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Abstract

Through age or misuse, motion picture films can develop damage in the form
of dirt or scratches which detract from the quality of the film. Removal of these
artifacts is a worthwhile process as it makes the films more visually attractive and
extends the life of the material.

In this thesis, various methods for detecting and concealing the effects of film
damage are described. Appropriate algorithms are selected for implementation of
a system, based on a TMS320C80 video processor. which can remove the effects of
film defects using digital processing. The restoration process operates in real-time at
video frame rates (30 frames per second). Details of the software implementation of
this system are presented along with results from processing damaged film material.

The effects of damage are significantly reduced after processing.

il
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Chapter 1

Introduction

Motion picture restoration attempts to eliminate the effects of damage and age
in motion picture films and return the film. as closely as possible, to its original
undamaged state. This thesis investigates a number of techniques for restoring
black and white archive films using digital processing, and outlines the design and
implementation of a system which restores damaged film sequences in real-time.

Most classic movies and newsreels produced before 1950 are badly dam-
aged [1]. Many of these have significant artistic and historic value. There is therefore
an incentive for restoring these films and archiving them in digital form to prevent
further degradation.

Observers find defects in motion pictures very distracting or annoying, since
they often occur in random patterns and “don’t belong” in the image sequence.
Most of these defects must be removed before films are suitable for public viewing.
In addition. compression methods (e.g. MPEG) do not work well on sequences
with discontinuities such as scratches. and compression or image quality suffers [2].
Eliminating these defects improves coding performance.

With the introduction of digital television, broadcasters are finding that there
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is excessive channel capacity available [3]. Using older film footage, such as movies
or documentaries, is an inexpensive way to fill this excess capacity. Restoring this
material and removing the effects of damage would improve the viewing quality. As
mentioned earlier, removing defects also allows higher compression and therefore

more efficient use of available digital television bandwidth.

A number of agencies, such as the BBC and CBC, have embarked on large
restoration projects to preserve their rapidly deteriorating film archives. They have
joined with various university and corporate researchers to develop improved meth-
ods of restoring film—some of these are the AURORA [3] and LIMELIGHT [4]
projects. Their goal is quality of restoration first. and speed second. Most of the
other motion picture restoration research currently being done is in developing a

svstem which offers the best possible performance at any computational cost {3].

The methods examined in this thesis are not necessarily those which provide
the best possible performance, but those which offer “acceptable” performance and
are computationally efficient. Acceptable performance is defined as suitable for
general-purpose viewing at television resolution., where most defects are removed but
some effects of damage may remain. Any remaining damage is at a sufficiently low
level as to be virtually imperceptible to the viewer. Creating a system which removes
all film damage is extremely difficult, if not impossible. so this work concentrates
on removing most damage as quickly as possible. In many cases, the quality of
the real-time restoration algorithms is nearly identical to the most computationally

intensive methods.

The advantages of a real-time system are the ability to connect it directly
between a video source and a broadcast or recording medium. eliminating the need

to preprocess the sequence. Real-time also represents the practical maximum speed
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at which such a system needs to run; once real-time restoration has been achieved,
then algorithms can be improved as more computational power becomes available.

Automatic film restoration in real-time has already been achieved for video
processing systems from several companies such as Snell & Wilcox [5] and Digital
Vision {6]. However, these are expensive special purpose units. The intent of the
work in this thesis is to develop a system which requires the minimum amount of
computation, using general-purpose hardware, in order to achieve adequate restora-
tion quality.

Another criterion for this system is the ability to function with minimal op-
erator intervention. Restoration should be robust to many types of sequences and
damage. and the number of user parameters should be a minimum. The real-time
restoration system developed in this thesis meets these goals.

The following sections describe typical types of film damage and an overview

of the restoration process. A description of the test sequences used for this work

and an outline of the thesis follows.

1.1 Film Damage

Over time. motion picture film degrades in quality due to a number of environmental
factors. Dirt and mildew can accumulate on stored films, repeated use can scratch
the film surface, and the chemicals in the film emulsion layer can deteriorate if not
stored properly {7]. All of these effects are visible as the film is displayed and are
distracting or annoying to viewers.

Figure 1.1 shows a movie frame with some simulated defects. Film damage

may occur in the following forms [3]:



Figure 1.1: Some examples of film damage demonstrated on a frame from the original
WESTERN sequence.
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o Dirt, mold, and other foreign objects adhere to the film surface and appear as

dark lines or “blotches”. Scratches or other light marks on the film negative

will appear dark when the film is printed.

e Scratches on the film create light lines or spots (sometimes called “sparkle”).
Older nitrate stock based film deteriorates over time and its emulsion layer
flakes off, also leaving bright areas. Dirt or dark marks on the negative will

appear light when the film is printed.

e Dirt particles in the film projector can cause long vertical scratches (line
scratches) as the film passes through the transport mechanism. They may
appear light or dark. depending on whether the negative or the printed film is

damaged.

e Film grain noise is created by slight imperfections in the chemical film layer.
This may appear as impulsive “salt and pepper” noise. where the defects are

usually only a single pixel in size.

e Miscellaneous other defects may be the result of water damage or excessive

heat.

Examples of these forms of damage are shown in the sample image.

It is important to distinguish between actual dirt which has adhered to the
film surface, and “printed” dirt, which was present when the film was created and
therefore part of the image. Both appear the same when the film is viewed, but while
actual dirt may be removed by cleaning, printed dirt cannot. Also. the removal of
scratches depends on whether they are on the base “support” side of the film. or on

the emulsion side. which bears the chemical coating and actual image [8]. Base side
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scratches simply obscure the image when light is shone through, while emulsion side
damage actually eliminates image information.

In order to remove or conceal its effects, the characteristics of film damage
must be known. With the exception of line scratches, defective regions will appear
in random locations in each frame, i.e. it is rare for a damaged pixel in frame n to
also be damaged in frame n + 1. The reason for this is the purely random nature
of dirt and scratches: if it is equally likely to occur at any location in a frame, the
probability is low that it will occupy the same location in adjacent frames.

Vertical line scratches are a special case, because they will appear in almost
the same location over many successive frames. The same methods used to conceal
random film damage cannot be used. Instead. the fact that they are relatively
narrow. occupy the full height of the frame. and occur in approximately the same
place in several frames can be used to detect line scratches [9].

A number of other artifacts can occur as a result of film degradation or
misuse. These include bleaching of colors. discoloration of both black and white
and color films. wearing of the film sprocket holes causing “jitter”. shrinkage, shake.
and “flicker” caused by random differences in frame brightness [2]. Conversion of
film to video can also cause problems due to synchronization differences between

video lines. resulting in “line jitter” [10].

1.2 Restoration Techniques

This thesis is concerned primarily with the detection and concealment of random
film damage. such as dirt and scratches. Techniques which are computationally effi-
cient and can be performed in real-time are specifically considered. These methods

operate exclusively on black and white (greyscale) image sequences, not because the
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techniques are limited to greyscale (see Section 7.2), but for the lower processing
requirements. All input sequences are assumed to have been previously converted to
a video signal, and the resulting restored signal is also video. A high-resolution film
scanner could also be used as an input device, although at a higher computational
cost because of the greater resolution.

There has been some success in removing flicker and jitter in motion picture
films [2], as well as color restoration [3]. Removal of these artifacts is beyond the
scope of this thesis. so these methods are not investigated. Line scratches have differ-
ent characteristics than dirt and random scratches and must be treated separately.

so the removal of line scratches is also not considered in this work.

1.2.1 Traditional Film Restoration

The most straightforward method of removing dirt from film is to carefully wash
deposits from the surface by hand or with an ultrasonic cleaning technique [8]. This
obviously will not work for scratches or printed dirt. One method of detecting
physical dirt uses infrared light projected through the film [11]. Regardless of its
transparency to visible light, the film will pass infrared except at those locations
which contain dirt particles. These locations must then be restored by cleaning or
by some interpolation technique, such as those described in Chapter 4.

Small base side scratches can be removed using a “wetgate” method [8],
which coats the film with a chemical having a refractive index close to that of the
film material. Light projected through the film and chemical layer will not refract
at scratch locations and they will therefore not appear. Some superficial damage to

the emulsion layer can also be removed by the wetgate method.

If the film is badly damaged. the only method of restoring it may be to use



an airbrush and retouch each frame by hand, very slowly and at great expense.

1.2.2 Digital Restoration

As digital techniques are used more in the motion picture industry for archiving
and special effects, techniques for using digital processing to restore damaged films
have been proposed. One such method is an extension of manual restoration, where
an image processing workstation and software are used instead of an airbrush [12].
While this may be more convenient, the cost in time and money is still large.

Several researchers have devised methods for automatically restoring dam-
aged films with minimal operator supervision [13. 3. 4. 14]. Such algorithms detect
damage and conceal it using image processing. This method is certainly faster and
less expensive than manual restoration. A number of techniques using heuristics,
autoregressive models. and other algorithms have been successfully applied to this
problem and are described in detail in later chapters.

All of the digital restoration techniques use the same basic method for pro-
cessing {153]. At film rates (24 frames per second), the difference in information
between two adjacent frames will be small. Because of the temporally local na-
ture of film damage (at any given pixel location), information from the surrounding
frames can be used to detect damage and reconstruct damaged regions. However,
moving objects will appear at different locations in the two frames. A motion es-
timation and compensation algorithm detects motion and adjusts for the effects of
movement between frames. Processing can then be carried out assuming that there
is no motion between frames.

Typically. three frames at a time are used for restoration: the current frame

to be processed. and the previous and next frames in the sequence, as shown in
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Figure 1.2. The previous and next frames are compensated for motion and used,

Previous Frame

Motion
Compensation

Detection Mask Restored Frame

Defect

Damage
Detector

Concealment

Motion
-Compensation |

Figure 1.2: Steps to restore a single frame from an image sequence.

along with the current frame, in a detection algorithm that attempts to find which
locations (if any) in the frame are damaged. The resuit of this step is a detection
mask—a bitmap indicating the damage locations. A concealment algorithm uses
information from the surrounding frames (and possibly the current frame) to cover
only the locations marked in the detection mask. The result is a restored frame

which closely resembles the original undamaged frame.

A number of specialized hardware systems applied to the restoration problem
have been developed. These include a parallel array of digital signal processors [16],
the Philips-BTS MNR-11 digital noise reducer [17], and video processing worksta-
tions from Snell & Wilcox and Digital Vision. Some of these systems are able to

perform film restoration in real-time (24 frames per second).
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1.3 Film to Video Transfer

The motion picture restoration system described in this thesis operates on a North
American standard NTSC video signal input. It is assumed that a film sequence has
already been converted to a video signal and either input directly to the restoration
device or recorded on videotape for later processing. The reason for developing
the system for video processing is because a digital film scanner is expensive and
not readily available. so previously digitized sequences or videotape are convenient
sources of film material. Also, the lower resolution of video allows the use of less
powerful processing hardware. while the algorithms can later be extended to higher
resolutions.

Film is converted to a video signal through the use of a “telecine”, which
internally projects the film and scans it into video format [18]. The telecine also
performs the necessary operations to convert the film rate from 24 frames per second
to an appropriate video frame rate. An illusion of more frames per second is therefore
created without altering the overall speed of motion in the film.

NTISC video effectively displays 30 frames per second, but each frame is
divided into an odd and even field. Fields are therefore displayed at 60 per second!.
and are interlaced: the odd field contains the odd lines of a frame, while the even
field contains the even lines. Film frames are usually converted to video format
using a “3:2 pulldown” process {19], where film frames are repeated as necessary
to convert the frame rate to an average of 30 frames per second. Frames from the
film are alternately repeated for 2 or 3 fields: the result is two film frames converted
to five NTSC fields. for the required conversion ratio of 2.5 (60 fields per second

divided by 24 film frames per second). For the European PAL video standard,

' The cxact rate is 59.94 ficlds per second [19].
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which operates at 25 frames per second, film frames are usually directly converted
to video frames, as the difference in frame rates is not noticeable to viewers.

For film converted to NTSC video, the fields may contain information from
the same film frame or from adjacent frames, depending on the position in the
sequence. This can cause a problem when processing video frames—the information
in the odd lines may not correspond with the information in the even lines.

The resolution of modern 35mm motion picture film has been estimated to
be at least 4096 x 2988 pixels per frame, with 10 to 12 bits per pixel per color.
at 24 frames per second [4]. In contrast, NTSC video resolution is approximately
720 x 486 pixels at 8 bits per pixel per color, at 30 frames per second {19]. The
spatial information alone is a factor of 35 greater for film. Algorithms described in
this thesis for motion picture restoration of video. however. are scalable to full film

resolution assuming adequate computing power is available.

1.4 Test Sequences

A number of test sequences are used in this thesis to evaluate the performance
of various restoration algorithms. Some contain synthetic damage and others are
digitized from actual damaged films. Example frames from all the sequences are
shown in Figure 1.3. All sequences were obtained from Anil Kokaram and Cambridge
University [3].

The WESTERN sequence was digitized from an undamaged motion picture
film. and consists of 64 frames at 256 x 256 pixels, 8-bit greyscale. The actor in the
scene lifts a sack into the truck. then adjusts his jacket. It contains a fair amount
of stationary background, as well as some fast and complex movement. MOBCAL

(Mobile-Calendar) is a standard video test sequence which was obtained from a
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(256 x 256, 25 frames)

e TR,
i

FRANK (256 x 256, 64 frames)

Figure 1.3: Sample frames from test sequences.
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camera, not a film, and consists of 25 frames at 256 x 256 8-bit greyscale. The black
and white balls spin and intersect, while the calendar moves up and down and the
train pushes the spotted ball. A wide range of movement is seen in all parts of the
image, with fairly detailed objects.

Both WESTERN and MOBCAL had artificial damage added, in the form
of blotches of random greyscale value at random locations {20]. The original un-
damaged sequence is available and the artificial damage locations are known, so the
performance of the restoration algorithms can be quantitatively evaluated against
the original. These sequences were used extensively in Chapter 5 to select the best
algorithms for motion estimation. defect detection. and damage concealment.

The FRANK (236 x 2536, 64 frames greyscale) and BIPLANE (512 x 512, 10
frames greyscale) sequences were digitized from actual damaged films. The FRANK
sequence consists of a slow camera pan upwards as the Frankenstein monster lifts a
flower and the leaves in the background blow in the wind. Most of the sequence is
undamaged. with a notable exception being the spot on the forehead shown in the
figure. In BIPLANE. the camera follows a landing airplane while the background
scrolls because of the camera pan. The damage is significant, especially in the frame
shown in Figure 1.3.

In addition to these sequences. a variety of black-and-white movie and news
documentary footage was recorded from television and used for testing. Some results

from testing on these sequences are shown in Section 6.3.

1.5 OQOutline of the Thesis

The first chapter of this thesis has presented the background and motivation behind

motion picture restoration. as well as stating the intent of this research: to develop
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an automatic, real-time restoration tool which uses general-purpose hardware (and
is therefore inexpensive). The focus application is video to video transfer, where
the input and output formats are video signals, but the algorithms are exteasible to
higher (film) resolutions. Typical types of film damage and an overview of methods

previously used to remove these artifacts were also given.

In Chapter 2, the motion estimation and compensation process is described
in detail. Motion estimation techniques can be basically divided into gradient,
frequency domain, and block matching methods, with block matching being the most
appropriate for real-time processing. Several block matching metrics and search
algorithms are presented and compared on the basis of accuracy and computational
cost. Issues related to motion estimation, such as image scaling and acceptance

thresholds. are described.

The discussion in Chapter 3 concerns possible techniques for detecting dam-
aged locations in film frames. A number of algorithms are described to detect
“random” damage (scratches and dirt). These techniques have widely varving per-
formance and computational cost. Finally, a discussion on possible ways to eliminate
vertical line scratches is given.

In Chapter 4. the final concealment step of the restoration process is explored.
Various averaging or median filtering methods are described. as well as more com-
plex (and computationally expensive) algorithms using Markov random fields and
autoregressive models.

In Chapter 5, the design of the restoration software is explained. First, an
overview of the implementation platform is given. Motion estimation. detection,
and concealment methods are then compared with several variations and evaluated

on the basis of accuracy and computational cost. The best algorithms for each are



selected as candidates for a real-time implementation.

The software implementation and structure of the real-time restoration sys-
tem., its capabilities, and its user interface are all described in Chapter 6. Restoration
performance is demonstrated on real damaged film sequences. Execution speed of
the final implementation with various processing options is presented.

Finally, the discussion in Chapter 7 summarizes the performance of the sys-

tem. its problems, and possible improvements.
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Chapter 2

Motion Estimation and

Compensation

It is possible to use adjacent frames in an image sequence to detect and conceal
damage within a given frame. These surrounding frames contain almost the same
information as the center frame, assuming they are not on the boundary of a scene
change. However. if there is motion in the scene (or if the camera moves), there will
be slight differences in the locations of objects within the frames. Motion estimation
attempts to find the magnitude and direction of the motion. while motion compen-
sation reduces the effect of motion between the frames. Accurate motion estimation
and compensation are necessary for detection and concealment of damage.

Motion estimation attempts to find a displacement vector between pixels in

two successive frames. such that [20]
L(F) = LT + Uaa (7)) + €(7) (2.1)

where 7 is a two-dimensional coordinate with components (r;, ry). I,(7) is the pixel

intensity at location 7 in frame n. and @, _;(F) is the motion vector between frames
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n and n — 1 at location 7. The motion estimation algorithm attempts to find the
best value for #,_; () for all locations 7 to minimize the value of the error term (7).

Once motion estimates have been obtained for all pixels in the frame, inter-
frame processing can use these offsets when selecting pixels in order to minimize
the effects of motion between frames. To compare pixels at the same effective
(i.e. motion invariant) location in the current and reference frames, the vector
Un-1(7) must be added to each pixel location when accessing pixels from the reference
frame. In order to simplify this process, the reference frame can be preprocessed to

compensate for the effects of motion:
[n1(F) = Lno(F + Gni (7)) (2.2)

The motion compensated frame fn_I(F') can then be used instead of the reference

frame I,_,(7), leading to the simplified motion relation:
L(7) = L (7) + () (2.3)

In the restoration process, motion estimation is performed both forward and back-
ward, so fn+1(1") is also calculated and used in a similar way. Motion compensation
can be performed explicitly immediately after motion estimation or. alternatively,
vector offsets can be added during inter-frame processing, with identical results.
Throughout this thesis, motion compensated reference frames I —1 and fn+1 are
assumed in order to simplify notation.

This motion model assumes movement is purely translational and parallel to
the image plane [19]. It also assumes that the brightness levels of both images are
the same. and that objects are not occluded (i.e. move behind another object) or
unoccluded during their movements. These are not always realistic assumptions. but

nevertheless the motion estimation process provides an acceptable approximation for
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restoration [21].

It is important to note the difference between actual motion and optical
flow [21]. A film or video camera records the positions of objects at specified mo-
ments of time and translates this information into a two-dimensional image. The
information in an image sequence, therefore, does not contain any explicit infor-
mation about the movement of objects in three-dimensional space. Instead, only
the time-varying intensity of the images as a function of time—the optical flow—is
available. Motion estimation algorithms using Equation 2.1 estimate only optical
flow, and therefore may not determine the “true” motion in a scene. For example,
when a large object of constant intensity moves across the camera’s field of view,
the optical flow near the center of the object is constant because the intensity of
those pixels does not change with time. In this case. no motion will be detected.
Most objects. however. have intensity variations across their surface and in contrast
with background objects. In these cases. optical flow is an accurate measure of
actual motion (within the assumptions of the motion model) for the purposes of

restoration.

For color sequences. motion estimation is usually performed only on the lu-
minance components. in exactly the same way as previously described [19]. More
complex methods have also been proposed which use both luminance and chromi-
nance components for greater accuracy {22]. The work in this thesis considers only
luminance components for speed and simplicity, as most damaged film sequences

were not filmed in color.
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2.1 Estimation Techniques

Many methods have been developed for estimating motion in image sequences. The
following sections describe several categories of estimation techniques and their suit-
ability for a real-time restoration system. Gradient methods use a Taylor series
expansion of the frame difference equation along with a smoothness requirement
to generate a motion estimate for each pixel in a frame. Frequency domain tech-
niques rely on the frequency characteristics of motion to calculate an appropriate
displacement. Finally, the block matching technique compares blocks of pixels at
various offsets to directly determine the displacement with the most similarity be-

tween frames.

2.1.1 Gradient Methods

Gradient based methods for motion estimation calculate a motion displacement for
each pixel in a frame based on the assumption that luminance is constant along
motion trajectories [21]. Under this assumption. the term ¢(7) in Equation 2.1 is
zero. Expanding the remaining term I, (74 ¥,-;(F)) into a first-order Taylor series

gives the following expression [20]:

L) = Lnet (7) + ot (F) - VIt () (2.4)

where V is the two-dimensional gradient function. In order to calculate both the z
and y components of the motion estimate ,—;(7), another equation must be used.
Typically. this is a smoothness constraint which assumes that pixels within a small

N x N block have similar motion vectors. One possible formulation is {3]:

20 = Gv (2.5)
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where zg is a N? entry column vector of frame difference values (I,(7) = In— (7))
for all pixel locations 7 within an V x N block and G is a 2 x N? array of z and
y gradients from frame [,.;. Solving the resulting equations for v yields motion

estimates for each pixel.

The gradient motion estimation technique is accurate only for small motion
displacements because the Taylor series approximation is valid only over small dis-
tances (7]. A number of ways to expand the search region have been proposed,
including pixel-recursive and hierarchical techniques (3], but in general the poten-
tial search area is smaller than for frequency or block-based methods. It is also fairly

susceptible to noise during the gradient calculations.

Computational requirements are low for gradient motion estimation. as com-
pared to other methods in terms of operations per pixel. However. the density of
the vector field presents an implementation problem: as each pixel within a block
potentially has a different displacement, data access will not be predictable or linear
within the frame buffer. The overhead of performing motion compensation (irregular

memory transfers), therefore. will likely offset the lower computational cost.

While gradient estimation is attractive for its computational efficiency, it is
unable to estimate the large motion displacements present in many films. Its sus-
ceptibility to noise is also a major factor when processing damaged motion pictures.
Some experimental results between gradient and block matching algorithms show
significantly better results when using block matching [21, 3]. For all of these rea-
sons. the gradient method is judged to be unsuitable for a restoration application.

More appropriate estimation techniques are discussed in the following sections.
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2.1.2 Frequency Domain Methods

Frequency domain motion estimation uses the frequency characteristics of motion
in order to calculate displacement vectors. One popular method is phase corre-
lation [23], which uses the time (or space) shifting property of the Fourier trans-
form [24}:

z(n - k) <& e X (W) (2.6)

Applyving this property to image sequences. motion resulting in a shift of v; and
vy in the z and y directions. respectively, will cause a phase shift in the frequency
domain relative to the phase for a stationary sequence. By detecting the magnitude
of the phase shift in each dimension, the pixel offset can be determined.

To determine motion offsets. blocks from two successive frames are chosen
and their Fourier transforms are calculated. The magnitude of both spectrums are
normalized to reduce the effects of brightness changes between frames. The phase
from one image is subtracted from the phase of the other for each frequency, then the
inverse Fourier transform is calculated on the difference signal. Peaks will appear in
the resulting image at locations which correspond to possible motion displacements.

The interpretation of the phase peaks is implementation dependent. In the
simplest case. the largest peak is chosen as the dominant motion offset and all pixels
within the block are assigned that estimate. More sophisticated methods [23] will
translate the image block by each possible displacement in turn. calculate the error
between the two frame blocks, and assign the estimate only to those regions with
low error. In this way, complex moving regions can be accurately tracked.

Motion can be very accurately determined through phase correlation. The
computational overhead is fairly high because the Fourier transform must be calcu-

lated for each block and its surrounding search window. then phase difference and
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inverse Fourier transform are calculated. More sophisticated methods require even
more calculation to determine the best estimate for all locations within the block.
Compared with the block matching estimation method, phase correlation requires
more computation for small search windows but eventually is more efficient for larger
windows. For one implementation, with a maximum motion vector displacement of
8 pixels and blocks of size 8 x 8, a simple phase correlation method requires half
the operations as an exhaustive block search [23], although the operations are less
complex for block matching.

Phase correlation is promising for use in a restoration system, but its compu-
tational complexity is too high for real-time estimation using the current system (see
Section 5.1). Reduced search methods make the block matching method more effi-
cient even for very large search windows. Phase correlation is therefore considered

to be impractical for the real-time restoration system.

2.1.3 Block Matching

In the block matching motion estimation technique [19]. the current frame is divided
into equal-sized blocks of size L x L pixels. All pixels within the block are assumed to
belong to the same (possibly moving) object. and therefore a single motion vector
is calculated which applies to all L? pixels!. Each block from the current frame
is compared with a block of equal size in the reference frame, at several locations
within the valid search window V. The offset of the “best” match. determined by the
minimum of some comparison metric d(), is chosen to be the optimal motion vector

for the current block. The search process for a single L x L block is therefore [21]:

a1 (F) = p: mind(In(7), Li—1 (7 + P)) ozl SW.lpy| <W  (27)

'Per-pixel estimates can be made through bilinear interpolation with surrounding blocks [25].
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where I, and I,_; are the current and previous frames, respectively, and 7 is the
position of the block within the frame.

Block comparisons in the reference frame are typically performed within a
square of size L + 2W, with the offset (0,0) corresponding to the location of the

block in the current frame, as shown in Figure 2.1. The total number of possible

Reference Frame Current Frame -
w I o] o v T
; ; 9
I
pe— L — ‘
Le2W |
|
_dx
N i

Figure 2.1: The block search technique.

vectors for a single block is therefore (2I1¥" + 1), with a range from (=W, =) to
(W.W). Depending on the search method used (see Section 2.3). not all offsets may
be searched. It is also possible to determine offsets with sub-pixel accuracy by using
bilinear interpolation between pixel locations in the reference frame {25].

The dimension L of the motion blocks has to be selected as a tradeoff between
vector granularity and noise immunity [25]. Small values of L will divide the image
into many small blocks which should offer a better approximation of the shapes of
moving objects. However, the effects of impulsive noise can cause incorrect mo-
tion estimates. because each single pixel has a relatively higher significance in the
block comparison. Larger block sizes are more immune to noise but provide poor

approximations of moving regions. Values for L of 8 or 16 are most common in
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practice [25].

The block matching technique provides good results for motion estimation,
even at fairly large offsets. It suffers in some circumstances due to the assumption
that motion is purely translational between frames. Another problem is that objects
rarely have edges which correspond exactly with block boundaries, so some blocks
will contain a portion of a moving object and some stationary background. The
motion offset will therefore vary between no motion (if the background is more
significant) to the correct motion estimate, or a random vector in-between. A similar
problem occurs when regions are uncovered or objects move in and out of the frame.

Compared with gradient or frequency domain motion estimation, block match-
ing is neither the fastest nor the most accurate for estimating “real” motion. How-
ever. comparisons based on frame difference and entropy metrics have shown that
block matching provides performance equal to or better than the gradient estima-
tion method in image coding applications {21]. Block matching also has the advan-
tage of requiring only simple operations (addition/subtraction and absolute value)
compared with other estimation methods. For these reasons. block-based motion es-
timation has been chosen to be the most suitable for a real-time restoration system.

The following sections deal exclusively with block matching estimation algorithms.

2.2 Block Comparison Metrics

In order to determine the best vector offset between two blocks, thev have to be
compared and a measure of their similarity at some given offset must be obtained. A
comparison metric is a mathematical norm between two blocks which quantitatively
represents their similarity.

Mean square error (MSE) is a common comparison metric [19]. Assume that
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blocks are of size L x L. The current frame is [, and the reference frame is [,.;.
The MSE is:

1 - -
MSE = 3 _::r:z (In(F) = Inci (F+ Tn1))? (2.8)
where L? is all locations within the block and #,_; is the motion vector for that

block.

The calculation of the MSE requires three operations per pixel—a subtrac-
tion, multiplication, and an addition?. With L? pixels in a block, 3L? operations in
total are required to perform one block comparison. This assumes a multiplication
can be performed as quickly as an addition or subtraction. which may not be the
case in all hardware. For this reason, the mean absolute difference (MAD) [25] is

sometimes used instead of the MSE:

1 -
MAD = 73 3 () = et (F + )| (2.9)

reL2

The MAD also requires 3L? operations. but uses absolute value instead of multipli-
cation and therefore may be faster on some hardware.

Both the MSE and MAD methods require on the order of L? calculations per
block. One technique which requires a reduced number of operations is the Radon
projection {13], which is shown in Figure 2.2. Instead of calculating the difference
between each pair of pixels in the current and reference block. the projection along

each row (r,) and column (¢;) is first calculated for each block:

L—-1 L-1
rn.xzzln(rz+jrry+i) cﬂ~l:Z[ﬂ(TI+i‘ry+j)
=0 1=0

where the upper-left corner of the block is at location 7 in frame I,,. The difference

between the projections is then used to calculate the block difference:

L—1

EP = Z ((rn,z - rn—l.z)2 + (Cn.x - Cn-l.i)z) (2-10)

1=0

>The division by L? can be ignored if all blocks are a constant size.
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Figure 2.2: Calculation of block projections.

The projection method requires 2L? additions to calculate the projections for each
block and 6L operations for the comparisons. The projections for the current block
need only be calculated once for all offsets. For the reference block. all projections
need not be recalculated for each location: only the new column or row (L opera-
tions), and the old rows (or columns) need to be adjusted by subtracting the old
end pixel and adding the new end pixel (2L operations}. The projection method
therefore requires 4L? + 6L operations for the first location. and 9L operations for

each following location.

The projection method has a higher computational cost for the first search
location but much lower computation for the following locations. For a given value
of L. there is a minimum search window size before it requires fewer operations than
the MSE or MAD methods. Its accuracy may also be lower than for the MSE or

MAD case because it only compares pixel sums instead of individual pixels [13].
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2.3 Block Search Algorithms

A variety of techniques can be used to determine the best motion vector within
the search window. The simplest form, exhaustively comparing the current block
with every possible location in the search window, is computationally intensive.
Other methods are available which rely on searching only a subset of locations to
converge on the optimal (or near-optimal) displacement. The following sections de-
scribe several techniques for searching for the best match. This is not a complete
list of possible search algorithms; only the best or significantly different methods
are described here. Some other algorithms not mentioned are field or block decima-

tion {26], adaptive segmentation [21], or one-dimensional (PHODS) search {23, 19].

2.3.1 Exhaustive Search

The exhaustive motion search algorithm {19] compares the block in the current
frame with all possible locations within the search window in the reference frame.
Valid motion vectors are therefore any values within the range of (—W.—-W) to
(W.H1). This technique is guaranteed to find the “best” motion vector. as defined
by the comparison metric and within the assumptions of the motion model {25]. Its
drawback is the number of operations required to compute the motion vectors. With
a maximum search window offset ¥, the total number of locations C to search per

block is®:

C = (2W + 1)2 (2.11)

A block comparison calculation must be performed at each location to determine

the best motion vector.

* Assuming all locations within the search window lic within the reference frame—this assump-
tion is used for the analysis of all motion search algorithms.
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Exhaustive search is useful when the accuracy of motion estimates is more
important than computational cost. However, it is possible to calculate motion
vectors very close or equal to the optimal value by considering only a small subset
of all possible search locations. These faster techniques achieve good results at a
small fraction of the computation required for exhaustive search. Some of these

methods are described in the following sections.

2.3.2 Overlapped Search

Block matching using overlapped blocks [16] is a method to improve the granular-
ity of motion estimates without sacrificing noise immunity. As described in Sec-
tion 2.1.3. small block sizes better approximate the outlines of moving objects but
are susceptible to impulsive noise. which can result in incorrect estimates. Over-
lapping block search uses larger blocks for the comparison operation and assigns
the motion vector to a smaller block of pixels. Unlike the other search methods
described in later sections. the overlap search technique requires more computation
than exhaustive search but can provide better results.

Figure 2.3 illustrates this technique. The current frame is divided into blocks
of L x L pixels, as before. A larger block of size M x M surrounds the smaller
block. An exhaustive block search is performed on these M x M blocks in the
current and reference frames. When the best match is obtained. only the pixels
within the smaller L x L block use this estimate. The larger blocks overlap some of
the same area of the current frame in adjacent blocks. thus the name.

With M = L. the algorithm is identical to exhaustive search. By setting
L < M. the motion estimation process is more immune to noise because of the large

M x M search blocks. At the same time. the granularity of the motion vectors is
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Figure 2.3: Overlapped block search method.

increased because vectors are only assigned to the smaller L x L block.

The number of vector offsets searched for each block is the same as for ex-
haustive. (21¥ + 1)2. However. the comparison metric requires more operations to
perform. since there are M pixels involved in the block comparison for each block
of L? pixels in the frame. The number of operations per L x L block can be adjusted
to reflect this fact by multiplving by a factor? of t’—: The total number of locations

C searched per L x L block is therefore:

M?
2

C = —(2W + 1)2 (2.12)

The computational cost is very high but the results can be significantly better com-
pared to the exhaustive technique. as illustrated by the experimental results in

Section 3.2.1.

1This is accurate for the MSE and MAD methods: Radon projection requires a more complex
scaling factor which is approximately equal to %
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2.3.3 Logarithmic Search

In order to decrease the number of locations checked within the search window,
heuristic approaches can be used which only check a subset of all possible locations to
approximate the optimal vector. One of these methods is the logarithmic search [25],
also called the n-step search {19].

Figure 2.4 shows the search window and the offsets considered for comparison.

In the first step (indicated by “1” in the figure), nine locations surrounding the zero
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Figure 2.4: Logarithmic search method. Best matches are shown as dark circles.

offset are considered. at a distance of 2"~! from the center. where n is the number of
steps used in the algorithm. After the best match of these nine locations has been
determined. the second step (“2" in the figure) considers its eight neighbors at a
distance of 2"2, and again selects the best match. After the final step. which uses
eight neighbors at a distance of one pixel, the best match becomes the final motion
vector.

The size of the search window for a given number of steps nis W =2"—-1_or
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n can be determined for a desired window size by n = log,(W +1) (assuming W +1

is a power of 2). The number of offsets C searched per block is equal to 8n + 1, or:

C =8log,(W+1)+1 (2.13)

This requires much fewer operations than for the exhaustive search.

The logarithmic search method performs well if the block comparison metric
increases monotonically around the optimal offset location {25]. If this is not the
case. the logarithmic search can instead find a local minimum instead of the best
match. For a large search range, the chances of finding a local minima are greater so
the logarithmic search has a limit to its useful search window. [ts performance can be
worse than the exhaustive search due to this minima problem but the computational

cost is significantly lower (e.g. 9 times lower for /" = 7).

2.3.4 Hierarchical Search

Another method for reducing the number of search locations is the hierarchical
search (25. 27]. An additional advantage of this method is that it increases the noise
immunity of the motion estimation process. although it requires more storage for
subsampied frames.

The algorithm uses the original and several subsampled resolutions of the
current and reference frames. as shown in Figure 2.5. The image levels are numbered
from 0 for the original (highest) resolution image. to the lowest level ¥V — 1, each
level being a quarter of the size of the lower level. Motion estimation begins at level
N —1 by dividing the current frame into L x L blocks and performing an exhaustive
search. The next lower level .V — 2 is then divided into L x L blocks. Each block

uses the estimate from the corresponding block in the previous level as a starting
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Figure 2.5: Hierarchical block search method.

point (zero offset) for its search. The best match estimated at level 0 is chosen as
the best vector for that block. In this way. all L x L blocks in the full-resolution

current frame are assigned a motion vector.

A search window w at level n scales to 2w at level 0 (full resolution). Because
of this. very small search windows can be used at each level to search a large effective
area. The search window at full resolution is W = }::\;3‘ 2w = w(2V — 1), where w
is the search window used at each level. The required number of block comparisons
equals the comparisons at full resolution and all other resolutions. Assuming an
exhaustive search within the window w at each level, (2w + 1) comparisons are
needed per block per level. The number of blocks decreases by a factor of 4 at each
level, so the effective number of search locations C per full-resolution L x L block
is:

N-1

1 ;

=0
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4 1 ,
= w+1) (1 - Zﬁ) (2.14)

Instead of an exhaustive search within the small window w at each level,
methods similar to the full-resolution search techniques can be used to reduce the
number of locations searched at each level. One such technique, the adaptive block
matching search [13], selects five offsets around the start location, then searches

at most three locations around the best match, as shown in Figure 2.6. A total

(‘31’3) (09'3) (39'3)

—

P sy
P

—
—
—

(-3.0)

87
.
D
\

(3,0

P

@
(18] —
//<
T

D

-

L L L | | I

(-3.3) (0,3) (3.3)

Figure 2.6: The adaptive block matching search method. Best matches are shown
as dark circles.

of w steps can cover a window of size w. The locations searched per block per
level is 3 + 3(w — 1) in the worse case: the total number of search locations C per

full-resolution block using the reduced search is:

1
€ =3(+3(w-1) (1 - -;;) (2.15)

The hierarchical search algorithm suffers from the same local minima prob-

lems as the logarithmic approach. particularly when using the adaptive block match-



34

ing search at each level. It also has the possibility of estimating incorrect offsets
involving small objects which are eliminated by the subsampling process. Defects,
however, are also reduced in size at lower resolutions so the algorithm is robust to

noise. This method has the lowest computational cost of the algorithms reviewed.

2.4 Image Scaling

The method to create multiple frame resolutions, such as those used by the hierarchi-
cal motion estimation algorithm, deserves special mention. Each level is one-quarter
the size of the previous level (width and height are half the previous level) and is
created by filtering a higher resolution image, then decimating by two in the horizon-
tal and vertical directions. The method for filtering the image should be a lowpass
operation which removes all or most of the energy above one-quarter the sampling
rate. This is necessary so that the decimation operation will not cause aliasing in
the lower-resolution image.
A simple filtering method is four-pixel averaging [28], which is a two-dimensional

FIR filter expressed as the difference equation:
y(i.j) = I(l‘(LJ) +z(t—Llj)+z(e,j - 1) +z(: - 1.5 - 1)) (2.16)

This method is very efficient and requires only 4 operations per low-resolution pixel.
However. it passes a significant amount of frequencies above one-quarter the sam-
pling rate. as shown by its frequency response in Figure 2.7. These frequencies will
be aliased when the image is scaled to a lower resolution.

A Gaussian lowpass filter has been proposed as a better prescaling filter [3].
The filter kernel g(z, 7) is given as:

e

ey

o(i.j) = w(i,j)}exP'(»-)
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Figure 2.7: Frequency response of the averaging (left) and Gaussian (right) scaling
filters.

- = JATR
o 1 if?+j2< R?
w(t.j) =
0 otherwise

4=Y 3 w(i,j)exp‘(ff) (2.17)

al<Rii<i

The size of the filter determines the radius R; for a 9 x 9 filter. R = 4. The variance
o? controls the cutoff of the filter. and for the work in this thesis it is set to 2. As
seen in Figure 2.7, the Gaussian filter eliminates most of the frequencies above one-
quarter the sampling frequency, so less aliasing will occur during scaling. An added
advantage of the Gaussian filter is its circular shape. so motion in all directions is
favored equally [3].

While the Gaussian filter appears to offer better characteristics, it requires
much more computation than the four-pixel averaging filter. For R = 4, 41 mul-

tiplications and 40 adds are required®. compared with only four operations for the

averaging filter.

3 Assuming filter kernel clements with w(z, j) = 0 are not included in the calculation.
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2.5 Acceptance Thresholds

With all motion estimation methods, it is sometimes possible to calculate a false
vector due to the effects of noise or because of the assumptions of the motion model.
Often this occurs because a large area is self-similar, and several offsets can provide
a good match to the current block. This can also occur in the case of hierarchical
motion estimation as similar regions are moved closer together by the scaling process,
resulting in incorrect motion estimates that propagate to higher resolutions [27].

One solution which was proposed to solve this problem is the use of an accep-
tance threshold [20]. The error calculated by a block comparison metric at the best
match location, E'(7,-,), is compared with the error at zero offset, E(0). If the ratio
%‘—)ﬂ is less than some threshold t,, then the estimate is accepted: otherwise, the
motion vector 1s reset to zero. For hierarchical motion estimation. this step would
be performed at each level. Preference is given to zero motion offsets, which reduces
estimation errors at low resolutions.

Another method for reducing errors in the hierarchical motion estimation
algorithm is to use only small search windows at each level so offsets are forced
to lie near zero. Larger full-resolution windows can be searched by increasing the
number of levels rather than the window size at each level. The problem with this
approach is that errors which propagate past the lowest resolutions may not be

recovered using small search windows at higher resolutions.

2.6 Summary

Motion estimation is a crucial step in motion picture restoration because it adjusts

for the effects of motion between frames and aligns objects along the temporal
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axis. Among the possible techniques for performing motion estimation, the most
appropriate for a real-time restoration system is a block matching technique, because
it is capable of measuring large motion displacements efficiently. This is only possible
by using methods to reduce the number of locations; a number of possible algorithms
were described in this chapter.

For the hierarchical search method, frames must be filtered and scaled to
lower resolutions. Some possible filters were described and their frequency response
was compared. While the Gaussian filter offers the best filter characteristics, an
averaging filter requires much less computation. Acceptance thresholds, which can

increase the accuracy of the hierarchical search method, were also described.
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Chapter 3

Detection of Film Defects

One method of concealing damage on a film frame would be to apply a suitable
filtering operation (lowpass is one possibility) to all pixels in the frame. This would
certainly decrease the effects of dirt and scratches, but it would also blur or distort
undamaged portions of the frame. For this reason. it is desirable to first detect
which pixels are likely to be damaged. and then restore only those areas containing
damaged pixels.

While it would be possible to use a two-dimensional processing technique on
each frame to find damage locations [28], this does not make use of the statistical
properties of film damage. Scratch or dirt locations are unlikely to occur in the
same location in consecutive frames. For this reason. it is more efficient to use
information from surrounding frames to detect and conceal damage {15]. Two-
dimensional processing would be accurate only if the algorithm could distinguish
between a blotch location and. for example, a baseball. Because of the wide variety
of damage types and objects, this is unlikely.

The “standard” method for film damage detection {3] uses the motion com-

pensated frames I,_, (previous) and I,., (next), as well as the current frame I,
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to detect defect locations within the current frame. An assumption is made that a
dirt or scratch location within the current frame will not be damaged in the sur-
rounding frames. As long as the motion estimation is accurate, damage locations
in the current frame can be detected by comparisons with surrounding pixels in the
motion compensated previous and next frames. The results can be represented as a
bitmap, or “detection mask”, which flags those locations in the current frame that

are likely damaged.

A detection algorithm requires some threshold which will classify pixels as
either damaged or undamaged. This setting is between two extremes: if it is set
too low. almost all pixels in the current frame will be identified as damaged. If it is
set too high. few or no pixels will be identified as defects. regardless of the actual
amount of damage in the frame. In determining the threshold. a tradeoff must
therefore be made between the allowed number of false detections and the number

of missed detections.

This chapter contains a discussion of several types of detection algorithms
and their computational cost. Spike detection methods, which use heuristics to
determine damage locations. are discussed first. Next. a detector based on rank
ordered differences is described, followed by a morphological detector. More com-
plex detectors based on Markov random fields and autoregressive models are briefly
discussed. but their high computational requirements make them unsuitable for real-
time restoration. Finally, possible techniques for vertical line scratch detection are
given, although the removal of line scratches is bevond the capabilities of the real-
time implementation. The detection accuracy of these methods is evaluated on test

sequences in Section 5.3.
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3.1 Spike Detection Index (SDI)

The idea of a spike detection index (SDI) is based on the idea that a single pixel
location (z,y) on several consecutive undamaged frames should have a relatively
constant intensity, assuming the frames have been compensated for motion. A plot
of intensity at that location as a function of time (or frame index) will be relatively
flat. If a scratch or dirt spot appears in one frame. however, those affected locations

will show a sharp “spike” in the intensity plot, as shown in Figure 3.1. The spike

T
Frame (n-1)

Intensity

'
|
at (x.y) i

Frame Number (n)

Figure 3.1: The spike detection technique for damage detection.

may be positive or negative. depending on whether the damage intensity is light
(scratch) or dark (dirt).

The first to use spike detection for defect detection was Storey [11], although
be did not use the name SDI. His detector did not make use of motion compensation
because of the large amount of computation required. Among other heuristics for

determining defect locations was the following formula. which uses the name SDIp
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proposed in {3]:

e = In(F) — Lua(P), er = In(F) = Insa (7)
Dsory(7) = 1 if (Jes] > e:) and (|ef| > e.) and (sign(e;) = sign(ey)) 3.1)
0 otherwise
The equation has been extended to use motion compensation by the use of the
frames [,_, and I,,;. In its original form, I,_; and I+, were used instead, and the
detector performance suffered when applied to scenes with significant motion.

Another detector to use the spike detection index was presented in [29], which

used the following formula:

€ = iIn ﬂ n+[ ﬂl €2 = IIn(‘F‘) - in-l(ﬂl
1 —j&==2! if(e; >t;)or (e >t
SDI(A = e (e1 > ;) or (e2 > t;) (3.9)
0 otherwise

The resuiting SDI(F) is a value between 0 and 1. A detection threshold ¢, can be
applied so that a pixel is flagged as a defect (Dsp;(7) = 1) if SDI(7) > t,, and
undamaged otherwise (Dsp () = 0). The other threshold ¢; is selected so as to
avoid problems when e; and ey are close to zero.

The SDI performs well in situations where motion estimates are accurate,
but it is very sensitive to situations where objects are covered or uncovered due to
motion. To make the detector more robust to incorrect motion vectors. the modified

spike detection index (SDIa) was proposed [20]:

e = () = Lot ()], er = In(7) = Lnst(P)]
1 if (e, > e) and (ef > e
Dspra = o> e and (e > e (3.3)
0 otherwise

This detector is basically identical to the SDIp detector in Equation 3.1 without the

constraint that the frame differences be the same sign.
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It would be expected that both the forward difference e; and the backward
difference e, would have the same sign for a genuine defect, assuming compensation
for motion. In practice, however, this is not always the case. If a large defect
in the current frame covers most of the motion block, the vector estimated by
block matching will be essentially random because the best match for the defect
will be found, not the obscured image data. The estimates in the forward and
backward directions will not necessarily be the same. Thus, when the spike detection
operation is performed, there may be large differences between the blotch pixels and
the previous or next frame data. but these will not necessarily have the same sign.
The SDIp detector, therefore. will miss these cases but the SDIa will detect some
of them. In other situations with motion estimation errors, the SDIp may be more

accurate. Comparisons are shown in Section 3.3.

The computational costs of these detectors are compared assuming any simple
arithmetic or logical operator. comparison, or absolute value each counts as a single
operation. The cost of accessing pixel values (i.e. reading the value from the frame
buffer memory) is ignored. For the SDIp detector. the frame difference and absolute
value must be calculated in both directions (4 operations), and the comparisons and
logical operators require an additional 5 operations for a total of 9 operations per
pixel in the worst case. where every conditional needs to be evaluated. The SDI
requires 13 operations per pixel in the worst case. where e, or e, are greater than

t, and each pixel is a defect. SDIa requires only T operations per pixel.

In spite of their simplicity, the heuristic spike detection index methods per-
form very well. are fairly robust to noise. and require very few operations to per-
form {20]. Their accuracy is limited by their purely temporal nature: using more

pixels in the previous and next frames can improve performance, as seen in the next
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section.

3.2 Rank-Ordered Difference (ROD)

The rank-ordered difference (ROD) detector attempts to improve on the perfor-
mance of the spike detection methods by using more pixels in the previous and next
frames in order to better characterize and identify defect locations. As described
in {30}, ROD uses three pixels in each of the previous and next frames, the loca-

tions of which are shown in Figure 3.2. The pixel values are represented by an

ni - Next Frame n+l
. X (n+l) I L p4
,iy - Current Frame n
(4 :

WX

% . 4 -1 . pS
: Previous Frame — : ; n-1_ J‘
. — | Ll x| | p6
' —{ j i i o :
| - — p2 |
| i
5 — p3 |

Figure 3.2: Pixel support for the rank ordered difference (ROD) detector.

array p;(7),i = 1..6 as follows. where 7,_; and Ty+1 are shorthand for the vectors

(rz;ry — 1) and (rp. 7y +1):

pi(7) = [Lamr (Fyet): Tt (s Tt Py ), Fnt(Fym)s Bt (), et (Fyer)] (34)

The values of p;(7) are sorted to form the vector g;(7), and the mean is calculated

as
q3(7) + qa(T)
9

m(F) = (3.3)
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Finally, the rank-ordered differences d;(7),¢ = 1..3 are calculated as:

4,(F) = Gi(F) = In(F)  if In(F) < m(F) (3.6)
In(7) = qr-i(7) if [n(F) > m(7)
Three thresholds T;, T5, and T3 are used, with T} < T, < T3. If di(F) > T; for
at least one T;, the pixel is marked as a defect. The main threshold is T}, which
controls the compromise between false and missed defects. The parameters T, and
T; have less impact on the detection performance.

In calculating the number of operations to perform the ROD algorithm, the
creation of ¢;(7) is assumed to use a simple sorting algorithm such as selection
sort [31], which requires C} operations. In this case. with six pixels. C3 = 15
operations. Calculating m(7) requires two operations, another four operations to
determine d;(7) (one comparison. three subtractions), and five more operations for
threshold comparisons for a total of 26 operations per pixel in the worse case.

The ROD detector can offer better performance than spike detection due to
its use of more support pixels [3. 30]. It requires more operations to compute. but

it is still very efficient.

3.3 Morphological Detectors

A detector is presented in [13] which uses morphological operators within the current
frame to identify regions which match the characteristics of film damage—small
regions of relatively constant intensity, close to black or white, with sharp edges.
The standard morphological operators. extended to greyscale images, are defined

as:

Dilation: [(f) @ B = L(F+5) : max(I.(F+5) — B()) (3.7)
p
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Erosion: [,(F)© B=IL(F+p): géig([,,(f’%-ﬁ) + B(p)) (3.8)

where B is a structuring element defined below. Morphological processing is done
using only the current frame I,,. Dilation followed by erosion (“closing”) effectively
eliminates small dark regions, which are local minima. Therefore, the difference
between the closed image and the original should have peaks at locations which are
covered by dirt. In a similar way, erosion followed by dilation ( “opening”) eliminates
bright regions.

The structuring element B must be chosen to accurately detect defect loca-
tions while not being fooled by ambiguous regions. The authors in [13] decided on
a combination of two structuring elements: By, which was a 5 x 5 matrix of zeros,

and B, also 5 x 3, which had the following form:

F2n 2n 2n 2n 2n

L 2n 2n 2n 2n 2n
where n was selected to match image and damage characteristics. The combination
detects both small and larger defects. The detection of dirt and scratches is therefore

performed by the formulas:

FBy(7) = (((([n(7) ® By) ® Bn) S Bn) & By) — In(7) (3.9)

Pu(t) = L(7)— (((I.(F) & Bo) & Ba) ® Ba) © By) (3.10)
if m w m

Do) = 1 if Py(7) > ty or Py(F) > t (3.11)

0 otherwise
P, detects dark regions. and P, detects light regions. If either exceeds the threshold

tm. the location is marked as a defect.
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As a final improvement to accuracy, the morphological detector is combined
with an inter-frame detector which behaves identically to SDIa. If a location is
marked as a defect by both the intra-frame algorithm and the SDIa detector, it is
accepted as a damage location.

The structuring elements By and B, are regular and symmetric, and this fact
can be used to reduce the number of computations required to perform erosion or
dilation across an image [13]. When the structuring element is applied to a new
pixel, the maximum/minimum calculations only have to be applied to the newly
covered pixels. Using this optimization. computation of an erosion or dilation by B,
is reduced to 4 operations per pixel. and 21 operations per pixel for B,, according to
:13]. The calculation of P, or P,, therefore takes a total of 51 operations. Calculating
Dy, requires 3 operations. and SDIa requires an additional 7 operations. for a total
of 112 operations per pixel. This is significantly higher than both the spike detection
methods and the ROD detector and beyvond the abilities of the real-time restoration
svstem. although the simplicity of its operations makes this method attractive for a

custom hardware implementation.

3.4 Markov Random Fields (MRF)

The principle behind using Markov random fields for defect detection is to model
the dirt and scratches as a separate frame. which lies between the previous (or next)
and the current frame. By defining an appropriate “neighborhood”. the algorithm
can be made to favor connected defect regions. A complete discussion is given in [9];
the following description is only a brief overview, because the high computational
cost makes it unsuitable for a real-time implementation.

Let the optimal defect detection frame be called D, where D(7) = 1 for a
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defect and 0 otherwise. The probability that a certain defect frame d is optimal can

be expressed as the following a posterior: distribution [20]:

-1

P(D =d) =iexp( =

Z Y a1 = d(@) Il = ot ())?

Fes

= BL(d() + B8(1 - d() ) (3.12)

The parameters a. 3, and 3 control the clustering of defect regions, and Z nor-
malizes the distribution. The parameter T is used as a parameter for an annealing
process. f(d(7)) is equal to the number of neighbors surrounding location 7 with
the same value as d(); valid neighbors are defined for some small square or circular

region [20].

A simulated annealing process is applied to Equation 3.12 until it converges
to a detection frame D. This technique is applied to the previous and current frame,
then to the current and next frame. Locations which are marked as defects in both

cases are accepted as being damaged.

The computational cost of the MRF detector is reported as 230 operations
per pixel [20], assuming five iterations of the annealing process. Despite this large
processing requirement. the performance of the MRF detector is almost identical
to SDIa. The only case where MRF offers a significant improvement is in the
detection of damage locations with poor contrast with the surrounding area, because
of its connectivity characteristics [9]. In practice, however. these types of defects
are uncommon and not very noticeable. The MRF method. in general, has no
advantages over the spike detection algorithms despite its high computational cost,

and it is therefore not considered further.
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3.5 Autoregressive Models (AR)

A three-dimensional autoregressive model has been successfully applied to the blotch
detection problem. Its high computational requirements and poor performance make
it unsuitable for a real-time restoration system so only a brief overview is given here;
a full discussion is given in [7].

The AR method creates a predicted image P,(7) using a weighted sum of
pixels from a support region in the previous, current. and next frames [20]:

N

P.(F) = Z:l @il gt (Tz + Gz (k). 7y + qy(K)) (3.13)
The support region. of size .V, is defined by a vector (k) = (gz(k). gy(k), gn(k), k =
1...V) which represents the locations of support pixels in the current and surrounding
frames. A least-squared estimation technique [32] is used to minimize the error
¢ = P, — I, by selecting the appropriate values ai for the filter coefficients. An
alternate technique is to create a forward prediction image P,,; and a backward
prediction image P,_, using a separate adaptation process for each [20].

The predicted image P, is compared with the current image, and any dif-
ferences larger than a threshold are assumed to be defects. When two prediction
images (P, and P,_;) are used, an error is detected when the threshold is exceeded
for both. The number of model coefficients depends on how much support is desired
in the current and reference frame: typically, using support only in the reference
frame gives superior performance. because damaged pixel locations will usually be
surrounded by other damage in the same frame [7].

The autoregressive model coefficients a, must be estimated from the image
sequence. In damaged sequences. the effects of dirt and scratches can bias this

estimation process significantly, and therefore the detection accuracy decreases. As
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shown in [20], the AR detector provides excellent results when the coefficients can
be estimated from an undamaged version of the sequence to be restored (obviously
impossible in a practical situation). When estimating coefficients from a damaged
sequence, the detector performs badly—it essentially learns to reconstruct damage
instead of the original image.

As reported in [20], the computational cost for the AR detector is 140 op-
erations per pixel, assuming 8 x 8 pixel blocks and a support region of nine pixels
in each reference frame. The performance of the algorithm is poor [20], especially
when considering its large computational requirements. It is therefore unsuitable

for a real-time restoration system.

3.6 Line Scratch Detection

Line scratches occur in frames when the film is abraded by particles of dust in the
projector or telecine. They appear as (almost) vertical lines in the same location over
several frames. As such. the algorithms used to detect random dirt and scratches
will fail to detect most line scratches because thev are not temporally local to a
single frame. Various algorithms have been developed to deal specifically with line
scratch detection (3, 9].

Since line scratches occur in almost the same location in adjacent frames, tem-
poral information is unreliable for detection. Instead. two-dimensional algorithms
are used which attempt to find locations resembling a line scratch. In the horizon-
tal direction. the intensity across a scratch appears as an impulse surrounded by
sidelobes of opposite intensity, similar to a damped sinusoid [3]. Detection methods
therefore attempt to find locations which match this profile. Subsampling the image

vertically improves detection by isolating only those vertical lines which cover the



entire height of the frame.

A detailed description of the methods employed to detect and remove line
scratches is beyond the scope of this thesis, so only a basic overview is given here.
A reversible-jump Markov chain statistical approach provides good results [9], as
does a method based on the Hough transform (28, 3]. Removing the scratches can

be done with a spatial filtering operation [3].

3.7 Summary

In this chapter, several methods for detecting random damage within motion picture
films were discussed. The spike detection methods are computationally efficient and
reasonably accurate. and the rank ordered difference detector improves detection
accuracy at a slightly higher computational cost. A morphological detector com-
bined with a spike detector has the potential to improve detection accuracy by using
more spatial information. but its computational requirements are too high for real-
time restoration on the current system. Detectors based on Markov random fields
and autoregressive models are also too complex for real-time restoration. A brief
discussion of possible methods for removing vertical line scratches was also given.
Line scratches are not classified as random damage and removing them is beyond

the scope of this work.



Chapter 4

Concealment of Film Damage

The final step in the motion picture restoration process is to conceal the damaged
film locations (as marked by the detector). Damaged pixels must be reconstructed
by using information from surrounding pixels, possibly within the current frame
and/or in the previous and next motion compensated frames.

Some attempts have been made at global filtering operations. which are ap-
plied to the entire image frame without first detecting damage locations [33, 28,
7. 17]. While these methods can provide good results. they depend heavily on the
quality of the motion estimation. When motion estimates are incorrect, unrelated
image pixels (from surrounding frames) can be used in the filtering operation, re-
sulting in incorrect restoration and visible artifacts. If the damage detection phase
can be done quickly and efficiently, it is worthwhile to perform.

In the following sections, several methods for reconstructing damaged image
pixels are described. All are intended to be applied only at those locations marked
as damaged by the detector. and therefore undamaged regions are unaffected. The

previous and next frames are assumed to have been compensated for motion. Simple

averaging and median filters are described first. followed by more complex methods
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based on Markov random fields and autoregressive models. The more complex

techniques require far too much computation to be performed in real-time and are

therefore unsuitable for the current restoration system.

4.1 Averaging Filters

A simple averaging approach can be used to reconstruct damage locations [28]. The
surrounding pixels in the current and/or surrounding frames are averaged to provide
an estimate of the original pixel intensity at the defect location. This assumes that
motion compensated frames have high temporal correlation, and that intensity varies
gradually within the support region in a single frame. Within these constraints, the
average is a good approximation of the original pixel value.

The use of a support region for the averaging operation uses the notation
a:b:c, which indicates a support pixels in the previous frame. b in the current, and ¢

in the next frame [15]. Several possible support regions are shown in Figure 4.1. The

Frame (n) D

Frame (n-1) s

1:0:1 Support 9:0:9 Sapport 9:8:9 Support

Figure 4.1: Example support regions for the averaging filter.

pixel to be restored is indicated by an “X”. and all shaded pixels are averaged to

provide the reconstructed intensity value. For instance. the 1:0:1 averaging operation



calculates the interpolated pixel value I, (7) as:

o

(™) = 5 (Iacs () + fna (7)) (4.1)

Larger support regions include more pixels from the surrounding area (spatially and
temporally) with the intention that more pixels will provide a better approximation
for the damage location. Note that Equation 4.1 uses only the unrestored frame
data—essentially a three-dimensional FIR filter.

In the simplest case, all pixels from the support region are used when cal-
culating the average. However, when frames are processed in sequence the damage
locations for the previous and current frames have already been identified. These
defects will introduce errors in the averaging operation. A more sophisticated ap-
proach is to only use undamaged pixels within the support region when calculating
the average.

The averaging operation is very efficient to calculate, requiring @ + b + ¢
calculations for an a:b:c support region. This calculation gives 2 operations per
damaged pixel for 1:0:1 support. 18 for 9:0:9, and 26 for 9:8:9. The computation
increases by a factor of two if only undamaged pixels are used, since the detection
mask has to be checked for each pixel in the support region.

Averaging performs well in areas of constant or slowly varving intensity, but
larger support regions can blur the reconstructed region in highly textured areas.
Using an averaging operation with less support, such as 1:0:1, eliminates this prob-
lem but is more susceptible to motion estimation errors. Support regions larger than
9 x 9 pixels generally lead to worse results for more computation, since there is a
greater chance that the image is not smooth within that region.

The averaging operation. as viewed as a three-dimensional FIR filter. assigns

equal weights to all pixels in the support region. If only undamaged pixels are used.
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weights of zero are assigned to damaged pixel locations. Interpolation quality could
possibly improve by assigning varying weights to support pixels. This process is
used by the autoregressive concealment method described in Section 4.4, and so is

not examined here.

4.2 Median Filters

When dealing with image sequences containing impulsive noise. a common practice
is to use a median filtering operation {28]. Of all the pixels in the support region.
the median is calculated and substituted for the damaged pixel location. Where the
averaging filter will blur textured regions, the median filter can reconstruct some
approximation of the underlying pattern due to its nonlinear nature (3.

The same notation as for the averaging filter is used for support regions—
a:b:c indicating the number of pixels supported in the previous. current, and next
frames. However, the damaged pixel is usually included in the median calculation,
since if it is significantly different than the surrounding pixels it will not be chosen
as the median. and therefore be ignored. In this way the median operation is more
tolerant to false detections: a location marked as damaged may retain its original
value if it is not extreme compared to other pixels in the support region.

Some possible configurations for support regions are shown in Figure 4.2,
which are similar to those used in the averaging operation, except the center (dam-
aged) location is included. With larger support regions. the median filter is better
able to determine the “most common” pixel intensity. However, if by chance sev-
eral pixels in the support region (current or surrounding frames) are also damaged,
the output of the median filter may be inaccurate. The strategy mentioned in the

previous section. where only undamaged pixels within the support region are used,
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Figure 4.2: Example support regions for the median filter.

can also be applied to the median operation. It is less important, however, since
damaged pixel values will likely be outliers cornpared with valid pixels, and will not
be selected as the median.

An improved. multilevel median filter (ML3Dex), which is better able to
reconstruct pixels when the surrounding area is damaged (all pixels in the support

region are used, regardless of damage), is presented in {7]. It uses five different

Framc (n+1) it Rt
AT e

Figure 4.3: Masks for the ML3Dex multilevel median filter.
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support regions (shown in Figure 4.3) per damage location, and calculates the final

output as:

z = median(W;),i=1..3

I.(F) = median(z),i=1..5 (4.2)

That is, the median for each region is calculated, then the median of these is de-
termined to be the reconstructed pixel value. By using several support regions in
different configurations, the filter can adapt to situations in which several pixels in
the current or surrounding frames are damaged. This is due to the fact that the
regions place different weights (i.e. more or less pixels are considered) in the current

and surrounding frames in each configuration.

The computational cost of the median operations can be calculated by as-
suming that the median of m values is calculated using a C3* operation sorting
algorithm, such as selection sort [31]. For the single region median filters in Fig-
ure 4.2, m = a+ b+ c. which gives 3 operations per damaged pixei for 1:1:1 support,
171 for 9:1:9. and 351 for 9:9:9. The ML3Dex filter requires a total of 165 operations

per damaged pixel to calculate the median of all masks and the final result.

Because of their nonlinear nature, median filters are able to reconstruct an
approximation of textured regions without blurring. However, in some regions me-
dian filtering can cause artifacts due to the fact that it “rearranges” pixels from
the surrounding area in reconstructing defect locations {15]. This is most evident in
areas of fine detail. such as text. Using a median filter with purely temporal sup-
port. such as 1:1:1. can decrease these effects at the cost of being more susceptible

to noise.



4.3 Markov Random Fields (MRF)

The Markov random field interpolator uses the same principles as the MRF detector
described in Section 3.4, but in this case it attempts to reconstruct the original
frame instead of a damage mask. It requires a large amount of computation [15]
and therefore is unsuitable for real-time restoration. A brief overview is given here;

complete details are in [9].

The MRF method determines the probability that a possible frame i, matches
the optimal reconstructed frame I, and refines the estimate for i, accordingly. An

expression for this probability is [13]

p(I" = ln) = ‘le-exp (—_1 Z [Z (ln(ﬂ - irx(F+ 5‘.))2

T Fd(F)=1 | JeN
+ A Z (in(ﬂ - in+sn(ﬂ)2:|) (43)
€T

The detected damage locations are represented by d. where d(7) is equal to 1 if
location 7 is damaged and 0 otherwise. A" and T represent the spatial and temporal
neighborhoods, respectively, for the MRF model. A is the temporal weighting factor
and Z; normalizes the distribution. Convergence of i, is reached by an annealing

process using the parameter 7.

The MRF interpolator effectively conceals damage and typically outperforms
the averaging or median filtering methods [9], but its computational requirements
are prohibitively high—about 22000 operations per damaged pixel {15]. This method

was not therefore not considered for a real-time implementation.



4.4 Autoregressive Models (AR)

Like the autoregressive detector described in Section 3.5, the autoregressive interpo-
lator adapts filter coefficients so as to predict the reconstructed image over a small

area. The expression for predicting the reconstructed image is given as [15]:

N -
L(7) = Y akdnsguin Tz + g2 (k), 7y + gy (K)) + €(7) (4.4)
k=t

As for the AR detector, the vector ¢(k) lies in the support region N in the current
and surrounding frames. The error ¢ represents the difference between the predicted
frame and the actual frame [,.

In order to reconstruct the image data at damaged locations, the filter coef-
ficients a; must be predicted. A small area in the surrounding frames (presumably
undamaged) is chosen to adapt the coefficients. They are then applied on the current
frame to reconstruct damaged areas.

The AR interpolator gives excellent performance on damaged sequences [16.
7]. However. its computational cost is approximately 20000 operations per damaged
pixel under typical conditions {15]. This is far too high to consider for real-time

implementation.

4.5 The JOMBADI Algorithm

The JOMBADI (JOint Model BAsed Detection and Interpolation) algorithm is a
recent development in motion picture restoration {3]. It is not strictly an interpo-
lator. because it combines damage detection and concealment in one step. It also
implicitly refines motion estimates for optimal reconstruction.

Basically, JOMBADI requires an initial motion field and detection mask and

these can be created by any simpler methods. It then randomly adjusts motion
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vectors for some blocks and calculates a prediction for the reconstructed frame
by creating a statistical model of the image data. This process continues until
the results converge to some criterion (prediction error or maximum number of
iterations). Full details of the method are given in [3].

Computational requirements for JOMBADI are much larger than for any of
the other methods, even considering that it performs all restoration steps simultane-
ously. Because of its excellent restoration quality, it represents the best restoration
algorithm currently available. Unfortunately, its high computational cost makes it
unsuitable for real-time execution and therefore it cannot be used for this work.

[t is interesting to note that while the JOMBADI algorithm detects damage
much more accurately than other methods, the difference between their interpolated
output is much less significant [3]. This suggests that an appropriate concealment
method can compensate for detection errors, which is also supported by the results

of Section 5.4.

4.6 Summary

In this chapter. various algorithms for concealment of film damage have been pre-
sented. The simplest are the averaging and median filters. which can be adjusted in
terms of quality and computational cost by setting the size of their support region.
More advanced methods based on Markov random fields and autoregressive models
provide better restoration quality but at a much higher computational cost. Finally,

the JOMBADI algorithm provides the best results at the highest complexity.
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Chapter 5

Software Design of the

Restoration System

In the preceding chapters, various algorithms for motion estimation. damage de-
tection. and concealment have been described. In order to create a real-time, au-
tomatic restoration system, the algorithms that offer acceptable performance and
computational efficiency must be chosen. This section describes the selection of the
algorithms most appropriate for real-time implementation on the test architecture,
a Precision MX TMS320C80 digital signal processing card.

All algorithms were first implemented in simulations which allowed easy se-
lection of the many possible algorithms and parameters. Digitized test sequences
WESTERN and MOBCAL (see Section 1.4) containing artificial damage were used
as input to the restoration algorithms. The results were analyzed through a series
of test sets which calculated accuracy of detection and other performance metrics
using the restored output and the original undamaged sequences. New algorithms
could be quickly implemented and evaluated for accuracy with this system. and the

most promising were rewritten and optimized for the MX.
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The discussion in this chapter starts with a description of the real-time imple-
mentation platform, the Precision MX, and a description of the TMS320C80 digital
signal processor. Understanding the capabilities of this system is critical to selecting
an algorithm which uses computing power and memory bandwidth efficiently for a
real-time restoration implementation. The following sections contain descriptions
of the comparisons performed between various algorithms for motion estimation,
defect detection, and damage concealment. All algorithms were evaluated using
simulations: the real-time implementation of the best algorithms is described in the

next chapter.

5.1 Implementation Platform

The platform selected for implementation of the real-time restoration system was
the Precision MX. a digital signal processing (DSP) card from Precision Digital
Images Corporation [34]. It includes a 40 MHz Texas Instruments TMS320C80
digital signal processor {33], local on-card memory, and video capture and display

hardware. as shown in Figure 5.1. The card fits in a personal computer (PC) PCI

— Video Capture e~ NTSC/PAL
Video Input

— 4MB VRAM

i 32MB DRAM l
— VGA Display ——# VGA Output
i PCI Bus
Host PC ?4——» TMSSSZgCSO Audio Codec —~-—d Audio /O

Figure 5.1: Components of the Precision MX DSP card.
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bus slot and can send and receive data between on-card components and the host
PC. It is capable of capturing video, processing the frame data, and displaying the
processed frames in real-time. Video input is NTSC or PAL format video, and the

output is a VGA signal which can be displayed on a computer monitor.

The MX was chosen for this application because it provides a flexible and
powerful platform for a software-based restoration system. The TMS320C80 is
optimized for video and graphics processing on small data units (8 or 16 bits).
Creating custom hardware for this project would have been possible and likely would
have superior performance, but would be difficult to modify to implement various
algorithms. The Precision MX offers an excellent compromise between the speed of
custom hardware, through the use of a video-optimized DSP. and the flexibility of

a completely software implementation.

5.1.1 TMS320C80

The core of the MX card is the Texas Instruments TMS320C80 digital signal proces-
sor [33] (hereafter referred to as the C80). It is optimized specifically for the types
of operations used in image and video processing. On a single chip (see Figure 5.2),
the C80 includes five separate processors: a master processor (MP) and four parallel
processors (PP), as well as internal memory, a transfer controller (TC) to move data
to and from internal memory, and a video controller (VC) which generates timing
for video capture and display. Components are connected with each other through

an internal crossbar switch network.
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Figure 5.2: TMS320C80 internal layout.
5.1.1.1 Master Processor (MP)

The master processor (MP) is responsible for controlling all of the other parts of the
C80 [36]. It is a fairly standard RISC processor. including floating-point arithmetic
and bit-manipulation hardware. The MP uses both an instruction and data cache.

In a typical application. the MP would receive data (through the transfer
controller) from the capture hardware or the PC and perform some preprocessing,
then distribute the remainder of the work to the parallel processors. The PPs would
signal when their work was complete. and the MP would recombine the data. For
example. in a video decompression application, the MP would receive the compressed
bitstream. decode the Huffman-encoded data, and pass the macroblocks to the PPs
for processing.

The MP is intended mostly for high-level tasks. and not intensive calculation.

The PP design is far better suited for the majority of video processing operations.

5.1.1.2 Parallel Processors (PP)

The parallel processors (PP) are responsible for the majority of computation in the
C80 {37]. There are four independent PPs. each using its own instructions and data.

Unlike the MP. they are optimized for fast integer operations, and do not include
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floating-point hardware. They do, however, include facilities for zero-overhead loops
and multiple instructions per cycle.

Within a single clock cycle, a PP is capable of concurrently executing a
multiply, arithmetic/logical instruction, and two (on-chip) memory accesses. This
is in specific special cases; depending on the registers or types of instructions used,
fewer concurrent operations may be performed. Using concurrent execution, a PP
can process data, store data from the previous operation, and load data for the next
operation all in the same clock cycle.

The PP can also perform multiple arithmetic by splitting its 32-bit registers
into two 16-bit words or four 8-bit bytes. When two registers are added (for exam-
ple), each pair of words or bytes are added independently and set separate result
flags (for overflow, zero, etc.). Multiple arithmetic can be performed for addition.
subtraction, multiplication, boolean. and comparison operations. In this way, small
data units (such as one-byte pixels) can be processed very quickly in parallel.

Hardware is included in the PP for zero-overhead ioops, where the start
and end addresses and the initial loop count are loaded into the loop hardware.
and the correct number of loop iterations occur without the need for explicit loop
instructions. Most operations can be made conditional depending on flag status, so
conditional loads and ALU operations are possible without the need for if/then loop
structures. Using loop hardware and conditional instructions eliminates the need

for most branches.

5.1.1.3 Transfer Controller (TC)

The transfer controller (TC) is responsible for moving data between external and

on-chip memory [38]. It is automatically initiated to perform cache loads for the
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MP and PP, or transfer data for the video controller. While it can service single
requests for external data, it is much more efficient to use “packet transfers” for this
purpose. All memory transfers, internally and externally, are 64 bits in size.

A packet transfer can be initiated by the MP or PP to move memory between
two locations (internal or external memory). The parameters of the transfer are
stored on-chip in a “packet” structure, which contains the length and format of
the source and destination, and other parameters relating to how the transfer is to
take place. Three-dimensional data can be transferred using an “A” length, a “B”
length and pitch. and a “C” length and pitch which may be different for source and
destination: “A”. “B”. and “C” correspond to z, y, and z when dealing with 3D
data. By making the source and destination lengths and pitches different, data can
be rearranged as it is moved. Packet transfers have a priority selected when they

are first issued. which determines the transfers that execute first.

5.1.1.4 Local Memory and Crossbar

The C80 contains 8 kilobytes of on-chip memoryv for each PP. divided into three
independent 2 kilobyte banks and a 2 kilobyte instruction cache {35]. The MP uses
4 kilobytes each for instruction and data cache. PP instruction caches are divided
into four 512 byte blocks. each of which hold 64 PP instructions. Each block holds
contiguous data from a 312 byte aligned address. It is desirable to group PP code
into 64 Instruction units to utilize the cache most efficiently. When instructions or
data are requested that do not lie in the on-chip cache, the PP or MP stalls until
the TC can load the desired information from external memory. first writing back

any changed cache data.

An internal 64-bit crossbar switching network routes data from any unit (PP,
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MP, TC, etc.) to any memory bank. If two units wish to access the same memory
bank in the same cycle, the lower priority unit must wait for the higher priority unit
to finish. It is therefore important to divide on-chip memory among units to avoid
contention. For example, the PP should process data in one memory bank while
the TC fills another bank, otherwise the two units will compete for access and slow

execution.

5.1.2 MX Support Hardware

The MX includes hardware to capture and display video data. Input is in the form
of an NTSC or PAL video signal. at a maximum resolution of 640 x 480 pixels, 30
frames per second (for NTSC) [34]. Pixels are digitized as 8-bit greyscale, 16-bit
YUV color. or 24-bit RGB color. Display is in the form of a VGA video signal, at a
maximum resolution of 1600 x 1200 pixels at 60 frames per second. Display pixels
can be in 8-bit greyscale or pseudo-color format. 16-bit color. or 24-bit RGB color.

The capture hardware is configured with the required resolution and color
depth, and stores digitized lines of video into a FIFO buffer. At the end of each
line. an interrupt signals the C80 that the buffer must be read into external memory.

Frames to be displayed must be stored in video ram (VRAM) so theyv can be
transferred to the display hardware. The C80 video controller (VC) is programmed
to provide the timing for the display and the video DAC {39].

The MX resides in a PCI slot in the host PC. Through the PCI bus, the PC
is able to send code to the MX and control its execution by sending commands and
data. The MX contains a PCI interface buffer which it uses to communicate with

the host PC.

Audio capture and playback functions are supported by the MX to play and
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record stereo 16-bit audio. A bidirectional FIFO provides the interface between the
C80 and the audio codec chip. The restoration software does not make use of the

audio capabilities of the MX.

5.2 Motion Estimation

As stated in Chapter 2, motion estimation is a critical factor in the performance
of a restoration system. The estimation process should be accurate and robust to
noise, since the input sequences contain significant damage in the form of dirt and
scratches. Various methods for motion estimation were compared on the basis of
their performance and suitability for real-time implementation on the C80.

The block matching method was chosen over the gradient or phase correla-
tion methods because of its simplicity and large search area. The gradient method
may require fewer operations, but the maximum estimation range is too small to be
useful in video sequences. Phase correlation requires a large amount of computation.
Another advantage for block matching is that it uses only integer operations, and it
can efficiently take advantage of the C80 parallel processor multiple arithmetic in-
structions. Block matching was therefore chosen as the preferred motion estimation
method without a quantitative comparison: the other methods are simply infeasible
for real-time implementation so they were ignored.

There are many variations of the block matching estimation method, includ-
ing ways for reducing the search space, comparison metrics, and block size [23].
The following sections compare several alternatives on the basis of performance and
computational cost, by processing the WESTERN and MOBCAL sequences. These
sequences are both artificially damaged. and contain various types of motion and

frame information—WESTERN is perhaps more like a tvpical damaged film, while
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MOBCAL contains complex objects and motion to test the robustness of the algo-
rithms. Methods which performed well on both sequences were assumed to work

well on most damaged films.

Most comparisons in the following sections show that the relative perfor-
mance of several techniques were similar, but there was a larger difference in terms
of computational cost. While other sequences may cause small relative differences
in performance, the computational cost remains constant. The algorithms selected,
therefore, were not necessarily those that offered the maximum performance, but
those which had a high performance to computation ratio. Furthermore, when the
algorithms were applied to actual degraded sequences (Section 6.3.1), the results
were of the same scale as shown by the measurements in this section. The relative
performance between the two test sequences was also different: in general, the al-
gorithms performed better on WESTERN because it contains simpler objects and
motion. but the relative performance of the algorithms on a single sequence was

consistent.

Performance Metrics

There are several possible methods to compare the performance of motion estimation
methods. Popular techniques are to use the entropy of the prediction errors [26] or
the error between the original and predicted frames [21|. For applications in motion
picture restoration. these techniques are inappropriate—the sequence used for esti-
mation is damaged, so the optimal motion estimate will not necessarily correspond

to the match which provides the lowest error.

Several metrics were tried for motion estimation comparisons. using the fact

that the WESTERN and MOBCAL sequences contain synthetic damage and the
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original undamaged sequences were available. One possibility was to perform motion
estimation on the undamaged sequence and compare the difference between these
vectors and those estimated from the damaged sequence. Another possibility was
to perform motion estimation on the damaged sequence and use those estimates to
determine error in the undamaged sequence. In practice, both of these methods
showed little correlation between their relative performance and the performance of
the actual restoration process (detection and concealment accuracy).

The reason why these metrics failed is they did take into account the fact
that the restoration process actually uses a nonlinear combination of three frames.
A combined error of the forward and backward estimation could be used to simulate
this relationship, but this would still assume that the match with the lowest error is
the best match. The restoration algorithms do not necessarily require this: they can
perform well if the match contains a similar structure to the current block, within
the detector thresholds.

From this analysis, the best motion estimation comparison metric was deter-
mined to be the performance of the defect detector. If the damage locations have
been accurately identified, it is reasonable to assume that concealment will also be
accurate. The SDIa detector was used for its simplicity and speed: the relative
performance of the algorithms was the same regardless of the detector used. Per-
formance was given as plots of percentage of correct detection locations (r.) versus
false detection locations (r) for a number of detector thresholds. as has been com-
monly used by other researchers {20, 30]. For an image of size N x N, with a known
number of damaged pixels Vg, the detector will identify a fraction Cy correctly and

Fy incorrectly. The fractions r. and r are calculated as [3]:

Cq
.Vd

re =
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F

N3 (5.1)

Tf=

The correct detection locations are known by comparing the artificially damaged
sequence with the original. High correct detection rates with low false detection are
most desirable (upper left on the plots). For the plots, r. and r; were averaged over
all frames in the sequence except for first and last, because these biased results due
to the lack of previous or next frame information. A correct detection rate between

0.75 and 0.85 was generally a good tradeoff between correct and false detection.

5.2.1 Block Search Method

The most significant aspect to consider for motion estimation was the method for
searching the motion window. Section 2.3 listed several algorithms for covering the
search space which have greatly different computational requirements. Figures 5.3
and 5.4 show the results from applying these search methods to the WESTERN and
MOBCAL sequences. The figure shows the percentage of correct detections versus
false detections when using the SDIa detector, varying the threshold from 0 to 255
to create a curve for each motion estimation technique. Values with high correct
detection and low false detection are most desirable.

Shown in Figures 5.3 and 3.4 are the results for the exhaustive. overlapped,
logarithmic, and hierarchical search techniques with full-resolution search windows
of W =7 and W = 15. Detector performance with no motion estimation is also
shown for comparison. The block size was chosen to provide the optimal performance
with each method. which was L = 16 for the exhaustive and logarithmic methods,
L = 8 for hierarchical, and overlapped search used a block size L = 4 with an
overlap size M = 16. All methods used the MAD block comparison metric and had

their parameters set to provide the same maximum vector offset at full resolution:
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for W = 7, logarithmic used 3 steps and hierarchical used 3 levels created by an
averaging filter, with an exhaustive search at each level in a window of size w = 1;

for WV = 15, 4 steps/levels were used.

The curves of detector performance are indicative of the relative accuracy
of the motion estimation methods. The overlapped method performed significantly
better than the other methods in most cases, due to its ability to create a finer res-
olution vector field while maintaining noise immunity, although at a high computa-
tional cost. Methods which reduce computation, such as logarithmic and hierarchical
search, had nearly the same performance as an exhaustive search on the WESTERN
sequence, at much lower computation. In the MOBCAL sequence, the logarithmic
approach performed poorly in comparison with exhaustive search, especially with
a larger search window, due to its susceptibility to falling into local minima. In-
terestingly, the hierarchical search performed better than exhaustive search in the
MOBCAL sequence. with the difference increasing with a larger search window.
This was likely due to the natural noise filtering which occurs when the hierarchi-
cal frame resolutions were created: large defects at full resolution became small or
were eliminated at lower resolutions. All motion estimation methods provided a

significant improvement over no estimation.

The number of comparisons per block for all methods shown is given in Ta-

ble 5.1, using the equations indicated and the parameters described earlier. Computation

Search Method | Equation || Comparisons per Block
(W=7)| (W=15)
Exhaustive 2.11 225 961
Overlapped 212 3600 15376
Logarithmic 2.13 25 33
Hierarchical 214 11.8 11.95

Table 5.1: Computation comparisons for block search methods.
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for the exhaustive and overlapped search methods is far greater than for the other
methods. It is fortunate that the hierarchical search, which requires the fewest op-
erations, also provides excellent performance, second only to the overlapped search.

Selecting the best search method would be a choice between the overlapped
search, which had the best performance but an enormous computational cost, and
the hierarchical search, which had slightly worse performance but required much
fewer operations. When designing a real-time restoration system, speed is critical
and the overlapped method requires far too much computation for real-time execu-
tion. although it might be suitable for a hardware implementation. Therefore, the
hierarchical search method was chosen as the best choice for restoration and the
following sections compare other motion estimation parameters based on this search
method. Several other researchers have also selected hierarchical search as the most

appropriate for restoration applications [20, 4. 30].

5.2.2 Block Comparison Metric

The block search method specifies which locations are to be searched within the
motion window, and blocks at these locations are compared using a block comparison
metric. A good metric will compute a minimum when the motion vector is the best
match. Several comparison metrics (described in Section 2.2) were used with the
hierarchical detector on the WESTERN and MOBCAL sequences and the results are
shown in Figure 3.5. A search window of size W = T was used, which corresponds
to three levels in the hierarchical search method.

The results show the detector performance for the MAD, MSE, and Radon
projection block comparison metrics. For both sequences, the MAD provided the

best performance and the projection method was worst. These comparisons were
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verified using the exhaustive search method, and the results (not shown) were very
similar.

Both MAD and MSE require 3L? operations to calculate an L x L block com-
parison, while Radon projection requires 9L (except the first block). The multiple
arithmetic capabilities of the C80 parallel processors makes it possible to calculate
the MAD of four pixels in just two cycles (0.5 cycles/pixel), while the MSE requires
one cycle per pixel {37], so the MAD calculation is twice as fast as MSE. Radon
projections are potentially faster still, but the calculation of row and column sums
is not well suited to PP multiple arithmetic. With the small windows used at each
level for hierarchical motion estimation (typically w = 1), MAD requires 1728 op-
erations versus 880 for Radon (assuming L = 8), using the formulas in Section 2.2.
The computation advantage from Radon projection is almost two times, but with-
out multiple arithmetic it is not likely to be faster than MAD at this window size.

The MAD was therefore selected as the best block comparison metric.

5.2.3 Block Size and Search Space

The best block size for the hierarchical search algorithm was determined to be
L = 8. and this value was used in the comparisons in Section 3.2.1. A variety of
other block sizes were tried. ranging from 4 to 32. The difference in performance
was fairly small within this range, but a drop in performance was seen for L = 32
and L = 4. as blocks were too large to accurately estimate motion or too susceptible
to noise, respectively. Performance for block sizes of 8 and 16 was fairly similar, and
8 was selected to enable a finer-grained motion field. A smaller block size is also
more convenient for a C80 implementation because more blocks can fit into on-chip

memory.
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More important than the block size is the extent of the search window. With
the hierarchical method, this can be changed in two ways: by the number of reso-
lution levels, and by the size of the window searched at each level. The extent of
the window at full resolution is W = w(2" — 1), where w is the window searched
at each level and N is the number of levels. Computation also depends on these
parameters by Equation 2.14. Table 5.2 shows the full-resolution search window W
and computational requirements C (in comparisons per block) for several values of

w and N. It is apparent that low values of w and high values of V provide the most

Search Window

Levels w=1 w=2 w=41

N=1 W=1 W =2 W =4

C=9 C=25 C =81

N=2 W =3 W=6 W =12
C=1123|C=31.25| C=101.25

N=3 W=T W =14 W =28
C=118 | C=328 | C =106.3

N=4f W=15 W =230 W =60
C=1195| C=332 | C=1076

Table 5.2: Comparison of search window and computation for hierarchical search
parameters.

efficient method of covering large windows.

From a theoretical analysis of the above formulas. it would appear that an
optimal selection of parameters would be w = 1 and .V varies depending on the
desired window W. In practice. this searches only the “new” vector locations in a
larger level of the hierarchy; that is. as vectors are propagated from a lower resolution
level, all vectors are scaled by two and therefore even, and the “new” locations
are those offsets corresponding to odd vector values. If the frame information is
monotonically increasing around the optimal motion offset. this will provide the

best motion estimate [25]. However. it is possible for noise or artifacts of the scaling
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process to cause false motion estimates at some level. A larger window w allows
the algorithm to re-search some locations at the new higher resolution, possibly
accepting a location already searched at the previous level, making the algorithm

more robust.

A comparison of hierarchical motion estimation on the WESTERN sequence
with several different level window sizes is shown in Figure 5.6. Motion estimation
used the MAD block comparison, block size 8, and levels were created by four-
pixel averaging. The search window w at each level and the number of levels were
selected from Table 5.2 to provide approximately the same full-resolution window
. Another plot of several values of w with the same number of levels is included

for comparison.

From Figure 3.6. it is apparent that a search size w = 2 at each level provided
the best performance, although the difference was smail. When w = 4. the results
were slightly worse., probably due to the effects of noise created by the scaling
process. A minimal window w = 1 performed almost as well as w = 2 for the same
full-resolution window size. The difference in computation. however, was aimost 3
times. For the real-time restoration system. therefore, a window size w = 1 was
selected for general use. and a larger window w = 2 can also be used if necessary

for some sequences. at the cost of slower execution.

The performance of reducing the number of locations searched at each level,
described in Section 2.3.4 as the adaptive block matching search method [13], was
evaluated and compared with an exhaustive search at each level. Figure 5.7 shows a
comparison between exhaustive search and reduced per-level search for the WEST-
ERN and MOBCAL sequences. Three levels were searched for all windows in the

WESTERN sequence, and four levels were used for MOBCAL. Level windows of
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w =1 and w = 2, with both exhaustive search and reduced search are shown. In
general, the reduced search method performed worse than the exhaustive search but
required fewer computations—9 locations versus 5 for w = 1 for exhaustive and
reduced respectively, and 25 locations versus 8 for w = 2.

Using a reduced search method at each level could reduce the number of
computations required, especially with w = 2, but the exhaustive method provided
superior results. An exhaustive search with w = 1 was comparable to a reduced
search with w = 2, both in performance and computation. It was found, however,
that the added complexity of the adaptive block matching search algorithm made
the estimation routine too large to fit in a parallel processor instruction cache block!,
and would therefore require more computation time (due to cache loads) than an
exhaustive search with w = 1. The exhaustive search was therefore selected for
both window size 1 and 2. Selecting window size 1 gives the fastest execution at
acceptable accuracy, and window size 2 provides the most accuracy at a higher

computational cost.

5.2.4 Image Scaling

The preceding sections have analyzed the computation required for the hierarchical
search method depending on the block comparison metric and search space. These
tests have included only the computation required to do the actual block search at
all levels, assuming the image resolutions have already been created with four-pixel
averaging. [n this section, the performance of motion estimation is measured with
various methods of filtering and scaling the full-resolution frame to create the image

hierarchy. Filtering algorithms were previously discussed in Section 2.4.

!Details of how the algorithm makes use of the instruction cache is given in Scction 6.1.4.
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Figure 5.8 shows the results of motion estimation with four-pixel averaging,
3 x 3 and 9 x 9 Gaussian filters, and no filter, all followed by decimation by two in
each dimension to create each resolution level. Both the WESTERN and MOBCAL
sequences were used, with four resolution levels, a per-level window w = 1, and the

usual settings of the MAD comparison metric with a block size of 8.

The four-pixel averaging method worked best for both sequences. This seems
unintuitive when comparing the frequency response of the averaging and the 9 x 9
Gaussian filters in Figure 2.7: more aliasing occurs when using the averaging filter.
The reason performance decreased when using the Gaussian filters was because of
their greater spatial extent—damage intensities were “spread” over a larger region
because they were included in the filter calculation for surrounding pixels. Increasing
the damage area outweighed the effect of aliasing. The effect of using no filter. and
simply decimating the images, was surprisingly good—it performed almost as well
as averaging on the WESTERN sequence. and was slightly worse than the Gaussian

filters on MOBCAL.

The four-pixel averaging method provided the best performance, and was
also very eflicient to calculate at 4 operations per decimated pixel. The Gaussian
filters provided worse performance at a higher computational cost, so they were
unsuitable for a real-time implementation. The decimation method with no filter
provided excellent performance on the WESTERN sequence, and fair performance
on MOBCAL. An advantage of this method, however, is that the decimation can
be done entirely with the C80 transfer controller, which is a significant savings in

computation for the entire process.

While the use of decimation without an antialiasing filter is not recom-

mended [24], in this application it can provide good results. Most of the frequencies
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Figure 5.8: Comparison of image scaling filtering methods for WESTERN (top) and

MOBCAL (bottom).
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in an image are well below the Nyquist limit [28] and therefore the effects of aliasing
are fairly small at the higher resolution levels. At lower resolutions, aliasing be-
comes significant but still does not present a serious problem—aliased information
appears essentially as noise at the lower resolution, and since the motion estimator
is designed to be robust to noise its performance is acceptable. Sequences containing
narrow lines or small text have significant high-frequency information and therefore
would alias badly, but these are fairly uncommon in motion picture films.

For the implementation of a real-time restoration system. decimation without
a filter was judged to be acceptable because of the significant savings in computation.
With more computing power or memory bandwidth available, however, the four-

pixel averaging filter would be a useful addition.

5.2.5 Motion Vector Acceptance Thresholds

Methods for improving the accuracy of motion estimates were previously discussed

in Section 2.53. The ratio of the MAD E(7,_,) at the best match location to the

Elin—1)

£y If this ratio is below a threshold

MAD E(0) at zero motion is calculated as
t,, the estimate is accepted: otherwise, a zero motion vector is used.

Tests at several thresholds on the WESTERN and MOBCAL sequences are
shown in Figure 5.9. A plot of detector performance when no threshold was used
was compared with thresholds of 1.0, 0.9, and 0.8. Ideally, a threshold of 1.0 should
have the same performance as when using no threshold. However, using a threshold
of 1.0 favored zero offsets when the MAD of the best and zero matches were equal,
while using no threshold favored vectors in the order they were searched (left to

right, top to bottom).

The performance for the WESTERN sequence showed there was a slight
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improvement when a threshold of 1.0 was used, compared with no threshold, but
lower values decreased performance. For the MOBCAL sequence, however, the
opposite was true—performance increased significantly as thresholds were lowered
toward an optimal level of approximately 0.8.

It was apparent from these tests that an acceptance threshold improved per-
formance in some cases, but decreased performance for other sequences. The process
of calculating the MAD at zero offset involves an extra block comparison per block
per level. For a C80 implementation, the block data for zero offset must also be
loaded into on-chip memory for calculation, requiring more memory bandwidth. It
was therefore decided that using an acceptance threshold, with questionable effects

on accuracy, did not justify the increase in computation and memory bandwidth.

5.2.6 Summary of Motion Estimation Methods

[t was previously established that the block matching motion estimation algorithm
would be the most appropriate for real-time implementation on the MX. This was
due to its ability to estimate large displacements and its suitability for implemen-
tation on the C80. especially the integer parallel processors. The hierarchical block
search method was most suitable, as it provided very good estimates at a low com-
putational cost. A block size of 8 x 8 was determined to be a good size for search
blocks. The most appropriate comparison metric used to select the best match
within a search window was the mean absolute difference (MAD). This had both
the best performance and the lowest computational cost.

The size of the search window w for each hierarchical level was shown to
give the best performance for w = 2. However, this uses a large fraction of C80

computing cycles, so w = 1 was selected for general processing at a slight decrease
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in accuracy. Both search window sizes were chosen for C80 implementation: w =1
for real-time processing, and w = 2 for increased accuracy. The number of levels can
be varied depending on the desired full-resolution search window, but a practical
limit is the lowest resolution level must be larger than the search block size (8 x 8).
An exhaustive search is used at each level, because the computational savings from
using a reduced search method did not justify the increase in algorithm complexity.

Scaling the full-resolution image into levels for motion estimation is performed
by decimation, without prefiltering. This method causes aliasing and motion esti-
mation accuracy suffers slightly as a result, but eliminating the filter and using the
C80 transfer controller to perform scaling was a significant savings in computation
and memory bandwidth.

Using an acceptance threshold, where a motion estimate is accepted only
if it is significantly better than zero motion, was shown to significantly improve
performance in some sequences (MOBCAL) and offer negligible improvements for
others (WESTERN). It was decided not to use an acceptance threshold because
of the extra computation and memory bandwidth necessary to calculate zero offset

differences.

5.3 Detection of Film Defects

A defect detection algorithm attempts to identify the locations within a frame that
are most likely to be damaged. A number of methods to do this have been presented
in Chapter 3. Since the aim of this work is to create a real-time restoration system.
only those methods which are computationally efficient were candidates for testing.
Specifically, the spike detection index (SDI, SDIa, SDIp) and rank ordered difference

(ROD) detectors were chosen for this work. Other more complicated algorithms
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could execute in real-time on more powerful hardware, but this implementation is

based on the MX and therefore the algorithms must fit, within its capabilities.

The detector tests used the motion estimation method summarized in Sec-
tion 3.2.6. A window of extent w = 1 was searched exhaustively at four resolution
levels, for a maximum motion offset of 15 pixels at full resolution. No thresholds on

block acceptance were used.

Figure 5.10 shows the performance of four different detectors on the WEST-
ERN and MOBCAL sequences. A description of this type of behavior plot was
given in Section 5.2: high values of correct detection with low false alarm rates are
most desirable. The SDIa and SDIp detector behaviors were plotted by varyving the
threshold ¢, between 0 and 255. Through trial and error. it was found that the best
performance for the SDI detector was obtained by keeping t; constant at 10 and
varving t, between 0.0 and 1.0. The ROD detector thresholds 7 and T3 had little
effect on the performance of the detector, and were fixed at 60 and 80, respectively,

while 7T was varied from 0 to 60.

The SDIa and SDIp detectors were relatively similar in performance, with
SDIp being slightly better except at very high correct detection rates. SDI was the
worst performer of the detectors, and required the user to set two thresholds for
best performance, making it awkward to use. ROD was the best performer overall,
except for very high correct detection rates. It required three thresholds to be set.

but it was relatively insensitive to 75 and 73 so these rarely needed to be modified.

A useful range for the detectors was between 75 and 85 percent correct detec-
tions. with the false detection rate as low as permitted by the detector performance.
Low values of the detector threshold resulted in many detections. increasing both

the correct and the false alarm rate. High thresholds decreased the number of de-
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tections and caused the opposite effect. The impact of detector threshold on correct
or false detection rates was not linear—the low range (for example, below 30 for

SDIa) had a much more significant impact on performance than the higher range.

Frame 8 from the WESTERN sequence is shown in Figure 5.11 with the
results from several detection algorithms. The original frame (containing artificial
damage) is shown, as well as a mask (overlaid on the original undamaged frame)
of the actual damage locations, indicated by bright white pixels. The detector
thresholds were chosen so each had approximately a 0.005 average probability of
false detection. The SDIa. SDIp, ROD. and SDI detectors were tested and had
average correct detection probabilities of 0.85, 0.86, 0.87, and 0.74, respectively.
These results correspond to the correct detection values shown in Figure 5.10 for
the WESTERN sequence at a false detection probability of 0.005. Detector threshold

values are given in Figure 5.11.

The performance of the SDIa, SDIp, and ROD detectors were similar, as in-
dicated by their correct detection probabilities. The SDI detector performed poorly,
as expected from the performance plots in Figure 5.10. The large defects below
the actor’s right shoulder and to the left of his head were accurately identified by
all but the SDI detector. There were some differences in how the spot below the
shoulder was detected—SDIa seemed to detect it the best, while ROD and SDIp
missed a small bottom portion of the blotch, which could be explained by the dif-
ferent thresholds used in order to maintain the same false detection probability. All
detectors showed some false detections around the actor’s hands and the sack he is
holding, which was due to poor motion estimates in this region. The ROD detector
seemed more robust to these than SDIa or SDIp, and its false detections were more

randomly distributed throughout the frame, as with SDL
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Note that the simulated damage in the sequence uses a random greyscale value
for each damage location. This means that some defects will be more visible than
others, in the case of contrasting damage and background intensity. In situations
where a dark spot lies over a dark portion of the frame (or light over light), the
defect is barely visible to the viewer and a detection algorithm will have difficulty
identifying it. It is therefore unreasonable to assume that a detector will identify
all the locations containing “actual” damage—only damage which contrasts with
the background can be detected. This fact also applies to the detector plots in
Figure 5.10: correct detections were measured by comparisons with actual damage
locations. regardless of contrast. The effect of this on the plots was minor because

all detectors were affected equally, so relative comparisons were valid.

It has been stated above that motion estimation accuracy is a very important
factor in how well damage locations are identified and concealed. When objects are
covered or uncovered within the scene, however. the motion estimation algorithms
cannot match the missing information between frames. Figure 5.12 shows an exam-
ple of this problem. Frames 45, 46, and 47 from the damaged WESTERN sequence
are shown. as well as the detected damage in frame 46 using the SDIa detector
(e = 13). The lapel of the actor’s jacket moves from fully visible in frame 43 to
fully covered in frame 47. Motion estimates for frame 46 were therefore inaccurate
because the block matching algorithm could not find areas corresponding to the
shape of the lapel. The detection algorithm had no valid reference information in
the previous or next frames, so it identified a large area as damaged. A similar
problem occurred at the bottom of the frame where an area was covered when the
jacket moved downward. These types of situations occur in many scenes, and the

quality of the restored output at false detection locations depends on the method
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used to conceal damaged regions, discussed in the next section.

From the plots of detector performance and the example detection frames, it
was apparent that the SDI detector was inaccurate and difficult to use because it
required the user to set two thresholds. The SDIa, SDIp, and ROD detectors all
were similar in performance, with the ROD detector being slightly better within the
desired correct detection range of 75 to 85 percent. All three detectors were quite
efficient to compute, and while the ROD detector required three thresholds, T and
T3 had little impact on performance and could be kept relatively constant. The
SDIa, SDIp, and ROD detectors were selected for real-time implementation, with
SDIa and SDIp being the fastest algorithms, and ROD being slightly more accurate,

possibly at the cost of real-time execution.

5.4 Concealment of Film Damage

The previous sections have described methods to reduce the effects of motion be-
tween consecutive frames and detect the locations of damage within a frame. Con-
cealing the defect locations is the final step of the restoration process. A suitable
concealment algorithm will use information in the previous, next, and/or current
frame in order to replace the damaged pixels with values that match, as closely
as possible, the original undamaged pixel data. For a real-time application, the
concealment method must also be computationally efficient.

Concealment algorithms were evaluated using the WESTERN and MOBCAL
sequences, and the quality of the output was determined by applying the restoration
algorithms to the artificially damaged sequences, and comparing the final output
with the original undamaged frames. In this way. a quantitative measure could be

obtained which represents the accuracy of concealment. The accumulated mean



square error (AMSE) was used for this purpose [3}:

AMSE(m) = 3 = 3 (5() ~ L(A)* (5.2)
2

=1 FeN3

where I(7) and [(F) represent the pixel at location 7 in the N x N original and
restored frames, respectively, and N? represents all locations within the frame. Cal-
culating AMSE(n) involves computing the mean square error between the original
and restored frames, and summing these for all frames up to n (inclusive). Note
that the first frame (frame 0) of the sequence is not used in the calculation because
it lacks a previous frame for reference, and therefore cannot be properly restored.

Since the original WESTERN and MOBCAL sequences are available, it is
possible to exactly determine the defect locations and apply the concealment al-
gorithm only to these locations. Such a strategy would evaluate only concealment
without the effects of false or missed detections. However, as seen in the previous
section. the detector always marked some false defect locations due to incorrect
motion estimates or frame differences not due to damage. It is important for any
concealment algorithm to be able to deal with these situations, and restore the false
detection locations with values close to their original intensity. Therefore. it was
decided to evaluate concealment algorithms using defect locations marked by a de-
tector. chosen to be SDla with a threshold e, = 15. This tested the concealment
algorithms in a “real world” situation. Motion estimation used the same technique
described in Section 5.2.6, with four levels and a search window w = 1 at each level,
for a full-resolution search extent of 15 pixels.

Figure 5.13 shows the AMSE plots for the WESTERN sequence for a variety
of concealment algorithms. Averaging filters with 1:0:1, 9:0:9, and 9:8:9 support were
evaluated. and the larger filters were used with and without considering damaged

pixels in the support region, as discussed in Section 4.1. The median filters with
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1:1:1, 9:1:9, and 9:9:9 support, as well as the ML3Dex filter, were also tested and are
shown in the lower plot of Figure 5.13 with the averaging 1:0:1 output repeated for
comparison. The relative performance of the algorithms on the MOBCAL sequence

was similar, so only the results for WESTERN are shown.

Considering the averaging filters, it can be seen that larger support regions in-
creased performance when damaged pixels were not included in the average calcula-
tion. Compare the performance of 9:8:9 support with and without this enhancement—
damaged pixels within the current frame are often adjacent, so they adversely affect
the restored output. Using only temporal support, the 9:0:9 averaging filter had ap-
proximately the same performance with or without using damaged pixels, because
it was relatively unlikely that the same location would be damaged in consecutive
frames. so the support region was almost always free of defects. The performance
of the 1:0:1 averaging operation was worse than the others, due to its lack of spatial

support.

The performance of most median filters, including 1:1:1, 9:1:9, and 9:9:9
support. was very similar and approximately equal to the 9:0:9 averaging operation.
The effects of damaged pixels within the support region can be ignored. because
the median operation discards these as outliers. The ML3Dex median filter had
better performance. because it made more intelligent use of temporal and spatial

information when choosing the best replacement pixel value.

The best overall performer was the averaging filter with 9:8:9 support, ig-
noring damaged pixels within the support region. However, saving and using the
detected damage locations from the previously processed frame is costly both in
computation and memory bandwidth. It is desirable to use techniques which are

robust to damage within the support region, such as median filters. The ML3Dex
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filter performed very well, and the median 1:1:1 operator also worked well at a much

lower computational cost.

Computing the ML3Dex filter is too slow for real-time restoration, so the me-
dian 1:1:1 filter was chosen as the best concealment algorithm. The averaging 1:0:1
filter was also selected for further investigation because of its extremely low compu-
tational cost. Only these two concealment algorithms (median 1:1:1 and averaging
1:0:1) were considered for further testing, with ML3Dex included for comparison

(although it is unsuitable for real-time implementation).

The performance of these concealment algorithms was tested on the WEST-
ERN sequence and a portion of an example frame is shown in Figure 5.14. The
original. undamaged frame as well as the frame with artificial damage are shown.
The SDIa detector (e, = 15) was used to identify damage locations. which are indi-
cated as bright white pixels. The output of the averaging 1:0:1. median 1:1:1, and
ML3Dex filters are shown by restoring the detected damage locations. The detected
damage includes the correct defects as well as a number of false alarms, and a missed

defect on the actor’s hand.

In general. the defects were concealed well by all algorithms. The letters
*CQO”. which were partly covered by a defect, were slightly blurred by the ML3Dex
filter due to its use of spatial support. Median filters performed better on the false
detection on the letter “M” near the actor’s arm: the averaging operation distorted
this region. None of the concealment algorithms were able to handle the large
false detection on the jacket in the upper-left portion of the frame. because motion
estimates in this region were inaccurate due to occluded areas. This light area was

mostly covered in the restored frames.

Despite the problems shown in the figure, the concealment algorithms did a
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fairly good job of restoring the damaged sequence. Areas which had the most errors
were portions of the frame which experienced fast or irregular motion. The viewer
is less sensitive to damage in these regions because of the rapid motion, so errors in
reconstruction go mostly unnoticed.

The best algorithm for concealment, considering both accuracy and computa-
tional cost, was the median filter with 1:1:1 support which was selected for real-time
implementation. An averaging filter with 1:0:1 support was also selected for imple-

mentation. because it requires very low computation and is useful for comparison.

5.5 Recursive Temporal Filtering

All of the algorithms up to this point have used three frames from the original
damaged sequence for processing. An alternative is to use the restored current
frame as the “previous” frame when the next frame is processed, and so on: the
current and “next” frame. obviously. have to be from the original sequence. The
intent behind this feedback method is the restored frame is likely more similar to
the original than the damaged frame. and therefore will allow more accurate motion
estimation. detection, and concealment.

Figure 5.15 shows the AMSE method on the WESTERN sequence, with
and without using feedback. A SDIa detector with ¢, = 15 and a 1:1:1 median
filter was used. Restored frames were used as the “previous” frame for motion
estimation, detection. and concealment. The detector performance was virtually
identical between the two methods.

From Figure 3.15, there was a slight improvement when using feedback. but
the effect was small. This was mostly due to the fact that damaged locations within

one frame were unlikely to also be damaged in the previous or next frames. The
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Figure 5.15: Comparison of concealment performance with and without using feed-
back (SDIa e, = 15, 1:1:1 median filter).

restoration process. therefore, usually had an uncorrupted reference region in the
surrounding frames. so feedback would not significantly improve performance. In
fact. it is possible that incorrectly restored areas will propagate through several
consecutive frames by employing feedback, because they cause motion estimation
and detection errors. As seen from Figure 5.15. around frame 30 there was a sharp
increase in AMSE for both methods, but the feedback algorithm also had a higher
error in the next frame due to the errors in the restored previous frame propagating

to the next.

Adding feedback to the restoration algorithm requires no extra computation,
because the system needs only to change its source of “previous” frame data from
the original frame to the restored frame. Feedback was selected as an option for the

real-time implementation, although it offers minimal improvement.
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5.6 Summary of Selected Algorithms

In this chapter, a variety of methods for motion estimation, defect detection, and
damage concealment have been evaluated based on accuracy and computational
cost. Only those algorithms which are suitable for real-time implementation on the
MX were considered for the proposed restoration system. Evaluation was based
on the artificially damaged WESTERN and MOBCAL sequences, which show a
wide variety of motion and frame content and therefore provide a good indication
of restoration performance on other possible sequences.

A hierarchical motion estimation algorithm was selected for its robustness
to noise and its computational efficiency. A block size of 8 x 8 was chosen to be
the best. and the MAD block comparison metric was the most accurate. Up to
four image levels. including full resolution, were created by simply decimating the
previous level by a factor of two: although this caused aliasing, the computational
savings were significant enough to justify the reduction in accuracy. A maximum
search extent of 1 or 2 pixels were exhaustively searched at each level, for a total
search extent of 135 or 30 pixels at full resolution.

The spike detection index detectors SDIa and SDIp, as well as the rank
ordered difference (ROD) detector gave good detection performance and compu-
tational efficiency. The detection threshold varies from 0 (high correct and false
alarm rates) to 255 for SDIa and SDIp. and can be controlled by the user to select
the tradeoff between correct and false detections. The ROD detector requires three
thresholds. but the upper two have little impact on detector performance: values
of T, = 60 and T3 = 80 were found to be acceptable. The other threshold varies
between () and T5.

Two concealment algorithms were selected for implementation: a median
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filter with 1:1:1 support, and an averaging filter with 1:0:1 support. The median
filter had the best results, and the averaging operation was included for comparison
because it required very little computation. Feedback, where the restored output
was used as input when processing the next frame, was also an option for the real-

time system.
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Chapter 6

Real-Time Implementation and

Performance

In the preceding chapter. various algorithms for motion estimation. defect detection.
and damage concealment were compared on the basis of performance and compu-
tational cost. Those algorithms which offered acceptable performance and which
could execute quickly enough for real-time processing were implemented.

This section describes in detail the software implementation of these algo-
rithms on the Precision MX system, the user interface to the real-time restoration
system. and finally some results from using the system to restore real damaged

sequences.

6.1 Software

The restoration software was written for the C80 DSP on the Precision MX. It exe-
cutes independently of the host PC. although the PC can send commands to change

settings if necessary. A real-time restoration system could therefore be implemented,
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using the existing code, on a standalone C80 processor with additional memory and
video capture/display hardware. The Precision MX provides a convenient platform

for developing and debugging the software under supervision of the host PC.

Texas Instruments provides a set of software development tools for Windows
NT, including C compilers and assemblers for the C80 master processor (MP) and
parallel processors (PP). Code for each processor is developed separately on the
host PC and all code is linked together into a single executable. The host PC can
then load the program into the Precision MX through the PCI bus for execution.
Data and commands can also be passed between the MX and PC during program

execution.

The restoration code makes use of the Texas Instruments multitasking ex-
ecutive functions [40]. These allow several separate program threads to execute
“simultaneously” on the master processor by setting priorities to tasks and pre-
empting lower priority tasks if necessary. The restoration code therefore has several
modules which run “in the background” for reading commands from the host PC,
and handling video capture and display. Note that the muititasking executive only
supervises tasks which run on the master processor; the mechanism for distributing

tasks to the parallel processors is described in Section 6.1.3.

Video input is in the form of an NTSC video signal and is digitized at either
640 x 480 or 320 x 240 pixels per frame. NTSC video contains 60 interlaced fields
per second. which are combined to form 30 non-interlaced frames per second [19].
At 640 x 480, non-interlaced frames at 30 frames per second are captured, and at
320 x 240 only even fields are captured (30 per second). Display from the Precision
MX is in the form of a VGA video signal. which for this application is fixed at

640 x 480 pixels. 60 frames per second. Each restored frame is displayed twice to
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equal the output frame rate. A separate external scan converter is used to convert
the VGA signal to NTSC video.

To facilitate testing, the restoration software can operate in two modes, re-
ferred to as “real-time” mode and “offline” mode. Normal execution is in real-time
mode, where video is captured, processed, and displayed in real-time (defined as
NTSC video rates, 30 frames per second). In the offline mode, the host PC loads in-
dividual digitized frames from a test sequence to the MX where they are processed,
and the output frames, motion vectors, and other statistics are sent back to the
host PC. This is useful for debugging and evaluating code before it is optimized for
real-time execution. The processing algorithms are identical for both modes.

The following sections describe the design of the real-time C80 restoration

software.

6.1.1 Algorithms

As discussed in Section 3.6. the hierarchical motion estimation method was selected
for real-time implementation because of its excellent performance. noise immunity,
and low computational cost. The block size was fixed at 8 x 8 pixels, and the search
window size can be varied from zero (no motion estimation) to 2, with a maximum of
3 hierarchical levels. The maximum search offset is therefore 62 pixels (window size
2. levels 0 to 4) which is more than adequate for most sequences. The MAD block
comparison metric was used, with a full window search at each level. Subsampled
images are created using unfiltered decimation.

The maximum resolution supported is 640 x 480 pixels, which is roughly equal
to NTSC video resolution. However. the amount of data which had to be transferred

for real-time motion estimation at this resolution exceeded the available bandwidth
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of the MX. The solution was to estimate only to level 1 (320 x 240) at this resolution,
and then propagate the vectors to the full 640 x 480 resolution. Motion estimates
are accurate only to within two pixels using this scheme, but computation is reduced
by almost four times. In the offline mode, full scale motion estimation is possible

because processing time is not an issue.

For detection, only the SDIa, SDIp, and ROD algorithms had the computa-
tional efficiency to execute in real-time and so they were the only algorithms imple-
mented. Their performance was equal or superior to any other detection methods
(with the exception of JOMBADI), with the ROD detector offering better perfor-
mance at a higher computational cost. The SDIa detector is simpler (faster) and has
the advantage of needing only one user-specified threshold. versus three for ROD.
Other options are available for disabling detection (and concealment as well) or
marking every pixel as a defect, resulting in concealment filtering across the entire

frame.

Only the simplest concealment algorithms were implemented in order to exe-
cute near real-time. Purely temporal methods were shown in Section 5.4 to provide
adequate performance, and the 1:0:1 averaging operation and 1:1:1 median filters
were both implemented. In addition, several other formats for frame output are
possible: the detection mask can be displayed. containing white or black pixels
corresponding to damaged or undamaged locations: the previous or next motion
compensated frames can be shown, indicating the accuracy of the motion estimates;
and finally, the unprocessed input frame can be directly displayed to disable the

restoration process.

For efficiency, the detection and concealment algorithms were combined as a

single function for each significant combination of detector and concealment filter.
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This offers maximum performance, since blocks of data need to be loaded into C80
on-chip memory only once for combined detection and concealment. It also makes

more efficient use of the PP instruction cache, as further explained in Section 6.1.4.

6.1.2 Processing Pipeline

The process of restoring a frame of video requires the previous, current, and next
frames in the sequence. Because the next frame is required for processing, an extra
frame of delay is necessary before the “current” frame is processed. In addition,
there are extra delays while the frame is captured and prepared for processing. The
real-time restoration implementation is divided into several steps for efficiency, as

shown in Figure 6.1.

Frame Index
n+3 Capture Frame
n+2 Scale Frame
n+1 Next Frame Buffer
n Dex:oﬁt(i)c:ln SI;: iﬁg:;?l:& on Processed Frame Buffer
n-1 Previous Frame Buffer Display Processed Frame

Figure 6.1: Real-time restoration system processing pipeline.

In the first step, a frame is captured into external memory using the MX

capture hardware. The frame is then scaled to several resolutions using the C80
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transfer controller in preparation for motion estimation (described further in Sec-
tion 6.1.3). The scaled frames are then used as the “next” frame for the previous
frame in the sequence. Restoration processing is performed, and finally the restored
frame is displayed at the same time as the scaled frames are used as the “previous”

frame when processing the next frame in the sequence.

Each step takes one frame period, and each frame of the sequence is one step
further in the pipeline than the following frame. For example. while frame 10 is
being processed (using frames 9 and 11 as previous and next frames, respectively),
the processed frame 9 is being displayed, frame 12 is being scaled. and frame 13
is being captured. This mechanism allows the most efficient use of MX and C80
resources—capturing a frame necessarily requires a full frame period, but the C80
need only be involved once per line to transfer data from the capture FIFO to
memory. Similarly, decimating frames for hierarchical motion estimation can be
done with only the transfer controller. using spare memory cycles. Frame processing
requires the majority of computation and memory bandwidth. and by scaling in

advance more time is available for computation in this step.

Using this processing pipeline, there is a minimum delay of four frame periods
between the time a frame is input and when the processed result is displayed. This
delay can generally be ignored when using the system to restore video, since its effect
is negligible (4 frames at 30 frames per second is 133 milliseconds). An exception
is when short segments are being composited into a larger sequence—at the start of
processing each short clip, there will be three “garbage” frames which should not
be recorded. Audio. which is not being used in the current implementation, must

be delayed by four frame periods in order to synchronize with the video output.
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6.1.3 Task Distribution

The master processor (MP) uses the multitasking executive functions to supervise
various aspects of the restoration system, including video capture and display, read-
ing commands from the host PC, and distributing tasks to the parallel processors
(PP). The parallel processors are responsible for all of the computation involved in
the restoration process for motion estimation, detection, and concealment. The MP
divides the restoration task into subtasks and allocates these dynamically to the

PPs.

Commands are sent from the MP to any PP through a message queue. Pa-
rameters and identification for various tasks are placed in a linked list structure in
on-chip memory by the MP. The PP polls this queue and executes the commands in
order until the list is empty, signaling by a flag in the message structure when it has
completed each task. The MP can monitor these queues and keep them full so the

PP is never idle. Each message queue holds a maximum of two pending commands.

For hierarchical motion estimation, processing starts at the highest (lowest
resolution) level image. The MP divides this image into “strips” 16 pixels high and
the same width as the image. as illustrated in Figure 6.2. It places a command in
a PP’s message queue containing the address of the st rip and its corresponding
vectors from the previous (higher) level. The PP executes this command by loading
the vectors and block data for its given range, and returning the updated vectors
to memory. The MP allocates all strips in the current level-to PPs with empty
message queue slots, waiting for an empty slot if there is none. Once all strips are
allocated, it waits for all PPs to finish processing their portions before it moves to
the next (lower) level. The image at this resolution is divided into strips again and

the process is repeated until the lowest level has been fully processed. If the image
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Figure 6.2: Distribution of image “strips” for PP processing.

height at any resolution is not a multiple of 16, the remaining pixels are assigned
a zero motion vector and not processed: experimental tests have shown this has an
insignificant effect on performance.

The end result after motion estimation is an array of motion vectors for
8 x 8 blocks at the lowest (highest resolution) level of the image hierarchy. The
detection and concealment process then begins in a similar manner: the MP divides
the full-resolution image into strips 8 pixels high' and allocates these to idle PPs
by setting the appropriate image and vector address in its message queue. The PPs
load the vectors and image data. perform the restoration operation, and transfer the
processed data to the restored frame buffer. Once the MP has allocated all strips
and waited for the PPs to complete their tasks, the frame has been restored.

Throughout processing, scaling of the second-previous frame (frame n — 2 for
current frame n) is taking place (refer to Figure 6.1). Before beginning the motion

estimation task. the MP sets up a packet transfer structure to do the appropriate

! As mentioned earlier, real-time motion estimation at 640 x 480 only calculates vectors to level 1
(320 x 240). In this case, strips for detection arc 16 pixels high.
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scaling and starts a low-priority transfer. While the PPs are performing motion
estimation and detection/concealment, any spare memory cycles are being used for
the scaling process. Once all concealment tasks are completed, the MP waits for the
scaling process to complete, which is usually already finished. The processed frame
is displayed, the most recently captured frame is obtained, and the entire process

repeats for the next frame in the sequence.

6.1.4 Block Processing

The MP divides processing of full frames into a number of “strips” which are cal-
culated independently. Each PP, therefore, is responsible for processing a certain
number of strips, as controlled by the commands the MP inserts into its message
queue. The PP code is concerned only with processing a single strip at a time,
regardless of the structure or size of the actual frame.

For efficiency, many parameters such as frame width and pitch, vector length,
and other internal parameters which do not change each frame are precalculated.
They are initialized when execution starts and each time settings (resolution, pro-
cessing method. etc.) are changed by the host PC. By keeping information in PP
local on-chip memory, execution time is minimized. Packet transfer structures are
also kept in local memory, and only start and destination addresses need to be
changed per block.

The PP code processes a number of square blocks. the sum size of which are
equal to the strip length. Two separate banks of local memory are used for loading
and storing data between on-chip and external memory. Figure 6.3 illustrates the
process by which memory transfers and processing are pipelined. The next blocks

are loaded into a memory bank while processing is being performed on the other
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Figure 6.3: PP processing pipeline for consecutive blocks.

bank, eliminating memory conflicts within the C80 crossbar [37]. Blocks from the
previous or next frame include one or two pixels of data surrounding each block for
the search window. The previously processed block or vectors are transferred back
out to external memory after new blocks are loaded. Memory transfers can take
place concurrently with frame processing, and are set to a higher priority than the
motion hierarchy scaling transfers used by the MP. so PP processing is not delayed.
[f memory transfers are slower than computation time for a block. or vice versa, the
faster operation must wait before processing the next block. Motion estimation is
typically compute-bound (computation requires more time than memory transfers),
while simpler detection/concealment methods (SDIa. SDIp) are memory-bound.
Most of the advanced functions possible in the PP, such as concurrent instruc-
tions and multiple arithmetic, must be written in assembly language for maximum
speed and smallest code size. All of the PP code is written in assembly language,
with the exception of the “update” functions which precalculate internal variables:
since parameters are rarely updated, execution time is not critical for these func-
tions. Because of the real-time requirements of the software, it is desirable for each
frame to take approximately a constant amount of time for processing. The PP

code therefore makes use of conditional loads and arithmetic instructions instead of
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branches to make the execution time equal for each code path. This results in the
same execution time whether there are many or only a few defects in the image.

When calculating a vector offset for a block, it is important for the estimate
to occur within the frame boundaries. Typically, only vectors within the frame
would be considered. However, the process of checking whether each offset is in
the valid range is time-consuming when conducted in the highly optimized motion
estimation loop. Invalid offsets are therefore detected after all offsets for a strip have
been determined: locations outside the frame boundary are reset to the estimate
from the previous level. Also, because of the structure of the estimation loop, the
search window is covered from lower right across to upper left. Offsets searched first
are given priority if another match has the same MAD, instead of smaller offsets.
Experimental tests show that neither the boundary behavior nor the search bias has
a significant effect on performance.

The size and alignment of the functions are carefully controlled in order to
fit efficiently into the PP instruction cache. Support code to read commands from
the message queue, transfer data between internal and external memory, and other
functions all fit within three cache blocks: the fourth block contains the function
which does the actual processing. For example, a function to perform motion esti-
mation within a two-pixel maximum offset is optimized to 64 instructions, exactly
the size of a cache block. The instruction cache only needs to be refilled twice per

frame. once for motion estimation and once for detection/concealment.

6.1.5 Control

The restoration software executes independently of the host PC. but the PC may

send commands to control operating parameters, such as the motion estimation
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window or the detection/concealment method. The PC can also send a number of
commands which read information from the MX, such as frame rate.

Using the multitasking executive, the MP has a high-priority thread which
monitors the PCI interface for commands from the PC. When a command is received,
the appropriate new variables are read or written to the PC. The MP updates any

necessary parameters before processing the next frame.

6.1.6 Video Capture and Display

The video capture hardware on the MX is configured when the restoration software
begins execution and any time the input resolution changes. Capture is performed by
a separate multitasking thread which executes each time a line of video is captured to
transfer data from the capture buffer to external memory. A list of memory locations
contains the addresses of several frame buffers and the capture routine fills each in
order. The main restoration function reads the most recently captured frame for
processing, waiting for capture to complete if necessary. For high resolutions such
as 640 x 480. odd and even video fields are de-interlaced into the same buffer.

Display works in a similar way, where processed frame addresses are placed
on a list and are displayved in order as new frames are added. Frame data must
reside in video memory (VRAM).

A drawback to the capture functions is they only work in double-buffer mode,
where capture currently transfers to one buffer while the other buffer is being used for
processing. The rate that frames can be used from the capture hardware therefore
must be a factor of the input video rate of 30 frames per second. That is, if processing
takes longer than 316 of a second, the next frame begins to overwrite the previously

captured frame and processing must wait for this second frame to complete. for a
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resulting frame rate of 15 frames per second.

This problem could be eliminated by buffering several frames in sequence,
which would require a major rewrite of the capture software supplied with the MX.
For the sake of this thesis, the frame rate problem was an acceptable limitation,
since some combinations of restoration methods execute faster than 30 frames per
second. The software calculates the number of cycles required for actual processing
time (including memory transfers) which reflects the actual theoretical frame rate

possible.

6.2 User Interface

In order to control settings of the restoration system, a graphical user interface
(GUI) was developed. A screen capture of the interface, which runs under Windows
NT. is shown in Figure 6.4. Selecting options will send the appropriate commands to
the MX card to modify operating parameters. The results can be seen immediately
in the restored output.

The GUI enables the operator to stop and start the system. change input
resolution. and control system settings such as feedback. Motion estimation can be
disabled or set to hierarchical search, where the number of levels and the search win-
dow can be specified. The SDIa, SDIp, or ROD detectors can be selected and their
detection thresholds dynamically changed. Concealment can use a temporal averag-
ing or median operation. as wel! as simply displaying the unmodified input sequence,
detection mask. or the motion compensated previous or next frames. Some com-
binations of detector and concealment filter are meaningless, and the GUI enforces
the correct combinations by disabling improper selections.

While the restoration system is running, the GUI periodically reads statistics
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Figure 6.4: The graphical user interface for the restoration system.
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from the MX containing the total number of frames processed, the actual frame
rate at which the system is operating, and the theoretical frame rate calculated by
the software. The actual and theoretical frame rates differ because the actual frame

rate must be a multiple of the capture rate, as discussed in Section 6.1.6.

6.3 Performance

In Chapter 3, several algorithms were evaluated for motion estimation, defect detec-
tion, and damage concealment by testing them on the artificially damaged WEST-
ERN and MOBCAL sequences. Because the exact locations of damage and the orig-
inal undamaged sequences were available, a quantitative comparison of restoration
performance was possible. In this chapter, the algorithms chosen for implementa-
tion in the real-time system are tested on digitized sequences from actual damaged

films.

6.3.1 Restoring Real Film Damage

The algorithms implemented in the real-time system were used for restoring the
FRANK and BIPLANE sequences. discussed in Section 1.4. A hierarchical block
matching search was used for motion estimation, with the MAD comparison metric,
four resolution levels created by unfiltered decimation, and an exhaustive search
window w = 1 at each level for a full-resolution motion extent of 15 pixels. The
SDIa. SDIp. and ROD detectors were implemented. and the averaging filter with
1:0:1 support and the 1:1:1 median filter were used for concealment.

A test frame from the FRANK sequence is shown in Figure 6.5. The original

frame has some defects: the forehead. the viewer’s left of the actor’s head. and near
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Figure 6.5: Detector performance on frame 44 of FRANK.
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the shoulder on the jacket. The performance of the detectors is also shown, with
detected damage shown as bright white pixels. Detector thresholds (given on figure)
were chosen to accurately identify the forehead damage location with a minimum

of false detections.

Motion estimates were inaccurate for the moving leaves in the background,
because shapes in this region change as they move. The trees overhead cast shadows
on the actor which change with the wind. All three detectors accurately identified
the damaged regions despite these problems. The SDIa detection mask contained the
most false detections, mostly in the moving leaves in the background and the outline
of the flower. SDIp had fewer false detections because of its more strict detection

criteria. and ROD performed the best because of its use of a larger support region.

A portion of the actor’s head is expanded in Figure 6.6 to evaluate the per-
formance of concealment algorithms. The original damaged frame and the restored
output using the 1:0:1 averaging filter and 1:1:1 median filter are shown. Results
from the ML3Dex median filter are also shown for comparison. although this method
was not implemented in the real-time system. Damage locations marked by the
SDIa detector (e, = 15) were used: all actual damage in the displayed region was

accurately identified.

Damage in the upper left of the images and just above the ear was accurately
concealed. and assumed the texture of the background. The defect on the forehead
was mostly covered, but the restored texture was slightly distorted compared with
the rest of the hair. Differences between the concealment methods were not no-
ticeable to the viewer in a single frame, although a slight “shadow” was apparent
in this region when the sequence was replayed. The artifacts remaining from the

concealment method, however, were not nearly as noticeable as the original damage.
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Figure 6.6: Concealment performance on frame 44 of FRANK.
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Further testing was conducted on the BIPLANE sequence, which contains a
considerable amount of damage. Figure 6.7 shows an original damaged frame as well

as the restored output (SDIa e, = 15, 1:1:1 median filter). Because of the increased

T S g e s i e

T [

riginal da.;n_aged frame

Pt e 1

Restored frame, w =2 Restored frame, w = 1 (scaling filter)

Figure 6.7: Restoration performance for frame 7 of BIPLANE.

resolution of this sequence, five motion estimation levels were used, for 2 maximum
motion offset of 31 pixels at full resolution (512 x 512).

Estimation with the standard per-level search window w = 1 was first used.



123

and the restoration system was able to remove the majority of damage in the frame.
However, due to poor motion estimates, two sections of the top wing—the center and
the wingtip—were incorrectly identified as defects and concealed with data from the
background. This was mostly due to the unfiltered decimation used to create image
resolutions; the narrow leading edge of the wing was eliminated at lower resolutions,
and the motion estimate drifted from the proper value. By using a larger search
window w = 2 at each level, the estimation algorithm was able to recover from
poor estimates at lower levels and the center of the wing was now correctly handled,
but the wingtip was still obscured. By using a four-pixel averaging filter before
decimation and the original search window w = 1, the final image in Figure 6.7 was

restored with the entire wing intact.

A further optimization in the real-time system deals with high resolution in-
put. In order to reduce computation for large input frames (640 x 480), motion
estimation stops at a lower resolution (320 x 240) in the hierarchy. This reduces
computation and memory bandwidth by almost four times. Estimates are propa-
gated to the highest level for detection and concealment, so they are accurate to
within two pixels. Figure 6.8 shows the effects of this technique for per-level win-
dows w = 1 and w = 2. Four resolution levels are used (levels 1 to 4), not including
the highest resolution (level 0). Comparing the output from Figures 6.7 and 6.8,
using a lower resolution for motion estimation did not have a significant impact on

quality.

These results illustrate the tradeoffs made in selecting restoration algorithms
for real-time execution. By using small per-level search windows and no scaling filter,
motion estimation can sometimes be inaccurate, which leads to reduced restoration

quality. Using lower resolutions for motion estimation with high-resolution input



.y oo

T e
i p -

Restored frame, w =1 Restored frame, w =2

Figure 6.8: Restored frame 7 of BIPLANE with motion estimation at reduced res-
olution.

makes the algorithm much faster. but the motion estimates are only accurate to
within two pixels. For the BIPLANE sequence results shown in Figure 6.8, this
did not affect restored quality but in some sequences with significant detail at full

resolution. the output quality can be poor.

6.3.2 Real-Time Processing

The real-time system implemented on the MX was used to restore damaged film
sequences which were recorded on video. Test sequences were much longer than the
digitized sequences and included many scene changes, interlacing, and various frame
rate conversion (pulldown) methods. The original sequences were compared with
the restored output, with various settings, on the basis of visual quality.

Table 6.1 shows the theoretical processing rate, in frames per second, for
various restoration settings. The theoretical processing rate is the speed at which

the system could operate if it did not have to synchronize with video input; the
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actual processing rate is always a factor of 30 frames per second, as discussed in

Section 6.1.6. Four levels were used for motion estimation in all cases: for 320 x 240

Resolution | Search window w | Detect/Conceal | Theoretical FPS
320 x 240 (none) SDIa/MED111 237
(none) ROD/MEDI111 60.3
1 (none) 74.3
1 SDIa/MED111 50.3
1 ROD/MED111 34.4
2 (none) 31.6
2 SDIa/MED111 26.2
2 ROD/MED111 21.1
640 x 480 (none) SDIa/MED111 59.0
(none) ROD/MED111 15.3
1 (none) 42.7
1 SDIa/MED111 28.4
1 ROD/MED111 12.9
2 (none) 27.3
2 SDIa/MED111 20.5
2 ROD/MED111 10.4

Table 6.1: Real-time restoration system speed for various settings.

resolution, levels 0 to 3 were used: for 640 x 480, levels 1 to 4 were used to reduce

computation. as described in the previous section. The averaging and median con-

cealment filters have almost identical computation requirements, so only the median

results are shown. SDIa and SDIp are also very similar in computing requirements.

so only the SDIa results are shown.

Motion estimation with a larger search space w takes significantly more com-

putation, as shown by the drop in frame processing rate. The ROD detector is

more complex than the SDIa or SDIp detectors and therefore causes a processing

rate decrease. Larger input frames decrease performance for motion estimation and

detection in all cases.

As the results show, a real-time restoration system (real-time measured as at
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least 30 frames per second) could use 320 x 240 resolution, with a search window
w = 1, the SDIa or ROD detectors, and a 1:1:1 median concealment filter. More
complex methods are slower than 30 frames per second. Note, however, that most
can run faster than 25 frames per second, which is PAL video speed and greater
than film speed. Therefore, the restoration system could run in real-time at higher
resolutions, or with more complicated algorithms, with PAL video input.

If the computing requirements are too high for real-time restoration, the
system will run at a reduced frame rate of 15 frames per second. This is adequate
to evaluate the quality of the restored output, but the sequence is noticeably “jerky”.
Motion estimation accuracy also suffers due to the increased time difference between
frames.

In general. most defects were removed by the real-time system. It was found
during testing that some remaining defects. or artifacts from incorrect restoration,
were still noticeable but the overall quality is better than the original. Scenes con-
taining little or no motion were most easily restored. As expected from earlier sim-
ulations. sequences with large or complex motion caused the restoration algorithms

to fail. These and other problems are discussed in the next section.

6.3.3 Restoration Problems

Because of the tradeoffs made in selecting algorithms for a real-time restoration
system or simply because of the content in test sequences. a number of problems
can occur during restoration. One example was already shown in Figure 6.7 where
bad motion estimates caused parts of the image to be incorrectly concealed. The
following sections describe other situations which cause restoration errors. and some

possible solutions.
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6.3.3.1 Motion Estimation Errors

In some scenes containing fast motion or camera pans, the motion estimation al-
gorithms were unable to follow the motion quickly enough because of their limited
search offset, and restoration quality suffered. Objects which were covered, uncov-
ered, or changed shape were also problems for the block matching motion algorithm.
Changes in brightness between frames was another source of errors.

The effects of motion estimation errors were incorrectly restored regions,
which often occur at the boundaries of moving objects. These were more noticeable
when the scene was mostly stationary than when they were caused by fast motion.
Possible remedies are to use a more complex and computationally demanding motion
estimation algorithm which is more robust. In general. however. the fact that the
input sequence contains damage limits the effectiveness of any motion estimation
algorithm, and so these types of errors may have to be accepted for an automatic

restoration system.

6.3.3.2 Scene Changes

The restoration algorithms use the previous and next frames, as well as the cur-
rent frame, in order to detect and conceal damage. On a scene change boundary,
the current frame will be uncorrelated with either the previous or next frame and
restoration will fail. Both the last frame of a scene and the first frame of the next
scene will be affected by this problem. One test sequence contained a similar situa-
tion where photos were being taken during a press conference. Each time a flashbulb
was lit, a single frame had a large intensity difference from the surrounding frames,
which caused the same problems as a scene change.

For the viewer, the effects of errors at scene changes were minimal because
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it required several frames for the visual system to adjust to the “shock” of a new
scene. Errors in the restoration process were mostly ignored because the viewer
had not yet analyzed the content of the new scene, and therefore could not easily
identify defects. Artifacts in the last frame of the old scene were also somewhat
eliminated by this fact—the viewer saw defects in that frame, but they were quickly
“forgotten” as the new scene was studied.

There has been some work done by other researchers in the area of scene
change detection [41, 42], and these methods could be applied before the restoration
process. At scene change boundaries, restoration would be disabled or a modified
algorithm which uses only one of the previous or next frames could be used. Another
method of reducing this problem within the context of the restoration algorithm is
to count the number of defects detected in each frame. If an uncommonly large
amount of damage is detected, the frame can be assumed to lie on a scene boundary
and the original frame can be substituted for the restored frame in display. This
method would fail if the actual damage in a sequence exceeds the average error from

a scene change.

6.3.3.3 Film to Video Conversion

The test sequences used for evaluating algorithms were digitized directly from film.
and so did not contain artifacts from the video conversion process. When the real-
time restoration system was used to restore damaged films converted to NTSC
video, a number of problems were discovered that affected the quality of the restored
output.

As mentioned in Section 1.3. NTSC video contains 30 interlaced frames per

second. divided into even and odd fields displayed 60 per second. Depending on the
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conversion process, the fields may contain information from the same or adjacent
frames. In the latter case, even and odd lines are possibly uncorrelated and restora-
tion will fail. Another problem with frame rate conversion is the necessity to repeat
some film frames in the video output. This violates the assumption that the same
location will not be damaged in adjacent frames and the restoration procedure will
fail.

The best solution to these problems is to control the film to video conversion
process, or to restore the frames as they are digitized from film and before they are
converted to video. If the sequence has already been recorded, fields containing in-
formation from adjacent frames could presumably be detected and fixed. Repeated
frames could be simply detected by calculating frame differences before motion com-
pensation: frames with very small error would be assumed to be repeats and one
frame would be ignored. These methods require more computation, but an added
advantage is they would reduce the number of frames to process per second from 30
to 24. PAL format video does not have these problems because its display rate is 25
frames per second. and therefore contains exactly one film frame per video frame.

For the real-time implementation on the MX. a frame difference comparison
before motion estimation is impractical because of the increased computation and
memory bandwidth required. It was found that using an input resolution of 320 x
240 solved the interlacing problem because the system used only even fields, and
the decrease in output resolution was not apparent. Repeated frames were still
a problem, which appeared as unrestored damage every four frames. A less than
perfect solution was to increase the computation required so processing dropped to

15 frames per second, eliminating repeated frames.
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Chapter 7

Conclusions and Future Work

In this thesis, a system for removing the effects of scratches and dirt on damaged
motion pictures in real-time is presented. A description of various algorithms to per-
form restoration is given along with performance results from using these methods
to repair both simulated and real damage. The algorithms which offered the best
results at a low computational cost were selected for implementation on a Precision
MX video processing card. Details of the implementation and its performance when
restoring actual damaged film sequences is presented.

The restoration process consists of three main steps: motion estimation and
compensation, defect detection, and damage concealment. Typically, a frame is
restored by using the previous and next frames in the sequence, compensating them
for the effects of motion. and using the information in the surrounding frames to
both detect the presence of damage and to conceal the effects of that damage. The
accuracy of restoration depends on how well these steps are performed.

A detailed description of motion estimation algorithms is given in Chapter 2.
It was decided that a block matching technique is best suited to real-time imple-

mentation. Various methods of searching for block matches are presented, as well
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as ways to improve accuracy such as acceptance thresholds. These techniques are
analyzed in detail in Chapter 5 by applying them to sequences containing simulated
damage. A quantitative comparison is performed on the basis of motion estimation

accuracy and computational cost.

In Chapter 3. a number of methods for detecting damage are described. The
spike detection heuristics and rank ordered difference methods are shown to be
the only methods with the computational efficiency to run in real-time. A further
comparison of detection accuracy is performed in Chapter 5 on simulated damage.
Three detection algorithms are selected as appropriate for a real-time restoration

system.

Methods for concealing damage are explained in Chapter 4. Several algo-
rithms are available which do an excellent job of concealing frame damage, but
only the simpler averaging and median filters could be implemented in a real-time
system. Again, a detailed comparison is performed in Chapter 5 and filters with
purely temporal support (in the previous, current and next frames) are selected for

implementation.

The discussion in Chapter 6 describes the implementation of the selected
algorithms on the Precision MX DSP board, and especially the algorithms for the
TMS320C80 processor. The graphical user interface used to control the system is
described and its features explained. Finally, some performance results are obtained
by using the real-time implementation to restore digitized film sequences containing

real damage, as well as damaged film sequences recorded on videotape.

The restoration system is able to process a greyscale NTSC video signal at 30
frames per second at a resolution of 320 x 240 pixels. Higher resolutions and more

complex restoration algorithms were also implemented, but these have a higher
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computational cost. In most cases, complex restoration can be performed at over
24 frames per second, faster than the film display rate. A real-time film restoration
system is therefore possible using these more advanced algorithms, but limited by

the video input signal.

Most input sequences are faithfully restored by the system, and the effects of
most damage are reduced. There are still problems, however, with some sequences
due to inaccurate motion estimation or damage detection. These artifacts and some
methods to improve them were discussed in Section 6.3.3, and more enhancements

are included in the following sections.

7.1 Performance Improvements

The restoration system is able to repair film damage in real-time. but some of the
more complex settings. such as a large frame size or large search window. require too
much computation to finish in one frame period. One solution to this problem would
be to use a faster processor. Currently. there are 60 MHz C80 processors available,
compared with 40 MHz for the current implementation—a 50 percent increase in
processing speed. The MX also uses slower memory (DRAM), while the C80 can
support faster synchronous memory (SDRAM) [35]. It is quite probable that with
faster components the system could run at least 20 percent faster, making a wider
variety of algorithms suitable for processing at NTSC video rates (30 frames per

second).
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7.1.1 Algorithm Enhancements

A major problem for the real-time restoration system is frame rate conversion. If the
source media displays fewer frames per second than NTSC video, some frames must
be repeated to increase the number of displayed frames per second while keeping
the overall speed of the filln constant. Detecting repeated frames is possible by
calculating frame differences before motion compensation, but requires too much
computation and memory bandwidth for the current implementation to perform in
real-time.

Knowing where a scene boundary occurs can improve restoration performance
because the system can either disable restoration or use an alternate method for
these frames. Algorithms are available to detect scene changes in a video signal [41.
42], but again these methods are too time consuming to perform in the present
svstem.

Another enhancement which has not been explored is using more than one
frame in the backward and forward directions. More frames could increase detection
and interpolation quality, but the chances of motion estimation errors grow as the
time difference between frames increases. According to [13], using more frames for

support does not yield significant improvements. This is an area for future study.

7.1.2 Hardware Implementation

Now that a real-time restoration system has been successfully implemented entirely
in software, a logical extension is to create a hardware implementation of similar
algorithms. Such a system would undoubtedly be faster than the current imple-
mentation, allowing for higher input resolutions or more complicated restoration

algorithms.
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The most computationally intensive part of the restoration process is motion
estimation. There are already several manufacturers producing hardware motion
estimation processors for video compression applications [43, 44], and it would be a
simple matter to use one of these for a restoration system. More exotic and time-
consuming estimation techniques such as overlapping block search are possible if the
silicon is available. Implementing other algorithms such as median or morphological

filters also become much more practical when implemented in hardware.

7.2 Extensions of this Work

The current restoration system repairs only “random” types of damage such as dirt
and scratches. A worthwhile future addition would be line scratch removal, as well
as removal of other types of film artifacts such as jitter or brightness variance {2].

Color films could be processed to remove dirt and scratches using the same
techniques as for grevscale sequences. Assuming the color film has been converted to
luminance and chrominance components, the motion estimator and defect detector
operate on the luminance component alone. Once damage locations have been
identified. a concealment filter is applied to each channel to create the restored
color frame. Other methods have been developed which treat color sequences as a
special case [3].

In its current implementation. the real-time restoration system uses a video
signal for input, so its maximum processing size is 640 x 480 pixels. The techniques
developed for processing these lower resolution sequences could also be applied to
full-resolution digitized film with dimensions on the order of 2000 or 4000 pixels.
In fact. a number of C80 processors with the current algorithms could be used in

parallel to restore larger sequences. assuming the frame information was distributed
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properly to all processors. While this is possible, a custom hardware implementation
would likely be cheaper and more practical.

The restoration algorithms could also be applied to other areas other than dirt
and scratch removal. One possibility is the reconstruction of video streams (such as
MPEG) damaged during transmission [45]. The decoded stream will contain missing
regions where the macroblocks were damaged. Error coding would exactly identify
the damaged locations, so detection is not necessary—motion compensation in the
surrounding frames and a concealment algorithm could presumably reconstruct the
missing blocks.

[t is noteworthy that the algorithms used in restoration are fairly similar in
structure to a block-based video compression algorithm such as MPEG. Motion es-
timation is performed. and motion compensated blocks are loaded into the C80 for
processing (detection and concealment). This is essentially the same sequence re-
quired by the MPEG coding method—instead of performing detection and conceal-
ment, interframe coding could be done. The real-time restoration implementation
therefore provides a good framework for a video compression system.

Expanding further on the similarities between video compression and restora-
tion, the detection and concealment algorithms could be combined with a video
compression system and performed immediately before block coding with a mini-
mum of extra complexity. The quality and compression ratio of the coded video

stream should be significantly better when encoding damaged film sequences.
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