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ABSTRACT 

The design and implementation of a high speed processor dedicated to auto-

regressive (AR) modeling is presented in this thesis. Several AR algorithms capa-

ble of operating in a real time environment are examined; with the Burg algorithm 

being chosen as it offers a good trade-off between speed and resolution. Errors 

arising in the block floating point implementation of the algorithm are discussed 

and methods of reducing these errors are presented and implemented. An algorithm 

that quickly and accurately performs a division operation is introduced and 

included in the implementation of the Burg algorithm. 

The hardware architecture is heavily pipelined and consists of bit-slice 

microprogrammable chips that can be programmed independently. This permits full 

utilization of the resources by using parallel programming techniques. A high speed 

complex number processor composed of two ALUs, a multiplier, two memory units 

and a number of components associated with the above units is found to be the 

best trade-off between hardware complexity and speed. Using wirewrap techniques, 

a prototype AR processor was developed and tested. 

Results indicate the accuracy of the overall implementation is comparable to 

that of floating point implementations. The hardware implementation is capable of 

performing a i6 order AR model of 128 complex data points in 5.4 ms. The 

effective sampling rate is 23 kHz; real time operation for most applications. 
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CHAPTER 1 ,, 

INTRODUCTION 

1.0 INTRODUCTION 

Signal analysis is important to many different fields of science and can be 

performed in a number of different ways. Autoregressive (AR) modeling is an 

approach to signal analysis that has received a lot of attention. It is a parametric 

technique that attempts to predict the present value of a signal from weighted past 

values of that signal. AR modeling is used in a number of research areas [ 1,2,3] to 

obtain accurate models of the processes under examination. 

This modeling approach has been applied to the analysis of human speech [ 1] 

where it has been used for word recognition and speech synthesis. These applications 

require high speed microprocessors to sample and store the voice data. It would be 

desirable if a high speed AR processor was developed to perform the analysis at the 

same rate the data is received. 

Suppression and classification of radar clutter caused by the echos generated from 

the earth, weather phenomena and birds is another application of AR modeling. 

Research indicates that these echos can be accurately modeled as low order complex 

AR processes [2]. AR modeling, specifically the Burg algorithm, can be applied to 

produce a filter that suppresses the clutter. Again a high speed processor capable of 

performing complex arithmetic in real time would be useful. 

The results in the literature [3] have shown that for small data lengths, AR 

modeling tends to produce higher resolution spectral estimates than the classical 

1 
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Fourier transform based methods of spectral analysis. The ability to provide high 

resolution spectral estimates is one of the reasons for the popularity of AR modeling. 

The present trend in the above areas is to develop processors and systems that 

operate in real time. This means operating at speeds fast enough to process the data as 

soon as it is received rather than storing the data for analysis at some future date. To 

perform real time speech analysis requires a processor capable of sampling at 12.5 kHz 

[4]. Real time requirements tend to force designers to turn away from accurate but 

computationally time consuming algorithms and implement fast Fourier transform 

(FF1) processors to perform spectral analysis. However, there are a number of AR 

algorithms that are efficient and can be applied in a real time situation. One such 

algorithm is the Burg algorithm [3]. Its computational simplicity stems from the fact 

that it operates directly on the data whereas some other AR algorithms form 

covariance matrices. Furiher it uses information already calculated from lower order 

models to determine higher order model parameters. A real time AR processor would 

provide a high resolution model of the signal and would be useful in the applications 

discussed. 

Resolution and speed are two reasons why AR modeling should be used in a high 

resolution real time digital spectrum analyzer (DSA). The requirement of real time 

means that a hardware implementation of an AR algorithm is necessary. Campbell [5] 

showed that implementation 'of a high resolution DSA proposed by Ng [6] on a single 

6809 microprocessor system was not acceptable for real time operation. Its failure was 

due to time consuming address calculations. To overcome this problem a multiboard 

DSA has been proposed [7,8]. 
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The DSA, fig. 1.1, is composed of several blocks that perform specific functions 

[8]. A processing stage samples, demodulates, filters and decimates the input data and 

is followed by an AR stage that models the received data. To determine the frequency 

spectrum of the AR model, a DFT stage is included with the frequency output being 

displayed by a video stage. A system consisting of a specialized processor for each 

stage could perform the DSA function in real time. Orbay [7] has designed and 

demonstrated real time operation of a processing unit that is dedicated to performing 

the FFI. The subject of this thesis is the design of an AR processor which is the 

central element in this DSA and the next element in the DSA that requires 

development. There are many factors that must be considered if the implementation of 

the Burg algorithm is to be successful. These factors are presented in this thesis. 

Chapter 2 reviews AR modeling techniques and the Burg algorithm. It starts with 

the basic premise of AR modeling and proceeds to develop the Levinson algorithm. A 

review of the Levinson algorithm shows that it is fast but it does not have the desired 

accuracy. The Burg algorithm is reviewed and examined. It is shown that the Burg 

algorithm is a good candidate for implementation because it is relatively fast and 

accurate. 

Block floating point arithmetic must be used to efficiently perform arithmetic 

operations in hardware. Chapter 3 examines the errors associated with block floating 

point arithmetic operations and methods of reducing the errors are introduced. The 

methods include the use of a tree addition algorithm to reduce roundoff errors in 

summations and rounding schemes to ensure the stability of the Burg algorithm. An 

investigation into division ' algorithms is performed in order to determine a technique 
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that will satisfy the trade-off between speed and accuracy. It is shown that overflows 

in the lattice structure can be avoided by scaling the input data by one half. 

The hardware development can be based on multiple microprocessors or a 

microprogrammable system. In chapter 4 the relative merits of these two alternatives 

are determined. A possible hardware configuration that is - suitable for real time 

operation is proposed. This configuration is determined by examining the 

computational requirements of the Burg algorithm and finding the simpliest hardware 

configuration that will perform these requirements in real time. Wire-wrap methods, 

which provide a high degree of flexibility in the physical layout and fast development 

times, are used to inter-connect the actual hardware components of a prototype DSA. 

This is an experimental processor and the ability to change the layout is an asset that 

outweighs the noise problems that exist in wire-wrap prototypes. 

The microprogramming of the Burg algorithm is detailed in chapter 5. The 

implementation of the different parts of the algorithm 'are discussed and attention is 

given to efficient programming methods and rounding schemes that ensure stability. 

The maximum theoretical clock speed is determined and the run time equation of the 

Burg algorithm is found to show that the hardware designed in chapter 4 is capable of 

performing the algorithm in real time. 

Results from the hardware implementation are examined in chapter 6. The actual 

spectral estimates and run-times are compared against their theoretical counterparts and 

some conclusions are made. The overall performance of the hardware and the block 

floating point implementation of the Burg algorithm are analyzed. A brief summary is 

provided and areas where improvements on speed, design and accuracy can be made. 



CHAPTER 2 

SPECTRAL ESTIMATION BY AUTOREGRESSIVE MODELING 

2.0 INTRODUCTION 

In many scientific applications [ 1,2,10] the determination of the spectral content 

of a signal is very useful. Spectral analysis has been applied to a number of fields 

mentioned in the first chapter. The chief concern in these areas is the frequency 

distribution of power in the signal, better known as the Power. Spectral Density (PSD). 

A common approach to determining the PSD is to apply the fast Fourier transform 

(FF1) algorithm [10] either directly to the data or to the autocorrelation sequence of 

the data. This technique produces adequate results for a number of situations. 

However, there are areas where this method provides a very poor estimate of the PSD 

due to the fact that the resolution of the discrete Fourier transform (DFT) varies 

inversely with the number of data points. Therefore other methods should be used 

when examining short data records. 

2.1 PARAMETRIC MODELING 

The inability of the DFT to produce a high resolution spectral estimate from short 

data records has led to the development of several other approaches. Among these 

methods are a number of parametric techniques which attempt to model a signal as a 

process in which another signal, usually Gaussian white noise, is passed through a 

filter. The PSD of the filter's output is obtained and used as an estimate of the signal's 

PSD. 

6 
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Three types of models can be used to represent a signal [10]. The ARMA model 

(fig. 2.1), which consists of feedback terms ai and feedforward terms b, generally 

provides the best estimate of an unknown signal. However the ARMA algorithms are 

computationally complex and they are not suitable for real time implementation. MA 

models (fig. 2.2) provide a good estimate for systems that have a finite impulse 

response but do not perform well for most other signals. Further, determining the MA 

model parameters involves solving a number of.non-linear equations [9]. A number of 

iterative algorithms have been developed to solve for these parameters but these 

algorithms are complex and convergence to .a stable solution is not guaranteed [9]. 

The most widely used technique is the AR model (fig. 2.3) [1]. This method 

yields good spectral results for a large class of signals that are primarily of an all-pole 

•nature. Some of the algorithms used in determining the parameters are computationally 

efficient [3]. In light of these facts, AR modeling was chosen to be used in this real 

time DSA application. The theory behind AR modeling and which algorithms are 

computationally efficient are outlined in this chapter. 

2.2 THEORETICAL ASPECTS OF AR MODELING 

The AR model assumes that the present value of the signal x (n) can be estimated 

as the sum of weighted past values of the signal. This is expressed as 

x(n)--a 1x(n-1)—a2x(n-2) — ap x(n—p) (2.1) 

where I (n) is the estimate of x (n), a1 are the AR weighting coefficients and p is the 

model order. 



u (k) 

Figure 2.1 A Block Diagram of an ARMA Model 
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Figure 2.2 A Block Diagram of a MA Model 



Figure 2.3 A Block Diagram of an AR Model 
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The goal of AR modeling is to determine the coefficients a1 such that the mean 

squared error (MSE) between the estimate and the signal value is minimized. This can 

be expressed as: 

00 

MSE = (x (n) — X̂ (n ))2 (2.2) 

Substituting for X^ (n) from eqn(2. 1) yields: 

MSE = (x (n) — ak x (n—k ))2 
n=—co k=1 

Minimizing with respect to the coefficients ai yields the Yule - Walker 

equations [10] 

R[0] R[—l] •.. R[—(p-1)] 
R[1] R[0] •.. R[—(p-2)] 

Rip—i] R[p-2J R 10 

where MMSE is the minimum MSE and 

1 
a1 

ap 

1  N 
R(i)= hm I x(n)x(n—i). 

N-oo.L1V + 

MMSE 
0 

(2.3) 

(2.4) 

(2.5) 

R (i) is known as the autocorrelation lag of x (n) with x (n—i) and is an even function: 

R(i)=R(—i). (2.6) 

The matrix in eqn(2.4) is a positive definite, symmetric Toeplitz matrix where all the 

elements along any diagonal are identical. The Toeplitz nature of the matrix was 

exploited by Levinson [ 1] in his technique of solving for a1 and the MMSE. Further 

refining of the Levinson algorithm by Durbin [10] yielded the well known Levinson-
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Durbin algorithm. 

The Levinson-Durbin algorithm is simply a highly efficient method of solving 

eqn(2.4). The algorithm is initialized by 

MMSE0 = R(0) 

- -R(1)  
a1,1- R(0) 

(2.7) 

(2.8) 

MMSE 1=(l- Iai,11 2)MMSE0. (2.9) 

The recursive algorithm for k = 2,3, p is then 

ak,k = 

I k - i 
- IR (k) + a/,_ ,l R (k-i) 
L 1=1 

MMSEk.. 1 

* 
= a - 1 + ak,k ak_1,k_1 

MMSEk = (1 - I ak,k 12)'MMSEk-1 

where a1 is the a1 coefficient determined during the j :h iteration. 

(2.11) 

(2.12) 

This algorithm is fast when compared to the more traditional matrix inversion 

techniques. Methods such as Gaussian elimination and Cholesky decomposition require 

on the order of 0(p3) operations to generate a solution whereas the Lèvinson-Durbin 

algorithm takes 0(p 2) operations [10]. The reduction in computational time makes this 

algorithm a candidate for use in a real time environment. It has been shown by Yung 

[11.] that a parallel VLSI implementation of this algorithm can operate in real time. 

The Levinson-Durbin algorithm produces better spectral estimates than standard 

FF1 methods but there are some inherent limitations in the algorithm which reduce its 

overall resolution [1]. Most of these limitations stem from the assumption of an infinite 
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data set. In any real time application the data is finite in length, meaning that the 

autocorrelation lags used in eqn(2.4) are only estimates of the true autocorrelation 

function and should be expressed as: 

A 1N-1 
R(i)=— I x(n)x(n—i). 

N i 0 
(2.13) 

Using this estimate instead of the true autocorrelation lag implies that the data 

outside of the finite sequence is assumed to be zero which can be viewed as an 

implied windowing of the signal. The windowing decreases the resolution of the 

Levinson algorithm in the same way windowing decreases the resolution of the DFT. 

The finite data length indicates that the diagonal terms of the matrix in eqn(2.4) are 

not exactly equal to each other. The. Levinson-Durbin algorithm provides an 

approximate solution to eqn(2.4) since the assumption of infinite data is no longer 

valid. 

If an exact solution to eqn(2.4) is required then the elegant solution proposed by 

Levinson can not be used and a more generalized inversion algorithm taking 0(p 3) 

operations must be applied. Such algorithms may not be implementable in real time 

and therefore other AR modeling approaches that retain the real time speed but 

eliminate these problems must be considered. 

2.3 PREDICTION ERROR FILTERS 

As the next algorithm under review incorporates the use of prediction error filters 

(PEF) it is useful to introduce the concept of a PEF at this point in the discussion. 

Trying to predict a present value from weighted past values using eqn. (2.1) is 
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equivalent to determining the output of a finite impulse response (FiR) filter run over 

the data. The coefficients for this filter, shown in fig. 2.4, are the AR model parameters 

1, a1 ,... ap. This filter is known as a PEF because it generates the error e (k) 

associated with the prediction of the signal. 

Until now, the theory has been developed on the basis that a data point can be 

represented as a linear combination of past values. This is known as forward prediction 

due to the idea that 'the PEF is moving forward in time. There is also the possibility of 

a backward predictor. If all the data is present then a PEF can be run backward in 

time giving 

(n—p) = — bjx(n—p+i). 

Which means that the present value is a linear combination of future values. The 

coefficients, b, can be found in a similar manner to that used in determining the 

forward coefficients a. When the signal under analysis is shift invariant or, 

independent of time, the backward PEF simply becomes the complex conjugate of the 

forward PEF, b1 = aj* . This concept was exploited by Burg [3] in his algorithm to 

determine the AR coefficients. 

(2.14) 

2.4 THE BURG ALGORITHM 

Due to the implied windowing in the Levinson-Durbin algorithm, the overall 

resolution is decreased. To alleviate this problem Burg suggested a method that made 

no assumptions about the data outside of the signal already obtained. In Burg's 

method, the known part of the autocorrelation sequence (R (0), R (1),... R (p)) is 



I 
a2 3 a 

e (k) 

Figure 2.4 A Block Diagram of a Prediction Error Filter 
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extrapolated to produce an estimate of the unknown autocorrelation sequence 

(R (p +1), R (p-i-2)), effectively removing the windowing of the data. So as not 

to impose any further constraints on the sequence, Burg proposed that the resulting 

time series have maximum entropy. Thus the method is known as the maximum 

entropy method (MEM). 

Burg's method operates directly on the data and does not invert the 

autocorrelation matrix. Burg used a forward and backward PEF to obtain information 

from the signal. The use of a backward predictor permits information to be obtained 

about the points that can not be predicted by the forward PEF when the forward PEF 

is not allowed to be "run off" the data. Fig. 2.5 demonstrates what is meant by not 

running off of the data. 

Burg then minimized the sum of the forward given by 

and the backward error 

X (n) + ' x (n —k), 
k-1  

= x (n —j) + - atp ' x (n —j +k), 
k 1  

where j is the model order and j ≤ n <N. The minimization of the error 

N - i 

Pj = Ie_1,I+ Jb 2 j,n I 
n = j 

yields the reflection coefficient 

(2.15) 

(2.16) 

(2.17) 
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a2 a1 1. 

0 0 xo x1 x2 X3 . . XN_3 XN_2 XN1 0 0 

1 a a 

A) Initial Locations for PEFs that are Run Off the Data 

a2 121 1 

xo xl x2 x3 x4 , , XN_3XN_2XN_1 

1 
* 

a1 * 
a2 

B) Initial Locations for PEFs that are not Run Off the Data 

Figure 2.5 What is Meant by the Term "Running Off of the Data 
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where 

 D• 
n=j ) 

N-i e_i * ,n 

N - i 
D = le_1, 12+ Ib 1,_il2. 

n=J 

(2.18) 

(2.19) 

The remaining PEF coefficients, a J, 0 ≤ i ≤ f—i, are then determined using the 

Levinson recursion given in eqn(2. 1 1). To update the errors, two prediction error 

filters, based on eqns (2.15) and (2.16), can be applied directly to the data which is a 

time consuming process. To reduce the computational time, Burg proposed the use of 

a lattice structure that makes use of the reflection coefficient and the prediction errors 

of the previous stage to update the errors. 

The PEF's can be folded into the lattice structure. Substituting for aj,j from. 

eqn(2.11) into eqn(2.15) yields 

i-i 
= x(n) + (a j_ + aj af_k,J_1) x(n—k) + aj J x , 

k=1 

Incorporating eqn(2.16) into eqn(2.20) yields 

= + a ,1 

Similarly, the backward error. is given by 

= 

n—p). (2.20) 

(2.21) 

(2.22) 

The lattice structi.ire, shown schematically in fig. 2.6, is obtained using these two 

equations. Using the lattice structure to update the prediction errors and recursively 

computing the PEF saes a great deal of time in the Burg algorithm. In fact, this 



Figure 2.6 A Schematic Representation of the Lattice Structure 
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method takes 0(p 2) operations to determine the PEF coefficients which implies that 

the algorithm is a prime candidate for implementation in real time [ 10]. 

The literature indicates that there are some inherent problems with the Burg 

algorithm [10,12]. The occurrence of closely spaced multiple peaks, line splitting [ 12], 

in a spectral estimate where only one peak should exist, is the most serious problem in 

the Burg algorithm. Line splitting arises when the algorithm is applied to signals with 

high signal to noise ratios (e.g. SNR = 40dB) and only a few data points are present 

(e.g. N = 15). Frequency biasing [ 13] results when the initial phase of a sinusoid to 

be modeled is non-zero and there are only a few data points present. Though these 

limitations might appear serious, in most applications there are a sufficient number of 

data points to mitigate these effects and a number of authors [14,15] have also 

proposed methods of reducing the effects if they appear significant. As the Burg 

algorithm has better resolution than the Levinson algorithm, by removing the implied 

windowing, and operates much faster than most matrix inversion routines, it was 

chosen as the algorithm That would be implemented in this thesis. 

2.5 SUMMARY 

The concepts of AR modeling and the relative strengths and weaknesses of the 

Burg and Levinson algorithms have been examined in this chapter. The Burg 

algorithm was chosen for implementation as it offs better resolution than the 

Levinson algorithm and operates much faster than other algorithms that incorporate 

matrix inversion routines. 



CHAPTER 3 

BLOCK FLOATING POINT ARITHMETIC 

3.0 INTRODUCTION 

As the goal of this thesis is to develop a high speed implementation of the Burg 

algorithm, high speed hardware components must be used. Currently there are a 

number of commercial chips capable of providing high speed additions, subtractions 

and multiplications. The vast majority of these chips operate on, and output, data that 

is represented by a string of binary (1 or 0) bits in a predetermined format known as 

Fixed Point (FXP). Though a floating point (FLP) format could be used, it would be 

very time consuming and inefficient. A compromise between FXP and FLP is block 

floating point (BFP) format. With this format the data is stored in FXP format and a 

scale factor associated with a block of data is also stored. Due to this scale factor, 

variable scaling can be used in BFP as opposed to the predetermined scaling that 

occurs in FXP [16]. When variable scaling is used the data is only scaled when 

necessary, unlike prescaling which tends over scale the data as the prescaling value is 

usually determined by some form of worst case analysis. This implies that BFP is 

more accurate than FXP. As BFP still retains the speed of FXP and provides greater 

accuracy, it is used in this implementation. As BFP has a finite precision it is possible 

for errors to occur when an operation produces a result that exèeeds the bounds'of the 

fixed format. How these errors occur and what is done to reduce their effect is 

discussed in this chapter. 

The operation of division is the only basic arithmetic operation that is not 

performed by a dedicated chip. To perform a division, a software algorithm must be 

21 
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used. A number of algorithms available to perform this operation are examined and 

compared in terms of accuracy, speed and ease of implementation. 

3.1 FIXED POINT REPRESENTATION 

In FXP a number is represented by a string series of binary bits. A common FXP 

format is fractional two's complement (FTC). The number x can be represented in 

FTC notation as: 

r-1 
x=-s0+ s2t 

i=1 
(3.1) 

where -1 ≤ x < 1 and si are binary numbers. The number of bits, r, is limited by the 

hardware that is used. In this thesis r is taken to be 16 which results in an acceptable 

trade-off between numerical accuracy and hardware complexity. 

3.2 BFP ADDITION 

When adding two BFP numbers there is a possibility that the result will require 

added precision. Consider the addition of a number with itself. If the original value is 

represented by 16 bits then it possible that twice the original value may need 17 bits to 

be accurately represented. In BFP a 17 bit number must be reduced to a 16 bit value 

and the scaling factor • adjusted. With the architecture selected, this was accomplished 

by scaling the original 16 bit numbers down to 15 bit values. The above addition then 

produces a 16 bit result which can be represented in FXP format. 

Scaling, a method of reducing the number of bits present, can be performed using 

a number of techniques. In the simpliest method, down rounding, the 16 bit value is 

divided by two and the remainder is dropped This is accomplished by shifting the 
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original value to the right by one and dropping the least significant bit (LSB). A 

negative bias is introduced as a result of dropping the LSB. Up rounding can be used 

if a negative bias is undesirable. In this scheme, a one is added the LSB and then the 

result is shifted to the right by one. This technique introduces a positive bias into the 

answer because of the addition of the one to the LSB. 

Other schemes must be employed where no bias is tolerable. The magnitude 

truncation method adds the sign bit to the LSB before shifting. Assuming equal 

probability of positive and negative numbers, this scheme does not introduce an overall 

bias as the negative numbers are positively biased and the positive numbers are 

negatively biased. In random bit addition, a random bit is added to the LSB so that no 

bias is introduced when rounding. Implementation of this scheme in hardware requires 

a random bit generator in addition to the hardware used in the previous scaling 

techniques. 

All of the scaling schemes discussed introduce errors into the resulting 16 bit 

value. These errors occur randomly and the mean, mean square, and variance are used 

to describe their effects. Fig. 3.1 shows the error distributions for all four schemes and 

table 3.1 gives the mean, mean square, and variance of the three in terms of the weight 

of the LSB (is). Though these results are given without proof, they can be easily 

verified by example. 

• 3.3 BFP SUMMATION ALGORITHMS 

The last section focused on the errors that occurred due to a single rounding 

operation. This section is concerned with how these errors grow when a large set of 
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Table 3.1 Round-off Errors Associated with Addition/Subtraction 

Scaling 
Method 

Mean 
p. 

Variance 
a2 

Mean 
Square 

Down A A2 A2 

Rounding 4 16 8 

Up 
A A2 A2 

Rounding 4 16 8 

Magnitude 2 

Truncation 
0- 

A 
- 

8 

A2 
- 

8 

Random Bit . . 

Addition 8 8 
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B?!' numbers are added together to form the summation 

N-i 
y= 

i =0 
(3.2) 

Clearly, the growth of these errors will depend on the method of summation. Two 

summation techiiiques, the accumulation algorithm and the tree addition algorithm, are 

analyzed in this section to determine which one performs the best in terms of avoiding 

roundoff error. 

3.3.1 THE ACCUMULATION ALGORITHM 

When forming a summation, the most straightforward method is the accumulation 

technique. In this technique a number xi is added to the sum of all the previous 

numbers Y_1 to form a new sum Y 

(3.3) 

for i = 1 N - 1 and Y0 = x0. In floating point arithmetic, the sum is permitted to 

grow as successive terms are added. This luxury is not present in EF? arithmetic 

because when the sum overflows it must be shifted to stay within the. FXP format. In 

turn all future values added to the sum must also'be scaled. The errors generated by 

these scalings are shown in fig. 3.2. The errors generated by prescaling of the numbers 

before they are included in the sum are denoted by Pj and the errors due to scaling of 

the sum are denoted by ej . The roundoff error in the summation, is given by 

M  rn 2k1 

F-acc =  Crn 2 + 
i-0 k=ij=2' 

(3.3) 

where m = mt (10g2(N)). The worst case mean error J-1C.CCWC can be expressed in terms 
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Figure 3.2 Roundoff Error Generated in the Accumulation Algorithm 
for Summation 
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of the mean error involved in a single scaling p as: 

rn—i m 2k_1 

PaccWC = p 2 + (k )2k_m (3.4) 
i=O k=lj = 2kl 

where p.. (k) denotes the variable mean error arising from the prescaiings. The last 

term contains a variable mean due to the fact that the prescaling increases with each 

overflow. A relationship between this variable mean and the mean for one scaling can 

be found by using the concept of multiple scaling [ 16]. If a variable is scaled k times 

then the resulting mean error acc (k)) is: 

which reduces to 

k—i 
gacc (k) = t8 2 

i=O 
(35) 

= gs 2(1 - 2). (3.6) 

Substituting this into eqn(3.4) and.determining the closed form expression yields: 

accWC = I 9S 
[2m+1_2_m+1], (3.7) 

Using a similar analysis the worst case variance, cra2ccwc, due to a single scaling, cy, is 

found to be 

a2ccWC = ..i2(4.2m + 7_ 7.2—rn - 4.2-2m) 
21 

The mean square error is: 

which becomes 

(3.8) 

MSE = ccWC + ccWC (3.9) 
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MSE = 2m+1 - )2 ± ..j21 2 ( 4.2m + 7 - 72' - 42" ). (3.10) 

3.3.2 THE TREE ADDITION ALGORITHM 

The tree algorithm attempts to reduce the errors arising from the addition of a 

large sum and a small data value by only adding numbers of the same magnitude. Fig. 

3.3 shows the operation of the algorithm and the errors that can arise in this kind of 

addition. From this figure, the roundoff error can be determined by: 

M 2k-1 

= Z 2-k+1 
k=li=O 

Therefore the mean error is: 

rn 
1-tree = Y, Y, 9s 27k+1 i=O 

which simplifies o: 

P-tree = 2m g.. 

By a similar analysis the variance is found to be: 

'5?ree = 4 [1 - 

The mean square error is:. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

MSEtree = 4m2 P-2 + 4a [1 - 2_]. (3.15) 

A graph comparing the normalized MSE (A = 1) of the two algorithms is shown 

in fig. 3.4. The biased errors arise when up rounding or down rounding schemes are 

used. These errors are said to be biased because of their non-zero mean error. 
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Unbiased, or zero-mean, errors occur when magnitude truncation or random bit 

addition are applied. Since the MSE in the tree algorithm does not grow as quickly as 

in the accumulation algorithm, the tree algorithm was chosen to perform the required 

summations. 

3.4 MULTIPLICATION 

In general, the multiplication of two 16 bit numbers results in a 32 bit number. In 

FXP, this value must be reduced to 16 bits before proceeding to the next arithmetic 

operation. This reduction can be accomplished by applying one of the rounding 

procedures previously discussed. The error distributions that occur when the-various 

rounding schemes are applied to the multiplication [5] are shown in fig. 3.5. Again it 

is useful to evaluate these errors in terms of mean, mean square, and variance values 

and these quantities are shown in table 3.2. 

3.5 DIVISION 

Division is performed by a software algorithm as there are no commercial chips 

that are dedicated to performing division. The speed, accuracy, and ease of 

implementation must be considered in selecting a suitable algorithm. As most 

algorithms can be classified as subtraction and shift or as convergence type algorithms, 

it is useful to examine an algorithm from each type to determine their various strengths 

and weakness. A convergence type division algorithm based on the Taylor series 

expansion of (1 - x) 1 was chosen. 
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Table 3.2 Errors Associated with Multiplication and Sequential Division 

Scaling 
Method 

Mean 

9 

Variance 
& 

Mean 
Square 

Down 

Rounding 2 12 3 

Up 

Rounding 
0 

A2 

- 12 
A2 

12 

Magnitude 

Truncation 
- 7 

7 2 

48 24 

Random Bit 

Addition 4 48 24 
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3.5.1 SEQUENTIAL SUBTRACT AND SHIFT DIVISION METHODS 

This class of algorithms can be described as the pencil and paper method [17,18]. 

The operations involved in this technique are best shown by way of an example. The 

division of 13 ( the dividend ) by 4 ( the divisor ) produces a quotient of 3 and 

remainder of 1 as shown in fig. 3.6. This class of algorithms produce the most 

accurate answer possible with FXP arithmetic and the roundoff error distributions are 

identical to those of multiplication which were given in fig 3.5 and table 3.2. These 

division algorithms are accurate but slow because they are sequential in nature 

meaning that the current addition or subtraction cannot be performed until the results 

of the previous operation are known. An examination of a very efficient subtract and 

shift method known as the non-restoring algorithm gives an indication of the relative 

speed of this type of division. From the flowchart, given in fig 3.7 [18], it can beseen 

that it will require at least 5 cycles per quotient bit. Two 16 bit divisions (the 

numerator in the Burg algorithm is complex) require close to 180 cycles to produce, the 

result. This method could easily require 200 cycles when initialization and sign 

correction steps are included to handle signed numbers. 

3.5.2 CONVERGENCE DIVISION 

It is possible to perform division by iterative multiplications when a hardware 

multiplier is present [17]. One such method, the Newton-Raphson method, finds the 

inverse of the denominator and then multiplies the inverse with the numerator to 

perform the division. The iteration equation is 
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where 

f (Xi)  
xi+1=xi 

f (xi) 

f(x)='—B. 

(3.16) 

(3.17) 

The root of eqn. (3.17) is x = 1/B, the reciprocal of the denominator B. Taking the 

derivative of (3.17) and substituting into (3.16) yields: 

x+1 =x1(2—B xi). (3.18) 

• This algorithm converges quadratically [ 17] meaning that it will only take a few 

iterations to produce the reciprocal provided there, is a good initial guess. Though this 

approach possesses high speed there is a problem associated with the initial guess. 

The authors of [17] indicate that the initial guess, x0, must fall in the range 

o <x0 < 2/B to guarantee convergence of the algorithm. To obtain an accurate initial 

guess a ROM look up table is needed, thereby requiring further hardware. 

3.5.3 TAYLOR SERIES EXPANSION 

The division algorithms examined have either been too time consuming or require 

additional hardware. Thus an algorithm that is both fast and impleméntable will be 

independently developed. The method generates the reciprocal 1/B by forming the 

Taylor series expansion of (1 - x)-1. Expanding this function in a Taylor series yields 

00 

(1 — x) 1 = 1+ I x' 
n=1 

where 

(3.19) 
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B=1- x. (3.20) 

This algorithm converges for: 

-1<x <1. (3.21) 

Noting that the denominator in the Burg algorithm is always positive it may be 

normalized so that: 

implying that x falls within the range: 

O<x 

(3.22) 

(3.23) 

With a number system where the LSB is 2-15 it takes 15 terms in the series to 

accurately form the inverse for the largest value of x, (x=1/2). The sum of all higher 

order terms produces a value less than the LSB. Eqn(3.19) can be rewritten as: 

15 
(1-x)' l+ x'2. 

n=1 
(3.24) 

Since x ≤ 1/2, the summation term of eqn(3.24) is always less than one and there is no 

need to check for overflows, indicating that this algorithm could perform division at a 

high speed and be easily implemented. 

- The algorithm was written and found to require only 21 cycles to perform the 

division, a vast improvement over the 200 cycles of the non-restoring algorithm. The 

roundoff error in the algorithm has yet to be examined. The generated errors are 

shown in fig. 3.8 The worst case error (CWC) can be determined to be: 
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14 i 
- k 

CWC 614_i x. 
i=Ok=O 

(3.26) 

Expressing the mean error, i'.wc in terms of the mean error of a single multiplication 

m' we have 

14 i 
gWC = 

i=Ok=O 

which reduces to 

I.tm x 1—x 15  
Pwc = 15 1—x 1—x 1—X 

For the region 0 < x ≤ 1/2, this is a maximum when x = 1/2 giving: 

Pwc = 301.tm - 2.tm(1 2-15) 

or 

(3.27) 

(3.28) 

(3.29) 

LWC = 281.tm. (3.30) 

A similar analysis yields a variance of 

2 59 ,U 2 
GWC - jm 

where (Y,2, is the variance associated with a single multiplication. 

The mean square error is 

MSE 784 + .2. 

(3.31) 

(3.32) 

Values are shown in table 3.3 for the various rounding schemes. The error in the 

unmodified taylor series algorithm for division appear large when compared to the 



41 

error in sequential subtract and shift methods of division. 

One way to reduce this error is to perform the summation in the following 

manner: 

(1 —x) 1 = 2[1/2 + x(1/2 ± x(1/2 + x(l/2 + x/2) )]. (3.33) 

This can be recursively expressed as: 

d = 1/2+x d1_1 (3.34) 

for i= 1... 14 and: 

do = 1/2 + x/2. (3.35) 

The initial division by two ensures that there will be no overflow during the 

summation and a corresponding up scaling by two is required at the end of this 

procedure. Though this form may appear cumbersome, it possesses an improved 

roundoff behavior when compared to the previdus form. The errors due to the 

multiplications and the initial scaling are shown in fig. 3.9. From this figure, the worst 

case error can be determined as: 

13 

CWC = e x + e14 x14. 
i =0 

(3.36) 

Again the maximum worst case mean and variance can be found by setting x = 1/2. 

The mean value then becomes: 

Pwc = 2J.m (1 - 2') + .Ls 2' 

or 

(3.37) 
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Figure 3.9 Roundoff Error in the Modified Taylor Series 
used in Determining (1— x)-1 
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(3.38) 

The variance was found to be 

resulting in a MSE of: 

aWC - 2 _ 4 2 

MSE 4p., + 

(3.39) 

(3.40) 

The mean, mean squared error, and the variance of the modified Taylor series 

algorithm are shown in table 3.4. Though the last form of this algorithm requires a 

slightly longer time (60 cycles) it still provides a reasonable compromise between 

accuracy and speed. 

3.6 OVERFLOW AND SCALING IN UPDATING THE PREDICTION ERRORS 

Although overflow cannot be avoided in a number of stages in the Burg 

algorithm, proper scaling of the input data could remove the possibility of overflow in 

the lattice filter. This would speed up the software as the handling of overflows can be 

ignored. The goal of scaling is to remove the possibility of overflow, while 

maintaining the largest possible dynamic range for the input data. To do this the 

structure of the lattice must be examined to determine conditions under which an 

overflow might occur. The lattice update equations are: 

(3.41) 

and 
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Table 3.3 Errors in the Unmodified Taylor Series Algorithm for Division 

Scaling 
Method 

Mean 
Jt 

Variance Mean 
Square 

Down 

Rounding 
—13A 

11A 1521A2 

16 9 

Up 1 1A 1 1A 
Rounding 4 9 9 

Magnitude 13A 772 60685A2 
Truncation 

- 2 36 1296 

Random Bit 13A 77A2 60685A2 
Addition 

- 8 36 1296 

Table 3.4 Error Statistics for Modified Taylor Series Division 

Scaling 
Method 

Mean 

9 

Variance 
CF2 

Mean 
Square 

Down A A2 1 1A 

Rounding 2 9 9 

Up 9 £ 
Rounding 

0 
9 

Magnitude A 7A2 
Truncation 

- 2 36 9 

Random Bit 
A 7A 4A• 

Addition 
- 2 36 9 
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= + a7 (3.42) 

From these equations, the worst case for overflows occurs when the magnitudes of 

j-1,n , , aj,j are close to unity. A resulting output value of two is then 

possible. It should be noted that the Burg algorithm attempts to minimize the error 

functions and and therefore the only gain that can occur will happen 

when are the actual data values. After the first update most of the 

prediction error values are theoretically reduced and there should be no fear of 

overflow. This indicates scaling the input data by 1/2 will remove the possibility of 

overflow. In a strict sense,, this conclusion may not be valid if the input is not 

primarily AR in nature. In that case it might be necessary to scale the input data by 

more than two and incorporate overflow handling into the algorithm. 

3.7 SUMMARY 

The implications of BFP arithmetic have been examined in this chapter. A 

summation scheme that reduce the effect of roundoff errors. A high speed division 

scheme was developed that was fast and accurate. Scaling the input data by two 

ensured that no overflows occur in the lattice structure when the data was AR in 

'I 

nature. 
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CHAPTER 4 

THE HARDWARE DESIGN OF THE PROCESSOR 

4.0 INTRODUCTION 

The Burg algorithm has been examined and found suitable for real time 

implementation. In designing an architecture that would permit real time operation a 

number of factors must be addressed. These factors include hardware type, 

configuration and the number of components. The goal of this chapter is to present a 

hardware design that will permit real time operation of the Burg algorithm. 

4.1 HARDWARE TYPE 

Two approaches can be taken when designing high speed digital signal processing 

(DSP) processors. A microprocessor based implementation or a microprogrammable bit 

slice system can be developed. A custom designed VLSI chip and the use of systolic 

array processors are considered to be beyond the scope of this thesis [ 11]. 

4.1.1 MICROPROCESSORS 

A number of specialized microprocessors that perform digital signal processing 

operations are available. An example is the TMS32010 microprocessor [ l9J which can 

be described as state of the art in DSP microprocessors. This chip has an ALU, 

multiplier, shifter, and internal memory, and operates at a clock period of 200ns. 

While providing many desirable features, the TMS32010 has a number of 

drawbacks symptomatic of all microprocessors. The preset instructions permit fast 

software development but limit the overall performance. Though some pipelining has 
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been incorporated to speed up certain operations, most instructions only use one part 

of the processor such as the ALU, while the other resources sit idle. This inefficient 

use of resources decreases the overall speed of the system. 

Reading and writing from external memory also cause problems. There are no 

single cycle instructions that permit external memory to be loaded into the ALU. This 

will decrease the operational speed as all of the computational resources are idle. 

Though this is a specific problem related to the TMS32010 chip, it brings to light the 

I/O bottleneck associated with most microprocessors. The I/O bottleneck means that 

access to external data is slow, limiting the overall performance of the system. 

Campbell [5] showed that one processor is not sufficient for real time operation of the 

DSA and a multiprocessor approach would be needed. External memory that can be 

accessed by all of the processors is essential to this configuration. The I/O problems 

and the inefficient use of resources are two major drawbacks of microprocessors while 

fast development time is the major advantage of such systems. 

4.1.2 MICROPROGRAMMABLE SYSTEMS 

Unlike a microprocessor, a bit-slice microprogrammable system does not have a 

preset architecture or instruction set. This permits the designer to customize the 

hardware and software to the task at hand. With no preset structure, the I/O can be 

designed so that no bottlenecks exist. The great flexibility in designing the architecture 

means that each component has its own set of control signals. The control signals 

permit the use of parallel programming methods which efficiently use the resources. 
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All this power and flexibility makes the microprogram development difficult. 

Each of the microprogrammable components is controlled through its own instructions. 

The control unit must be capable of generating extremely long control words which 

can easily exceed 100 bits whereas 16 bit instructions are used in the '.IMS32010. 

Microprograms require a specialized development tool such as a meta-assembler [20] 

that can systematically generate the very long control words. A downloading unit and 

a control system. [7,21] must be developed to handle the long control words present. 

The requirements for specialized program development tools and long control words 

are some of the drawbacks of these systems. 

The number of chips in a microprogrammable implementation can be large. The 

flexibility of being able to determine the configuration means that many of the 

interconnections that are made in silicon in a microprocessor have to be manually 

connected by the designer, leading to longer development times. 

In summary, most of the constraints of microprocessors are exhibited during run 

time while their main advantages are very fast development times and relatively few 

chips. Microprogrammable systems have faster run times while development time and 

chip count are usually higher than microprocessors. In selecting a hardware type, the 

main consideration in this thesis is operational speed. It was decided to use a 

microprogrammable system' as it offered the best run time performance which is the 

main consideration in this design. The excessively long development times are 

shortened somewhat by the use of a meta-assembler, a downloading unit and a 

generalized micro-sequencer. 
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4.2 MICROPROGRAMMING CONCEPTS 

A microprogrammed bit-slice architecture was selected as the hardware in this 

implementation. Microprogramming concepts are not commonplace and a brief 

examination of these concepts is given here. 

4.2.1 MICROPROGRAM CONTROL 

In a microprogrammable system, control is generally achieved by using a 

microprogram sequencer in conjunction with a microprogram memory and a pipeline 

register. The task of the microsequencer is to output an address to the microprogram 

memory (known as a control store (CS)) which in turn sends out control words to the 

rest of the system including the sequencer. The typical sequencer, shown in fig. 4.1, 

has several sources including a stack, a direct input, a program counter and a counter 

from which it can generate the CS address. The proper address source is selected 

depending on the instructions from the CS and a condition code (CC), that contains the 

status of the controlled system. 

The ordered structure of a CS separates the microprogrammed system from most 

other control systems that use sequential logic techniques to implement control. The 

instructions are simply and easily changed by changing the contents of the CS. This 

high degree of flexibility is one advantage of microprogrammed systems. In the 

development system built by Orbay [7], static high speed RAM and start-up EPROMS 

were used to implement the CS. 

The last element of the control unit, the pipeline register, provides a number of 

services. The overall control system, shown in fig. 4.2, the registers are clocked and 
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provide a delay in the feedback loop, thereby removing any race conditions that might 

exist between the sequencer and the CS. The pipeline register also isolates the 

controller from the target system, thereby permitting the application of modular design 

concepts. 

4.2.2 THE BIT-SLICE CONCEPT 

Bit-slice design can be described as a "building block" approach to designing 

systems. The basic block is a slice of a computing element that is 4-bits wide. The 

units can be cascaded together to form a larger element that meets the design 

requirements. This approach gives the designer flexibility in selecting the appropriate 

word length required. Consider the task of addressing 4K of memory which requires a 

12 bit address. Cascading 3 bit-slice ALUs, each 4 bits wide, would meet the 

addressing requirements. An extension of the bit-slice' concept, the byte slice, has an 

8-bit wide slice as the fundamental building block. Byte slice components were used 

extensively throughout the design of this processor. 

4.2.3 PIPELINING AND PARALLEL PROGRAMMING. 

In the discussion of the control unit two advantages of pipelining were discussed. 

One advantage is the isolation of the control unit from the hardware processor thereby 

permitting the control unit to operate with a certain degree of independence. The same 

concept can be incorporated within the processor to increase throughput as shown in 

the following example. Fig. 4.3a shows an processor with no intermediate pipeline 

registers to hold the data that is passed between elements. As a result only one 

operation can be performed at a given time and only one element can be functional at 
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a given stage of the operation. The introduction of pipeline registers, shown in fig. 

4.3b, permits the elements to operated independently of each other. Pipelining implies 

that all of the processor elements are operating simultaneously. 

To fully realize the advantage of pipelining, parallel programming techniques are 

applied. One aspect, particular to parallel programming, is the concept of overlapping 

instructions whiôh is illustrated in fig. 4.4. Once the pipeline has been filled all 

resources are operating independently on part of the algorithm. The throughput of the 

system is increased as results are generated every cycle rather than every ii cycle 

where I is the number of operations performed on the data. Digital signal processing 

algorithms are particularly amenable to parallel programming techniques because of the 

repetitive nature involved. 

4.3 COMPUTATIONAL REQUIREMENTS OF THE BURG ALGORITHM 

By examining eqns (2.16 - 2.24), the arithmetic operations in the Burg algorithm 

can be broken into the basic computational functions given below. 

1) The complex multiply and add operation, 

A=B+CD, (4.1) 

where A, B, C, D are complex variables, is used extensively in the lattice filter 

and the PEF coefficient computation. The only significant difference between the 

PEF and lattice stages lies in their addressing requirements. The design of the 

address generator is considered at a later stage. 
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2) A magnitude squared operation, 

E = IA j2 lB 12, (4.2) 

where E is a real variable occurs primarily in the formation of the denominator 

and is used in the computation of the MMSE. 

3) A general summation 

A => B, (4.3) 

represents a fundamental block because of the specialized hardware needed to 

perform the address comparisons and the, data shifts that occur in any large 

summation. 

Division was not considered a basic function because it was performed using a 

Taylor series expansion of (1 - xy' which is simply a combination of the three 

basic functions described above. 

4.4 OPERATIONAL ELEMENTS 

A number of computing elements must be combined to perform the basic 

functions of the Burg algorithm. These elements are listed below. 

1) The Memory Unit stores the data. Random access memory (RAM) was used 

for this application. 
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2) An Address Generator is required to access the data in memory. The design 

of this unit is independent of the main processing unit and is handled later in the 

chapter. 

2) The importance of pipeline registers in the operation of the APU has already 

been stated. As mentioned, they are extremely useful in permitting elements to 

operate independently and improve throughput by permitting the overlapping of 

instructions. 

3) An arithmetic logic unit ALU, capable of performing addition, subtraction and 

a number of logic operations, is an important element in a processing unit. In 

addition to the basic arithmetic and logic functions, most ALU's also contain a 

number of internal registers. These registers are essentially pipeline registers that 

can be used as scratch pad memory to store values arising from intermediate 

calculations. The result is a reduced usage of the I/O ports avoiding the 

bottlenecks that would otherwise arise. 

5) Shifters must be present to scale the data because the threat of overflow exists 

in a number of operations performed by the Burg algorithm. They are also 

essential when floating point notation is used to represent a number. This situation 

arises in the division stage of the algorithm and is discussed in chapter 5 One of 

the drawbacks of a bit slice implementation is that a barrel shifter capable of 

performing multiple shifts in a single operation, is not cascadable and cannot be 

included in a bit slice ALU. 
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6) A Multiplier is required in all the basic operations in the Burg algorithm 

except the summation. A hardware multiplier chip must be used to meet the 

requirement of real time operation. 

7) In a multi-bus configuration, multiplexers should be used on the inputs of the 

multiplier to permit quick access to multiple sources of data. This is useful when 

forming the, square of a number as both inputs of the multiplier come from the 

same source as opposed to a standard multiplication where the numbers come 

from different sources. 

4.5 COMPONENT TECHNOLOGY 

A number of microprogrammable components are commercially available. One 

company, Advanced Micro Devices (AIvID) [18], has a full set of bit and byte-sliced 

microprogrammable chips. They have introduced one family of chips, the 29500 series, 

that is ideally suited to signal processing applications. These chips are fabricated using 

ECL technology for speed and TIL technology for external interfacing. Combining 

this fabrication process with a highly pipelined internal architecture has produced a set 

of chips that operate at a fast clock rate and have a high data throughput. 

The AM29501 is a byte-slice ALU. In addition to the ALU, this chip contains 6 

scratch pad registers, 2 unidirectional data ports (one input and one output) and a 

bidirebtional data port. The multiplier chip, the AM29517, is a high speed 16 bit 

multiplier. The internal pipelining of this chip permits it to output a product every 

clock cycle. AMID also provides a number of support chips such as shifters, bus 
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drivers and high speed memory. 

4.5.1 WORDLENGTH 

A number of factors must be considered when determining a wordlength for the 

processor, The wordlength should be large enough to accurately represent the final 

answer without significant roundoff error. As the the wordlength grows, the number of 

byte slice components must also grow. .A good compromise between hardware 

complexity and numerical accuracy is a 16 bit wordlength. This wordlength should be 

able to represent the input data which is acquired via an 8 to 12 bit A/D and the 

number of hardware components is not excessive. 

4.6 COMPONENT QUANTITY 

In any design there exists a trade-off between high speed operation and system 

complexity. In order to optimize this trade-off, the tasks that the processor has to 

perform must be known. Eqns (4.1-4.3) showed the basic functional blocks required 

to perform the Burg algorithm. The most significant block is: 

A=B+CD (4.1) 

The hardware design should proceed with this function in mind. Expanding eqn(4.l) 

into real and imaginary parts yields the following expressions: 

ARE = BRE + GRE ' DRE - CIM DIM 

AIM = BIM + CIM DRE + GRE DIM 

(4.4), 

(4.5) 

where RE represents a real component and IM represents an imaginary component. 



Assuming that the scratch pads registers hold all the ,intermediate values, there are 

8 I/O operations. Four addition/subtraction operations along with 4 multiplications 

must be performed on the data by the arithmetic processing unit (APU). With only 

one data bus, one ALU, and a multiplier operating in parallel the computation takes 8 

cycles with the limiting resource with the I/O data busses. The number of resources 

can be increased to improve speed. The decrease in the number of cycles required to 

perform eqn(4. 1) as the number of hardware components is increased is detailed in 

table 4.1. 

In performing this analysis it must be kept in mind that some combinations of 

resources do not result in any real savings in time. An example of this is the 2 bus, 1 

ALU, 1 multiplier (2-1-1) configuration. Here the two data busses are loading one 

ALU. Even though it will only take the two data busses 4 cycles to load the necessary 

information, it will still take the ALU 8 cycles to read the data because it only has one 

I/O port which communicates with the busses. The additional bus only becomes 

effective when a second ALU is added. The possibility exists that one I/O bus can be 

attached to the multiplier. However if a data value is to be used more than once, it 

must be held in a scratch pad register which is located in the ALU chip. This implies 

that values read into the multiplier would still have to be read into the ALU defeating 

any gain in speed that was achieved by connecting the bus to the multiplier. 

4.6.1 THE 2-2-1 CONFIGURATION 

A configuration containing 2 data busses, 2 ALUs and one multiplier appears to 

offer the best trade-off between speed and complexity in the design of this proto-type 
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Table 4.1 The Effect of Increasing the Components 

Components 
I/O Data Busses ALU Multiplier 

cycles # cycles # cycles 
1 8 1 4 1 4 
2 4 1 4 1 4 
2 4 2 2 1 4 
2 4 2 2 2 2 
4 2 2 2 2 2 
4 2 4 1 2 2 
4 2 4 1 4 1 
8 1 4 1 4 1 
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processor [ 18]. The twofold increase in speed that would be gained by using a 4-4-2 

does not justify the fourfold increase in hardware. A 2-2-2 configuration appeared to 

offer an increase in speed with only moderate increase in hardware. Upon closer 

examination, it was found that the additional multiplier could not be utilized efficiently 

because of insufficient ALU resources and the apparent gains in speed were not 

realized. Two data busses and two ALUs seem to be the natural form for an APU that 

deals with complex numbers because these numbers are comprised of two components, 

a real and imaginary part. Separating the busses and ALUs into two units, one for the 

real and imaginary components allows the interconnections between busses and ALUs 

to be minimized. The real and imaginary ALUs and busses can operate independently 

with no need for direct interconnections. 

Placing the shifters between the data busses and the ALUs permits the data to be 

shifted without disturbing the normal flow of the data. The multiplier can be connected 

through multiplexers to the ALUs and does not need to be connected to the data 

busses as the ALUs can supply the multiplier with input data and receive its output. 

This setup reduces the complexity by removing connections between the multiplier and 

data bus that might be otherwise be needed. The overall organization of the APU is 

shown in fig. 4.5. 

4.6.2 HARDWARE ROUNDING 

Fig. 4.5 includes a rounding control block that has not been discussed. Roundoff 

errors exist after every multiplication. If unattended,, these errors can grow and cause 

the numerator to become greater than the denominator which results in a reflection 
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coefficient, ajj, greater than the theoretical maximum. Thus the Burg algorithm has 

become unstable due to roundoff error. This situation arises when most of the 

numerator products are negative. Ignoring the lower 16 bits of the multiplier output 

can viewed as subtracting a positive quantity from the multiplier product. When the 

product is negative this subtraction increases the magnitude of the number and it is 

then possible for a sum of negative numbers to increase while a sum of positive 

numbers is decreased relative to their respective theoretical values. To alleviate this 

problem magnitude truncation for the numerator and up rounding for the denominator 

are applied. A hardware rounding unit is used to speed up the rounding involved in 

each multiplication. This unit precalculates the value of the rounding bit by examining 

the sign bits of the multiplicands. The relationship between the input' sign bits and 

the rounding bit needed for magnitude truncation is an Exclusive OR operation with 

the result being added to the LSB. In view of this, the hardware consists of an 

Exclusive OR chip with associated peripheral and a control line that, when asserted, 

would override the magnitude truncation scheme and insert an uprounding bit. 

4.7 ADDRESSING REQUIREMENTS 

The addressing in the Burg algorithm is generally quite simple. The updating of 

the prediction errors simply requires a pair of counters capable of down-counting. 

However, the tree algorithm produces a complicated set of addressing requirements 

that a simple counter cannot fulfill due to the shifting involved. The need to be able 

to re-address memory in the event of an overflow means that the selected addressing 

device should have internal memory to store previous values. In light of these 
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requirements what is needed is a device that can add, subtract, shift, and store values. 

The solution can be provided by an ALU, such as the AM2901 which is a 

microprogrammable bit-slice ALU. It performs most standard ALU functions, and 

contains 16 internal registers, 3 external ports and shifting capability.. The size of the 

data memory to be accessed must be known before the number of AM29Ols can be 

determined. AR modeling is normally applied to short data records and it is felt that 

2K of RAM for both the real and imaginary data blocks would be sufficient. This 

requires 11 bits of addressing, meaning that 3 AM29Ols must be used for the 

addressing. One problem with these chips is that the output port comes directly from 

the ALU part of the chip. The timing for the complex addressing sequences becomes 

rather difficult if the output of the ALU is tied directly to the data RAM. Feeding the 

ALU output into a two sets of specialized pipeline registers (AM2952Os), which 

contain their own set of internal registers from which the RAM address can be 

selected, , provides an excellent solution to the problem and also permits independent 

addressing of the two data blocks. Fig. 4.6 shows the block diagram of the address 

generator and the memory unit. A comparator is incorporated to provide the high 

speed address comparisons that are required in some parts of the Burg algorithm. 

4.8 EXTERNAL INTERFACING 

The final task in the processor design is to provide an external interface unit to 

permit the APU to communicate to devices such as AIDs and D/As, other processors, 

and other systems. Each of these applications has its own set of interface requirements 

meaning that the interface unit must be flexible enough to handle the various 
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requirements. 

The interface is composed of two bus transceivers that consist of an input and 

output data register and a flip-flop associated with each register. The flip-flops are 

used to provide the handshaking between the APU and the external device. When a 

device loads a register with data, it sets that register's flip-flop indicating the data is 

ready. When the receiving device reads the data, it clears the flip-flop, thereby telling 

the sending device that the buffer is empty. This system is implemented with 

AM295Os which are transceivers with 8 bit registers and an associated flip-flop. 

4.9 SUMMARY 

A design of a microprogrammable architecture capable of running in real time has 

been presented. A number of microprogramming concepts have been reviewed and a 

family of microprogrammable chips described. The overall architecture, given in fig. 

4.7, contains two data busses; two ALUs, a multiplier, address generator, I/O ports, 

RAM and a number of support chips. 
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CHAPTER 5 

MICROPROGRAMMABLE IMPLEMENTATION 

OF THE. BURG ALGORITHM 

5.0 INTRODUCTION 

Having proposed a hardware configuration capable of meeting the requirements of 

the Burg algorithm, the next task is to develop the microprogram code for the Burg 

algorithm. A modular approach is taken in developing the microcode for this 

algorithm. To demonstrate possible real time operation, the theoretical run time of the 

Burg algorithm must be determined. This involves determining the maximum clock 

rate of the hardware and the time required to perform the arithmetic operations in the 

Burg algorithm. 

5.1 PARTITIONING OF THE BURG ALGORITHM 

To reduce the programming complexity, the Burg algorithm can be separated into 

several subsections which can be independently developed, tested and implemented. 

This approach might lead to a slightly slower implementation of the Burg algorithm 

because the initialization stages within each module might not make the best use of the 

resources available. However, this small decrease in speed is compensated by the large 

decrease in development time. 

Examining eqns (2.16-2.24) shows that the algorithm can be separated into the 

following stages: 

- formation of the denominator, 

- formation of the numerator, 
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- division and computation of the reflection coefficient and computation of 

the MMSE, 

- updating the prediction errors, 

- computing the prediction error filter coefficients. 

In this chapter the microcode required for the implementation of each stage will be 

discussed. 

5.2 FORMATION OF THE DENOMINATOR 

Expanding the denominator (eqn(2. 19)) into real and imaginary components 

yields: 

N-i 
D = [ (e,. (1 ))2 + (bre (i _1))2 ± (eim (i ))2 + (bin (1 _l))21. 

i =p 
(5.1) 

Initially, the errors are the actual data points, e (ii), b (n) = x (n). In the 

implementation eqn(5.1) is broken into two smaller pieces, a squaring section followed 

a tree summation stage. The resulting summation was then normalized. 

The squaring section formed partial sums are, a in the real and imaginary 

ALUs respectively. These sums consisted of 4 values that had been squared 

are (1) = (ere (1 ))2 + (ere (i—i ))2 + (bre (1 1)) + (bre (i-2))2 

aim (1) = (e (i))2 + 

(5.2) 

_i))2 + (bin (i1))2 + (him (i2))2 (5.3) 

where i = N—i p and j = 0 mt ((N— p )/2). 
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As the input data is scaled by 1/2, no overflow will occur in this stage as the 

squared values are less than 1/4. The fact that this stage forms partial sums means 

that it reduces the overall time taken to perform the tree addition by a factor of two. 

Up rounding was used when performing the multiplications in this stage. The pseudo 

code for this operation is shown in fig. 5.1. The fully pipelined microcode, given in 

fig. 5.2, shows the operation of each element of the APU during the different cycles. It 

should be noted that the intermediate values, t ,u ,v ,w ,c ,d, are stored in scratch pad 

memory. The addressing and control aspects of the microprogram are not shown in 

this figure but can be found in an internal departmental report [22]. 

5.3 THE TREE ALGORITHM 

It was shown in chapter 3 that the tree addition algorithm produces an accurate 

fixed point summation. The pseudo code for this algorithm is shown in fig. 5.3. The 

tree algorithm is basically sequential and the microcode is equivalent to the pseudo-

code. 

This algorithm incorporates two interesting techniques to handle the addressing 

and overflows. By using an additional index counter and a comparator, it 'avoids the 

need to balance the tree and thereby reduces the run time of the summation. The use 

of the comparator provides single cycle address comparisons and reduce the time taken 

to perform the tree addition by about 25%. Overflows must also be considered in any 

addition scheme. Campbell [5] used a tree algorithm that simply scaled every result 

and thereby avoided the overflow problem. This approach removes the overflow 

problem at the cost of reduced accuracy. The loss of precision results when there are 
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DENOMINATOR 

begin 

count = N - 1 - order; (* SET UP COUNTER, ADDRESS POINTER *) 
tree—count = -1; (* AND TREE POINTER *) 
addr = N - 1; 

while( Count != 0) 
begin 

resum = sqr(re_ep[addr]) + sqr(redel[addr-1]); (* HALF OF EQN 5.2 *) 
imsum = sqr(im_ep[addr]) + sqr(im_del[addr-1]); (* HALF OF EQN 5.3 ) 

count = count - 1; (* DECREMENT POINTERS *) 
addr = addr - 1; 

if( count != 0 ) then 
begin 

re_sum = sqr(re_ep[addr]) + sqr(re_del[addr]) + re—sum; (* REST OF EQN 5.2 *) 
im_sum = sqr(im_ep[addr]) + sqr(im_del[addr]) + im_sum; (* REST OF EQN 5.3 ') 

tree—count = tree—count + 1; (* PREPARE FOR TREE ADDITION *) 
re_tree_data[ tree _ count ] = re_sum; 
im_tree_data[ tree_count] = fin_sum; 

count = count - 1; (* DECREMENT POINTERS *) 
addr = addr -1; 

end 
else 
begin 

tree—count = tree—count + 1; (* PREPARE FOR TREE ADDITION *) 
re_tree_data[ tree_count] = re—sum; 
im_tree_data[ tree—count I = im_sum; 

end 
end 

return() 
end 

Figure 5.1 Pseudo Code for the Denominator 
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TREE ADDITION 

begin 

tree—Shift = 0; 

while (tree—count > 0) 
begin 
i = 0; 
j = 0; 

(* INITIALIZE COUNTER *) 

while( i < tree—count) 
begin 
re_sum[j] = re_lree_data[i] + re_tree_data[i+1]; (* PERFORM ADDITIONS *) 
im_sum[j] = im_tree_data[i] + im_tree_data[i+1]; 

if( overflow == TRUE) (* IF OVERFLOW OCCURS *) 
begin 
tree shift = tree shift + 1; (* INCREMENT OVERFLOW COUNTER *) 

stage2 = j; (* SAVE LOCATION OF OVERFLOW *) 

while ( i < tree_count) 
begin 
re_sumUj re_tree_data[i]/2 + re_tree_data[i+1]/2; (* ADD WITH A SCALING BY 1/2 
im_sum[j] = im_tree_clata[i]/2 + im_time_data[i+1]/2; 

i = i + 2; 

j = j + 1; 

if( i == tree—count) 
begin 

re_sum[j] = re_tree_data[i]/2; (* HANDLE THE POSSIBILITY OF AN ODD *Y 
im_sumlj] = imtimedata[i]/2; (* NUMBER OF DATA POINTS *) 

end 
end 

tree_count = j - 1 
i = 0; 

j = 0; 

begin (* SECOND PASS AFTER OVERFLOW *) 

re_sum{j] = re_tree_data[i]/2 + re_tree_data[i+1]/2; 
im_sum[j] = im_tree_data[i]/2 + im_tree_data[i+1]/2; 

i = i + 2; 

j = j + 1; 

if( i> stage2) 
begin 

resumfj-1} retreedata[i-2]/2; 
imsum[j-1] = imtreedata[i-2]/2; i = sumo-1] 
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end 
end 
j = j -1; (* PREPARE TO RE-ENTER MAIN TREE ADDITION ALGORITHM *) 

end 

if( i == tree_count) 

begin 
re_sum[j] = retreedata[i]; 
im_sumlj] = im_tree_data[i]; 

end 
end 
tree—count = j - 1; 

end 
returnO; 

end 

Figure 5.3 Pseudo Code for Tree Summation 
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stages in the tree algorithm where no overflows occur but scaling is performed. - 

To retain the maximum accuracy, an algorithm was developed that only shifted 

the data after an overflow occurred. The algorithm checked the overflow flag after 

every addition. When an overflow occurred, the addition causing the overflow was 

repeated after its input values were scaled by 1/2. For all the remaining additions in 

current stage of the tree algorithm the input data was scaled by 1/2 before being 

added. This ensures that no further overflows will occur in that stage. Instead of 

repeating the additions that were performed prior to the overflow, the algorithm 

proceeded to the next stage of the tree and performs the necessary scaling during that 

stage. The operation of the algorithm is shown in fig. 5.4. A shift counter is 

incremented to keep track of the number of overflows. When rounding after an 

overflow has occurred, up rounding was used in the denominator and magnitude 

truncation was used in the numerator to ensure stability. 

After the summation is completed the values are stored in a floating point format. 

That is: 

Zxj = r 21 (5.4) 

where 1 > r ≥ 1/2 and n is the shift count related to the number of overflows that 

occurred during the summations. 

5.4 COMPUTATION OF THE NUMERATOR 

The numerator is described by: 
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N—i 

N = • ere  . bre (i1) + ej,,2(i) b(i —i) 
a =p 

+ ere (i) b,,1 (i —1) - e (i) bre (i —1) ii 

(5.5) 

As with the denominator implementation, this stage was broken into two stages, 

conjugate multiplication and tree addition. The equations for the partial sums involved 

in the conjugate multiplication stage are: 

are (j) = e, (j) 're (j1) + e,. (i1) b,. (i 2) (5.6) 

+ eim (i) b (i—i) + e,,, (i —1) b,,1 (i —2) 

ai?n (j) = ere (i)bbn  —1) + e(i —i) b,,2(i2) (5.7) 

- ehn  (i) bre (i1) - e,,a (i1)) b,. (i 2) 

where i = N—i p and j = 0 int((N— p)/2). 

The basic programming differences in the numerator and denominator calculations 

are that the numerator required conjugate multiplication and employed magnitude 

truncation whereas the denominatOr performed squaring and up rounding was used. 

The pseudo-code for this stage is shown in fig. 5.5 with the microcode in fig. 5.6. 

5.5 DETERMINATION OF THE REFLECTION COEFFICIENT AND THE 

MMSE 

Having formed the denominator and numerator, the reflection coefficient can be 

found which involves a division of the form 

—2 N 2nsh1ft 

aii = D1 2dshif: 

Simplifying yields: 

(5.8) 
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NUMERATOR 

begin 

count = N - 1 - order; (* SET UP NECESSARY POINTERS *) 
tree_count 
addr = N - 1; 

while( count != 0) 
begin 
re sum = re_ep[addr]*re del[addr-1] + im_ep[addr]*imciel[addr1]; 

(*HALF OF EQN 56 *) 
mi_sum = re, _ep[addr]*im_de1[addr1] - re_ep[addr]*im_del[addr_1]; 

(* HALF OF EQN 57 

count = count - 1; (* DECREMENT POINTERS *) 
addr = addr - 1; 

if(count != O) 
begin 
re—sum = re_ep(addr)*re_del[addr.1] + im_ep[addr]*im_del[addr1] 

+ re—sum; (* REST OF EQN 5.6 '*) 
im_sum = re ep[addr]*im del[addr-1] - re_ep[addr]*im_del[addr_1] 

+ im_sum; (* REST OF EQN 5.7 ) 

count = count - 1; (* DECREMENT POINTERS *) 
addr=addr - 1; 

tree—count = tree—count + 1; (* PREPARE FOR TREE SUMMATION *) 
re_iree_data[ tree _ count ] = re_sum; 
im_Iree_datat tree_count] im_sum; 

end 
else 
begin 

tree—count = tree—count + 1; (* PREPARE FOR TREE SUMMATION *) 
re_tteedata[ tree _ count ] = re_sum; 
im_tree_data[ tree_count] = im_sum; 

end 
end 

return() 
end 

Figure 5.5 Pseudo Code for the Nutherator Stage 
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Busses Real Imaginary Multiplier 

Real Imag ALU ALU X Y 

read e,1,, b 1 dim = w,,,, + v111, w,. = e1 1b/,,, 

read b' d,. = V,. + W,.4, aim (j-1) = di,,, + Cim tj,,,= ebj,,,. 1 

a,.4,(j—l) = (!,. + Cre tr,.= re rq 

write a,.4, (j-1) aim(j-1) Uim = bre 'e/m 

read e,!;1 b/;2 Cj = Uim tim Ure = elm bf,' 

read b 2 e/, 1 c,.4, = u,., + i,.4, vi,,, = 

- i-1ji-2 
,.4, v,.4,.e ,. 

- i-2. i—i 
- , w,, Im 

Figure 5.6 The Resource Usage in the Fully Pipeined Numerator Stage 
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a•• = - .. LL2—(dshift - nshift - 1) 
Di 

(5.9) 

where 1 > N , and Di ≥ 1/2. The scaling factors for the numerator and denominator 

are nshift and dshift respectively. 

The Taylor series expansion method discussed in chapter 3 was used to perform 

the division. A simple shifting program was written to evaluate the difference in the 

scaling factors. Magnitude truncation was used in performing this part of algorithm. 

This algorithm was essentially sequential in nature and the microprogram effectively 

follows the pseudo-code, shown in fig. 5.7. 

The MMSE of order j was calculated using 

MMSEJ = (1 - (a/A)2 - (a&)2) . MMSEJ_1 (5.8) 

It was a relatively straightforward task to perform this operation and the corresponding 

pseudo code is given in fig. 5.8. 

5.6 UPDATING THE PREDICTION ERRORS 

The lattice structure shown in fig. 2.6 is used by the Burg algorithm to update the 

prediction errors. This structure is described by the following equations: 

ere (i) = ere (i) + a/A b (i—i) - a1 bim (i—i) (5.10) 

(i)eiln  = ejm (i' + a33 b (i—i) + a/, bre (i1) (5.11) / re im 

bre (i) = bre (i4) + a33 e (i) + a/, . eim  (5.12) re ye ' 

bj,,2(i) = bim (11) + e• (i) - a/,j ere(i) (5.13) re in 

Implementation of these equations is straightforward as no overflow problem will be 
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DIVISION 

begin 
x = 1 - denom; 
z = 1/2 + x12; 

x = 1 - B *) 
(* EQN 3.35 *) 

for (k=O ; k< 14; ++k) 
z = 1/2 + x*z; (* EQN 3.34 *) 

shift_adj = dshift - nshift - 1; 

for ( i = shift_adj; I >= 0; —1) 
z z/2; (* ADJUST FOR SHIFT DWF1RENCES *) 

returnO; 
end 

Figure 5.7 Pseudo Code for Taylor Series Division 

MMSE CALCULATION 

begin 

mmse = mmse*(1 - re_aii*re_aii - im_aii*im_ail); (* EQN 5.8 *) 

returnO; 
end 

Figure 5.8 Pseudo Code for MMSE Computation 
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encountered due to the prescaling of the data. Starting at the end of the data (i.e. 

i = N - 1) and working towards the start of the data (i = p) permits the errors to be 

updated in place. The pseudo code for the lattice filter is shown in fig. 5.9 and the 

microcode is shown in fig. 5.10. 

5.7 DETERMINATION OF THE PREDICTION ERROR FILTER 

COEFFICIENTS 

Computation of the PEF coefficients is done by using the following equations: 

= + a/si a/ 1'J 1 + a/,,J . a/ 1'11 (5.14) 

abi = aj/ 1 + a/J a1 1'1 ' - a/,f (5.15) 

In order to reduce the number of I/O operations and to perform the computations in 

place, the computation of the real and imaginary components of a1,1 and a...1,1 were 

performed simultaiieously via the Levinson butterfly. The relationship between these 

two terms is shown in fig: 5.11. Examining this figure indicates that the computation 

of the PEF will be similar to the calculation involved in the lattice structure. The 

differences lie in the addressing and the fact that an overflow can occur. A block 

floating format of number representation is used in this part of the Burg algorithm to 

accommodate overflows. The pseudo code for, the PEF is given in fig. 5.12 and the 

microcode is given in fig. 5.13. 

5.8 RUN TIME EQUATIONS 

Having proposed a possible implementation, the next task is to theoretically 

determine the maximum speed attainable with this architecture. The task can be 
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LATTICE 

begin 

count = N - 1 - order; 
addr = N - 1; 

while( count >= 0) 
begin - 

re_eptemp = re ep[addr] + re_aii*re_de1[addr1] - imaii*imde1[addr1]; 
(* EQN 5.10 *) 

im_eptemp = im_ep[addr] + re_aii*im_de1[addr1] + im_aii*re_de1[addr1]; 
(* EQN 5.11 *) 

redel[addr] = re_del[addr-1] + re_aii*re_ep[addr] + im_aii*im_ep[addr]; 
(* EQN 5.12 *) 

im_del[addr] = im_del[addr-1] + re_aii*im_ep[addr] - im_aii*re ep[addr]; 
(* EQN 5.13 *) - 

re_ep[addr] = re_eptemp; 
imep[addr] = imeptemp; 

count = count - 1; 
addr = addr - 1; 

end 
retum() 

end 

Figure 5.9 Pseudo Code for Updating the Predictions Errors 
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Busses Real Imaginary Multiplier 

Real Imag ALU ALU XY 

read dim = b/, 2 - vi. w, = a/e/,' 

read b 1 b/ 1 b = d, + Vre wim = a,,' e/, 1 

read e7 elm b 2 = d + w tim = a, •bf;1 

write b 2 b' 2 = ajl• inn 

c1,,, = e/, + t, uj,,, = a/-b;' 

c,., = e, - tre elm = Cim + Uim u = a, re 

= Cr, + i4, Vre = a e 

write e, e/, dim = b/,,, + Vre vi. = a/ e 

Figure 5.10 The Resource Usage in the Fully Pipelined Lattice Stage 
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* 

aij 

Figure 5.11 The Schematic Representation of the Levinson Butterfly 
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PEF 

begin 

i - order/2; 
if( i==O)returnO; 
j = order - 

while ( i> 0) 
begin 

re_tempi = re_aij [i] + re_aii*re_aij[j] + im_aii*im_aij[j]; (* EQN 5.14 *) 

im_tempi im_aij[i] + re_aii*im_aij[jj + im_aii*re_ajj[j]; (* EQN 5.15 *) 
re_tempj = re_aij[j} + re_aii*re_aij[ij + im_aii*im_aij[i]; 

(* EQN 5.14 for j-i coefficient *) 
im_tempj = im_aij{j] + re_aii*im aij[i] - jmajj*reaij[i]; 

(* EQN 5.15 for j-i coefficient *) 

if( overflow == TRUE) 
begin 

pef shift = pef shift + 1; (* INCREMENT OVERFLOW COUNTER *) 

for( k = 1; k < i ; ++k) (* SCALE DOWN ALL PREVIOUSLY COMPUTED COEFFICIENTS *) 
begin 
re_aij[k] = re_aij[k]/2; 

imaij[k] = im_aij[k]I2; 
reaij[order - k] = re aij[order - 
im_aij [order - k] = im aij[order - 

end 

while ( i > 0) 

(* FOR ALL REMAINING COEFFICIENTS COMPUTE WITH S= OF 1/2 *) 

begin 
retempi = re_aij[i]/2 + re_ali*re_aij1j]/2 + im aii*imaij[j}/2; (* EQN 5.14 *) 
im_tempi = im_aij[i]/2 + re_aii*im_aij[j]/2 + iin_aii*re_aij[j}/2; (* EQN 5.15 *) 
re_tempj = re_aijlj]/2 + re_aii*re_aij[i]/2 + im_ali*im_aij[i]/2; (* EQN 5.14 *) 
im_tempj = im_aij]/2 + re_aii*im_aij[i]/2 - im aii*re aij[i]/2; (* EQN 5.15 *) 

re_aij[i] = re_tempi; 
im_aij [i] = im_tempi; 
re_aij[j] = re—tempi; 
im_áij[j] = imtempj; 
i = i - 1; 
j = order - i; 

end 
end 

(* TRANSFER VALUES INTO COEFFICIENT ARRAY *) 

re_aij{i] = re—tempi; (* TRANSFER VALUE INTO COEFFICIENT ARRAY *) 
im_aij[i} = im_tempi; 
re_aij[j] = re—tempi; 
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im_aij[j] = im_tempj; 
end 

for( i = 1; i = pef_shift; +-i-i) 
(* SCALE REFLECTION COEFFICIENT BY CORRECT AMOUNT *) 

begin 
reaii = re_aii/2 
im_aii = im_aii/2 

end 

reaij [order] = re—au; 
im_aij[order] = im_aii; 

return() 
end 

Figure 5.12 Pseudo Code for PEP Coefficients 



8, 

Busses Real Imaginary Multiplier 

Real Imag ALU ALU XY 

read a/7 a/, dre = Vp. + W Wj = a/, 14 

read. a,, dre = lire - Wre tim = 

a11 = + d• c re tin a11 = a11 • d• tin tin tin t = a1  a1 re tin tin 

u• = a1_ att tin tin re 

write a 1 a, 1 Cim = Up1 - tjppj Ur. = a/,- a, 

write /7 1 a re a/' 1 Crc = U • + tre Vre = 

- i. ii 
tin - re tin 

ai.I - 1_1_ 
- a c I - i_i- . 

- a - i. ii 
Wre - a1 a 

Figure 5 13 The Resource Usage in the Fully Pipelined PEF Stage 
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broken into two areas, determining the clock speed and finding out how many clock 

cycles are required for each stage of the algorithm. 

5.8.1 DETERMINATION OF THE CRITICAL PATH 

The maximum operating clock speed is governed by the propagation delay in any 

given data or control path. The path that has the most propagation delay is known as 

the critical path. Fig. 5.14. shows the two candidates for the critical path in' this 

hardware. The timing analysis, shown in table 5.1, indicates, that the data path is the 

critical path and that 138 ns are required for the data to be written to the RAM. This 

means the clock speed is limited to 7.25 MHz. 

5.8.2 RUN TIME OF THE BURG ALGORITHM 

The run time equation of the Burg algorithm can be found so that the operational 

speed can be determined. This analysis is performed by determining the critical 

resource for each stage and the number of cycles needed for that resource to complete 

the operation. Each stage of the Burg algorithm consists of three basic parts when it 

comes to determining the run time. In each subroutine there is an initialization phase 

where parameters used in that stage are set. As the pipeline takes one sequence of 

instructions to load and another to unload, the first and last instructions take additional 

cycles as they are not fully pipelined. Finally there is the fully pipelined stage of the 

instruction. 

Table 5.2 shows the cycles taken to perform the above stages for each subroutine. 

It should be noted that most subroutines do not have a fixed cycle time. For example 

there are two main paths in the tree algorithm and which path is chosen depends on 
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Pipeline Register 

ALU 

Bypass Buffers 

Bidirectional Buffer 

'V 

RAM 

a) Data Path 

Pipeline Register 

CC Multiplexor 

Sequencer 

Control Store 

b) Control Path 

Figure 5.14 The-Control and Data Paths. 
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Table 5.1 Timing Analysis of the Control and Data Paths 

Path Device Action Component Time 

Control Path 

Pipeline cik to output 74LS374 20 ns 

CC multiplexor select to output 74157 25 ns 

Sequencer CC to output Am291O 30 ns 

CS Addr. to output Am9 150 25 ns 

Total 100 ns 

Data a th 

Pipeline cik to output 74LS374. 20 ns 

ALU Register to output Am29501 21 ns 

Bypass Buffer OE to output 74LS241 25 ns 

Bidirectional Buffer input to output 74LS241 12 ns 

Ram Write Pulse Am9 128 60 ns 

Total 138 ns 
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Table 5.2: The Run Times of the Various Stages of the Burg Algorithm 

Function 

DENOMINATOR 

Twt 

6p 

T 

lip 4Np - 2p2 - lOp 

NUMERATOR 8p 12p 4Np - 2p2 _  2p2 -  lOp 

LATTICE 5p 24p 8Np - 4p2 - 2Op 

TREE ADDITION (Denominator) 

min 

max 

4p 

4p 

7np/2+3NpI2-3p2I2 

21npI2+7Np/2-7p2I2 

TREE ADDITION (Numerator) 

min 

max 

4p 

4p 

7mp/2 + 3Np/2 - 3p2/2 

21np/2+9Np/2-9p2I2 

PEP 

min 

max 

6p 

6p 

14p 

14p 

2p2-8p 

3p2 

MISC. (Divisions normalizations, 
MMSE, initializations, etc.) 

min 

max 

23 +128p 

23 + 
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whether or not an overflow occurs. In this case a minimum time (no overflows) and a 

maximum time (overflows in every stage) were derived. 

The total run time of the Burg algorithm can now be determined. This is done by 

adding all of the subroutines in table 5.2. It should be noted that the minimum run 

time for the miscellaneous section was used in both the maximum and minimum run 

time equations. The maximum run time of the miscellaneous section physically 

corresponds to the case were the data values are very small and all other run time 

sections are a minimum. 

TBurgmax = ( 182p + 24Np - 13p2 + 2lmp + 23 )Tcl0ck 

TBgjrgrnjn = ( l'74p + l9Np - 9p2 + 7mp + 23 )TClQCk 

(5.16) 

(5.17) 

where p is the model order, N is the number of data points and m = 10g2(N). Using 

eqn(5.16) and the theoretical clock speed of 7.25 MHz, a 16th order model using 64 

complex data points can be computed in 3615 jis . This translates to a theoretical 

worst case sampling rate of 17.7 kHz which is acceptable for real time operation. 

5.9 SUMMARY 

The microprogramming requirements of the Burg algorithm were examined in this 

chapter. A modular approach towards implementing the algorithm produced an 

implementation that was relatively simple. The maximum clock speed was determined 

using critical path analysis and the run time equations the Burg algorithm were 

developed. The real time operation of the processor was shown to be feasible. 



9.5 

CHAPTER 6 

RESULTS AND CONCLUSIONS 

6.0 INTRODUCTION 

The hardware discussed in chapter 4 was built using wire-wrap technology and is 

shown in fig. 6.1. The microprogramming discussed in chapter 5 was written with the 

aid of a meta-assembler and tested through a downloading unit. The performance of 

the hardware and the microprogramming are analyzed in this chapter. The overall 

accuracy, maximum experimental clock speed and the run time performance are 

discussed. Finally, recommendations for areas of improvement and future development 

are suggested. 

6.1 OVERALL ACCURACY 

When dealing with fixed point numbers a certain degree of roundoff error is 

encountered. The effects of this error as it applied to certain areas of the 

implementation were described in chapter 3. The overall effect of roundoff error was 

not examined in detail as the error is dependent on the data. In lieu of a theoretical 

roundoff error analysis for the complete algorithm, a comparison between a floating 

point and the fixed point Burg algorithm was conducted. A floating poinf algorithm 

was written in Fortran 77 and run on the research VAX75O in the department. The 

fixed point algorithm has been discussed in chapter. 5. 

Two test signals were used, one real and one complex. The real test signal is 

described by the following equation: 



•_Jr'ii5 jjjr 

if1ffff4°t 
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x (n) = cos (2t(0.25627)n) + cos (2t(O.26877)n) + v (n) (6.1) 

where v (n) is Gaussian white noise with an RMS amplitude such that the signal to 

noise ratio was 20 dB. The complex test signal consisted of the sum of 8 complex 

exponentials: 

s(n) = 8 e JO)gn 
(6.2) 

Figure 6.2 shows the pole locations of the complex exponentials used in this test 

signal. Noise was not included in this test so that the effects of roundoff errors could 

be determined. 

Fig. 6.3 shows the spectral estimates obtained by applying applying a 16th order 

model to 128 data points of the real test signal. A 16th order model was used due to 

the close spacing of the peaks and the presence of noise. Clearly the BEE' algorithm 

performs well when compared to the FLP algorithm. Fig. 6.4 shows the results when 

64 data points of the complex signal were modeled with an 8' order Burg model. 

Again the BFP algorithm compared favorably to the FLP algorithm demonstrating that 

the hardware implementation is accurate. The small differences that are present can be 

attributed to the roundoff error in the BR' implementation. 

6.2 ROUND-OFF ERROR IN THE PREDICTION ERRORS 

Having examined the spectral estimation, attention was directed towards the 

roundoff error present in the algorithm itself. A good measure of these errors can be 

determined by finding the mean and variance of the error in the prediction errors. The 

fact that the prediction errors are used in every stage of the Burg algorithm and are 
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Figure 6.2 Pole Locations of the Complex Exponenthis 
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regenerated for every order based on previously computed values implies that a large 

amount of roundoff error could accumulate. The mean and variance of the error 

between the BFP and FLP Burg algorithms for various model orders are given in table 

6.1 for both test cases. For the given data sets it can be seen that the worst roundoff 

error had a value of 8.9 which translates into 3 to 4 bits of lost resolution, and the 

average mean error lies between 2 and 3 which translates to a 2 bit error. In most real 

time situations the data would be gathered by an 8 to 12 bit A/D and the sampling 

roundoff error is much more significant than the modeling error. 

While the mean error does not increase dramatically with model order, the 

variance increases tremendously. As the model order increases, the prediction errors 

theoretically decrease. Therefore the round off error that is present becomes 

significant and is also modeled thus causing a dramatic increase in the variance. 

6.3 ACTUAL RUN TIMES 

The actual operating clock speed of the implementation lies somewhere between 

7.2 MHz where the algorithm would sporadically fail and 7.5 MHz where it would 

frequently fail. This ambiguity is due to the wire-wrap implementation which 

introduces a great deal of noise. The lower clock speed was taken as the maximum 

operating limit. An operating speed of 7.2 MHz translates to a clock period of 139 ns 

which is close to the predicted value of 138 ns. 

Table 6.2 shows the experimental run times obtained when the clock speed was 

7.2 MHz. For comparison, the minimum and maximum theoretical run times 

determined in chapter 5 are given. Examining table 6.2 shows that experimental run 
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Table 6.1 : Block Floating Point Round off Error Statistics 

order 

p 

normalized 
variance 

normalized 
mean error 

real complex real complex 

0 0.97 2.2 0.02 0.005 
1 2.6 24 0.32 0.87 
2 11 41 1.1 1.9 
4 1000 2400 0.83 8.9 

8 5500 16700 2.67 1.1 

16 16000 3.30 
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Table 6.2 Run Times for Different Values of N, and the Order 

order N 
min actual max 

PS PS PS 

1 

• 

16 72 76 92 

32 114 136 143 

64 199 228 247 

128 368 400 453 

2 

16 140 125 173 

32 225 240 281 

64 394 420 489 

128 732 840 902 

16 272 200 338 

32 440 440 552 

64 779 820 970 

128 1455 1700 1794 

8 

32 847 1000 1079 

64 1523 1600 1915 

128 2875 3100 3564 

16 
64 2898 2900 3739 

128 5603 5400 7035 
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times lie in between the projected minimum and maximum run times for most cases. 

The times that lie below the projected minimum can be attributed to the experimental 

procedure used in determining the actual run times. The corresponding sampling rates 

for the run times are shown in table 6.3. It is clear that real time operation can be 

achieved for high model orders since a 16t1 order, 128 point model was shown to be 

performed in 5.4 ms with an effective sampling rate of 23 kHz. 

6.4 FURTHER CONSIDERATIONS 

Though specifically designed to perform the Burg algorithm this APU can be 

used for a number of applications. The remaining stages of the DSA mentioned in the 

introduction can be developed using the processor as the major hardware component. 

Should this processor be incorporated in the DSA, the external JJO interface should be 

changed from the bus transceivers to first-in first-out stacks to increase the speed of the 

data transfers. 

Reliability can be increased by producing a printed circuit board version of this 

processor and using updating algorithms. Using an updating Burg algorithm [23] 

would improve the speed but at the cost of resolution. Campbell [5] has suggested 

that band selectable digital filtering be employed to reduce the model order of the 

signal under analysis. By employing this preprocessing technique and using the high 

speed processor discussed in this thesis, it might be feasible to implement a single 

board DSA with the high speed processor developed in this thesis being used as the 
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Table 6.3 Corresponding Sampling Frequencies .(In kHz) 

data points 
N 

model order 
p 

1 2 4 8 16 

16 211 128 80 

32 235 133 72.7 32.0 
64 280 152 78 40 22 

128 320 152 75 41 23 
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hardware for the complete DSA. 

6.5 CONCLUSIONS 

The goal of this thesis was to design a processor capable of performing AR 

modeling. in real time. The Burg algorithm was selected as the modeling algorithm 

because it offered the best compromise between speed and accuracy. To ensure the 

stability and accuracy of the algorithm in a block floating point environment the errors 

arising from block floating point operations were examined. A number of methods 

including a tree addition algorithm, a modified division algorithm and a hardware 

rounding unit were used to mitigate the effects of these errors. 

Microprogrammable components were incorporated in a highly pipelined 

architecture that supported real time operation. To perform' complex arithmetic in real 

time a processing unit consisting of two data busses, two ALUs and a multiplier was 

proposed and implemented. Although additional hardware could have increased the 

overall speed the above configuration offered a good trade-off between hardware 

complexity and computational speed. 

The Burg algorithm was broken into stages and an efficient microprogrammed 

implementation of each stage was developed. The use of a modular approach to the 

programming provided a good compromise between program development time and 

operational speed. The architecture was able to operate at a clock speed of 7.2 MHz 

and permitted real time operation of the Burg algorithm. The BFP algorithm was in 

good agreement with the FLP algorithm for the test cases considered. A worst case 

roundoff error of 4 bits was observed when an error analysis between the BFP and 
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FLP algorithms was conducted. This work has been summarized in a paper whose 

abstract has been accepted by the proceedings of the TEF.E. The full paper is presently 

under review [25]. 
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