
 On Monte-Carlo Methods
&

Applications in Geoscience  

Zhan Zhang, 
Dr. J. A. R. Blais

University of  Calgary, AB



OBJECTIVES

To give the geophysicists and geo-scientists a support in 
terms of  the mathematical backgrounds hidden behind 
the random number generations and relating Monte 
Carlo algorithm, with several methods are given.

To gather several problems in assorted branches of  
geoscience, where the Monte Carlo method can be 
utilized, general descriptions of  each problem will be 
provided. 



PART I

Random number & 
Monte Carlo method



PSEUDO RANDOM NUMBER GENERATORS

All types of  the PRNG will give the uniformly 
distributed random numbers in ( 0, 1 ), whose idea 
rooted in the number theory instead of  pure theory of  
probability . 
1. Linear Congruential Generator:

Certain restriction apply on the choice of  a, c & M in 
order that the sequence has a full period.
However, LCG has a high serial correlation.

Xn ≡ aXn−1 + c (mod M)



2. Lagged Fibonacci Generator:

j, k are chosen specially so that the sequence will have a 
long cycle. 
In other cases, the sum in the generator may be replaced 
by a product or even a linear combination of  all the 
numbers of  previous states.

With the generated sequence {X}, the uniformly 
distributed number sequence {U} is given as:

Un =
Xn

M

Xn ≡ Xn−j + Xn−k (mod M)



CHAOTIC RANDOM NUMBER GENERATOR

The generator, known as logistic map, has the form:

Given a random seed, this map will produce a sequence 
of  random numbers, which are all absorbed into (0, 1), 
whose PDF is recognized as:

this distribution provides a population which is dense at 
two extremes 0 and 1.
This generator is ergodic, and sensitive to the seed.

Xn = 4Xn−1(1−Xn−1)

ρ(x) =
1

π
√

x(1− x) exactly solvable chaos



This gives the spatial plot of  chaotic sequence
seed:  0.792207329559554     N = 10000



This gives the histogram of  chaotic generation
seed:  0.157613081677548      N = 10000



In some studies, this logistic map is solved using the 
well-known trigonometric relation, as:

for z > 1, the fractional z, in principle, provides more 
unpredicability, leading to more randomness, due to a 
multiplicity of  the solution.

Lyapounov exponent: 
A measure of  the predictability of  the dynamical 
system, as:

This measures the deviation of  the separation of  a 
system in t from that of  its initial state. 

Xn = sin2(θπzn) where z is a real number

|δX(t)| ≈ eλt|δX(0)|



QUASI MONTE CARLO METHOD

BASIC IDEA: The random sampling in MC method 
introduces a certain error in the evaluation, to diminish 
this error, a set of  deterministic points with uniform 
property is utilized. Therefore, in addition to MC 
method, ‘quasi’ is coined.

Uniform Distribution: 

                        be N numbers falling in    , and in which 
N’ numbers in E, then the uniformity is defined:

                               

E : 0 ≤ u < 1 and E : α ≤ u < β; where E ⊂ E
u1, u2, ......, uN E

N ′

N
→ β − α as N →∞



Discrepancy: This quantity is a measure for the 
deviation from the uniform distribution:
 

Generally, a sequence of  points with the property that 
this defined discrepancy being low is known as low 
discrepancy sequence. 

For any sequence, the order of  the discrepancy is:

Several low discrepancy sequences are known to us: 
van der Corput’s, Hammersley’s, Halton’s and 
Sobol’s.

D(N) = sup
(E)

∣∣∣
N ′(E)

N
− (β − α)

∣∣∣

O(N−1 log N)



Quasi Monte Carlo vs. Monte Carlo: 
Quasi Monte Carlo is especially used in the numerical 
integration, since the disadvantage of  Monte Carlo 
method is that it brings the probabilistic uncertainty into 
the evaluation. Being random is not quite essential in the 
evaluation, the more important thing is the choice of  
uniform distributed sequence in the domain, so that the 
error bound is determined as small as possible.

Thus, to have a more accurate approximation of  the 
integral of  any dimension, quasi-MC method is always 
suggested than an ordinary MC. 



MARKOV CHAIN MONTE CARLO

BASIC IDEA: In order to sample from some unknown 
distribution, a Markov Chain (transition matrix) is 
constructed which preserves the distribution for any 
number of  iteration steps. 

Properties of Markov Chain in MC:
1. Homogeneity (same P for every transition state) ;
2. Irreducibility (any transition is possible);   
3. Regularity (existence of  limiting absolute probability); 
4. Reversibility (                        )πipij = πjpji



Metropolis-Hastings Algorithm:
Let                        , where                   is another 
transition matrix, and 

Procedure:
1. Assume an initial value          ;
2. Let                  , select the state j based on the 
distribution given by i-th row of  Q ;
3. Take                       with probability        ;
or                       with probability                . 

The whole idea is to construct a reversible Markov 
Chain ( i.e. a posteriori = a priori in any two states)

pij = qijαij Q = {qij}
αij = min

{
1,

πjqji

πiqij

}

X(0)
X(t) = i

X(t + 1) = j αij
X(t + 1) = i 1− αij



PSEUDO RANDOM NUMBERS 
WITH PRESCRIBED DISTRIBUTION

Once the pseudo random numbers in (0, 1) are 
generated, it is sometimes desired to have the random 
numbers satisfying certain PDF, the general theorem 
concerning this transformation is:
Theorem:
Let η be the desired random numbers, with its CDF of  
the form F(x), ξ satisfies U(0, 1), then the numbers η 
( with PDF dF(x) ) are obtained by:

η = F−1(ξ)



Complex random numbers with Normal 
Distribution:
To generate a circular normal distributed complex 
random number (or a normal random point in a plane), 
one can use Rayleigh distribution:
Let ξ : U(0, 1), the pair η is given by:

then               is a pair of  i.i.d. N(0, 1) random numbers.

This case can be generalized to 3-D space, on 
generating a i.i.d. N(0,1) random point using Maxwell-
Boltzmann distribution. 

η1 = (−2 ln ξ1)1/2 cos(2πξ2)
η2 = (−2 ln ξ1)1/2 sin(2πξ2)

(η1, η2)



PART II

Applications 



INTEGRATION

Definite integral:
                              
                               

Variance reduction methods for PRNG:
1. Symmetrization:  

2. Sub-interval:  
Divide [a, b] into M sub-intervals              ( k = 1.. M)
with fixed probabilistic measure c,  

                           where 

Î =
N∑

i=1

f(xi)∆xi
x(i): generated sequence 

in (a, b)

f1(xi) =
f(xi) + f(b− a− xi)

2

Î =
N∑

k=1

Ik

[ak, bk]

∫ bk

ak

ρ(x)dx = ck



3. Approximation of  integrand:
If  h(x) is close to f(x), with 

then one can use the formula:

The same idea can be generalized into multiple integral.

QRNG: Koksma’ inequality: 
Using Quasi-MC method, this inequality shows that the 
error of  evaluation is bounded by two terms: 
1. the bounded variation of  the integrand itself;
2. the discrepancy of  the sequence.

∫ b

a
h(x)dx = J

Î = J +
N∑

i=1

|f(xi)− h(xi)|∆xi



Choice of interval:
The integration value also depends on how to choose 
the infinitesimal interval        .
(e.g. chaotic generation gives a histogram dense at the 
extremes, then the equidistance is not a suitable choice)
By a simple deduction, the relation is given by:

where N is the total number of  generated points, ρ(x) is 
the PDF of  the random points.
For uniform distribution, this reduces to 

For chaotic distribution,  

dxi

∆xi =
1

N · ρ(xi)

∆xi =
1
N

∆xi =
π
√

xi(1− xi)
N



Some Remarks on Integration: 
---1. To compare the efficiency of  the calculation by 
each method, we recommend using hypothesis testing, 
namely, grouping each method together as experiments, 
and compare that if  they have the same mean, and also 
their contribution to the variances, in a confidence 
level.
---2. Chaotic generation does not give universally 
more satisfactory results than the normal methods, 
however, as is shown by Umeno (1999), if  the integrand 
can be approximated by a constrained combination of  
Tchebyshev polynomials, a superefficiency with the 
error of  the order             can be reached. O(

1
N

)



INVERSE PROBLEM -- MCMC

The inverse problem is to find the input, given an 
output and an operator, or finding: 

Various geophysical problems involve this problem:
-- Model Optimization: e.g. randomly search the 
Earth’s model consistent with seismological model;
-- Resolution Analysis.

Operator: A

Output: dataInput: parameter Output y 

x y

x = A−1(y)



Simulated Annealing:
This Bayesian technique involves a global optimization 
of  the solution of  inverse problem using a Markov 
random walk (with Gibbs distribution), adapted based 
on Metropolis-Hastings Algorithm, the final 
theoretical solution reaches the MAP estimate:

 
In each iteration, a local change (local characteristics) is 
made based on the current value and their neighbours 
(sampling), with the temperature T involving in the 
calculation, and gradually cooled down so that the local 
optimization is avoided.

x̂ = arg max
x

P (x|y)



Reliability of Prediction in GIS:
The ill-posed queries in GIS can be solved in the linear 
case (i.e. Gaussian 1st and 2nd moments are used in the 
solution). However, with the reliability is smaller than 
one (PR < 1) in the non-linear case, it is needed to give 
the level for this PR (an error bound). The statistics in 
this case changes to non-Gaussian, and the a posteriori 
distribution is required. 
By this assumption, the complexity of  the prediction 
reliability has greatly increased, and only a Monte-Carlo 
method can approximate this non-linear case.



SAR image processing:
Given an intensity or complex data image, it is essential 
to provide a segmentation so that each homogeneous 
region could be recognized. 
The basic approach: the image can be understood as a 
combination of  different speckle process, and the 
grouping process is an Markovian random field, the SA 
method involves an iterative estimation of  parameter, 
and the conditional posteriori distribution of  each pixel 
is updated at every step, with only dependent on its 
neighbouring pixels. After reasonable steps, the MAP 
estimate is approximated. 
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End of  Presentation,
Thank you very much! 

La fin de la présentation,
Merci Beaucoup!


