.

3) A general summation

A=X5, ‘ 4.3)

i
represents a fundamental block because of the specialized hardware needed to

perform the address comparisons and the data shifts that occur in any large

summation.

Division was not considered a basic function because it was performed using a
- Taylor series expansion of (1 —x)! which is simply a combination of the three

basic functions described above.

4.4 OPERATIONAL ELEMENTS

A number of computing elements must be combined to perform the basic

functions of the Burg algorithm. These elements are listed below.

1) The Memory Unit stores the data. Random access memory (RAM) was used - ‘

for this application.
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2) An Address Generator is required to access the data in memory. The design
of this unit is independent of the main processing unit and is handled later in the

chapter.

2) The importance of pipeline registers in the operation of the APU has already
been stated. As mentioned, they are extremely useful in permitting elements to
operate independently and improve throughput by permitting the overlapping of

instructions.

3) An arithmetic logic unit ALU, capable of performing addition, subtracﬁon and
a number of logic operations, is an important element in a processing unit. In
addition to the basic arithmetic and logic functions, most ALU’s also contain a
numbe;r of internal registers. These registers are essentially pipeliﬁe registers that
can be used as scraich pad memory to store values arising from intermediate
calculations. The result is a reduced usage of the I/O ports avoiding the

bottlenecks that would otherwise arise.

5) Shifters must be present to scale the data because tﬁe threat of overflow exists
in a number of operations performed by the Burg algorithm. .They are also
essential Iwhen floating point notation is u;ed to represent a qumber. This situation
arises in the division stage of the algorithm and is discussed in chapter 5. One of
the drawbacks of a bit slice implementation is that a barrel shifter czipable of
performing multiple shifts in a single operation, is not cascadable and cannot be

included in a bif slice ALU.
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6) A Multiplier is required in all the basic operations in the Burg algorithm
except the summation. A hardware multiplier chip must be used to meet the

requirement of real time operation.

7) In a multi-bus configuration, m‘ultiplaxers should be used on the inputs of the
multiplier to permit quick access to multiple sources of data. This is useful when
forming the square of a number as both inputs of the multiplier come from the
same source as opposed to a standard multiplication where the numbers come

from different sources.

4.5 COMPONENT TECHNOLOGY

A number of microprogrammable components are commercially available. One
company, Advanced Micro Devices (AMD) [18], has a full set of bit and byte-sliced
microprogrammable chips. They have introduced one family of chips, the 29500 series,
that is ideally suited to signal processing applications. These chips are fabricated using
ECL tecﬁnology for speed and TTL technology for external intcrfacir}g. Combining
this fabriéation process with a highly pipelined internal architecture has produced a set

of chips that operate at a fast clock rate and have a high data throughput.

The AM29501 is a byte-slice ALU. In addition to the ALU, this chip contains 6
scratch pad registers, 2 unidirectional data ports (one input and one output) and a
bidirectional data port. The multiplier chip, the AM29517, is a high speed 16 bit
multiplier. The in‘ternal pipelining of this chip permits it to output a prodgct every

clock cycle. AMD also provides a number of support chips such as shifters, bus
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drivers and high speed memory.

4.5.1 WORDLENGTH

A number of factors must be considered when determining a‘wordlengt‘h for the
processor, The wordlength should be large enough to"aécurately represent the final
answer without si.gniﬁcant roundoff error. As the the wordlength growé, the number of
byte slice components must also grow. A good 1 compromise between hardware
‘ complexity-and numerical accuraicy is a 16 bit wordlength. This wordlength should be
able to represent the input data which is acquired via an 8 to 12 bit A/D an'd: the

number of hardware components is not excessive.

4.6 COMPONENT QUANTITY

In any design there exists a trade-off between high speed operation and system
complexity. In ordér to optimize this trade-off, the tasks that the processor has to
perform must be known. Eqns (4.1-4.3) showed the basic functional blocks required

to perform the Burg algorithm. The most significant block is:
A=B+C-D ' (4.1)

The hardware design should proceed with this funcfion in mind. Expanding eqn(4.1)

into real and imaginary parts yields the following expressions:
Ape =Bgg + Cpg *Dpe — Ciy * Dy (4.4)
At =By + Cpy - Dpg + Crg " Diy : (4.5)

where RE represents a real component and IM represents an imaginary component.
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Assuming that the sc;ratch pad regiéte_rs hold all the intermediate values, there are
8 I/O operations. Four addition/subtraction operations along with 4 multiplications
must be performed on the data by the arithmetic processing unit (APU). With only
one data bus, one ALU, and a multiplier operating in parallel the computation takes 8
cycles with the limiting resource with the I/O data l?usses. The number of resources
can be increased to improve speed. The decrease in the number of cycles required to
_ perform eqn(4.1) as the number of hardware components is increased is detailed in

table 4.1.

In performing ihis analysis it must be kept in mind that some combinations of
resources do not résult in any réal savings in Fime. An example of this' is the 2 bus, 1
ALU, 1 multiplier (2-1-1) configuration. Here the iwo data busses are loading one
" ALU. Even though it will only take the two data busses 4 cycles to léad the necessary
information, it will still take the ALU 8 cycles to read the data because it only has onc'
I/O port which communicates with the busses. The additional bus only becomes
effective when a second ALU is added. The possibility exists that one I/O bus can be
attached to the multiplier. However if a data value is to be used more than once, it
must be held in a scratch pad register which is located in the ALU chip. This implies
that values read into the multiplier would still have to be read into the ALU defeating

any gain in speed that was achieved by connecting the bus to the multiplier.

4.6.1 THE 2-2-1 CONFIGURATION

A configuration containing 2 data busses, 2 ALUs and one multiplier appears to

offer the best trade-off between speed and complexity in the design of this proto-type



Table 4.1 The Effect of Increasing the Components

Components
1/0 Data Busses ALU Multiplier
# cycles # | cycles | # | cycles
1 8 1 4 1 4
2 4 1 4 1 4
2 4 2 2 1 4
2 4 2 2 2 2
4 2 2 2 2 2
4 2 4 1 2 2
4 2 4 1 4 1
8 1 4 1 4 1
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processog [18]. The twofold increase in speed that would be gained by using a 4-4-2
does not justify the fourfold increase in hardware. A 2-2-2 configuration appeared to
offer an' increase in speed with only moderate increase in hardware. Upon closer
examination, it was found that the additional multiplier could not be utilized efficiently
because of iﬁsufﬁcient ALU resources and the apparent gains in speed were not
realized. Two data busses and two ALUs seem to bel the natural form for an APU that
deals Vwith complex numbers because these numbers are comprised of two components,
a real and imaginary part. Separating the busses énd ALUs into two units, one for the
real and imaginary components allows the interconnections between busses and ALUs
© to be minimized. The real and imaginary ALUs and busses can operate independently

with no need for direct interconnections.

Placing the shifters between the data busses and the ALUs permits the data to be
shifted without disturbing the normal flow of the data. The multiplier can be connected
through multiplexers to the ALUs and does not need to be <;onnected to the data

7busses as the ALUs can supply the multiplier with input data and receive its output.
This setup reduces the complexity by removing connections between the multiplier and
data bus .tﬁat might be otherwise be needed. The overall organization of the APU is

shown in fig. 4.5.

4.6.2 HARDWARE ROUNDING

Fig. 4.5 includes a rounding control block that has not been discussed. Roundoff
~ errors exist after every multiplication. If unattended, these errors can grow and cause

the numerator to become greater than the denominator which results in a reflection
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Figure 4.5 A Block Diagram of the APU Hardware
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coefﬁcient, a; i, greater than the theoretical maximum. Thus the Burg algorithm has
become unstable Vdue to roundoff error. This situation arises when most of the
numerator products are negative. Ignoring the lower 16 bits of the multiplier output
can \{iewed as subtracting a positive quantity from the multiplier product. When the
product is negative this subtraction increases the magnitude of the number and it is
then possible for a sum of negative numbers tc; increase while a sum of positive
1-1umbers is decreased relative to their respective theoretical values. To alleviate this
problem magnitude truncation for the numerator and up rounding for the denominator
are applied. A hardware rounding unit is used to speed up the rounding involved in
each multiplication. This unit precalculates the value of the rounding bit by examining
the sign bits of the multiplicands. The relationship between the input sign bits and
the rounding bit needed for magnitude truncation is an Exclusive OR operation with
the result being added to the LSB. In view of this, the hardware consists of an
Exclusive OR chip with associated peripheral and a- control line that, when asserted,

would override the magnitude truncation scheme and insert an uprounding bit.

4.7 ADDRESSING REQUIREMENTS

The addressing in the Burg algorithm is generally quite simple. The updating of
the pre&iction errors simplj.z requires a pair of counters capable of down-counting.
However, the tree algorithm produces a complicated set of addressing requirements
that a simple counter cannot fulfill due to the shifting involved. The need to be able
to re-address memory in the event of an overflow means that the selected addressing

device should have internal memory to store previous values. In light of these
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requirements what is needed is a device that can add, subtract, shift, and store values.

The solution can be provided by an ALU, such as the AM2901 which is a
microprogrammable bit-slice ALU. It pérforms most standard ALU functions, and
contains 1‘6 internal registers, 3 external ports and shifting capability. The size of the
data memory to be accessed must be known before the number of AM2901s can be
determined. AR modeling is normally applied to short data records and it is felt that
2K of RAM for both the real and imaginary data blocks would be sufficient. This
requires .11 bits of addressing,' méaning that 3 AMééOls must be used for the
addressing. One problem with these chips is that the output port comes directly from_
the ALU’parf of the chip. The timing for the complex éddressing sequences becomes
rather difficult if the output of the ALU is tied directly to the data RAM. Feeding the
ALU output into a two sets of speciatlized pipeline registers (AM29520s), which
contain their own set ,Of internal registers from which the RAM: address ca’n be
selected,.prox;ides an excellent solution to the problem and also permits independent
addreésinghof the two data blocks. Fig. 4.6 shows the block diagram of the address
generator and the memory unit. A comparator is incorporated to provide the high

speed address comparisons that are required in some parts of the Burg algorithm.

4.8 EXTERNAL INTERFACING

The final task in the processor design is to provide an external interface unit to
permit the APU to communicate to devices such as A/Ds and D/As, other processors,
and other systems. Each of these applications has its own set of interface requirements

meaning that the interface ‘unit must be flexible enough to handle the various
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requirements.

The interface is composed of two bus transceivers that consist of an input and
output data register and a flip-flop associated with éach register. The flip-flops are
used to provide the handshaking between the APU and the external device. When a
device loads a register with data, it sets that register’s flip-flop indicating the data is
ready. When the receiving device reads the data, it clears the flip-flop, thereby telling
the sendir;g device that the buffer is empty. This system is implemented with

AM?2950s which are transceivers with 8 bit registers and an associated flip-flop.

4.9 SUMMARY

A design of a microprogrammable architecture capable of running in real time has
been presented. A number of microprogramming concepts have been reviewed and a
family of microprogrammable chips described. The overall architecture, given in fig.
4.7, contains two data busses; two ALUs, a mqltiplier,_ address generator, I/O ports,

RAM and a number of support chips.
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CHAPTER 5§
MICROPROGRAMMABLE IMPLEMENTATION
OF THE BURG ALGORITHM

5.0 INTRODUCTION

- Having proposed a hardware cc;nﬁguration capéble of meeting the requirements of
the Burg algorithm, the next task is to develop the microprogram code for the Burg
algorithm. A modular approach is taken in developing the microcode for this
a}gorithm. To demonstrate possible real time operation, the theoretical run time of the
Burg algorithm must be detexmined. This involves determining the xﬁaximum clock
rate of the hardware and the time reqﬁired to perform the arithmetic operations in the -

Burg algorithm.

5.1 PARTITIONING OF THE BURG ALGORITHM

'1_‘0 reduce the programming complexity, the Burg algorithm can be separated into
several subsections which can be independently developed, tested and implemented.
This approach might lead to a slightly slower implementation of the Burg algorithm
“because the initialization stages within each module might not make the best use of the
resources available. However, @is small decrease in speed is compensated by the large

decrease in development time.

Examining eqns (2.16-2.24) shows that the algorithm can be separated into the
following stages:
- formation of the denominator,

- formation of the numerator,
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- division and computation of the reflection coefficient and comp‘utaition of
the MMSE ,
- updatiﬁg the prediction errors,
- computing the prediction error ﬁlter coefficients.
In this chapter the microcode required for the implementation of each stage will be

‘ discussed.

5.2 FORMATION OF THE DENOMINATOR

Expanding the denominator (eqn(2.19)) into real and imaginary components

yields:

N-1 T
Dy = X [ (el + (bre i=1)) + (€ ())? + (bis G=1)Y. 5.1)
i=p

Initially, the errors are the actual data’ points, e(n),b(n)=x(n). In the
implementation eqn(5.1) is broken into two smaller pieces, a squaring section followed

a tree summation stage. The resulting summation was then normalized.
The squaring section' formed partial sums a,, g, in the real and imaginary
ALUs respectively. These sums consisted of 4 values that had been squared
| :are () = (e ()* + (6, (-1))* + )(bre (=1))% + (b, (1'1—2))2 (5.2)
and
() = €GP + Con =D + (i =12 + (e =27 63

where i =N—1 -+ p andj =0 - - - int(N— p)/2).
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As the input data is scaled by 1/2, no overflow will occur in this stage as thé
squared values are less than 1/4. The fact that this stage forms partial sums means
-that it reduces the overall time taken to perform the tree addition by a factor of two.
Up rounding was used when performing the multiplications in this stage. "The pseudo
code for this operation is shown in fig. 5.1. The fully pipelined microcode, given in
fig. 5.2, shows the operation of each element of therAPU during the different cycles. It
should be noted that the intermediate values, ¢,u,v,w,c,d, are stored in scratch pad
memory. The addressing and' control aspec;ts of the microprogram are not shown in

this ﬁguré but can be found in an internal departmental report [22].

5.3 THE TREE ALGORITHM

It was shown in chapter 3 that the tree addition algorithm produces an.accurate
fixed point summation. The pseudo code for this algorithm is shown in fig. 5.3. The
tree algorithm is basically sequential and the microcode is equivalent to the pseudo-

code.

This algorithm incorporates two interesting techniques to handle the addressing
and overflows. By using an additional index counter and a comparator, it ‘avoids the
need to balance the tree and thereby reduces the run time of the summation. The use
of the comparator provides single cycle address comparisons and reduce fhe time taken
to perform the tree addition by about 25%. Overflows must also be considered in any
addition scheme. Campbell [5] used a tree algorithm that simply scaled evc;,ry resﬁlt
and thereby avoided the overflow problem. This approach removes the Qverﬂow

problem at the cost of reduced accuracy. The loss of precision results when there are
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DENOMINATOR

begin
count =N - 1 - order; (* SET UP COUNTER, ADDRESS POINTER *)
tree_count = -1; (* AND TREE POINTER *)
addr=N-1;

while( count !=0)

begin
re_sum = sqr(re_ep[addr]) + sqr(re_delfaddr-1]); (* HALF OF EQN 5.2 ¥)
im_sum = sqr(im_ep[addr]) + sqr(im_del[addr-1]); (* HALF OF EQN 5.3 *)

count = count - 1; (* DECREMENT POINTERS *)
addr = addr - 1;

if( count != 0 ) then
begin

re_sum = sqr(re_ep[addr]) + sqr(re_del{addr]) + re_sum; (* REST OF EQN 5.2 *)
im_sum = sqr(im_epfaddr]) + sqr(im_del[addr]) + im_sum; (* REST OF EQN 5.3 *)

tree_count = tree_count + 1; (* PREPARE FOR TREE ADDITION *)
_re_tree_dataf tree_count ] =re_sum;
im_tree_data[ tree_count ] = im_sum;

count = count - 1; (* DECREMENT POINTERS *)
addr = addr - 1;

end
else
begin

tree_count = tree_count + 1; (* PREPARE FOR TREE ADDITION *)
re_tree_data[ tree_count ] =re_sum;
im_tree_data[ tree_count ] = im_sum;

end
end

return()
end

Figure 5.1 Pseudo Code for the Denominator
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Busses Real Imaginary " Multiplier
Real Imag ALU ALU XY
read | ef b Bye (1) = dr + Wy Win = b bi
read | by! bi;! Gim (1) = dipy + Wye | e = €507€),
write | a,,(j=1) | @m(-1) tim = Cln"Cim
read | ei! el Uy, = b7 bi!
read b;.e—z biil;l-z Cre = lye + Uy, Uim = bil;.t_l'biin—x-l
Cim = bim + Ui Ve = €55 ep, !
Gre = Cre + Vye Vim = ex";;l'eiirr:l
Gim = Cim + Vim Wy, = bhbi?

Figure 5.2 The Resource Usage in the Fully Pipelined Denominator Stage
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TREE ADDITION
begin
tree_shift = 0; (* INITIALIZE COUNTER *)

while (tree_count > 0)
begin

i=0;

j=0;

‘while( i <= tree_count )

begin
re_sum[j] = re_tree_data[i] + re_tree_data[i+1]; (* PERFORM ADDITIONS *)
im_sum(j] = im_tree_data[i] + im_tree_data[i+1];

if( overflow == TRUE) (* IF OVERFLOW OCCURS *)

begin
tree_shift = tree_shift + 1; (* INCREMENT OVERFLOW COUNTER *)
stage2 = j; (* SAVE LOCATION OF OVERFLOW *)

while (i < tree_count )

begin
re_sum(j] = re_tree_data[il/2 + re_tree_data[i+1]/2; (* ADD WITH A SCALING BY 1/2 *)
im_sum(j] = im_tree_data[il/2 + im_time_data[i+1}/2;

i=i+2;
j=j+1

if( i == tree_count )
begin
re_sum[j] = re_tree datali}/2;  (* HANDLE THE POSSIBILITY OF AN ODD *)
im_sum[j] = im_time_data[i}/2; (* NUMBER OF DATA POINTS *)
end '
end

tree_count =j - 1
i - 0:
0;

nn

1
i
begin (* SECOND PASS AFTER OVERFLOW *)

re_sumfj] = re_tree_data[i}/2 + re_tree_data[i+1]/2;
im_sum(j] = im_tree_data[i}/2 + im_tree_data[i+1]/2;

i=i+2;
i=i+ 1

if( 1 > stage2 )

begin
re_sum[j-1] = re_tree_data[i-2]/2;
im_sum{j-1] = im_tree data[i-2)/2;
i = stage2; i



end
end :
j=j-1; (* PREPARE TO RE-ENTER MAIN TREE ADDITION ALGORITHM ¥)
end . .

if( i == tree_count )

begin
re_sum(j] = re_tree_data[i];
im_sum(j] = im_tree_data[i]; -
end '
end
tree_count =j - 1;
end
return();
end

Figure 5.3 Pseudo Code for Tree Summation
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stages in the tree algorithm where no overflows occur but scaling is performed.

To retain the maximum accuracy, an algorithm was developed that only shifted
the data after an overflow occurred. The algorithm checked the overflow flag after
every addition. When an overflow occurred, the addition causing the overflow was
repeated after its input values were scaled by 1/2. For all the remaining additions in
current stage of the tree algorithm the input data was scale;i by 1/2 before being
added. This ensures that no further overflows will occur in that stage. Instead of
repeating the additions that were peﬁomed prior to the overflow, the algorithm
" proceeded to the next stage of the tree and performs the necessary scaling during that
stage. The operation of the algorithm is shown in fig. 54. A shift counter is
incremente;d to keep track of the number of overflows. When rounding after an
overflow has occurred, up rounding was used in the denominator and magnitude

- truncation was used in the numerator to ensure stability.

After the summation is completed the values are stored in a floating point format.

That is:
x;=r 2" 5.4

where 1 >r 2 1/2 and n is the shift count related to the number of overflows that

occurred during the summations.

5.4 COMPUTATION OF THE NUMERATOR

The numerator is described by:
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| are shifted before addition
-1
\ 2
/
Ve

NN

/
2—1

Overflow Occurs Hi

)1 > urs Here
2--1
> N

/
271 .

All additions before overflow

7-1 N > are shifted when read in for

/ next addition
2—1

\ /
2—1 /

Figure 5.4 Operation of the Tree Algorithm when
an Overflow Occurs , '
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N-1
Np = T Lere) breli—1) + € (i) - by G-1) (5.5)
i=p

+ €, () * by (i =1) = €, () * by (i=1) ]
As with the denominator implementation, this stage was broken linto‘ two siages,
~ conjugate multiplication and tree addition. The equations for the partial sums involved

in the conjugate multiplication stage are:

B () = e (i) * b (i=1) + €, (1) - b (i=2) = (5.6)

+ i (i) * by (i=1) + €3, (i~1) - by, (i=2)
Bin () = € (1) by (i=1) + €, 1) - by, (=2) 5.7)

= €im (@) * by (i=1) = e (i=1)) b, (i-2)

where i =N-1 --- p ?.ndj =0 - int((N-p)/2).

The basic programming differences in‘ the numeratér and denominator calculations
are that the numerator required conjugate multiplication and employed magnitude
truncation whereas the denominator performed squaring and up ropnding was used.

The pseudo-code for this stage is shown in fig. 5.5 with the nﬁcrocode in fig. 5.6.

5.5 DETERMINATION OF THE REFLECTION COEFFICIENT AND THE
MMSE

Having formed the denominator and numerator, the reflection coefficient can be

found which involves a division of the form

—2 N, 2mshift

a; = ———————.
u D; dshift ,

(5.8)

Simplifying yields:
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NUMERATOR
begin

count = N - 1 - order; (* SET UP NECESSARY POINTERS *)
tree_count = -1; :
addr=N-1;

while( count !=0)
begin
re_sum = re_ep[addr]*re_del[addr-1] + im_ep[addr]*im_del{addr-1];
(* HALF OF EQN 5.6 ¥)
im_sum = re ep[addr]*lm del[addr-1] - re_ep[addr]*im_del{addr-1];
(* HALF OF EQN 5.7 *)

count = count - 1; (* DECREMENT POINTERS *) .
addr = addr - 1;

if (count !'=0)
begin
re_sum = re_ep[addrl*re_del[addr-1] + im ep[addr]*lm del[addr-l]
+re_sum; (* REST OF EQN 5.6 *)
im_sum = re_ep[addr]*im_del[addr-1] - re_ep[addr]*im_del[addr-1]
+im_sum; (* REST OF EQN 5.7 *)

count = count - 1; (* DECREMENT POINTERS *) .
addr = addr - 1;

tree_count = tree_count + 1; (* PREPARE FOR TREE SUMMATION *)
re_tree_data[ tree_count ] = re_sum;
im_tree_data[ tree_count ] = im_sum;

end
else
begin

tree_count = tree_count + 1; (* PREPARE FOR TREE SUMMATION ¥*)
re tree  data[ tree_count ] = re_sum;
1m__tree_data[ tree_count ] = im_sum,;

end
end

return()
end

Figure 5.5 Pseudo Code for the Numerator Stage
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Busses Real Imaginary Multiplier
Real Imag ALU ALU XY
read | el bit Gim = Wips + Vi Wre = eliibf,
read | bi! eh, dyy = Vye + Wy, Ui (=1) = dip, + Cipy | lim = Elebim_,
a, (j-1)=d,, + c,, e = e?‘:e 'bri@’_ !
write | @, (-1) | am(i-1) Uim = bi el
read | e/ bi;? Cim = Uim = bim Uy, = €fybi?
read b;e— 2 ei‘;; 1 Cre = Upe + 1y, Vim = er’: l'biil;z
Vye = e;';l'b;‘e-z
, Wim = bl 2el

Figure 5.6 The Resource Usage in the Fully Pipelined Numerator Stage
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N;

g = — _D_l_z—(dshift - nshift —1) | ‘ (5.9

i =

i

where 1>N; and D; 2 1/2. The scaling factors for the numerator and denominator
are nshift and dshift respectively.

The Taylor series expansion method discussed in chapter 3 was used to perform
the division. A simple shifting program was written to evaluate the difference in the
scaling factors. Magnitude truncation was used in performing this part of algorithm.
This algorithm was essentially sequential in nature and the microprogram effectively

follows the pseudo-code, shown in fig. 5.7.
The MMSE of order j was calculated using
MMSE; = (1 - (a})* - (ai})®) - MMSE;_, (5.8)
It was a relatively straightforward task to perform this operation and the coﬁesponding

pseudo code is given in fig. 5.8.

5.6 UPDATING THE PREDICTION ERRORS

The lattice structure shown in fig. 2.6 is used by the Burg algorithm to update the

prediction errors. This structure is described by the following equations:

e () = €, (i) + all - b, (i-1) — afi - by, (i-1) (5.10) -

eim (@) = e (i) + all - by, i=1) + afi - b,,(~1) (5.11)
bre () = bye (=1) + afi - () + af] * €4, ) (5.12)
Bim () = by, (i=1) + alf - €;,(0) — all - e,,(i) | (5.13)

Implementation of these equations is straightforward as no overflow problem will be



DIVISION

begin
x = 1 - denom; (*x=1-B*
z=1/2 + x/2; (* EQN 335 *)

for (k=0 ;k < 14; ++k)
z = 1/2 + x*z; (* EQN 3.34 *)

shift_adj = dshift - nshift - 1;

for (i = shift_adj; i >= 0; --i)
z = z/2; (* ADJUST FOR SHIFT DIFFERENCES *)

return();

end

Figure 5.7 Pseudo Code for Taylor Series Division

MMSE CALCULATION

beéin
mmse = mmse*(1 - re_aii*re_aii - im_aii*im_aii); (* EQN 5.8-*)
retumn();

end

Figure 5.8 Pseudo Code for MMSE Computation
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encountered due to the prescaling of the data. Starting at the end of the data (ie.
i =N - 1) and working towards the start of the data (i = p) permits the errors to be
updated in place. The pseudo code for the lattice filter is shown in fig. 5.9 and the

microcode is shown in fig. 5.10.

57 DETERMINATION OF THE PREDICTION ERROR FILTER

COEFFICIENTS

Computation of the PEF coefficients is done by using the following equations:

YT i e i il

aif = ey w aly - o ol alf (5.14
i,- _ i, ._1 .,. . ._i’._i - .,. . ._‘.’._1 .

all =aly)™ +al) - alt A alyl - algtY (5.15)

In order to reduce the number of I/O operations and to perform the computations in

place, the computation of the real and imaginary components of a; ; and a; were

Zi,j
performed simulta;ieously via the Levinson butterfly. The relationship between these
two terms is shown in ﬁg: 5.11. Examining this figure indicates that the computation
of the PEF will be similar to the calculation involved in the lattice: structure. The
differences lie in the addressing and the fact that an ovérﬂow can occur. A block
. floating format of number representation is used in this part of the Burg algorithm to

accommodate ‘overﬁows. The‘ pseudo code for the PEF is given in fig. 5.12 and the

microcode is given in fig. 5.13.

5.8 RUN TIME EQUATIONS

Having proposed a possible implementation, the next task is to theoretically

determine the maximum speed attainable with this architecture. The task can be



LATTICE
begin

count = N - 1 - order;
addr =N - 1;

while( count >= Q) -
begin -
re_eptemp = re_epladdr] + re_aii*re_del[addr-1] - im_aii*im_del[addr-1];
(* EQN 5.10 %)
im_eptemp = im_ep[addr] + re_aii*im_del[addr-1] + im_aii*re_del{addr-1];
(* EQN 5,11 %)
re_del[addr] = re_del[addr-1] + re_aii*re_ep[addr] + im_aii*im_ep[addr);
(*EQN 5.12 %) :
im_del[addr] = im_del[addr-1] + re_aii*im_ep[addr] - im_aii*re_ep[addr];
(* EQN 5.13 *)

re_ep[addr] = re_eptemp;
im_ep[addr] = im_eptemp;

count = count - 1;
addr = addr - 1;
end
return()
end

Figure 5.9 Pseudo Code for Updating the Predictions Errors
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Busses Real Imaginary Multiplier
Real | Imag ALU ALU XY
read al . ab, A = b5 = Vi | W, =alei!
read | b | Bt | b= dy v Wi = afi-elst
read | e}, el bl =dpy + Wiy | by = al bl
write b;e— 2 b:;;z bye = a:"nb:r;l
Cim = ei‘;n + tim Uim = ax‘r‘nb:e-—l
Cre = eie = b, ‘eiim =Cim + Uy U, = a;‘i 'b;e-l
e;:e = Cre + Uy, Vpe = ar‘:i'.e::e
write e;'e ex‘m i = bi‘;n + Ve Vim = a‘-‘;‘;‘-e;.e

Figure 5.10 The Resource Usage in the Fully Pipélined Lattice Stage
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a; j-1

8ji,j-1

Figure 5.11 The Schematic Repreacntéﬁon of the Levinson Butterfly
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PEF
begin

i = order/2;
“if( i == 0) return();
j =order - i;

while (i>0)
begin

re_tempi = re_aij[i] + re_aii*re_aij[j] + im_aii*im_aij[j]; (* EQN 5.14 *)
im_tempi = im_aij[i] + re_aii*im_aij(j] + im_aii*re_aij[j]; (* EQN 5.15 *)
re_tempj = re_aij[j] + re_aii*re_aij[i] + im_aii*im_aij[i];

(* EQN 5.14 for j-i coefficient *)
im_tempj = im_aij[j] + re_aii*im_aij[i] - im_aii*re_aij[i];

(* EQN 5.15 for j-i coefficient *)

if( overflow == TRUE)
begin
pef_shift = pef _shift + 1; (* INCREMENT OVERFLOW COUNTER *)

for(k=1;k<i;++k) (* SCALE DOWN ALL PREVIOUSLY COMPUTED COEFFICIENTS *)
begin
 re_aijlk] = re_aij[k]/2;
im_aij[k] = im_aij[k]/2;
re_aijlorder - k] = re_aij[order - k]/2;
im_aij[order - k] = im_aij[order - k]/2;
end

while (i>0)
(* FOR ALL REMAINING COEFFICIENTS COMPUTE WITH SHIFT OF 1/2 *)

begin

_re_tempi = re_aijfi)/2 + re_aii*re_aij[j}/2 + im_aii*im: - aij[jl/2; (* EQN 5.14 *)
im_tempi = im_aiji}/2 + re_aii*im_aij(j}/2 + im_aii*re_aij[j}/2; (* EQN 5.15 *)
re_tempj = re_aij[j1/2 + re_an*re_aq[1]/2 + 1m_au*1m_ag[1]/2 (*EQN 5.14 *) .
im_tempj = im_aij[jl/2 + re_aii*im_aij[i}/2 - im_aii*re_aij[i}/2; (* EQN 5.15 *)

re_aij[i} = re_tempi; (* TRANSFER VALUES INTO COEFFICIENT ARRAY *)
im_aij[i] = im_tempi; .

re_aijfj] = re_tempj;

im_aij[j] = im_tempj;

i=i-1;
j = order - i;
end
end

re_aij[i] = re_tempi; (* TRANSFER VALUE INTO COEFFICIENT ARRAY *)
im_aij[i] = im_tempi;
re_aij[j] = re_tempj;



im_aij[j] = im_tempj;
end

for(i = 1;1i = pef_shift; ++i)
(* SCALE REFLECTION COEFFICIENT BY CORRECT AMOUNT *)

begin
re_aii = re_aii/2
im_aii = im_aii/2
end

re_aij [ordér] = re_aii;
im_aij[order] = im_aii;

return()
end

Figure 5.12 Pseudo Code for PEF Coefficients
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Busses Real Imaginary Multiplier
Real Imag ALU ALU XY
a){.e-i ax"n: ‘ Gre = Vye + Wy, Wim = az‘r; ! 'Sg
ar‘:e aiim dre =Vye — Wy, tzm = a;{.e_i'aiir‘;z

4 = afM wd, | ajiM = gii ad, | ¢, = aiTall

Uim = G ajs

a;c- 1 a;";-l Cim = Ui, — lim Ure = ar"ie—i'aji
ai‘i:i.*l axln:‘ " Cre = Uy, + 1, Ve = a,fe-a,"i
Vim = arie'a;;‘;x

aiim = a;.c + ¢y, ai‘;n = ai';n + Cim Wre = aiim'ai';l;:

Figure 5.13 The Resource Usage in the Fully Pipelined PEF Stage
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broken into two areas, determining the clock speed and finding out how many clock

cycles are required for each stage of the algorithm.

5.8.1 DETERMINATION OF THE CRITICAL PATH

The maximum operating clock speed is governed by the propagation delay in any
given data or control path. The path that has the most ‘propagation delay is known as
the critical path. Fig. 5.14. shows the two candidates for the critical path in- this
hardware. The timing analysis, shown in table 5.1, indicates_that the data path is the
critical path and that 138 ns are required for the data to be written to the RAM. This

means the clock speed is limited to 7.25 MHz.

5.8.2 RUN TIME OF THE BURG ALGORITHM

The run time equation of the Burg algorithm can be found so that the operational
speed can be determined. This analysis is performed by determining | the critical
resource for each stage and the number of cycles needed for that resource to complete
the operation. 'Each stage of the Burg algorithm consists of three basic parts when it
comes to‘determining the run time. In each subroutine there is an initialization phase
where parameters used in that stage are set. As the pipeline takes one sequence of
ins&ucﬁons to load and anothef to unload, the first and last instructions take additional
cycles as they are no.t fully pipelined. Finally there is the fulfy pipelined stage of the

instruction.

Table 5.2 shows the cycles ‘taken to perform the above stages for each subroutine.
It should be noted that most subroutines do not have a fixed cycle time. For example .

there are two main paths in the tree algorithm and which path is chosen depends on
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Pipeline Register A Pipeline Register
Y
- !
ALU . CC Multiplexor
Y
Bypass Buffers Sequencer
Y
)
Bidirectional Buffer [
Control Store
1
RAM

b) Control Path

a) Data Path

Figure 5.14 The.Control and Data Paths.



Table 5.1 Timing Analysis of the Control and Data Paths
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Path Device Action Component | Time
Pipeline clk to output 741.8374 20 ns
CC multiplexor select to output 74157 25 ns
Control Path Sequencer CC to output Am2910 30 ns
CS Addr, to output Am9150 25 ns
. Total : : ’ 100 ns
Pipeline clk to output 7415374 20 ns
ALU Register to output | Am29501 21 ns
Data Path Bypass Buffer OE to output 7415241 25 s
. Bidirectional Buffer input to output 74LS241 12 ns
Ram Write Pulse Am9128 60 ns

"Total

138 ns




Table 5.2: The Run Times of the Various Stages of the Burg Algorithm

h Function Tiit | Tpon Toive
DENOMINATOR 6p | 1lp | 4Np -2p%-10p
NUMERATOR 8 |12p | 4Np -2p%-10p
LATTICE 5p 24p | 8Np -4 p*-20p
TREE ADDITION (Denominator) 7
min | 4p- Tmp/2 + 3Np/2 - 3p*2
max 4p 21mp/2 + INp /2 — Tp*2
TREE ADDITION (Numerator)
min 4p Tmp[2 + 3Np/2 - 3p%2
max 4p 21mp/2 + 9Np 2 - 9p?2
PEF
min 6p 4p | 2p%2-8p
max 6p 14p | 3p?

MISC. (Division, normalizations,

MMSE, initializations, etc.)
min 23 +128p
‘max 23 +233p
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whether or not an overflow occurs. In this case a minimum time (no overflows) and a

maximum time (overflows in every stage) were derived.

The total run time of the Burg algorithm can now l;e determined. This is done byv
adding all of the subroutines in table 5.2. It should be noted that the minimum run
timc for the miscellaneous section was used in both the maximum and minimum run
time equations. The maximum run time of the miscellaneous section physically
corresponds to th? case were the daita values are very small and all other run time

sections are a minimum.

TBurgmax = ( 182p + 24Np — 13p2 + 21mp + 23 )T 0t (5.16)

Tpurgmin = ( 174p + 19Np = 9p% + Tmp + 23 )T, (5.17)

where p is the model order, N is the number of data points and m = log,(NV). Using
eqn(5.16) and the theoretical clock speed of 7.25 MHz, a 16 6rder model using 64
complex data points can be computed in 3615 ps . This translates to a theoretical

worst case sampling rate of 17.7 kHz which is acceptable for real time operation.

5.9 SUMMARY

The microprogramming requireménts of the Burg algorithm were examined in this
chapter.” A modular approach towards implementing the algorithm produced an
implemer;tation that was relatively simple. The maximum clock speed was determineﬁ
using critical path analysis and the run time eduations the Burg algorithm were -

developed. The real time operation of the processor was shown to be feasible.
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CHAPTER 6
RESULTS AND CONCLUSIONS

6.0 INTRODUCTION

The hardware discuséed in cﬁapter 4 was built using wire-wrap technology and is
shown in fig. 6.1. The microprogramming discussed in chapter 5 was written with the
aid of a meta-assembler and tested through a downloading unit. The performance of
the hardware and th;a microprogramming are analyzed in this chapter. The overall
accuracy, maximum experimental clock speéd and the run time performance are
discussed. Finally, recommendations fc;r areas of improvement and future development

are éuggesteci.
6.1 OVERALL ACCURACY

When dealing with fixed point numbers a certain degree of roundoff error is
encountered. The effects of this error as it applied to certain areas of the
implementation were described in chapter 3. The overall effect of roundoff error was
not examined in detail as the error is dependent on the data. In lieu of a theoretical
roundoff error analysis for the complete algorithm, a comparison between a floating
point and the fixed point Burg algorithm was conducted. A floating point algorithm
was written in Fortran 77 and run on the research VAX750 in the department. The

fixed poiht algorithm has been discussed in chapter 5.

Two test signals were used, one real and one complex. The real test signal is

described by the following equation:



B) A Photograph of the Memory Board and Shifters

Figure 6.1 Photographs of the Actual Hardware
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x(n) = cos (21(0.25627)n) + cos (2n(0.26877)n) + v (n) : (6.1)

where v(n) is Gaussian white noise with an RMS amplitude such that the signal to
noise ratio was 20 dB. The complex test signal consisted of the sum of 8 complex
exponentials:

3 | joyn '

s(ny=%3 e (6.2)

i=1
Figure 6.2 shows the pole locations of the complex exponentials used in this test
“signal. Noise was not included in this test so that the effects of roundoff errors could

be determined.

Fig. 6.3 shows the spectral estimates 6btained by applying applyiﬁg a 16" order
model to 128 data points of the real test signal. A 16” order model was used due to
the close spacing of the peaks and the presence of Vnoise. Clearly the BFP algorithin
pe'rforrﬁs well when compared to the FLP algorithm. Fig. 6.4 shows the results when
64 data points of the complex signal were modéled with an 8” order Burg model.
Again the BFP algorithm compared favorably to the FLP algorithm démonstratiﬁg that
the hardware implementation is accurate. The small differences that are present can be

attributed to the roundoff error in the BFP implementation.

6.2 ROUND-OFF ERROR IN THE PREDICTION ERRORS

‘Having examined the spectral estimation, attention was directed towards the
roundoff error present in the algorithm itself. A good measure of these errors can be
determined by finding the mean and variance of the error in the prediction errors. The

fact that the prediction errors are used in every stage of the Burg algorithm and are
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Figure 6.2 Pole Locations of the Complex Exponentiais
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. regenerated for every order based on previously computed values implies that a large
amount of roundoff error could accumulate. The mean and variance of the error
between the BFP and FLP Burg algorithms for various model orders are given in table
6.1 for both test cases. For the given data sets it can be seen that the worst roundoff
error had a value of 8.9 which u‘anslafes into 3 to 4 bits of lost resolution. and the
average mean error lies between 2 and 3 which translates to a 2 bit error. In most real
time situations the data would be gathered by an 8 to 12 bit A/D and the sampling

roundoff error is much more significant than the modeling error.

While the mean error does not increase dramatically with model order, the
variance increases tremendously. As the model order increases, the prediction errors
theoretically decrease. Therefore the ‘round off error that is present becomes

significant and is also modeled thus causing a dramatic increase in the variance.

6.3 ACTUAL RUN TIMES

The actual operating clock speed of the implementation lies somewhere between
7.2 MHz where the algorithm would sporadically fail and 7.5 MHz where 1t would
frequently fail. This ambiguity is due to the wire-wrap _impl(:mcntation which
introduces a great deal of noise. The rlc;wer clock speed was taken as the maximum
ooperating limit. An operating speed of 7.2 MHz translates to a clock period of 139 ns

which is close to the predicted value of 138 ns.

Table 6.2 shows the experimental run times obtained when the clock speed was
7.2 MHz. For comparison, the minimum and maximum theoretical run times

determined in chapter 5 are given. Examining table 6.2 shows that experimental run



Table 6.1 : Block Floating Point Round off Error Statistics

order normalized normalized
variance mean error
p /% WA
real complex | real | complex
0 0.97 22 | 0.02 0.005
1 2.6 24 0.32 0.87
2 11 41 1.1 1.9
4 1000 2400 0.83 8.9
8 5500 16700 2.67 1.1
16 16000 3.30
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Table 6.2 Run Times for Different Values of N, and the Order

order | N min | actual | max
ps ns us

16 72 76 92

i 32 114 136 143
64 199 - | 228 247

128 | 368 400 453

16 140 125 173

” 32 225 240 281
64 394 420 489

128 | 732 840 902

16 272 200 338

4 32 440 440 552
64 779 820 | 970

128 | 1455 1700 1794

. 32 847 1000 1079
8 64 | 1523 1600 1915
128 | 2875 | 3100 | 3564

‘ 16 64 | 2808 | 2900 | 3739

128 | 5603 5400 | 7035
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times lie in between the projected minimum and maximum run times f;>r most cases.
The times that lie below the projected minimum can be attributed to‘the experimentél
procedure used in .determining the actual run times. The correspondingﬂ sampling rates
for the run times are shown in table 6.3. It is clear that real time operation can be
achieved for high model orders since a 16* order, 128 point model was shown to be

performed in 5.4 ms with an effective sampling rate of 23 kHz.

6.4 FURTHER CONSIDERATIONS

Thoﬁgh specifically designed to perfofm the Burg algor}thm this APU can be
uSed for a number of applications. Tile remainmg stages of the DSA mentioned in the
introduction can be developed using the processor as the major hardware component.
Should this processor be incorporated in the DSA, the e)gternal I/O interface should be
changed from the bus transceivers to first-in first-out stacks to increase the speed of the

data transfers.

Reliability can be increased by producing a printed circuit board version of this
processor and using updating algorithms. :Using an updating Burg algorithm [23]
would improve the speed but at the cost of resolution. Campbell [5] has suggested
that band selec:table‘ digital filtering be employed to redﬁce the model order of the
signal under analysis. By employing this preprocessing technique and using the high
speed processor discu_ssed in this thesis, it might be feasible to implement a single

board DSA with the high speed processor developed in this thesis being used as the



Table 6.3 Coﬁesponding~ Sampling Frequencies .(In kHz)

data points model order
N p
1 2 4 8 16
16 211 | 128 | 80
32 235 | 133 | 727 | 320
64 280 | 152 | 78 40 22
128 320 1 152 | 75 41 23
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hardware for the complete DSA.

6.5 CONCLUSIONS

The. goai of this thesis wés to design a processor capable of performing AR
modeling. in’real time. The Burg algorithm was selected as thel modeling algoritﬁm
because it offered the best compromiée between speed ana accuracy. To ensure the
stability and accuracy of the algorithm in a block floating point environment the errors
arising from block floating point 6peration_s were examined. A number‘ of metﬁods
including a tree addition algorithm, a moﬁiﬁed division ﬂgoﬁthm and a hardware

rounding unit were used to mitigate the effects of these errors.

Microprogrammable components were incorporated in a highly pipelined
architecture that supported real time operatjon. To perform complex arithmetic in real
time a processing unit consisting of two data busses, two ALUs and a multiplier was
proposed and implemenf:ed. Although additional hardware coﬁld have increased the
overall speed the above configuration offered a good trade-off between hardware
complexity and computational speed. - |

The Burg algorithm was broken into stages and an efficient microprogrammed
implementation of each stage was develoi)ed. The use of a modular approach to the
programming ‘provided a good compromise between program development time and
operational speed. The architecture was able to operate at a clock speed of 7.2 MHz
and permitted real time operation of the Burg aléorithm. The BFP algorithm was in
good agreement with the FLP algorithm for the test cases considered. A worst case

roundoff error of 4 bits was observed when an error analysis between the BFP and
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FLP algorithms was conducted. This work has been summarized in a paper whose

abstract has been accepted by the proceedings of the IEEE. The full pai)er is presently

under review [25].
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