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Abstract

Managing the impact of software change request (CR) requires proper prediction to minimize cost

and enhance quality. Traditional techniques only identify source code entities likely to be impacted

by the implementation of CR. However, looking at code entity is not enough. To ensure maximum

utility and return on investment, decision-makers also need to consider effort and duration require-

ments. It is more challenging for Minimum Viable Products which need to implement essential

CR promptly. This thesis proposes an analogy based reasoning approach called Vector Change Im-

pact Analysis which can generate file, effort and duration predictions simultaneously. Case-studies

on industrial and open source projects highlight effectiveness of VCIA. The proposed approach is

integrated into an analytics dashboard, for software company Brightsquid Inc. Analyzing perfor-

mance results under different settings, VCIA achieves 67% file impact prediction recall. For effort

and duration prediction, achieved accuracy is 44% and 30% respectively. Applying VCIA to com-

plement expert knowledge has resulted in improved planning and organization, higher customer

satisfaction and better forecasting of future returns.
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Chapter 1

Introduction

1.1 Motivation

Addressing software requirements is of paramount importance to the success of software. Require-

ments represent intended goals and objectives that should be fulfilled by the software. They define

the capabilities and functionality of the software system. Requirement generation is a continuous

process, it is therefore not possible to satisfy all requirements in a single release of the software.

Alterations and improvements are being requested all the time. These appear in the form of Change

Requests (CRs), which are also alternatively referred to as tickets or issues. CRs appear during all

parts of system development and maintenance [59]. They originate from changes in stakeholder

demand, market, tools and technology [26, 66]. Change requests need to be handled efficiently to

reduce software cost and improve quality [95]. The following lists the primary motivations of this

thesis:

Aid Change Request decision making: Software development takes place in constrained envi-

ronments with limitations on resources, mainly time and human expertise available

per release. As the implementation of requests consumes these finite resources,

decision-makers need to choose a CR subset. The selection of CRs for a particular

release is an investment of these limited resources, and the primary objective if to

maximum utility and return on investment. A crucial part of this decision making

needs to take into account effort and duration required (for any CR). Thus, the ap-

proach taken by traditional impact analysis techniques to predict the impact on the

code base is not enough. Of course, when planning any change file impact need to

be considered. However, decision-makers will also need to evaluate the time that

1



will be required to implement the change. Another critical factor is the amount of

effort that will be necessary to fulfill changes.

Support Minimum Viable Product (MVP) development: MVP development concentrate on pro-

viding a set of critical features which appear promising to potential users. The aim

is to design, develop and release accelerated products to hit the market quickly.

MVP help to elicit customer feedback and also secure position in the market [78].

The product is incrementally refined with multiple iterations, with more complete

set of features being added over time, making the system complete and mature.

Compared to large and medium organizations, small emerging companies, typi-

cally start-ups operate with additional resource constraints. They focus on satisfy-

ing Minimum Viable Products (MVP), which is an encouraging and popular way

to enter the marketplace in relatively shorter time [29]. The fast-paced nature of

development usually translates to more and frequent releases, as a result estimation

decisions need to be made more often. In addition, constrained resources need to

be allocated in a manner which enhance return and improve predictions. Based on

this discussion, it is clear that change management is particularly challenging for

MVP. Thus, the need for better comprehension and management of change request

is significantly importance for MVP software development.

Reduce cognitive load: Modern software involve vast numbers of entities interacting in an elab-

orate setup. Due to the sheer volume of data associated with real-life software

systems, it is impossible to identify and handle changes manually. Integrating com-

putational intelligence with human expertise has become popular in software en-

gineering [80]. In particular, researchers and practitioners have developed tools to

address a whole spectrum of software engineering activities, starting with require-

ment management, software design, coding and testing to evaluations [79]. Various

literature have highlighted improvement in software decision making with the in-

2



tegration of tools, and computational intelligence in general [19, 92]. The second

chapter of this thesis, provide a detailed account on the state of tool support of

change impact analysis. This analysis have uncovered limitations with availability

and applicability of existing tools for change impact assessment. Thus, it would

be beneficial if tool backed techniques can be developed which can address these

drawbacks.

1.2 Challenges

Software development is a complex process which generates a complex web of interacting enti-

ties. Usually, products are offered as variants on different OS and platform variations. The result

is a complicated system with different functionality implemented across large number of files.

The scarcity of time and resource make the task of software change decision making particularly

challenging. The following list highlights some of the key challenges:

• Duration & effort consideration: Existing literature emphasize on the identifi-

cation of impacted code components [19]. Starting with an initiating entity such

as CR, file or method the focus is the identification of file, method or class that

might be impacted by the corresponding initiating entity. Also, some of the tech-

niques utilize class data, which restricts the usage to object-oriented systems. As

already stated before, looking at changes to code entities only does not aid proper

decision making, because decision-makers cannot make an informed decision on

the resource allocation and the perceived return on investment. Looking further

into existing literature [57] revealed that there is no consideration of the effort or

duration that might be required to implement the change. Thus decision making on

software change becomes more challenging for developers and product managers.

There is some literature which focuses on predicting the effort and duration based

on CR textual content and additional attributes. But these approaches have not been
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integrated or tested together with code impact analysis techniques. Moreover, most

of the literature is directed towards duration prediction for Bug type change requests

and very few on effort estimation from change request directly.

• Lack of industrial validation: The techniques established in existing literature

have mostly been experimented using open source software (OSS) project data.

OSS projects are different compared to industrial projects, the latter being more

strict in terms of processes and policies. People working in OSS are usually vol-

unteers and the release window are usually flexible. On the other hand employees

working in the industry receive remunerations and have specific release timing win-

dow. These fundamental differences to OSS, lead to significant disparity in change

requests being implemented and the corresponding modified files. As a result, data

stored in repositories are also significantly different. Thus code impact analysis, as

well as effort and duration prediction techniques, need to be validated using both

industry and OSS data, to ensure that results are repeatable and transferable [71].

• Lack of tool support: There are some tools which perform code impact analysis.

However, these tools are not generic for many reasons. Firstly, four of the five tools

analyzed, perform code impact analysis in Java1 programs only. Secondly, a ma-

jority of the tools act as plugins for Eclipse2 IDE, which would force developers

to use specific IDE for development and impact analysis. It may be counterproduc-

tive pushing developers towards particular IDE or platform. Moreover, some of the

tools require human intervention, which makes impact analysis less efficient and

more labor intensive. Finally, tools have been primarily developed with the devel-

oper in mind and possess little industry validation.

1https://www.java.com/
2https://www.eclipse.org/ide/
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• Reliance on high churn code data: Existing literature generate knowledge base

using two categories of data i.e., CR and code [72]. CR data refers to primarily

textual attributes of change requests such as CR Title and CR Description. The

second category, code data refer to various textual entities existing in the code,

such as code comments, identifier names, method names, class names, etc. CR

data is relatively stable because it does not go through many modifications, after

the request is created in the repository. Conversely, code data can go through big

rapid changes, as the code files continue to be regularly modified and updated, by

developers working on the different functionality. Thus, code changes would need

tracking and corresponding knowledge base would require major updates in short

intervals.

1.3 Research Objectives

The discussion in the preceding two sections formulate the motivation for this thesis. Conse-

quently, the main goal of this thesis can be defined as “ To design and implement a technique

which can predict the files impacted, effort and duration required to implement a change

request”. Based on the main goal, the following research objectives are defined:

• RO1: Review existing literature related to change impact analysis, effort and dura-

tion prediction.

– RO1.1: Analyze and classify existing literature based on decision

indicators, data source, issue type and techniques.

– RO1.2: Evaluate the state of industry validation.

– RO1.3: Evaluate the state of tool support.

• RO2: Design proposed proposed techniques which can predict the impact with re-

spect to a change request.
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– RO2.1: Predict files impacted by change request.

– RO2.2: Predict effort required to fulfill change request.

– RO2.3: Predict duration required to fulfill change request.

• RO3: Evaluation of proposed techniques towards predicting file impact, effort and

duration required for change request.

– RO3.1: Case study on real-world industry data.

– RO3.2: Case study on open-source data.

• RO4: Development of an integrated tool based on the proposed technique.

– RO4.1: Development of a tool which can predict files impacted as

well as effort and duration required.

– RO4.2: Validated by using in an industrial setting and overcome

limitations of existing impact analysis tools.

1.4 Solution overview

Towards fulfilling the objectives RO 2,3 and 4 stated in the previous section, this thesis proposes

three textual similarity based techniques for file impact prediction, which follow Analogy Based

Reasoning method of inferring from previous problems and solutions. Knowledge base, which

store past history (problems and solution) is constructed using past CR textual data, and informa-

tion on the files they impacted. For a query, the textual similarity is used to define analogy i.e.,

similarity with solved instances, to make predictions for the query. The three techniques all use

Bag of Words (BOW) [62] - a multi-set representation of textual terms with repetitions allowed.

The first technique use textual similarity of BOW representation of change requests to make the

prediction. Textual similarity is widely used in literature [20, 21] for making predictions. The sec-

ond technique integrate textual similarity with topic similarity, using topics generated from Latent
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Dirichlet allocation (LDA), to make the prediction. LDA is another technique being widely used

in software engineering [23]. Finally, the third technique generate file coupling and integrates that

with textual similarity. Coupling was utilized in a number of impact prediction literature [32, 45].

The first two techniques are used for file impact, effort and duration prediction, while the third

model (textual similarity with coupling) is used only for impact prediction.

The techniques were evaluated using two case studies, performed under diverse settings. The

first case study was performed at the software development unit of Brightsquid, located in Cal-

gary, Canada. It is a start-up company with a MVP focus and are keen to improve efficiency

through software analytics driven solutions. The effort was part of Natural Sciences and Engi-

neering Research Council of Canada (NSERC) industry collaboration (CRD)3 project. Subset of

the results and findings from the first case study, appear in the paper [43]. The second case study

was performed on two well known OSS projects [85]. In both cases, performance of proposed

techniques are evaluated with respect to file impact, effort and duration prediction. The perfor-

mance are analyzed under different perspectives, including comparison of results obtained with

industry and OSS data, which helps to ensure consistency and reliability. This thesis also reports

on a tool, based on the proposed techniques, that has been integrated into an analytics dashboard

for Brightsquid.

1.5 Thesis structure

The following list outlines the structure of thesis work.

• Chapter 1: Statement of thesis motivation, outlines of the challenges, list of re-

search objectives and finally the solution approach.

• Chapter 2: Description of the background, core concepts and literature review of

existing approaches.

3NSERC-CRD-486636-2015
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• Chapter 3: Introduction of the preliminary concepts, process, data and evaluation

measures related of the proposed techniques.

• Chapter 4: Reporting results from two case studies conducted in real-world indus-

try and OSS projects.

• Chapter 5: Outline and description of the tool developed following the techniques

defined for file impact, effort and duration prediction.

• Chapter 6: Summary of the contributions, highlight of key results and outline of

future research directions.
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Chapter 2

Background & Literature Review

2.1 Background

This chapter begins with an overview of software development methodology and software change.

Later existing literature related to file impact, effort and duration prediction with respect to change

requests are presented. Existing literature is analyzed in terms of the extent to which file impact

techniques consider effort and duration requirements, and vise-versa. Subsequently, the state of

industrial validation and tool support availability is examined, towards providing change impact

decision making. The chapter is intended to provide introduction to the fundamentals of the related

concepts and provide justifications of proposed techniques outlined in the next chapter.

2.1.1 Iterative development

Software development methodology typically follows either linear or repetitive approach. In lin-

ear approach such as waterfall model [54], development activities proceed in a sequential pattern.

Key activities such as analysis, design, implementation, testing and release happen sequentially.

However, this is too restrictive and not feasible in a dynamically changing landscape such is soft-

ware development. A more popular approach is the repetitive software development methodology

called iterative software development [55]. Compared to linear models, development activities do

not stop after one cycle, rather it keeps on repeating the activities in multiple cycles or iterations.

Figure 2.1 outline the operating characteristics of iterative development. This is more popular be-

cause it allows change to take place more easily, as releasing software in multiple iterations gives

the ability to continuously integrate stakeholder requirements. Also, planning and risk assessment

become easier to integrate, as activities are spread across iterations, which can be adjusted more

easily to changing requirements. However iterative approach presents an additional challenge -
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requirement changes need to be handled on a continuous basis as development is always ongoing.

Stakeholders will come up with new requirements due to various external and internal scenarios.

The inherent expectation is that these changing requirements will be accommodated in upcoming

releases. Subsequently, change impact decision making is also continuous. Decision makers will

constantly need to decide on which requirements (change requests) to implement, considering the

cost and impact.

Figure 2.1: Figure showing Iterative software development

2.1.2 Software change

Software change can be defined as the process of altering software or constituting modules after

delivery or release. This is primarily done to rectify faults, improve performance or adapting

to changes due to internal or external factors [41]. The underlying reason for the change might

originate from alternations in software landscape. for example marketplace, demand, stakeholders,

technology etc. [26, 66]. Reacting and changing to these scenario is important because it helps to

keep the software operational and relevant [56]. In order to accommodate the altering landscapes,

software systems usually go through small and frequency changes. Software change is therefore an

inevitable continuous process and there is a high probability that these changes will have adverse

effects on the original software system [57].
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Modern tools such as Zendesk1 and other software project management technologies allow

companies to collect user feedback related to their software product directly. They help to cap-

ture various changes to the shifting landscape. These feedback, in addition to regular followup

client meetings and internal development monitoring by the software company themselves, gen-

erate many software requirement changes. These are converted to Change Requests, which are

essentially software requirement specifications that define the requested changes in a thorough and

systematic manner, outlining the user requirements and business needs [7]. Software changes gen-

erating these CR, start as soon as the first delivery of the software [22] is rolled out. The changes

occur over the course of system development and maintenance [59].

Making changes to software has become particularly challenging because modern software

systems are typically large and complex. In this scenario, software systems must be able to accom-

modate continual change to maintain utility and effectiveness [60]. Due to the sheer size of real-life

software systems, it is impossible to identify and handle related changes manually. Key decision

makers need to carefully understand and assess the risks before the design and implementation of

change are initiated [19]. To accommodate and facilitate software changes, software developers

must be provided with adequate tools [92].

Change requests are usually stored in repositories for future access and record keeping. As

more than 85% of software requirements appear in the form of Natural Language [76], each CR

is described with a long textual elaboration called Description and a subject referred as Title.

The subject of these CR cover a wide variety of development aspects for example bug reports,

improvements, feature requests, compatibility issues and much more. The primary challenge is

to infer file impact with effort and duration requirements from words and phrases presents in the

natural language representation.

1www.zendesk.com
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2.1.3 Vector Change Impact Analysis (VCIA)

Implementing software change requests consume valuable resources, primarily in the form of time

and human resources e.g., analysts, developers, QA, testers etc. At any point in time, there is a

backlog of change requests waiting to be implemented. As software development takes place in

constrained environments, naturally there are not enough resources to implement all CR together.

The problem is magnified for start-up and small MVP development focused organizations, oper-

ating with limited resources as well as additional time pressure. Planning for a release, the main

objective of decision makers is to select CR subset which would provide maximum return on in-

vestment. In this case, investment being the allocation of time and the effort that personnel can put

into the change requests. A crucial part of this decision making therefore need to take into account

the required effort and duration requirement for implementing the change request. This will help

to efficiently allocate the time and available effort on those CR which would return higher value

and benefits for the organization.

An important point to consider here is that effort and duration, which are both measured in

terms of time, is not the same. Effort determines the amount of work that will be required to

complete a change request. It is usually measured in terms of man-hours. Duration, on the other

hand, denotes the amount of time that will be required to complete the change request, which is

usually measured in calender days. The duration required is primarily determined by the perceived

benefit. If the perceived benefit is high or if a change request address key functionality that requires

immediate focus, then the CR will be worked on immediately. This is supported by multiple

literature which report that the effort may not always directly correlate to the duration needed

to complete a change request [27, 64]. Thus in thesis effort and duration are treated as different

entities and predicted separately.

As traditional change impact analysis only looks at affected code components, with respect to

any change, it is difficult to assess maximum return with only this information. Thus, the approach

taken by traditional impact analysis which predict impact on the code base only, is not enough.
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This thesis refers to these three dimensions of change request i.e., code files impacted, effort and

duration as the vector impact of change request. In this thesis, three techniques for vector impact

prediction are designed, proposed, implemented and validated. The proposed approach is called

Vector Change Impact Analysis (VCIA).

2.1.4 Mining Software Repository (MSR)

Software repository store vast volumes of different software artifacts which are generated through-

out the software development process. Modern repository archive, manage and maintains different

data, starting with requirement data, followed by design artifacts, use cases, test cases, customer

correspondence, evaluations and much more. Software repository provide a wealth of knowl-

edge about various software engineering being. They are utilized for improving development and

overall management. Some of the most popular applications include software effort prediction,

task assignment, test management, sentiment analysis, theme analysis change impact analysis and

more [22]. Mining Software Repository (MSR) refer to the wide class of tools and techniques

which examine repository artifacts [44].

One of the most widely used repository is issue tracking system such as Jira 2 which hold

various attributes of requirements data. Another popular repository used by almost all software

companies is the version control system such as GitHub 3, which in addition to maintaining var-

ious code versions, provide further insight such as code churn, developer activities etc. Informa-

tion from these popular repositories are widely used for numerous software engineering research

such as developer assignment [47], release readiness [5], requirement duplication analysis [91],

theme/concept detection [37] and many more.

Another popular research direction is impact analysis, which is directly related to this thesis.

As software change is initiated with a Change Request (CR) it is a common practice to analyze the

repository, to find similar CR from the past and provide an prediction on the files impacted, effort

2https://www.atlassian.com/software/jira
3https://github.com/
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and duration required. This is usually done by identifying and analyzing the code entities changed

by these similar CR. This thesis follow a similar technique for evaluating the impact of CR. The

objective of this thesis is to develop an aggregated technique which will take as input a change

request. The output will be a prediction of the vector impact of the change request.

2.2 Literature Review

This section is dedicated towards reviewing the existing techniques related to this thesis. The

segment starts with an overview, followed by a detailed discussion of each technique based on

the in-depth analysis. This later part of the review is focused on exploration of the current state

of evaluation and tool support of related studies. This segment of the thesis has been designed

towards providing answers for RO1 and subsequent sub-objectives.

2.2.1 Existing techniques: code impact, effort and duration prediction

This segment analyzes existing literature on code impact, effort and duration prediction techniques.

The review is separated into two parts. The first part discusses code impact prediction techniques,

while the second part pertains to effort and duration prediction literature.

Code impact prediction

Most code impact prediction techniques are referred in the literature as change impact analysis

(CIA) techniques. They refer to the collective techniques for identifying affected code components

in response to proposed changes [9]. Another group of related literature is collectively referred

as Feature Localization Techniques (FLT). FLT is a more simplified variant of CIA, where the

objective is to identify the initial change entity, in response to CR. Some literature also associates

the term ripple effect analysis to this group of studies. In this thesis, all these techniques related

to identifying code change entities in response to change or CR, are collectively referred to as

code impact prediction techniques. Code impact prediction can help developers and practitioners
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Table 2.1: Existing literature related to code impact prediction. Each literature is described by:
Technique (approach used for impact prediction, IR = Information Retrieval, CO = File co-change),
Data source (data used for processing), Effort indicator(whether effort can be predicted), Duration
indicator(whether duration can be predicted) and Industry case study (whether literature has been
validated with industrial data).

Literature Technique Data source Effort
indicator

Duration
indicator

Industry
case studyCR Code

Borg et al. [16] IR Yes N/A No No Yes
Gethers et al. [32] IR, CO No Yes No No No
Kagdi et al. [45] IR, CO No Yes No No No
Zanjani et al. [97] IR Yes Yes No No No
Canfora et al. [21] IR Yes Yes No No No
Canfora et al. [20] IR Yes Yes No No No
Torchiano et al. [93] IR No Yes No No No
Zimmermann et al. [99] CO No Yes No No No
Chochlov et al. [24] IR No Yes No No No
Zhang et al. [98] LDA, IR No Yes No No No
Lapeña et al. [53] IR Yes Yes No No Yes
Scanniello et al. [85] IR No Yes No No No

identify affected components, program comprehension, evaluate ripple effects, software testing

and regression analysis [57].

There are many existing techniques for code file impact prediction. They span a broad spectrum

of approaches, such as program slicing, graph-based approach [1], Bayes approaches [3], coupling

techniques [33], metric-based approaches [63] and Information Retrieval (IR) based techniques.

The methods can be broadly classified into two categories: static and dynamic impact analysis.

Dynamic methods evaluate changes by analyzing various program execution data (execution trace,

coverage, other execution data). Static methods on the other hand study semantic or evolutionary

dependencies from existing or past system, to identify change propagation and affected compo-

nents. This thesis focuses on static techniques, which utilize information stored in code and CR

repositories and therefore relies on mining software repositories. Table 2.1 list code impact litera-

ture related to this thesis.

Gethers et al. [32] proposed an integrated approach to impact analysis consisting of three com-

ponents. In the first component, textual descriptions from CRs is used by an IR method. This
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relation is referred to as conceptual similarity or coupling, where there is a relationship or simi-

larity between the concepts (requirements) and software entities (methods, files, classes, etc.). An

intermediate representation is construed at the method level granularity by analyzing a single ver-

sion of the code. Document descriptors are constructed using textual content of the methods from

source codes. Based on the CR textual description, a query is run on the corpus to generate a ranked

list impacted methods. The second component FPM uses past software repository data to analyze

methods which have co-changed in earlier versions of the software. FPM generate rules which

are subsequently used for making possible impact sets. Based on the analysis of past evolution

of the software system, future changes are predicted. As the co-change or evolution are studied,

these relationships are referred to as evolutionary coupling or similarity. In the third component,

execution traces are generated with respect to individual files or features, representing a hierarchy

of executed methods. Subsequently, IR method defined in the first element is applied only on the

results of the execution trace. Different combinations of the three defined methods are integrated

and the final impact sets are generated by taking different cutoff from the results of the constituting

components.

Study by Kagdi et al. [45] combines conceptual and evolutionary techniques for CIA which

supports file and method level granularity. The article is by the same group of authors as [32], the

approaches are similar. This work is different concerning the exclusion of execution trace data.

Also, the initial entity chosen for conceptual or evolutionary coupling does not come from textual

bug descriptions or CRs. The selection of the initial entity will likely come from feature location

activity. Based on an initially chosen entity (method or file) a ranked list of entities is generated

based on conceptual similarity. Similar to [32] evolutionary couplings are made by applying FPM

on software version data. Based on running experiments on open source data, the authors present

statistical evidence showing that CIA is improved if conceptual and evolutionary approaches are

combined for both file and method level granularity.

Canfora et al. [20] use past change data of multiple version, from software repositories to sup-
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port IA. The proposed approach produces corpora containing revision comments and CR descrip-

tions. The traceability between bug descriptions and revision comments from multiple versions

of the development files are used for this method. When a new CR appears, the corpora will

be queried to retrieve a list of the related files which are likely to be impacted by the proposed

change. A ranked list of source files is generated based on textual similarity which is calculated

using a probabilistic TF-IDF measure. TF-IDF works on the TDM and rates documents with re-

spect to the query. The documents are ranked based on the occurrence of the critical query terms in

the document representations, which emphasize terms that have more significant discerning capa-

bilities. The appearance of textual descriptors in the new CR descriptions are matched to different

files in the corpora. Those satisfying a minimum threshold are presented as a ranked list.

Authors Canfora et al. [21], propose an extension of the study done in [20]. In this research,

a finer level of granularity is considered (i.e., line of code, file) and they are compared among

themselves. In the file level, document descriptors are constructed by concatenating change request

descriptions (both long and short versions) and the commit messages retrieved from past changes

in the software repositories. At the line level, document descriptors are constructed using bug

descriptions (again long and short descriptions) of the bugs and the commit comment from the

past revisions. The bug descriptions and comments are retrieved by mapping line additions and

deletions to bug entries as well as to the commit in the repositories. The operating procedure is

the same as the previous approach [20], however the novelty is method of tracking line changes.

Utilizing repository diff commands, specific line additions and deletion are monitored for each

of the revisions.

The technique adopted by Zanjani et al. [97], combine interaction information with version

history to derive an IR model. Interaction history represents file which have been interacted by de-

velopers but not committed. These files also play an essential role, because their interaction with

relation to a bug fix represents the inherent influence and impact on other files. In this approach the

corpora are created, where each row of the TDM is a revision which is composed of comments and
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identifiers from interacted and committed source files, commit messages of the revision and asso-

ciated bug descriptions. Data dimension is reduced with SVD and projected onto an n-dimensional

space of the KNN model. Cosine similarity distance is measured to evaluate closeness of incoming

queries with respect to documents in the corpus.

Torchiano et al. [93], use an IR technique for change resolution. The proposed approach con-

structs corpora of file descriptors where each entity is described by a combination of comments

in the source code and commit messages. The queries are generated using combinations of terms

appearing in CR descriptions. Ranking of the files are created based on the occurrence of query

terms in the corresponding file comment or commit message data. The proposed approach was

verified on four open-source projects.

The technique outlined by Zimmermann et al. [99], is perhaps one of the most cited and influ-

ential papers in this domain. The paper outlines the FPM on historical software data. The proposed

approach works at the file as well fine levels of granularity. Applying the Apriori algorithm on past

changes transcribed as transactions of entities, the proposed approach is capable of identifying

impact sets at the different level of granularity. Based on the working methodology a tool was de-

veloped which can show developers impacted items as they are making changes to the code. The

method is applied on eight open-source projects and shows good Precision and Recall values.

The following segment discuss key findings of code impact prediction prediction literature

review related to RO1.1

• Decision indicator (effort & duration): From the Table 2.1 it is clear that none of

the mentioned literature perform effort and duration prediction. These techniques

are focused on generating code impact prediction. The initiating entity can be a file,

method or class, based on which code impact is generated. The effort or duration

required to implement the change is not considered by any of these approaches. De-

velopers and decision makers would need to rely on their gut feelings and instincts

to make these predictions.
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• Data source: All the literature listed utilize two primary data sources i.e., CR and

Code. CR refers to any data related to change requests such as title, description etc.

Code data on the other hand refer to information such as code contents (comments

and identifier names), commit data and change-logs. As software development is

a continuous process, code files would be regularly updated, which in turn would

cause change to code content and other attributes utilized in TDM. As a result, the

corresponding corpus would need update every time there is any code change. CR

data source on the other hand is much more stable, compared to code data. CR do

not go through continuous and massive changes. They usually go thorough minor

updates to status and assignment attributes. This in turn means that the corpus will

require very little change to stored CR attributes.

• Techniques: All mentioned literature use IR for code impact prediction, which re-

fer to retrieving relevant information from an corpus or knowledge base. In all the

literature, a corpus is created using data retrieved from different repositories. The

corpus is usually represented in terms of a term document matrix (TDM), which

stores key terms related to each of the entities (i.e. documents). Entities can be

files, methods, class, attributes etc, data related to which are extracted and stored.

After the corpus is built, incoming changes are formatted into queries that con-

forms to the corpus structure. Based on similarity of the the query with the TDM

entities, impacted entities are ranked and listed. Similarity is defined using TF-IDF

and cosine similarity (explained fully in chapter 3) Another popular technique is

utilization of file co-change (CO) patterns. It is based on the popular Apriori al-

gorithm [4]. The main idea is to organize software entities which have co-changed

together are transactions, based on which rules are generated using historical enti-

ties which have changing together (co-changed).
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Effort & duration prediction

Table 2.2 lists the literature related to effort and duration prediction, related to this thesis. All

literature shown in Table 2.2 make duration or effort prediction based on CR. Depending on the

technique used, different CR attributes are taken as input. The output is either duration or effort

prediction.

Issue Resolution Time (IRT) prediction refers to the class of techniques whose objective is to

predict the duration or time required for a CR (issue) to close. The duration is the difference

between the opening and closing date of an issue. In this thesis, IRT prediction is referred to as

duration prediction. Some literature refer IRT as issue closing time, issue life-time, issue/bug fix

time and issue resolution time. Duration prediction is important because it helps with efficient

planning, scheduling and project organization [72]. The following six studies relate to duration

prediction [2, 10, 34, 52, 64, 72].

Effort prediction studies aims at anticipating the amount of effort that will be required to imple-

ment change request. There are few studies which attempt effort prediction from change requests.

The following two studies [27, 94] refer to effort prediction, with respect to CR. Effort is usu-

ally measured in person hours. When new change requests are created, an initial prediction of

required effort are entered into issue repository such as Jira. It represents the number of hours

that developers might need to spend for completing the CR.

Kikas et al. [52] utilize various CR attributes for making issue duration prediction. Random

Forest [17] classifier is used to train the duration model. Both static and changing CR attributes

are included into the model. The attributes relates to submitter, participant, project and textual

descriptions. Performance observed for different observation points (number of days for which

issue have already been open). Experimentation revealed that accuracy improved when trained

with one day to one week old issues. Another similar study [64], also utilizes Random Forest

classifier but on different set of attributes e.g., location, reporter and description. The focus here

was on bug duration prediction. Their conclusion was that attributes established by earlier studies
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as important, have little impact on the CR duration.

Pfahl al. [72] study and apply existing IRT prediction techniques in an industrial context. The

aim of this paper was to understand the extent to which expert duration predictions could be com-

plemented and improved with automated techniques. Experimental analysis revealed that textual

analysis was able to improve expert duration prediction. Assar et al. [10] is a replication study,

which attempt to repeat the experiments of an earlier bug resolution time study done by Raja et

al. [75]. In addition, the performance of automatic clustering for duration prediction is evaluated.

Clustering of CR was done with RapidMiner4 tool. Experiments were run with different subsets

of the data. The researchers concluded that automated clustering techniques cannot perform dura-

tion prediction with satisfactory levels of accuracy. The last literature on bug duration prediction

Giger et al. [34], which use Decision Tree classifier on two class of CR attributes i.e., Constant

and Changing attributes. Experimenting with OSS data, they conclude that some post submission

attributes improve prediction accuracy.

This segment discuss on effort prediction studies. Dehghan et al. [27] propose a hybrid com-

bination of textual and classification techniques for effort prediction The objective is to make

prediction for CR type Tasks. For the classifier model, both textual and non-textual CR attributes

are utilized. The classifier model is stacked on the textual similarity model, although the exact

details are unclear. The proposed approach was applied on two industrial data. They concluded

that some attributes were important for making prediction in their industrial context and those were

highlighted. Another work by Weiss et al. [94] propose technique for predicting the effort required

to fix bugs. With respect to a new change request, the approach defined in the paper find similar

change requests from past history. The predicted effort of new change request, is the average of

similar change requests. Experimentation and analysis on OSS data reveal that performance is

good if sufficient historical cases are available.

The following segment discuss key findings of effort and duration prediction literature review,

towards fulfillment of objective RO1.1:

4https://rapidminer.com/
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• Decision indicator (code impact): All the techniques preform effort or duration

prediction, using different change request attributes. However, these techniques are

not integrated with any code impact prediction techniques. The techniques men-

tioned do not indicate the files that might be impacted with respect to change re-

quest.

• Type: The type indicate the type of CRs for which the corresponding technique

generate prediction. Not all types are supported by either effort or duration pre-

diction literature. For existing literature on duration prediction, all CR type is sup-

ported by only two studies [52, 72], while the remaining make predictions for Bug

type CR. On the other hand, for effort prediction none of the literature support all

CR type. In fact, one study supports Bug, while the other support non CR entity

called Work Item whose type is Task.

• Technique: Duration and effort prediction techniques can be categorized into

two groups: textual analysis and classification techniques. Textual analysis use

CR text attributes, which are primarily Title and Description. Subsequently textual

similarity or clustering is used to generate predictions. Classification techniques, on

the other hand extract various CR attributes and train classifiers to generate effort

prediction. The attributes cover all aspects of CR, some of which are: submitter,

assigner, developer, discussion, date and time.

2.2.2 Analogy based problem solving

Much of human cognitive reasoning and decision making is defined by how similar problems were

resolved in the past. This is referred to as reasoning Analogy Based Reasoning (ABR) [90]. The

idea is to derive solutions by linking information from past solution instances. ABR contains a

knowledge base, which contains all cases of available prior solutions. For a new problem instance,

similar problems are searched and retrieved from the knowledge base. The corresponding similar
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Table 2.2: Existing literature related to effort and duration prediction. Each literature is described
by: Technique (approach used to make prediction, KNN = K Nearest Neighbour), Type(the types
of CR supported), Code Impact Indicator(whether code impact can be predicted) and Industry case
study (whether literature has been validated with industrial data).

Literature Technique Type Code Impact
Indicator

Industry Case
Study

Kikas et al. [52] Classifier Any No No

Pfahl et al. [72]
Classifier,
KNN, K-means Any No Yes

Assar et al. [10] Classifier Bug No No
Abdelmoez et al. [2] Classifier Bug No No
Marks et al. [64] Classifier Bug No No
Giger et al. [34] Classifier Bug No No

Dehghan et al. [27]
Classifier,
K-Means Work item-Task No Yes

Weiss et al. [94] KNN Bug No No

solutions are extracted, analyzed and adapted to derive the final solution. The following are define

the key stages of ABR [36]:

• Knowledge base representation: This is the initial stage of ABR, where past prob-

lems instances are stored. For each problem, the corresponding solution(s) applied

are also resolved and stored, to be used for prediction. Together the problem and so-

lutions represent the knowledge base against which new problems will be compared

for generating solutions.

• Search and retrieval Based on the knowledge base created in the previous stage,

searching is performed in this stage. The searching is performed with respect to the

query problem, for which a solution need to be generated. Searching is performed

on the entire knowledge base, where the analogy or similarity between the query

and existing problems are defined by a similarity measure.

• Selection: Depending on the similarity values between the query and existing prob-

lems, the query problem is mapped on the existing problems. A threshold value

determines the mapping between the query and existing problems. The result of the
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mapping is a list of existing problems (candidate problems) which are analogous

(similar) to the query problem.

• Prediction: From the list of analogous problems with respect to the query, the

solution is generated for the query problem. This is done by analyzing solutions

of the candidate problems. The existing solutions are adapted to generate a final

prediction for the query problem.

Analogy based prediction are popular because they are capable of capturing complex relation-

ships between the target concepts and software properties [40]. Using analogy allows solutions

to be derived based on actual events or solutions rather than using theorized and assumed mod-

els [87]. In addition, analogy allow decision makers to see the solution deriving process, which

makes solutions more acceptable as they are intuitive and derived from actual past solution [40,87].

Analogy has been applied and used in various segments of software engineering dimensions

[48] including software quality, effort prediction, reuse and management among others. In [49]

analogy was used to predict software quality as either faulty or non-faulty by retrieving similar

modules from history and analyzing defect counts. A related study [51], predicts the number of

faults in a system. Quality in terms of risk has been studied by related literature to classify software

into risk categories [50]. Software reuse is another area where analogy based prediction have

become studied. Morris and Mitchell [68] recommend software artifacts be reused from current

software. Another study by Gonzalez et al. [35] enables reuse of classes from current software.

Analogy based recommendation have also been used to recommend various software artifacts i.e.,

user interface components and software design artifacts among others [48].

The set of literature which relates most to this thesis belongs to software effort prediction

category. The work by Finnie et al. [30] is a popular literature where software effort prediction

is performed utilizing analogy. Over the years many researchers have enhanced their respective

studies with respect to analogy based software effort prediction. Idri et al. [39] combine analogy

with other machine learning techniques to form a hybrid framework for effort prediction. Li et
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al. [58] propose various methods to handle data irregularities such as missing or irregular data

points. A similar study by Mendes et al. [67] use analogy based effort prediction in web projects.

All the effort prediction studies mentioned here are designed and built for effort estimating data-

sets, which represent software size as a function of different project characteristics.

Software effort prediction has been historically viewed as a function of size. The effort is calcu-

lated in terms of man-hours, or alternatively in similar time units such as man-days/weeks/months

[31]. Size is represented in terms of different software metric. Function Points is one of the

popular software size metrics which express the amount of functionality provided by a software

product [6]. Using Function Point analysis (FPA) numerous literature have attempted to predict

the effort of software projects by looking at different data sources. Another popular approach is

to use software Lines of Code (LOC) as size metric. LOC is utilized by the popular cost predic-

tion model COCOMO [15]. Both FPA and COCOMO require computing key software variables

in order to obtain effort predictions. FPA require defining five key parameters i.e., external input,

external output, external inquiry, internal logic file and external interface file. On the other hand

COCOMO require determination of adjustment factors with cost drivers. These models were orig-

inally designed for linear models such as waterfall where entire software project parameters are

defined and known beforehand. However iterative software development has gained great popu-

larity, where everything is not defined upfront and each iteration may potentially proceed in totally

different directions. Development plan and goals change very frequently. All these make defini-

tions of key variable very difficult [38] in an iterative development methodology such as Scrum.

Studies such as [83] and [74] have tried to see the effect of applying the original techniques in an

Agile (iterative) setting and recommend modifications to make these effort prediction techniques

better suited to iterative development.

However, these techniques still require project parameters and cost drivers to be defined. Thus

the accuracy with which these variable need to defined depends on experience and knowledge of

the decision makers. In order to get accurate prediction require development processes to be estab-
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lished and clearly defined. Finally, defining the key variables require calculations and processing

which utilize valuable man-hours which developers can spend doing actual development work. For

small and start-up companies this does not make sense because a lot of the development process is

not defined, which would make some variable setup such as cost drivers, very difficult. Also, these

small organizations have limitations in man-hours and are therefore less likely to invest scarce

human resource towards necessary calculations and analysis required to make effort estimations

based on functions points or lines of code.

This thesis utilizes ABR for determining file impact, effort and duration prediction of a change

request. For a new change request, the textual similarity is used to define analogy between change

requests. As mentioned previously existing impact analysis techniques only make code impact

recommendations. The goal here was to improve the impact analysis decision making by aug-

menting the file impact prediction with that of effort and duration. Using textual similarity file

impact could be predicted. The effort and duration prediction is derived from the same analogy

and essentially provide effort and duration prediction at zero or very minimal cost, as because no

new data need to be analyzed. The objective here was to provide vector impact prediction utilizing

minimum investment in terms of data preparation and human invention. The focus here was not

on proposing a new effort or duration prediction technique independently. Existing analogy based

effort prediction techniques (described in this section) rely on various project data attributes. The

effort is predicted by measuring the similarity between these attributes. However, these project at-

tributes are not recorded for small and start-up companies. The approach outlined in this thesis can

generate an effort prediction even for that scenario when the data (of different project attributes) is

not available. The prediction needs are made only considering the change request illustration i.e.,

summary and description because change request repository is widely employed by companies of

almost all sizes [22]. Companies use change request repositories because it makes planning and

change management of software much easier.

In this thesis, the knowledge base is constructed using data from change request and code
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repository. For each available past CR data, their description and title are stored in the knowledge

base, which serves as problem definition. The corresponding files impacted, the original effort

predicted and duration taken, are stored as solutions (against CR description and summary). Each

of the ABR components with respect to this thesis is defined in the next chapter.

2.2.3 State of industry evaluation

Collaboration between industry and academia is always challenging. Companies are reluctant to

share data and information due to many reasons, primarily due to privacy and security concerns.

The other key reason is the lack of interest towards research and collaboration. This trend is also

true for the literature related to this thesis. From Table 2.1 and 2.2, only four studies in total have

any kind of industrial validation i.e., Pfahl al. [72], Dehghan et al. [27], Lapeña et al. [53] and

Borg et al. [16]. Furthermore, only Pfahl al. [72] literature uses both industrial and OSS data

for evaluation. The remaining studies only report performance on OSS data. Because industry

and OSS projects are different regarding policies, procedures, tools, and techniques comparing

with one set of studies is not enough. To ensure that results are repeatable and transferable [71],

evaluation should complete on both OSS and industry data with appropriate comparisons. These

findings are related to fulfilling objective RO1.2.

2.2.4 State of tool support

Table 2.3 lists the relevant tools available for impact analysis. The table also show functionality

that each tool offers. The criteria for deciding the functionality is primarily based on studying

the status of tool support mentioned in [57]. Another key input for deciding functionality was

understanding needs of software company Brightsquid Inc. These findings are related to fulfilling

objective RO1.3. The following discuss existing tools with respect to the functionality offered:

• Language independence: With the exception of FLOrIDA [8], all tools are lan-

guage dependent, it built for and tested on Java. This restricts applicability to other
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language platforms and environments, especially with the emergence of popular

platforms/languages such as Python, C#, Ruby etc.

• Industrial validation: FLOrIDA [8] and Chianti [77] possess industrial validation.

Industrial validation is important because it will ensure that results are repeatable,

robust and transferable.

• IDE dependence: All the tools except FLOrIDA [8] are built as an IDE plugin for

Eclipse. This means that developers would need to use a specific IDE, which might

prove counter-productive because everyone has their own preference and comfort

zone.

• Textual query: Textual input is important because change requests are usually

formulated in natural language. In addition, without textual query input, if change

impact can only be measured with respect to method, class,file inputs, then only

developers or technical people will be able to benefit from this tool. FLAT3 [84]

and ImpactMiner [28] accept textual query as input.

• Human intervention: Only two out of the five tools can operate without human

intervention. Operating without human intervention is important for two reasons.

The first is the ability to work autonomously reduce chance of human error and

secondly, tool can be used by anyone without any knowledge of the system.

• Effort & duration indication: None of the tools provide support for effort and

duration prediction. Their main focus was the prediction of code impact. Thus it

would be very difficult to make decisions which would maximize return in invest-

ment.

• Code impact indication: All the tools are able to perform code impact predictions.

28



Table 2.3: Tools for code impact analysis, where each tool is evaluated against multiple function-
ality defined on the left.

Functionality
Tool

JRipples FLAT3 ImpactMiner FLOrIDA Chianti
[18] [84] [28] [8] [77]

Language
independence No No No Yes No

Industrial
validation No No No Yes Yes

IDE
dependency Yes Yes Yes No Yes

Textual
query No Yes Yes No No

Human
intervention No Yes Yes Yes No

Code impact
indication Yes Yes Yes Yes Yes

Effort & duration
indication No No No No No

2.3 Summary

This chapter presents the background and fundamental concepts related to this thesis. Existing

literature related to code impact, duration and effort prediction techniques are reviewed extensively

following objective RO1. Analysis show existing literature to be focused on the code impact of

change. There is no existing technique which makes code impact, effort and duration predictions

simultaneously. From preceding discussion, it is clear that effort and duration requirement with

the code impact (vector impact) is vital for effective decision-making. Further examination of

performance evaluation, highlight the need for more industrial evaluation. Finally, investigation

of tool support outlines the need for the development of generic tools which can provide effort,

duration, and code impact prediction. The findings meet the goals defined by objectives RO1.1,

1.2 and 1.3
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Chapter 3

Proposed approach: Vector Change Impact Analysis (VCIA)

This chapter describe the proposed techniques for predicting vector impact of a change request.

First segment begin with description of the Analogy Based Reasoning (ABR) process for the pro-

posed approach. Each of the core components of ABR are discussed in details, including dis-

cussions on data utilized, pre-processing steps, similarity measures, process overview and lastly

process/algorithm of the three proposed techniques.

Some contents in this chapter come from the paper [43], which reports the application of VCIA

in Brightsquid. In particular the algorithms, related processing, the process outline and evaluation

measures come from the mentioned paper. In most cases some modifications were made to the

paper components before they were placed in this thesis. The evaluation measures for effort and

duration prediction used in this thesis is different. The components from the original paper (with

or without modifications) are cited with reference to the paper, as they share the same core essence.

This includes tables and figures from the paper [43]. For most of the cases, the description in this

thesis provide a more detailed account compared to the version in the paper.

3.1 Vector Change Impact Analysis (VCIA)

The proposed approach of this study predict the vector impact of software change request. Sub-

sequently, the proposed technique is titled Vector Change Impact Analysis (VCIA). The overall

VCIA experimentation and evaluation process appear in Figure 3.1. Every step, beginning with

data acquisition and ending with result analysis are mentioned in the outlined process. Each com-

ponent is discussed in the subsequent sections. This thesis analyzes the performance of three

techniques for different components of the vector impact prediction i.e., files impacted, effort and

duration required.(step 4 of Figure 3.1). Experimental analysis revealed (fully detailed in the next
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chapter) that usage of these (three) techniques provide better prediction performance for different

components of the vector impact prediction i.e., effort, duration or file impact. Thus all the three

separate techniques are presented, and they are all defined under the single umbrella of the ag-

gregated proposed technique titled VCIA, thus the term “An”is used at the beginning of the title.

Furthermore as all the (three) techniques rely on analogy for making respective predictions, the

term “analogy” is part of the thesis title. The following subsections defines each of these tech-

niques separately. The process outline and the techniques appear in the paper [43]. The paper

version provides the main essence, while the contents of this chapter provide a more detailed de-

scription. All the techniques follow the Analogy Based Reasoning (ABR) process. The following

sub-sections define each of the major ABR components, which were introduced and discussed

briefly in chapter 2.

3.1.1 Knowledge base representation

The knowledge base is defined as KB =< CRM,P,V >. CRM = {cr1,cr2,cr3, ...,crm} is the set

of change requests cri (extracted from repository history mining). P represent the set of attributes

describing each change request, where P = CRC∪CRT ∪{E f f ort,Duration,File}. Here, CRC

represent the processed and concatenated textual content of CR Summary and Description (data

source explained in the subsequent parts). Similarly, CRT represent the topic derived by applying

Latent Dirichlet Allocation (LDA) on CR Summary and Description. Topic are refereed to as topic

term or term topic in the algorithm descriptions in the later part of this chapter. Here, CRC(cri)

and CRT (cri) signify processed textual content and LDA topic respectively of change request cri.

LDA topic is only used in BOW & LDA algorithm discussed later. E f f ort(cri), Duration(cri),

File(cri) represent effort, duration and file(s) impacted respectively, of change request cri. Finally

V = {P(cri)} represent the domain of attribute values (CRC and CRT ) for all change requests

CRM. Here, CRC and CRT represent the problem which are used to predict the solutions: file(s)

impacted, effort and duration of a change request. The following sub-section describe the data

usage, textual pre-processing steps and solution value resolution for building the KB.
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Solution resolution - files impacted, effort and duration

This sub-section describes how the solution attribute values (defined in KB representation) are

derived from CR and code repository historical data.

• Files impacted: Files impacted refers to the files which have been modified by any

change request. The code repository record all modifications to various code files,

where changes are batched together as commits. As a practice, developers link

commits to CRs, by mentioning the CR identifier in commit messages. These links

help to identify the requirements causing code changes. The relationships between

CR and files changed (in GitHub) are identified by analyzing the presence of CR

identification (ID) number in commit messages. The process is formally known as

traceability establishment [89]. This has been achieved in this thesis with multiple

regular expressions. Step 2 of the process outlined in Figure 3.1, represents this

linking process.

• Effort: Effort refers to the effort value (estimated) predicted and entered into the

CR repository when new requests are created. The values are entered in units of

person-hours, but this thesis use the second converted value of effort, because web

interface data access converts the data to this unit.

• Duration: Duration refers to the number of the days it takes to close a change

request. It is calculated as the difference (measured in number of days) between the

opening date and closing date.

Data usage

This sub-section highlights the data attributes used from the various repository to prepare the

knowledge base (defined in the earlier sub-section). VCIA utilize data from two repositories;

change request data from JIRA issue management system (change request (CR) repository) and

code data from GitHub version control system (code repository). Table 3.1 shows the main data
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attributes being utilized. The Repository column specifies the data source i.e., CR repository data

or code repository. Usage column define purpose of data usage. Column Type denotes the type of

data e.g., numerical, text etc. Finally, Availability describes to what extent the data is available in

the repository.

Table 3.1: Data attributes from CR and code repositories utilized by VCIA. For each attribute the

Name, Repository, Type and Availability are shown.

Attribute Name Repository Type Usage Availability

CR Summary CR Text Similarity High

CR Description CR Text Similarity High

Original Effort Estimate CR Numeric Effort estimation Moderate

Open date CR Date Duration resolution High

Close date CR Date Duration resolution High

CR ID CR Text Traceability High

Commit message Code Text Traceability High

Commit files changed Code Text Files changed resolution High

Data pre-processing

This segment describes the data pre-processing, which has been formulated based on experimen-

tation, related literature and techniques mentioned in surveys such as Chen et al. [23]. Data-

preprocessing defines how the textual summary and description data are processed. The pre-

processing has been designed to make the data easily and readily analyzable by the different meth-

ods. The pre-processing steps applied on the data of this thesis are identical to those reported in

the paper [43]. The end result is a a concatenated version of the summary and description after the

following pre-processing steps have been applied:

• Basic text cleaning: The first step is text cleaning where special characters, code

snippets, hyperlinks, email addresses and other elements not pertinent to the analy-
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sis are removed.

• Removing Stop Words: Commonly occurring words such as “and, is, are, the” are

removed as they do not add any value to the analysis. The list has been put together

from several pieces of literature and adding terms based on independent study.

• Stemming: Porter Stemming algorithm [73] is a lightweight and popular technique

for reducing different morphological forms of the same words to their root state.

For example consign, consigning, consigned, consignment are all reduced to the

root form consign. Otherwise, different morphological forms of the same word

are treated as unique occurrences, which adversely affects the textual analysis. In

addition to stemming Lemmatization operation was also evaluated. However, the

performance of stemming was slightly better (see figure A.6), therefore it was cho-

sen for all experiments.

3.1.2 Search and retrieval

Let CRq be a new change request for which vector impact prediction is required. With respect

to ABR process, CRq here represent a new problem for which a solution need to be formulated.

With respect to the query, the knowledge base would be searched and relevant results need to be

ranked and presented. For searching the knowledge base and providing a ranked list of results

Cosine similarity measure is used in this thesis. Cosine similarity is one of the most popular

techniques for measuring the textual similarity between two documents [11]. This measure has

been applied for searching and retrieving relevant instances for many applications including change

impact analysis. The same similarity measure was also used in [43]. Similarity (analogy) between

two change requests is calculated using Cosine Similarity of their textual content. TF-IDF (term

frequency-inverse term frequency) is a statistical measure used to evaluate the importance of words

in a collection of documents [62]. It consists of two components, Term Frequency (TF) - count of

the number of times a word appears in a document, which is then normalized by the total number
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of words in that document. The second component is the Inverse Document Frequency (IDF) -

logarithm of the number of documents in the corpus divided by the number of documents where

the particular term appears. TF-IDF is calculated on CRC or CRT (cosine similarity is also used to

measure term topic similarity in BOW & LDA.) attribute of change request CRi and subsequently

used to represent change requests in the vector space.

Representing each CR as a vector in vector space, The similarity S between CR is calculated

as follows:

S(CRq,CRi) =
~V (q) ·~V (d)
|~V (q)||~V (d)|

(3.1)

where CRq and CRi represent query and one instance of existing CR respectively. ~V (q) ·~V (d)

represents the dot product of the weighted vectors with |~V (q)||~V (d)| being their Euclidean norms.

3.1.3 Selection

The similarity measure provide quantitative method of ranking existing CR from the knowledge

base. The value of the similarity define the level of similarity (analogy) between query CRq and

existing change requests cri in CRM. Using the values obtained from the evaluation measures, top

N similar change requests (or analogies) are selected from CRM. Threshold T values are used to

define the final N number of similar CR. The threshold values are discussed in the relevant sections.

3.1.4 Prediction

From the list of N selected analogy from the knowledge base, file impact, effort and duration are

predicted. This part of ABR involve the step Adaptation, where existing retrieved solutions from

top N analogies are used to make the required prediction for crq. For effort and duration, prediction

value calculation is defined as follows:

PredictedValue(CRq) =
∑

N
i=1 value(i)

N
(3.2)
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where value(i) is the duration or effort value of the cri change request. The calculation here is

the mean over N effort or duration values coming most N most similar CR. Following experimental

analysis and following recommendations of similar studies such as [58,67] other value calculation

processes were tried and experimented (see figure A.7). Overall the mean returned best accuracy

figures, it was therefore used for effort and duration value prediction. For file impact prediction,

process of generating file impact list vary with the technique. The details are described in the

subsequent sections with the algorithm description.

3.2 Vector impact prediction techniques: algorithm and description

3.2.1 Bag of Words (BOW)

The primary motivation of this model is to utilize similarity between change requests. Typically

change requests discuss some specific aspect of software. It is common to have different change

requests addressing similar or even the same elements of software. Consequently, their textual

descriptions will also be similar. Therefore textual similarity can be used as a proxy of aspect

affinity between change requests. Correspondingly, files impacted by similar requests are analyzed,

it is common to find the same set of files recurrently changed. On the other hand, analysis of

required effort and duration of similar requests reveal that they share similar or close values. Hence,

change requests which are textually similar are also likely to change the similar set of files. At the

same time, the effort and duration values are also expected to be similar, i.e., similar textual content

translates to similar vector impact.

The base model of this thesis is Bag of Words (BOW) [62], a data representation technique,

mainly used in natural language and information retrieval applications. BOW represents textual

data as multi-set of constituent words, discarding the order or other attributes. The main idea of

BOW is to construct a knowledge base consisting of existing changes. BOW also appear in [43].

Each CR is represented as a BOW entity consisting of corresponding CR Summary and De-

scription. From the data retrieved from repositories the corpus is created that represents knowledge
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base against which new change requests will be evaluated. Using this knowledge base, file impacts

for new change requests are predicted following steps of Algorithm 1. The algorithm takes as in-

put all change requests in the knowledge base and the query CR text (processed and concatenated

summary and description), CRM and CRCq respectively. The query CR represents the new CR,

for which file impact needs to be predicted. The similarity is calculated between each query and

existing CRs. Apache Lucene1 is used to index and query the data entities for finding suitable

matches, with respect to input CR.

Selection & Prediction

If threshold T is satisfied, the corresponding CR is marked as similar. Similar requests SCR was

first sorted according to CRq textual similarity. In addition to sorting with respect to query CR

textual similarity, sorting of files was also attempted with respect to decreasing order of Total

code churn - number of lines added and deleted and decreasing order of Days since last modified

- number of days ago files were changed. As sorting by decreasing order of textual similarity

generated best results, it was used for subsequent analysis. From sorted SCR, corresponding file

changes, effort and duration (sr f ,sre,srd respectively) are added to final prediction outputs i.e.,

IF , IE , ID respectively. Thus for a (new) query change request, the output is a list of impacted files,

effort and duration, denoted by IF , IE , ID respectively, sorted according to textual similarity.

3.2.2 Bag of Words & Latent Dirichlet Allocation (BOW & LDA)

Many techniques are available for identification of prominent textual concepts from textual data.

Topic Modeling (TM) using Latent Dirichlet Allocation (LDA) [14] is one such approach which

can be used to extract topics, i.e., concepts from CR textual data. Based on the topic - CR relation-

ship, each CR can be assigned to topics and corresponding key topic terms. Analyzing topic terms

and relevant vector impact (file, effort and duration), it is hypothesized that CR’s with similar topic

terms will have similar vector impact. However, one of the drawbacks of LDA is the complete un-

1https://lucene.apache.org/core/
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Algorithm 1 Bag of Words for vector impact prediction [43]
Input: CRCq, CRM in
Output: IF , IE , ID out

1: for i = 1 to M do
2: Calculate S(CRCq,CRCi) {using equation 3.1}
3: if (S > TB) then
4: Add CRi to list of similar CRs SCR
5: end if
6: Sort SCR according to similarity values w.r.t CRq
7: for each element sr ∈ SCR do
8: Add all f ∈ sr f to IF
9: Add sre to IE

10: Add srd to ID
11: end for
12: end for
13: return IF , IE , ID

supervised nature of topic extraction. In most cases some sort of supervision is beneficial towards

extracting useful topics for subsequent analysis. This is inline with the findings of a separate study,

where LDA topics were used for file impact prediction [69]. This study concluded that file impact

prediction performance improves if human terms are integrated with machine terms (topics) and

associated with CRs. But expert manpower was not available for introducing human terms to the

large number of data points (CR) that needs to be analyzed for this thesis. The human terms (as-

sociated to CRs) would be used to compute similarity. But as the human terms were not available,

textual similarity from BOW is integrated with topic (machine term) similarity to act as proxy

for the missing human associated CR terms. This provides an additional direction of similarity

calculation and reduces total reliance on machine topics for similarity calculation between change

requests. The basic procedure of BOW & LDA is also reported in [43].

In this technique, LDA is applied on all available change request CRM (pre-processed Summary

and Description text) to generate ZK topics, where membership of topic zk ∈ ZK for change request

cri ∈CRM is θ(cri,zk), ∀i,k : 0≤ θ(cri,zk)≤ 1 and ∀i : ∑
k
i θ(CRi,zk) = 1. Membership threshold

was set at MT P = 0.20, resulting each CR query crq belonging to at least one zk of the K topics,

where K = 20. Next, word topic membership vector ϕK is analyzed for determining topics. For
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each word in ϕk, if ϕ(word,zk) is greater or equal to TT P = 0.80, corresponding word is added as

the topic terms zk. Based on experimentation and reviewing literature such as [13], [23], the value

of MT P and TT P have been fixed.

Each CR is considered as a separate document and LDA is applied on all available CR set

CRM. LDA extracts topics which are a collection of associated and connected textual terms ap-

pearing together in CR textual representations. Each term has a degree of association with the

topic topic-term probability and the threshold TT P determines if a term will be included/selected

for the topic. Each topic will be defined by a set of textual terms (topic terms), which had a as-

sociation probability greater than TT P. After this, CR would be assigned to topics depending on

the document-topic probability. If the document-topic probability is greater than MT P, then cor-

responding topic is assigned to the CR. Consequently, each CR will be assigned to at least one

LDA topic and each CR may be assigned to multiple topics (and associated terms). Finally, each

CR is associated with topic terms of all topics to which it has been assigned. Algorithm 2 utilize

the topic terms to find similarity and combine with BOW textual similarity defined in algorithm

1 to make vector impact predictions. To perform LDA, Mallet [65] tool implemented in Java

has been used. The tool performs LDA and generates document-topic probability and topic-term

probability matrix. Using these values, subsequent analysis and calculation are completed.

The algorithm takes as input all change requests, query CR text (summary and description) and

query CR topic terms (CRTM, CRCq CRTq respectively). Query CR represents the new request, for

which file impact, effort, and duration needs to be predicted.

Selection & Prediction

The similarity between query topic and each of CR assigned the topics terms is calculated. If

threshold TM is satisfied, all files from CRs with the similar topic terms are added to IT M (Steps 4

to 7). File impact list is generated IBOW using textual content similarity (same procedure as BOW).

The final list of impacted files IF is the intersection of IBOW and IT M. For Effort and duration

prediction, intersection of CR ICR, coming from BOW (SCR )and LDA (SL) is generated. ICR is
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Algorithm 2 BOW & LDA similarity for vector impact prediction (adapted from [43])
Input: CRCq, CRM, CRTq
Output: IF , IE , ID

1: for i = 1 to K do
2: Calculate S(CRTq,CRTi) {using equation 3.1}
3: if (S > TM) then
4: For each cr with similar topic terms, add to SL
5: end if
6: for each sl ∈ SL do
7: Add all f ∈ sl f to IT M
8: end for
9: end for

10: for i = 1 to M do
11: Calculate S(CRCq,CRCi) {using equation 3.1}
12: if (S > TB) then
13: Add CRi to list of similar CRs SCR
14: end if
15: end for
16: for each scr ∈ SCR do
17: Add all f ∈ scr f to IBOW
18: end for
19: IF = IBOW ∩ IT M
20: ICR = SCR∩SL
21: Sort ICR according to similarity values w.r.t CRq
22: for each icr ∈ ICR do
23: Add icre to IE
24: Add icrd to ID
25: end for
26: return IF , IE , ID

sorted according to similarity value and then corresponding effort and duration values are added to

the final list of impacted effort and duration values, IE and ID respectively. Here both IF and ICR

are generated by taking the intersection of files and CR appearing respectively, from BOW and

topic similarity. An additional variant of union was also attempted, but intersection yielded better

results in both cases. Thus this was retained for subsequent analysis.
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3.2.3 Bag of Words & File Coupling (BOW & CO)

The third technique for impact prediction take into consideration the Coupling (CO) of files. This

technique only changes the Prediction process. CO has been used in some literature to support

code impact prediction [32, 42, 45]. This technique generate coupling information, following the

steps mentioned below. This information is then integrated with Bag of Words (BOW) textual

similarity technique, defined in algorithm 1. This technique only analyzes file information in, thus

it cannot be used for effort and duration prediction. The coupling information (matrix) is generated

using commit history (of a specific period), retrieved from code repository. Here, each commit is

treated as separate transactions. Consequently, the files which appear together in the same commit

are taken to be related in terms of change and thus they change together. From commit history, a

support matrix Sq×q is generated, where any matrix entry S(a,b) is defined as:

S(a,b) = N (Fa∩Fb) (3.3)

where N (Fa∩Fa) is a total number of times files Fa and Fb have appeared in the same commit.

|q| is the total number of files in the commit history time interval. The following is an example

of a support matrix, which show three files have changed. The matrix denote that F3 has not

changed with F1, F3 changed twice with F2 and finally, F3 changed seven times in total (including

changing alone by itself (appearing as single file in any commit).

S =



F1 F2 F3

F1 2 2 0

F2 2 4 2

F3 0 2 7


To compensate for any bias [32, 42, 45], confidence matrix Cq×q is generated (by normalizing

support values with total counts of change), where entry C(a,b) is defined as:

C(a,b) =
S(a,b)
S(a,a)

(3.4)
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where S(a,a) is the total number of times that file a has changed.

For generating final list of impacted file, the following steps are augmented to Algorithm 1.

For each file f ∈ si f (step 7), confidence values are retrieved from confidence matrix Cq,q. If the

confidence value for any file is greater than TCO, then corresponding file is added to the final list of

impacted files IF . The procedure of BOW & CO appear in the paper [43].

3.2.4 Alignment with objectives

Preceding segments describe the design of proposed techniques for vector impact prediction of

CR. The techniques primarily utilize CR repository data which have lower churn rate, compared

to code data. They are simple, intuitive and easy to understand. They do not require any additional

input from the users, reducing additional cost and over heads. The designs fulfill objectives RO2,

related to design of the proposed system discussed in this chapter.

3.2.5 Evaluation measures

For studying the performance of the different techniques, the following evaluation measures are

used. Recall, Precision and F-score are widely used measures in Information Retrieval studies [12],

similar to this thesis. They are used for gauging effectiveness of file impact prediction accuracy.

For a given dataset, these values are calculated for each query CR. The final value is the average

of the values obtained from individual queries. The file impact prediction evaluation measure are

also identical to the ones reported in [43].

• Precision P is the ratio of the number of correctly identified files to the total number

of files (relevant and irrelevant) recommended i.e., retrieved files.

P(CRq) =
#({relevant f iles}∩{retrieved f iles})

#{retrieved f iles}
(3.5)

• Recall R is the ratio of the number of correctly identified files to the total number
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of relevant files.

R(CRq) =
#({relevant f iles}∩{retrieved f iles})

#{relevant f iles}
(3.6)

• F-score combines the Precision and Recall, where the weights of each depends on

the value of β (equation 3.7). Traditionally F1 scores are mostly used (being the

harmonic mean of Precision and Recall). However,some literature such as [61], [25]

suggest that Recall is more important than Precision. Therefore, F2, F5 and F10

measures are also calculated, which emphasize more on Recall.

Fβ = (1+β
2) · Precision ·Recall

β 2 ·Precision+Recall
(3.7)

For assessing performance of effort and duration prediction, Magnitude of Relative Error

(MRE) [88] is used, which is widely used for effort and duration prediction and utilized many

of the related literature such as [27, 72, 94]. For a change request CRq, MRE value is calculated as

follows:

MRE(CRq) =
PredictedValue(CRq)−AcutalValue(CRq)

ActualValue(CRq)
(3.8)

where PredictedValue(CRq) and AcutalValue(CRq) represent predicted and actual values (ef-

fort or duration) of the change request. PredictedValue(CRq) of effort and duration is calculated

from top N analogies, following the process discussed previously. An error bound E is defined,

which define the tolerance threshold i.e., accepted difference between actual and predicted values.

With respect to E, prediction accuracy is defined as below:

Prediction(CRq) =

 1 if MRE(CRq)< E

0 otherwise
(3.9)
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The final accuracy is calculated by testing over set of all available change requests. The final

accuracy represents percentage of the test cases (query CR) where predicted value was within error

bound E. It is formally defined as the following:

Accuracy(CRM) =
∑cr∈CRM Prediction(cr)

|CRM|
(3.10)

where CRM represents the set of all available change requests.

3.3 Summary

This chapter outline the proposed approach in detail. Here three textual similarity based techniques

for file prediction are presented. The models are based on Analogy Based Reasoning. The knowl-

edge base is constructed using past CR textual data and information on the files they impacted. For

a query, textual similarity is used to define analogy with previous solved instances to make predic-

tions for the query. The three techniques all use the Bag of Words (BOW) representation. BOW

utilize textual similarity to find similar cases. The first technique only utilizes textual similarity of

BOW representation of change requests to make the prediction. The second technique combines

textual similarity with topic similarity, with the aid of topics generated using Latent Dirichlet al-

location (LDA). Finally, the third model combine file coupling information with textual similarity

to make the prediction. Two of the techniques defined for file impact prediction are extended for

effort and duration prediction. These models are BOW and the combination of BOW with LDA

topics. The techniques presented, help to achieve objective RO2. This chapter concludes with

definitions of the evaluation measures for measuring the performance of the proposed techniques

in different experimentation.
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Figure 3.1: Process outline of this thesis (adapted from [43]).

45



Chapter 4

Case Studies

Case studies have evolved to be a powerful and popular empirical technique, being used by a

plethora of researchers. A case study aims to understand and explore a particular phenomenon or

to establish a theory [70]. Like other disciples, case study has become popular in software engi-

neering. It is used to comprehend, explain and exhibit potential of any new technique, method,

tool, technology, process [86]. In this thesis, two case studies are performed. The first case study is

undertaken for evaluating the performance of VCIA on two real-world industry projects. The sec-

ond case study analyzes the performance of VCIA on two popular OSS projects. Case studies are

designed towards achieving objective RO3. Table 4.1 shows the key attributes of each case study.

Studies are conducted following guidelines for conducting case studies in software engineering, as

demonstrated in [81]. The following sections discuss on each of the mentioned case studies. For

each case study, the objective, context, result and threats to validity are mentioned.

4.1 Case study 1: Evaluation of VCIA on real-world industry projects

Case studies like this one is descriptive in nature, and investigates a phenomenon in the real-

life [86]. In this software engineering study, the case under review is vector impact of change.

Case has been derived from two real-world software projects titled Mail and Dental. The projects

belong to BrightSquid. According to the classification and guidelines presented in [82], this is a

multiple-case holistic case study. This case study address objective RO3.1.

Some contents in the following sub sections (related to case study 1) come from the paper [43],

which reports the application of VCIA in Brightsquid. In particular the data analyzed, defined

research questions, process overview, evaluation measures and other related entities all come from

the paper [43]. In most cases some modifications were made to the paper components before they
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Table 4.1: List of case studies and corresponding Research Questions.
Case Study Number Research Questions

Case Study 1: Evaluation of
VCIA on two projects
from Brightsquid

-CS1.1: Among the three techniques (i) Bag of words (BOW)
(ii) Bag of words and Latent Dirichlet Allocation (BOW & LDA)
and (iii) Bag of words and file coupling (BOW & CO), which one
works best better for predicting impacted files by a change request?

-CS1.2: How the file impact prediction techniques perform in
dependence to the type of change request?

-CS1.3: How well can BOW and BOW & LDA technique, as defined
in CS1.1 be used for predicting effort and duration of implementing
a change request?

-CS1.4: What is the impact of the number of recommendations on
files impacted, effort and duration prediction?

Case Study 2: Evaluation of
VCIA in OSS environment

-CS2.1: How well can VCIA predict the vector impact of the change
request in OSS projects?

-CS2.2: How do the results obtained using industry project data
compare with those obtained using OSS project data?

were placed in this thesis. The results for file impact prediction in this case study are identical to

the paper. However, for duration and effort prediction, the evaluation measures used in this thesis

is different, thus the results in the thesis are different from the paper. In any case, the components

from the original paper (with or without modifications) are cited with reference to the paper, as

they share the same core essence. This includes tables and figures from the paper [43]. For most

of the cases, the description in this thesis provide a more detailed account compared to the version

in the paper.

4.1.1 Context of the study

Brightsquid is a rapidly growing start-up, specializing in health informatics. They provide so-

lutions for secure clinical communications among doctors, patients, and support staff. The core

product is a secure collaboration platform called Secure-Mail. This platform allows efficient

patient care management, results sharing, and quick allocation of expertise.
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Figure 4.1: Process model at Brightsquid.

Figure 4.1 shows the process model followed by Brightsquid. Customer feedback, complaints

and feature requests are collected through calls, surveys, newsletters etc. These are then analyzed

to create change requests, which are stored in the Zendesk repository. In addition these requests,

system usage is monitored and tracked. The CRs and usage are analyzed primarily by the Product

Manager, who requests these requests and statistics into development tasks. The tasks are grouped

into Story and Sub-story, which form the basis of different releases. All development tasks are

stored in Jira issue management system. The development tasks gets forwarded to the devel-

opment team, who are managed by the Project Manager. Figure 4.2 shows Brightsquid’s change

management process. Brightsquid follows a Scrum methodology for software development. The

products are implemented and refined incrementally through multiple sprints. Duration of a sprint

is usually two weeks. The core product is offered as web, desktop, and mobile application services.
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Software functionality is implemented across thousands of files, resulting in complex interacting

entities. Issues in the backlog are analyzed with respect to the files changes, effort and duration

required. Issues are then subsequently assigned to developers. Developers work on implementing

these tasks, making updates to Jira as the tasks progress and eventually completes. Depending on

nature, each request might require changes to one or multiple files. Envisioning file changes, with

predicting effort and duration, is mostly subjective to the experience of solving similar problems

in the past. Implementation of the task requires changes to the code base of Brightsquid, which

is maintained in GitHub version control system. It requires careful navigation and expertise of

the complex interaction of the code and issue entities. Also, due to the size of the system, it is

inefficient, even for experienced developers to locate the scope of these changes manually. The

dashed box labeled Impact Analysis in Figure 3.1, is where a semi-automated solution would be

most helpful towards change impact identification and management.

Product Manager
System Architect

2.a) En-
vision file
changes

2.b) Identify
similar

JIRA tickets

2.c) Esti-
mate effort
& duration

2) Change Impact Analysis (CIA)

1)
D
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e
re
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as

e
b

ac
k
lo

g

4) Validate
Change

5) Implement
Change

6) Finalize
change for

Release

3) Issue assigned to developer

Figure 4.2: Change management process at Brightsquid (adapted from [43])
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4.1.2 Data collection

Data for the first case study originates from two Brightsquid projects i.e., Mail and Dental. Table

4.2 summarizes the data extracted. Mail is a more recent project, compared to Dental which is

older in terms of creation date. The projects were analyzed between July, 2015 to May, 2017. A

total of 1116 change requests were retrieved from Mail project between May 2016-2017. These

change requests could be traced back to 2957 commits which impacted a total of 717 files. Sim-

ilarity, 528 change requests were retrieved from the Dental project between July 2016 - 2017.

These change requests from were traceable to 1118 commits which impacted a total of 1458 files.

The data discussed and summarized in Table 4.2 is used to perform the experiments of case study

1. The same data is also used in [43].

4.1.3 Initialization & parameter setting

Leave-One-Out Cross Validation (LOOCV) is used to evaluate performance of the model. In

each iteration, one CR acts as the test case, while the remaining change requests are used for

generating prediction (training). For running the model, corresponding file changes are captured

from GitHub. Files which have changed only once in the analysis time span, are omitted from

analysis. The assumption is if file changes only once in this duration, it is unlikely to change

again. Based on various trials and error combinations, the value of T is set to 0.3 as it presented

with the best trade-off. Similarly, TCO is set at 0.4 for both Dental and Mail projects (see figure

A.5). Finally, the error bound defined in equation 3.9 is set to E = 0.25. Setting error bound is

based on discussion with industry partner and experimentation. The initialization and parameter

settings are very similar to the setup used in [43].

Table 4.2: Time frame and number of change requests for vector impact prediction in industry
projects [43].

Project Name Time Frame Number of
change requests

Number of
commits

Number of
files

Mail May 2016 - May 2017 1116 2957 717
Dental July 2015 - July 2016 528 1118 1458
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4.1.4 Case study objective

This case study evaluates and analyzes the performance of VCIA with respect to prediction abilities

in real world industry projects. Key factors and attributes affecting the performance are analyzed

and presented. The discussion of this case study begins with the research questions (adapted from

questions in [43]), which are defined below:

CS1.1: Among the three techniques (i) Bag of words (BOW) (ii) Bag of words and Latent

Dirichlet Allocation (BOW & LDA) and (iii) Bag of words and file coupling (BOW & CO),

which one works better for predicting impacted files by a change request?

CS1.2: How the file impact prediction techniques perform in dependence to the type of

change request?

CS1.3: How well can BOW and BOW & LDA technique, as defined in CS1.1 be used for

predicting effort and duration of implementing a change request?

CS1.4: What is the impact of the number of recommendations on files impacted, effort

and duration prediction?

4.1.5 Value of predicting vector impact of change

Existing impact analysis techniques look at code change independently and does not provide much

insight into the effort or duration that might be required to implement a change request. Without

the additional effort and duration information, feasibility analysis would be much more difficult

because time and human resource usage cannot be properly measured. The following points de-

scribes the value of including duration and effort estimations into the change management decision

making, which also appear in [43].

• Cost/Benefit decisions: Developers, managers, and stakeholders will be able to

perform cost/benefit analysis. They will be able to judge what would be the per-

ceived benefit of implementing a change request versus the cost and time required

to achieve the change. This allows decision makers, particularly managers to gauge
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the perceived benefits of cost and time considerations. Priority can be provided to

features which would rank high on benefit and low on cost. Essential core-features

can be better emphasized, which is crucial for new and small software enterprise,

with focus on MVP.

• Making commitments: Having an estimation on the duration i.e., time for com-

pleting a change would make it easier to determine release and delivery schedule.

Managers can have a better idea of how long it will take to complete change, and

setup milestones and deliverable accordingly.

• Allocation of staff and resources: Having effort and duration predictions for change

requests would make allocating scarce resources less tedious and error-prone. Vari-

ous development activities can be efficiently planned within time and resource con-

straints [46].

• Customer satisfaction: For a given change request, compared to manual estima-

tions, vector CIA will help to make more realistic release decisions. For future

releases, this includes the setting of more realistic proposed feature-set and release

dates. For ongoing maintenance activities, vector prediction will help to reduce

problem fixing times, allowing for better conformance to service level agreement.

All of these increase the likelihood of achieving customer satisfaction, making it

easier for Brightsquid to maintain the market reputation and instill consumer confi-

dence.

• Forecasting Return on Investment: It would be easier to estimate expenses, helping

to forecast revenue streams. All of these would result in a more accurate analysis

of financial growth and return on investment over time.
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4.1.6 Analysis of results

The subsection presents the results of the outlined analysis. The results are grouped and presented

according to defined research questions in the following segment of this chapter. As mentioned

already, results of file impact prediction are identical to those reported in [43].

CS1.1: Among the three techniques (i) Bag of words (BOW) (ii) Bag of words and Latent

Dirichlet Allocation (BOW & LDA) and (iii) Bag of words and file coupling (BOW & CO),

which one works best better for predicting impacted files by a change request?

Table 4.3 show the performance of the three techniques for file impact prediction. The perfor-

mance of the techniques are reported with respect to Precision and Recall evaluation measures. The

performance is also reported for different number of file recommendations F . Charts generated us-

ing the data from table is shown in figures 4.3 - 4.4. In the charts, suffix D- and M- correspond to

results generated from Dental and Mail projects respectively.

Figure 4.3: Recall of file impact prediction by applying the three proposed techniques on industry
projects Mail(M) and Dental(D), in dependence to the number of file recommendations F [43].

In terms of Recall evaluation measure, the file coupling approach generates the best values. The

trend is similar for both Mail and Dental projects. BOW & CO achieved the highest Recall of

0.67 and 0.56 for both Mail and Dental projects respectively. With respect to Recall, the second
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best performing approach is basic BOW while the BOW & LDA trails in third.

Figure 4.4: Precision of file impact prediction by applying the three proposed techniques on in-
dustry projects Mail(M) and Dental(D), in dependence to the number of file recommendations
F [43].

Considering Precision evaluation measure, both BOW and BOW & CO perform similarity. The

maximum value achieved is 0.12 for BOW only in Dental project. For the Mail project, BOW

and BOW & CO both touch the maximum value of 0.11. BOW & LDA generates lowest Precision

values for both projects.

As mentioned in chapter 3, F-score combines Recall and Precision values to form a combined

evaluation score. For this case study, four separate F-scores are defined and calculated, i.e., F1, F2,

F5, and F10. Considering F10 score, BOW & CO generate highest values, (Fig. A.1). Although

BOW & CO generate lower precision values (compared to BOW and BOW & LDA), this technique

is still the most valuable. This is because BOW & CO can retrieve the most number of impacted

files compared to the other two techniques (higher Recall values compared to BOW and BOW &

LDA). This is reflected in higher Recall values (and subsequently higher F5 and F10 values).

In general, the results indicate that file impact prediction can be improved if file coupling infor-

mation is integrated with textual similarity. In the initial stage textual similarity retrieve important

files. The coupling further augments initial file list with additional files, based on past co-change
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pattern. Also, the coupling threshold restricts files with the lower degree of association for making

into the final list. With respect to file impact prediction, a combination of BOW & LDA, the values

are consistently lower. On average the values are 0.06 to 0.07 less than maximum observed values.

Recall: When file coupling was combined with simple textual similarity (BOW & CO), 0.67

(67%) of the impacted files could be correctly identified for F = 50. This is the best file impact

prediction result from industry projects.

CS1.2: How the file impact prediction techniques perform in dependence to the type of

change request?

Figure 4.5: Recall of file impact prediction for Bug VS Non-Bug CR, achieved with BOW & CO
applied on Dental project, in dependence to the number of file recommendations F [43].

Fig. A.2 and A.3 (in the appendix section) show the distribution of different CR types in

Dental and Mail projects. From the pie-charts, it is clear that Bug type issues account for majority

of change requests. To determine the effect of change request type on file impact results, BOW

& CO file impact prediction approach was re-run with change requests separated into Bug(only

Bug type issues) and Non-Bug (all issues whose type is not Bug). Figure 4.5 and 4.6 show the

Recall values obtained when Bug and Non-Bug issues are separated. The values are higher for
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Figure 4.6: Recall of file impact prediction for Bug VS Non-Bug CR, achieved with BOW & CO
applied on Mail project, in dependence to the number of file recommendations F [43].

both Mail and Dental. This is possible because Bug type issues are logged with better diligence,

with changes being more systematically logged into the system.
Change Request type: Bug type change requests account for about 60% of all requests. File

prediction results are better for Bug type issues.

CS1.3: How well can BOW and BOW & LDA technique, as defined in CS1.1 be used for

predicting effort and duration of implementing a change request?

Table 4.4: Accuracy of effort and duration prediction for BOW and BOW & LDA techniques
applied to Mail and Dental projects and reported for varying number of similar change request
recommendations N.

N
Duration Effort

Mail Dental Mail Dental
BOW BOW&TM BOW BOW&TM BOW BOW&TM BOW BOW&TM

1 0.19 0.17 0.24 0.22 0.27 0.30 0.29 0.36
3 0.26 0.24 0.30 0.28 0.40 0.44 0.42 0.44
5 0.28 0.26 0.31 0.29 0.41 0.44 0.41 0.42
7 0.28 0.26 0.31 0.29 0.41 0.44 0.40 0.43
9 0.28 0.26 0.30 0.29 0.41 0.44 0.40 0.43

11 0.28 0.26 0.31 0.28 0.41 0.44 0.42 0.42
13 0.27 0.25 0.30 0.28 0.41 0.44 0.41 0.42
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Figure 4.7: Effort prediction accuracy applying BOW and BOW & LDA on Mail & Dental

projects, in dependence to the number of change request recommendations N.

Table 4.4 summarizes the accuracy values attained by the textual techniques for effort and du-

ration prediction. Figure 4.7 and 4.8 show accuracy of effort and duration prediction respectively.

Similar to file impact prediction, the value of N specify number of similar change requests (ranked

according to textual similarity) considered for duration and effort predictions. With respect to du-

ration, accuracy varies between 0.17 and 0.28 for Mail project. For Dental, duration accuracy

ranges between 0.23 and 0.31. In general, better duration accuracy is observed for BOW approach.

Similar analysis for effort estimation reveals that accuracy varies between 0.26 and 0.44 for Mail

and, 0.29 and 0.44 for Dental projects. Considering the best-observed results, BOW & LDA out-

performed BOW approach, with respect to effort prediction.

Effort & duration prediction: With respect to industry project data, BOW & LDA works best

for effort prediction, while BOW works best for duration prediction.

CS1.4: What is the impact of the number of recommendations on files impacted, effort

and duration prediction?

File impact prediction: In this study, F determines the size of the recommendation list. For
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Figure 4.8: Duration prediction accuracy applying BOW and BOW & LDA on Mail & Dental

projects, in dependence to the number of change request recommendations N.

example, if F = 8, the evaluation metric are calculated considering only first eight files coming

from similar change requests. Increasing F positively impacts all evaluation measures except Pre-

cision. This is because, higher F results in more number of files in the recommendation list. This

in turn causes the size of observed truth to go up. The trend is true for both Mail and Dental

projects as well as across all the approaches presented. Conversely, growing F values cause the

Recall to increase. The fact is visible for all higher F-score values. Similar trend is reflected in

both Mail and Dental projects. Because increasing F leads to more results being considered, this

increases the probability of file impact match. For all approach and project combinations the trend

is clear i.e., increasing N increases number of impacted files observed. For increasing values of

F , the inverse relationship between Precision and Recall is evident here and trade-off needs to be

made depending on the scenario. For different experiments F has been varied between 10 and 50.

For values between F = 30−40 the highest F5 and F10 values are observed. The Recall value is

also high in this range of F . This indicates that files can be relatively well predicted by analyzing

30-35 file recommendations coming from top change requests.
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Number of recommendations: For file impact prediction, increasing the number of file rec-

ommendations F has positive impact on Recall and F-score, while the impact on Precision is

negative. In terms of effort and duration prediction, increasing the number of similar change

request recommendations N has positive impact on the prediction accuracy.

Effort & duration: In this case, N defines the number of change requests to be used for effort

and duration prediction. With increasing values of N between 1 and 3, there is a sharp upward shift

in accuracy values for effort and duration. After N = 3, the values flatten down, with slight fluctu-

ations. The experiment was repeated with N between 1 and 13. Analyzing the accuracy values, it

is clear that although experiments have been done up to N = 13, reasonable results can be achieved

by examining top 9 similar change requests. Based on this threshold, an average of 0.40 accuracy

is achieved.

Effort + duration prediction: Considering only Top 3 most similar change requests, effort and

duration can be predicted with 0.44 and 0.30 accuracy on Dental project (Table 4.4).

4.1.7 Improvement for Brightsquid

Brightsquid is a small company, operating with seven technical employees for system development

and maintenance. At the time of project initiation, Brightsquid’s focus was primarily on pushing

out software releases. There was little resource available in terms of man hours for monitoring

processes and subsequent improvements. Brightsquid then decided to engage in a collaboration

project, in a bid to improve their performance. The primary objective was to enhance return on

investment, increase customers satisfaction and improve financial forecasting. An essential road-

block towards attaining this aim was the change management process. The entire change impact

assessment was done manually.

The author of this thesis was working as part of collaboration team with Brightsquid. The au-

thor was primarily tasked with CR analysis. In general, the idea was to study CR for identifying key
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trends and patterns. Eventually, the study shifted towards change impact analysis because CR is

the initiating point of change. Through regular bi-weekly meetings and discussions, it was found

that Brightsquid was more interested towards identifying similar Jira tickets or CR from their

repositories. They wanted to use this knowledge for sprint estimation and planning. A textual sim-

ilarity based impact prediction technique was initially formulated for only file impact prediction.

Subsequently, through multiple meetings and discussion sessions, the model was extended to in-

clude effort and duration prediction. Incrementally, the current VCIA approach has been designed

and implemented. An online tool has been developed based on VCIA. Using VCIA, Brightsquid

can achieve the following, that was previously not possible with the manual approach:

• Cost & duration of CR: Based on a change request, Brightsquid can identify similar

CR with the associated cost and duration from the repository. The cost here is

measured in terms of man-hours and duration in terms of days. Previously, Product

and Project managers would manually scour the CR repository to identify similar

instances. With the development of VCIA tool, this is done automatically. The tool

also generates predicted values of cost and duration for the incoming CR.

• Predicting file change: Using VCIA developers and Project manager can predict the

files, where changes would need to be made to satisfy the incoming CR. Previously

identification of file impact was based on developers experience and knowledge

of the system. VCIA automates this process and reduces the cognitive load by

analyzing a large number of interacting entities.

Due to lack of data availability, it is difficult to measure if the return on investment, customer

satisfaction or improvement in financial forecasting. Also, measurement of a qualitative attribute

such as customer satisfaction is difficult and subjective. Therefore, it is challenging to show im-

provements concerning these attributes. However, Brightsquid does consider these results and

VCIA tool to be valuable. The benefits and lessons learned from applying VCIA at Brightsquid is
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reported in [43], where members of Brightquid are co-authors. In addition, Brightsquid has allo-

cated domain, space and access to their data for building the tool and performing various kinds of

analysis. These indicate their interest and positive attitude towards VCIA in general. Compared

to previously having to just rely on experience and gut feeling, there is now a systematic method

which provides useful prediction and analytics result to complement expert knowledge and aid in

decision making. Brightsquid is additionally happy because these recommendations come with

minimal additional involvement from their end. Currently, VCIA tool is being used to complement

expert knowledge and decision making for estimating and planning for sprints. The improvements

and benefits are also reported in [43].

4.2 Threats to validity

This section discusses the threats to validity related to case study 1. Based on the classification of

threats to validity presented in [96], four threats to validity are identified for this study i.e., construct

validity, conclusion validity, internal validity and external validity. The following subsections

discuss each of them.

4.2.1 Construct validity

The key threat to construct validity is the reliance of the proposed techniques on CR ID for linking

CR to file commits. This linking is used for generating file impact prediction. This linking process

involves searching for CR ID in the commit messages. If any CR ID is found, then the files in the

commits are linked to corresponding CR, whose ID has been identified. However, the presence

of CR ID in the commit message does not always guarantee a relation. Developers undertake

system improvement such as security upgrades or performance optimization. In such cases, few

CR are logged into the issue management. Compared to ordinary CR, the number of files impacted

(changed) against these improvement CR are very large. If these commits are included in the

analysis. then file impact prediction will be incorrect, as the actual link between CR and files do
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not exist. To overcome this situation, very large commits including merge and initial commits

were manually analyzed to identify above mentioned scenario and subsequently discarded from

the analysis.

Another threat related to the first one is that not not all file change can be linked back to the

commits, because the CR ID is not mentioned in commit message. Analysis has revealed that

only about one-third of CR are traceable for Mail and Dental industry projects. Having higher

traceability positively impact the performance, because more training examples would be available

for prediction. In order to ensure there were enough traceable CR, time period after May 2016 was

chosen, this is because after the mentioned date Brightsquid encouraged and monitored the number

of CR which were traceable to commits.

Another important threat to construct validity is the assumption that, if two or more files appear

together in the same commit, then the files changes are related, and the corresponding files should

be considered as “coupled”. This is also true for all related literature which utilize file file coupling.

Files may appear to be coupled together for many scenario such as the one mentioned in the

previous threat. In order to ensure that files appearing together are indeed coupled and not just

appearing together due to other circumstance, TCO is set at 0.40. This implies, that a file A will

be considered as coupled to another file B, if B changed at least 40% of the times that A changed.

Setting of this threshold helps to ensure that files appearing together due to other reason except

actual coupling, may be filtered out from the analysis.

4.2.2 Conclusion validity

Conclusion validity refers to correctness of the conclusions that are derived from the results. The

most important element of conclusion validity are the selection of the evaluation measures, because

they define the effectiveness of the results obtained. To mitigate any risk related to choice of the

evaluation measures, popular and extensively used evaluation measures have been considered. The

evaluation measures Precision, Recall. F-score and MRE accuracy have been used by related

literature. In addition, the choice of evaluation measures (including choice of E in MRE accuracy)
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have all been reviewed and accepted by industry experts at Brightsquid.

Another important criteria is the selection of various parameters, which has a strong influence

on construct validity. This is because they impact the execution process of VCIA directly. To

minimize risks related to incorrect selection of parameter values, related literature have been stud-

ied and their suggestion of key attribute values were considered. In addition, experiments were

repeated with different values to ensure that best results could be achieved.

4.2.3 Internal validity

Internal validity refers to correctness of the results. VCIA has been applied on two real world

industry projects which are actively maintained and utilized. In addition the result generation and

evaluation process is clearly presented for this case study. Thus, the threats to internal validity have

been minimized.

4.2.4 External validity

The results presented previously in this chapter are based on this industrial case study only i.e.,

Brightsquid project data only. It is therefore difficult to ensure external validity. Evaluation and

analysis of VCIA on additional industry data is required for ensuring external validity of results.

However, the results indicate that VCIA is able to predict the vector of change to a good extent

from industry data. The VCIA tool can aid the process of change decision making and it is being

utilized as part of an analytics dashboard at Brightsquid.

4.3 Case study 2: Evaluating VCIA in OSS

4.3.1 Case study objective

The objective of this second case study analyzes the performance of VCIA in OSS projects. Real-

world industry projects are different to open-source, with respect to change requests and files

impacted. This case study has been designed towards achieving objective RO3.2. Initialization and
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parameter settings are same as case study 1. Like case study 1, the following research questions

have been formulated:

CS2.1: How well can VCIA predict the vector impact of change request in OSS projects?

CS2.2: How do the results obtained using industry project data compare with those ob-

tained using OSS project data?

4.3.2 Context of the study

Data for this case study comes from two very popular OSS projects, freely available online. The

selected OSS projects are briefly summarized as below:

• Apache Lucene: Apache Lucene 1 is a rich text-based search engine library de-

veloped by Apache Foundation. It is widely being used across diverse platforms.

Lucene is very popular with object-oriented programmers since the entire library is

written in Java. Issues are shared openly via an unrestricted Jira interface. Simi-

larly code base shared through a public GitHub repository. We refer to this project

as Apache

• DSpace: Application for building open repositories, supported and developed by

the Duraspace 2 initiative. DSpace has a large community base of users involved

with open source development practice. Similar to the first project, change request

and code repository are publicly shared via open Jira and GitHub interfaces.

4.3.3 Data collection

Data for this second case study originates from two open source projects i.e., Apache Lucene and

DSpace. Table 4.5 summarizes the data extracted. A total of 344 change requests were retrieved

from Apache Lucene project between August 2016 - August 2017. These change requests could

1https://lucene.apache.org/core/
2http://www.dspace.org/
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Table 4.5: Time frame and number of change requests for vector impact prediction in OSS projects.

Project Name Time Frame Number of
change requests

Number of
commits

Number of
files

Apache Lucene Aug 2016 - Aug 2017 344 2016 609
DSpace Aug 2016 - Aug 2017 398 455 1027

be traced back to 2016 commits which impacted a total of 609 files. Similarity, 398 change requests

were retrieved from DSpace project between the same time frame. These change requests from

were traceable to 455 commits which impacted a total of 1027 files. The data discussed and

summarized in Table 4.2 is used to perform the experiments of case study 2.

4.3.4 Analysis of results

The subsection presents the results of the outlined analysis. Results are grouped and presented

according to defined research question, in the following segment of this chapter.

CS2.1: How well can VCIA predict the vector impact of change request in OSS projects?

Figure 4.9: Recall of file impact prediction by applying the three proposed techniques on Apache

and DSpace, in dependence to the number of file recommendations F .

File impact prediction: In this section the performance of VCIA on OSS projects are evaluated.

Table 4.6 shows file impact performance of the three techniques. Figures 4.9, 4.10 and A.4 have
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Figure 4.10: Precision of file impact prediction by applying the three proposed techniques on
Apache and DSpace, in dependence to the number of file recommendations F .

been generated using values from the table, they show Recall, Precision and F10 values respec-

tively. In Apache project, BOW & CO consistently performs better in terms of Recall, attaining

highest value of 0.63. Recall values for BOW remains constantly in second best position, with

maximum attained value of 0.47. BOW & LDA comparatively attains lowest Recall values, with

maximum attained value of 0.27.

In DSpace project, the trend is almost very similar. Before N = 30, BOW performs a little better

compared to BOW & CO, but for N greater than 30, BOW & CO again performs better. Similar to

the previous OSS project, BOW & LDA generate lowest Recall values. The highest Recall values

attained by BOW & CO, BOW and BOW & LDA are 0.33, 0.31 and 0.21 respectively in DSpace.

The values for F10 scores also show similar trends. Figure A.4 (in Appendix) shows the F10

scores achieved by each of the techniques. For Apache project BOW & CO consistently performs

best, followed by BOW and BOW & LDA respectively, with maximum attained F10 scores 0.62,

0.47 and 0.27 respectively. For DSpace, BOW performs marginally better for F less than 30,

otherwise BOW & CO performs better. Overall the maximum values attained are 0.32, 0.29 and

0.20 respectively for BOW & CO, BOW and BOW & LDA respectively.
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In terms of Precision, BOW performs a little better compared to BOW & CO, while BOW

& LDA attains lowest values. This trend is true for both Apache and DSpace projects. BOW

attains maximum values of 0.26 and 0.11 in Apache and DSpace respectively. BOW & CO attains

maximum values of 0.23 and 0.09 in Apache and DSpace respectively. Lastly, BOW & LDA

attains maximum values of 0.21 and 0.07 in Apache and DSpace respectively.

Similar to industry projects, generally increasing F has positive impact on the Recall and F-

score. But has negative impact on Precision. Continuing the trend of industry projects, BOW &

CO continue to perform better than the other two techniques and produce best values with respect

to Recall and F-score. Like the industry project, although the performance is marginally less com-

pared to BOW, overall BOW & CO is better, because it can retrieve more the impacted files than

the other two techniques.

File impact prediction in OSS projects: BOW & CO retrieved most impacted files in OSS

projects. The maximum attained Recall is 0.63 for Apache project at F = 50.

Table 4.7: Accuracy of effort and duration prediction for BOW and BOW & LDA techniques
applied to Apache and DSpace projects and reported for varying number of change request recom-
mendations N.

N
Duration Effort

Apache DSpace Apache DSpace
BOW BOW&TM BOW BOW&TM BOW BOW&TM BOW BOW&TM

1 0.26 0.25 0.12 0.12 0.26 0.34 0.22 0.24
3 0.32 0.28 0.22 0.16 0.35 0.42 0.34 0.34
5 0.33 0.30 0.20 0.16 0.36 0.43 0.35 0.36
7 0.33 0.30 0.20 0.16 0.36 0.43 0.35 0.37
9 0.33 0.30 0.20 0.16 0.37 0.43 0.34 0.36

11 0.33 0.30 0.19 0.16 0.37 0.43 0.35 0.36
13 0.33 0.30 0.19 0.16 0.36 0.43 0.34 0.36

Effort & duration prediction: Figure 4.16 shows the performance of BOW and BOW & LDA

for effort prediction in OSS projects. BOW & LDA technique consistently performs better in terms

of effort prediction accuracy. Generally the performance improves with increasing N. The highest

accuracy achieved by BOW & LDA is 0.43 and 0.37 for Apache and DSpace respectively. BOW
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achieves highest accuracy of 0.36 and 0.34 respectively in Apache and DSpace respectively.

Figure 4.11 shows the performance of BOW and BOW & LDA for duration prediction in OSS

projects. BOW technique consistently performs better in terms of duration prediction accuracy.

Similar to effort prediction, accuracy improves with increasing N. The highest accuracy achieved

by BOW is 0.33 and 0.22 for Apache and DSpace respectively. BOW & LDA achieves highest

accuracy of 0.30 and 0.16 respectively in Apache and DSpace respectively.

Figure 4.16 shows the performance of BOW and BOW & LDA for effort prediction in OSS

projects. BOW & LDA technique consistently performs better in terms of effort prediction accu-

racy. Similar to duration prediction, accuracy improves with increasing N. The highest accuracy

achieved by BOW is 0.37 and 0.35 for Apache and DSpace respectively. BOW & LDA achieves

highest accuracy of 0.43 and 0.37 respectively in Apache and DSpace respectively.

Effort & duration prediction in OSS projects BOW & LDA attains best effort prediction

accuracy of 0.43 and BOW attains best duration prediction accuracy of 0.33, both for Apache

OSS projects.

Figure 4.11: Duration prediction accuracy applying BOW and BOW & LDA on Apache &

DSpace projects, in dependence to the number of change request recommendation N.

CS2.2: How do the results obtained using industry project data compare with those ob-
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tained using OSS project data?

In this sections, results obtained from industry and OSS projects are compared. In the fist seg-

ment, file impact prediction results are compared. The next segment compares effort and duration

accuracy outcomes.

File impact prediction: Table 4.3 and 4.6 displays the results of file impact prediction by ap-

plying the three proposed techniques on industry and OSS projects respectively. As mentioned in

the previous sections, BOW & CO identified most impacted files in both industry and OSS data

experiments. Therefore in this segment, comparison across all projects is done with respect to

BOW & CO. Figure 4.12 takes a closer look at Recall from BOW & CO across all projects i.e.,

OSS and real-world data. From the results, highest Recall of 0.67 is observed for Mail project.

However the performance for Apache is more stable, with maximum value of 0.63 reached for this

dataset.

File impact prediction across all projects: BOW & CO consistently retrieved most impacted

files across all projects, with a combined maximum of 0.67 at F = 50, for Mail industry project.

Figure 4.12: Recall of BOW & CO file impact prediction applied on OSS and industry projects, in
dependence to the number of file recommendations F .
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Figure 4.13: Precision of BOW & CO file impact prediction applied on OSS and industry projects,
in dependence to the number of file recommendations F .

Comparing results of Precision, BOW & LDA generated the lowest values, while BOW gen-

erated slightly better results than BOW & CO. As BOW & CO returned highest Recall values

(returned most impacted files), Precision performance comparison is also done with BOW & CO.

The highest Precision value of 0.23 was attained on Apache project. For Mail & Dental projects,

maximum Precision was 0.11 and finally for DSpace maximum Precision was 0.09. Figure 4.13

shows Precision attained by BOW & CO across all projects.

The performance comparison of F10 score was similar to Recall. Here again BOW & CO was

chosen as the technique for comparison, across all projects. Maximum F10 score 0.62 was attained

for Apache project. The other maximum attained F10 scores were 0.58, 0.48 and 0.32 for Mail,

Dental and DSpace projects respectively.

Effort & duration prediction: Table 4.4 and 4.7 show the effort and duration prediction accu-

racy attained by BOW and BOW & LDA, for industry and OSS projects respectively. Mentioned

in previous segments, BOW & LDA generated best effort prediction values. Figure 4.15 shows the

performance of this technique across all projects. The maximum prediction accuracy of 0.44 was

achieved for Mail and Dental projects. Compared to other projects, higher and stable accuracy
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Figure 4.14: Accuracy of duration prediction by applying BOW on OSS and industry projects, in
dependence to the number of change request recommendations N.

values are observed for Mail project. The other best values are 0.43 and 0.36 for Apache, DSpace

respectively.

Effort prediction across all projects: Best combined effort prediction accuracy of 0.44 is

achieved with BOW & LDA at N = 3, for Mail and Dental industry projects.

BOW generated best duration prediction accuracy values. Figure 4.14 shows the performance

of this technique across as projects. The maximum prediction accuracy of 0.33 was achieved for

Apache project. Compared to other projects, higher and stable duration accuracy values are found

for Apache as well.The other best values are 0.28, 0.31 and 0.19, attained for Mail, Dental and

DSpace projects respectively.

Duration prediction across all projects: Best combined duration prediction accuracy of 0.33

is achieved with BOW at N = 5, for Apache OSS project.
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Figure 4.15: Accuracy of effort prediction by applying BOW & LDA on OSS and industry projects,
in dependence to the number of change request recommendations N.

4.4 Threats to validity

This section discusses the threats to validity, related to case study 2. Generally, the same construct,

conclusion and internal threats mentioned in the fist case study, apply here as well. Since the VCIA

has only been applied and tested on two OSS projects, this represents a threat to external validity.

However, to mitigate the threat the projects were chosen based on careful analysis and study. Both

the OSS projects are active, well maintained and have large number of contributors. Moreover,

they have been used in other literature to study various software engineering concepts, including

the ones covered by this study.

Another important threat of this case study refers to the availability of CR effort estimation

data. For many of the CR in OSS projects, effort estimation data is missing. For OSS data, it was

very difficult to find any CR with effort estimates. This poses additional threat to conclusion and

internal validity. To overcome this threat, CR from other projects, but with in the same repository

were retrieved for effort prediction.
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Figure 4.16: Effort prediction accuracy applying BOW and BOW & LDA on Apache & DSpace

projects, in dependence to the number of change request recommendations N.

4.5 Comparison with Literature

In this segment, the performance of file impact prediction results from the proposed technique of

this thesis i.e., VCIA is compared with that from literature. For performance comparison, a subset

of file impact prediction papers from literature review chapter is selected. For this comparison

purpose, those literature are selected where the performance (measured in terms of Precision and

Recall) is measured and reported for varying number of file recommendations. Table 4.8 show

the performance values from this study (VCIA) and literature studies (papers). This table is an

extension to the file impact literature comparison table reported in [43]. The table presented in

this thesis, also reports the performance of VCIA on OSS projects. From the values presented, it

is clear that file impact predictions are inherently difficult. This is indicated by lower Precision

and Recall values compared to other fields of computer science. Lower values (compared to other

disciplines) are true for all techniques from literature as well as this study.

Each of the study report results by applying their respective techniques. “Min” and “Max”

row denote the minimum and maximum evaluation values respectively, as reported in the literature

study. For two of the studies, only average values are reported in the papers. The figures in bold
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represent highest evaluation measure value attained for the number of file recommendations and

corresponding evaluation measures (indicated by the respective column headings).

In terms of Precision, the highest values attained is 0.26 for 10 recommendations, which is

attained by VCIA. The Precision values from VCIA is consistently higher for the different num-

ber of recommendations. Generally, Precision decrease with increasing F and this is true for all

techniques (including this study). Precision determines the fraction of files which are correct in the

list of total recommendations. With respect to literature results, this means that on average, VCIA

provides higher number of relevant files in the list of file impact recommendations.

In terms of Recall VCIA is outperformed by the techniques of Kagdi et al [45] and Gethers

er al. [32]. Overall, the highest Recall is reported by Gethers et al. [32], which is 0.75 for 40

recommendations. In comparison highest Recall obtained from VCIA is 0.67 for 50 recommen-

dations. Generally, Recall improve with increasing number of recommendations across all the

studies. Recall determines the percentage of the correct file impact which was retrieved in the list

of recommendations. In this respect studies [32] and [45] outperformed VCIA.

Comparing results with literature, it is clear that VCIA generates better results for F = 10 rec-

ommendations, which also provide the best trade-off between Precision and Recall. Even though

two of the literature techniques provide better Recall, the Precision values are higher for VCIA.

This means that VCIA has more correct files in the list of recommendations. In addition, all the

other studies with the exception of [21] and [99] utilize additional natural language tokens iden-

tified from the code for making file impact prediction. The presence of these tokens relies on

adhering and investing in best practices because developers would need to make time to put com-

ments and meaning code entity names. For small teams especially start-ups, where the focus is on

quick delivery rather than following best practices. Thus applying these techniques which rely on

natural language tokens is difficult. In addition, some of the studies utilize additional data which

are difficult to acquire, are not readily available and sometimes require specific IDE plugin for

capturing the required data. As examples, Gethers et al. [32] use execution trace while Zanjani et
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al. [80] use code interaction data. All these present additional overhead, where small and start-up

teams might be reluctant to invest the additional time and effort. The results obtained with VCIA

only rely on change request data from issue repositories that are used by all software development

companies. The data is readily available, requires no intervention from the developers and is not

dependent on the language or construct. Despite using just change request data for file impact

prediction, the Precision values are better, and comparable Recall values which are about 0.10 less

than best values observed.

Table 4.9 show the performance of VCIA and literature with respect to effort and duration

prediction. Two of the studies from literature review section has been selected for this purpose.

Majority of the effort and duration prediction from literature utilized classifier models, where per-

formance was reported for different attribute selection. On the other hand, the performance of

VCIA is reported for varying number of change requests recommendation N, as this was the only

meaningful attribute which could be varied. Therefore for comparison purpose, only those studies

were selected where performance was reported for a different number of change request recom-

mendations. For VCIA as well for the studies presented in Table 4.9, the evaluation measure was

MRE accuracy and the error bound E for VCIA and literature was all set at 25% (0.25) threshold.

The value in each cell of each represents the highest accuracy attained by the technique outlined in

the literature (row header) for the corresponding number of change requests recommended (column

header).

In terms of effort prediction, for all the techniques the prediction accuracy (for both effort

and duration prediction) remained largely unchanged for N greater than 3. VCIA consistently

generated better results than [94]. However, Dehghan et al. [27] generated better results compared

to VCIA. Although the results from [27] appear significantly better than VCIA, an important to

note here is that the technique in the former study was applied on Work Items of type Tasks and

not directly change requests. Similarly, technique outlined in [94] was applied on only Bug type

change requests. In contrast, VCIA was evaluated on all type of change requests, which could be
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Table 4.9: Comparison of effort and duration prediction results from literature and VCIA. “-”
indicate unavailable evaluation data.

Study Number of CR
recommendations (N) 1 3 5 7 9

VCIA
Effort

prediction

0.30 0.44 0.44 0.44 0.44
Dehghan et al. [27] - 0.69 0.69 0.68 0.68

Weiss et al. [94] 0.17 0.15 0.15 0.16 0.15
VCIA Duration

prediction
0.26 0.32 0.33 0.33 0.33

Pfahl et al. [72] - 0.39 - - -

an important contributing factor to the performance difference.

In terms of duration prediction, there was only study Pfahl et al. [72] which satisfied the selec-

tion criteria and the result was only reported for N = 3 recommendations. The performance of [72]

was better than VCIA. An important point of difference is that the technique in [72] was applied to

data which was segmented into different duration intervals. The duration prediction performance

was measured with respect to the duration interval plus error bound. This would mean that the

prediction would be correct as long as it fell within in value range of duration interval +/− error

bound 0.25. For VCIA the duration was not segmented into intervals. The segmentation used

in [72] provided a larger duration range of acceptance, where as in VCIA it was comparatively

less, as the acceptable duration range was the actual duration value +/− error bound 0.25. Thus,

the accuracy values from Pfahl et al. [72] were slightly higher.

Overall, the performance of VCIA for file impact, effort and duration are comparable to those

reported in the literature. In some cases, the results are less and the underlying possible reason was

discussed in previous paragraphs. One important advantage of VCIA is that it provides file impact,

effort, and duration prediction together in an integrated fashion. The techniques from literature

discussed in the preceding discussion provide these predictions separately. VCIA on the other

hand provide vector impact prediction for change requests i.e., files impacted, effort and duration

prediction with respect to CR. The results from very few literature are a little better than VCIA. But

overall the benefits of vector impact prediction for enhanced decision making will outweigh this

minor limitation. The main objective was to propose a technique which could provide reasonable
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vector impact prediction. The performance is largely good (being less only for a few literature)

indicates that the results are reasonable, comparable and certainly useful. As future work, the

performance aspect of VCIA can be analyzed and improved so that vector impact predictions are

even better.

Another point of comparison is the number of data entity analyzed. Table A.1 in Appendix,

shows the number of data entity analyzed by VCIA as well as all the studies against which file

impact, effort and duration prediction was compared (Table 4.8 and 4.9). All the literature evaluate

their techniques on either industry or open source data. VCIA is the only study where the perfor-

mance was compared with both industry and open source data. VCIA was also evaluated with the

highest number of CR compared to the other studies. For prediction, VCIA also requires file and

commit data. The only other study which analyzes more data is Kagdi et al. [45]. However, VCIA

needs to trace CR with commit, thus it is limited by the amount of CR traceable data available.

As Kagdi et al. [45] do not need to exclusively rely on this traceability, they were free to use as

much of data as possible. For the case of VCIA, these were the maximum number of data points

available for the projects selected.

4.6 Summary

This chapter presents the results of two case studies. The first case study was conducted in Bright-

squid Inc. The proposed approach was applied to two real-world projects obtained from the in-

dustry partner. The second case study was conducted using data from two popular OSS projects,

i.e., Apache, and DSpace. Analysis of result show similar trends of performance in both case stud-

ies. Looking at the individual techniques, BOW & CO performs best for file impact prediction in

both case studies. Combination of BOW with topic BOW & LDA produces best effort estimation

results across all projects in both studies. Finally, using simple Bag of Words presentation with

textual similarity (BOW) performs best with respect to duration prediction across projects. The

case studies and performance evaluation help to attain objective RO3.
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Chapter 5

VCIA tool support

5.1 Introduction

The VCIA tool has been developed as an online application. The tool utilize data stored in CR and

Code repositories, Jira and GitHub. VCIA has been integrated into an online analytics dashboard.

The dashboard has been developed for Brightsquis Inc, Canada. Figure 5.1 show the home page.

The tool is accessible from anywhere without any installation. It does not require development

environment setup or configurations for execution. The tool is able to operate without any human

intervention, except for the user input. Brightsquid is using the tool as part of their sprint planning

and estimation phase. The design and implementation of this tool is geared towards fulfilling

objective RO4.

Figure 5.1: Tool homepage
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5.2 Overview of tool development

The tool use state-of-the-art technologies to generate vector impact prediction service to the user.

Table 5.1 highlight the main technologies used in the development of the tool. Entire analytics

dashboard is hosted and deployed as web service on the popular Amazon Web Services (AWS), more

specifically Amazon Elastic Compute Cloud (Amazon EC2). EC2 is a very popular and secure

cloud based web services platform, which make development and deployment of web services

quick and efficient. All the tool layers (discussed in next chapter) are hosted on EC2 instance.

For data extraction, GitHub API is used to download data from Brightsquid repository in

GitHub. This API is only used in the Data layer preparation. All core functionality of VCIA

tool is developed with Java. Popular API are used to achieve various tasks ranging from, data

pre-processing to the final result presentation. Core functionality require scanning the repository

for finding similar CR. Popular open source search-engine API Apache Lucene is used to index

and query data entities for finding suitable matches, with respect to CR input. These technologies

are primarily used in Application Layer.

HTML, Javascript, JSP are jointly used to develop the web pages to take user inputs and

return outputs back. Some portion of the tool require graph generation from the output of the core

program. This is achieved with Python scripts integrated into the tool. Together they form the

front-end of the tool and also the entire dashboard, primarily used in the Presentation Layer.

Table 5.1: List of tools and technologies used for VCIA tool development
Tools & Technology Layer Usage
GitHub API Data Data extraction
Java Application Application development
HTML, Javascript, JSP Presentation Develop webpage
Python Presentation Graph Generation
Amazon Web Services N/A Tool Deployment
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5.3 Architecture

VCIA has a multi-layer architecture for generating vector impact prediction. The tool follows a

three layered architecture, which is shown in Figure 5.2. The following segment discuss each layer.

• Data Layer: The layer handles data importing from project management tools i.e.,

GitHub and Jira. The data is downloaded through a separate secure stand-alone

program and imported into the tool. The tool store the data in the data layer. Code

data in Figure 5.2 refer to data related to code entities, which are retrieved from

GitHub. The data is downloaded via standalone program which uses the GitHub

API. Standalone program is a Java based application, that downloads the data from

the servers with credentials created by the company. Brightsquid maintains a num-

ber of code repositories in GitHub, which are maintained as separate projects. From

these repositories, data from all active projects are retrieved at regular weekly in-

tervals. Subsequently, the data layer is updated with recent data. Change Request

(CR) data is collected from the Mail project of in Jira. It is currently the only

live CR project being maintained, under which changes are managed in multiple

products. CR data is fetched via the online interface provided by Jira.

• Application Layer: All processing and calculations take place in this layer. This

layer receive a JSON object as input, which also initiates processing for this layer.

Application layer generates results for two modules (mentioned in next chapter).

For the first module Ripple Effect Analysis, the data is first pre-processed via dif-

ferent textual cleaning techniques implemented with different class files. For text

preparations and cleaning, numerous popular API and regular expression are used.

In particular, for stemming text, an OSS Java implementation of Porter Stemmer

algorithm is used [73]. CR to code traceability is also established in this layer.

Traceability is primarily established by using regular expressions to look for CR ID
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in commit messages. One of the key preparation task is Duration value resolution

because this value is not readily available. This is done by individually looking at

each CR for the opening and closing dates. Similarly effort values are normalized

and converted to hours from seconds, this is because the online provide effort values

in seconds. All these comprise of the processing that need to be completed before

the vector impact can be predicted. Once all the data is ready, impact prediction

can be completed. Impact prediction processing begins when the user has provided

an input, based on which the vector impact of the corresponding change request is

generated. Apache Lucene is used to index and query the data entities for finding

suitable matches, with respect to input CR. Based on the results of similarity, other

relevant details are retrieved from Data layer (CR and Code data), for packaging

final output. The results are passed back to the presentation layer as JSON object.

Processing for the second module Commit Traceability Analysis involves looking at

commit traceability of 5 most active GitHub projects. A Java program analyze all

commit messages to find presence of CR ID. If it is found, then the commit is treated

as traceable. The result of this module are the ratio of the commits, distributed into

multiple time buckets. More details of the input and output are presented in next

segment. The results are sent to the presentation layer for graphical representation.

Similar to the first module, inputs and outputs are both in JSON formats, received

and sent back to the Presentation Layer respectively.

• Presentation Layer: The presentation layer is responsible for accepting user input

and display output back to users. For the Ripple Effect Analysis module, three set

of outputs are generated, in response to a change request. The first output is a

list of Impacted Files. The second output is the list of Similar Issues. The last

output are predicted values of effort and duration, for the input CR. Overall, they

provide recommendation of the file impact with effort and duration that might be
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required to implement the query CR. In this layer, the JSON objects returned from

Application Layer are transformed into HTML tables using a combination of HTML,

Javascript, CSS. A set of Javascript functions also allow the user to sort the

results according to different file attributes.

In the second module Commit Traceability Analysis, graphs are generated using val-

ues from JSON objects, returned by Application Layer. Graphs are generated using

Python scripts, which are embedded in the Application Layer. Using a combination

of HTML, Javascript, CSS they are displayed in this layer to the users.

Figure 5.2: Tool architecture layers.

5.4 Tool modules

The tool has two main modules, Ripple Effect Analysis and Commit Traceability Analysis. Each is

discussed in the following sub-section.
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5.4.1 Ripple Effect Analysis

This is the center piece of the analytics dashboard and also the main module of this tool. This

module has been developed following the design of VCIA. This analysis looks at the past change

history (i.e. JIRA tickets) to generate vector impact of a given change request. Throughout this

segment and also in the tool, Issue and CR refer to the same thing. The input and output, with

relevant screen-shots are presented below.

Module Input: The input are two string values representing Issue Summary and Issue Descrip-

tion, which are analogous to CR summary and description respectively. Figure 5.3

show the input fields of the tool. It is not mandatory for the inputs to resemble a

JIRA ticket Summary and Description, it can also be any group of textual term(s).

The search for similar CR is conducted based on these terms entered by user. If

similar issues with traceable file impacts are found, then they are displayed to the

user.

Figure 5.3: Input of Ripple Effect Analysis module for vector impact recommendation.

Results & Output: Three sets of output are returned from this module. The first output is the list

of Impacted Files. Figure 5.4 is a sample output, showing list of impacted files.

The list of Impacted Files, can be sorted by three attributes/columns i.e. Similarity,

Days Since Last Modified and Total Churn. The list of similar issues are sorted

according to similarity, by default. For sorting by any one of the three attributes,

users can click on the respective column names. Similarity represents the textual
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similarity value of the CR which impacted the file. Days Since Last Modified shows

the number of days ago that the file was changed. Finally, Total Churn is the total

number of lines added or deleted to the file. For each file, CoupledFiles are also

shown i.e., files which changed together in the past.

Figure 5.4: Output of Ripple Effect Analysis showing Impacted Files recommendation (sensitive
values hidden to preserve industry confidentiality).

The second output are the predicted values of effort and duration, with respect to the

CR input. Figure 5.5 show sample prediction values generated for the user input.

The values have been calculated by considering three most similar existing CR.

Figure 5.5: Output of Ripple Effect Analysis showing predicted effort and duration value recom-
mendation.

The third output of this module is the list of Similar Issues. These are the CR which

are textually similar to the query CR entered by the user. Figure 5.6 show sample
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output of Similar Issues generated by this module. From this list, the previous

two outputs were generated. Each similar CR is described by multiple attributes,

which are: Issue ID, Issue Summary, Issue Description, Issue Severity, Actual Effort

Required(hrs), Org. Effort Estimate(hrs) and Duration.

Figure 5.6: Output of Ripple Effect Analysis showing Similar Issues recommendation (sensitive
values hidden to preserve industry confidentiality).

Both Similar Issues and Impacted Files are shown as HTML tables. Users can se-

lect between the two tables using the dropdown boxes. Each issue is described by

multiple columns as shown in the tables.

5.4.2 Commit Traceability Analysis

This sub-module analyze the traceability of CR stored as JIRA tickets, with code commits in

GitHub. This module analyze traceability for five active GitHub projects of Brightsquid. The user

select the projects from Select Project drop down. The tool identifies the percentage of traceable

commits from GitHub commit data, by tracing the presence of JIRA ticket/CR ID in the commit

messages. Based on Analysis Interval chosen, traceability information is displayed for the last two

weeks, month, year or entire project life-time.

Module Input: This module requires two inputs from the user in Analysis Options. The fist

input is selection of the project from Select Project, as mentioned before five active
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projects are tracked. The second input is Analysis Interval. This input set time line

of the analysis and users can select one of the four options: ”Last 2 Weeks”, ”Last

4 Weeks”, ”Last Year” and ”Project Life”. The last option displays traceability per

month starting from project initiation. Figure 5.7 shows the input selection options

for this module.

Figure 5.7: Input screen of Commit Traceability Analysis module.

Results & Output: The output of this module is a graph showing the traceability of the project

and analysis interval chosen by the user. Figure 5.8 show sample output generated

from this module, for four week interval. For each week, both the total and traceable

number of commits are displayed on the left and right y-axis respectively. The line

shows the percentage of traceable commits.

5.5 Summary

This chapter elaborates on the tool, which has been designed and implemented on the work pre-

sented in this thesis. The tool has two main modules. Ripple Effect Analysis is the center piece of

the tool, it takes CR as input and generates vector impact of the CR as the output. This module

has been designed followed VCIA technique outlined previously. The design and implementation

of a module which can predict vector impact targets objective RO4.1. The second module Commit

Traceability Analysis acts as supporting component to the former module, it tracks the percentage
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Figure 5.8: Sample output of Commit Traceability Analysis (sensitive values hidden to preserve
industry confidentiality).

of code commits which are traceable to JIRA tickets. The tool is hosted as an online service that

does not require any installation or setup and can generate output without human intervention.

The tool is integrated into the analytics dashboard of software company Brightsquid. This helps

to fulfill objective RO4.2. This chapter sheds light on the architecture along with the tools and

technologies integrated for tool operation. Each of the key modules are outlined with descriptions

and screen-shots of the major input and output components.
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Chapter 6

Summary & Future research

This chapter serves to summarize this entire thesis. The first section discusses the key contribu-

tions. The second sections discuss the limitations and Applicability of the results. The final section

outlines the possible future directions of this research endeavor.

6.1 Summary of contributions

The key contributions of this thesis are discussed in the subsequent subsections.

6.1.1 VCIA approach for predicting files impacted, effort and duration of change request

Quick and efficient reaction to software change request is of paramount importance. This thesis

proposes a three-directional framework that can accept change request as input and generate files

impacted, effort and duration value as output. Three textual similarity based techniques for file

prediction are presented. Two of the techniques defined for file impact prediction are extended

for effort and duration prediction. Through case study validation it was possible to show BOW &

CO performs best for file impact prediction in both case studies. Combination of BOW with topic

BOW & LDA produce best effort estimation results across all projects in both studies. Finally,

using simple Bag of Words presentation with textual similarity (BOW) performs best with respect

to duration prediction in both case studies.

6.1.2 Application and validation with industrial case study

The approach outlined in this thesis has been integrated into an analytics dashboard for Bright-

squid, a Canadian software company. The VCIA approach is being utilized by the company, and

the solutions are acceptable to them. The broadening of textual similarity towards predicting not
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only the impacted files, but also effort and duration required to implement the change request, en-

hance the productivity of the technique and increases industrial relevance. Until now all estimation

relied on ad-hoc and manual decision making, resulting in error and poor accuracy. Using the new

predictions without incurring additional cost is lucrative for Brightsquid’s project management. It

reinforces their strategy towards the development of Minimum Viable Products. Brightsquid con-

siders the recommendations as important inputs to their human decision-making process regarding

the selection and quantity of change request that should be handled in different releases.

6.1.3 Tool development for vector impact prediction

VCIA has been integrated into an online analytics dashboard. The dashboard has been developed

for Brightsquid Inc, Canada. The tool is accessible from anywhere and does not need to be installed

as an IDE extension such as Eclipse. The tool does not require environment setup or configuration

to run. The developed tool can operate without any human intervention. Brightsquid is using the

tool as part of their change management process and is satisfied with the results.

6.2 Limitations & Applicability

VCIA relies heavily on the traceability between code entities and CR to make file impact predic-

tions. Also, the availability of a good chunk of effort data is also critical. From software repos-

itories, VCIA needs to discover a relatively high number of traceable CR which also have effort

estimates available. This is vital for providing vector predictions. Unfortunately, good traceability

and effort estimation logging practices are normally not followed by all organizations. Organiza-

tions which follow proper development processes and guidelines, tend to follow these good practice

only. Thus VCIA is suitable for scenarios where enough traceability and effort data are available.

The proposed approach requires some parameter values and threshold settings to operate ef-

fectively. The right or wrong selection of these parameters and threshold can generate very good

or bad results. Current threshold and parameter values are defined based on experimentation and
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experience. However, these values might be context specific and can cause VCIA to perform less

effectively with other projects. To overcome this problem, VCIA would first need to be tuned with

the optimum setting before it can be applied on other projects.

The primary objective of this thesis was to generate vector impact for a change request. The

motivation was to aid decision makers with recommendations on the vector impact of change.

However, there was less focus on improving the overall performance of the proposed approach.

The technique presented in this thesis can, therefore, be a good starting point for enhancing vector

predictions of change.

6.3 Future research scope

The proposed VCIA approach and the associated tool can be further improved. The following

section concludes this thesis with discussion of the possible future research directions.

1. File impact prediction at finer levels of granularity: VCIA predicts code impact

at the file level using only CR textual similarity. A good direction for future research

would be to predict impact at a more finer level i.e., methods or even lines of code.

In order to achieve this, textual content of the code entities may be leveraged such

as comments, identifiers, various entity names etc. In addition, additional code

attributes may be leveraged for generating better prediction results.

2. Analysis on more project data: Further validation and analysis of VCIA perfor-

mance is required. This can be done by applying VCIA on additional project data

and monitoring performance. This would provide further insight into the capability

of the proposed method towards assisting change impact decision making.

3. Inclusion of additional CR attributes: Currently VCIA utilizes textual CR con-

tent i.e., Title and Description. In the future additional CR attributes can be included

into the prediction technique.
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4. Evaluation measure: The current evaluation measure only considers the presence

or absence of the file. An additional measure such as MAP can be used, which also

considers the position of predicted files in the list of generated recommendations.

5. Analysis with varied parameter setting: Additional result generation and analysis

of VCIA performance can be done by varying key parameters and threshold values.

This will serve to evaluate robustness and stability of the solution approach.

6. Order of files: The file impact prediction procedure does not consider the ordering

of files. Ordering of the files maybe important towards the final results. As future,

the impact of the order of files and change requests can be taken into account.

7. Tool live data update: Providing the tool with the ability to update data automat-

ically. Currently, live data update is disabled due to some technical issues. Fixing

this feature would make the tool more independent.
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Appendix A

Additional figures, tables from experimental results and

copyright form

Figure A.1: F10 scores of file impact prediction by applying the three proposed techniques on
industry projects Mail(M) and Dental(D), in dependence to the number of file recommendations
F [43].
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Figure A.2: Ratio of change request types for Mail project.

Figure A.3: Ratio of change request types for Dental project.
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Figure A.4: F10 scores of file impact prediction by applying the three proposed techniques on
industry projects Apache and DSpace, in dependence to the number of file recommendations F .

Figure A.5: Recall of file impact prediction for different values of CO threshold, by applying the
BOW & CO on Mail, in dependence to the number of file recommendations F .
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Table A.1: Number of entity analyzed in VCIA and literature studies.

Study Number of projects Data source Number of entity
(entity name)

VCIA 4
Industry

& Open source

2386
(change request)

6546
(commit)

3811
(file)

Borg et al. [16] 2 Industry
2000

(non-code entities)

Gethers et al. [32] 4 Open source
277

(change request)
3588
(file)

Kagdi et al. [45] 6 Open source
16551
(file)

11377
(commit)

Zanjani et al. [97] 1 Open source
3727

(commit)

Canfora et al. [21] 3 Open source
1377

(change request)
1744
(file)

Torchiano et al. [93] 5 Open source
6444
(file)

Zimmerman et al. [99] 8 Open source
4000

(transaction)

Weiss et al. [94] 1 Open source
2125

(change request)

Dehghan et al. [27] 2 Industry
9417

(work item)

Pfahl et al. [72] 1 Industry
567

(change request)
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Figure A.6: Recall of file impact prediction for Stemming and Lemmatization operations, by ap-
plying the BOW & CO on Mail, in dependence to the number of file recommendations F .

Figure A.7: Accuracy of effort prediction for Mean Median value calculation, by applying BOW
& LDA on Mail, in dependence to the number of change request recommendations N.
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[89] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? SIGSOFT

Softw. Eng. Notes, 30(4):1–5, 2005.

[90] C. Spearman. The nature of ”intelligence” and the principles of cognition. Macmillan,

Oxford, England, 1923.

111



[91] C. Sun, D. Lo, S. C. Khoo, and J. Jiang. Towards more accurate retrieval of duplicate bug

reports. In 2011 26th IEEE/ACM International Conference on Automated Software Engi-

neering (ASE 2011), pages 253–262, 2011.

[92] X. Sun, B. Li, H. Leung, B. Li, and J. Zhu. Static change impact analysis techniques: A

comparative study. Journal of Systems and Software, 109:137 – 149, 2015.

[93] M. Torchiano and F. Ricca. Impact analysis by means of unstructured knowledge in the

context of bug repositories. In Proceedings of the 2010 ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement, ESEM ’10, pages 47:1–47:4, 2010.

[94] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to fix this bug?

In Proceedings of the Fourth International Workshop on Mining Software Repositories, MSR

’07, pages 1–, 2007.

[95] B. J. Williams, J. Carver, and R. B. Vaughn. Change risk assessment: Understanding risks

involved in changing software requirements. In Software Engineering Research and Practice,

pages 966–971, 2006.
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