
THE UNIVERSITY OF CALGARY

THE DESIGN OF A HARDWARE PROCESSOR CAPABLE OF

PERFORMING AUTO-REGRESSWE MODELING IN

REAL TIME

by

STACY WILLIAM NICHOLS

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

CALGARY, ALBERTA

October, 1986

© S. W. Nichols 1986

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a accorde
la Bibliothque nationale

du Canada de microfilmer
cette thse et de pre-ter ou
de vendre des exemplaires du
film.

Ltauteur (titulaire du droit
d'auteur) se reserve les
autres droits de publication;
ui la these ni de longs
extraits de celle-ci me
doivent être imprimes ou
autrement reproduits sans son
autorisation ecrite.

ISBN ø-315-36011--9

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled The Design of a Hardware Pro-

cessor Capable of Performing Auto-Regressive Modeling in Real Time, submitted

by Stacy William Nichols in partial fulfillment of the requirements for the degree

of Master of Science

Dr. M. R. Smith, Chairman
Department of Electrical Engineering

Dr. R. A. Stein
Department of Electrical Engineering

Dr. L E. Turner
Department of Electrical Engineering

Dr. R. B. Hicks

Date: (33)
Department of Physics

II

ABSTRACT

The design and implementation of a high speed processor dedicated to auto-

regressive (AR) modeling is presented in this thesis. Several AR algorithms capa-

ble of operating in a real time environment are examined; with the Burg algorithm

being chosen as it offers a good trade-off between speed and resolution. Errors

arising in the block floating point implementation of the algorithm are discussed

and methods of reducing these errors are presented and implemented. An algorithm

that quickly and accurately performs a division operation is introduced and

included in the implementation of the Burg algorithm.

The hardware architecture is heavily pipelined and consists of bit-slice

microprogrammable chips that can be programmed independently. This permits full

utilization of the resources by using parallel programming techniques. A high speed

complex number processor composed of two ALUs, a multiplier, two memory units

and a number of components associated with the above units is found to be the

best trade-off between hardware complexity and speed. Using wirewrap techniques,

a prototype AR processor was developed and tested.

Results indicate the accuracy of the overall implementation is comparable to

that of floating point implementations. The hardware implementation is capable of

performing a i6 order AR model of 128 complex data points in 5.4 ms. The

effective sampling rate is 23 kHz; real time operation for most applications.

111

ACKNOWLEDGEMENTS

The author wishes to thank Dr. M. R. Smith, for his valuable input and gui-

dance which helped make this thesis possible, and Dr. R. A. Stein, whose timely

suggestions are gratefully acknowledged.

The financial assistance given by the University of Calgary (Graduate Assis-

tantships), the Natural Science and Engineering Research Council of Canada

• (operating funds), the Province of Alberta (scholarship), the Robert B. Paugh

Memorial Bursary Fund (bursary), and Advanced Micro Devices Ltd. (donation of

significant hardware components) is deeply appreciated.

iv

To my Mother and Father
For their patience and support

V

Table of Contents

Page No.

Table of Contents vi

List of Tables viii

List of Figures ix

List of Symbols xi

1. INTRODUCTION 1

1.0 Introduction 1

2. Spectral Estimation By Auto-regressive Modeling 6

2.0 Introduction 6

2.1 Parametric Modeling 6

2.2 Theoretical Aspects of AR Modeling 7

2.3 Prediction Error Filters 13

2.4 The Burg Algorithm 14

2.5 Summary 20

3. Block Floating Point Arithmetic 21

3.0 Introduction 21

3.1 Fixed Point Representation f 22

3.2 BFP Addition 22

3.3 BFP Summations 23

3.3.1 The Accumulation Algorithm 26

3.3.2 The Tree Addition Algorithm 29

3.4 Multiplication 32

3.5 Division 32

3.5.1 Sequential Subtract and Shift Division 35

3.5.2 Convergence Division 35

3.5.3 Taylor Series Expansion 37

3.6 Overflow and Scaling in Updating the Prediction Errors 43

3.7 Summary 45

4. The Hardware Design of the Processor 46

4.0 Introduction 46

4.1 Hardware Type 46

4. 1.1 Microprocessors 46

vi

Table of Contents (continued)

4.1.2 Microprogrammable Systems 47

4.2 Micropràgramming Concepts 49

4.2.1 Microprogram Control 49

4.2.2 The Bit Slice Concept 52

4.2.3 Pipelining and Parallel Programming 52

4.3 Computational Requirements of the Burg Algorithm 54

4.4 Operational Elements 56

4.5 Component Technology 58

4.5.1 Wordlength 59

4.6 Component Quantity 59

4.6.1 The 2-2-1 Configuration 60

4.6.2 Hardware Rounding 62

4.7 Addressing Requirements 64

4.8 External Interfacing 65

4.9 Summary 67

5. Microprogrammable Implementation of the Burg Algorithm 69

5.0 Introduction 69

5.1 Partitioning of the Burg Algorithm 69

5.2 Formation of the Denominator 70

5.3 The Tree Algorithm 71

5.4 Computation of the Numerator 76

5.5 Determination of the Reflection Coefficient and the MMSE 78

5.6 Updating the Prediction Errors 81

5.7 Determination of the Prediction Error Coefficients 83

5.8 Run Time Equations 83

5.8.1 Determination of the Critical Path 90

5.8.2 Run Time of the Burg Algorithm 90

5.9 Summary 94

6. Results and Conclusions 95

6.0 Introduction 95

6.1 Overall Accuracy 95

6.2 Round-off in the Prediction Errors 97

6.3 Actual Run Times 101

6.4 Further Considerations 104

6.5 Conclusions 106

References 108

VII

List of Tables

Table No. Title Page No.

3.1 Roundoff Errors Associated with Addition/Subtraction 25

3.2 Errors Associated with Multiplication and Sequential Division 34

3.3 Errors in the Unmodified Taylor Series Algorithm for Division 44

3.4 Errors Statistics for Modified Taylor Series Division 44

4.1 Effects of Increasing Components in theNurnber of Cycles 61

5.1 Timing Analysis for the Control and Data Paths 92

5.2 Run Times for the Various Stages of the Burg Algorithm 93

6.1 Block Floating Point Roundoff Error Statistics 102

6.2 Maximums Minimum and Actual Run Times for Different values
ofNand the Order 103

6.3 Corresponding Sampling Frequencies (in kHz) 105

viii

List of Figures

Figure No. Title Page No.

1.1 A Block Diagram of the DSA 4

2.1 A Block Diagram of an ARMA Model 8

2.2 A Block Diagram of a MA Model 9

2.3 A Block Diagram of an AR Model 10

2.4 ABlock Diagram of a Prediction Error Filter 15

2.5 What is Meant by the Term "Running off the Data" 17

2.6 A Schematic Representation of the Lattice Structure 19

3.1 Roundoff Error Distributions for the Various Rounding Schemes
24

3.2 The Roundoff Error Generated in the Accumulation Algorithm 27

3.3 Error Propagation in the Tree Algorithm 30

3.4 Errors Associated with Block Floating Point Summations 31

3.5 Roundoff Errors in Multiplication 33

3.6 An Example of the "Pencil and Paper Method" 36

3.7 The Flowchart for Nonrestoring Division 36

3.8 Roundoff Error in the Unmodified Taylor Series used
in Determining (1 - x)'. 39

3.9 Roundoff Error in the Modified Taylor Series used
in Determining (1 - x)-1 39

4.1 The Typical Components of a Microsequencer 50

4.2 A Microprogram Control Unit 51

4.3 An Example of Pipelined and Unpipelined Architectures 53

4.4 The Overlapping of Instructions 55

4.5 A Block Diagram of the APU Hardware 63

4.6 A Block Diagram of the Addressing Unit 66

4.7 A Schematic of the Overall Configuration 68

5.1 Pseudo-code for the Denominator Calculation 72

5.2 The Resource Usage of the Fully Pipelined Denominator Stage 73

5.3 Pseudo-code for the Tree Summation 74

5.4 The Operation of the Tree Algorithm when an Overflow Occurs 77

5.5 Pseudo-code for the Numerator Stage 79

ix

List of Figures (continued)

5.. The Resource Usage of the Fully Pipelined Numerator Stage 80

5.7 Pseudo-code for the Division Scheme 82

5.8 The Pseudo-code for the MMSE Calculation 82

5.9 Pseudo-code for Updating Prediction Errors 84

5.10 The Resource Usage for the Fully Pipeined Lattice Stage 85

5.11 The Levinson. Butterfly 86

5.12 The Pseudo-code for the PEF Coefficients 87

5.13 The Resource Usage for the Fully Pipelined PEF Stage 89

5.14 The Control and Data Paths 91

6.1 The Actual Hardware 96

6.2 Frequency Locations of the Complex Exponentials. 98

6.3 Comparison of the Spectral Estimates obtained from the
Block Floating and Floating Point Burg Algorithms when
Applied to Real Data 99

6.4 Comparison of the Spectral Estimates obtained from the
Block Floating and Floating Point Burg Algorithms when
Applied to Complex Data 100

x

List of Symbols

ai AR model coefficients / Forward PEF coefficients
ALU Arithmetic Logic Unit
AMD Advanced Micro Devices
APU Arithmetic Processing unit
AR Auto-regressive
ARMA Auto-regressive Moving Average
B Denominator
b Backward Prediction Error
bi MA Model Coefficients / Backward PEF Coefficients
CC Condition Code
CS Control Store
D Denominator

The Weight of the Least Significant Bit
DFT Discrete Fourier Transform
dshifr Shift Count in Denominator
e Forward Prediction Error
e Round-off Error
11I Fast Fourier Transform
FLP Floating Point Format
FXP Fixed Point Format
Hz Frequency
IM Imaginary Component of a Complex Number
110 Input/Output
LSB Least Significant Bit
MA Moving Average
MMSE Minimum Mean Square Error
MSE Mean Square Error

Mean Rounding Error
N The Number of Sample Data Points
nshift Shift Count in Numerator
p Final Order of the AR Model / Prescaling Error
P Sum of Squares of Forward and Backward Errors
PEF Prediction Error Filter
r Number of Bits
RAM Random Access Memory
RE Real Component of a Complex Number
R(k) Autocorrelation Sequence of a Signal
S Binary Bit / Seconds
s (n) An Input Signal
T A Unit Time Delay,
t ,u ,v ,w ,c ,d Intermediate Values

u(k) An Gaussian White Process
v(n) A Signal Composed of Gaussian White Noise
02 Variance in the Round-off Error
x(k) Data Signal I Intermediate Signal.
Y Accumulation Variable
y(k) Output Signal

CHAPTER 1 ,,

INTRODUCTION

1.0 INTRODUCTION

Signal analysis is important to many different fields of science and can be

performed in a number of different ways. Autoregressive (AR) modeling is an

approach to signal analysis that has received a lot of attention. It is a parametric

technique that attempts to predict the present value of a signal from weighted past

values of that signal. AR modeling is used in a number of research areas [1,2,3] to

obtain accurate models of the processes under examination.

This modeling approach has been applied to the analysis of human speech [1]

where it has been used for word recognition and speech synthesis. These applications

require high speed microprocessors to sample and store the voice data. It would be

desirable if a high speed AR processor was developed to perform the analysis at the

same rate the data is received.

Suppression and classification of radar clutter caused by the echos generated from

the earth, weather phenomena and birds is another application of AR modeling.

Research indicates that these echos can be accurately modeled as low order complex

AR processes [2]. AR modeling, specifically the Burg algorithm, can be applied to

produce a filter that suppresses the clutter. Again a high speed processor capable of

performing complex arithmetic in real time would be useful.

The results in the literature [3] have shown that for small data lengths, AR

modeling tends to produce higher resolution spectral estimates than the classical

1

2

Fourier transform based methods of spectral analysis. The ability to provide high

resolution spectral estimates is one of the reasons for the popularity of AR modeling.

The present trend in the above areas is to develop processors and systems that

operate in real time. This means operating at speeds fast enough to process the data as

soon as it is received rather than storing the data for analysis at some future date. To

perform real time speech analysis requires a processor capable of sampling at 12.5 kHz

[4]. Real time requirements tend to force designers to turn away from accurate but

computationally time consuming algorithms and implement fast Fourier transform

(FF1) processors to perform spectral analysis. However, there are a number of AR

algorithms that are efficient and can be applied in a real time situation. One such

algorithm is the Burg algorithm [3]. Its computational simplicity stems from the fact

that it operates directly on the data whereas some other AR algorithms form

covariance matrices. Furiher it uses information already calculated from lower order

models to determine higher order model parameters. A real time AR processor would

provide a high resolution model of the signal and would be useful in the applications

discussed.

Resolution and speed are two reasons why AR modeling should be used in a high

resolution real time digital spectrum analyzer (DSA). The requirement of real time

means that a hardware implementation of an AR algorithm is necessary. Campbell [5]

showed that implementation 'of a high resolution DSA proposed by Ng [6] on a single

6809 microprocessor system was not acceptable for real time operation. Its failure was

due to time consuming address calculations. To overcome this problem a multiboard

DSA has been proposed [7,8].

3

The DSA, fig. 1.1, is composed of several blocks that perform specific functions

[8]. A processing stage samples, demodulates, filters and decimates the input data and

is followed by an AR stage that models the received data. To determine the frequency

spectrum of the AR model, a DFT stage is included with the frequency output being

displayed by a video stage. A system consisting of a specialized processor for each

stage could perform the DSA function in real time. Orbay [7] has designed and

demonstrated real time operation of a processing unit that is dedicated to performing

the FFI. The subject of this thesis is the design of an AR processor which is the

central element in this DSA and the next element in the DSA that requires

development. There are many factors that must be considered if the implementation of

the Burg algorithm is to be successful. These factors are presented in this thesis.

Chapter 2 reviews AR modeling techniques and the Burg algorithm. It starts with

the basic premise of AR modeling and proceeds to develop the Levinson algorithm. A

review of the Levinson algorithm shows that it is fast but it does not have the desired

accuracy. The Burg algorithm is reviewed and examined. It is shown that the Burg

algorithm is a good candidate for implementation because it is relatively fast and

accurate.

Block floating point arithmetic must be used to efficiently perform arithmetic

operations in hardware. Chapter 3 examines the errors associated with block floating

point arithmetic operations and methods of reducing the errors are introduced. The

methods include the use of a tree addition algorithm to reduce roundoff errors in

summations and rounding schemes to ensure the stability of the Burg algorithm. An

investigation into division ' algorithms is performed in order to determine a technique

4

Input

Processing Stage

Decimated

AR Stage

If

Parameters

Fourier Transform

Spectrum

Video Display

Output

Figure 1.1 A Block Diagram of the DSA

Data

5

that will satisfy the trade-off between speed and accuracy. It is shown that overflows

in the lattice structure can be avoided by scaling the input data by one half.

The hardware development can be based on multiple microprocessors or a

microprogrammable system. In chapter 4 the relative merits of these two alternatives

are determined. A possible hardware configuration that is - suitable for real time

operation is proposed. This configuration is determined by examining the

computational requirements of the Burg algorithm and finding the simpliest hardware

configuration that will perform these requirements in real time. Wire-wrap methods,

which provide a high degree of flexibility in the physical layout and fast development

times, are used to inter-connect the actual hardware components of a prototype DSA.

This is an experimental processor and the ability to change the layout is an asset that

outweighs the noise problems that exist in wire-wrap prototypes.

The microprogramming of the Burg algorithm is detailed in chapter 5. The

implementation of the different parts of the algorithm 'are discussed and attention is

given to efficient programming methods and rounding schemes that ensure stability.

The maximum theoretical clock speed is determined and the run time equation of the

Burg algorithm is found to show that the hardware designed in chapter 4 is capable of

performing the algorithm in real time.

Results from the hardware implementation are examined in chapter 6. The actual

spectral estimates and run-times are compared against their theoretical counterparts and

some conclusions are made. The overall performance of the hardware and the block

floating point implementation of the Burg algorithm are analyzed. A brief summary is

provided and areas where improvements on speed, design and accuracy can be made.

CHAPTER 2

SPECTRAL ESTIMATION BY AUTOREGRESSIVE MODELING

2.0 INTRODUCTION

In many scientific applications [1,2,10] the determination of the spectral content

of a signal is very useful. Spectral analysis has been applied to a number of fields

mentioned in the first chapter. The chief concern in these areas is the frequency

distribution of power in the signal, better known as the Power. Spectral Density (PSD).

A common approach to determining the PSD is to apply the fast Fourier transform

(FF1) algorithm [10] either directly to the data or to the autocorrelation sequence of

the data. This technique produces adequate results for a number of situations.

However, there are areas where this method provides a very poor estimate of the PSD

due to the fact that the resolution of the discrete Fourier transform (DFT) varies

inversely with the number of data points. Therefore other methods should be used

when examining short data records.

2.1 PARAMETRIC MODELING

The inability of the DFT to produce a high resolution spectral estimate from short

data records has led to the development of several other approaches. Among these

methods are a number of parametric techniques which attempt to model a signal as a

process in which another signal, usually Gaussian white noise, is passed through a

filter. The PSD of the filter's output is obtained and used as an estimate of the signal's

PSD.

6

7

Three types of models can be used to represent a signal [10]. The ARMA model

(fig. 2.1), which consists of feedback terms ai and feedforward terms b, generally

provides the best estimate of an unknown signal. However the ARMA algorithms are

computationally complex and they are not suitable for real time implementation. MA

models (fig. 2.2) provide a good estimate for systems that have a finite impulse

response but do not perform well for most other signals. Further, determining the MA

model parameters involves solving a number of.non-linear equations [9]. A number of

iterative algorithms have been developed to solve for these parameters but these

algorithms are complex and convergence to .a stable solution is not guaranteed [9].

The most widely used technique is the AR model (fig. 2.3) [1]. This method

yields good spectral results for a large class of signals that are primarily of an all-pole

•nature. Some of the algorithms used in determining the parameters are computationally

efficient [3]. In light of these facts, AR modeling was chosen to be used in this real

time DSA application. The theory behind AR modeling and which algorithms are

computationally efficient are outlined in this chapter.

2.2 THEORETICAL ASPECTS OF AR MODELING

The AR model assumes that the present value of the signal x (n) can be estimated

as the sum of weighted past values of the signal. This is expressed as

x(n)--a 1x(n-1)—a2x(n-2) — ap x(n—p) (2.1)

where I (n) is the estimate of x (n), a1 are the AR weighting coefficients and p is the

model order.

u (k)

Figure 2.1 A Block Diagram of an ARMA Model

u(k)

2

y (k)

Figure 2.2 A Block Diagram of a MA Model

Figure 2.3 A Block Diagram of an AR Model

11

The goal of AR modeling is to determine the coefficients a1 such that the mean

squared error (MSE) between the estimate and the signal value is minimized. This can

be expressed as:

00

MSE = (x (n) — X̂ (n))2 (2.2)

Substituting for X^ (n) from eqn(2. 1) yields:

MSE = (x (n) — ak x (n—k))2
n=—co k=1

Minimizing with respect to the coefficients ai yields the Yule - Walker

equations [10]

R[0] R[—l] •.. R[—(p-1)]
R[1] R[0] •.. R[—(p-2)]

Rip—i] R[p-2J R 10

where MMSE is the minimum MSE and

1
a1

ap

1 N
R(i)= hm I x(n)x(n—i).

N-oo.L1V +

MMSE
0

(2.3)

(2.4)

(2.5)

R (i) is known as the autocorrelation lag of x (n) with x (n—i) and is an even function:

R(i)=R(—i). (2.6)

The matrix in eqn(2.4) is a positive definite, symmetric Toeplitz matrix where all the

elements along any diagonal are identical. The Toeplitz nature of the matrix was

exploited by Levinson [1] in his technique of solving for a1 and the MMSE. Further

refining of the Levinson algorithm by Durbin [10] yielded the well known Levinson-

12

Durbin algorithm.

The Levinson-Durbin algorithm is simply a highly efficient method of solving

eqn(2.4). The algorithm is initialized by

MMSE0 = R(0)

- -R(1)
a1,1- R(0)

(2.7)

(2.8)

MMSE 1=(l- Iai,11 2)MMSE0. (2.9)

The recursive algorithm for k = 2,3, p is then

ak,k =

I k - i
- IR (k) + a/,_ ,l R (k-i)
L 1=1

MMSEk.. 1

*
= a - 1 + ak,k ak_1,k_1

MMSEk = (1 - I ak,k 12)'MMSEk-1

where a1 is the a1 coefficient determined during the j :h iteration.

(2.11)

(2.12)

This algorithm is fast when compared to the more traditional matrix inversion

techniques. Methods such as Gaussian elimination and Cholesky decomposition require

on the order of 0(p3) operations to generate a solution whereas the Lèvinson-Durbin

algorithm takes 0(p 2) operations [10]. The reduction in computational time makes this

algorithm a candidate for use in a real time environment. It has been shown by Yung

[11.] that a parallel VLSI implementation of this algorithm can operate in real time.

The Levinson-Durbin algorithm produces better spectral estimates than standard

FF1 methods but there are some inherent limitations in the algorithm which reduce its

overall resolution [1]. Most of these limitations stem from the assumption of an infinite

13

data set. In any real time application the data is finite in length, meaning that the

autocorrelation lags used in eqn(2.4) are only estimates of the true autocorrelation

function and should be expressed as:

A 1N-1
R(i)=— I x(n)x(n—i).

N i 0
(2.13)

Using this estimate instead of the true autocorrelation lag implies that the data

outside of the finite sequence is assumed to be zero which can be viewed as an

implied windowing of the signal. The windowing decreases the resolution of the

Levinson algorithm in the same way windowing decreases the resolution of the DFT.

The finite data length indicates that the diagonal terms of the matrix in eqn(2.4) are

not exactly equal to each other. The. Levinson-Durbin algorithm provides an

approximate solution to eqn(2.4) since the assumption of infinite data is no longer

valid.

If an exact solution to eqn(2.4) is required then the elegant solution proposed by

Levinson can not be used and a more generalized inversion algorithm taking 0(p 3)

operations must be applied. Such algorithms may not be implementable in real time

and therefore other AR modeling approaches that retain the real time speed but

eliminate these problems must be considered.

2.3 PREDICTION ERROR FILTERS

As the next algorithm under review incorporates the use of prediction error filters

(PEF) it is useful to introduce the concept of a PEF at this point in the discussion.

Trying to predict a present value from weighted past values using eqn. (2.1) is

14

equivalent to determining the output of a finite impulse response (FiR) filter run over

the data. The coefficients for this filter, shown in fig. 2.4, are the AR model parameters

1, a1 ,... ap. This filter is known as a PEF because it generates the error e (k)

associated with the prediction of the signal.

Until now, the theory has been developed on the basis that a data point can be

represented as a linear combination of past values. This is known as forward prediction

due to the idea that 'the PEF is moving forward in time. There is also the possibility of

a backward predictor. If all the data is present then a PEF can be run backward in

time giving

(n—p) = — bjx(n—p+i).

Which means that the present value is a linear combination of future values. The

coefficients, b, can be found in a similar manner to that used in determining the

forward coefficients a. When the signal under analysis is shift invariant or,

independent of time, the backward PEF simply becomes the complex conjugate of the

forward PEF, b1 = aj* . This concept was exploited by Burg [3] in his algorithm to

determine the AR coefficients.

(2.14)

2.4 THE BURG ALGORITHM

Due to the implied windowing in the Levinson-Durbin algorithm, the overall

resolution is decreased. To alleviate this problem Burg suggested a method that made

no assumptions about the data outside of the signal already obtained. In Burg's

method, the known part of the autocorrelation sequence (R (0), R (1),... R (p)) is

I
a2 3 a

e (k)

Figure 2.4 A Block Diagram of a Prediction Error Filter

16

extrapolated to produce an estimate of the unknown autocorrelation sequence

(R (p +1), R (p-i-2)), effectively removing the windowing of the data. So as not

to impose any further constraints on the sequence, Burg proposed that the resulting

time series have maximum entropy. Thus the method is known as the maximum

entropy method (MEM).

Burg's method operates directly on the data and does not invert the

autocorrelation matrix. Burg used a forward and backward PEF to obtain information

from the signal. The use of a backward predictor permits information to be obtained

about the points that can not be predicted by the forward PEF when the forward PEF

is not allowed to be "run off" the data. Fig. 2.5 demonstrates what is meant by not

running off of the data.

Burg then minimized the sum of the forward given by

and the backward error

X (n) + ' x (n —k),
k-1

= x (n —j) + - atp ' x (n —j +k),
k 1

where j is the model order and j ≤ n <N. The minimization of the error

N - i

Pj = Ie_1,I+ Jb 2 j,n I
n = j

yields the reflection coefficient

(2.15)

(2.16)

(2.17)

17

a2 a1 1.

0 0 xo x1 x2 X3 . . XN_3 XN_2 XN1 0 0

1 a a

A) Initial Locations for PEFs that are Run Off the Data

a2 121 1

xo xl x2 x3 x4 , , XN_3XN_2XN_1

1
*

a1 *
a2

B) Initial Locations for PEFs that are not Run Off the Data

Figure 2.5 What is Meant by the Term "Running Off of the Data

18

where

 D•
n=j)

N-i e_i * ,n

N - i
D = le_1, 12+ Ib 1,_il2.

n=J

(2.18)

(2.19)

The remaining PEF coefficients, a J, 0 ≤ i ≤ f—i, are then determined using the

Levinson recursion given in eqn(2. 1 1). To update the errors, two prediction error

filters, based on eqns (2.15) and (2.16), can be applied directly to the data which is a

time consuming process. To reduce the computational time, Burg proposed the use of

a lattice structure that makes use of the reflection coefficient and the prediction errors

of the previous stage to update the errors.

The PEF's can be folded into the lattice structure. Substituting for aj,j from.

eqn(2.11) into eqn(2.15) yields

i-i
= x(n) + (a j_ + aj af_k,J_1) x(n—k) + aj J x ,

k=1

Incorporating eqn(2.16) into eqn(2.20) yields

= + a ,1

Similarly, the backward error. is given by

=

n—p). (2.20)

(2.21)

(2.22)

The lattice structi.ire, shown schematically in fig. 2.6, is obtained using these two

equations. Using the lattice structure to update the prediction errors and recursively

computing the PEF saes a great deal of time in the Burg algorithm. In fact, this

Figure 2.6 A Schematic Representation of the Lattice Structure

bp- i,n _ul

20

method takes 0(p 2) operations to determine the PEF coefficients which implies that

the algorithm is a prime candidate for implementation in real time [10].

The literature indicates that there are some inherent problems with the Burg

algorithm [10,12]. The occurrence of closely spaced multiple peaks, line splitting [12],

in a spectral estimate where only one peak should exist, is the most serious problem in

the Burg algorithm. Line splitting arises when the algorithm is applied to signals with

high signal to noise ratios (e.g. SNR = 40dB) and only a few data points are present

(e.g. N = 15). Frequency biasing [13] results when the initial phase of a sinusoid to

be modeled is non-zero and there are only a few data points present. Though these

limitations might appear serious, in most applications there are a sufficient number of

data points to mitigate these effects and a number of authors [14,15] have also

proposed methods of reducing the effects if they appear significant. As the Burg

algorithm has better resolution than the Levinson algorithm, by removing the implied

windowing, and operates much faster than most matrix inversion routines, it was

chosen as the algorithm That would be implemented in this thesis.

2.5 SUMMARY

The concepts of AR modeling and the relative strengths and weaknesses of the

Burg and Levinson algorithms have been examined in this chapter. The Burg

algorithm was chosen for implementation as it offs better resolution than the

Levinson algorithm and operates much faster than other algorithms that incorporate

matrix inversion routines.

CHAPTER 3

BLOCK FLOATING POINT ARITHMETIC

3.0 INTRODUCTION

As the goal of this thesis is to develop a high speed implementation of the Burg

algorithm, high speed hardware components must be used. Currently there are a

number of commercial chips capable of providing high speed additions, subtractions

and multiplications. The vast majority of these chips operate on, and output, data that

is represented by a string of binary (1 or 0) bits in a predetermined format known as

Fixed Point (FXP). Though a floating point (FLP) format could be used, it would be

very time consuming and inefficient. A compromise between FXP and FLP is block

floating point (BFP) format. With this format the data is stored in FXP format and a

scale factor associated with a block of data is also stored. Due to this scale factor,

variable scaling can be used in BFP as opposed to the predetermined scaling that

occurs in FXP [16]. When variable scaling is used the data is only scaled when

necessary, unlike prescaling which tends over scale the data as the prescaling value is

usually determined by some form of worst case analysis. This implies that BFP is

more accurate than FXP. As BFP still retains the speed of FXP and provides greater

accuracy, it is used in this implementation. As BFP has a finite precision it is possible

for errors to occur when an operation produces a result that exèeeds the bounds'of the

fixed format. How these errors occur and what is done to reduce their effect is

discussed in this chapter.

The operation of division is the only basic arithmetic operation that is not

performed by a dedicated chip. To perform a division, a software algorithm must be

21

22

used. A number of algorithms available to perform this operation are examined and

compared in terms of accuracy, speed and ease of implementation.

3.1 FIXED POINT REPRESENTATION

In FXP a number is represented by a string series of binary bits. A common FXP

format is fractional two's complement (FTC). The number x can be represented in

FTC notation as:

r-1
x=-s0+ s2t

i=1
(3.1)

where -1 ≤ x < 1 and si are binary numbers. The number of bits, r, is limited by the

hardware that is used. In this thesis r is taken to be 16 which results in an acceptable

trade-off between numerical accuracy and hardware complexity.

3.2 BFP ADDITION

When adding two BFP numbers there is a possibility that the result will require

added precision. Consider the addition of a number with itself. If the original value is

represented by 16 bits then it possible that twice the original value may need 17 bits to

be accurately represented. In BFP a 17 bit number must be reduced to a 16 bit value

and the scaling factor • adjusted. With the architecture selected, this was accomplished

by scaling the original 16 bit numbers down to 15 bit values. The above addition then

produces a 16 bit result which can be represented in FXP format.

Scaling, a method of reducing the number of bits present, can be performed using

a number of techniques. In the simpliest method, down rounding, the 16 bit value is

divided by two and the remainder is dropped This is accomplished by shifting the

23

original value to the right by one and dropping the least significant bit (LSB). A

negative bias is introduced as a result of dropping the LSB. Up rounding can be used

if a negative bias is undesirable. In this scheme, a one is added the LSB and then the

result is shifted to the right by one. This technique introduces a positive bias into the

answer because of the addition of the one to the LSB.

Other schemes must be employed where no bias is tolerable. The magnitude

truncation method adds the sign bit to the LSB before shifting. Assuming equal

probability of positive and negative numbers, this scheme does not introduce an overall

bias as the negative numbers are positively biased and the positive numbers are

negatively biased. In random bit addition, a random bit is added to the LSB so that no

bias is introduced when rounding. Implementation of this scheme in hardware requires

a random bit generator in addition to the hardware used in the previous scaling

techniques.

All of the scaling schemes discussed introduce errors into the resulting 16 bit

value. These errors occur randomly and the mean, mean square, and variance are used

to describe their effects. Fig. 3.1 shows the error distributions for all four schemes and

table 3.1 gives the mean, mean square, and variance of the three in terms of the weight

of the LSB (is). Though these results are given without proof, they can be easily

verified by example.

• 3.3 BFP SUMMATION ALGORITHMS

The last section focused on the errors that occurred due to a single rounding

operation. This section is concerned with how these errors grow when a large set of

Probability

1

2

probability

1

2

1

4

A A

A

2

I
A

2

0

ProbabilityA

1

'2

•• Error
2

A

2
0

a) Down Rounding Probability b) Up Rounding

0

c) Magnitude Trunation

I JO.-
• Error

2

1

2

1

4

A

2
0

•. Error

A

2

d) Random Bit Addition

Figure 3.1 Round-off Error Distributions for the Various Rounding Schemes

'I

Error

25

Table 3.1 Round-off Errors Associated with Addition/Subtraction

Scaling
Method

Mean
p.

Variance
a2

Mean
Square

Down A A2 A2

Rounding 4 16 8

Up
A A2 A2

Rounding 4 16 8

Magnitude 2

Truncation
0-

A
-

8

A2
-

8

Random Bit . .

Addition 8 8

26

B?!' numbers are added together to form the summation

N-i
y=

i =0
(3.2)

Clearly, the growth of these errors will depend on the method of summation. Two

summation techiiiques, the accumulation algorithm and the tree addition algorithm, are

analyzed in this section to determine which one performs the best in terms of avoiding

roundoff error.

3.3.1 THE ACCUMULATION ALGORITHM

When forming a summation, the most straightforward method is the accumulation

technique. In this technique a number xi is added to the sum of all the previous

numbers Y_1 to form a new sum Y

(3.3)

for i = 1 N - 1 and Y0 = x0. In floating point arithmetic, the sum is permitted to

grow as successive terms are added. This luxury is not present in EF? arithmetic

because when the sum overflows it must be shifted to stay within the. FXP format. In

turn all future values added to the sum must also'be scaled. The errors generated by

these scalings are shown in fig. 3.2. The errors generated by prescaling of the numbers

before they are included in the sum are denoted by Pj and the errors due to scaling of

the sum are denoted by ej . The roundoff error in the summation, is given by

M rn 2k1

F-acc = Crn 2 +
i-0 k=ij=2'

(3.3)

where m = mt (10g2(N)). The worst case mean error J-1C.CCWC can be expressed in terms

27

Figure 3.2 Roundoff Error Generated in the Accumulation Algorithm
for Summation

28

of the mean error involved in a single scaling p as:

rn—i m 2k_1

PaccWC = p 2 + (k)2k_m (3.4)
i=O k=lj = 2kl

where p.. (k) denotes the variable mean error arising from the prescaiings. The last

term contains a variable mean due to the fact that the prescaling increases with each

overflow. A relationship between this variable mean and the mean for one scaling can

be found by using the concept of multiple scaling [16]. If a variable is scaled k times

then the resulting mean error acc (k)) is:

which reduces to

k—i
gacc (k) = t8 2

i=O
(35)

= gs 2(1 - 2). (3.6)

Substituting this into eqn(3.4) and.determining the closed form expression yields:

accWC = I 9S
[2m+1_2_m+1], (3.7)

Using a similar analysis the worst case variance, cra2ccwc, due to a single scaling, cy, is

found to be

a2ccWC = ..i2(4.2m + 7_ 7.2—rn - 4.2-2m)
21

The mean square error is:

which becomes

(3.8)

MSE = ccWC + ccWC (3.9)

29

MSE = 2m+1 -)2 ± ..j21 2 (4.2m + 7 - 72' - 42"). (3.10)

3.3.2 THE TREE ADDITION ALGORITHM

The tree algorithm attempts to reduce the errors arising from the addition of a

large sum and a small data value by only adding numbers of the same magnitude. Fig.

3.3 shows the operation of the algorithm and the errors that can arise in this kind of

addition. From this figure, the roundoff error can be determined by:

M 2k-1

= Z 2-k+1
k=li=O

Therefore the mean error is:

rn
1-tree = Y, Y, 9s 27k+1 i=O

which simplifies o:

P-tree = 2m g..

By a similar analysis the variance is found to be:

'5?ree = 4 [1 -

The mean square error is:.

(3.11)

(3.12)

(3.13)

(3.14)

MSEtree = 4m2 P-2 + 4a [1 - 2_]. (3.15)

A graph comparing the normalized MSE (A = 1) of the two algorithms is shown

in fig. 3.4. The biased errors arise when up rounding or down rounding schemes are

used. These errors are said to be biased because of their non-zero mean error.

30

L C3,O

xo

x1

X2

2_i C3,1

2 e3,2

X3 2_i e3,3

X4

X5

. e3,6

X7

Y

Figure 3.3 Roundoff Error Generated in the Tree Algorithm
for Summation

90-

50-

30-

10—

.!- 10-,... =-:•

—30-

-50
1

Biased Acc.

Unbiased Acc.

-

- - .-. - -

- Biased Tree

-

 - Unbiased Tree

3.5 6 8.5 11

LOG(N)

Figure 3.4 Errors Associated with Block Floating Point Summations

32

Unbiased, or zero-mean, errors occur when magnitude truncation or random bit

addition are applied. Since the MSE in the tree algorithm does not grow as quickly as

in the accumulation algorithm, the tree algorithm was chosen to perform the required

summations.

3.4 MULTIPLICATION

In general, the multiplication of two 16 bit numbers results in a 32 bit number. In

FXP, this value must be reduced to 16 bits before proceeding to the next arithmetic

operation. This reduction can be accomplished by applying one of the rounding

procedures previously discussed. The error distributions that occur when the-various

rounding schemes are applied to the multiplication [5] are shown in fig. 3.5. Again it

is useful to evaluate these errors in terms of mean, mean square, and variance values

and these quantities are shown in table 3.2.

3.5 DIVISION

Division is performed by a software algorithm as there are no commercial chips

that are dedicated to performing division. The speed, accuracy, and ease of

implementation must be considered in selecting a suitable algorithm. As most

algorithms can be classified as subtraction and shift or as convergence type algorithms,

it is useful to examine an algorithm from each type to determine their various strengths

and weakness. A convergence type division algorithm based on the Taylor series

expansion of (1 - x) 1 was chosen.

33

Probability

Probability

Probability

2

a) Down Rounding

Probability.

2

212 0 Error

1• • • . . I
1 Error

b) Up Rounding

AA . AA

S •b

0
2
c) Magnitude Truncation

0

d) Random Bit Addition

Error

Figure 3.5 Round-off Errors in Multiplication

Error

34

Table 3.2 Errors Associated with Multiplication and Sequential Division

Scaling
Method

Mean

9

Variance
&

Mean
Square

Down

Rounding 2 12 3

Up

Rounding
0

A2

- 12
A2

12

Magnitude

Truncation
- 7

7 2

48 24

Random Bit

Addition 4 48 24

35

3.5.1 SEQUENTIAL SUBTRACT AND SHIFT DIVISION METHODS

This class of algorithms can be described as the pencil and paper method [17,18].

The operations involved in this technique are best shown by way of an example. The

division of 13 (the dividend) by 4 (the divisor) produces a quotient of 3 and

remainder of 1 as shown in fig. 3.6. This class of algorithms produce the most

accurate answer possible with FXP arithmetic and the roundoff error distributions are

identical to those of multiplication which were given in fig 3.5 and table 3.2. These

division algorithms are accurate but slow because they are sequential in nature

meaning that the current addition or subtraction cannot be performed until the results

of the previous operation are known. An examination of a very efficient subtract and

shift method known as the non-restoring algorithm gives an indication of the relative

speed of this type of division. From the flowchart, given in fig 3.7 [18], it can beseen

that it will require at least 5 cycles per quotient bit. Two 16 bit divisions (the

numerator in the Burg algorithm is complex) require close to 180 cycles to produce, the

result. This method could easily require 200 cycles when initialization and sign

correction steps are included to handle signed numbers.

3.5.2 CONVERGENCE DIVISION

It is possible to perform division by iterative multiplications when a hardware

multiplier is present [17]. One such method, the Newton-Raphson method, finds the

inverse of the denominator and then multiplies the inverse with the numerator to

perform the division. The iteration equation is

36

1101

0100

(13) Dividend

(4) Divisor

0 0 1 1 (3)Quotient

01 0 0 10 000 1 1 0 1

0100

0101

0100

0 0 0 1 (1) Remainder

Figure 3.6 An Example of the 'Paper and Pencil Method"

SET OVERFLOW
FLAG

EXIT

START

MOST
SIGNIFICANT

HALF OF DIVIDEND
MINUS DIVISOR

SHIFT

ADO DIVISOR
TO REMAINDER ADO

0, = I

SHIFT

SUBTRACT

Figure 3.7 The Flowchart for Nonrestoring Division

37

where

f (Xi)
xi+1=xi

f (xi)

f(x)='—B.

(3.16)

(3.17)

The root of eqn. (3.17) is x = 1/B, the reciprocal of the denominator B. Taking the

derivative of (3.17) and substituting into (3.16) yields:

x+1 =x1(2—B xi). (3.18)

• This algorithm converges quadratically [17] meaning that it will only take a few

iterations to produce the reciprocal provided there, is a good initial guess. Though this

approach possesses high speed there is a problem associated with the initial guess.

The authors of [17] indicate that the initial guess, x0, must fall in the range

o <x0 < 2/B to guarantee convergence of the algorithm. To obtain an accurate initial

guess a ROM look up table is needed, thereby requiring further hardware.

3.5.3 TAYLOR SERIES EXPANSION

The division algorithms examined have either been too time consuming or require

additional hardware. Thus an algorithm that is both fast and impleméntable will be

independently developed. The method generates the reciprocal 1/B by forming the

Taylor series expansion of (1 - x)-1. Expanding this function in a Taylor series yields

00

(1 — x) 1 = 1+ I x'
n=1

where

(3.19)

38

B=1- x. (3.20)

This algorithm converges for:

-1<x <1. (3.21)

Noting that the denominator in the Burg algorithm is always positive it may be

normalized so that:

implying that x falls within the range:

O<x

(3.22)

(3.23)

With a number system where the LSB is 2-15 it takes 15 terms in the series to

accurately form the inverse for the largest value of x, (x=1/2). The sum of all higher

order terms produces a value less than the LSB. Eqn(3.19) can be rewritten as:

15
(1-x)' l+ x'2.

n=1
(3.24)

Since x ≤ 1/2, the summation term of eqn(3.24) is always less than one and there is no

need to check for overflows, indicating that this algorithm could perform division at a

high speed and be easily implemented.

- The algorithm was written and found to require only 21 cycles to perform the

division, a vast improvement over the 200 cycles of the non-restoring algorithm. The

roundoff error in the algorithm has yet to be examined. The generated errors are

shown in fig. 3.8 The worst case error (CWC) can be determined to be:

x x

Figure 3.8 Roundoff Error in the Unmodified Taylor Series
used in Determining (1 -

x x x
€0 ,.- Ci

x
€14

40

14 i
- k

CWC 614_i x.
i=Ok=O

(3.26)

Expressing the mean error, i'.wc in terms of the mean error of a single multiplication

m' we have

14 i
gWC =

i=Ok=O

which reduces to

I.tm x 1—x 15
Pwc = 15 1—x 1—x 1—X

For the region 0 < x ≤ 1/2, this is a maximum when x = 1/2 giving:

Pwc = 301.tm - 2.tm(1 2-15)

or

(3.27)

(3.28)

(3.29)

LWC = 281.tm. (3.30)

A similar analysis yields a variance of

2 59 ,U 2
GWC - jm

where (Y,2, is the variance associated with a single multiplication.

The mean square error is

MSE 784 + .2.

(3.31)

(3.32)

Values are shown in table 3.3 for the various rounding schemes. The error in the

unmodified taylor series algorithm for division appear large when compared to the

41

error in sequential subtract and shift methods of division.

One way to reduce this error is to perform the summation in the following

manner:

(1 —x) 1 = 2[1/2 + x(1/2 ± x(1/2 + x(l/2 + x/2))]. (3.33)

This can be recursively expressed as:

d = 1/2+x d1_1 (3.34)

for i= 1... 14 and:

do = 1/2 + x/2. (3.35)

The initial division by two ensures that there will be no overflow during the

summation and a corresponding up scaling by two is required at the end of this

procedure. Though this form may appear cumbersome, it possesses an improved

roundoff behavior when compared to the previdus form. The errors due to the

multiplications and the initial scaling are shown in fig. 3.9. From this figure, the worst

case error can be determined as:

13

CWC = e x + e14 x14.
i =0

(3.36)

Again the maximum worst case mean and variance can be found by setting x = 1/2.

The mean value then becomes:

Pwc = 2J.m (1 - 2') + .Ls 2'

or

(3.37)

42

Figure 3.9 Roundoff Error in the Modified Taylor Series
used in Determining (1— x)-1

43

(3.38)

The variance was found to be

resulting in a MSE of:

aWC - 2 _ 4 2

MSE 4p., +

(3.39)

(3.40)

The mean, mean squared error, and the variance of the modified Taylor series

algorithm are shown in table 3.4. Though the last form of this algorithm requires a

slightly longer time (60 cycles) it still provides a reasonable compromise between

accuracy and speed.

3.6 OVERFLOW AND SCALING IN UPDATING THE PREDICTION ERRORS

Although overflow cannot be avoided in a number of stages in the Burg

algorithm, proper scaling of the input data could remove the possibility of overflow in

the lattice filter. This would speed up the software as the handling of overflows can be

ignored. The goal of scaling is to remove the possibility of overflow, while

maintaining the largest possible dynamic range for the input data. To do this the

structure of the lattice must be examined to determine conditions under which an

overflow might occur. The lattice update equations are:

(3.41)

and

44

Table 3.3 Errors in the Unmodified Taylor Series Algorithm for Division

Scaling
Method

Mean
Jt

Variance Mean
Square

Down

Rounding
—13A

11A 1521A2

16 9

Up 1 1A 1 1A
Rounding 4 9 9

Magnitude 13A 772 60685A2
Truncation

- 2 36 1296

Random Bit 13A 77A2 60685A2
Addition

- 8 36 1296

Table 3.4 Error Statistics for Modified Taylor Series Division

Scaling
Method

Mean

9

Variance
CF2

Mean
Square

Down A A2 1 1A

Rounding 2 9 9

Up 9 £
Rounding

0
9

Magnitude A 7A2
Truncation

- 2 36 9

Random Bit
A 7A 4A•

Addition
- 2 36 9

45

= + a7 (3.42)

From these equations, the worst case for overflows occurs when the magnitudes of

j-1,n , , aj,j are close to unity. A resulting output value of two is then

possible. It should be noted that the Burg algorithm attempts to minimize the error

functions and and therefore the only gain that can occur will happen

when are the actual data values. After the first update most of the

prediction error values are theoretically reduced and there should be no fear of

overflow. This indicates scaling the input data by 1/2 will remove the possibility of

overflow. In a strict sense,, this conclusion may not be valid if the input is not

primarily AR in nature. In that case it might be necessary to scale the input data by

more than two and incorporate overflow handling into the algorithm.

3.7 SUMMARY

The implications of BFP arithmetic have been examined in this chapter. A

summation scheme that reduce the effect of roundoff errors. A high speed division

scheme was developed that was fast and accurate. Scaling the input data by two

ensured that no overflows occur in the lattice structure when the data was AR in

'I

nature.

4&

CHAPTER 4

THE HARDWARE DESIGN OF THE PROCESSOR

4.0 INTRODUCTION

The Burg algorithm has been examined and found suitable for real time

implementation. In designing an architecture that would permit real time operation a

number of factors must be addressed. These factors include hardware type,

configuration and the number of components. The goal of this chapter is to present a

hardware design that will permit real time operation of the Burg algorithm.

4.1 HARDWARE TYPE

Two approaches can be taken when designing high speed digital signal processing

(DSP) processors. A microprocessor based implementation or a microprogrammable bit

slice system can be developed. A custom designed VLSI chip and the use of systolic

array processors are considered to be beyond the scope of this thesis [11].

4.1.1 MICROPROCESSORS

A number of specialized microprocessors that perform digital signal processing

operations are available. An example is the TMS32010 microprocessor [l9J which can

be described as state of the art in DSP microprocessors. This chip has an ALU,

multiplier, shifter, and internal memory, and operates at a clock period of 200ns.

While providing many desirable features, the TMS32010 has a number of

drawbacks symptomatic of all microprocessors. The preset instructions permit fast

software development but limit the overall performance. Though some pipelining has

47

been incorporated to speed up certain operations, most instructions only use one part

of the processor such as the ALU, while the other resources sit idle. This inefficient

use of resources decreases the overall speed of the system.

Reading and writing from external memory also cause problems. There are no

single cycle instructions that permit external memory to be loaded into the ALU. This

will decrease the operational speed as all of the computational resources are idle.

Though this is a specific problem related to the TMS32010 chip, it brings to light the

I/O bottleneck associated with most microprocessors. The I/O bottleneck means that

access to external data is slow, limiting the overall performance of the system.

Campbell [5] showed that one processor is not sufficient for real time operation of the

DSA and a multiprocessor approach would be needed. External memory that can be

accessed by all of the processors is essential to this configuration. The I/O problems

and the inefficient use of resources are two major drawbacks of microprocessors while

fast development time is the major advantage of such systems.

4.1.2 MICROPROGRAMMABLE SYSTEMS

Unlike a microprocessor, a bit-slice microprogrammable system does not have a

preset architecture or instruction set. This permits the designer to customize the

hardware and software to the task at hand. With no preset structure, the I/O can be

designed so that no bottlenecks exist. The great flexibility in designing the architecture

means that each component has its own set of control signals. The control signals

permit the use of parallel programming methods which efficiently use the resources.

48

All this power and flexibility makes the microprogram development difficult.

Each of the microprogrammable components is controlled through its own instructions.

The control unit must be capable of generating extremely long control words which

can easily exceed 100 bits whereas 16 bit instructions are used in the '.IMS32010.

Microprograms require a specialized development tool such as a meta-assembler [20]

that can systematically generate the very long control words. A downloading unit and

a control system. [7,21] must be developed to handle the long control words present.

The requirements for specialized program development tools and long control words

are some of the drawbacks of these systems.

The number of chips in a microprogrammable implementation can be large. The

flexibility of being able to determine the configuration means that many of the

interconnections that are made in silicon in a microprocessor have to be manually

connected by the designer, leading to longer development times.

In summary, most of the constraints of microprocessors are exhibited during run

time while their main advantages are very fast development times and relatively few

chips. Microprogrammable systems have faster run times while development time and

chip count are usually higher than microprocessors. In selecting a hardware type, the

main consideration in this thesis is operational speed. It was decided to use a

microprogrammable system' as it offered the best run time performance which is the

main consideration in this design. The excessively long development times are

shortened somewhat by the use of a meta-assembler, a downloading unit and a

generalized micro-sequencer.

49

4.2 MICROPROGRAMMING CONCEPTS

A microprogrammed bit-slice architecture was selected as the hardware in this

implementation. Microprogramming concepts are not commonplace and a brief

examination of these concepts is given here.

4.2.1 MICROPROGRAM CONTROL

In a microprogrammable system, control is generally achieved by using a

microprogram sequencer in conjunction with a microprogram memory and a pipeline

register. The task of the microsequencer is to output an address to the microprogram

memory (known as a control store (CS)) which in turn sends out control words to the

rest of the system including the sequencer. The typical sequencer, shown in fig. 4.1,

has several sources including a stack, a direct input, a program counter and a counter

from which it can generate the CS address. The proper address source is selected

depending on the instructions from the CS and a condition code (CC), that contains the

status of the controlled system.

The ordered structure of a CS separates the microprogrammed system from most

other control systems that use sequential logic techniques to implement control. The

instructions are simply and easily changed by changing the contents of the CS. This

high degree of flexibility is one advantage of microprogrammed systems. In the

development system built by Orbay [7], static high speed RAM and start-up EPROMS

were used to implement the CS.

The last element of the control unit, the pipeline register, provides a number of

services. The overall control system, shown in fig. 4.2, the registers are clocked and

50

CC Register

Direct Input

Counter

Program
Counter

T

Stack

Multiplexor

TO CS

Figure 4.1 The Typical Components of a Microsequencer

51

Condition Codes

Micm Sequencer

Control Store

V

Pipeline Registers

I I ' I

Target System

Figure 4.2 A Microprogram Control Unit
(For Simplicity the Clock Signals are not shown.)

52

provide a delay in the feedback loop, thereby removing any race conditions that might

exist between the sequencer and the CS. The pipeline register also isolates the

controller from the target system, thereby permitting the application of modular design

concepts.

4.2.2 THE BIT-SLICE CONCEPT

Bit-slice design can be described as a "building block" approach to designing

systems. The basic block is a slice of a computing element that is 4-bits wide. The

units can be cascaded together to form a larger element that meets the design

requirements. This approach gives the designer flexibility in selecting the appropriate

word length required. Consider the task of addressing 4K of memory which requires a

12 bit address. Cascading 3 bit-slice ALUs, each 4 bits wide, would meet the

addressing requirements. An extension of the bit-slice' concept, the byte slice, has an

8-bit wide slice as the fundamental building block. Byte slice components were used

extensively throughout the design of this processor.

4.2.3 PIPELINING AND PARALLEL PROGRAMMING.

In the discussion of the control unit two advantages of pipelining were discussed.

One advantage is the isolation of the control unit from the hardware processor thereby

permitting the control unit to operate with a certain degree of independence. The same

concept can be incorporated within the processor to increase throughput as shown in

the following example. Fig. 4.3a shows an processor with no intermediate pipeline

registers to hold the data that is passed between elements. As a result only one

operation can be performed at a given time and only one element can be functional at

53

Address
Generator

Memory
(read)

Multiply

Add

Memory
(write)

a) Unpiplined

\

/

Stage N

Address
Generator

Pipeline
Register

Memory
(read)

Pipeline
Register

Multiply

Pipeline
Register

Add

Pipeline
Register

Memory
(write)

b) Pipelined

Stage N

j

j
Stage N-i

> Stage N-2

11

Stage N-3

Stage N-4

Figure 4.3 An Example of Pipelined and Unpipelined Architectures

54

a given stage of the operation. The introduction of pipeline registers, shown in fig.

4.3b, permits the elements to operated independently of each other. Pipelining implies

that all of the processor elements are operating simultaneously.

To fully realize the advantage of pipelining, parallel programming techniques are

applied. One aspect, particular to parallel programming, is the concept of overlapping

instructions whiôh is illustrated in fig. 4.4. Once the pipeline has been filled all

resources are operating independently on part of the algorithm. The throughput of the

system is increased as results are generated every cycle rather than every ii cycle

where I is the number of operations performed on the data. Digital signal processing

algorithms are particularly amenable to parallel programming techniques because of the

repetitive nature involved.

4.3 COMPUTATIONAL REQUIREMENTS OF THE BURG ALGORITHM

By examining eqns (2.16 - 2.24), the arithmetic operations in the Burg algorithm

can be broken into the basic computational functions given below.

1) The complex multiply and add operation,

A=B+CD, (4.1)

where A, B, C, D are complex variables, is used extensively in the lattice filter

and the PEF coefficient computation. The only significant difference between the

PEF and lattice stages lies in their addressing requirements. The design of the

address generator is considered at a later stage.

55

Cycle 1 2. 3 4 5 6 7

Address
Generator IN 'N+1 'N+2 'N+3 'N+4 'N+5 'N+6

RAM
- IN 'N+l 'N+2 'N+3 'N+4 'N+5

Multiply -
- IN 'N+1 'N+Z 'N+3 'N+4

Add - -

- IN 'N+l 'N+2 'N+3

RAM -

- 'N 'N+l 'N+2

Loading Pipeline Fully Pipelined

Figure 4.4 The Overlapping of Instructions

56

2) A magnitude squared operation,

E = IA j2 lB 12, (4.2)

where E is a real variable occurs primarily in the formation of the denominator

and is used in the computation of the MMSE.

3) A general summation

A => B, (4.3)

represents a fundamental block because of the specialized hardware needed to

perform the address comparisons and the, data shifts that occur in any large

summation.

Division was not considered a basic function because it was performed using a

Taylor series expansion of (1 - xy' which is simply a combination of the three

basic functions described above.

4.4 OPERATIONAL ELEMENTS

A number of computing elements must be combined to perform the basic

functions of the Burg algorithm. These elements are listed below.

1) The Memory Unit stores the data. Random access memory (RAM) was used

for this application.

57

2) An Address Generator is required to access the data in memory. The design

of this unit is independent of the main processing unit and is handled later in the

chapter.

2) The importance of pipeline registers in the operation of the APU has already

been stated. As mentioned, they are extremely useful in permitting elements to

operate independently and improve throughput by permitting the overlapping of

instructions.

3) An arithmetic logic unit ALU, capable of performing addition, subtraction and

a number of logic operations, is an important element in a processing unit. In

addition to the basic arithmetic and logic functions, most ALU's also contain a

number of internal registers. These registers are essentially pipeline registers that

can be used as scratch pad memory to store values arising from intermediate

calculations. The result is a reduced usage of the I/O ports avoiding the

bottlenecks that would otherwise arise.

5) Shifters must be present to scale the data because the threat of overflow exists

in a number of operations performed by the Burg algorithm. They are also

essential when floating point notation is used to represent a number. This situation

arises in the division stage of the algorithm and is discussed in chapter 5 One of

the drawbacks of a bit slice implementation is that a barrel shifter capable of

performing multiple shifts in a single operation, is not cascadable and cannot be

included in a bit slice ALU.

S8

6) A Multiplier is required in all the basic operations in the Burg algorithm

except the summation. A hardware multiplier chip must be used to meet the

requirement of real time operation.

7) In a multi-bus configuration, multiplexers should be used on the inputs of the

multiplier to permit quick access to multiple sources of data. This is useful when

forming the, square of a number as both inputs of the multiplier come from the

same source as opposed to a standard multiplication where the numbers come

from different sources.

4.5 COMPONENT TECHNOLOGY

A number of microprogrammable components are commercially available. One

company, Advanced Micro Devices (AIvID) [18], has a full set of bit and byte-sliced

microprogrammable chips. They have introduced one family of chips, the 29500 series,

that is ideally suited to signal processing applications. These chips are fabricated using

ECL technology for speed and TIL technology for external interfacing. Combining

this fabrication process with a highly pipelined internal architecture has produced a set

of chips that operate at a fast clock rate and have a high data throughput.

The AM29501 is a byte-slice ALU. In addition to the ALU, this chip contains 6

scratch pad registers, 2 unidirectional data ports (one input and one output) and a

bidirebtional data port. The multiplier chip, the AM29517, is a high speed 16 bit

multiplier. The internal pipelining of this chip permits it to output a product every

clock cycle. AMID also provides a number of support chips such as shifters, bus

59

drivers and high speed memory.

4.5.1 WORDLENGTH

A number of factors must be considered when determining a wordlength for the

processor, The wordlength should be large enough to accurately represent the final

answer without significant roundoff error. As the the wordlength grows, the number of

byte slice components must also grow. .A good compromise between hardware

complexity and numerical accuracy is a 16 bit wordlength. This wordlength should be

able to represent the input data which is acquired via an 8 to 12 bit A/D and the

number of hardware components is not excessive.

4.6 COMPONENT QUANTITY

In any design there exists a trade-off between high speed operation and system

complexity. In order to optimize this trade-off, the tasks that the processor has to

perform must be known. Eqns (4.1-4.3) showed the basic functional blocks required

to perform the Burg algorithm. The most significant block is:

A=B+CD (4.1)

The hardware design should proceed with this function in mind. Expanding eqn(4.l)

into real and imaginary parts yields the following expressions:

ARE = BRE + GRE ' DRE - CIM DIM

AIM = BIM + CIM DRE + GRE DIM

(4.4),

(4.5)

where RE represents a real component and IM represents an imaginary component.

Assuming that the scratch pads registers hold all the ,intermediate values, there are

8 I/O operations. Four addition/subtraction operations along with 4 multiplications

must be performed on the data by the arithmetic processing unit (APU). With only

one data bus, one ALU, and a multiplier operating in parallel the computation takes 8

cycles with the limiting resource with the I/O data busses. The number of resources

can be increased to improve speed. The decrease in the number of cycles required to

perform eqn(4. 1) as the number of hardware components is increased is detailed in

table 4.1.

In performing this analysis it must be kept in mind that some combinations of

resources do not result in any real savings in time. An example of this is the 2 bus, 1

ALU, 1 multiplier (2-1-1) configuration. Here the two data busses are loading one

ALU. Even though it will only take the two data busses 4 cycles to load the necessary

information, it will still take the ALU 8 cycles to read the data because it only has one

I/O port which communicates with the busses. The additional bus only becomes

effective when a second ALU is added. The possibility exists that one I/O bus can be

attached to the multiplier. However if a data value is to be used more than once, it

must be held in a scratch pad register which is located in the ALU chip. This implies

that values read into the multiplier would still have to be read into the ALU defeating

any gain in speed that was achieved by connecting the bus to the multiplier.

4.6.1 THE 2-2-1 CONFIGURATION

A configuration containing 2 data busses, 2 ALUs and one multiplier appears to

offer the best trade-off between speed and complexity in the design of this proto-type

61

Table 4.1 The Effect of Increasing the Components

Components
I/O Data Busses ALU Multiplier

cycles # cycles # cycles
1 8 1 4 1 4
2 4 1 4 1 4
2 4 2 2 1 4
2 4 2 2 2 2
4 2 2 2 2 2
4 2 4 1 2 2
4 2 4 1 4 1
8 1 4 1 4 1

62

processor [18]. The twofold increase in speed that would be gained by using a 4-4-2

does not justify the fourfold increase in hardware. A 2-2-2 configuration appeared to

offer an increase in speed with only moderate increase in hardware. Upon closer

examination, it was found that the additional multiplier could not be utilized efficiently

because of insufficient ALU resources and the apparent gains in speed were not

realized. Two data busses and two ALUs seem to be the natural form for an APU that

deals with complex numbers because these numbers are comprised of two components,

a real and imaginary part. Separating the busses and ALUs into two units, one for the

real and imaginary components allows the interconnections between busses and ALUs

to be minimized. The real and imaginary ALUs and busses can operate independently

with no need for direct interconnections.

Placing the shifters between the data busses and the ALUs permits the data to be

shifted without disturbing the normal flow of the data. The multiplier can be connected

through multiplexers to the ALUs and does not need to be connected to the data

busses as the ALUs can supply the multiplier with input data and receive its output.

This setup reduces the complexity by removing connections between the multiplier and

data bus that might be otherwise be needed. The overall organization of the APU is

shown in fig. 4.5.

4.6.2 HARDWARE ROUNDING

Fig. 4.5 includes a rounding control block that has not been discussed. Roundoff

errors exist after every multiplication. If unattended,, these errors can grow and cause

the numerator to become greater than the denominator which results in a reflection

63

BYPASS
BUFFERS

REAL DATA BUS

SHIFTERS

Am 29501
REAL ALU

Am 29501
REAL ALU

IMAGINARY
DATA BUS

SHIFTERS

JAm 29501
IMAGINARY

ALU

Am 29501
IMAGINARY

ALU

L

X MULTIPLEXOR Y MULTIPLEXOR

ROUNDING
CONTROL

MULTIPLIER

Figure 4.5 A Block Diagram of the APU Hardware

64

coefficient, ajj, greater than the theoretical maximum. Thus the Burg algorithm has

become unstable due to roundoff error. This situation arises when most of the

numerator products are negative. Ignoring the lower 16 bits of the multiplier output

can viewed as subtracting a positive quantity from the multiplier product. When the

product is negative this subtraction increases the magnitude of the number and it is

then possible for a sum of negative numbers to increase while a sum of positive

numbers is decreased relative to their respective theoretical values. To alleviate this

problem magnitude truncation for the numerator and up rounding for the denominator

are applied. A hardware rounding unit is used to speed up the rounding involved in

each multiplication. This unit precalculates the value of the rounding bit by examining

the sign bits of the multiplicands. The relationship between the input' sign bits and

the rounding bit needed for magnitude truncation is an Exclusive OR operation with

the result being added to the LSB. In view of this, the hardware consists of an

Exclusive OR chip with associated peripheral and a control line that, when asserted,

would override the magnitude truncation scheme and insert an uprounding bit.

4.7 ADDRESSING REQUIREMENTS

The addressing in the Burg algorithm is generally quite simple. The updating of

the prediction errors simply requires a pair of counters capable of down-counting.

However, the tree algorithm produces a complicated set of addressing requirements

that a simple counter cannot fulfill due to the shifting involved. The need to be able

to re-address memory in the event of an overflow means that the selected addressing

device should have internal memory to store previous values. In light of these

65

requirements what is needed is a device that can add, subtract, shift, and store values.

The solution can be provided by an ALU, such as the AM2901 which is a

microprogrammable bit-slice ALU. It performs most standard ALU functions, and

contains 16 internal registers, 3 external ports and shifting capability.. The size of the

data memory to be accessed must be known before the number of AM29Ols can be

determined. AR modeling is normally applied to short data records and it is felt that

2K of RAM for both the real and imaginary data blocks would be sufficient. This

requires 11 bits of addressing, meaning that 3 AM29Ols must be used for the

addressing. One problem with these chips is that the output port comes directly from

the ALU part of the chip. The timing for the complex addressing sequences becomes

rather difficult if the output of the ALU is tied directly to the data RAM. Feeding the

ALU output into a two sets of specialized pipeline registers (AM2952Os), which

contain their own set of internal registers from which the RAM address can be

selected, , provides an excellent solution to the problem and also permits independent

addressing of the two data blocks. Fig. 4.6 shows the block diagram of the address

generator and the memory unit. A comparator is incorporated to provide the high

speed address comparisons that are required in some parts of the Burg algorithm.

4.8 EXTERNAL INTERFACING

The final task in the processor design is to provide an external interface unit to

permit the APU to communicate to devices such as AIDs and D/As, other processors,

and other systems. Each of these applications has its own set of interface requirements

meaning that the interface unit must be flexible enough to handle the various

66

Address Unit

COMPARATOR
REGISTER

COMPARATOR

Am29OI Am29OI Am29OI

PIPELINE
• REGISTER

Data Memory
BIDIRECTIONAL

BUFFERS

10 APU {
REAL
RAM

PIPELINE
REGISTER

I

IMAGINARY
RAM

BUS
TRANSCEIVERS

V

BUS
TRANSCEIVERS

 V /

TO EXTERNAL DATA BUS

Figure 4.6 The Block Diagram of the Addressing Unit

67

requirements.

The interface is composed of two bus transceivers that consist of an input and

output data register and a flip-flop associated with each register. The flip-flops are

used to provide the handshaking between the APU and the external device. When a

device loads a register with data, it sets that register's flip-flop indicating the data is

ready. When the receiving device reads the data, it clears the flip-flop, thereby telling

the sending device that the buffer is empty. This system is implemented with

AM295Os which are transceivers with 8 bit registers and an associated flip-flop.

4.9 SUMMARY

A design of a microprogrammable architecture capable of running in real time has

been presented. A number of microprogramming concepts have been reviewed and a

family of microprogrammable chips described. The overall architecture, given in fig.

4.7, contains two data busses; two ALUs, a multiplier, address generator, I/O ports,

RAM and a number of support chips.

68

EXTERNAL
DATA BUS

BUS DATA
TRANCEIVERS MEMORY

REGISTERS '

-

R REAL

REAL ALU

IMAG.

4

by

SHIFTERS AND
SUFFERS

REAL

IMAG.

MEMORY
ADDRESS
GENERATOR

MIcROSEQUENCER
Cc)NTROLLER

MULTIPLEXORS

IMAGINARY
ALU

MULTIPLIER

Figure 4.7 A Schematic of the Overall Configuration

69

CHAPTER 5

MICROPROGRAMMABLE IMPLEMENTATION

OF THE. BURG ALGORITHM

5.0 INTRODUCTION

Having proposed a hardware configuration capable of meeting the requirements of

the Burg algorithm, the next task is to develop the microprogram code for the Burg

algorithm. A modular approach is taken in developing the microcode for this

algorithm. To demonstrate possible real time operation, the theoretical run time of the

Burg algorithm must be determined. This involves determining the maximum clock

rate of the hardware and the time required to perform the arithmetic operations in the

Burg algorithm.

5.1 PARTITIONING OF THE BURG ALGORITHM

To reduce the programming complexity, the Burg algorithm can be separated into

several subsections which can be independently developed, tested and implemented.

This approach might lead to a slightly slower implementation of the Burg algorithm

because the initialization stages within each module might not make the best use of the

resources available. However, this small decrease in speed is compensated by the large

decrease in development time.

Examining eqns (2.16-2.24) shows that the algorithm can be separated into the

following stages:

- formation of the denominator,

- formation of the numerator,

7a

- division and computation of the reflection coefficient and computation of

the MMSE,

- updating the prediction errors,

- computing the prediction error filter coefficients.

In this chapter the microcode required for the implementation of each stage will be

discussed.

5.2 FORMATION OF THE DENOMINATOR

Expanding the denominator (eqn(2. 19)) into real and imaginary components

yields:

N-i
D = [(e,. (1))2 + (bre (i _1))2 ± (eim (i))2 + (bin (1 _l))21.

i =p
(5.1)

Initially, the errors are the actual data points, e (ii), b (n) = x (n). In the

implementation eqn(5.1) is broken into two smaller pieces, a squaring section followed

a tree summation stage. The resulting summation was then normalized.

The squaring section formed partial sums are, a in the real and imaginary

ALUs respectively. These sums consisted of 4 values that had been squared

are (1) = (ere (1))2 + (ere (i—i))2 + (bre (1 1)) + (bre (i-2))2

aim (1) = (e (i))2 +

(5.2)

_i))2 + (bin (i1))2 + (him (i2))2 (5.3)

where i = N—i p and j = 0 mt ((N— p)/2).

71

As the input data is scaled by 1/2, no overflow will occur in this stage as the

squared values are less than 1/4. The fact that this stage forms partial sums means

that it reduces the overall time taken to perform the tree addition by a factor of two.

Up rounding was used when performing the multiplications in this stage. The pseudo

code for this operation is shown in fig. 5.1. The fully pipelined microcode, given in

fig. 5.2, shows the operation of each element of the APU during the different cycles. It

should be noted that the intermediate values, t ,u ,v ,w ,c ,d, are stored in scratch pad

memory. The addressing and control aspects of the microprogram are not shown in

this figure but can be found in an internal departmental report [22].

5.3 THE TREE ALGORITHM

It was shown in chapter 3 that the tree addition algorithm produces an accurate

fixed point summation. The pseudo code for this algorithm is shown in fig. 5.3. The

tree algorithm is basically sequential and the microcode is equivalent to the pseudo-

code.

This algorithm incorporates two interesting techniques to handle the addressing

and overflows. By using an additional index counter and a comparator, it 'avoids the

need to balance the tree and thereby reduces the run time of the summation. The use

of the comparator provides single cycle address comparisons and reduce the time taken

to perform the tree addition by about 25%. Overflows must also be considered in any

addition scheme. Campbell [5] used a tree algorithm that simply scaled every result

and thereby avoided the overflow problem. This approach removes the overflow

problem at the cost of reduced accuracy. The loss of precision results when there are

72

DENOMINATOR

begin

count = N - 1 - order; (* SET UP COUNTER, ADDRESS POINTER *)
tree—count = -1; (* AND TREE POINTER *)
addr = N - 1;

while(Count != 0)
begin

resum = sqr(re_ep[addr]) + sqr(redel[addr-1]); (* HALF OF EQN 5.2 *)
imsum = sqr(im_ep[addr]) + sqr(im_del[addr-1]); (* HALF OF EQN 5.3)

count = count - 1; (* DECREMENT POINTERS *)
addr = addr - 1;

if(count != 0) then
begin

re_sum = sqr(re_ep[addr]) + sqr(re_del[addr]) + re—sum; (* REST OF EQN 5.2 *)
im_sum = sqr(im_ep[addr]) + sqr(im_del[addr]) + im_sum; (* REST OF EQN 5.3 ')

tree—count = tree—count + 1; (* PREPARE FOR TREE ADDITION *)
re_tree_data[tree _ count] = re_sum;
im_tree_data[tree_count] = fin_sum;

count = count - 1; (* DECREMENT POINTERS *)
addr = addr -1;

end
else
begin

tree—count = tree—count + 1; (* PREPARE FOR TREE ADDITION *)
re_tree_data[tree_count] = re—sum;
im_tree_data[tree—count I = im_sum;

end
end

return()
end

Figure 5.1 Pseudo Code for the Denominator

73

Busses Real Imaginary Multiplier

Real Imag ALU ALU XY

read e, are (11) = dre + Wre Wj = b' -b' bim

read b 1 bL 1 ajm(j—i) = d,,, + W re tre = eere

write are (f—i) a(j-1) tim =

read e 1 e 1 Ure = b 1b 1 re

read b/ 2 bf, 2 Crc tre + Ure Ujrn =

Cim = ta,, + Uim v,. = ere Tre

dre Crc + Vre Vim = Cim 'aim

di. = Cjrn + vim Wre = bre 2b 2

Figure 5.2 The Resource Usage in the Fully Pipelined Denominator Stage

74

TREE ADDITION

begin

tree—Shift = 0;

while (tree—count > 0)
begin
i = 0;
j = 0;

(* INITIALIZE COUNTER *)

while(i < tree—count)
begin
re_sum[j] = re_lree_data[i] + re_tree_data[i+1]; (* PERFORM ADDITIONS *)
im_sum[j] = im_tree_data[i] + im_tree_data[i+1];

if(overflow == TRUE) (* IF OVERFLOW OCCURS *)
begin
tree shift = tree shift + 1; (* INCREMENT OVERFLOW COUNTER *)

stage2 = j; (* SAVE LOCATION OF OVERFLOW *)

while (i < tree_count)
begin
re_sumUj re_tree_data[i]/2 + re_tree_data[i+1]/2; (* ADD WITH A SCALING BY 1/2
im_sum[j] = im_tree_clata[i]/2 + im_time_data[i+1]/2;

i = i + 2;

j = j + 1;

if(i == tree—count)
begin

re_sum[j] = re_tree_data[i]/2; (* HANDLE THE POSSIBILITY OF AN ODD *Y
im_sumlj] = imtimedata[i]/2; (* NUMBER OF DATA POINTS *)

end
end

tree_count = j - 1
i = 0;

j = 0;

begin (* SECOND PASS AFTER OVERFLOW *)

re_sum{j] = re_tree_data[i]/2 + re_tree_data[i+1]/2;
im_sum[j] = im_tree_data[i]/2 + im_tree_data[i+1]/2;

i = i + 2;

j = j + 1;

if(i> stage2)
begin

resumfj-1} retreedata[i-2]/2;
imsum[j-1] = imtreedata[i-2]/2; i = sumo-1]

75

end
end
j = j -1; (* PREPARE TO RE-ENTER MAIN TREE ADDITION ALGORITHM *)

end

if(i == tree_count)

begin
re_sum[j] = retreedata[i];
im_sumlj] = im_tree_data[i];

end
end
tree—count = j - 1;

end
returnO;

end

Figure 5.3 Pseudo Code for Tree Summation

76

stages in the tree algorithm where no overflows occur but scaling is performed. -

To retain the maximum accuracy, an algorithm was developed that only shifted

the data after an overflow occurred. The algorithm checked the overflow flag after

every addition. When an overflow occurred, the addition causing the overflow was

repeated after its input values were scaled by 1/2. For all the remaining additions in

current stage of the tree algorithm the input data was scaled by 1/2 before being

added. This ensures that no further overflows will occur in that stage. Instead of

repeating the additions that were performed prior to the overflow, the algorithm

proceeded to the next stage of the tree and performs the necessary scaling during that

stage. The operation of the algorithm is shown in fig. 5.4. A shift counter is

incremented to keep track of the number of overflows. When rounding after an

overflow has occurred, up rounding was used in the denominator and magnitude

truncation was used in the numerator to ensure stability.

After the summation is completed the values are stored in a floating point format.

That is:

Zxj = r 21 (5.4)

where 1 > r ≥ 1/2 and n is the shift count related to the number of overflows that

occurred during the summations.

5.4 COMPUTATION OF THE NUMERATOR

The numerator is described by:

77

2 1

2'

2'

2'

2' >

All values after overflow
are shifted before addition

Overflow Occurs Here

All additions before overflow
are shifted when read in for
next addition

Figure 5.4 Operation of the Tree Algorithm when
an Overflow Occurs.

78

N—i

N = • ere . bre (i1) + ej,,2(i) b(i —i)
a =p

+ ere (i) b,,1 (i —1) - e (i) bre (i —1) ii

(5.5)

As with the denominator implementation, this stage was broken into two stages,

conjugate multiplication and tree addition. The equations for the partial sums involved

in the conjugate multiplication stage are:

are (j) = e, (j) 're (j1) + e,. (i1) b,. (i 2) (5.6)

+ eim (i) b (i—i) + e,,, (i —1) b,,1 (i —2)

ai?n (j) = ere (i)bbn —1) + e(i —i) b,,2(i2) (5.7)

- ehn (i) bre (i1) - e,,a (i1)) b,. (i 2)

where i = N—i p and j = 0 int((N— p)/2).

The basic programming differences in the numerator and denominator calculations

are that the numerator required conjugate multiplication and employed magnitude

truncation whereas the denominatOr performed squaring and up rounding was used.

The pseudo-code for this stage is shown in fig. 5.5 with the microcode in fig. 5.6.

5.5 DETERMINATION OF THE REFLECTION COEFFICIENT AND THE

MMSE

Having formed the denominator and numerator, the reflection coefficient can be

found which involves a division of the form

—2 N 2nsh1ft

aii = D1 2dshif:

Simplifying yields:

(5.8)

79

NUMERATOR

begin

count = N - 1 - order; (* SET UP NECESSARY POINTERS *)
tree_count
addr = N - 1;

while(count != 0)
begin
re sum = re_ep[addr]*re del[addr-1] + im_ep[addr]*imciel[addr1];

(*HALF OF EQN 56 *)
mi_sum = re, _ep[addr]*im_de1[addr1] - re_ep[addr]*im_del[addr_1];

(* HALF OF EQN 57

count = count - 1; (* DECREMENT POINTERS *)
addr = addr - 1;

if(count != O)
begin
re—sum = re_ep(addr)*re_del[addr.1] + im_ep[addr]*im_del[addr1]

+ re—sum; (* REST OF EQN 5.6 '*)
im_sum = re ep[addr]*im del[addr-1] - re_ep[addr]*im_del[addr_1]

+ im_sum; (* REST OF EQN 5.7)

count = count - 1; (* DECREMENT POINTERS *)
addr=addr - 1;

tree—count = tree—count + 1; (* PREPARE FOR TREE SUMMATION *)
re_iree_data[tree _ count] = re_sum;
im_Iree_datat tree_count] im_sum;

end
else
begin

tree—count = tree—count + 1; (* PREPARE FOR TREE SUMMATION *)
re_tteedata[tree _ count] = re_sum;
im_tree_data[tree_count] = im_sum;

end
end

return()
end

Figure 5.5 Pseudo Code for the Nutherator Stage

80

Busses Real Imaginary Multiplier

Real Imag ALU ALU X Y

read e,1,, b 1 dim = w,,,, + v111, w,. = e1 1b/,,,

read b' d,. = V,. + W,.4, aim (j-1) = di,,, + Cim tj,,,= ebj,,,. 1

a,.4,(j—l) = (!,. + Cre tr,.= re rq

write a,.4, (j-1) aim(j-1) Uim = bre 'e/m

read e,!;1 b/;2 Cj = Uim tim Ure = elm bf,'

read b 2 e/, 1 c,.4, = u,., + i,.4, vi,,, =

- i-1ji-2
,.4, v,.4,.e ,.

- i-2. i—i
- , w,, Im

Figure 5.6 The Resource Usage in the Fully Pipeined Numerator Stage

81

a•• = - .. LL2—(dshift - nshift - 1)
Di

(5.9)

where 1 > N , and Di ≥ 1/2. The scaling factors for the numerator and denominator

are nshift and dshift respectively.

The Taylor series expansion method discussed in chapter 3 was used to perform

the division. A simple shifting program was written to evaluate the difference in the

scaling factors. Magnitude truncation was used in performing this part of algorithm.

This algorithm was essentially sequential in nature and the microprogram effectively

follows the pseudo-code, shown in fig. 5.7.

The MMSE of order j was calculated using

MMSEJ = (1 - (a/A)2 - (a&)2) . MMSEJ_1 (5.8)

It was a relatively straightforward task to perform this operation and the corresponding

pseudo code is given in fig. 5.8.

5.6 UPDATING THE PREDICTION ERRORS

The lattice structure shown in fig. 2.6 is used by the Burg algorithm to update the

prediction errors. This structure is described by the following equations:

ere (i) = ere (i) + a/A b (i—i) - a1 bim (i—i) (5.10)

(i)eiln = ejm (i' + a33 b (i—i) + a/, bre (i1) (5.11) / re im

bre (i) = bre (i4) + a33 e (i) + a/, . eim (5.12) re ye '

bj,,2(i) = bim (11) + e• (i) - a/,j ere(i) (5.13) re in

Implementation of these equations is straightforward as no overflow problem will be

82

DIVISION

begin
x = 1 - denom;
z = 1/2 + x12;

x = 1 - B *)
(* EQN 3.35 *)

for (k=O ; k< 14; ++k)
z = 1/2 + x*z; (* EQN 3.34 *)

shift_adj = dshift - nshift - 1;

for (i = shift_adj; I >= 0; —1)
z z/2; (* ADJUST FOR SHIFT DWF1RENCES *)

returnO;
end

Figure 5.7 Pseudo Code for Taylor Series Division

MMSE CALCULATION

begin

mmse = mmse*(1 - re_aii*re_aii - im_aii*im_ail); (* EQN 5.8 *)

returnO;
end

Figure 5.8 Pseudo Code for MMSE Computation

83

encountered due to the prescaling of the data. Starting at the end of the data (i.e.

i = N - 1) and working towards the start of the data (i = p) permits the errors to be

updated in place. The pseudo code for the lattice filter is shown in fig. 5.9 and the

microcode is shown in fig. 5.10.

5.7 DETERMINATION OF THE PREDICTION ERROR FILTER

COEFFICIENTS

Computation of the PEF coefficients is done by using the following equations:

= + a/si a/ 1'J 1 + a/,,J . a/ 1'11 (5.14)

abi = aj/ 1 + a/J a1 1'1 ' - a/,f (5.15)

In order to reduce the number of I/O operations and to perform the computations in

place, the computation of the real and imaginary components of a1,1 and a...1,1 were

performed simultaiieously via the Levinson butterfly. The relationship between these

two terms is shown in fig: 5.11. Examining this figure indicates that the computation

of the PEF will be similar to the calculation involved in the lattice structure. The

differences lie in the addressing and the fact that an overflow can occur. A block

floating format of number representation is used in this part of the Burg algorithm to

accommodate overflows. The pseudo code for, the PEF is given in fig. 5.12 and the

microcode is given in fig. 5.13.

5.8 RUN TIME EQUATIONS

Having proposed a possible implementation, the next task is to theoretically

determine the maximum speed attainable with this architecture. The task can be

84

LATTICE

begin

count = N - 1 - order;
addr = N - 1;

while(count >= 0)
begin -

re_eptemp = re ep[addr] + re_aii*re_de1[addr1] - imaii*imde1[addr1];
(* EQN 5.10 *)

im_eptemp = im_ep[addr] + re_aii*im_de1[addr1] + im_aii*re_de1[addr1];
(* EQN 5.11 *)

redel[addr] = re_del[addr-1] + re_aii*re_ep[addr] + im_aii*im_ep[addr];
(* EQN 5.12 *)

im_del[addr] = im_del[addr-1] + re_aii*im_ep[addr] - im_aii*re ep[addr];
(* EQN 5.13 *) -

re_ep[addr] = re_eptemp;
imep[addr] = imeptemp;

count = count - 1;
addr = addr - 1;

end
retum()

end

Figure 5.9 Pseudo Code for Updating the Predictions Errors

S5

Busses Real Imaginary Multiplier

Real Imag ALU ALU XY

read dim = b/, 2 - vi. w, = a/e/,'

read b 1 b/ 1 b = d, + Vre wim = a,,' e/, 1

read e7 elm b 2 = d + w tim = a, •bf;1

write b 2 b' 2 = ajl• inn

c1,,, = e/, + t, uj,,, = a/-b;'

c,., = e, - tre elm = Cim + Uim u = a, re

= Cr, + i4, Vre = a e

write e, e/, dim = b/,,, + Vre vi. = a/ e

Figure 5.10 The Resource Usage in the Fully Pipelined Lattice Stage

86

*

aij

Figure 5.11 The Schematic Representation of the Levinson Butterfly

87

PEF

begin

i - order/2;
if(i==O)returnO;
j = order -

while (i> 0)
begin

re_tempi = re_aij [i] + re_aii*re_aij[j] + im_aii*im_aij[j]; (* EQN 5.14 *)

im_tempi im_aij[i] + re_aii*im_aij[jj + im_aii*re_ajj[j]; (* EQN 5.15 *)
re_tempj = re_aij[j} + re_aii*re_aij[ij + im_aii*im_aij[i];

(* EQN 5.14 for j-i coefficient *)
im_tempj = im_aij{j] + re_aii*im aij[i] - jmajj*reaij[i];

(* EQN 5.15 for j-i coefficient *)

if(overflow == TRUE)
begin

pef shift = pef shift + 1; (* INCREMENT OVERFLOW COUNTER *)

for(k = 1; k < i ; ++k) (* SCALE DOWN ALL PREVIOUSLY COMPUTED COEFFICIENTS *)
begin
re_aij[k] = re_aij[k]/2;

imaij[k] = im_aij[k]I2;
reaij[order - k] = re aij[order -
im_aij [order - k] = im aij[order -

end

while (i > 0)

(* FOR ALL REMAINING COEFFICIENTS COMPUTE WITH S= OF 1/2 *)

begin
retempi = re_aij[i]/2 + re_ali*re_aij1j]/2 + im aii*imaij[j}/2; (* EQN 5.14 *)
im_tempi = im_aij[i]/2 + re_aii*im_aij[j]/2 + iin_aii*re_aij[j}/2; (* EQN 5.15 *)
re_tempj = re_aijlj]/2 + re_aii*re_aij[i]/2 + im_ali*im_aij[i]/2; (* EQN 5.14 *)
im_tempj = im_aij]/2 + re_aii*im_aij[i]/2 - im aii*re aij[i]/2; (* EQN 5.15 *)

re_aij[i] = re_tempi;
im_aij [i] = im_tempi;
re_aij[j] = re—tempi;
im_áij[j] = imtempj;
i = i - 1;
j = order - i;

end
end

(* TRANSFER VALUES INTO COEFFICIENT ARRAY *)

re_aij{i] = re—tempi; (* TRANSFER VALUE INTO COEFFICIENT ARRAY *)
im_aij[i} = im_tempi;
re_aij[j] = re—tempi;

88

im_aij[j] = im_tempj;
end

for(i = 1; i = pef_shift; +-i-i)
(* SCALE REFLECTION COEFFICIENT BY CORRECT AMOUNT *)

begin
reaii = re_aii/2
im_aii = im_aii/2

end

reaij [order] = re—au;
im_aij[order] = im_aii;

return()
end

Figure 5.12 Pseudo Code for PEP Coefficients

8,

Busses Real Imaginary Multiplier

Real Imag ALU ALU XY

read a/7 a/, dre = Vp. + W Wj = a/, 14

read. a,, dre = lire - Wre tim =

a11 = + d• c re tin a11 = a11 • d• tin tin tin t = a1 a1 re tin tin

u• = a1_ att tin tin re

write a 1 a, 1 Cim = Up1 - tjppj Ur. = a/,- a,

write /7 1 a re a/' 1 Crc = U • + tre Vre =

- i. ii
tin - re tin

ai.I - 1_1_
- a c I - i_i- .

- a - i. ii
Wre - a1 a

Figure 5 13 The Resource Usage in the Fully Pipelined PEF Stage

90

broken into two areas, determining the clock speed and finding out how many clock

cycles are required for each stage of the algorithm.

5.8.1 DETERMINATION OF THE CRITICAL PATH

The maximum operating clock speed is governed by the propagation delay in any

given data or control path. The path that has the most propagation delay is known as

the critical path. Fig. 5.14. shows the two candidates for the critical path in' this

hardware. The timing analysis, shown in table 5.1, indicates, that the data path is the

critical path and that 138 ns are required for the data to be written to the RAM. This

means the clock speed is limited to 7.25 MHz.

5.8.2 RUN TIME OF THE BURG ALGORITHM

The run time equation of the Burg algorithm can be found so that the operational

speed can be determined. This analysis is performed by determining the critical

resource for each stage and the number of cycles needed for that resource to complete

the operation. Each stage of the Burg algorithm consists of three basic parts when it

comes to determining the run time. In each subroutine there is an initialization phase

where parameters used in that stage are set. As the pipeline takes one sequence of

instructions to load and another to unload, the first and last instructions take additional

cycles as they are not fully pipelined. Finally there is the fully pipelined stage of the

instruction.

Table 5.2 shows the cycles taken to perform the above stages for each subroutine.

It should be noted that most subroutines do not have a fixed cycle time. For example

there are two main paths in the tree algorithm and which path is chosen depends on

91

Pipeline Register

ALU

Bypass Buffers

Bidirectional Buffer

'V

RAM

a) Data Path

Pipeline Register

CC Multiplexor

Sequencer

Control Store

b) Control Path

Figure 5.14 The-Control and Data Paths.

92

Table 5.1 Timing Analysis of the Control and Data Paths

Path Device Action Component Time

Control Path

Pipeline cik to output 74LS374 20 ns

CC multiplexor select to output 74157 25 ns

Sequencer CC to output Am291O 30 ns

CS Addr. to output Am9 150 25 ns

Total 100 ns

Data a th

Pipeline cik to output 74LS374. 20 ns

ALU Register to output Am29501 21 ns

Bypass Buffer OE to output 74LS241 25 ns

Bidirectional Buffer input to output 74LS241 12 ns

Ram Write Pulse Am9 128 60 ns

Total 138 ns

93

Table 5.2: The Run Times of the Various Stages of the Burg Algorithm

Function

DENOMINATOR

Twt

6p

T

lip 4Np - 2p2 - lOp

NUMERATOR 8p 12p 4Np - 2p2 _ 2p2 - lOp

LATTICE 5p 24p 8Np - 4p2 - 2Op

TREE ADDITION (Denominator)

min

max

4p

4p

7np/2+3NpI2-3p2I2

21npI2+7Np/2-7p2I2

TREE ADDITION (Numerator)

min

max

4p

4p

7mp/2 + 3Np/2 - 3p2/2

21np/2+9Np/2-9p2I2

PEP

min

max

6p

6p

14p

14p

2p2-8p

3p2

MISC. (Divisions normalizations,
MMSE, initializations, etc.)

min

max

23 +128p

23 +

94

whether or not an overflow occurs. In this case a minimum time (no overflows) and a

maximum time (overflows in every stage) were derived.

The total run time of the Burg algorithm can now be determined. This is done by

adding all of the subroutines in table 5.2. It should be noted that the minimum run

time for the miscellaneous section was used in both the maximum and minimum run

time equations. The maximum run time of the miscellaneous section physically

corresponds to the case were the data values are very small and all other run time

sections are a minimum.

TBurgmax = (182p + 24Np - 13p2 + 2lmp + 23)Tcl0ck

TBgjrgrnjn = (l'74p + l9Np - 9p2 + 7mp + 23)TClQCk

(5.16)

(5.17)

where p is the model order, N is the number of data points and m = 10g2(N). Using

eqn(5.16) and the theoretical clock speed of 7.25 MHz, a 16th order model using 64

complex data points can be computed in 3615 jis . This translates to a theoretical

worst case sampling rate of 17.7 kHz which is acceptable for real time operation.

5.9 SUMMARY

The microprogramming requirements of the Burg algorithm were examined in this

chapter. A modular approach towards implementing the algorithm produced an

implementation that was relatively simple. The maximum clock speed was determined

using critical path analysis and the run time equations the Burg algorithm were

developed. The real time operation of the processor was shown to be feasible.

9.5

CHAPTER 6

RESULTS AND CONCLUSIONS

6.0 INTRODUCTION

The hardware discussed in chapter 4 was built using wire-wrap technology and is

shown in fig. 6.1. The microprogramming discussed in chapter 5 was written with the

aid of a meta-assembler and tested through a downloading unit. The performance of

the hardware and the microprogramming are analyzed in this chapter. The overall

accuracy, maximum experimental clock speed and the run time performance are

discussed. Finally, recommendations for areas of improvement and future development

are suggested.

6.1 OVERALL ACCURACY

When dealing with fixed point numbers a certain degree of roundoff error is

encountered. The effects of this error as it applied to certain areas of the

implementation were described in chapter 3. The overall effect of roundoff error was

not examined in detail as the error is dependent on the data. In lieu of a theoretical

roundoff error analysis for the complete algorithm, a comparison between a floating

point and the fixed point Burg algorithm was conducted. A floating poinf algorithm

was written in Fortran 77 and run on the research VAX75O in the department. The

fixed point algorithm has been discussed in chapter. 5.

Two test signals were used, one real and one complex. The real test signal is

described by the following equation:

•_Jr'ii5 jjjr

if1ffff4°t

97

x (n) = cos (2t(0.25627)n) + cos (2t(O.26877)n) + v (n) (6.1)

where v (n) is Gaussian white noise with an RMS amplitude such that the signal to

noise ratio was 20 dB. The complex test signal consisted of the sum of 8 complex

exponentials:

s(n) = 8 e JO)gn
(6.2)

Figure 6.2 shows the pole locations of the complex exponentials used in this test

signal. Noise was not included in this test so that the effects of roundoff errors could

be determined.

Fig. 6.3 shows the spectral estimates obtained by applying applying a 16th order

model to 128 data points of the real test signal. A 16th order model was used due to

the close spacing of the peaks and the presence of noise. Clearly the BEE' algorithm

performs well when compared to the FLP algorithm. Fig. 6.4 shows the results when

64 data points of the complex signal were modeled with an 8' order Burg model.

Again the BFP algorithm compared favorably to the FLP algorithm demonstrating that

the hardware implementation is accurate. The small differences that are present can be

attributed to the roundoff error in the BR' implementation.

6.2 ROUND-OFF ERROR IN THE PREDICTION ERRORS

Having examined the spectral estimation, attention was directed towards the

roundoff error present in the algorithm itself. A good measure of these errors can be

determined by finding the mean and variance of the error in the prediction errors. The

fact that the prediction errors are used in every stage of the Burg algorithm and are

98

Figure 6.2 Pole Locations of the Complex Exponenthis

60-

-15
0

__- BFP

FLP

0.25 0.5

Normalized Frequency

0.75

Figure 6.3 Comparision of the Spectral Estimates obtained from
BFP and FLP Burg Algorithms when applied to Real
Data -

1

55-

35-

-5-

t
0.5

-25
0 0.25

---BFP

—FLP

Normalized Frequency (f /f

0.75

Figure 6.4 Comparision of the Spectral Estimates obtained from
BFP and FLP Burg Algorithms when applied to Complex
Data

1

'a'

regenerated for every order based on previously computed values implies that a large

amount of roundoff error could accumulate. The mean and variance of the error

between the BFP and FLP Burg algorithms for various model orders are given in table

6.1 for both test cases. For the given data sets it can be seen that the worst roundoff

error had a value of 8.9 which translates into 3 to 4 bits of lost resolution, and the

average mean error lies between 2 and 3 which translates to a 2 bit error. In most real

time situations the data would be gathered by an 8 to 12 bit A/D and the sampling

roundoff error is much more significant than the modeling error.

While the mean error does not increase dramatically with model order, the

variance increases tremendously. As the model order increases, the prediction errors

theoretically decrease. Therefore the round off error that is present becomes

significant and is also modeled thus causing a dramatic increase in the variance.

6.3 ACTUAL RUN TIMES

The actual operating clock speed of the implementation lies somewhere between

7.2 MHz where the algorithm would sporadically fail and 7.5 MHz where it would

frequently fail. This ambiguity is due to the wire-wrap implementation which

introduces a great deal of noise. The lower clock speed was taken as the maximum

operating limit. An operating speed of 7.2 MHz translates to a clock period of 139 ns

which is close to the predicted value of 138 ns.

Table 6.2 shows the experimental run times obtained when the clock speed was

7.2 MHz. For comparison, the minimum and maximum theoretical run times

determined in chapter 5 are given. Examining table 6.2 shows that experimental run

102

Table 6.1 : Block Floating Point Round off Error Statistics

order

p

normalized
variance

normalized
mean error

real complex real complex

0 0.97 2.2 0.02 0.005
1 2.6 24 0.32 0.87
2 11 41 1.1 1.9
4 1000 2400 0.83 8.9

8 5500 16700 2.67 1.1

16 16000 3.30

103

Table 6.2 Run Times for Different Values of N, and the Order

order N
min actual max

PS PS PS

1

•

16 72 76 92

32 114 136 143

64 199 228 247

128 368 400 453

2

16 140 125 173

32 225 240 281

64 394 420 489

128 732 840 902

16 272 200 338

32 440 440 552

64 779 820 970

128 1455 1700 1794

8

32 847 1000 1079

64 1523 1600 1915

128 2875 3100 3564

16
64 2898 2900 3739

128 5603 5400 7035

104

times lie in between the projected minimum and maximum run times for most cases.

The times that lie below the projected minimum can be attributed to the experimental

procedure used in determining the actual run times. The corresponding sampling rates

for the run times are shown in table 6.3. It is clear that real time operation can be

achieved for high model orders since a 16t1 order, 128 point model was shown to be

performed in 5.4 ms with an effective sampling rate of 23 kHz.

6.4 FURTHER CONSIDERATIONS

Though specifically designed to perform the Burg algorithm this APU can be

used for a number of applications. The remaining stages of the DSA mentioned in the

introduction can be developed using the processor as the major hardware component.

Should this processor be incorporated in the DSA, the external JJO interface should be

changed from the bus transceivers to first-in first-out stacks to increase the speed of the

data transfers.

Reliability can be increased by producing a printed circuit board version of this

processor and using updating algorithms. Using an updating Burg algorithm [23]

would improve the speed but at the cost of resolution. Campbell [5] has suggested

that band selectable digital filtering be employed to reduce the model order of the

signal under analysis. By employing this preprocessing technique and using the high

speed processor discussed in this thesis, it might be feasible to implement a single

board DSA with the high speed processor developed in this thesis being used as the

105

Table 6.3 Corresponding Sampling Frequencies .(In kHz)

data points
N

model order
p

1 2 4 8 16

16 211 128 80

32 235 133 72.7 32.0
64 280 152 78 40 22

128 320 152 75 41 23

106

hardware for the complete DSA.

6.5 CONCLUSIONS

The goal of this thesis was to design a processor capable of performing AR

modeling. in real time. The Burg algorithm was selected as the modeling algorithm

because it offered the best compromise between speed and accuracy. To ensure the

stability and accuracy of the algorithm in a block floating point environment the errors

arising from block floating point operations were examined. A number of methods

including a tree addition algorithm, a modified division algorithm and a hardware

rounding unit were used to mitigate the effects of these errors.

Microprogrammable components were incorporated in a highly pipelined

architecture that supported real time operation. To perform' complex arithmetic in real

time a processing unit consisting of two data busses, two ALUs and a multiplier was

proposed and implemented. Although additional hardware could have increased the

overall speed the above configuration offered a good trade-off between hardware

complexity and computational speed.

The Burg algorithm was broken into stages and an efficient microprogrammed

implementation of each stage was developed. The use of a modular approach to the

programming provided a good compromise between program development time and

operational speed. The architecture was able to operate at a clock speed of 7.2 MHz

and permitted real time operation of the Burg algorithm. The BFP algorithm was in

good agreement with the FLP algorithm for the test cases considered. A worst case

roundoff error of 4 bits was observed when an error analysis between the BFP and

1Q7

FLP algorithms was conducted. This work has been summarized in a paper whose

abstract has been accepted by the proceedings of the TEF.E. The full paper is presently

under review [25].

10.8

REFERENCES

(1) J. Makhoul, Linear Prediction: A Tutorial Review, Proc. IEEE, Vol. 63, pp. 561 -.

580, April 1975.

(2) S. Haykin, Radar Signal Processing, TREE ASSP Magazine, Vol. 2, No.2, pp. 2 -
18, April 1985.

(3) J. P. Burg, Maximum Entropy Spectral Analysis, Proceedings of the 37th Meeting
of Exploration Geophysicists, 1967.

(4) R. E. Morley, Jr., et. al., A Multiprocessor Digital Signal Processing System for
Real-Time Audio Applications, IEEE Trans. Acoust., Speech, Signal Processing,
Vol. 34, No. 2 pp. 225-231

(5) K. Campbell, A Microprocessor Based Spectrum Analyzer Using Autoregressive
Modeling Techniques, U. of Calgary, M. Sc. Thesis, September 1984.

(6) M. Ng, Short Time Fourier Analysis and Synthesis Incorporated with
Autoregressive Modeling Techniques, U. of Calgary, M. Sc. Thesis, April 1983.

(7) H. Orbay, Architectural Design of a Computing Element for Signal Processing,
U. of Calgary, M. Sc. Thesis, April 1986.

(8) M.R. Smith and S.T. Nichols, Improved Detection of Signals using Modelling
Techniques Combined with Deconvolution, Steel Industry/Researcher Sensor
Research Workshop, May 8-9, 1984, Burlington, Ontario.

(9) M. J. E. Salami, ARMA Models in Multi component Signal Analysis, U. of
Calgary, Ph. D. Thesis, pp. 26, April 1985.

(10) S. M. Kay and S. L. Marple, Jr., Spectral Analysis - A Modern Perspective, Proc.
IEEE, Vol. 69, No. 11, pp. 1380 - 1419, November 1981.

(11) S. Y. Kung and H. Y. Hu, A Highly Concurrent Algorithm and Pipelined
Architecture for Solving Toeplitz Systems, IEEE Trans. Acoust., Speech, Signal
Processing, Vol. 31, No. 1, pp. 66-76, Febuary 1983.

(12) P. F. Fougere, E. J. Zawalick and H. R. Radosk, Spontaneous Line Splitting in
Maximum Entropy Power Spectrum Analysis, Physics of the Earth and Planetary
Interiors, Vol. 12, 1976, pp. 201-207.

lag

(13) D. N. Swingler Frequency Errors in MEM Processing, IEEE Trans., Acoust.,
Speech, Signal Processing, Vol. 28, No. 2 pp. 257-259, nov. 1978.

(14) B. I. Helme and C. L. Nildas, Improved Spectrum Performance Via a Data-
Adaptive Wieghted Burg Technique, IEEE Trans. Acoust., Speech, Signal
Processing, Vol. 33, No..4, pp. 903-910, Aug. 1985.

(15) P. F. Fougere, A Solution to the Problem of Spontaneous Line Splitting in
Maximum Entropy Power Spectrum Methods, Journal of Geophysical Research,
vol. 82, No. 7, pp. 1051-1054, Dec. 1980.

(16) D. B. Coidham, Block Floating-Point Arithmetic with Applications, U. of Calgary,
Ph. D. Thesis, April 1977.

(17) J. F. Cavanagh, Digital Computer Arithmetic Design and Implementation,
MacGraw-Hill, New York, pp. 236 - 303, 1984.

(18) Data Book, Bipolar Microprocessor Logic and Interface, Advanced Micro
Devices (1983), pp. 524-527.

(19) Data Book, TMS32O1O Users Guide, Texas Instruments (1985), pp. 2-2.

(20) M. R. Smith, A METAASSEMBLER for developing microwords for a
microprogrammed architecture, Report, #19 PS 85, Dept. of Elec. Eng., U of
Calgary, (Sept. 1985).

(21) H. Orbay and M. R. Smith A Development Tool for Microprogrammable Systems.
General Purpose Controller, Report, #28 CO 85, Dept. of Elec. Eng., U. of
Calgary, (Sept. 1985).

(22) J. W. Locke, Designing Digital Signal/Array Processors with the AM29500
Family, Advanced Micro Devices (1984).

(23) S. W. Nichols and M. R. Smith, The Hardware and Microcode for the Burg
Algorithm, Internal Report, Dept. of Elec. Eng., U of Calgary, (expected
completion Nov. 86).

(24) C. J. Gibson .and S Haykin Learning CharacteHstics of Adaptive Lattice Filtering
Algorithms IEEE Trans., Acous., Speech, Signal Processing, Vol. 28, No. 6, pp.
681-691, December 1980.

110

(25) S. W. Nichols, M. R. Smith and H. Orbay Hardware Implementation of the Burg
Algorithm, Proc. IEEE Special Issue on Hardware and Software for Digital Signal
Processing, (under review).

