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ABSTRACT  

In an attempt to give an invariant formulation of continuum 

mechanics, the placements of a body in space are described in terms of 

k 
two models. In the first, the global model, one considers the set of C , 

1 < k < w , embeddings of a compact manifold B, the body, in a manifold 

without a boundary S, the physical space. This set is known to be an 

infinite dimensional differentiable manifold and it is called the global 

configuration space. Then a global virtual displacement and a global 

force are defined as elements of the tangent bundle and cotangent bundle 

of the global configuration space, respectively. In the second model, 

the local model, one considers the set of cf, 1 < r < k, vector bundle 

morphisms ir + p, where ir is a vector bundle with base B, p is a vector 

bundle with base S and the vector bundle morphisms considered have ele-

ments of the global configuration space as base maps. This set, called 

the local configuration space, is an infinite dimensional vector bundle 

with the global configuration space as a base manifold. Again, a local 

virtual displacement and a local force are defined as elements of the 

tangent bundle and cotangent bundle of the local configuration space, 

respectively. In order to express the idea that both models represent 

the same physical phenomenon, compatibility conditions relating 

the local and global variables are given in terms of a section 

of the local configuration space. Since such a section relates global 

and local configurations, its tangent map relates local and global virtual 

displacements and the adjoint to the tangent map relates global forces 

to local forces. This last compatibility condition of forces is a 

generalization of the principle of virtual work and of the equilibrium 



equation of continuum mechanics. The consistency of the suggested 

formulation with continuum mechanics is indicated by the following: 

a. It is shown that local forces can be represented by sec-

tions of some vector bundle and if a connection is given on the manifold 

S a local force can be given by a tensor field which is a generalization 

of the stress field. 

b. If the tangent functor, assigning to each configuration its 

tangent map, is used as a compatibility section, compatibility equations 

can be written and a general solution for the case where the global 

force is zero, is given in terms of a stress function. 

c. If, in addition to (b), a connection is specified on S the 

equilibrium equation and boundary conditions of continuum mechanics are 

recovered. 



This work is dedicated to my parents and 

grandparents to whom I owe my education. 

Cv) 



ACKNOWLEDGEMENTS  

I wish to express my gratitude to Professor Marcelo Epstein 

for the inspiration, guidance and help he provided during the thesis 

research. 

Acknowledgements are also due to the Killam Foundation for the 

generous financial support during the last two years, to Professor P.G. 

Glockner and the Department of Mechanical Engineering for the support 

and encouragement, and to Mrs. Karen Undseth for her skillful typing. 

(vi), 



LIST OF CONTENTS  

Page 

ABSTRACT iii 

ACKNOWLEDGEMENTS vi 

LIST OF CONTENTS vii 

CHAPTER 1 - INTRODUCTION 1 

1.1 Covariance in Physical Theories 1 

1.2 Existing Formulations 1 

1.2.1 Classical Continuum Mechanics 2 

1.2.2 The Marsden-Hughes Formulation 3 

1.3 The Suggested Formulation (Intuitive Description) 3 

1.3.1 The Local Model 3 

1.3.2 Configuration Space, Virtual Displacements and 

Generalized Forces 4 

1.3.3 The Local Configuration Space 6 

1.3.4 Compatibility 7 

1.4 The Suggested Formulation - Discussion 8 

CHAPTER 2 - MATHEMATICAL PRELIMINARIES 10 

2.1 Categories and Functors 10 

2.2 Manifolds. Maps. 12 

2.3 Vector Bundles. Vector Bundle Morphisms. 14 

2.4 Tangent Space. Tangent Bundle. Tangent Map. 21 

2.5 Submanifolds 23 

2.6 Differential Forms 24 

2.7 Flow 26 

2.8 Coordinate Representations 27 

2.9 Integration on Manifolds 31 

2.10 Fibre Bundles 33 

(vii) 



Page 

2.11 Linear Connections 36 

2.12 Manifolds of Maps 38 

CHAPTER 3 - THE GLOBAL MODEL 42 

3.1 Physical Space 42 

3.2 Body 42 

3.3 Configuration 42 

3.4 Virtual Displacement 43 

3.5 Force 43 

3.6 Virtual Work 43 

3.7 Remarks 43 

3.7.1 Material and Spatial Fields 43 

3.7.2 Concerning the Definition of Global Forces 44 

3.7.3 Body Forces and Surface Forces 45 

CHAPTER 4 - THE LOCAL MODEL 47 

4.1 Physical Space 47 

4.2 Body 47 

4.3 Configuration 47 

4.4 Virtual Displacement 48 

4.5 Force 49 

4.6 Virtual Work 49 

CHAPTER 5 - FIELD REPRESENTATION OF THE LOCAL VARIABLES 50 

5.1 Local Representations 50 

5.2 The Local Configuration Field 52 

5.3 The Local Virtual Displacement Field 53 

5.4 The Case of a Connection 57 

5.5 The Stress Field 58 



Page 

CHAPTER 6 - THE COMPATIBILITY OF THE MODELS 60 

6.1 The Compatibility Functor 60 

6.2 Configuration 61 

6.3 Virtual Displacements 61 

6.4 Forces 61 

6.5 Remarks 61 

CHAPTER 7 - THE LOCAL MODEL OF THE TANGENT BUNDLES 64 

7.1 The Compatibility of Configurations and Virtual 

Displacements 64 

7.2 Alternative Definition for the Kinematical Compati-

bility 65 

7.3 The Compatibility Equations 67 

7.4 The Space P 70 

7.5 The Compatibility Equations in Terms of Manifolds 

of Maps 75 

7.6 The Compatibility of Forces 77 

7.6.1 The Equilibrium Field Equations 77 

7.6.2 Stress Function. A General Solution for the 

Case fO 81 

CHAPTER 8 - CONCLUSIONS 83 

REFERENCES 85 
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CHAPTER 1 - INTRODUCTION  

The purpose of this work is to present a covariant formula-

tion of some basic notions of continuum mechanics, the most important 

of which are stress, compatibility and equilibrium. 

1.1 Covariance in Physical Theories  

The requirement that a physical theory have a covariant formu-

lation originated with Einstein's theory of relativity and as more and 

more predictions of the theory were verified experimentally, the notion 

of covariance became generally accepted. Nevertheless, the importance 

of covariance reaches beyond the ability of general relativity to explain 

some physical observations. The main idea is that in classical physics 

one applies the mental construction of classical mathematics to the 

physical world and while using all its structure some of the naturality 

of the laws postulated is lost. Since no mathematical structure is in-

herent in the physical world, the less mathematical structure a physical 

theory exploits the more natural and hence preferable it is. In accor-

dance with this philosophy we would rather use the term "mathematical 

model" than the more classical term "physical law". 

A practical added benefit for such a covariant formulation is 

that it has a larger range of applications. 

In the following text "covariant formulation" of a physical 

theory means a formulation on a differentiable manifold which is inde-

pendent of coordinate representations. 

1.2 Existing Formulations  

In order that a comparison with the suggested formulation can 

1. 



2. 

be made, some assumptions, definitions and results concerning forces, 

stresses and equilibrium as given by two existing formulations will be 

reviewed concisely. We will consider classical continuum mechanics as 

given by C. Truesdell [1], [2] and a more recent covariant formulation 

given by J. Marsden and T. Hughes [3]. 

1.2.1 Classical Continuum Mechanics  

a. In the framework of this theory it is assumed that physi-

cal phenomena occur in the 3-dimensional Euclidean space and this 

structure is being used intensively throughout the definitions. 

b. Forces are not defined but are primitive quantities sub-

jected to the requirement that mathematically they are vector measures. 

c. Forces are assumed to be given as the sum of two different 

types of forces: body forces and surface forces given by integrals of 

vector fields over the interior of the body and its boundary, respectively. 

d. The axiom of equilibrium states that the total force acting 

on the body is zero. (We restrict here the author dynamical treatment 

to the statical case.) 

e. In classical continuum mechanics it is assumed that the 

traction on all like-oriented surfaces with a common tangent plane at 

some point of the body is the same. This assumption is called Cauchy's 

postulate and can be proven using the axiom of equilibrium and assump-

tions of smoothness [2]. 

f. Using Cauchy's postulate and the axiom of equilibrium, it 

is possible to prove Cauchy's theorem stating the existence of a stress 

tensor from which the traction on any plane can be obtained. 

g. Using the axiom of equilibrium, the equation of equilibrium 
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is derived. 

Clearly, the mathematical definition of a force as a vector , 

measure does not make any sense unless one assumes the space to be the 

Euclidean space. Hence, as the formulation of the axiom of equilibrium 

depends on the definition of force, it is not a covariant statement. 

Without being able to use the axiom of equilibrium, Cauchy's postulate 

and Cauchy's theorem cannot be proven and the equation of equilibrium 

cannot be derived. 

1.2.2 The Marsden-Hughes Formulation  

We consider here only the Marsden-Hughes generalization of 

the Green Rivlin theorem [4] to manifolds. 

a. In this formulation the body is a differentiable mani-

fold and the space is a Riemannian manifold. 

b. The Cauchy theorem is assumed to hold so that assumption 

(c) of classical continuum mechanics is adopted too. 

c. An energy balance equation of a given form which includes 

an internal energy term is assumed to be invariant under any superposed 

motion. 

d. The form of the transformation laws of the variables is 

assumed. 

e. The equations of motion, conservation of mass and energy 

are deduced. 

1.3 The Suggested Formulation (Intuitive Description) 

1.3.1 The Local Model  

The main idea behind the suggested formulation is that in order 
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to give some structure to the body one must describe explicitly the 

kinematics and statics of the neighborhoods of the material points. A 

mathematical model which reflects this point of view is called a local 

model. Specifically, this is done by attaching a mathematical object to 

each point in the body and each point in space and considering mappings 

between the corresponding objects. Thus, the body is conceived as a 

collection of the neighborhoods of the material points, each of which 

is represented by the affixed mathematical object. Similar construction 

will represent the space in the local model. 

In this work these mathematical objects are restricted to be 

vector spaces, and we assume that the vector spaces attached to the 

various material points are isomorphic. Similar assumption is made 

concerning the vector spaces attached to the points in space. 

In order to be more specific in describing the kinematics and 

statics of the local model we will discuss the notions of configuration 

spaces, virtual displacements and generalized forces. 

1.3.2 Configuration Space, Virtual Displacements and Generalized  

Forces  

By the "configuration space" of a certain physical system one 

means the set of all possible states of the system. If one considers 

for example, the temperature in a room, the configuration space will be 

the set of all temperature fields in the considered region. Similarly, 

considering the result of rolling dice the configuration space will be 

the set {(i,j); i,j = 1...6}. In addition, we will assume here that the 

configuration space is a differentiable manifold. This means that any 

configuration (state of the system) has a neighborhood of close 
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configurations, each of which can be identified with an element of a 

vector space and the state under consideration can be identified with 

the zero vector. This vector space is called the tangent space to the 

considered configuration. The collection of all tangent spaces is known 

as the tangent bundle. Thus, an element of the tangent bundle consists 

of a configuration, indicating which tangent space is under considera-

tion, and a vector in this tangent space which can be conceived as a 

possible neighboring configuration. Such an element is known as a vir-

tual displacement (away from the configuration under consideration). The 

assumption that the configuration space is a differentiable manifold 

should be justified in any particular case. (It does not hold, for 

example, in the case of the dice.) 

In general, any vector space has another vector space - its 

dual vector space - corresponding to it, naturally. It is the vector 

space of all continuous linear mappings of the original vector space to 

real numbers. This allows one to define the cotangent bundle of the 

configuration space as the collection of the dual spaces to the tangent 

spaces. By definition, any element of the cotangent bundle consists of 

a point indicating which tangent space is under consideration, and a 

linear function mapping elements of this tangent space - virtual displace-

ments - to real numbers. Customarily, linear functions which map 

virtual displacements to real numbers are known as generalized forces 

and the evaluation of a force on a virtual displacement is known as the 

virtual work. 

For example, consider the placement of a body in space as a 

configuration so that the set of all such placements is the configuration 

space, and assume it is a manifold. Considering a certain placement, 



6. 

a virtual displacement away from this placement is a neighboring con-

figuration, and the set of all such neighboring placements can be iden-

tified with elements of a vector space by the manifold assumption. 

(It is possible to prove the intuitive identification of this vector 

space with the collection of all vector fields, virtual displacement 

vector fields, over the placement under consideration.) A force in 

this case will be an operator which assigns real numbers to the neigh-

boring possible placements - the virtual work required to arrive at them. 

This description of continuum mechanics will be referred to 

as the global model in order to emphasize the difference between this 

point of view and the local model. 

1.3.3 The Local Configuration Space  

In accordance with the objective of exhibiting the mechanics 

of the neighborhoods explicitly, the configuration space, virtual dis-

placement, force terminology is applied to the local model. 

A local configuration is defined as a mapping which carries a 

point in the body to a point in the space, and maps linearly the 

vector space representing the neighborhood of the material point into 

the space representing the neighborhood of the corresponding point in 

the physical space. (In a more general setting where mathematical objects 

other than vector spaces represent the structure of the body, appropri-

ate mapping should be required.) 

Assuming that the local configuration space is a manifold, 

we immediately get the local virtual displacement and local force. The 

local virtual displacement away from a local configuration will have 

the meaning of a superposed small deformation of the collection of 
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neighborhoods and the local force will have the meaning of stress since 

it performs work on the deformation of neighborhoods. Thus, using the 

configuration space terminology, the introduction of the local model 

leads in a natural way to generalizations of the concepts of stress and 

strain. 

1.3.4 Compatibility  

What is needed in order to complete the formulation is to 

express the fact that both local and global models represent the same 

physical phenomenon. More specifically, one has to relate the linear 

mappings of the vector spaces representing the neighborhoods of the 

material points with the placements of the actual neighborhoods they 

are supposed to represent. This is done by assigning to each global 

configuration the compatible local configuration or in other words, 

by mapping the global configuration manifold into the local configura-

tion manifold so that a certain global configuration is compatible with 

its image. But then, the derivative of this compatibility mapping, 

which is a map from the set of global virtual displacements into the 

set of local virtual displacements, can serve to relate a global 

virtual displacement with its compatible local virtual displacement. 

Moreover, the adjoint of the derivative map, which by definition carries 

the cotangent bundle of the local configuration space into the cotangent 

bundle of the global configuration space, relates local forces and 

global forces and can be used as a compatibility condition for the 

forces. By the definition of the adjoint mapping, the compatibility 

condition for forces is actually a generalization of the principle of 

virtual work, i.e., a global force is compatible with a given local force 
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if the virtual work as calculated using the local model is equal to the 

virtual work as calculated using the global model for all compatible 

virtual displacements. 

The customary continuum mechanics can be obtained using this 

procedure if one uses the derivative map, assigning to each configura-

tion its derivative, as a compatibility map. 

1.4 The Suggested Formulation - Discussion  

The applicability of such a formulation is restricted by the 

requirement that both global and local configuration spaces are manifolds 

and by the need for the specification of the compatibility map between 

these manifolds. The first condition is satisfied if this body is a 

compact manifold, the space is a manifold without a boundary and the 

configurations are differentiable up to a certain degree (this is not 

the most general case). In this case the tangent functor can provide 

the compatibility conditions. 

In order to show that this formulation is a generalization of 

the classical continuum mechanics one has to use the structure that 

classical continuum mechanics allows, and retrieve, the corresponding 

classical results. In this work it is shown that with the addition of 

a connection on the space manifold, local forces can be represented by 

tensor fields corresponding to the classical stress fields and the 

equation of equilibrium is recovered. 

Summarizing the main assumptions and definitions we have: 

a. The body and space are differentiable manifolds. 

b. The force is defined as a functional allowing concentrated 

forces. No assumption concerning the form of the force (body or surface 

forces) is needed in the general case. 
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c. The existence of the local model (or the need for it) is 

postulated. This is clearly a very strong assumption which might be 

thought of as a generalization of Cauchy's postulate. 

d. The compatibility conditions are defined. 

No physical law is given or postulated here. This formulation 

is a mathematical model of what is done in analyzing the mechanics of 

deformable bodies. 

Obviously, this is not a generalization of the whole rich 

theory of continuum mechanics. Nevertheless, any generalization of a 

certain theory applies only to a limited number of aspects of the theory. 

It is our hope that the suggested formulation can serve as a generaliza-

tion of the concepts of stress, compatibility and equilibrium in con-

tinuum mechanics. 
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CHAPTER 2 - MATHEMATICAL PRELIMINARIES  

The purpose of this chapter is to summarize the basic defini-

tion, notations and results of the mathematical theory of differentiable 

manifolds, that will be used in later chapters. Complete and systematic 

treatment of -the subjects discussed here can be found in the references 

cited. 

Sections 2.1-2.7 are devoted to manifolds, submanifolds and 

vector bundles and the exposition which is applicable to both finite 

and infinite dimensional manifolds is based on [5], [6] and [7]. 

In sections 2.8-2.10 the treatment is limited to the finite 

dimensional case and coordinate representation, integration and fibre 

bundles are introduced. Additional information concerning these topics 

can be found in [5], [6] and [8]. In section 2.11 we define linear 

connections and section 2.12 deals with the infinite dimensional 

manifold structure on the set of maps between two finite dimensional 

manifolds ([7], [9], [10], [11], [12], (13]). In general, [6] and [14] 

are suggested as references for the topological and analytical termi-

nology. 

2.1 Categories and Functors  

Categories were defined in order to give precise meaning to 

the idea of a collection of spaces having the same mathematical struc-

ture and maps between these spaces that preserve the characteristic 

structure. A collection of such spaces will be called a category and 

the maps will be called morphisms. 
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2.1.1 Definition t51  

A category is a collection of objects {X,Y,...}, such that 

for two objects X,Y, there exists a set Mor(X,Y), whose elements are 

called morphisms, satisfying: 

(i) Two sets Mor(X,Y) and Nor(X',Y') are disjoint unless 

X = XI and Y = Y', in which case they are equal. 

(ii) For the objects X,Y,Z, there exists a mapping, Mor(X,Y) 

x Mor(Y,Z) + Nor(X,Z), called a composition law, which is associative. 

(iii) Each Mor(X,X) has an element idx which acts as left 

and right identities under the composition law. 

Once categories have been introduced it is possible to define 

a transformation from one category to another, such that the category 

properties are preserved. 

2.1.2 Definition  

A functor 

X: A+A' 

from a category A into a category A' is a map which associates with 

each object X in A an object X(X) in A', and with each morphism 

f: X + Y in A a morphism A(f) in A' satisfying the condition (ii) and 

either condition (i) or (i') below: 

(1) X(f): A(X) + X(Y) 

and whenever f an g can be composed in A 

X(f o g) = f) o X(g) 

(i') X(f): X(Y) -' X  

and whenever f and g can be composed in A 

X(f o g) = X(g) a X(f) 
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idx) = idx(x) 

A functor that satisfies (i) is said to be covariant, and a functor 

that satisfies (i') is said to be contravariant. 

2.2 Manifolds. Maps.  

The idea behind the construction of a finite dimensional mani-

fold is to create a geometrical object which "looks like" Rtl, locally. 

It is more general than 0 because the identification is not unique and 

it is not global. Thus, the af fine and metric properties of 0 cannot 

be transferred into the manifold. In the case of infinite dimensional 

manifolds, the construction becomes more general as the local identi-

fication is allowed to be with a Banach space. 

2.2.1 Definition  

Let X be a set. An atlas of class C (p > o) on X is a col-

lection of pairs {(U,4)}1, where I is some indexing set, satisfying 

the following conditions: 

(i) ieI is a covering of X. 

(ii) Each in a bijection of U. onto an open subset 

of some Banach space E. 

(iii)- The map 

4.o j(UrU) (Un1J) 

is a C morphism for each pair of indices i,jel. As a rule it will be 

assumed that the topology induced on X by the atlas is Housdorff. 

Each pair (Uj,ci) will be called a chart, and (U.,4i) is said 

to be a chart at xX if xcU.. 
1 



13. 

2.2.2 Definition  

Let U be an open subset of X and let : U -'- U' be a homeo-

morphism onto an open subset of E. (U,) is said to be compatible with 

the atlas 

o -1 I UnU. 1 ) 9- j (UnTJ ) 

is a CP morphism, for all isI such that TJQU. . Two atlases are said 

to be compatible if f each chart of one atlas is compatible with the other 

atlas. It is obvious that the compatibility relation is an equivalence 

relation between atlases. 

2.2.3 Definition  

A set X with an equivalence class of atlases of class C is 

a C manifold modelled on the Banach space E. 

2.2.4 Definition  

Let X,Y be two manifolds and f: X + Y a map. We say that f 

is a C morphism if f given xeX, there exists a chart 

(V,it') at f(x) such that f(U)CV, and 

o f o -1 (U) -* (V) 

(U,) at x and 

called the local representative of f, is a C morphism of Banach spaces. 

A C morphism is a C diffeomorphism if f it is a bijection, and its 

inverse is a C morphism. 

It is clear that the composite of two C morphisms is a C 

morphism and thus, the C manifolds and the C morphisms form a category. 

2.2.5 Definition  

Let E be a Banach space and A: E + R a continuous linear 

functional on E. The kernel of A will be called a hyperplane, and the 
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set of points xcE such that A(x) > 0 (or X(x) < 0) will be called a 

half space. 

2.2.6 Definition  

Let E,F be Banach spaces, E and F two half spaces in E and F 

and TJ,V two open subsets of these half spaces, respectively. We say 

that 

f: TJ+V 

is a morphism of class Cp between the open sets of the half spaces iff 

given xcU, there exists an open neighborhood U of x in E, an open 

neighborhood V1 of f(x) in F and a morphism f1: U1 + V1 (morphism of 

Banach spaces), such that the restriction of f1 to TJ1 TJ is equal to f. 

With the definitions 2.2.5, 2.2.6, a category whose objects are 

open sets of half spaces and whose inorphisms are morphisms of open sets 

of half spaces is obtained. The composition condition of definition 

2.1.1 is satisfied as a consequence of definition 2.2.6. 

If the procedure of defining a manifold is repeated with the 

image of the charts being open sets of a half space, a manifold with  

boundary is obtained. This is a well defined object since it can be 

shown ([5], p. 39) that the boundary of such a manifold is invariant. 

The boundary of a manifold X will be denoted by X. 

2.3 Vector Bundles. Vector Bundle Morphisms.  

In this section vector bundles will be defined for a manifold 

modelled on a Banach space. A vector bundle can be thought of as a 

construction in which a Banach space is attached to each point on a 

manifold resulting in another manifold. In a later section a more gen-

eral construction, a fibre bundle, will be defined. However, that 
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discussion will be confined to finite-dimensional manifolds. 

2.3.1 Definition  

Let E be a set, X a C' manifold and n: E + X a surjective 

map. A CP vector vector bundle atlas for if (p < r), is a collection of 

triplets {(U )}. , where i {(U.,.)}idl is an atlas of X, and in i I id 

addition: 

(I) 

space. 

For each xcX, if 1 (x) = E has a structure of a Banach 

1(U) --

where F is a Banach space, is a bijection. The diagram 

1 .(U.)xF 

7r i I pr 

is commutative, and for every xdTJ., 

= .: if 1 (x) -'- F 
1 Ix 

is an isomorphism. 

(iii) If U.nt1 4 then the map TJf U. + L(F,F) given by 

-1 p 
o i Cx) s a C morphism. 

A triplet is called a vector bundle chart, is 

called a trivialising map, X is called the base manifold and F is called 

the typical fibre. Remark: In the finite dimensional case (iii) is 

implied by (ii). 

2.3.2 Definition  

Two C vector bundle atlases are said to be vector bundle  
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equivalent 1ff taken together they are a C vector bundle atlas. An 

equivalence class of vector bundle atlases is said to determine the 

structure of a vector bundle on 'ir. 

We will denote this vector bundle either by (E,X,vr) or by it. 

Remark: Note that every vector bundle is a manifold. 

2.3.3 Definition  

Let (E,X,rr) and (E',X',rr') be two vector bundles. A C' vector  

bundle morphism (E,X,rr) + (E',X',rr') (it will be denoted also by 

f: it • 'it' or f: E ->. E' with abuse of notation) consists of two morphisms 

f: X+X' and f: E-)-E t 

satisfying: 

(1) The diagram 

f 
E —.-E' •if j •if ' 

f 
0 

is commutative, and the induced map on the fibre over xcX, 

f : E ->.E' 
x x f  

0 

is a continuous linear map. 

(ii) For each xsX there exist vector bundle charts (U,), 

at x0 and f0 (x0), respectively, such that f0 (IJ) is contained 

in U', and the map of U into L(F,F') given by 

x' - ' of o 
f(x) x 

is a C r morphism. (F and F' are the typical fibres of it and ii', re-

spectively.) Remark: As in the definition of vector bundles 
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(ii) is implied by (i) for the finite dimensional case. 

By the definition 2.3.2 and 2.3.3, it can be shown that the 

vector bundles with the vector bundle morphisms form a category. 

Let VB(X) be the category of vector bundles over the base 

manifold X. (The morphisms in this category being vector bundle mor-

phisms with f: X -- X being the identity.) We want to construct a 

functor from the category VB(Y) to the category VB(X). 

2.3.4 Definition  

* 
Let : X + Y be a morphism. Then, the functor from 

VB(Y) into VB(X) is defined as follows: 

* * 
(1) The pullback ( E,X,c ('if)) of the object (E,Y,rr) is 

given by: 

* 
(a) 0 E) 'C E() 

(b) The diagram 

* 
4' E —'—E 

commutes, where the top horizontal map is the identity on each fibre. 

* 
(c) If E = Y x E, then E = X ><E and 4 if is the pro-

jection on the product. 

(d) If V is open in Y and U = c 1 (V), then 

* -1 * -1 
4 OT(V)) = (4,'if) (U) 

so that the following diagram is commutative. 
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X  

(ii) The pullback of a morphism f: (E,Y,ir) -- (E',Y,if') in 

VB(Y), under the functor is a morphism 

* 
(cI f)(e) = f(e) 

given by 

for all ec ( *E) -, 

* * 

E 
f 

Remark: Although is a covariant functor between VB(Y) and VB(X), by 

the above, definition, we have a functor VB from the category of manifolds 

to the category of vector bundles which assigns VB(X) to every manifold 

X. It is contravariant since it assigns a morphism (functor) 

VB(Y) + VB(X) 

to a morphism 

: X+Y 

2.3.5 Definition  

Let (E,X,rr) be a vector bundle. A section 4 of 'if is a map 

4: X+E 

satisfying 

'if 0 4 = id. 
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A section is therefore a generalization of the familiar no-

tion of a vector field. 

Remark: The set of all sections of a given vector bundle 

can be given a structure of a vector space. Let 4 l and 2 be sections 

of (E,X, Tr) , define 

by 

and 

by 

X  

(c41) (x) = a (4 1(x)) , xcX , 

41+42. x  

+ (x) = 41 (x) + 

2.3.6 Definition [9]  

Let VB denote the category of e vector bundles over C mani-

folds. Denote by C' and S the functors from VB to the category of 

(infinite dimensional) vector spaces defined as follows: 

(i) Given an object 7r of VB, Clt(ir) will be the vector space of 

W. 

sections of ir and S(w) will be the vector space of all sections of 

(ii) Given a VB-morphism f: ir -'- ii' in VEX), the map 

S(f) E f: S(7T) -- S(ir') 

is defined by 

(f4)(x) = f(4(x)) 

and as defined will map c(E) into 

(iii) Given a map 4: X -- Y and a vector bundle (E,Y,,r) we have the 
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induced functor (E,Y,ir) -- ' (4)*(E)Y4)*(.II.)) as defined in 2.3.4(1). 
7T  

The map 

S(4)*): S() S(4)*(Jr)) 

is defined by 

4 "±4 o 4) , & S (r) 

Here again ck(4);) maps ir) into Ck(4)*(r)). 

(iv) Given a morphism f: ir -- ir' in VB(Y) and a map 4: X ->-Y as 

in (iii), we have the induced map as in (ii) and the map 4)*(f) as in 

2.3.4 (ii). The map 

SW  (f)) 
(4) * * * (f)) (f)): S(4) (it)) 

is defined as to make the upper part of the following diagram commuta-

tive (the rest of the diagram is shown for illustration). 

s( * ,) 
* 

S (4) (-it')) S(ir') 

S (4)*(ir)) S (it) 

S Functor 

. \ Y 11•7r 

Vector Spaces 

Vector Bundles 

Manifolds 
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2.3.7 Definition  

Let (E,X,ir) and (E',X,ir') be vector bundles over X. Define 

L(E,E') = L(E,E') 

It can be shown that L(E,E') U L(E,E') has a factor bundle struc-
xcX x 

ture and will be denoted by (L(E,E'),X,L(Ir,ff')). 

The space of C sections of this vector bundle is isomorphic 

with the space of C vector bundle morphisms ii -- ii' over the identity. 

2.4 Tangent Space. Tangent Bundle. Tangent Map.  

Two equivalent ([ 5] p. 83) definitions of tangent vectors and 

tangent bundles will be given. 

2.4.1 Definition  

Let x be a point in a C, p > 1, manifold X. Consider all 

curves C: R -'- X with c(a) = x. Define an equivalence relation by 
dc1 dc2 

saying c1 '' C2 if f (a) = --- (a) in some chart at x. An equivalence 

class of curves is a tangent vector. The tangent space TX is the set 

of tangent vectors at x and the tangent bundle TM is the disjoint union 

of the tangent spaces. 

2.4.2. Definition  

Consider triplets (tJ,,v) where (U,c) is a chart at x and v 

is an element of the space E on which X is modelled. Define an equiva-

lence relation on such triplets by saying that (TJ,,v) nu (TJ',',v') 1ff 

[D(' o _l) ((x))]v = v' 

Again, a tangent vector is an equivalence class, the tangent 

space is the set of tangent vectors and the tangent bundle is the dis-

joint union of the tangent spaces over X. 
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2.4.3 Definition  

The tangent bundle projection  

T : TX+X 

assigns the point x to every element in the tangent space TX. 

2.4.4 Proposition  

The tangent bundle TX can be given a structure of a vector 

bundle (TX,X,T) with fibres isomorphic to the vector space E on which 

X is modelled. 

The proof of this proposition is based on the definition 

2.4.2 and can be found in [5] pp. 47-48. 

2.4.5 Definition  

Let f: X -'- Y be a morphism of class C, p > 1, and let 

o f 0 4-i be its local representative with respect to the charts (U,) 

and (V,iji) in X and Y respectively, where X and Y are modelled on E and 

F. 

The tangent map 

Tf: TX+TY 

is defined by its local representative 

15xE -- VX.F 

with respect to the natural charts in TX and TY (as in 2.4.2) by 

(x,e) '--(f(x), (D(ipofop 1) (x))(e)) , ecE 

The map Tf is a vector bundle morphism of class Cr1 . I 

can be also shown that the tangent map satisfies the rules: 

T(fog) = Tf 0 Tg 

T(idx) = id 
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making T into a functor. 

2.4.6 Definition  

Let a: 3 + X, where 3 is an open interval of R, be a curve. 

The canonical lifting of the curve a is the curve 

at: J+TX 

in TX defined by 

a' = Taoi 

where i is the canonical cross-section of TJ = JxR, i.e. i(t) = 1. 

2.5 Submanifolds  

2.5.1 Definition  

A subset YcX, where X is a manifold modelled on E, is a sub-

manifold of X iff E = E L> 2' and for every yY there exists a chart 

(1J,ip) at y, whose image is VCE, such ihat 

1JnY) = V1(E1x {e2}) 

where e2cE2. 

Clearly, the set {(YnU : YnTJ1 + H defines a manifold 

structure for Y. 

2.5.2 Definition  

A morphism f: Z + X is an immersion at zEZ if f there exists 

an open neighborhood U of z such that the restriction of f to U induces 

a diffeomorphism of U onto a submanifold of X. The morphism f is an 

immersion if it is an immersion at every point. If in addition f(Z) is 

a submanifold of X, f is an embedding. 
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2.5.3 Definition  

A morphism f: X -3- Z is a submersion at a point xcX if f there 

exists a chart (U,) at x and a chart (V,p) at f(x), such that gives 

a diffeomorphism of U on a product U1xTJ2 (U1 and U2 open in some 

Banach spaces), and the map 

ipofo 1: U1 X U2 -3- V 

is a projection. We say that f is a subersion if, it is a submersion 

at every point, making f 1 {z}), zZ, a submanifold of X. 

2.5.4 Proposition  

Let X,Y be manifolds of class C (p > 1). Let f: X + Y be a 

Cr-morphism and let xcX. Then: 

(i) f is an immersion at x if f T x f = Tf is injective and splits 

(splits as in [5] p. 4). 

(ii) f is a submersion at x 1ff Tf is surjective and its kernel 

splits. 

2.6 Differential Forms  

2.6.1 Definition  

* 
The cotangent bundle T X of a manifold X is a bundle whose 

fibre T*X at xsX is the topological dual of TX. It can be shown that 

the cotangent bundle is a vector bundle. 

A section of the tangent bundle is called a vector field and 

a section of the cotangent bundle is called a one form. 

2.6.2 Definition  

Let AkX be the vector bundle over X whose fibre at xcX is the 
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set of k-multilinear alternating continuous maps T Xx ... x T X + R. A 

section of AkX is a k-form. Real valued functions are o-forms. 

2.6.3 Definition  

Let a be a k-form and 0 an £-form. Then the exterior product  

aA is the k+2,-form defined by 

1  
(sgna)a (v 

X Va (k) a(k+l)'" , Va (k+)) Cr 

where the sum is taken over all the permutations a such that 

a(l) < ... < a(k) , a(k+l) < ... < a(k+l) 

2.6.4 Definition  

Let f: X + Y be a C morphism and let a be a CP k-form on 

Y. The pull back 2 * a of a by £ is the Cp-1 k-form on X defined by 

(f*a)(VV) = 

2.6.5 Definition  

The exterior derivative d is an operator which transforms a 

smooth k-form a to a k+l form da by 
1. 

daX(v,...vk) = (l) [Da Cv.)] (v,...,v.l,v.+l,...vK) 

where Da is the derivative of a in a chart (U,4) at x. Da maps E into 

k k 
A (E) since a: U) c E + A (E) in the chart. It can be verified that 

the exterior derivative is chart independent. 

2.6.6 The following identities hold: 

(i) d is linear. 

(ii) d2 =dod=O 

(iii) d(aA) = daA+(_l)kaAd for a k-form a. 
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2.6.7 Definition  

Let a be a k-form and v a vector field. The contraction vj 

of a by v is the k-i form defined by 

(via) (v2,...,vk) = a (v(x), v2, ..., vk) 

2.6.8 Poincare Lemna  

If da = 0, there exists a neighbourhood U about each point on 

which a = d. 

2.6.9 Definition  

The Lie" derivative L v a of a k-form a by a vector field v is 

the k-form defined by 

La = d(via) + vJdct 

2.7 Flow  

2.7.1 Definition  

A  flow or a one-parameter group of diffeomorphisms is a col-

lection of smooth maps 

F: X-3-X, tR 

satisfying: 

Ci) Ft+4 F4 

(ii) F = id  

2.7.2 Definition  

The flow F is the flow of a vector field v if f 

Ft (x) = v(Ft(x)) 
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2.7.3 Local Existence and Uniqueness Theorem  

If v is a Cr-vector field, p>1, then v has a locally defined, 

unique C flow Ft. 

2.8 Coordinate Representations  

In this section the coordinate representations of objects 

already defined is considered. The discussion is therefore limited to 

finite dimensional manifolds. 

2.8.1 Coordinates of a Point. Maps.  

Let X be a manifold modelled on RtI. Then if xcX and (U,4) 

is a chart at x, the coordinates {x} of the image x)eR'1 are called 

the coordinates of x in the chart (U,). The functions .: x "-'-a- x i are 

called coordinate functions. If (V,) is another chart and TJnV # 

the coordinates of x in this chart in terms of the first chart are given 

by n real valued (Ck) functions of n variables 

i f i f 1 
x =f (x 

Let g: X -- Y be a morphism between the m-dimensional mani-

fold X and the n-dimensional manifold Y. The coordinate (local) repre-

sentation for y = g(x), yY, X6X is 

i ij 
Y  g (x ) 

2.8.2 Tangent Vectors  

Each coordinate function at x defines a unique curve 

çb. : JCR+UCX 
1 

by requiring that x' = const, j i, for all points x' on the curve. 

According to definition 2.4.1 the tangent vector associated with this 

curve is characterized by j.1 . In a given chart, the 1 is omitted, 
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the set { —  - -} can serve as a basis for T X and a vector veT X can 
ax 3 X X 

be represented by v' In case of a different coordinate system we 
ax 

have by the chain rule 

a ax 1 a 

ax ax ax 

and by 

i'  a i' ax  a = i a 
1  ax ax ax ax 1 

we have 

1 ax i :1. 
V - .,V 

ax 1 

The coordinates of an element in the tangent bundle are therefore 

(x1,v1) with respect to the natural chart and 

T: (x1,v1) ".'-'-(x1) 

2.8.3 Tangent Naps 

By the definition of the tangent map (2 .4.5) we have the 

(y i, 2y 1) 
Dxi 

(y1, ---). (xn,vk) •(yi(xn) 

ax3 

as representatives of Tg: TX -- TY and 

(x5) (v k)) 

2.8.4 Submanifolds  

Since every subspace of a finite dimensional vector space 

splits, the following holds: Y is a submanifold of X of dimension r 

if f each point of Y has an open neighborhood U in X with local coordi-

1 n  nates (x ,...,x ) such that the points of Y in U are those having 

coordinates of the type: 

1 r 
(x , . . . ,x ,o, . .. 'o)  
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2.8.5 Differential Forms  

It can be shown that the (n) p-forms 

1 
{01A 02 A •.. A O ,ii < , I. = 

where the 0 are the basis of T X, form a basis for A X. Thus, let 
x 

ctcAX, then 
x 

ct=ct3 
l••• p 

I I 
0 A...A 0 p 

once we have a base in T X we have the dual base induced in 

TX. This dual base is denoted by {dx1}. By the definition of the 

dual base we have 

i dx (— ;-) - iS. 
ax  

and 

dx * Cv — ) - W.V , weT X , w(v) w vcT X x 
I 

Thus, in natural coordinates dx will replace the 0 j and 

I 
= c1 ...I dx 1A...Adx P 

1 p 

A change of coordinates x1 '\J+x1 will induce a change of the 

natural base according to 

d1 f Dx if  - dx x  

and a change of components by 

= I'...I'   

1 p 1 p D(x 1 ,. ..,x 1 ) 

It 

where D(x  is the Jacobian determinant of the coordinate transforma-

D(x ) 
tion. This last formula is similar to the rule for the change of varia-

bles of a p-multiple integral in an n-dimensional space and it suggests 
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the role of differential forms in the theory of integration on mani-

folds. 

2.8.6 Exterior Derivative. Lie Derivative. Contraction. Pull-Back.  

U) Let a be the differential p-form 

Ii I 
1 dx A ... Adx 1 

Ii... p 

It can be shown that by definition 

da - 

1l 'p k 

ax k dx 

(ii) The Lie derivative LvW of a contravariant vector field w by 

the vector field v is the contravariant vector field defined by 

Lw! = - [(TFY 1 (w(F(x))] 

where Ft is the flow of v, and t is the parameter of this flow. 

by 

The Lie derivative L a of a covariant vector field is defined 
V 

La 
V 

* 

[Ft (a(F(x))] 
x 

In terms of components we have 

1 
• v 

•] L dx - 1 ----dx 
v axi 

For arbitrary tensor the Lie derivative satisfies 

L (jicq) = Lu + U®LW 

The Lie derivative of a tensor is useful as it calculates the rate of 
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change of a tensor field with respect to its image under a flow. If 

the Lie derivative of a tensor field with respect to a certain vector 

field vanishes the tensor field is invariant under the group of trans-

formations generated by the vector field. 

(iii) In terms of components we have for the contraction of the p - 

form 

w=wI.I 

1.. P 

with the vector v: 

I I 
dx A ... A dx 

I I 
J 1 p-i 

vjw = v w ji . ,. dx A dx 
l•• p-1 

(iv) The coordinate representation of the pullback of ct by f is 

* * I I 
dx A ... Adx' 

l••• p 

where the components are given by 

S S 

(f 
* o) 1 D(y P) 

(f(x)) •i - I I •••j 
1• p D(xl...x1)) 1 p 

2.9 Integration on Manifolds  

The discussion in this section is limited to finite dimension-

al manifolds. 

2.9.1 Orientation  

Two coordinate systems (x5 and (y3) on an open set of Rn are 

said to define the same orientation if the Jacobian determinant, J = 

D(x 1 ) . . . . 

, is positive for all points on the set. A chart (TJ,4) on a mani-
D(y) 
fold X induces an orientation of U by means of the orientation of EU). 

The manifold X is said to be orientable if there exists an atlas such 
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D(4.) 

that on any overlap TJ'V of charts (U,) and (V,i1), D(I I)   > 0. 

By the discussion in (2.8.5) concerning the dimension of Atl(X), it 

follows that any n-form on an n dimensional manifold has only one 

component and can be represented as 

w = w12 (x) dx l 

2.9.2 Definition  

Let w be an n-form on an n-dimensional manifold X vanishing 

outside a compact set contained in the domain of a chart U. The form 

is said to be integrable if its representative is integrable on Rn. In 

this case its integral on U (and X) is 

Iw = I w = I...I -  w dx1dx2 ... dx' 
I I 12...n 

..•__o  

By the rule for transformation of coordinates of differential 

forms and the properties of the integral the definition is independent 

on the coordinates on U. 

0k 

2.9.3 Definition  

A Cpartition of unity on Xis a collection of C functions 

> 0 on X satisfying: 

(i) At each point xX there is a finite number of functions 

Ok(x) 0 0. 

(ii) The support of each function is compact. 

(iii) E ok(x) = 1 for all xcX. 
k 

A partition of unity {Ok} is subordinate to a covering {U.} 

of X if f one can find U.D supp 0k for every k. It can be shown that 

if X is paracompact, it is always possible to find on it a partition of 
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unity subordinate to any preassigned locally finite covering. 

2.9.4 Definition  

Let {Ok} be a partition of unity subordinate to the atlas of 

X. The n-form w is integrable on X 1ff the series 

fx w = Z 80 
k fx 

converges. In such a case the sum is the integral of w. It can be 

shown that the integral depends neither on the choice of atlas nor the 

partition of unity. 

2.9.5 Stokes' Theorem  

Let X be an oriented manifold of class C2, dimension n, and 

let w be an (n-i) form on X of class C1, with compact support. Then 

dw = fa x w 

This theorem is a generalization of the classical Gauss and 

Stokes theorems and its proof can be found in Lang [5, p. 194 ]. 

2.10 Fibre Bundles  

The discussion in this section is limited to finite dimen-

sional manifolds. 

2.10.1 Definition  

A Lie group G is a group that is also a differentiable mani-

fold such that the differentiable structure is compatible with the 

group structure, i.e. the operation C x G + G by (x,y) + xy 1 is a dif-

ferentiable mapping. 
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2.10.2 Definition 

Let E ,X be finite dimensional C manifolds (possibly with 

boundary), let F be a finite dimensional C manifold without a boundary. 

and let : E + X be a C map. Then (E,X,F,,r) is a C fibre bundle. 

with base X, fibre F and projection if if f for each xcX there is an open 

neighborhood Ti of x in X and a C k morphism 

: ,r 1 (U) + Ti x F 

such that the following diagram commutes 

  UXF 

ii 

Similarly to vector bundles E x = 7r-1 (x) will be called the fibre over 

x. A fibre bundle is trivial if f E = XXF. By definition each fibre 

bundle is locally trivial. Let ieI be an open covering of X such 

that T 1 (U.) is a trivial bundle. The morphism 

.: ir1(U.) + U. X F 

is called a trivialization of E over TJ.. Let i,jcl and UnTJ # 

there is a morphism 

ji = 4 (UnU) o (4 i I ir 1 (Ti nU j ))_1: (U i j nil ) x F 

+ (TJ. 1 nU 3 ) x F 

which can be thought of as a family of morphisms 

4..(x): F+F 
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called transition functions such that 

= (x,4.(x)(e)) , xcX , ecF' 

2.10.3 Definition  

A fibre bundle morphism between the fibre bundles (E,X,F,if) 

and (E',X',F',rr') is a pair of maps (f,f). 

f: E4E' f: XX' 
0 

such that the following diagram is commutative. 

f 

E 

f 
0 

X 

With this definition we have the category of fibre bundles and fibre 

bundle morphisms. 

2.10.4 Definition  

A section z of the fibre bundle (E,X,F,rr) is a map 

4: X+E 

such that 

if 0 4 = id x 

2.10.5 Definition  

A C coordinate fibre bundle (E,X,F,G,n') is a fibre bundle 

(E,X,F,rr) such that 

(i) G, called the structural group, is a Lie group acting af-

fectively on the fibre F. 

(ii) The transition function are elements of G and will be denoted 
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by g.(x). 

(iii) The transition functions g  are functions of x of class 

Definition  

A fibre bundle, in which the typical fibre F and the 

structural group C are identical, and G acts on F by left transla-

tion, is called a principal fibre bundle. 

2.11 Linear Connections [12]  

2.11.1 Definition  

A connection map (connection) C for a C r vector bundle 

(E,X,'rr) is a map C: TE + E such that for any vector bundle chart 

(V,4,) of if, there is a map 1': 4(U) + L(E,E;E) of class C 1, which 

gives a local representative of C, C = c o Co T 1, by 

(., -'- (&(,)) 

Here, L is the space on which X is modelled and E is the typical fibre. 
Let E @ TX EE' E be the vector bundle over 'X with (E $ TX @ E) 

E TX SE, then the map 

(TE, Tir, C).: TE+ETX®E 

is a C r_l diffeomorphism. 

2.11.2 Definition  

An element veTE is called vertical 1ff Tir(v) = 0. The repre-

sentative of a vertical vector in any vector bundle chart is 

and it can be thought of as an element of T(E), x = rr(TF(v)). Since 

E is a vector space, it is isomorphic to its tangent space at any point 
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and we have the induced mapping i on vertical vectors whose local 

representative in any vector bundle chart is given by 

i: (x,) 

An element usTE is called horizontal if f C(v) = 0. In general, 

the second and third components of the map (TE, T',r, C) are called the 

horizontal and vertical projections and T'rr(w), C(w) are the horizontal 

and vertical components of wsTE. 

2.11.3 Definition  

Let . be a section of the vector bundle (E,X,ff). Given a 

connection C on the vector bundle if, the covariant derivative of A is the 

section V'S of (L(T,E), X, L(T,ir)) given by 

V'S = C o T4. 

2.11.4 Theorem  

Let 'S 31 4 be sections of ii and f: X + R a differentiable map 

then 

v(41+4 2) = V'S 1 + V'S 2 

and 

V(f4 1)(v) = fV4 1 (v) + df(v)4 1(T(v)) 

vsTX. A connection on the vector, bundle (TX,X,T) is called a connection 

on the manifold X. Such a connection induces a decomposition of T2X, 

the second tangent bundle. 

2.11.5 Definition 

Let (x,a,b,c) be the representative of an element in T2X. De-
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o(x,a,b,c) = (x,b,a,c) 

It can be shown that the definition is valid as it is independent of 

the chart representation. 

The double tangent T 2 X has two vector bundle structures, 

namely (T2X,TX,t TX ) and (T2X,TX,Ttx). The canonical involution defines 

a vector bundle isomorphism TT  tTX by the diagram 

T 2 X T 2 X 

TTX 

Id 

TX 

and by definition we have w = 

TX 

2.12 Manifolds of Maps  

In this section we summarize the definitions, theorems and 

corollaries of the theory of manifolds of maps that are needed in the 

following chapters. Since the constructions involved in the theory 

are complicated they are not presented here for the sake of brevity. 

In addition, different authors utilize different starting points and 

different methods in their constructions. For example, Marsden [7] 

uses 2.12.4 as a definition of TCk(X,Y) in order to.prove 2.12.3. 

Similarly, 2.12.6.ii can be used as a definition in order to arrive 

at 2.12.6.i. 

The results 2.12.1-2.12.4 can be found in [9], [12] and 

2.12.5 can be found in [11]. Verona [13] obtained 2.12.6.i,ii is a 

corollary and iii,iv can be found in [12]. The results concerning 

sections of jet bundles are given in [9],[ 1O] ([10] discusses only the 
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C0 case), and the rélat ion TT* =  ui 0 T follows from the fact that T* is 

linear in the representatives of maps (in the manifold of maps), [9, P. 64]. 

2.12.1 Definition  

Let (E,X,ir) be a vector bundle. A continuous map 4): E -'- R is 

called a Finsler structure on r 1ff for each xcX, 4) E is a norm for E 
x x 

2.12.2 Theorem  

Let (E,X,rr) be a vector bundle with finite dimensional fibre 

and with X compact. Then, 

(i) There exists a Finsler structure on -ir. 

(ii) The Finsler structure induce a Banach space topology on 

(iii) The topology is independent of the Finsler structure, so that 

will denote the space of sections together with the Banachable 

topology. 

2.12.3 Theorem  

co 00 Let X be a compact C manifold and Y a C manifold without a 

boundary, then the set Ck(X,Y) of C mappings X -'- Y, 0 < k < , can be 

given a structure of a C Banach manifold modelled on a space of sections. 

2.12.4 Theorem  

Let fECk MY) then TfCk(X,Y) = {gcCk(X,TY)tyog = f), and 

for any hcTCkMY) 

T: TCk(X,Y) C(X,Y): h1\+'roh 

2.12.5 Theorem 

The set of all C k e.mbeddings is open in C k (X,Y), k > 1 and 

hence it is a submanif old of Ck(X,Y). 
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2.12.6 Vector Bundles Over Ck(X,Y) 

00 
i. Let (E,X,rr) and (F,Y,p) be C vector bundles where X and 

Y are as in 2.12.3. Then, the set C(rr,p) of 6r vector bundle inorphisms 

k 00 r k over C base maps has a C vector bundle structure Ck(Ir,p) C MY) 

and the projection map of the vector bundle assigns to each vector 

bundle morphism its base map. 

ii. Let fC('rr,p), then 

TfC(lrP) = {gC(rr,Tp)j tog=f} 

We use here the fact that Tp: TF -- TY defines a vector bundle structure 

on TF in addition to the TF + F structure. The tangent bundle pro-

jection of TC(rr,p) is given by h+Toh for heTC(rr,p). 

iii. As a particular case of i, the set of all C11 vector bund-

le morphisms TX + T is a vector bundle Ck k-1 (Tx,Ty) 4 k C (XY). Remark: 

Let J1 (X,Y) be the vector bundle over XXY whose fibre J1MY) consist 

of all possible values of derivatives at x of maps f: X 9- Y with f(x) 

= Y. Using charts at x and y, J 1 MY) xy is clearly isomorphic to L(E,F0) 

(E,F are the spaces on which X and Y are modelled, respectively). 

Let ff0 (31): 31 (X,Y) + XXY be the projection of this vector bundle, then 

rr(J1) = pr10ff(31): J (X,Y) + X is a fibre bundle over X. The set 

C1(rr(J5) of ck_1 sections of this fibre bundle over C' sections of 

pr1: XY X (clearly ck(x ,Y)) is identical to C1(TxTy)• The space 

J1 (X,Y) is called the first jet. The tangent functor T maps C' sections 

of XxY into Ck (j )). 

iv. Let T: Ck(X,Y) + C1(Tx,Ty) be the operation of the tan-

gent functor on the manifold of maps, 1.e. Tf) = Tf. Then, T is a 

smooth section of the vector bundle C1(txTy) 4.(x, c'Y) (alternatively, 
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of C 1 (ff(J1)) 

is given by 

c(x,Y)) and its tangent map 

TT: TCk(X,Y) + TC1(Tx,Ty) 

TT: ck(x,Ty) + C1(T,Tty) 

TT(v) = woTv 

w being the canonical involution. 
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GRAFTER 3 - THE GLOBAL MODEL  

The ideas of section 1.3.2 will be formulated in this chapter 

in precise terms using the theory of manifolds and the theory of mani-

folds of maps. In the global model the assumption that the body and 

the space are continua is made, but we are not concerned with the in-

ternal structure of the body and with interactions within the body. 

3.1 Physical Space  

In the global model the space is an m-dimensional differen-

tiable manifold S without a boundary. 

3.2 Body  

A body is an n-dimensional compact differentiable manifold 

which may have a boundary, with ii < in. A typical body will be denoted 

by B. 

3.3 Configuration  

A configuration (or a placement) is an embedding : B ->- S 

of a body in the space, of class 0 < k < . By the results of 

section 2.12, concerning the set of embeddings of a compact manifold 

in a manifold without a boundary, the set of all configurations - the 

configuration space - is a Banach manifold. The configuration space 

will be denoted by Q. 

The global configuration space is a generalization of the 

concept of a generalized coordinates space, originated in classical 

mechanics, to the case of a continuum, and it is infinite dimensional 

since we have an infinite number of degrees of freedom. 
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3.4 Virtual Displacement  

Let (TQQTQ) be the tangent bundle of the configuration 

space. A virtual displacement is an element ÔKCTQ. Following section 

2.12, we identify the virtual displacement 6K with a map 

6K: B -)  -TS 

such that tQ (6K) the configuration which is the base point for the 

virtual displacement, is given by tSo6K. Here,T S is the tangent bundle 

projection of TS. 

3.5 Force  

* 
A global force is an element ftT Q. Except for a few remarks 

in section 3.7.2 we do not discuss representations of forces in general 

within the framework of this thesis. 

3.6 Virtual Work  

Let fTkQ , 6KCTkQ for some configuration K. Then, the action 

f(6K) is called the virtual work of the force f on the virtual displace-

ment 6K. 

3.7 Remarks  

3.7.1 Material and Spatial Fields  

Let (E,B,'if) be a vector bundle over the body manifold. Then, 

we can use 1: K(B) -)-B to pull back the vector bundle if onto K(B). 

Since K is an embedding, K(B) is diffeomorphic with B and therefore 

-1 * 
(K ) 'ii is vector-bundle-isomorphic with 'if. 

A similar situation occurs when we have a vector bundle 

(F,K(B),p). In this case we can use K in order to pull back p, and then, 

* 
K p will be vector bundle isomorphic with p. Moreover, one can use 
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definition 2.6.3 in order to relate sections of the corresponding 

vector bundles. Thus 

-1 * 
S((K )): C1(ff) + 

and 

* k k* 
S(K): C (p) + C (.K p) 

are Banach spaces isomorphisms. 

Customarily, a section of a vector bundle over the body is 

called a material or Lagrangian vector field, and a section of a vector 

bundle over K(B) is called a spatial or Eulerian vector field. We have 

shown that for any vector bundle (either over the body or over its 

image) there is an isomorphism between the space of spatial fields and 

the space of material fields. 

In particular, since K(B) is diffeomorphic with B, TQ is iso-

morphic with Cl(K*rS) and with Ck(TSic(B)), so that every virtual 

displacement has an Eulerian version and a Lagrangian version. 

3.7.2 Concerning the Definition of Global Forces  

In the case of classical continuum mechanics one assumes that 

the space is the three-dimensional Euclidean space and that the body 

is a three dimensional submanifold of the Euclidean space. Assuming 

in addition that configurations are continuous embeddings, forces are 

linear functionals on the vector space of continuous vector fields (vir-

tual displacements) over the body. But then, omitting technicalities, 

by some type of Riesz representation theorem, a force is composed of 

a triplet of measures over the body (a measure for each component of 

the virtual displacement field). On the other hand, a triplet of 

measures defines a vector measure over the body as required in the 
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classical definition of force. Conversely, every vector measure can 

be decomposed into three scalar measures [2, P. 20] and can be used as 

a global force according to the definition given here. Hence, for 

continuous embeddings the definition given here becomes identical to 

that given by Truesdell [1], [2]. 

In the case of C embeddings the forces will consist of deri-

vatives of measures as in distributions of finite order. 

3.7.3 Body Forces and Surface Forces  

As was mentioned in the introduction it is assumed in classi-

cal continuum mechanics that forces are composed of surface forces and 

body forces and can be represented in the form 

= J Sdv+ J 1da 
K(B) K(B) 

Here, b and t are vector fields called the body force field and surface 

force field, respectively. 

Since we are going to use this type of force as a standard 

example we will formulate it invariantly. The virtual work of f on a 

virtual displacement field ô (in the -Euclidean space) is 

= .1. (x).(x)dv + f i(x)-TK(x)da 

K(B) K(B) 

A similar expression can be written on a manifold. Assuming 

that a volume element 0 is given on K(B) and that a volume element 0' 

is given on K(B), given the 1-forms b and t we can write 

f(5K) = J '(&c)0 + J (6K)0' 
K(B) K(B) 

Here, the forms and will represent the body force and 
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surface force fields, respectively. 

We can even drop the assumption that 0 and 0' are given and 

give the body force field and the surface force field in terms of the 

vector bundle morphisms 

b: TS -)- A"S 

and 

t: TS + S 

satisfying •ifnOb = id, ffnlO = Id (if'1 is the projection of An  and 

n-1 n-1 
tr is the projection of A S). 

Equivalently, we can 

and L(TS,An-i S), respectively. 

A 

regard b 
A 

and t as sections of L(TS,A S) 

A A 

The vector bundle morphisms b and t contain the volume element 

PV 
in them implicitly, and in case 0,0', and t are given, we can 

construct b and t by 

A  flu 

b (.K ) = b (6K x x x x )0x' 

A fl 

£ (6 ) = ' i  (6i )0' 
x x x x  

Thus, in the most general case we have 

f(6K) = J 
K(B). 

A 

bo6K + I 
K(B) 

tO6K 

Clearly, one can pullback all the sections defined here onto B to obtain 

the corresponding material fields. 
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CHAPTER 4 - THE LOCAL MODEL  

c In order to consider local deformations and internal forces 

we introduce in this chapter the local model. As was mentioned in the 

introduction, the idea here is to treat the neighborhood of the material 

points as entities which are independent (until compatibility is intro-

duced) of the global model and for which configurations, virtual dis-

placements and forces are defined explicitly. These neighborhoods will 

be represented mathematically by the fibres of the vector bundles intro-

duced in the local model. 

4.1 Physical Space  

(F,S,p) 

4.2 Body  

In the local model the space is conceived as a vector bundle 

The body is modelled mathematically by a vector bundle 

4.3 Configuration  

A local configuration is a Cr vector bundle morphism 

•ff - p 

such that the induced base map, B -- S, is a C  embedding with k > r. 

We say that such a vector bundle morphism is of class C. 

The local configuration space is the set of all local config-

urations and we will denote it by R. Thus, using the properties of 

manifolds of maps, the local configuration space has a structure of a 

vector bundle (RQffQ) over the global configuration space. 
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4.4 Virtual Displacement  

A local virtual displacement is an element 6X in TR, the 

tangent bundle of the local configuration manifold. 

Since R has a structure of a vector bundle TR has two different 

vector bundle structures. The first, (TR,R,TR), is the tangent bundle 

structure in which the projection map, TR: TR - R, will assign to each 

virtual displacement its base local configuration. 

In order to consider the second vector bundle structure on 

TR, we first note that if (A,M,) is a vector bundle, we have for the 

tangent map of the projection E, 

T: TA4TM 

and it can be shown that (TA,TM,T) is a vector bundle. Thus, in our 

case we have the vector bundle structure (TRTQTtrQ) in which the pro-

jection map, TJTQ: TR - TQ, will assign to any local virtual displace-

ment a global virtual displacement. 

The relation between the various vector bundles is represented 

in the following commutative diagram. 

Q 

Q 

We can make now the identification of TR with the set of C 

vector bundle morphisins 

(E,B,n) - (TF,TS,Tp) 

and we have 
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TR()S)() = x 

TffQOX) = 5K 

ffQ(X)K 

TQ (ôk) = K 

such that x, OK and K make the following diagram commutative. 

TF 

Tp 

4.5 Force  

* 
A local force is an element ccT R. We will not discuss 

general representations of local forces in this work. 

4.6 Virtual Work  

Let acTR and c5XcTR. The evaluation a(0) is called the 

virtual work of the local force a on the local virtual displacement 0>c. 
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CHAPTER 5 - FIELD REPRESENTATIONS OF THE LOCAL VARIABLES  

In the previous chapter it was shown that local configurations 

are elements of a vector bundle (RQ7rQ) and local virtual displacements 

were defined as elements of the vector bundle (TR,R,TR). It follows 

that a set of local configurations that constitutes a fibre can be 

given the structure of a Banach space. Similarly, a set of local vir-

tual displacements that constitutes a fibre of T can be given the 

structure of a Banach space. 

In this chapter we construct two vector bundles with the 

property that the fibres mentioned can be identified with spaces of 

sections of these bundles. Although this property seems technical, it 

is of physical importance since it allows us to relate the local config-

uration to the classical concept of a deformation gradient tensor 

field and similarly, we can represent a local virtual displacement by 

a field corresponding to the field of variation of the deformation 

gradient. Moreover, having the field representation for the local vir-

tual displacements, another vector bundle can be constructed whose sec-

tions represent local forces so that we can relate the concept of a 

local force to the notion of a stress field. 

In addition, it is shown that a connection on the vector 

bundle (F,S,p) is sufficient in order that local virtual displacements 

and local forces can be represented by 2-tensor fields, carrying us one 

step further towards the classical continuum mechanics. 

5.1 Local Representations  

Let x be a local configuration and K = 1rQ (X) its base map. 
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Given a point xcB there is a vector bundle chart ([J,,) at x and a 

vector bundle chart (V,i,'Y) at K(x) with K(U)CV. We will denote by 

X, (x,e), K, X the local representatives of x, esE, K, x in these 

charts, respectively. If E and F are the typical fibres of 71 and p re-

spectively, we have the following commutative diagram. 

x 
(U)xE s1(\T)xp 

* 
U) 

Let (f1 ,f 2) be the two components of X. Then, it is clear that 

f1: U)xE + V) 

is independent of its second argument and is identical to K. The 

second component 

f2: U)xE + 

is by definition linear in its second argument and the induced map 

f: u) -* L(E,F) 

defined by 

f(x,e) 

is of class 

Let 6xETxR be a local virtual displacement with base map 

6K (i.e. 6K = T71Q (6x)) and denote by 6x and 6K their respective local 

representatives in the vector bundle charts induced on T and Tp by 

(V,p,'Y). We can now rewrite the commutative diagram of section 4.4 

in terms of local representatives as 
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U)xE 

K 

Denoting by f1, f2, f3, f4 the four components of SX we note 

that by the coinmutativity of the top triangle, f1 and f2 are indeed 

those f1 and f2 defined above. In addition, 

U)xE 

is independent of its second argument, and 

f4: 4(U)xE + 

is linear in the second argument and induces a C map 

47. 
J4 . 

defined by 

U) +L(E,F), 

= f4 (x,e) 

5.2 The Local Configuration Field  

* 
Consider the vector bundle (L(E,K * F), B, L(ir,K p)) where K 

is some configuration. By the definition of the linear map bundle and 

the pullback of a vector bundle, the fibre of this vector bundle over 

the point xcB is 
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L(E,KF) = L(E ,(K*F) ) = L(EF () ) 

We claim that the space Cr(L(ff,K*P)) of sections of this 

vector bundle is identical to the set of all local configurations over 

K and therefore it is isomorphic to R = 7rQ ' (K) (this is in fact the 

way R  is defined in [13]). 

Firstly, we use the fact that by the definition of the pull-

back for every vector bundle morphism x there exists a unique vector 
* 

bundle morphism A: ir 4- K  (p) such that the following diagram is commu-

tative 

E 

\KF * 

K 
B 

* 
Secondly, we can identify A with the C r section of L(Tr,K p) 

it induces to complete the identification. 

One should observe the fact that the elements of L(lr,Kp) 

have the properties of a two point tensor. This means that represen-

tatives of elements transform under coordinate changes both in p and 

in T, with a different transformation rule in each case. Hence, a section 

of L(ir,Kp) is a tuo point tensor field. This feature, very well 

known in classical continuum mechanics, will also characterize the rest 

of the vector bundles that we introduce in this chapter. 

5.3 The Local Virtual Displacement Field  

We now construct a vector bundle (&,B,c) such that a certain 
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space of its sections is isomorphic to TR for a given XCR. 

Recalling that T  was the set of C vector bundle morphisms 

'ir -- Tp with TOSX = x we define an equivalence relation nu as 

follows: Let ô1, Sx2TR, we say that 

if f c5Xl = 6x 2x 

(6X lx = csx1lir1(x) and similarly for Thus the quotient set 

TxR/x is the set of all possible values that a local virtual displace-

ment can assume over the point x. Clearly, TxR/t1x is a vector space. 

For let and be the equivalence classes of CSX1 and 

respectively, then, since TpoSxl = TFOcSX2X = we can use the T  

vector bundle structure to define 

a[6x1] + b[ô 2] = [aSXi + bSx2] 

In addition, we claim that the vector space T x R is isomorphic to 

RxL(EF) In order to prove this claim, consider a chart (V,,'1) at 

K(X), K = IFQ (X) and a chart at x with K(U)CV. Using the nota-

tion of section 5.1 it is clear that if f 

(1(& f3(x), (&)1= (1(& f(x), f3 (x), f(x)) 2 

where the 1,2 indices outside the brackets indicate local representa-

tions of SX and 6x2 respectively. Hence, given the charts at x and 

K(X), T R/ry is identical to the values that can assume. 

However, for all 6XsTR the functions f1 and f remain constant and 

since (f f?)CRmXL(EF) we have the identification of TR/" with 

3:0 4RmXL(EF). In order to show that the linear structure is preserved 

under the identification, let and (. ?\ 

'4:•'4 '2 
be the elements 

of RmXL(EF) corresponding to and ['5x2], respectively. Then, 
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+ RmXL(E,F) denotes the identification we have 

I (a[ôx ] + b[6X2 Ix ) = I x ([a6 x + b6 2x]x ) l  lx 

= (a(f3)1 + b(f3)2, a(f) 1 + b(f) 2) 

= a(f 3, f l) 1 + b(f3  ft) 2 

= al x ([ 6xl Ix ) + bl x ([6X2]x) 

where we used 

(a6 1 + boX2 )(e) = a(f3,f(x)())1 + b(f3, f (x)(e)) 2 

= (a(f3)1 + b(f3)2, a(f) 1 + b(f)2 )(e) 

We define now 

6 = U TR/ ru 
xcB X X 

and 

by 

(a) = x for aT R/" 
X X X 

Then, using I as trivializing maps, (6,B,c) is a vector bundle 

with fibre RmXL(E ,F) , provided we can establish the differentiability 

of the transition functions. 

* * * * * * 
Let (U ,4 , ) be another chart at x and (V T ) another 

* * * 
dhart at K(x). We will denote by K , OK , , etc. the local repre-

sentatives of K,OK, 6X etc., with respect to these charts. Following 

* * * 
this convention, an element eEE with (e) = (x ,e ) will be mapped 

under 6X into the element in TF whose representation using the new 

charts induced in TF is (.f, f*Ce*), f;, ft*($*)) We want to 
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construct the transition functions 

101*_i: UnU + L(RmXL(E ,F) , RmXL(E ,F)) 

where I is the identification TR/x + RmXL, induced by the 

*_charts. 

Since f3 (x) is the third component of an element in T we 

have 

* 
= D(o ) (f3) 

for the transformation rule of f3. 

*. * 
Let (x , e * 2, y , e4 * ) be the representation of an element in 

then by the transforniation rule induced in TF by the one in F we 

have 

*_l * * *_l * 
= D(Fo'Y '2 + (e4) 

Hence we can write 

* 
= D('Yo'Y*_l )(f3 * ,f I * (e )) + 'Yo'Y 

and using e = o (e) we have 

f' (e) = + 

or 

*_l * , * * -1 *_l * * -1 
= D('Yo'V )(f3 f o o ) + TOT *-1  o o ID 

Therefore 

1011: Unu - L(RmXL(E ,F) , RmXL(E ,F)) 

is given by 

*_l *, * *_l  -1 
11 (f3,f ) = (D(poip ):cf3), D('Po )(f3 ,f o o(D ) + 

*_i * * -1 
+Voi' of  ID T* ) 
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where the x dependence is understood on the right hand side of the 

equation. 

Note that all compositions are just matrix multiplications 

and the fact that f* is present in the right hand side makes c a vec-

tor bundle of class 

By the construction given, we have a vector bundle morphism 

pr: E -+ K (ts) 

over the identity morphism on B, which is given locally by (f 3'f4' ) + f3. 

The morphism pr induces a morphism pr assigning sections of 

to sections of Thus, identifying global virtual displace-

ments with the sections of K(T s ) they induce, we identify TxR with the 

set Ck() of C sections of c whose image under pr is of class C 

5.4 The Case of a Connection  

We now assume that a connection is given on the vector bund-

le (F,S,p) by means of a connection map C: TF + F. 

By the diffeomorphism 

(TFTPC): TF+F®TS®F, 

each element of TR can be identified with the pair of maps 

(Tpoô, coSX). The map Tpoô: E ->-TS is in fact given by 

TPOSX = TIFQ (Sx) = CSK: B -- TS 

and does not depend on the fibres of E. The map COÔX is given in local 



58. 

representation by 

Co6X(x,e) = (K(x), (f ,(x)() + r(K(x), f3 (x), f(x)(.)))(e)) 

where r is the Christoffel symbol of the connection, and it follows 

that CO'SX is a C vector bundle morphism. 

Conversely, a C k morphism B -'- TS over K and a C r k vector bundle 

morphism over K will determine a unique SxTR. Hence, identifying a 

Ck vector bundle morphism w -- p with a C section of (L(E,K F), B, 

L(1T,K*p)) and a C map B + TS over K with a C' section of K(Ts). We 

have 

T x R = Ck(K(T)) x Cr(L(,K * p)) 

The decomposition of T x R that was introduced here induces a 

connection on the vector bundle (RQJTQ) whose connection map 

C: TR+R 

is given by 

ôX'.'+COSX 

5.5 The Stress Field  

It was shown in section 5.3 that T x R was isomorphic to 

Hence, local forces which are elements of TR, can be identified 

with elements of Ck(E) 

Consider E , the dual bundle of e , i.e. the vector bundle 
x x 

with = (6 xx)* so that its typical fibre is (Rm 

Rm x L(F,E). Then, if a volume element 0 is given on the 

body manifold, a section p of e can operate on any section 4 of e by 

P: 4f 

It follows that p represents a local force a by 
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a(ô) = fB p (4 )O xx 

where 4 is the section of c representing 6. The section p is then 

called the stress field representing the local force a. 

In the case where a connection is specified on the vector 

* * 
bundle p, the decomposition of TR into C k (i (ts r )) x C (L(Tr,Kp)) allows 

us to consider local forces represented by sections of L(1r,K p) only. 

*  As the typical fibre of L(7F,K p) * is L(F,E) local forces can be repre-

sented by tensor fields over the body (or equivalently over K(B)), as 

in the classical case. This type of force is of importance because 

the component of the force that operates on sections of K(ts) can be 

represented by a global force and is of no importance in the local 

model, while the section of L(lr,K * p) * represents the work performed on 

the deformation of neighborhoods. 
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CHAPTER 6 - THE COMPATIBILITY OF THE MODELS  

Now that the two mathematical models for the placements of a 

body in the space have been introduced, one has to express the idea that 

both global and local models represent the same physical phenomenon. 

In other words, as the transformations of the fibres of the body vec-

tor bundle represent configurations of the neighborhoods of the material 

points, a rule should be given, specifying what local configuration 

represents the configuration of the neighborhoods corresponding to a 

known global configuration. Similarly, local virtual displacements 

should be related to global virtual displacements and local forces to 

global forces. The rules relating the respective global and local var-

iables are called the compatibility conditions. 

6.1 The Compatibility Functor  

Let A be a covariant functor from the category of manifolds 

and C  manifold morphisms to the category of vector bundles and C 

vector bundle morphisms, assigning to the manifold X a vector bundle 

over X and to f: X -* Y a vector bundle morphism over f, with 

X(B)E, X(s)F. 

It follows that the local models of the body and space are the image 

of the global models of the body and space, respectively and in addi-

tion, the operation of the functor on manifold morphisms induces a 

section 

A: Q+R 

of the local configuration space (RQ.IrQ). We say that A is a compati-

bility functor if f this section of IrQ is differentiable. In the 
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following A will denote a compatibility functor. 

6.2 Configuration  

We say that a local configuration x is compatible with the 

global configuration K if f 

X = A(i) 

6.3 Virtual Displacements  

As the section of irQ induced by A is differentiable we have 

the tangent map 

TX: TQ+TR 

which is a section of (TRTQTrrQ). We say that a local virtual dis-

placement SX is compatible with the global virtual displacement ÔK if f 

SX = TX(SK) 

6.4 Forces  

Consider the adjoint map of TA 

* R * 
T * A: T A(Q) • T Q 

We say that a global force f is compatible with the local force a if f 

* 
f = T A(a) 

In the next chapter it will be shown that the compatibility of forces 

is a generalization of the classical equation of equilibrium. 

6.5 Remarks  

a. Since A is a differentiable section and therefore an 

embedding TKA: T K Q ->- T X(K) R  splits. Hence we can say that the set of 

compatible local virtual displacements splits the Banach space of all 

local virtual displacements. 

b. The compatibility of the global force f with the local 
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force a :implies that 

* 
f(SK) = (T X(cY))(SK) for all ÔKCTQ 

However, by the definition of the adjoint map 

(T*X(c1))(K) = (TX(6K)) 

and using the compatibility condition for the virtual displacements we 

have 

f(K) = c(i5) 

for all compatible pairs 6K, 6X . 

Hence, the compatibility condition for the forces can be 

interpreted as saying that a global force f is compatible with a local 

force a if the virtual work as calculated using the global model is 

equal to the virtual work as calculated using the local model. It fol-

lows that the given compatibility condition is a general form of the 

principle of virtual work in continuum mechanics. 

c. Let T1rQ: T  ->-T R  be the adjoint map of TirQ. Consider 

elements of T R of the form ci = T IrQ (f). where f is any element of T Q. 

In this case we have 

= (T* IrQ (f))(5X) 

= f(T7rQ(tSX)) 

= f(SK) 

It follows that if a is given by the above relation, compatibility is 

satisfied identically. However, 6x above is any local virtual displace-

ment with base map OK and in general it is not compatible with 6K. 

Hence, since compatibility of forces holds even for virtual displace-

ments which are not compatible, this case is of no importance and the 

local description becomes trivial. In the case where a connection is 
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* * * 
specified on p and T *x R xR C k * (k (Ts)) x c r (L('ir,k p)) , local forces 

of the form T*1rQ(f), fTQ are those for which the second component 

vanishes. 
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CHAPTER 7 - THE LOCAL MODEL OF THE TANGENT BUNDLES  

The most natural vector bundle over a manifold is its tangent 

bundle. Therefore, the vector bundles (TB,B,TB) and (TS,S,T5) can serve 

as natural examples of local models for the body and space, respectively. 

In the local model based on TB and t, the local model of tangent bund-

les, it is the tangent space to a point that represents the neighborhood 

of this point. Using the obvious choice, the tangent functor, as a 

compatibility functor, a compatible local configuration assumes the mean-

ing of a deformation gradient and with some assumptions the equations 

of equilibrium of continuum mechanics can be obtained. In addition, 

the tangent functor allows us to write equations of compatibility as 

conditions for kinematical compatibility and it is possible to write a 

general solution for the case fo in terms of a stress function. 

One could generalize the local model of the tangent bundles 

to higher tangents, taking powers of the tangent functor as compatibility 

functors. The local model corresponding to T  will give continuum 

mechanics of order n, and as n will approach infinity the local model 

will approach the nonlocal continuum mechanics. 

7.1 The Compatibility Of Configurations and Virtual Displacements  

In the local model of tangent bundles the body is modelled 

by the vector bundle (TB,B,TB), the space is modelled by (TS,S,ts) and 

the configuration space R consists of C 1 vector bundle moprhisms 

TB + T. Since we are going to use the compatibility functor as a map 

and take its tangent map, we will denote the tangent functor by XT• Note 

°° that by 2.12.6.iv,XT: Q + R is a C section so that AT can serve as a 
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compatibility functor. 

The compatibility condition for the configurations implies 

is compatible with K if f x XT(I) or alternatively, x = TK. that X 

Hence, compatibility means that the configuration of a neighborhood of 

a point is represented by the derivative of the placement at that point. 

As an element of TR, a local virtual displacement will be iden-

tified in the case of the tangent bundles with a Cvector bundle 

morphism ox: TB ->- Tr S' Such a local virtual displacement will be com-

patible with a global virtual displacement OKETQ if f 6x = TAT(OK). 

7.2 Alternative Definition for the Kinematical Compatibility  

The expression given in the last section for the compatibility 

of virtual displacement is of abstract nature since it does not specify 

the local representatives of O. Another expression for the compatibility 

condition can be obtained if we use the relation TXT(OK) = w 0 TOK, given 

in 2.12.6.iv. To see how this relation originates consider a close sub-

manifold DCB which is contained in the coordinate neighborhood U with 

chart 4, and let (V,1IJ) be a chart in S. Then, the manifold of maps C k (D,V) 

will be identified with Ck(4,(D),p(V)) which is an open subset of 

the Banach space 

Let KcC1 (4,(D),p(V))be a local representative of a configuration 

KEQ, then 

XT • C(4,(D),(v)) -* C 1 (T(4,(D)), T((V)) 

ck(4,(D),(v)) k-i < (4,(D), L(Rn,Rrn)) 

will operate on K by 

Xm (K) = (K, DK) 

The tangent map 
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TAT : TC1 ((D),P(V)) = ck((D) ,T((v))) Ck((D), (V) XRm) 4. 

TC 1 (T(4(D)) ,T(p(V))) 1 (T((D)) ,T2 (p(V))) 

will operate on (K,w)cTC1 (D),ip(V)), which can be regarded as a local 

representative of 5KcTQ, by 

TAT(K ,w) = 

= (K,DK,w,(D(DI))(w)) 

Now, since D: c1((D),p(v)) -'. Ckl((D),L(R,Rm) is linear, we have 

TXT(K,w) = (K,DK,W,DW) 

It follows that TAT (K ,w) = 0o(K,w,DK ,Dw) = U)oT(K,w). This is not the 

proof of the relation because we did not use charts on the manifolds of 

maps, however, it is analogous to the proof of the relation in using 

the linearity of the derivative map. 

Thus, using TAT(ÔK) = u0TôK, the compatibility condition for 

the local virtual displacements can be written in the form 6X = 3oT. 

This last expression suggests a different point of view re-

garding the compatibility conditions. Instead of considering SK as an 

element of TQ and using TAT in order to arrive at the corresponding 5x 

it is possible to treat 6K as a map from the manifold B to the manifold 

TS and apply AT to it. However, as TcSK is a vector bundle morphism 

T B TTS and 6X is a vector bundle morphism TB + T'r S we have to use the 

canonical involution u satisfying Trs = TTSOu) in order to complete the 

compatibility picture (see diagram). 
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TB 

TB 

x 

TSK 

TK 

K 

TTS 

;/T TS 

TS 

TS 

TTS 

TS 

Local Model 

Functor 

Global Model 

7.3 The Compatibility Equations  

Given a local configuration x (or a local virtual displacement 

6x), the compatibility equation provides a necessary and sufficient con-

dition for the compatibility of x (6x, respectively) with its base map 

K = ffQ (X) (SK = T'1rQ (cSX) respectively). 

Let f be a vector bundle morphism (TX,X,Tx) + (TYYt) and 

denote by (f1 ,f) its local representative with respect to some charts 

in X and Y, (we use f as in section 5.1). Let ecTTX be in the domain 

of the chart induced in TTX and denote its representative by (x,e1 ,e2 ,e3), 

then the local representative of Tf(e) is 

(f1 (x) ,f(x) ) ,Df1 (x) + f(x) ( 3)) 

By definition, Tf is a vector bundle morphism TTX + TTY but in 

addition, observing its local representatives, it is clear that wy Mow x 

whose local representative is given by 

(f1 ,Df1 () (x) ,Df + (:)(3)) 
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is also a vector bundle morphism T TX + t. Alternatively, we can say 

that if f is a vector bundle morphism TX Tf is both a vector 

bundle morphism TTX T TY and a vector bundle morphism TT  + TT. Note 

that the base maps for all the vector bundle morphisms T 2 X + T 2 Y con-

sidered, are vector bundle norphisms TX + 

Let g Tg0, where g0 : X -- Y, then, the local representative 

of g is (g,Dg), where g0 is the local representative of g. The local 

representative of Tg(e) = T2g(e) is given by 

( (x) ,Dg (x) ,D!o (x) (e,, 2 + Dg (x) (e3)) 

It follows that a necessary and sufficient condition for f: TX -->'T Y T. to be 

given by f = Tf, where f0 is the base map of f, is that 

WY 0 Tf 0 wx = Tf 

or alternatively, that the two vector bundle morphism induced by Tf are 

identical. 

Applying this result to local configurations, we can say imme-

diately that x is a compatible local configuration iff 

0 TX 0 w = TX 

In order to arrive at the compatibility equation for the 

virtual displacements we use the fact that (A) = so that oX is compa-

tible with OK if f woOx = TOK. Next, we identify B, TS and w S o6X with 

X, Y and f above, respectively, to obtain the compatibility equation 

TS 0 T(u)soOx) 0 W  = T(cA)soox) 

or 

WTS o Tws o TOX ° w  = Tws o TO 

Let be the coordinates of an element 
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in T3S. Then, denoting the local representative of 'TS by TS' we have 

= 

and similarly for Tw we have 

TU)s(x,ei,e2,e3,e4,es,e6,e7) = 

Using these expressions one obtainsimmediately 

WTS 0 WTS = Id 

Tws 0 Tws = id 

and 

WTS 0 TWs 0 'TS 0 TU), = TWs ° TS 

Thus, operating WTS o Tw S on both sides of the compatibility equation for 

virtual displacements and using the last two relations, we obtain the 

equivalent equation 

TSowTSoTôxowB  'TS oTx 

If the local representative of oX is given in terms of (f1, 

f,f3,f) as in section 5.1 and (x,a,b,c) are the coordinates of an ele-

ment in T2B, then the last equation can be written as 

Df1 (a), f(b), Df(a,b) + f(c), f3 (x), Df3 (a), f(b), 

+ = f(a), Df1 (b), Df(b.a) + 

+ f(c), f3 (x), f(a), Df3 (b), Df(b,a) + f(c)) 

It follows that 

•tTTS o Tw ° °rs 0 TOX 0 = 'TTS ° WTS 0 TTX 

is the compatibility equation of 

all OsTR if x is compatible. 

DfL(a ,b) + 

X = TR(cSx), and it will be satisfied for 
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7.4 The Space P  

Our objective in this section is to develop the appropriate 

structure so that in the next section we can construct a linear operator 

on TR, representing the compatibility equation, whose kernel consists 

of the compatible virtual displacements. 

Let P be the space of C maps T 2 B + T 2 S such that for each 

gcP, g is both a C k-2 vector bundle morphism TTB -* TTS over a C  k-i vector 

bundle morphism TB + T5 and a C k-2 vector bundle morphism TT  4 TT  over a 

C 1 vector bundle morphism rB TS . From this definition it follows 

that if gcP, w S ogow B eP, and in particular, if f is a vector bundle morphism 

TB ->- TS , TfcP. Let geP, then it follows from the definition of P that 

the local representative of g with respect to the natural charts in T 2 B 

and T 2 S induced by the charts (1J,4) and (V,p) in t and S, is of the form 

where 

= (g1,g2,g3, 1 it g,g) 

g1: t(U) ->- V is a C k map 

g2: 4(u) + L(Rn,Rm) 

31 

isaC k-i map , 

m k-i 
g3: U) + L(Rn , R. ) is a C map 

nm k-2 
g: 4(U) 4- L(R ,Rn ,R ) is a C map 

g: U) + L(Rn,Rm) is a C k-2 map 
, 

such that if (x, 2e1 ,e2 ,e3) is the local representative of eET B. 

g(x,e1 ,e2 ,e3) = + g(x)(e3)) 

Define an equivalence relation Iv. on P as follows: Let h,1 ,h2cP 

and xcB, we say that h1 " h2 if f h1 = h2 , where h. = hjl(tTBoT)'(x). 
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Clearly, h1 "" h2 if f (.g1(x),g2(x),g3(x),g(x),g(x)) 1, the local repre-

sentative of h1 is equal to (g1 (x),g2 (x),g3(x),g(x),g(x)), the local 

representative of h2. Let be the quotient space, then 

W= U P/'i 
xeB x 

In fl In 
is a fibre bundle over B whose typical fibre is SXL(Rn  ,R ) x L(R ,R ) x 

L(Rnl ,Rhl,Rm) X L(R,R). If [] an element in W, the projection map 

W+B 

of this fibre bundle will be given by 

= x 

The trivializing maps and transition functions will be induced 

by those in B and S, similarly to the construction of the jet bundles 

and the element will have the typical coordinates (g1 ,g2 ,g3,g, 

g) in the typical fibre. The fibre bundle 'Trw: W -'- B will have the 

following properties: 

(i) By its definition, W has two projections if1 and ir2 on J(B,S) 

defined as follows: Let gP be a representative of (g] x eP/ru and let 

x1 x2 be its base maps with respect to the tTB 'rs and TT  + TT  

vector bundle morphisms, respectively. Then, 

1 
c j (B, S) 

1 
E J (B ' S) 

= 

= 

where the equivalence classes of X, and X2 are those with respect to 

the relation 

It 
if f x' 'r 1 (x) = XITB1(X) i i  

which is used to construct J 1 (B,S). 

These projections define two vector bundle structures (W,J1(B,S), 
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7r 1 •' (W,J1 (B,S),ii2), where the TTS and the TT  bundles are used to 

define the linear structure on the fibres. Locally the projections Wl 

and 7r are given by 

(x,y,g2) 

and 

(x,y,g2 ,g3,g,g)'+ (x,y,g3) 

respectively. The typical fibre for both vector bundles is L(RTI,Rm) x 

L(R ,Rn ;Rm) x L(Rn,Rm), and if and 4iop*_l are transition functions 

in B and S respectively, the induced transformation rules for g2, 939 

g, g are given by 

g2 D(p*o1pl) o g2 o 

-1 
g3 'u-'-D% * 0 ) o g3 o D(o ) 

* -1 *_1 
g(,') r+D(4 oip ) o Eg(D(o4 )(.), D(o4 )(•)) 

+ gif o D2 (*_1)(.,.)] + D2( o _l)(g2oD( o * l)(.) , g3oD( o *_l)( .)) 

g "4- D(*ol) 0 g o 

which reflect the vector bundle structure of w and 7r 2* 

(ii) Note that if ET2B is vertical, i.e. Tt() = 0, then g() is 

vertical for all gcP. Thus, we have a map P ->-R such that for 

gP, the corresponding x in R makes the following diagram commutative. 

v(T2B) 

B 

TS 
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Here, V(T2B) and V(T2S) are the vertical subbundles of the 

respective bundles and iB, -s are the isomorphisms V(.T 2B) + TB, V(T2S) + 

TS defined in 2.12.2. 

It follows that we can define a third vector bundle structure 

(W,J1(B,S),T3) by 

ir3([gJ) = (x] 

where x = irg for any representative g of 

Consider the fibre bundle J1(B,J1 (B,S)) which is the bundle 

of first jets of maps B -+- J 1 (B,S)  or equivalently jets of vector bundle 

morphisms TB + T. Observing the local expression for the tangent map 

of a vector bundle morphisms X, as was given in section 7.3, it is clear 

that (x,g1 ,g2 ,g3 ,g4)c{x} L(R,R) >< L(R",RR) are the 

coordinates of a typical element in 31 (B.,J1 (B,S)), and we have a C 00 in-

elusion in 

J1 (B,31(B,S)) -,-w 

given locally by 

(x,g1 ,g2 ,g3 ,g4) -- (x,g1 ,g2 ,g3 ,g4 ,g2) 

reflecting the fact that for XR, TXP and ir3 (TX) = X. From the con-

struction of W and its properties we can draw the following conclusions: 

(i) The space P can be identified with the space of Ck_2 sections 

of W such that the two sections of J1 (B,S) induced by ff i and 2 are C. 

It follows from 191, where the general case of sections of fibre bundles 

is treated, that P is a differentiable manifold. In addition, since W 

has a structure of two vector bundles w and 7r  over J1 (B,S), P will 

have two vector bundle structures (P,R,IrR), (P,R,ir) induced by the asso-

ciation of base maps to the TTB + TTS and TTB + TT  vector bundle morphisms 
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respectively (see diagrams). 

£ f 
T 2 B 

T TB 

TB 

 T 2 S T 2 B 

TTS TTB I 

TS TB 

• T 2 S 

ir'(f) 
R 

JSTTS 

Thus, we can define a canonical involution P + P by 

=S f 

and is clearly an isomorphism satisfying 

-•1 

and 

= 

= 

(ii) The tangent functor is a nonlinear differential operator 

1 l 1 1 Lfl 
C (.J (B,S)) + C(J (B,J (B,S)) - c(w) 

where the first map is the association of the appropriate section of 

C00(Jl(B,Jl(B,S)) with the tangent map of a vector bundle morphism, and the 
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second map is induced by the inclusion 31 (B,J1 (B,S)) -'- W. It follows 

19, p. 67] that 

XT: R+P 

is a C section of 

(liii) The tangent bundle (TP,P,T) consists of ck_2 maps h: T 2 B ->-

T 3 S, such that for each h: 

(a) T(h) = TTTS 0 h 

(b) h is a C k-2 vector bundle morphism TTB + TT TS over a map 

h0cTR; 

(c) h is a C k-2 vector bundle morphism TT B + 2 T over a C k-1 k 

vector bundle morphism TB + TT  in TR. 

In addition, Tu is a canonical involution on TP with Tw(h) 

= TWs0hOWB 

(iv) The tangent map of the tangent functor (its linearization as 

a nonlinear differential operator E9, Chapter 17]) 

TXT: TR+TP 

which is a section of TIrR is given by 

TXT(h) = °TS o Th 

Again, this relation is based on the linearity of the tangent 

functor on representatives of elements in R. 

7.5 The Compatibility Equations in Terms of Manifolds of Maps  

In terms of the language developed in the previous section 

the compatibility equation for the local configuration assumes the form 

* 0, XT (X) = XT() 

and the compatibility equation for the local virtual displacements can 



76. 

rewritten as 

0 = 

or 

T(w*oXT) (6x) = 

Note that the left and right hand sides of the compatibility 

equation for the local virtual displacements can be obtained by taking 

the tangent of the maps on the left and right hand sides of the compati-

bility equation for the configurations. It follows that if x is a 

compatible local configuration 

0 T(u*o7tT)(ôx) = 

for all 6XeTR. This is just the last expression in section 7.3 written 

in terms of manifolds of maps. 

Let i denote the inclusion XT(Q) + R. Since X is a section 

of TTQ XT(Q) is a submanifold and we have the vector 

I *t) which is just the restriction of TR to virtual 

bundle (i*TR.,XT (Q), 

displacements over 

compatible local configurations. Let T *R i Ri denote the induced map 

* * * * 
i TR + TR, then we can define the vector bundle ((TR i)TP, i TR, 

(.4i) *T1TR), which is again just the restriction 

(ti) TP 

* * 

(TRi) TlrR 

*   
i TR 

* 

XT (Q)   

* 

TRl 

1 

TP 

TIrR 

R 

* 
of TITR to i TR. 
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Since the base maps W*QXT and AT of T(W*oAT) and re-

spectively, are identical on i TR, we can define a map 

* * * 
L: i TR - (TR  i) TP 

by 

L = T(W*oAT) - TX  

where the linear structure of 'r P x is used. The restriction of L to T R, 

where x is a compatible configuration, induces a map 

L: TR+T P 
X XT (X) 

which is clearly linear. The kernel of the map L consists of the compati-

ble virtual displacements away from X. 

7.6 The Compatibility of Forces  

In this sections we deal with the form that the compatibility 

condition for forces assumes in two special important cases. Firstly, 

we assume that the space manifold S is given a connection and we arrive 

at the equilibrium equations of continuum mechanics. In the second part 

we return to the general geometry but we assume that f = 0 and obtain 

a general solution for this case in terms of a stress function. 

7.6.1 The Equilibrium Field Equation  

We now assume that a symmetric connection C: T 2 S -* TS is 

specified on the vector bundle (TS,S,Ts). There are no further restric-

tions on the existence of such a connection, and we have C = Cow. 

Having a connection on S, the compatibility condition for the 

virtual displacements 6X = (BOTcSK can be decomposed into 

T TsO ôX = TT 5 OWOTÔK = 15K 
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and 

CO&X = COwoTtK = COTÔK 

Let cSK' denote the spatial vector field corresponding to SK, 

i.e. 6K' is a vector field over K(B) such that 6K = WOK. It follows 

that TÔK = T(ÔK'OK) = T6K'OTK, and the vertical part of the compatibility 

condition becomes 

Co6X = CoT6K = CoTcSK'oTK = VÔK'OTK 

Since C06X is a vector bundle morphism TB + TSIK(B), any vec-

tor bundle morphism a: TSIK(B) -'- TB with base map K 1 , represents a 

local force a by 

= J tr (aoV&K'oTK)OB 

where 0B is a volume element on B. The vector bundle morphism a is cus-

tomarily called the first Piola-Kirchoff stress. Alternatively, since 

tr(oV6K'oTK) = tr(TKooV6K'), we can define the Cauchy stress 4: TSIK(B) 

->. TS IK(B) which is a vector bundle morphism over the identity by 

4 = Toa and we have 

where 0 is a volume element 

= J tr(4oV6K')O 
(B) 

on K(B), which is the pullback 

by K 1 . In addition, let be the vector bundle morphism 

4: TSIK(B) + An-1 (TSIK(B)) 

over the identity on K (B), defined by 

406K' = (4o6K')JO 

We now define the divergence operator 

divi: TSIK(B) An (,TSIK(B)) 

-1* 
K OBOfOB 
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as the vector bundle morphism over the identity of K(B) given by 

div2oSK' = do4oSK' - tr(4oV'SK')O 

where d denotes exterior differentiation. In order to motivate the 

last two definitions we will write them in local coordinates. Let 

i = l,...,n be local coordinates on an open set in K(B), so that 

0 = odxlA...Adxh1, 4 is given in terms of a tensor field 4 j j® dx3 
ax  

and KT is given in terms of the vector field SK 1 -. Then, by definiax 

tion 

(406K) le = (1) O .41 j l 1 .6 K dX...AdXA ...A dX n 

i=l 

where the bar denotes omissionof the dxi factor, and by the definition 

of the exterior derivative 

d040'SK' = 9 SK)dx1A.. .Adx1' 
1 

ax 

- (0 4 o )SK dx1A AdXm + 
ax  

+ 0 4 1   1 dx A ... Adx n 
o  ax 1 

If r.k are the components of the Christoffel symbol in this chart, then 

V6K' - (96K + r3 6K)--- dx1 
ax i i P, axi 

and 

HK j  

tr(4oV6K')O = 4. . C + r. ÔK)O dx 
9x 1 0 

so that 

div4oSK' = 
1 _j (.0 4]•) - ]k 4 )o od1A Adn 

(-i— o 9x 0 .1 1J 

90 

Consider the special case in which -4 — 0 rr. (this will be 
9x 
1 on 
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the case if both $ and r are based on a Riemannian metric), then 

div4ocSK' = (-p--- (4 ' ) + ri - 41rk ii )IsKJodxlAAdxfl 

ax 

and the expression inside the parentheses is the usual definition of 

the divergence of 4. 

With these definitions the expression for the local virtual 

work assumes the form 

= J do&oôicz' - divoôK' 

K (B) 

We now assume that the local force is given in terms of a body force 

field and a surface force field as in section 3.7.3, i.e. 

f(SK) = J boô' + 
K(B) 

tooK' 

where t and are spatial fields. 

Since compatibility of forces requires that a(6X) = f(OK) 

for compatible virtual displacements, we have 

J(div2+b)ooK' + J (-4)oO' = 0 
K(B) K(B) 

where we used the Stokes' theorem for the integral / dohot5K'. 
K(B) 

Finally, as this last equation holds for every virtual displacement OK' 

we have 

div4+b0 on K(B) 

and 

t4 on K(B) 

Hence, for the case where a connection is specified on the 

space manifold and the global force is given in terms of a body force 

and a surface force, we obtain the generalization of the equilibrium 
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equation and boundary conditions to manifolds. 

7.6.2 Stress Function. A GeneralSolution for the Case f = 0.  

This short section was motivated by a paper [15] by C. 

Truesdell and the treatment here is simply an application of the method 

given by Truesdell to the general case under consideration here. In 

addition, it seems that the standard lemma stated below together with 

the general construction, can serve as a Lagrange multiplier theorem 

which was not available to Truesdell [15, p. 15]. Moreover, the ease in 

which the method is adapted to the suggested formulation can indicate 

the consistency of the suggested formulation with the classical continuum 

mechanics. 

In section 7.5 it was shown that a necessary and sufficient 

condition that 6XCTXR is compatible,. is that XkerL where L: TR + 

T TX)P is a linear map and x is a compatible configuration. We also 

claim that L x x (X) (T R) is closed in T P. This will follow if kerL x splits 
AT  

T R because in that case, L (T R) L'(T R/kerL ), where L' is the 
x x  x  X X 

canonical map 

T x x R/kerL # XT() T P 

induced on the T X X X X X R/kerL by L . Since T R/kerL is isomorphic to 

the closed complement of kerL and since L is an isomorphism, L(TR) is 

closed. The space kerL splits TR because it consists of compatible 

virtual displacements, i.e. 

kerL = TXT(TQ) 

and since AT is a section and hence an embedding TAT splits. 

Lemma [16]: Let X,Y be complete normed linear spaces and 
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A: X + Y a continuous linear up whose image is closed in Y. Denote 

by A* the adjoint map of A, then the annihilator of kerA is the image 

* 
of A 

Let f = 0, then the compatibility of forces requires that 

aC6x) = 0 for all compatible 5x or in other words, ci(cS) = 0 for all 

xekerL x x , so that a is an element of the annihilator of kerL . Hence, 

since L satisfies the conditions of the lemma, every compatible a is 

given by a = L(p) for 
* 

some pcT P. The element p is traditionally 
TX/ 

known as a stress function. 
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CHAPTER 8 - CONCLUSIONS  

The foregoing formulation generalizes the following aspects of 

classical continuum mechanics: 

a. Body and space. The body and space are assumed to be dif-

ferentiable manifolds. 

b. Forces. The formulation is not restricted to forces given 

in terms of a body force field and a surface force field. 

c. Stress. A stress field is just an example of a local 

force and in general, local force is a distribution of some type. 

d. Equilibrium. Rather than a physical law, equilibrium is 

presented, in the case of statical continuum mechanics, as a require-

ment of compatibility of two mathematical models of the same physical 

phenomenon, arising naturally from the kinematical compatibility. 

In addition, although no example is given, the formulation 

makes sense even if a general vector bundle rather than the tangent 

bundle is used to construct the local model. 

Within the framework of the suggested formulation further 

research can be carried out in order to establish representation of 

global and local forces. In particular, the possibility that distribu-

tional derivatives will appear in the equilibrium equation so that 

it holds for "generalized" stresses, should be examined. In addition, 

one can investigate into the relation between the local model and the 

Cauchy theorem. 

This work does not deal with three important subjects included 

in classical continuum mechanics which are dynamics, thermodynamics 

and constitutive theory. 
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In trying to formulate a Gãlilean type dynamics on manifolds, 

one encounters difficulties originating from the fact that no inertial 

frames are available. Hence, Newton's second law cannot be postulated, 

as it holds only in inertial frames. One way to avoid this problem is 

to use Greek-like space time, i.e. space time which is a product of the 

space manifold with the time dimension so that position in space is 

absolute. This way one can formulate Newton's law but this law will hold 

only in one preferred frame. Alternatively, it is possible to assume 

that space time is locally diffeomorphic with the Greek space time, 

specifically, that space time has a structure of a fibre bundle over 

the time dimension. In this case Newton's law can be stated in any 

trivialization but it will be trivialization or frame dependent [17]. 

It seems that both descriptions are not satisfactory and one might say 

that just as ruling out inertial frames led to a structure of space-

time which is not affine, inertial forces are not frame invariant if the 

space is assumed to be a general manifold. 
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