
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2013-01-25

Force-Directed Partitioning Technique

for 3D IC

Fakheri Tabrizi, Aysa

Fakheri Tabrizi, A. (2013). Force-Directed Partitioning Technique for 3D IC (Master's thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/26207

http://hdl.handle.net/11023/502

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Force-Directed Partitioning Technique for 3D IC

by

Aysa Fakheri Tabrizi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

January, 2013

c© Aysa Fakheri Tabrizi 2013

Abstract

3D IC design is one of the challenging problems of today. 3D partitioning solutions
can significantly impact manufacturability and performance of a circuit. In this work,
a 3D partitioning technique is developed that reduces the number of TSVs by using
force directed placement technique. A circuit is partitioned into several layers and
a force directed placement problem is solved to find the optimal locations of the
partitions. This partitioning solution is improved by using a proposed force-based
simulated annealing technique. The proposed technique is tested on ISPD04 circuits,
and shows up to 20% reduction in the number of TSVs.

i

Acknowledgements

I would like to express my profound gratitude to my supervisor Dr. Laleh Behjat for
her invaluable guidance, infinite patience, and constant support. I would also like to
show my greatest appreciation to Dr. Bill Swartz for his invaluable advices during
this research. My gratitude also goes to my committee members for their insightful
comments. In addition, I would like to thank all my teachers in the past for their
motivations and encouragement and all the knowledge that I learned.

I would like to acknowledge the Department of Electrical and Computer Engi-
neering wonderful staff for keeping things running smoothly.

This work would not have been possible without the support from colleagues at
the lab: Dr. Logan Rakai, Amin, Bardia, Delaram, Yangyang, and Emily. Special
thanks go to Dr. Logan Rakai, Amin and Bardia for constructive discussions. I would
like to thank my friends in Calgary for all their support and all the fun we have had
and my friends all over the world for being always beside me despite the distance. I
owe special thanks to Mohammad and Benyamin for their assistance in writing this
thesis. I would like to thank Mohammad for his support and keeping me encouraged
during writing this thesis.

Last but not least, I would like to thank my family members, my mom and dad
and my brother Arash for their unconditional love and support.

ii

Table of Contents

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . v
List of Figures . vi
List of Symbols . viii
1 Introduction . 1
1.1 Physical Design . 1
1.2 Motivations . 2
1.3 Thesis Contributions . 4
1.4 Thesis Structure . 5
2 Background . 7
2.1 Introduction . 7
2.2 Partitioning . 7

2.2.1 Terminology . 8
2.2.2 2D Partitioning Problem . 11
2.2.3 Kernighan Lin (KL) Algorithm 12
2.2.4 Fiduccia-Mattheyses (FM) Algorithm 19
2.2.5 Multilevel Partitioning . 32

2.3 3D IC . 34
2.3.1 3D partitioning . 36
2.3.2 3D Partitioning Techniques 36

2.4 Simulated Annealing (SA) . 38
2.5 Force Directed Placement . 43
3 Constructive 3D Partitioning . 45
3.1 Introduction . 45
3.2 Problem Statement . 46
3.3 Proposed Constructive 3D Partitioning 49

3.3.1 Multilevel Partitioning . 52
3.3.2 Linear Ordering . 52
3.3.3 Layer Merging . 54

3.4 Numerical Results . 56
3.4.1 Benchmarks . 56
3.4.2 Initial Partitioning Results . 56
3.4.3 Linear Ordering Results . 61

3.5 Summary . 63
4 Force Based Simulated Annealing . 68
4.1 Introduction . 68
4.2 Force Based Simulated Annealing . 69

4.2.1 Force Calculation . 71
4.2.2 Neighbor Function . 74
4.2.3 Cost Function . 74

iii

4.2.4 Selecting SA parameters . 75
4.3 Experimental Results . 76
4.4 Summary . 83
5 Conclusion and Future Work . 84
5.1 Contributions . 84
5.2 Future Work . 85
A Supplementary Results . 86
Bibliography . 94

iv

List of Tables

2.1 Annealing analogy . 40

3.1 ISPD 2004 Benchmarks . 59
3.2 The effect of different initial partition number on net cut and run time

targeting 3 tier IC . 60
3.3 The effect of different initial partition number on the net cut and run

time targeting 4 tier IC . 61
3.4 The effect of different initial partition number on the net cut and run

time targeting 5 tier IC . 62
3.5 The effect of different initial partition number on the net cut on exam-

ple circuit in Figure 3.5 and Figure 3.4 62
3.6 Maximum and average number of net cuts exceeding the number of

net cuts obtained by using the default order in hMetis algorithm for 3
tier IC . 64

3.7 Maximum and average number of net cuts exceeding the number of
net cuts obtained by using the default order in hMetis algorithm for 4
tier IC . 64

3.8 Maximum and average number of net cuts exceeding the number of
net cuts obtained by using the default order in hMetis algorithm for 5
tier IC . 65

3.9 Best net cut number achieved . 65

4.1 Effect of force based refinement 4 tier using SA, FSA, MFSA on net cut 78
4.2 Effect of force based refinement 4 tier using SA, FSA, MFSA on run

time . 78
4.3 Effect of force based refinement 4 tier 79
4.4 Effect of force based refinement 3 tier 79
4.5 Effect of force based refinement 5 tier 80
4.6 Tier area 3 Tier . 80

v

List of Figures and Illustrations

2.1 An example of a simple circuit schematic 8
2.2 Hypergraph and graph representation of the circuit shown in Figure 2.1 10
2.3 Netlist representation of the schematic given in Figure 2.1 10
2.4 Connectivity matrix of the schematic given in Figure 2.1 11
2.5 Initial partitions of an example circuit 17
2.6 Steps of KL algorithm in the first iteration for the example in Figure

2.5 . 18
2.7 Difference between the calculation of cuts in a graph, [a], and hyper-

graph, [b], representation of a circuit 20
2.8 An example of FM partitioning with initial partitions 24
2.9 Gain list of cells in the example . 25
2.10 Graph representing the circuit after the first move 26
2.11 Updated gain list of cells in the example 27
2.12 Graph representing the circuit after the second move 27
2.13 Updated gain list of cells in the example 28
2.14 Graph representing the circuit after the third move 28
2.15 Updated gain list of cells in the example 29
2.16 Graph representing the circuit after the fourth move 29
2.17 Updated gain list of cells in the example 30
2.18 Graph representing the circuit after the fifth move 30
2.19 Updated gain list of cells in the example 31
2.20 Graph representing the circuit after the sixth move 31
2.21 Updated gain list of cells in the example 32
2.22 Multilevel partitioning flowchart . 33
2.23 An example of a 3D circuit with TSV 34
2.24 An example that shows how the 3D technology reduces the wire length 35

3.1 The effect of stacking the partitions in proper order in reducing the
number of vias. 47

3.2 An example to show that the optimal 2D partitioning solution is not
always the optimal 3D partitioning solution 48

3.3 Proposed constructive algorithm flowchart 51
3.4 The net list representation of the example circuit 57
3.5 The graph representation of the example circuit 58
3.6 Graphical representation of maximum and average increments/decrements

in number of net cuts (the blue and the green bars respectively) and
the increments/decrements in number of net cuts obtained by using the
proposed order (the red bars) over the number of net cuts obtained by
using the default order given by hMetis algorithm 66

4.1 Location of the cells on the z-axes and the amount of force exerted on
them after quadratic optimization . 72

vi

4.2 Number of TSVs versus iteration number in SA, FSA, and MFSA for
IBM02 . 81

A.1 IBM02 SA, FSA, and MFSA convergence 87
A.2 IBM03 SA, FSA, and MFSA convergence 87
A.3 IBM04 SA, FSA, and MFSA convergence 88
A.4 IBM05 SA, FSA, and MFSA convergence 88
A.5 IBM06 SA, FSA, and MFSA convergence 89
A.6 IBM07 SA, FSA, and MFSA convergence 89
A.7 IBM09 SA, FSA, and MFSA convergence 90
A.8 IBM10 SA, FSA, and MFSA convergence 90
A.9 IBM11 SA, FSA, and MFSA convergence 91
A.10 IBM12 SA, FSA, and MFSA convergence 91
A.11 IBM13 SA, FSA, and MFSA convergence 92
A.12 IBM14 SA, FSA, and MFSA convergence 92
A.13 IBM15 SA, FSA, and MFSA convergence 93
A.14 IBM16 SA, FSA, and MFSA convergence 93

vii

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AMG Algebraic Multigrid

CAD Computer Aided Design

EC Edge Coarsening

FM Fiduccia-Mattheyses

FSA Force-based Simulated Annealing

HEC Hyperedge Coarsening

I/O Input/Output

IC Integrated Circuit

ISPD International Symposium on Physical Design

KL Kernighan-Lin

LOP Linear Ordering Problem

MFSA Modified Force-based Simulated Annealing

MHEC Modified Hyperedge Coarsening

NP-hard Non-deterministic Polynomial-time hard

SA Simulated Annealing

TPR Three Dimensional Place and Route

TSV Through Silicon Via

viii

Via Vertical interconnect access

VLSI Very Large Scaled Integration

ix

Chapter 1

Introduction

In Very Large Scaled Integration (VLSI), millions of circuit components are integrated

in a single chip. For example, Intel’s Xeon X7460 released in 2008 contains more

than 1.9 billion transistors [1]. As Moore predicted, in the past 50 years, the number

of transistors have been increasing at exponential rates [2]. Therefore, innovative

techniques had and still have to be designed to manage the complexity of the circuits.

One of these techniques is to implement circuits in a Three Dimensional (3D) platform

where several layers of silicon are stacked on top of each other [3, 4, 5, 6]. In this

thesis, the partitioning problem for the physical design of 3D Integrated Circuits (ICs)

is considered.

The rest of this chapter is organized as follows: In Section 1.1, the main stages

of physical design are explained. In Section 1.2, the motivations of the thesis are

discussed. Thesis contributions are briefly presented in Section 1.3. Finally, the

organization of the thesis is described in Section 1.4.

1.1 Physical Design

Physical design is one of the main steps in IC design where the physical properties

such as the exact locations of components and wires of the circuit are determined.

Physical design includes several major stages: partitioning, floor planning, placement

and routing [7, 8, 9, 10].

1

In the partitioning stage, the circuit is divided into several partitions that are

relatively independent, i.e. as few wires as possible connect them. These partitions

then can be designed individually or in parallel. As partitioning is the focus of this

thesis, a more comprehensive introduction of this stage is presented in Chapter 2.

The arrangement of the partitions and their dimensions are determined in floor

planning step. In the placement stage, the exact locations of the circuit components

are determined. The main objective of placement is minimizing the total wire length

while ensuring routability. Placement usually takes place in two phases: global place-

ment and detailed placement. In global placement the approximate locations of the

cells are determined. In this stage cells are allowed to overlap. In detailed place-

ment, the exact locations to the cells are obtained and any overlaps are removed.

Once all cell locations are determined, the paths for all of the wires of the circuit are

determined in the routing stage.

1.2 Motivations

3D design has become a viable solution to reduce wire length and enhance integration

in circuits [11, 12, 13, 14]. One of the biggest issues to be addressed during 3D IC

integration is the communication between tiers using Through-Silicon Vias (TSVs).

Minimizing the total number of TSVs is of upmost importance, as they are expensive,

bulky and unreliable [15].

One of the most effective ways to reduce the number of TSVs is to use partitioning.

Partitioning of Two Dimensional (2D) circuits is a well developed field and is usually

2

performed by multi-level algorithms such as hMetis [16, 17]. However, 2D partitioning

techniques do not consider the number of times a net is cut, where net refers to

the interconnection between circuit elements, or how many partitions exist between

the end points of a net. In a 3D circuit, partitions are stacked and any connection

between two non-adjacent partitions results in using more than one TSV. For example,

considering a 3D IC with 5 tiers, if a terminal of a net is placed in the top tier and

another terminal in the bottom tier, the net is effectively cut 4 times and 4 TSVs

are required to complete one single connection. Therefor, during 3D partitioning

a designer has two main optimization criteria: reduce the number of nets between

partitions, and determine the optimal locations of tiers. In this thesis it is proposed

to consider floor planning during 3D partitioning to reduce the number of TSVs and

obtain better integration for 3D ICs.

Another motivation of this thesis is to show that different heuristics should be used

for different situations to obtain best results. For example, multilevel partitioning

techniques are very effective in finding a good partitioning solution in a small amount

of time, however, they do not give any indication on where partitions should be

placed or how and in which direction cells have to move in order to further improve

their results. Therefore, it is proposed to combine a multilevel technique with other

techniques such as force directed placement and simulated annealing to obtain best

results. In other words, in this thesis it is proposed to use different partitioning

techniques in different stages of the design in order to harness the strengths of each

method.

3

1.3 Thesis Contributions

In this work different optimization methods are combined to perform the 3D IC

partitioning. These methods are used in different stages of IC physical design such as

2D partitioning, floor planning, and placement. Since these methods are developed

targeting different applications they are not suitable for 3D IC partitioning in their

current state. The main contributions of this thesis are as follows:

• Development of the a force directed partitioning technique.

• Development of force-based simulated annealing technique.

• Up to 20% reduction in the number of interconnections between Tiers.

A brief description of these contributions is given in the following.

Development of the a force directed partitioning technique:

In this thesis it is proposed to use state-of-the-art technique for 2D circuit parti-

tioning which minimizes the number of connections between all partitions. However

in a 3D IC, objective function is different from that of 2D IC and the goal is to mini-

mize the number of vias between partitions that are stacked on one dimension. In this

thesis, it is proposed to use a one dimensional placement to find a suitable ordering

for the partitions. Ordering the initial partitions results in locating the partitions

that have more connections close to each other and consequently reduce the length

of connections and number of long connections.

Development of force-directed simulated annealing technique:

4

After the initial 3D partitioning solution is obtained an iterative improvement

technique can be used to improve the results. Simulated Annealing (SA) [18] is shown

to be effective to improve the partitioning solutions. In original SA, the cells to be

moved and the direction of their move between the partitions are selected randomly.

In this thesis, a variation is proposed to SA where random moves are replaced with

moves that are directed by forces applied to cells. This method is combined with

other methods in solving the particular 3D IC partitioning problem; however, it can

be used in many other optimization problems. Unlike the original SA in which the

current solution is replaced by a random neighbor solution, in the developed FSA,

the selection of the new solution is probabilistic, i.e., not only the acceptance of a

move, but also selecting the new solution is based on a probability. This probability

of selection is based on the system information. In 3D partitioning problem this

information is proposed to be the forces that connected cells impose on each other.

Finally, numerical results on benchmarks released by IBM show that the proposed

techniques outperform the existing 3D partitioning solutions for most cases.

1.4 Thesis Structure

This thesis is structured as follows:

• Chapter 2: In this chapter the background for partitioning, force-

directed placement, simulated annealing and 3D IC design are given.

• Chapter 3: In this chapter one of the main contributions of this the-

sis, combining of several partitioning and floor planning techniques to

5

obtain better 3D partitions, is given. In addition, the experimental

results of the 3D partitioning are given.

• Chapter 4: In this chapter, a novel force-directed iterative improve-

ment technique is introduced to further improve the partitioning solu-

tion based on the tier location of the cells. In addition, experimental

results obtained for 3D partitioning are given and compared with other

3D partitioning techniques.

• Chapter 5: Finally, a summary of the contributions of the thesis and

future work are given in this chapter.

6

Chapter 2

Background

2.1 Introduction

This chapter provides background on circuit partitioning and 3D ICs. Moreover, the

techniques used in this thesis, simulated annealing and force directed placement, are

reviewed.

This chapter is organized as follows: In Section 2.2, the partitioning problem

is defined and existing partitioning algorithms are identified. Then, 3D IC, 3D IC

partitioning problem and the existing 3D IC partitioning techniques are presented in

Section 2.3 . In Section 2.4, SA meta-heuristic is described. In Section 2.5, the force

directed placement method is reviewed.

2.2 Partitioning

The modern integrated circuits consist of millions of transistors [15]. Due to this large

and ever increasing scale of modern circuits, the design of such circuits has become

a complex task. A common strategy to handle the complexity and to perform a

computationally feasible design is to implement a divide and conquer strategy where

circuits are partitioned into smaller sub-circuits which can be designed independently.

Because of the large number of transistors, it is very difficult to make a full-chip

layout. Hence, it is required to divide the circuit into smaller sub-circuits which can

7

be designed individually or in parallel. The procedure of dividing a circuit into smaller

sub-circuits is called partitioning.

The wires that connect two different sub-circuits can be much more costly than

those that are confined to a single sub-circuit. Moreover, as the design of each sub-

circuit is done independently and without considering the other partitions in most

cases, it is desired to generate partitions as independently as possible. Therefore,

minimizing the connections between two sub-circuits is of great significance.

2.2.1 Terminology

A circuit is a collection of logic elements, referred to in this thesis as cells, that are

connected to each other. The connection between the cells are called nets. Figure

2.1 illustrates a simple circuit schematic. There are also contact points that connect

some cells to the outside of a circuit. These contact points are called Input/Output

Pins (I/O Pins).

d

a

b

f

e

c

Figure 2.1: An example of a simple circuit schematic

Connectivity information of cells can be represented in different ways such as

hypergraph/graph representation, netlist representation and connectivity matrix [7].

8

Each one of the representations is described in further detail here.

Hypergraph/Graph representation

A circuit can be represented by a graph G(V,E) where V is the set of vertices or nodes

that includes the cells and set E represents the set of edges that are the connection

between cells, i.e. nets [19].

In the graph representation each edge connects to only two cells. Since in practical

circuit design, there are lots of nets that are connected to more than two cells, a

graph representation is not an adequate representation of a circuit and hypergraph

representation is mostly used. A hypergraph is generalization of graph in which one

edge can connect two or more than two vertices. The nets that connect more than

two cells are called hyperedges [19].

In Figure 2.2, a hypergraph representation of the circuit with five cells, shown

in Figure 2.1, and its corresponding graph representation are shown. In this figure

vertices a to e represent the logic elements a to e shown in Figure 2.1 and the the

edges represent the connection between logic elements. In this example, in converting

a hypergraph to a graph, all hyperedges are converted to a set of edges that connect

each pair of the nodes connected to a given hyperedge.

A multigraph is a graph that can have more than one edge between a pair of

nodes. A multigraph can be used to represent the nets with different weights. The

weight, w(e), for an edge, e ∈ E, represents the weight of the corresponding edge.

Finally, in a circuit, each logic element has a certain area. In this thesis, area(v), for

each v ∈ V represents the area of each cell.

9

c d ef

a b

(a) Hypergraph

a

f

c

d

e

b

(b) Graph

Figure 2.2: Hypergraph and graph representation of the circuit shown in Figure 2.1

Netlist representation

A netlist contains the names of the nets followed by the names of all the cells that

are connected to a given net. An example of a netlist representation of the circuit

shown in Figure 2.1 is given in Figure 2.3.

node: 6
nets: 2

net 0: a f c
net 1: b c d e

Figure 2.3: Netlist representation of the schematic given in Figure 2.1

Connectivity matrix

A connectivity matrix, C, is an n × n symmetric matrix where n is equal to the

number of all cells including the I/Os. The value of element C(i, j), i 6= j is equal

to the weight of the connection between cells i and j. Element C(i, j), i 6= j of C is

zero if cell i is not connected to cell j and non-zero otherwise. The diagonal elements

of the matrix are equal to the sum of the weights of the nets that are connected to

10

the cell. Note that the connectivity matrix doesn’t show the information of nets i.e.

which cells are connected to a particular net. An example of a connectivity matrix

for the schematic of Figure 2.1 is shown in Figure 2.4.

C! =!

! ! ! ! ! !
!
!!
!!
!

2 0 1
0 3 1
1 1 5

0 0 1
1 1 0
1 1 1

0 1 1
0 1 1
1 0 1

3 1 0
1 3 0
0 0 2

!

Figure 2.4: Connectivity matrix of the schematic given in Figure 2.1

2.2.2 2D Partitioning Problem

The k-way partitioning divides a circuit into k partitions and is a combinatorial

optimization problem1where the goal is to divide a circuit into several partitions that

have as few wires as possible connecting them [8].

The first goal of partitioning is to divide the circuit in a way that the number of

connections between the sub-circuits is minimized. The constraint of the problem is

normally to keep balance between the size of the partitions, or in other worlds it is

desired to produce partitions that are roughly from the same sizes. The mathematical

formulation can be stated as [8, 9]:

min
∑
e∈Φ

w(e),

s.t.
∑
v∈Vi

area(v) ≤ 1

k

∑
v∈V

area(v) =
1

k
area(V),

1A combinatorial optimization problem is a problem of finding the optimal solution from the
finite number of possible solutions [20].

11

where Φ denotes the set of cut edges and w(e) is the weight of each cut edge.

Vi ⊆ V, i = 1, ..., k and k is the number of partitions. Since partitioning is an

Non-deterministic Polynomial-time hard (NP-hard) problem [8], no deterministic al-

gorithm is known which can find the optimal solution in polynomial time. However,

several heuristics [21, 22, 23, 24] such as Kernighan-Lin (KL) algorithm [25] and

Fidducia-Mattheyses (FM) algorithm [26] are developed that can improve the qual-

ity of a given partition. These algorithms are described in detail in the following

sections. In these algorithms the partitioning problem is formulated as a graph par-

titioning problem. The vertices of the graph represent the circuit’s nodes and the

edges represent the interconnections between the cells or the nets.

With the increase in the number of circuit element, partitioning of 2D circuits

is now performed by multi-level hypergraph partitioning algorithms such as hMetis

[27, 17]. These multi-level algorithms on their own are based on iterative improvement

techniques such as FM [26].

2.2.3 Kernighan Lin (KL) Algorithm

Kernighan-Lin heuristic, proposed by B. W. Kernighan and S. Lin in 1970, is one of

the earliest works in solving the partitioning problem [25]. The original algorithm was

developed to perform 2-way partitioning where the cell areas are equal. KL algorithm

divides a graph G(V,E) with |V | = 2n nodes to two sets with n nodes in a way that

the two sets have the minimum number of connections with each other.

In KL an initial partitioning solution is improved by swapping two nodes from

different partitions. The algorithm selects the pair of nodes that their exchange

12

results in highest net cut reduction.

KL is an iterative algorithm. The first iteration starts with arbitrary initial par-

titions i.e. the nodes are divided to two equal size sets A and B where each set

consists of n nodes. Then a pair of nodes from different partitions with maximum

gain is selected and swapped. Once the nodes are swapped, they are fixed and are not

allowed to be selected for other swaps until all nodes are fixed. After every swap the

gains of free nodes are updated and the pair selection and the procedure is repeated

until all nodes are fixed. At this point all nodes become free and the algorithm starts

the next iteration and the pair swapping is repeated. The algorithm terminates if no

improvement can be made during a given iteration.

The algorithm is described step by step after gain calculation and related concepts

are presented. To calculate the gain of a pair of nodes, first the cost of moving a node

is calculated. The following equation shows the cost of moving a node that belongs

to partition A to the partition B:

D(v) = |EAB(v)| − |EA(v)|, (2.1)

where EAB(v) is the set of edges connected to node v that also has nodes in partition

B and EA(v) is the set of edges connected to v that only has nodes in partition A.

In other words, EAB(v) are the set of edges connected to node v that are cut by cut

line and EA(v) are the set of edges that are not cut by the cut line. The value of

D(v) can be positive or negative. The high D(v) value indicates that the benefit of

moving node v is high.

The gain of swapping two nodes from different partitions is calculated by adding

13

the cost of the move of each node and twice subtracting the connection weight between

the pair. Notice that subtracting the connection weight between the nodes is necessary

because the cost of each node is calculated with the assumption of not moving the

other node. So the connected edge that was cut before the swap is counted in both

cost calculations as moving only one node changes the status of the given edge to

uncut, where it remains cut by swapping the pair. The gain of the xth swap in a

given iteration gx(i, j), is calculated by:

gx(i, j) = D(i) +D(j)− 2C(i, j), (2.2)

where D(i) and D(j) are the cost of moving node i and j respectively and C(i,j) is the

connectivity weight between node i and node j.

The value of gain shows the reduction in cut size when the given pair is swapped.

A positive gain indicates that the swap improves the quality of partitioning and a neg-

ative gain means the swap increases the cut size and lowers the quality of partitions.

Gx is the cumulative gain that is calculated after each swap in a given iteration.

Gx =
x∑

i=1

gi

Gm = max(Gx)

The swap with maximum Gx indicates that the partitioned graph after performing

the given swap has the highest quality among all configurations of iteration. Therefore

the moves are only applied up to swap number m. Notice that all the moves that are

found until all the nodes are fixed were in order to find Gm and the swaps are only

applied up to swap number m.

14

KL Algorithm Description

The KL partitioning algorithm (Algorithm 1) starts with dividing the graph to two

random equal size initial partitions (line 1-2). Gm gets the initial value of ∞ and

iteration number is set to 1 (line 3-4). During each iteration, while Gm is greater

than zero (line 5) all the nodes are set as free and the cost of all nodes are calculated

(line 6-9). x is set to 1 to indicate the first swap (line 10). While there exist free

nodes in the graph (line 11) the gain of swapping each pair of free nodes are calculated

and the pair with maximum gain is swapped and fixed (line 12-18). The cumulative

gain is calculated (line 19) and the cost of free nodes that are connected to swapped

nodes are updated (line 20-22). The algorithm moves to next swap of the iteration

(line 23). When all the nodes are fixed (line 24) the swap number with maximum

cumulative gain is determined (line 25) and swaps up to a determined swap number

are confirmed (line 26-28). The algorithm goes to next iteration if Gm is greater than

zero (line 29-30) and terminates otherwise (line 31).

Example 2.2.1 An example of a given circuit represented as a graph and the initial

partitions are shown in Figure 2.5. In this figure, nodes a to e represent the cells

and edges of the graph represent the nets between the cells. The dashed line divides

circuit into two initial partitions. The initial cut size is 8. The cost and the gain of

each node can be calculated as follows:

D(a) = 1− 0 = 1, D(b) = 2− 1 = 1, D(c) = 2− 1 = 1, D(d) = 3− 2 = 1

D(e) = 1− 1 = 0, D(f) = 3− 1 = 2, D(g) = 1− 1 = 0, D(h) = 2− 0 = 2

g1(a, h) = 1 + 2− 2× 0 = 3

15

Algorithm 1 KL partitioning Algorithm
Input: Graph G(V,E)
Output: Partitioned graph G(V,E)

1: Begin
2: A,B ← random initial partitions
3: Gm ←∞
4: iteration← 1
5: while Gm > 0 do
6: for all v ∈ V do
7: S(v)← free
8: Compute D(v)
9: end for
10: x← 1
11: while there are free nodes do
12: for all i ∈ A, S(i) = free do
13: for all j ∈ B, S(j) = free do
14: gx(i, j)← gain of swapping i and j
15: end for
16: end for
17: swap a,b with max(gx)
18: S(a), S(b)← fixed
19: Compute Gx

20: for all free v connected to a or b do
21: Update D(v)
22: end for
23: x← x+ 1
24: end while
25: Gm = max(Gx)
26: if Gm > 0 then
27: Confirm swaps x = 1, ..,m
28: end if
29: iteration← iteration+ 1
30: end while
31: End.

16

x

a

f

bc d

egh

Figure 2.5: Initial partitions of an example circuit

The maximum gain belongs to a and h. Nodes a and h are swapped and fixed and

is shown in Figure 2.6(a). D(v) is updated for all free nodes that are connected to

swapped nodes, a and h, which are c, d, and f .

D(c) = 1− 2 = −1, D(d) = 2− 3 = −1, D(f) = 2− 2 = 0

g2(b, g) = 1 + 0− 2× 0 = 1

Nodes b and g are swapped and fixed shown in Figure 2.6(b).

D(v) is updated for all free nodes that are connected to swapped nodes b and g

which are d, e, and f .

D(d) = 2− 3 = −1, D(e) = 1− 1 = 0, D(f) = 2− 2 = 0

g3(c, e) = −1 + 0− 2× 0 = −1

Nodes c and e are swapped and fixed.

D(v) is updated for all free nodes that are connected to swapped nodes c and e

which are d, and f .

D(d) = 2− 3 = −1, D(f) = 2− 2 = 0

g4(d, f) = −1 + 0− 2× 0 = −1

17

x

h c d b

efg a

(a)

x

h c dg

f e ba

(b)

x

h d

c

g

f

e

ba

(c)

x

h

c d

g fe

b a

(d)

Figure 2.6: Steps of KL algorithm in the first iteration for the example in Figure 2.5

18

Nodes d and f are swapped and fixed.

Cumulative gain is computed.

G1 = g1 = 3

G2 = g1 + g2 = 4

G3 = g1 + g2 + g3 = 3

G4 = g1 + g2 + g3 + g4 = 2

The maximum positive cumulative gain Gm is equal to 4 with m = 2. Therefore the

first 2 swaps are performed and the algorithm goes to next iteration (Figure 2.6(b)).

The cut size is reduced to 4 from 8 in first iteration.

2.2.4 Fiduccia-Mattheyses (FM) Algorithm

Feduccia-Mattheyeses is a partitioning heuristic introduced by Feduccia and Mattheye-

ses in 1982 [26] . FM divides the graph G(V,E) into partitions so as minimize the

total cut nets.

Unlike KL that swaps a pair of cells between two partitions, FM moves cells

independently which makes the algorithm more flexible in solving unequal partition

sizes. Another advantage of FM over KL is that hypergraphs can be used in FM.

While KL minimizes the number of edges, FM minimizes the number of nets cut. That

means if one net is connected to more than two cells and the net is cut, KL might

count the cut more than once, while FM counts that only once which is practical.

Figure 2.7 shows the shortcoming of partitioning methods using graph representation

vs. hypergraph representation. Another advantage of FM is that it is applicable on

19

graphs with different node areas.

x

a

b

c

(a) Grapgh representation

x

b

c

a

(b) Hypergraph representation

Figure 2.7: Difference between the calculation of cuts in a graph, [a], and hypergraph,
[b], representation of a circuit

Definitions used in FM

Cut - a net is cut if it has cells in more than one partition.

Uncut - a net is uncut if all its connected cells are located in one partition.

Gain - gain of a cell is the change in the number of cuts when cell is moved to

other partition. The gain is defined as

g(v) = FS(v)− TE(v)

where FS(v) is the number of cut nets that are only connected to v in v’s partition.

TE(v) are the nets, connected to v, that all their other cells are in v’s partition .i.e

the uncut nets that are connected to v.

There are 3 type of nets connected to a node v. The first type is the nets that are

cut and have other cells connected in the same partition that v is located. Moving v

to the other partition doesn’t affect the state of these kind of nets i.e. they remain

cut. The second types are the nets that are cut and are only connected to v in v’s

20

partition. Moving v to the other partition changes the state of these nets to uncut,

since all their connected cells are in the partition that v is moved to. These are the

nets that are counted in calculating FS(v). The third type of nets are the nets that

are uncut. So moving cell v to the other partition changes the state of these nets to

cut. These are the nets that are counted in calculating TE(v).

Cumulative gain - Gs is the cumulative gain after sth move in an iteration. As

in KL, after each move in an iteration, the cumulative gain is calculated and at the

end of the iteration the maximum cumulative gain Gm and its corresponding move

number m is determined. Then, the moves are performed up to mth move.

Gs =
s∑

i=1

gi

(Gm,m) = (max(Gs), s)

Critical nets - A critical net is a net that is either uncut or has exactly one cell in

one partition and the rest of its cells in the other partition. These are the only nets

that moving their connected cells might change their state from cut to uncut or vice

versa.

Critical cells - Critical cells are the cells that are connected to the critical nets.

Ratio factor- The ratio factor is a parameter that shows the relation of the size of

a partition to the size of graph.

r =
|A|

|A|+ |B|

where |A| and |B| are the sizes of the partition A and B respectively i.e. the total

21

respective area of the all cells in partition A and partition B and

|A|+ |B| = |V |,

where, V is the total area of all cells.

To set the balance criterion the size of the largest node must be considered. The

partitioning is balanced if

r.|V | − |v|max ≤ |A| ≤ r.|V |+ |v|max,

where, |v|max is the size of the largest node in graph.

FM Algorithm description

The Algorithm 2 presents the pseudocode for FM algorithm. FM starts with com-

puting the balance criterion (line 1-2) and arbitrarily divides the graph into two

subgraphs or partitions (line 3). The value of Gm is set to ∞ and the first iteration

starts (line 4-5). All the nodes are set as free and FS, TE, and g are calculated for

all (line 7-13). A free cell that maximizes gain while satisfying the balance criterion

is selected, moved to the opposite partition and fixed, then the track of moved cell is

kept (line 15-19). The criticalnets and criticalcells connected to the moved cell are

determined (line 20-21). The gain is updated for the critical cells that are connected

to the moved cell i.e. the cells that are connected to the moved cell by critical nets

(line 22-26). The cumulative gain is calculated (line 27). Then algorithm continues to

the next move (line 28). When all the nodes are fixed (line 29) the move number with

maximum cumulative gain is determined (line 30) and moves up to the determined

move number are confirmed (line 31-33). The algorithm goes to next iteration if Gm

is greater than zero (line 34-35) and terminates otherwise (line 36).

22

Algorithm 2 FM partitioning Algorithm
Input: Graph G(V,E)
Output: Partitioned graph G(V,E)

1: Begin
2: Balance criterion
3: initial partition
4: Gm ←∞
5: iteration← 1
6: while Gm > 0 do
7: Gs ← 0
8: for all v ∈ V do
9: S(v)← free
10: FS(v)← number of nets connected to v and cut
11: TE(v)← number of nets connected to v but not cut
12: gx(i, j)← FS(v)− TE(v)
13: end for
14: x← 1
15: while there are free nodes do
16: a← cell with max gain
17: order ← {order, a}
18: move a to opposite partition
19: S(a)← fixed
20: criticalnets← nets connected to a
21: criticalcells← cells connected to criticalnets
22: for all c ∈ criticalcells connected to a do
23: if thenS(c) == free
24: Update gx(c)
25: end if
26: end for
27: Gs ← Gs + gx(a)
28: x← x+ 1
29: end while
30: Gm = max(Gs)
31: if Gm > 0 then
32: Confirm swaps order(1 : m)
33: end if
34: iteration← iteration+ 1
35: end while
36: End.

23

Example 2.2.2 The weighted cells and the nets of a circuit and the ratio factor for

partitioning are given. The initial partitions are as shown in Figure 2.8.

x

a

f

N(5)

bcd

N(4)

N(3)N(1)

g

N(6)

N(7)

e

N(2)

Figure 2.8: An example of FM partitioning with initial partitions

Cell areas:

area(a) = 4, area(b) = 2, area(c) = 2, area(d) = 5,

area(e) = 1, area(f) = 5, area(g) = 3.

The nets are as follows:

N(1) = (c, f), N(2) = (c, d, e), N(3) = (b, f),

N(4) = (b, d), N(5) = (a, f), N(6) = (d, g).

And the balance factor is r = 0.4. Tie breaking rule: alphabetical order. Perform the

24

first iteration of FM algorithm. Balance criterion can be calculated as follows:

r.|V | − |v|max ≤ |A| ≤ r.|V |+ |v|max

r.|V | − |v|max = 0.4 · 22− 5 = 3.8

r.|V | − |v|max = 0.4 · 22 + 5 = 13.8

3.8 ≤ |A| ≤ 13.8

Initial partition sizes: |A| = 13, |B| = 9

FS(a) = 1, TE(a) = 0, g1(a) = 1

FS(b) = 1, TE(b) = 1, g1(b) = 0

FS(c) = 1, TE(c) = 0, g1(c) = 1

FS(d) = 1, TE(d) = 1, g1(d) = 0

FS(e) = 1, TE(e) = 0, g1(e) = 1

FS(f) = 3, TE(f) = 1, g1(f) = 2

FS(g) = 1, TE(g) = 1, g1(g) = 0

3

2

1

0

-1

-2

-3

a

b

c

d

3

2

1

0

-1

-2

-3

e

f

g

Figure 2.9: Gain list of cells in the example

25

The best gain is 2 which can be obtained by moving f .

Balance criterion after moving f is |A| = 18, |B| = 4 which doesn’t satisfy the

balance criterion. The next maximum gain is selected. Possible cells are a, c, and e

with the gain of 1.

Balance criterion after moving a is |A| = 9, |B| = 13

Balance criterion after moving c is |A| = 11, |B| = 11

Balance criterion after moving e is |A| = 14, |B| = 8

All three moves satisfy the balance criterion, the a is selected based on alphabetical

order.

Now the critical nets connected to a and the corresponding critical cells are deter-

mined and the gain of critical cells are updated.

g1 = 1

criticalnets connected to a: N(5)

criticalcells: f

x

bcd

N(4)

f

N(3)N(1)

g

N(6)

N(7)

e a
N(5)

N(2)

Figure 2.10: Graph representing the circuit after the first move

The best gain is 1 which can be obtained by moving c or e.

Balance criterion after moving c is |A| = 7, |B| = 15

26

3

2

1

0

-1

-2

-3

c

b d

3

2

1

0

-1

-2

-3

e

g f

Figure 2.11: Updated gain list of cells in the example

Balance criterion after moving e is |A| = 10, |B| = 12

Moving c doesn’t satisfy the balance criterion and cell e is selected to move.

g2 = 1

criticalnets connected to e: N(6)

criticalcells: c, d

bcd

N(4)

e

f

N(3)N(1)

g

N(6)

N(7)
a

N(5)

N(2)

Figure 2.12: Graph representing the circuit after the second move

The best gain is 0 which can be obtained by moving b, c, f , or g.

Balance criterion after moving b is |A| = 8, |B| = 14

Balance criterion after moving c is |A| = 8, |B| = 14

Balance criterion after moving f is |A| = 15, |B| = 7

Balance criterion after moving g is |A| = 13, |B| = 9

27

3

2

1

0

-1

-2

-3

b

d

c f g

Figure 2.13: Updated gain list of cells in the example

Only moving g satisfies the balance criterion, so cell g is selected to move.

g3 = 0

criticalnets connected to g: N(6), N(7)

criticalcells: d, f

b cd
N(4)

eg
N(6)

f

N(7)

N(2)

N(3) N(1)

a
N(5)

Figure 2.14: Graph representing the circuit after the third move

The best gain is 2 which can be obtained by moving f ; however it doesn’t satisfy

the balance criterion. and b with the next best gain of 0 is selected.

Balance criterion after moving b is |A| = 11, |B| = 11

28

3

2

1

0

-1

-2

-3

b

d

f

c

Figure 2.15: Updated gain list of cells in the example

g4 = 0

criticalnets connected to b: N(3), N(4)

criticalcells: d, f

c d

b

N(4)

e g
N(6)

f

N(7)

N(2)

N(1)

N(3)
a

N(5)

Figure 2.16: Graph representing the circuit after the fourth move

The next cell to be moved is c with the gain of 0 and satisfying the balance criterion.

Balance criterion after moving c is |A| = 9, |B| = 13

g5 = 0

criticalnets connected to c: N(1), N(2)

29

3

2

1

0

-1

-2

-3

c

d

f

Figure 2.17: Updated gain list of cells in the example

criticalcells: f, d

d

b

N(4)

eg
N(6)

f

N(7)

N(2)

c

N(1)

N(3)
a

N(5)

Figure 2.18: Graph representing the circuit after the fifth move

The best gain belongs to d however it doesn’t satisfy the balance criterion. There-

fore, f is moved.

Balance criterion after moving f is |A| = 14, |B| = 8

g6 = −2

criticalnets connected to c: N(1), N(3), N(5), N(7)

No criticalcells.

30

3

2

1

0

-1

-2

-3

d

f

Figure 2.19: Updated gain list of cells in the example

g f

N(7)

d
N(6)

e

c

N(1)

b

N(3)N(4)

N(2)

a

N(5)

Figure 2.20: Graph representing the circuit after the sixth move

Cell e is moved.

g7 = 0

In order to find the best move sequence the cumulative gains are calculated.

G1 = g1 = 1

G2 = g1 + g2 = 1 + 1 = 2

G3 = g1 + g2 + g3 = 1 + 1 + 0 = 2

G4 = g1 + g2 + g3 + g4 = 1 + 1 + 0 + 0 = 2

G5 = g1 + g2 + g3 + g4 + g5 = 1 + 1 + 0 + 0 + 0 = 2

31

3

2

1

0

-1

-2

-3

d

Figure 2.21: Updated gain list of cells in the example

G6 = g1 + g2 + g3 + g4 + g5 + g6 = 1 + 1 + 0 + 0 + 0 + (−2) = 0

G7 = g1 + g2 + g3 + g4 + g5 + g6 + g7 = 1 + 1 + 0 + 0 + 0 + (−2) + 0 = 0

2.2.5 Multilevel Partitioning

As circuit sizes have been growing exponentially, new techniques were needed to deal

with this increase. In multilevel partitioning methods first the size of a graph is

reduced using clustering techniques in the coarsening phase. Then, the coarsened

circuit is partitioned using partitioning techniques in the initial partitioning phase.

The last step of the algorithm is uncoarsening and refinement phase [27, 16, 17]. In

Figure 2.22 the three phases of multilevel hypergraph partitioning are shown. Each

one of these phases is described in the following.

Coarsening phase

During this phase the smaller hypergraphs are constructed by clustering groups of

vertices with common hyperedges. The clustered vertices form a single vertices and

the hyperedges inside a cluster are removed from the reduced hypergraph. In Figure

2.22 two levels of coarsening is shown. In this figure the original hypergraph consists

32

Initial

Partitioning

Phase

Refinement

Phase

Coarsening

Phase

Figure 2.22: Multilevel partitioning flowchart

of 18 vertices and the number of vertices are reduced to 12 after one level coarsening

and it is reduced to 7 vertices after two level coarsening. There are different methods

to cluster the vertices such as Edge Coarsening (EC), Hyperedge Coarsening (HEC),

Modified Hyperedge Coarsening (MHEC) [27, 16, 17], best choice [28] and Netcluster

[29].

Initial partitioning phase

At this phase, the coarsest hypergraph is partitioned such that it has the smallest

number of net cut, and the sizes of the partitions are almost equal. FM algorithm

[26] is mainly used to perform this step. The coarsest hypergraph typically contains

75-200 nodes for which the FM algorithm performance is nearly optimal.

Uncoarsening and refinement phase

In this phase at each level the coarse hypergraph is uncoarsened to one level finer

hypergraph and every sub-cluster is assigned to the partition to which its parent

33

cluster was located and a refinement algorithm is used to reduce the number of net

cuts by moving the vertices between the partitions while maintaining the balance cri-

teria. The most common algorithms that is used for the refinement is FM algorithm.

Uncoarsening and refinement continue until the original graph is partitioned.

2.3 3D IC

A 3D IC is a single chip in which the circuit elements are integrated in multiple

vertical layers, called tiers or dies [3, 4, 5, 6, 30]. The interconnection between the

tiers are known as 3D-Vias or TSVs of a 3D IC is shown in Figure 2.23.

Figure 2.23: An example of a 3D circuit with TSV

3D technology is a promising technology that aims to provide higher integration

and reduced wire length. The higher integration results in smaller footprint and the

reduced wire length reduces the power consumption of the circuit which leads to

longer battery life and less operational cost. Also, reducing the wire length by 3D

technology, especially reducing the length of long wires can decrease circuit delay.

3D ICs are not widely used yet; however among the notable 3D circuits, the

3D version of Pentium 4 CPU, presented by Intel in 2004, can be mentioned which

34

demonstrates 15% power saving and 15% performance improvement compared to its

2D version [1].

With the advances of 3D ICs, many new problems are added to the domain of

physical design that are unique to these circuits. That’s because the optimal design

for 3D circuit is different from conventional 2D circuit design. Unlike the conventional

2D circuits, the circuit components lie on multiple tiers. One of the motivations of

3D technology is reducing the connection lengths.

The example illustrated in Figure 2.24 shows how 3D technology reduces the wire

length. For a given circuit, partitioning the circuit to four partitions as a 2D circuit,

the longest connection would be between the point a and point b that would be 4l.

However, 3D technology reduce the length of longest connection to 2l as shown in

figure. Notice that TSV are used for the vertical connection and the thickness is not

added to wire length. Reducing the wire length results in reduction of circuit delay as

circuit delay is directly proportional to wire length. Also reduced wire length results

in a better wire distribution and less congestion and less power consumption.

2L

2L

L

L

Figure 2.24: An example that shows how the 3D technology reduces the wire length

35

2.3.1 3D partitioning

In 3D IC partitioning, each partition forms a tier and the TSVs are used for the

connections between layers [31, 32, 33]. The connection between two adjacent layer

consumes 1 TSV but connection between two non-adjacent layer consumes m − n

TSVs, where m and n are the numbers of the given layers, m > n. For example in a

4 tier circuit, a connection between tier 2 and tier 4 needs two TSVs. Therefore a 3D

partitioning problem can be formulated as:

min
∑

em,n∈Φ

w(em,n)|m− n|, (2.3)

s.t.
∑
v∈Vi

area(v) ≤ 1

k

∑
v∈V

area(v).

2.3.2 3D Partitioning Techniques

Several 3D computer-aided design tools exist. Three Dimensional Place and Route

(TPR) is CAD tool that performs 3D physical design [34]. This tool uses hMetis

algorithm to perform partitioning and divides the netlist to the number of partitions

equal to the number of desired tiers. After dividing a circuit to tiers, the cells are

placed and routed in each tier.

The partitioning step of TPR is performed using hMetis algorithm. Then, the

partitions are ordered using a linear placement technique to minimize the total number

of nets that are cut between two adjacent layers.

I/O pins method

In I/O pin method [35, 11], 3D partitioning is performed by first partitioning and

placing the I/O pins and then the cells based on the I/O locations. The reason that

36

this algorithm balances the I/Os is that the analytical placers use the I/O locations

as the starting point.

There are different versions of I/O pins partitioning: Alternate pins, Unlocked

pins, I/O Pins method and Refinement I/O Pins method.

The I/O Pins method algorithm computes the logical distance between I/O pins

and considers the distance between each pair as the net weight in the first step.

In order to find the logical distance between a pair of I/O pins the shortest paths

between them are found. The algorithm uses hMetis tool to partition the I/O pins.

Then the cells are partitioned based on the I/O pin locations and uses SA to stack

the partitions.

The Alternate pins assigns the pins to the partitions alternatively and randomly.

This algorithm replaces the first step of I/O pin method by assigning I/O nodes

alternatively to different tiers. This algorithm provides a solution with balanced I/O

pins.

The Unlocked pins partitions the whole netlist using hMetis and uses SA to stack

the partitions. In this method I/O pins are not spread evenly.

Refinement I/O Pins method performs a refinement on solutions obtained from

The I/O Pins method. In its refinement stage, the algorithm generates random

perturbations of a solution and accepts or rejects the new solution based on cost

variation. The new solution that decreases the cost is accepted and the solution that

increases the cost is rejected.

The perform perturbation on a solution two alternatives are considered and one is

selected each time with the probability of 50%. Either a cell or a I/O pin is randomly

37

moved to a random partition, or a pair of random cells or I/O pins are exchanged.

The cost function is composed of three factors: Number of 3D vias, area balance

and I/O pin balance. The cost function is represented by following equation:

Cost =
(wv × v)

v1

+
(wa × a)

a1

+
(wp × p)

p1

where v, a, and p are normalized values for usage of 3D vias, area and I/O pin balance

respectively. v is is the sum of square via number of each net. a is the subtraction of

area of the largest tier by smallest one. And p is sum of I/O pin area of the tier with

largest I/O pin area subtracted by sum of I/O pin area of the tier with smallest I/O

pin area. v, a, and p are divided by their initial value before any perturbation v1, a1,

and p1 to be normalized. wv, wa, and wp are the weights imposed to tune the cost.

2.4 Simulated Annealing (SA)

SA is an iterative meta-heuristic optimization method introduced in [18, 36], based

on Metroplis algorithm presented in [37]. This method simulates the process of an-

nealing of metal, in which the metal is heated up to the melting temperature and

then gradually cooled to allow the molecules (atomic structure) to get to an optimum

energy state. Heating the metal allows the atoms to move from their initial position,

wander randomly and move to higher energy states. Cooling gradually moves the

atoms to lower energy states and finds better configuration than the initial configu-

ration. That means the material which is in a certain energy level, changes its state

to higher energy by heating and then goes to a lower energy level by being cooled

38

gradually.

In simulated annealing, the cost of function is analogous to the energy level of

the material. The objective of an optimization problem is to minimize the cost func-

tion2(i.e. maximize the fitness function3), where the objective of annealing in metal-

lurgy is to minimize the energy level. A high value for cost function of the problem

is analogous to high energy state of a metal and a low value for cost function of the

problem is analogous to low energy state of a metal.

The search space is simulated to the possible configurations of atoms. Each vari-

able of the problem acts as an atom and possible values for each variable are analogous

to possible positions of an atom. A candidate solution corresponds to a configuration

of material.

The temperature in each step of annealing is simulated to a parameter T in SA.

T is a parameter to be set according to the problem. Setting the initial T and the

ratio of its decreasing depends on the problem. i.e. a certain value for initial T could

be too high in solving one problem where the same value for initial T might be very

low in solving another problem depending on the ratio of change in cost by a small

change in the value of variables. This can be described by referring to annealing

process. e.g. in metallurgy the material is heated to the stress-relief point which is

called annealing temperature or annealing point. The annealing point and cooling

rate for different materials are different e.g. for the glass it depends on thickness,

thermal conductivity, heat capacity, and other features of the glass. In Table 2.1, the

2Cost function is the objective function of a minimization problem.
3Fitness function is the objective function of a maximization problem.

39

analogies between annealing and SA are described.

Table 2.1: Annealing analogy

Metallurgy Energy Level
Analogy General Optimization Problem Cost of Function

Specific 3D Partitioning Problem Number of TSVs
Metallurgy Possible configuration of atoms

Analogy General Optimization Problem Search space
Specific 3D Partitioning Problem Position of cells in different tiers
Metallurgy Atom

Analogy General Optimization Problem Variable
Specific 3D Partitioning Problem Cell
Metallurgy Position of an atom

Analogy General Optimization Problem Value of a variable
Specific 3D Partitioning Problem Location of a cell
Metallurgy Configuration of Material

Analogy General Optimization Problem Candidate solution
Specific 3D Partitioning Problem Partitioning Solution
Matalurgy Temperature

Analogy General Optimization Problem T Parameter
Specific 3D Partitioning Problem T Parameter
Matalurgy New Configuration with small change in

atoms position
Analogy General Optimization Problem Neighbor solution

Specific 3D Partitioning Problem New partitioning Solution by moving a few
cells between partitions

SA starts from an initial solution in the feasible space. This initial solution can be

either random or a semi optimal solution obtained by another optimization method.

Unlike hill climbing algorithms4 that reject new solutions with the cost more than

the cost of the current solution, SA accepts solutions with higher cost with a certain

probability. At each iteration, a new candidate solution is selected randomly in the

neighbourhood of the current solution. If the cost of the new solution is lower than the

4Hill climbing algorithms are iterative local search algorithms that start with an arbitrary so-
lution and generate new solution by a change in the current solution. If the change produces a
better solution, the current solution is replaced with the new solution repeating until no further
improvements can be found.

40

cost of the current solution, the new solution is accepted. Otherwise the probability

of its acceptance depends on the difference of the cost of the current solution and

the candidate solution and the value of T . The higher the value of T , the higher

is the chance of accepting the solution with higher cost. At the early stages of the

algorithm, the T is set to be large and the probability of acceptance of high cost

solutions is close to one. Therefore the algorithm gives chance for both uphill and

downhill moves. Uphill moves are the moves that increase the cost of solution and

downhill moves are the moves that decrease the cost of solution. As the temperature

is decreased during the algorithm operation the probability of accepting high cost

solutions goes down.

SA is an iterative method. In each iteration, algorithm considers a neighbour

solution s′ and decides between moving to the neighbour solution s′ or staying at the

current solution s. The decision is based on the quality of neighbour solution or a

probability. If the neighbour solution s′ is better than current solution s, i.e. The

value of function at s′ is smaller than the value of function at s, then s is replaced by s′.

Otherwise, if s′ results in a higher cost, the algorithm accepts the s′ with a probability.

This probability depends on the difference of costs between current solution and the

candidate solution and also on the varying parameter T . This probability is specified

by the acceptance probability function P which is based on Boltzmann acceptance

criterion [18]:

P = e−∆cost/T (2.4)

41

∆cost = costnew − costcurrent

The neighbour solution is a state in search space that is produced by a small

perturbation to the current solution i.e. a small change in value of one or more

variable. The action of changing the state is called a "move". For a particular

problem different moves can be considered.

Algorithm 3 Simulated Annealing
Input: Initial Solution sinit
Output: Optimized Solution

1: Begin
2: T ← T0

3: i← 0
4: s← sinit
5: costcurrent ← Cost(s)
6: while T > Tmin do
7: while stopping criteria do
8: i← i+ 1
9: s′ ← neighbor(s)
10: costnew ← Cost(s′)
11: ∆cost = costnew − costcurrent
12: if ∆cost < 0 then
13: s← s′

14: costcurrent ← costnew
15: else
16: r ← Random(0, 1)
17: if r < e−∆cost/T then
18: s← s′

19: costcurrent ← costnew
20: end if
21: end if
22: end while
23: T ← α.T
24: end while
25: End.

42

2.5 Force Directed Placement

In recent years, many placement algorithms have been proposed to minimize a mea-

sure of total wire length [38, 39, 40]. Analytical placers are designed based on the

global optimization algorithms and have recently received much consideration from

both academia and industry. These placers usually spread the cells over the placement

area and minimize the total wire length simultaneously. Force directed placement is a

type of analytical placement during which cells and their connections are modelled as

a mass-spring system [41]. The connected cells attract each other and the magnitude

of attraction is directly proportional to the distance between the cells or the connec-

tion length. In mass-spring system, the cells, which are free to move, will move in the

direction of their forces and will settle in a configuration with the minimum energy.

In the force directed placement, cells that are free to move are allowed to move in the

direction of the forces applied to them. Therefore, the placement problem is reduced

to solving an optimization problem.

The most used wire length measure is the squared Euclidean distance as it is a

continuously twice differentiable function. Therefore, the placement problem formu-

lation is as follows:

minL =
n∑

i=1,j=1

c(i, j)((xi − xj)2 + (yi − yj)2), (2.5)

where n represents the total number of cells and c(i, j) is the corresponding connec-

tion cost between the cells i and j if they are connected and 0, otherwise. During

global placement, each dimension can be considered independently. Therefore, the

43

formulation can be divided into two separate optimization problems as follows:

minLx =
n∑

i=1,j=1

c(i, j)(xi − xj)2,

minLy =
n∑

i=1,j=1

c(i, j)(yi − yj)2.

This type of force directed technique is in a new capacity to perform partitioning in

this thesis.

44

Chapter 3

Constructive 3D Partitioning

3.1 Introduction

In 3D partitioning, the quality of the solution does not only depend on the quality

of the partitioning stage, but also on the quality of the floor planning where the

locations of different tiers are determined.

A major contribution of this thesis is combining several partitioning and floor

planning techniques so as to obtain better 3D partitions. The proposed technique

reduces the number of nets between partitions and the number of times that a net

is cut, and consequently, reduces the TSV usage by both providing high quality

partitions and reducing the number of long connections.

First, different 2D partitioning methods are studied and the best technique for

obtaining initial partitions is determined. In addition, experiments are performed to

determine the best trade-off between the number of initial partitions and run time

of the algorithm. The 1D force-directed placement is developed and solved for the

partitioning problem to obtain the best locations of the partitions. Finally, it is

proposed to obtain an initial 3D partitioning solution by merging layers together.

The rest of this chapter is organized as fallows. The proposed constructive 3D

partitioning algorithm is introduced and described in Section 3.3. In Section 3.4, the

results of the proposed 3D partitioning are given. Finally, a summary of the chapter

45

is given in 3.5

3.2 Problem Statement

In a 3D circuit, partitions are stacked on top of each other and any connection be-

tween two non-adjacent partitions results in using more than one TSV. For example,

considering a 3D IC with 5 tiers, if one terminal of a net is placed in the top tier

and the other terminal in the bottom tier, the net is effectively cut 4 times and 4

TSVs will be required to complete one single connection. The example in Figure 3.1

shows how the location of tiers affects the number of TSVs. Stacking the partitions

in the order shown in 3.1(a) results in usage of 8 TSVs, while changing the order of

partitions to the order shown in 3.1(b) reduces the number of TSV usage to 7.

On the other hand, the produced partitions targeting 2D partitioning are not

always the optimal partitions targeting 3D partitioning, even if they are stacked in

their best possible order. This fact is shown using an example given in Figure 3.2. In

3.2(a) the best 2D partitioning solution of a circuit is given, where the number of 2D

net cuts is equal to 6. Theses partitions are stacked in their best order in 3.2(a) and

the number of 3D net cuts is equal to 8. However another partitioning solution for

the same circuit, which is given in 3.2(b), results in 7 2D net cuts and 7 3D net cuts

in its best stacking order. This is an example showing that the optimal partitions for

3D circuits may be different from the optimal partitions targeting 2D partitioning.

In this thesis, the goal of 3D partitioning is set to be to minimize the number

of nets that are cut by any horizontal line drawn between any pair of adjacent tiers.

46

P1

P2

P3

N1

N2 N3

N4 N5 N6

(a) Net cuts in 3D partitioning = 8

P1

P3

P2

N2

N1

N4 N5 N6

N3

(b) Net cuts in 3D partitioning = 7

Figure 3.1: The effect of stacking the partitions in proper order in reducing the
number of vias.

47

a c

e f

g h

b

d

i j

(a) Optimal partitioning solution targeting 2D circuit

a

e

b

h

jfd

i

c

g

(b) Optimal partitioning solution targeting 3D cir-
cuit

Figure 3.2: An example that shows the optimal 2D partitioning solution is not always
the optimal 3D partitioning solution. The weight of thick edges is equal to 20 and
the weight of narrow edges is equal to 1.

48

This means that, during partitioning, two optimization criteria are considered: form

the optimal tiers, and determine the optimal locations of different tiers. These two

optimization can not be done in series, since it is not possible to verify the optimal

partitions before they are stacked. In this work, a technique that considers both of

the mentioned criteria is introduced.

In developing the proposed constructive 3D partitioning algorithm, partitioning

methods are combined with floor planning methods and the partitioning and floor

planning stages are performed simultaneously.

3.3 Proposed Constructive 3D Partitioning

In this work a new approach is utilized to form the initial tiers i.e it is proposed to

divide the circuit to several partitions (3 to 5 times of the number of desired tiers)

instead of traditionally dividing the circuit to the exact number of desired tiers and

form the tiers by finding the best combination of initial partitions while determining

the best location of partitions at the same time.

Among the different partitioning methods, multilevel hypergraph partitioning is

selected to perform initial partitioning. hMetis tool is used to perform this task, which

provides high quality 2D partitions and renders an efficient run time of the algorithm.

Another technique used in the proposed algorithm is the linear ordering, which is

mainly used in floor planning stage of the physical design. The algorithm arranges the

previously generated partitions in a single row in a way that minimizes the length of

connections and consequently the number of net cuts. Ordering the initial partitions

49

rather than stacking them randomly results in locating the partitions that have more

connections close to each other. This consequently reduces the length of connections

and the number of long connections and gives the semi optimal combination of the

partitions to form the tiers.

The flowchart of proposed 3D constructive partitioning algorithm is shown in Fig-

ure 3.3. This algorithm has three main phases: k-way partitioning, stacking and

merging. The steps of the algorithm are described in this section. First, the netlist

and the desired number of tiers are fed to the algorithm. Then, an initial k-way par-

titioning is performed. A detailed description of this step can be found in Subsection

3.3.1. At this point and after the initial partitioning, each initial partition is selected

as a seed cell (parameter S) and forms the bottom layer and the following procedure is

implemented: (1) Stacking, through solving a linear ordering problem, for which the

detailed explanation can be found in Subsection 3.3.2. The ordered partitions form

the initial layers of the circuit. At this point, each cell belongs to a layer which has a

location on the z-axes assigned to it. (2) merging, whose details are given elsewhere

(refer to Subsection 3.3.3). Via merging, depending on the desired number of tiers,

the initial layers are combined and form the initial tiers. Afterwards, the number of

TSVs is counted to determine the suitable order that generates the minimum number

of TSVs.

The inputs of the algorithm shown in Figure 3.3 are the netlist and the desired

number of tiers, m. The output of the algorithm is the 3D partitioned netlist i.e. the

tiers and their order and the number of TSVs needed. First, the netlist is divided

into n partitions using multilevel hypergraph partitioning technique, where n is a

50

Start

Get netlist(C, N)

Desired tiers# (m)

Initial n-way partitioning

S=1

Best TSV# = ∞

Stacking (Order)

Merging (Tiers)

TSV Counting

TSV < Best TSV?

S = n?S = S+1

Best TSV# = TSV#

Tiers

Display Best TSV#

Tiers

No

Yes

No

Yes

End

Figure 3.3: Proposed constructive algorithm flowchart

51

multiple of m. Then the generated partitions are stacked using a linear ordering

heuristic. Every n/m successive layers are merged and form the 3D tiers.

In Section 3.3.1 the initial partitioning step is described. The linear ordering stage

and merging the layers are described in Sections 3.3.2 and 3.3.3 respectively.

3.3.1 Multilevel Partitioning

In the first phase of the algorithm, the netlist is divided into several partitions using

the method of multilevel hypergraph partitioning. Normally, the number of parti-

tions is several times larger than the desired number of tiers. hMetis tool is used to

form these partitions. The partitions are produced in a way that they have minimum

numbers of connections with each other. These partitions provide a good initial solu-

tion in a reasonable time; however, this solution is not tailor made for 3D ICs. This

algorithm divides netlist into partitions in a way that they have minimum intercon-

nections with each other, but doesn’t consider the number of times that a net is cut

when the partitions are stacked.

3.3.2 Linear Ordering

The partitions obtained in the previous step have the minimum number of connections

with each other; however, stacking them in different orders can result in different

number of vias. The example circuit given in Figure 3.1 shows how the number of

cuts changes when the partitions are reordered.

As the number of TSVs are equal to the number of nets that are cut by any

horizontal line drawn between any two adjacent tiers, at this point it’s desired to

52

stack the initial partitions in an order that the number of nets that are cut by any

horizontal line drawn between any two partitions is minimized.

In a general linear ordering problem, there are p objects to place in order [42].

This problem can be modeled as an integer programming.

min

p∑
i=1

p∑
j=1

i 6=j

gijxij

s.t. x is the incidence vector of a tournament1

xij + xji = 1, ∀ 1 ≤ i, j ≤ p ∈ N

x ∈ {0, 1},

where xij for i, j = 1, ..., p are the variables for the relative locations of partitions

i and j. The value 1 for xij indicates that i is before j, otherwise xij is 0. gij is the

cost of placing i before j. p is the total number of partitions.

This problem can be restated as:

min

p−1∑
i=1

p∑
j=i+1

cijxij

s.t. xij + xjk − xik ≤ 1, 1 ≤ i < j < k ≤ p

− xij − xjk + xik ≤ 0, 1 ≤ i < j < k ≤ p

x ∈ {0, 1}

where cij = gij − gji.

1Tournament is a complete directed acyclic graph.

53

The problem of finding the best order of partitions is called Linear Ordering

Problem (LOP) which is also an NP-hard optimization problem. In [42] a heuristic

is developed in order to solve the linear ordering problem effectively. This algorithm

is given in Algorithm 4. This method divides the nets connected to each partition

to three different categories, i.e. terminating nets, new nets and continuing nets.

Terminating nets are the nets that are terminated by placing the given partition. That

means the terminating net is not connected to any other partition that are unplaced.

New nets are the nets that start by placing the given partition. That means the new

net is not connected to any partition that are placed in order. Continuing nets are the

nets that are connected to at least one partition among ordered partitions and at least

one unplaced partition. The algorithm starts with choosing a seed partition. Then,

the partition that has the highest difference between the number of terminating nets

and new nets is placed on top of the seed cell. In case of tie, the partition with the

highest number of terminating nets is selected. In case of another tie, the partition

that has the highest number of continuing nets is selected. If there are still multiple

partitions that possess the same number of continuing nets, the partition with the

lowest connection is selected. The algorithm continues by selecting the next partitions

and stacking until no other partitions are left. The algorithm for the linear ordering

is given in Algorithm 4.

3.3.3 Layer Merging

At this point, the layers that have a large number of connections are located close to

each other and the number of long connections are reduced, so every m/n successive

54

Algorithm 4 Linear Ordering
Input: Set of initial partitions
Output: Order of initial partitions

1: Begin
2: select Seed partition
3: Order ← Seed
4: Set← Set− Seed
5: while Set 6= {} do
6: select the partition with highest (Terminating nets - New nets)
7: if there is a tie then
8: Select the partition with largest (Terminating nets)
9: if there is a tie then
10: Select the partition with most continuing nets
11: if there is a tie then
12: Select the partition with the fewest connected cells
13: if there is a tie then
14: Select randomly
15: end if
16: end if
17: end if
18: end if
19: Add the selected partition to Order
20: Remove the selected partition from Set
21: end while
22: End.

layers are merged to form n initial Tiers. Therefore, in this procedure, each of n−1 cut

lines is assumed as a border that separates each n tier from one another. Alternatively,

we could have moved the cut lines back and forth provided the balance criteria is not

disturbed in order to obtain a smaller number of TSVs. This is attributed to the fact

that at a later stage (Chapter 4), where the SA is utilized for improving the solution,

the simulation will not be that efficient if it is started from the lower temperatures.

55

3.4 Numerical Results

The effectiveness of the proposed partitioning technique is verified via empirical tests

on ISPD04 benchmark circuits [43]. All algorithms are written in Matlab. In ad-

dition, the steps of the proposed algorithm are explained by using a simple netlist

consisting of 20 nodes and 49 edges and hyperedges. Explaining the algorithm with

this simple circuit makes the algorithm to be understood better and it helps to have a

profound insight into the goal and procedure of the algorithm. The netlist and graph

representation of this circuit are shown in Figure 3.4 and Figure 3.5. In Figure 3.5

there are 20 circles that represent 20 cells of the circuit and the lines show the nets.

The simple circuit shown in this figure illustrates the complexity of a circuit and gives

an insight that how complex a circuit with millions of cells can be.

3.4.1 Benchmarks

In Table 3.1, the characteristics of the benchmark circuits including the number of

cells, I/Os and nets [43] are shown.

3.4.2 Initial Partitioning Results

The algorithm starts by dividing the netlist to several initial partitions. these initial

partitions are combined after linear ordering and form the initial tiers. One of the

challenges in developing this algorithm was to determine the number of initial parti-

tions. It is proposed to set the number of initial partitions equal to or greater than

the number of desired tiers to be able to merge and form the initial tiers. In order

to find the best number of initial partitions, empirical experiments were performed

56

Figure 3.4: The net list representation of the example circuit

57

5

14

18

9

13

10

717

19

12

4

6

8

11

16

1

15

2

3

20

Figure 3.5: The graph representation of the example circuit

which is described in the following.

To avoid confusion, the initial partitions are referred to as partitions in multi-way

partition phase, layers after linear ordering, initial tiers after layer merging, and tiers

after refinement.

In these experiments, different numbers of initial partitions are assigned to each

benchmark circuit targeting 3, 4, and 5 tier circuits.

The number of final net cuts and the run time for linear ordering step, for different

numbers of initial partitions, are compared. Table 3.2 shows the results of the exper-

iments targeting 3 tier circuit by assigning 3, 15, and 30 initial partitions. Table 3.3

shows the results of the experiments targeting 4 tier circuit by assigning 4, 16, and

32 initial partitions. And Table 3.4 shows the results of the experiments targeting

5 tier circuit by assigning 5, 15, and 30 initial partitions. Balance criterion is set to

a minimum allowable imbalance (%1) in performing hMetis partitioning. The initial

partitions are obtained by choosing the best solution of 50 runs of hMetis.

58

Table 3.1: ISPD 2004 Benchmarks
Cells I/Os Nets

ibm01 12506 246 14111
ibm02 19342 259 19584
ibm03 22853 283 27401
ibm04 27220 287 31970
ibm05 28146 1201 2844 6
ibm06 32332 166 34826
ibm07 45639 287 48117
ibm08 51023 286 50513
ibm09 53110 285 60902
ibm10 68685 744 75196
ibm11 70152 406 81454
ibm12 70439 637 77240
ibm13 83709 490 99666
ibm14 147088 517 152772
ibm15 161187 383 186608
ibm16 182980 504 190048

The aim is to obtain the favorable initial partition number for different cases of tier

(i.e., 3, 4 and 5). To do so, for each case, different initial partitions are selected. Then,

net cut and run time are determined for each individual initial partition number.

Tables 3.2, 3.3, and 3.4 show the effect of different initial partition number on net

cut and run time targeting 3 tier IC, 4 tier IC, and 5 tier IC, respectively. Table 3.5

shows these effects on example circuit in Figure 3.5 and Figure 3.4. It was expected

to witness a decrease in net cut and an increase in run time by an increase in the

initial partition number. A favorable initial partition number is therefore the one

at which the net cut reaches a sufficiently good value where the run time value is

reasonably small. On the contrary, the results indicate that for up to a certain initial

partition number, net cut decreases consistently after which point net cut increases.

It is conjectured that this behavioral trend in the system stems from the shortcomings

of the linear ordering heuristic. Considering this, for 3 tier IC, 4 tier IC, and 5 tier

59

IC, the best initial partition number is chosen as 15, 16, and 15, respectively.

Table 3.2: The effect of different initial partition number on net cut and run time
targeting 3 tier IC

Cicuit Net cut Run time
Initial partition numbers Initial partition numbers
3 15 30 3 15 30

ibm01 982 391 780 1 81 502
ibm02 1075 402 867 1 88 632
ibm03 2296 1976 2308 3 90 566
ibm04 1578 1298 1775 2 107 655
ibm05 4372 3581 4464 3 281 1749
ibm06 2407 1540 2059 2 118 707
ibm07 2762 1892 2433 2 167 1093
ibm08 2881 2557 3051 2 168 1131
ibm09 2114 1740 2378 1 105 650
ibm10 3363 2404 3869 3 235 1728
ibm11 3460 2026 2987 1 203 1220
ibm12 4015 3573 4889 3 407 2553
ibm13 2713 1553 2610 2 199 1435
ibm14 3773 3547 4876 3 344 3143
ibm15 6041 4622 6159 3 542 4237
ibm16 5809 3918 6022 3 634 5251
Average 3103 2314 3220 2 236 1703

The experiments show that increasing the number of initial partitions up to some

point, starting from a number equal to the number of desired tiers, reduces the number

of TSVs and improves the quality of solution; however, after some point the number

of TSVs increases.

By increasing the number of initial partitions, more permutations are added with-

out loosing any of pervious permutations. However, choosing a large value for initial

partitions increases the run time of the algorithm. However, using a heuristic for

linear ordering doesn’t ensure the best solution. Moreover, using this approach, it

is possible to obtain a worse solution in comparison with that obtained from a less

number of initial partitions. By increasing the number of initial partitions, after a

60

Table 3.3: The effect of different initial partition number on the net cut and run time
targeting 4 tier IC

Net cut Run time
Cicuit Initial partition numbers Initial partition numbers

4 16 32 4 16 32
ibm01 1101 831 1367 2 95 607
ibm02 1494 1143 1642 4 103 659
ibm03 3278 3186 3731 4 101 633
ibm04 2334 2396 2950 4 115 702
ibm05 5426 4992 6528 9 304 1994
ibm06 2812 2756 3285 4 142 833
ibm07 3424 3118 3584 8 174 1302
ibm08 3977 3910 4557 7 193 1232
ibm09 2983 2638 3571 6 123 853
ibm10 4099 4668 5207 5 267 1932
ibm11 4051 3485 4530 8 241 1359
ibm12 6397 6623 6793 15 460 2743
ibm13 3725 3165 3573 3 271 1821
ibm14 5326 6366 7371 15 365 3274
ibm15 8884 9486 8794 31 636 5139
ibm16 7862 7076 8201 35 699 5812
Average 4198 3738 4730 10 268 1931

certain value, not only the run time of linear ordering increases, but also the quality

of solution decreases.

3.4.3 Linear Ordering Results

In this section, the number of net cuts after merging considering different orders,

i.e. hMetis order and linear ordering order, are compared. The objective here is to

demonstrate how important the order of stacking partition is in reducing the number

of net cuts. To achieve this goal, a certain linear ordering heuristic was used (see

Section 3.3.2). A seed cell is selected as a random bottom layer, which could be

any of the initial partitions obtained from the previous step of algorithm (i.e., initial

partitioning phase). Because we have a limited number of partitions, each of them is

61

Table 3.4: The effect of different initial partition number on the net cut and run
time targeting 5 tier IC

Net cut Run time
Cicuit Initial partition numbers Initial partition numbers

3 15 30 3 15 30

ibm01 1618 1096 2120 2 88 540
ibm02 1962 1479 2439 3 91 637
ibm03 4146 3879 4854 4 92 578
ibm04 3427 2608 3696 3 109 662
ibm05 7894 7298 8372 11 284 1769
ibm06 4493 3256 4023 4 120 700
ibm07 4604 4134 5443 7 168 1108
ibm08 5576 5391 5893 7 170 1148
ibm09 3470 3538 3886 5 105 664
ibm10 6330 5183 7773 8 240 1743
ibm11 5231 4776 6053 8 201 1228
ibm12 8403 9919 9106 20 420 2583
ibm13 5245 4052 4783 5 205 1822
ibm14 7231 6906 8740 12 349 3212
ibm15 11602 11546 10699 28 601 4973
ibm16 9741 8146 12772 30 670 5445
Average 5686 5200 6291 10 245 1801

Table 3.5: The effect of different initial partition number on the net cut on example
circuit in Figure 3.5 and Figure 3.4

Number of initial partitions 4 8 12
net cut number 45 37 41

62

assigned as the bottom layer or seed cell. Using this approach, the bottom layer that

produces the smallest possible net cut is used as the seed cell in stacking the partitions

(or ordering partitions). The maximum number of net cuts and average number of

net cuts are referred to the maximum and average number of net cuts obtained by

different orders with different partitions as their bottom layer, respectively. Tables

3.6, 3.7, and 3.8 compare the maximum and average number of net cuts exceeding

the number of net cuts obtained by using the default order of initial partitioning

phase in hMetis algorithm for 3 tier IC, 4 tier IC, and 5 tier IC, respectively. The

last column in these tables is the decrement in the number of net cuts relative to the

net cuts obtained by using the default order of initial partitioning phase in hMetis

algorithm. Each decrement corresponds to a minimum value of net cut. The order

that generates these decrements is selected as the one producing the smallest possible

net cut. Thus, the proposed order is the one that generated the smallest number of

net cuts. On average, the desired order generates 1038 net cuts less than that being

generated using the default order in hMetis for 5 tier IC. Graphical representation

of some of the data reported in these three tables is given in 3.6. The net cuts for 3

tier IC, 4 tier IC, and 5 tier IC, which were generated by the proposed order in this

section, are reported in Table 3.9.

3.5 Summary

In this chapter, one of the major contributions of this thesis is presented where par-

titioning and floor planning techniques are combined to obtain better 3D partitions.

63

Table 3.6: Maximum and average number of net cuts exceeding the number of net
cuts obtained by using the default order in hMetis algorithm for 3 tier IC

Increment in net cuts
Circuit hMetis order Max Ave Proposed order
ibm01 1073 702 -43 -682
ibm02 1499 874 -52 -1097
ibm03 2346 822 328 -370
ibm04 2641 215 -216 -1343
ibm05 4315 655 311 -734
ibm06 2815 95 -170 -1275
ibm07 3341 579 7 -1449
ibm08 3273 609 60 -716
ibm09 2118 922 406 -378
ibm10 3913 388 -106 -1509
ibm11 3974 797 -158 -1948
ibm12 6043 328 -1230 -2470
ibm13 2919 1036 143 -1366
ibm14 4854 1183 317 -1307
ibm15 6890 1212 -167 -2268
ibm16 5769 725 483 -1851
Average 3781 696 -5 -1117

Table 3.7: Maximum and average number of net cuts exceeding the number of net
cuts obtained by using the default order in hMetis algorithm for 4 tier IC

Increment in net cuts
Circuit hMetis order Max Ave Proposed order
ibm01 907 642 405 -76
ibm02 1224 1536 835 - 81
ibm03 3088 1232 592 98
ibm04 2392 969 508 4
ibm05 5463 1437 572 -471
ibm06 2812 1608 656 -56
ibm07 3300 2272 835 -182
ibm08 3893 2575 783 17
ibm09 2404 2000 1127 234
ibm10 3457 3939 1973 1211
ibm11 3824 2423 935 -339
ibm12 6855 3662 748 -232
ibm13 3111 1771 1058 54
ibm14 6704 1922 -146 -338
ibm15 8184 2546 1456 1302
ibm16 5871 5288 3706 1205
Average 3968 2239 984 147

64

Table 3.8: Maximum and average number of net cuts exceeding the number of net
cuts obtained by using the default order in hMetis algorithm for 5 tier IC

Increment in net cuts
Circuit hMetis order Max Ave Proposed order
ibm01 1847 740 215 -751
ibm02 2675 1250 102 -1196
ibm03 4398 1523 435 -519
ibm04 4465 878 188 -1857
ibm05 8141 1291 357 -843
ibm06 4521 538 268 -1265
ibm07 5536 1967 204 -1402
ibm08 5176 2274 1080 215
ibm09 4039 1243 48 -501
ibm10 6547 2310 584 -1364
ibm11 6530 2032 -305 -1754
ibm12 10964 1634 -416 -1045
ibm13 5121 4001 1269 -1069
ibm14 8232 1492 393 -1326
ibm15 11785 2677 1149 -239
ibm16 9836 3577 2547 -1690
Average 6238 1839 445 -1038

Table 3.9: Best net cut number achieved
Number of TSVs

Circuit 3Tier 4 Tier 5 Tier
ibm01 391 831 1096
ibm02 402 1143 1479
ibm03 1976 3186 3879
ibm04 1298 2396 2608
ibm05 3581 4992 7298
ibm06 1540 2756 3256
ibm07 1892 3118 4134
ibm08 2557 3910 5391
ibm09 1740 2638 3538
ibm10 2404 4668 5183
ibm11 2026 3485 4776
ibm12 3573 6623 9919
ibm13 1553 3165 4052
ibm14 3547 6366 6906
ibm15 4622 9486 11546
ibm16 3918 7076 8146
Average 2314 4114 5200

65

3 Tier 4 Tier 5 Tier
−1500

−1000

−500

0

500

1000

1500

2000

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

T
S

V
s

Max

Ave

Proposed

(a) ibm02

3 Tier 4 Tier 5 Tier
−1000

−500

0

500

1000

1500

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

T
S

V
s

Max

Ave

Proposed

(b) ibm05

3 Tier 4 Tier 5 Tier
−1000

−500

0

500

1000

1500

2000

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

T
S

V
s

Max

Ave

Proposed

(c) ibm09

3 Tier 4 Tier 5 Tier
−1500

−1000

−500

0

500

1000

1500

2000

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

T
S

V
s

Max

Ave

Proposed

(d) ibm14

Figure 3.6: Graphical representation of maximum and average increments/decrements
in number of net cuts (the blue and the green bars respectively) and the incre-
ments/decrements in number of net cuts obtained by using the proposed order (the
red bars) over the number of net cuts obtained by using the default order given by
hMetis algorithm

66

Experimental results presented in the chapter show that the proposed technique re-

duces the number of TSVs effectively.

Other contributions of the chapter include studying different partitioning tech-

niques to obtain initial 2D partitions, determining the best trade-off between number

of initial partitions and run time, development of a force-directed one dimensional

placement problem for finding best locations for partitions and partition merging

suited for the final simulated annealing refinement phase which will be described in

Chapter 4.

67

Chapter 4

Force Based Simulated Annealing

4.1 Introduction

In this chapter, a force-based iterative improvement technique is introduced so as to

further improve the partitioning solution.

The inspiration of the technique presented in this work comes from the annealing

process and the analogy between the molecular forces in a material and the forces

between the cells of a circuit.

First major contribution of this chapter is proposing a Force-based Simulated

Annealing (FSA) technique, which can be used in different optimization problems.

This approach aims to better imitate the annealing process and modify the already

existing SA method, by including molecular forces as part of the annealing process.

Another major contribution of this chapter is proposing a new improvement

method for 3D IC partitioning. The proposed method, combines the introduced

force-based simulated annealing technique with placement techniques to perform 3D

IC partitioning.

The general idea of the algorithm is to put the cells in a vertical line, calculate

the forces on each cell, and to move the cells according to the forces imposed on

them before they are assigned to tiers. In the proposed algorithm, the location of the

cells are proposed to be analogous to the state of atoms and the number of net cuts is

68

proposed to be analogous to the internal energy of the system. Forces between the cells

that try to expand or contract a net is analogous to the forces between the molecules.

The proposed method, introduces a new selection method that is incorporated into

the SA. In this new selection method, the probability of selecting a cell to be moved

is based on the forces on the cell rather than being random. A method of selection

based on force rather than being random is more promising in finding an appropriate

move although this method doesn’t always result in an appropriate move. Therefore,

the algorithm has the advantage of both greedy algorithms, to converge quickly and

of metaheuristic methods, to escape from local optima.

The result of the proposed algorithm is to locate the connected cells close to each

other and increasing the probability of their assignment to the same tier or adjacent

tiers.

The rest of this chapter is organized as follows: In Section 4.2, the essence of

FSA is explained in details. The numerical results are then presented in Section 4.3.

Finally, in Section 4.4, a brief summary is provided

4.2 Force Based Simulated Annealing

A customized simulated annealing is developed to move the cells. In this algorithm,

the probability of a cell to be selected is proportional to the force exerted on that

cell. The selected cell is moved in the direction of its force.

The number of TSVs is further reduced by improvements where cells are moved

between different layers based on the forces applied onto them. A FSA technique is

69

Algorithm 5 Force Based Simulated Annealing
Input: Initial Solution sinit
Output: Refined Solution

1: Begin
2: T ← T0

3: i← 0
4: s← sinit
5: fcurrent ← Force(s)
6: costcurrent ← Cost(s)
7: while T > Tmin do
8: while stopping criteria do
9: i← i+ 1
10: s′ ← neighbor(s)
11: costnew ← Cost(s′)
12: fnew ← Force(s′)
13: ∆cost = costnew − costcurrent
14: if ∆cost < 0 then
15: s← s′

16: costcurrent ← costnew
17: fcurrent ← fnew
18: else
19: r ← Random(0, 1)
20: if r < e−∆cost/T then
21: s← s′

22: costcurrent ← costnew
23: fcurrent ← fnew
24: end if
25: end if
26: end while
27: T ← α.T
28: end while
29: End.

70

developed and implemented in the initial tiers. In this phase, the algorithm allows the

cells to move through layers according to the forces imposed by the connected cells.

A greater force on a cell is synonymous with a greater probability of selection for that

cell. On one hand, considering the forces in selecting the cells rather than random

selection of a cell triggers more promising moves. On the other hand, combining the

force-based selection with SA adds randomness to the algorithm and prevents the

algorithm from being trapped in local optima.

The FSA algorithm is given in Algorithm 5. The force calculation, neighbor

function and cost function are described in the following subsections.

4.2.1 Force Calculation

Adopted from force-based placement approach, the circuit is modeled as a mass-spring

system, where cells and nets are analogous to the masses and springs, respectively. An

expanded spring imposes force to the connected masses and attracts them. Hence, the

amount of force applied by a cell to another is directly proportional to their distance

from one another. That is to say, the long connections impose a strong force on the

connected cells.

In developing this algorithm, different approaches are considered in calculating

the forces. The first approach was to perform a one dimension placement by solving

quadratic optimization and to assign an initial location to cells. In order to do this,

cells belonging to the top and bottom of the ordered layers from previous phase are

fixed. These cells serve as a starting point of quadratic optimization (similar to I/O

pads in analytical placement). In a general analytical placement, there are some cells

71

with preassigned locations (usually on the boundary) along with the rest of the cells

placed according to their connection with the preassigned cells and other cells. If

there are no fixed cells in analytical placement, all the cells would be placed in the

middle. Moreover, some constraints are considered in the quadratic optimization.

The constraints state that the cells belonging to an initial tier would remain in the

same tier. The reason for adding this constraint is that moving cells between the

layers affect the number of net cuts. This approach locates most of the cells in tier

boundaries, resulting in loosing the information about initial layers. In Figure 4.1,

the location of the cells on the z-axes and the amount of force exerted on them after

quadratic optimization is given for ibm03 benchmark circuit.

Figure 4.1: Location of the cells on the z-axes and the amount of force exerted on
them after quadratic optimization

72

Therefore, cells belonging to one layer are kept in their original location so that

they don’t impose force to one another; and it is only the connection between the cells

belonging to different partitions that generates forces. By setting the same coordinate

on the z-axes to cells from the same layer, the vertical component of their imposed

force to one another becomes zero. The forces are calculated using the following

equation:

Fab = ca,b(zb − za)

where ca,b is the connection weight between cell a and cell b and zb and za are the

locations of the cell b and a on the z-axes, respectively. The connection weight

between cells, ca,b, is equal to the number of connections between the cells.

This equation is inspired from the hook’s law. The force measure is the Euclidean

distance between two cells. The Euclidean distance between two points (xi, yi) and

(xj, yj) is given in following:

L =

√
(xi − xj)2 + (yi − yj)2 (4.1)

Since in 3D partitioning the partitions are placed in one dimension and the cells

move only in that direction (Z direction) the equation can be reduced to

L = zi − zj,

The force imposed on a cell is equal to the sum of the force imposed by all other

cells.

Fi =
∑
j

Fi.j

73

4.2.2 Neighbor Function

The neighbor function is a function that generates a new solution by changing the

value of one or more variables. In 3D partitioning problem, a new solution is proposed

to be generated by moving one cell from one tier to an adjacent tier.

In the original SA, the neighbor function selects a random cell and moves it to a

random adjacent tier. However, in the proposed FSA, the probability of the selection

of a cell is proportional to the magnitude of the force exerted on that cell and it is

moved in the direction imposed by its force.

The FSA neighbour function consists of two steps:

1. Selecting the cell to be moved:

The cell to be moved is selected randomly with different probabilities

for each cell, based on the forces exerted on them. That means If Fi is

the force on an individual cell, its probability of being selected is

Pi = Fi

∑
i

Fi

2. Assigning the new location of selected cell: The selected cell is moved

to the adjacent tier in the direction that its force impose.

4.2.3 Cost Function

The cost of a solution is equal to the number of 3D net cuts, i.e., the number of TSV

usage. An FM-based gain update method is used to update the gains.

74

4.2.4 Selecting SA parameters

In order to apply the SA and FSA method to the 3D partitioning problem, the algo-

rithm parameters must be specified. Tuning these parameters can have a significant

impact on the effectiveness of the method. Unfortunately, there is not a general way

to find the best values for a given problem. In order to tune these parameters differ-

ent values are assigned to each parameter and the values that result in best solution

are chosen. The parameters and the values assigned to them, as well as the stopping

criteria of the algorithm, are given in the following.

Stopping criteria

Two stopping criteria is considered in this implementation:

1. The algorithm stops when the number of iterations exceeds this maxi-

mum number of iterations.

2. The algorithm runs until the temperature reaches to its minimum value

(Tmin).

Initial temperature (T0)

The initial temperature T0 is set in a way that satisfies the following equation:

0.9 = e−Ave(cost)/T0

where Ave(cost) is the average cost of moving the cells from their initial position. By

doing this we allow the average probability of 0.9 for selecting a given cell in the first

iteration.

75

Maximum number of iterations

The maximum number of iterations is set to be 5000.

Minimum temperature (Tmin)

The minimum temperature is set to be 0.01.

Annealing schedule (α)

The annealing schedule or the rate of decreasing the temperature is set to be 1/2.

α = 1/2

Number of iterations for each temperature (IterT)

The number of iterations for each temperature is set in a way that satisfies the

following equation:

IterT = 100/T

4.3 Experimental Results

The improvements are applied to the initial solutions obtained in the previous phase

of the algorithm (i.e., constructive 3D partitioning) given in Section 3. The initial

solutions are the partitioning solutions of the ISPD04 benchmark suits, which were

introduced in Section 3.

SA demonstrates a better performance in terms of the number of TSVs in com-

parison to FSA. On the other hand, FSA outperforms SA in terms of convergence

speed. Therefore, a Modified Force based Simulated Annealing (MFSA) is developed

in a way that it possesses both advantages. In summary, MFSA outperforms SA and

76

FSA in terms of the number of TSVs and it quickly converges to the semi-optimal

solution.

Since force calculation is added in each iteration of FSA and the first 500 itera-

tions of MFSA, SA was expected to have a better run time for the same number of

iterations; however, the experiments show that this is not always the case and MFSA

and FSA demonstrate a better performance in terms of run time in some cases. This

lies in that the FSA and MFSA candidate cell selection is based on the cell forces

whereas this selection is done randomly in SA. Therefore, the probability of accepting

a candidate cell in SA is lower than that in the FSA and MFSA algorithms. In each

iteration, the number of unsuccessful selections in SA is thus more than the number

of unsuccessful selections in FSA. Consequently, the run time of a given iteration is

higher in SA.

The results of SA, FSA and MFSA improvements are given in Table 4.1. The

number of iterations to achieve the final solution within 2% accuracy are given .

Table 4.1 and 4.2 tabulates the effect of force based refinement for 4 tier IC. It

summarizes the resulting number of TSVs (for different approaches including: (1)

simulated annealing- SA, (2) force-based simulated annealing- FSA, and (3) modified

force-based simulated annealing- MFSA), and the values of 2% iteration, 2% run time,

and the total run time. The value of 2% iteration number represents the iteration

number at which the number of TSVs reaches within 2% difference of the ultimate

number of TSVs at which there will be no significant change in the number of TSVs

and the corresponding curve levels off. The value of 2% run time represents the run

time when the number of TSVs reaches within 2% difference of the ultimate number

77

Table 4.1: Effect of force based refinement 4 tier using SA, FSA, MFSA on net cut

Number of TSVs 2%iteration
Circuit initial SA FSA MFSA SA FSA MFSA
ibm01 831 824 828 824 3120 1412 1553
ibm02 1143 1103 1106 1098 3484 1766 1180
ibm03 3186 3110 3135 3108 2224 992 1112
ibm04 2396 2307 2330 2308 3229 2225 1764
ibm05 4992 4809 4827 4780 3363 2001 2179
ibm06 2756 2715 2716 2704 2773 655 1015
ibm07 3118 3078 3085 3071 3131 501 673
ibm08 3910 3888 3882 3889 2961 573 744
ibm09 2638 2608 2603 2602 2146 516 1040
ibm10 4668 4667 4636 4610 4004 520 522
ibm11 3485 3409 3408 3392 3334 905 1344
ibm12 6623 6430 6370 6359 4185 1495 2058
ibm13 3165 3136 3123 3109 3011 501 506
ibm14 6366 6336 6271 6278 3808 539 930
ibm15 9486 9390 9341 9309 3830 512 873
ibm16 7076 7025 7027 6999 3185 501 616

Table 4.2: Effect of force based refinement 4 tier using SA, FSA, MFSA on run time

2%run time total run time
Circuit SA FSA MFSA SA FSA MFSA
ibm01 132 97 71 211 343 230
ibm02 185 162 65 266 459 277
ibm03 71 36 34 160 180 155
ibm04 147 93 77 228 210 218
ibm05 120 92 74 178 229 169
ibm06 108 23 35 194 179 171
ibm07 191 24 34 305 237 254
ibm08 439 93 78 742 808 526
ibm09 234 34 95 546 331 457
ibm10 297 41 33 371 392 316
ibm11 424 73 139 636 401 517
ibm12 420 141 191 502 470 464
ibm13 580 74 81 963 737 798
ibm14 1411 114 263 1853 1054 1414
ibm15 1940 175 309 2532 1709 1772
ibm16 2022 152 271 3174 1514 2199

78

Table 4.3: Effect of force based refinement 4 tier
Number of TSVs

Circuit Initial Final I/O Pin imp. Unlocked imp. Alt. imp.
methods % Pins % Pins %

ibm01 831 824 837 2% 838 2% 977 19%
ibm02 1143 1098 1156 5% 1214 11% 1340 22%
ibm03 3186 3108 2610 -16% 2693 -13% 3602 16%
ibm04 2396 2308 2371 3% 2516 9% 2461 7%
ibm05 4992 4780 6489 36% 6653 39% 7037 47%
ibm06 2756 2704 2934 9% 3128 16% 3429 27%
ibm07 3118 3071 3219 5% 3302 8% 3482 13%
ibm08 3910 3889 4018 3% 4184 8% 4183 8%
ibm09 2638 2602 2495 -4% 2763 6% 3757 44%
ibm10 4668 4610 4004 -13% 4675 1% 4358 -5%
ibm11 3485 3392 3685 9% 3958 17% 4923 45%
ibm12 6623 6359 6581 3% 7259 14% 8996 41%
ibm13 3165 3109 3099 0% 3264 5% 4618 49%
ibm14 6366 6278 5342 -15% 6584 5% 7564 20%
ibm15 9486 9309 7022 -25% 9082 -2% 11144 20%
ibm16 7076 6999 5774 -18% 6235 -11% 9525 36%
Avg 3738 4027 3852 -1% 4271 7% 5081 26%

Table 4.4: Effect of force based refinement 3 tier
Number of TSVs

Circuit Initial Final I/O Pin imp. Unlocked imp. Alt. imp.
methods % Pins % Pins %

ibm01 391 379 525 39% 857 126% 881 132%
ibm02 402 392 747 91% 882 125% 829 111%
ibm03 1976 1934 2174 12% 2282 18% 2530 31%
ibm04 1298 1279 1511 18% 1583 24% 1619 27%
ibm05 3581 3566 4311 21% 5372 51% 5428 52%
ibm06 1540 1511 1642 9% 1827 21% 1729 14%
ibm07 1892 1824 2050 12% 3442 89% 3423 88%
ibm08 2557 2460 2697 10% 2814 14% 3431 39%
ibm09 1740 1695 1872 10% 2828 67% 2186 29%
ibm10 2404 2366 2661 12% 3565 51% 4062 72%
ibm11 2026 1988 2240 13% 3477 75% 3629 83%
ibm12 3573 3561 4094 15% 5350 50% 5569 56%
ibm13 1553 1543 1893 23% 3037 97% 2912 89%
ibm14 3547 3512 3886 11% 4561 30% 5090 45%
ibm15 4622 4609 4827 5% 7863 71% 7970 73%
ibm16 3918 3896 4316 11% 5816 49% 6216 60%
Average 2314 2282 2590 20% 3472 60% 3594 63%

79

Table 4.5: Effect of force based refinement 5 tier
Number of TSVs

Circuit Initial Final I/O Pin imp. Unlocked imp. Alt. imp.
methods % Pins % Pins %

ibm01 1096 1081 1162 7% 1439 33% 1372 27%
ibm02 1479 1463 1533 5% 1600 9% 1691 16%
ibm03 3879 3872 3974 3% 4020 4% 4366 13%
ibm04 2608 2586 2852 10% 3202 24% 4275 65%
ibm05 7298 7289 9193 26% 9651 32% 12400 70%
ibm06 3256 3243 3477 7% 3566 10% 3507 8%
ibm07 4134 4116 4400 7% 4605 12% 6523 58%
ibm08 5391 5341 5346 0% 5698 7% 6327 18%
ibm09 3538 3487 3343 -4% 3518 1% 3556 2%
ibm10 5183 5158 5216 1% 7116 38% 8492 65%
ibm11 4776 4673 4620 -1% 5697 22% 7437 59%
ibm12 9919 9756 8191 -16% 9158 -6% 12515 28%
ibm13 4052 3813 3742 -2% 4557 20% 4874 28%
ibm14 6906 6849 6667 -3% 8085 18% 10113 48%
ibm15 11546 10931 9283 -15% 11707 7% 13857 27%
ibm16 8146 7761 7172 -8% 9300 20% 10903 40%
Average 5200 5089 5011 1 % 5807 16% 7013 36%

Table 4.6: Tier area 3 Tier
Tier area

Circuit 3 Tier 4 Tier 5 Tier
ibm02 954376 714790 577788
ibm03 1170105 897060 695968
ibm04 1479500 1110800 885137
ibm05 1512452 1143501 907927
ibm06 1244346 947810 760484
ibm07 2172318 1737200 1311549
ibm08 2225728 1789500 1368832
ibm09 2695445 2053800 1589169
ibm10 4273202 3375500 2580247
ibm11 3459745 2618500 2031029
ibm12 4646314 3550400 2827221
ibm13 4024270 3042500 2465918
ibm14 7305739 5680900 4445652
ibm15 7405975 5550100 4456779
ibm16 9375372 7099400 5662680
Average 3596326 2754117 2171092

80

0 1000 2000 3000 4000 5000
1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure 4.2: Number of TSVs versus iteration number in SA, FSA, and MFSA for
IBM02

of TSVs where the corresponding curve tends to levels off. The first column of results

in this table were generated using the previously-proposed approach SA (see Chapter

2) whose computational code was adopted and developed in this study. FSA has been

proposed in this chapter in order to better imitate the annealing process. In addition

to that, FSA is far more advantageous over SA in the sense that it converges more

quickly (see the corresponding figures in Appendix). The computational code for this

approach was developed in MATLAB. As shown in Table 4.1 and 4.2 , the ultimate

answer in SA is smaller while the computation process in FSA converges more quickly.

In order to incorporate both of these two features in a single computational approach,

81

MFSA was developed in this study. Thus, MFSA not only produces a more desirable

ultimate answer but it also converges far more quickly than both SA and FSA.

Figure 4.2 shows the number of TSVs versus iteration number in SA, FSA, and

MFSA. Beyond just 1000 iterations, MFSA generates the best number of TSVs in

comparison to SA and FSA, meaning that it has a faster convergence speed. The

results also show that SA generates exceedingly high number of TSV during the early

iterations (below 500). This is attributed to the random selection of cells that are

being moved during the computation. After the early iterations, SA performance

starts to revamp. In spite of this self-correction act during SA, the iteration number

in SA at which the number of TSVs reaches within 2% of the ultimate answer is still

significantly larger than that in FSA and MFSA (see Appendix A).

Table 4.3 shows a comparison of number of TSVs for 4 tier IC, which were ob-

tained from Chapter 3 with the final number of TSVs obtained after MFSA improve-

ments are implemented. Moreover , the number of TSVs, which were obtained from

Chapter 3 are compared with the number of TSVs obtained using other approaches

including: (1) I/O pins, (2) unlocked pins, and (3) alternate pins. The percentage

of improvements made through using MFSA relative to each of the above-mentioned

three approaches is also tabulated. Tables 4.4 and 4.5, show a comparison of number

of TSVs for 3 and 5 tier IC, respectively, which were obtained from Chapter 3 with

the final number of TSVs obtained after MFSA improvements are implemented. The

percentage of improvements made through using MFSA relative to the results from

I/O pins, unlocked pins, and alternate pins for 3 and 5 tier IC are also given in Ta-

bles 4.4 and 4.5, respectively. The results overwhelmingly indicate that the proposed

82

constructive 3D partitioning algorithm followed by MFSA improvements is capable

of significantly decreasing the number of TSVs. And in Table 4.6, the tier area of

each benchmark is given for 3 tier, 4 tier and 5 tier ICs.

4.4 Summary

In this chapter, a new computational approach (i.e., MFSA) was developed in order

to simultaneously capture and incorporate two attractive features of SA and FSA: SA

generate the best ultimate answer while FSA converges more quickly to the ultimate

desired answer. MFSA, as the newly developed approach in this chapter, generates the

desired number of TSVs in a far shorter run time. To sum up, much smaller number

of iterations are performed in MFSA in reaching the desired number of TSVs.

83

Chapter 5

Conclusion and Future Work

This thesis presented a new method for 3D IC partitioning. The proposed method

is based on partitioning the circuit into several partitions using traditional partition-

ing methods and placing and merging the partitions to form tiers. Then a force

directed based simulated annealing is introduced and used to improve the partitions

and further reduce the net cuts.

5.1 Contributions

The major contributions of this thesis were:

Development of the a force directed partitioning technique:

In this thesis the state of the art technique for 2D circuit partitioning which min-

imizes the number of connections between all partitions is used to divide the circuit

into several initial partitions. However in a 3D IC, objective function is different from

that of 2D IC and the goal is to minimize the number of vias between partitions which

are stacked on one dimension. Therefore, a one dimensional placement is used to find

a suitable ordering for the partitions. Ordering the initial partitions results in locat-

ing the partitions that have more connections close to each other and consequently

reduce the length of connections and number of long connections.

Development of force-directed simulated annealing technique:

An iterative improvement technique is developed and used to improve the parti-

84

tioning solution after the initial 3D partitioning solution is obtained. The developed

algorithm is a variation of SA where random moves are replaced with moves that are

directed by forces applied to cells. This method is combined with other methods in

solving the particular 3D IC partitioning problem; However, it can be used in many

other optimization problems. Unlike the original SA in which the current solution

is replaced by a random neighbor solution, in developed Force-based Simulated An-

nealing (FSA), the selection of the new solution is probabilistic, i.e., not only the

acceptance of a move, but also selecting the new solution is based on a probability.

This probability of selection is based on some information that we have about the

system. In 3D partitioning problem, this information is the forces that the connected

cells impose to each other. Finally, numerical results on benchmarks released by IBM

show that the proposed techniques outperform the existing 3D partitioning solutions

for most cases.

5.2 Future Work

In this work it was shown that using several techniques for solving complicated prob-

lem can work better than just using a single heuristic. The same framework of thought

can be used in solving other and more complicated problems.

The future work in 3D IC partitioning includes, but is not limited to, using better

linear ordering techniques, and applying clustering techniques such as AMG to ob-

tain better partitioning solutions. In addition, the modified force directed simulated

annealing can be applied to placement and floor planning problems.

85

Appendix A

Supplementary Results

The number of TSVs versus iteration number in SA, FSA, and MFSA for different

benchmarks is shown in Figures A.1 to A.14.

86

0 1000 2000 3000 4000 5000
1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.1: IBM02 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
3100

3150

3200

3250

3300

3350

3400

3450

3500

3550

3600

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.2: IBM03 SA, FSA, and MFSA convergence

87

0 1000 2000 3000 4000 5000
2300

2400

2500

2600

2700

2800

2900

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.3: IBM04 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
4700

4800

4900

5000

5100

5200

5300

5400

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.4: IBM05 SA, FSA, and MFSA convergence

88

0 1000 2000 3000 4000 5000
2700

2750

2800

2850

2900

2950

3000

3050

3100

3150

3200

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.5: IBM06 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
3000

3100

3200

3300

3400

3500

3600

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.6: IBM07 SA, FSA, and MFSA convergence

89

0 1000 2000 3000 4000 5000
2600

2700

2800

2900

3000

3100

3200

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.7: IBM09 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
4600

4700

4800

4900

5000

5100

5200

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.8: IBM10 SA, FSA, and MFSA convergence

90

0 1000 2000 3000 4000 5000
3300

3400

3500

3600

3700

3800

3900

4000

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.9: IBM11 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.10: IBM12 SA, FSA, and MFSA convergence

91

0 1000 2000 3000 4000 5000
3100

3200

3300

3400

3500

3600

3700

3800

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.11: IBM13 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
6200

6300

6400

6500

6600

6700

6800

6900

7000

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.12: IBM14 SA, FSA, and MFSA convergence

92

0 1000 2000 3000 4000 5000
9300

9400

9500

9600

9700

9800

9900

10000

10100

Iteration number

N
u

m
b
e

r
o

f
T

S
V

s

MFSA

FSA

SA

Figure A.13: IBM15 SA, FSA, and MFSA convergence

0 1000 2000 3000 4000 5000
6900

7000

7100

7200

7300

7400

7500

7600

7700

Iteration number

N
u
m

b
e
r

o
f
T

S
V

s

MFSA

FSA

SA

Figure A.14: IBM16 SA, FSA, and MFSA convergence

93

Bibliography

[1] Intel. Microprocessor quick reference guide, December 2012.

[2] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8), April 1965.

[3] Kyu-Myung Choi. An industrial perspective of 3d ic integration technology:

from the viewpoint of design technology. In Proceedings of the 2010 Asia and

South Pacific Design Automation Conference, ASPDAC ’10, pages 544–545, Pis-

cataway, NJ, USA, 2010. IEEE Press.

[4] Vasilis F. Pavlidis and Eby G. Friedman. Three-dimensional Integrated Circuit

Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009.

[5] Yuan Xie, Jason Cong, and Sachin Sapatnekar. Three-Dimensional Integrated

Circuit Design: EDA, Design and Microarchitectures. Springer Publishing Com-

pany, Incorporated, 1st edition, 2009.

[6] S. Borkar. 3d integration for energy efficient system design. In Design Automa-

tion Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 214 –219, june

2011.

[7] A. Kahng, J. Lienig, I. Markov, and J. Hu. VLSI Physical Design - From Graph

Partitioning to Timing Closure. Springer, 2011.

[8] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Aca-

demic Publishers, Dorrecht, The Netherlands, 1999.

94

[9] C. Alpert, D. Mehta, and S. Sapatnekar. Handbook of Algorithms for Physical

Design Automation. CRC Press, 2009.

[10] S. Sait and H. Youssef. VLSI Physical Design Automation: Theory and Practice.

World Scientific, 1998.

[11] Sandro Sawicki, Gustavo Wilke, Marcelo O. Johann, and Ricardo Reis. 3d-via

driven partitioning for 3d vlsi integrated circuits. CLEI Electron. J., 13(3), 2010.

[12] S. Sawicki, R. Hentschke, M. Johann, and R. Reis. An algorithm for i/o pins

partitioning targeting 3d vlsi integrated circuits. In Circuits and Systems, 2006.

MWSCAS ’06. 49th IEEE International Midwest Symposium on, volume 2, pages

699 –703, aug. 2006.

[13] D.L. Lewis and H.-H.S. Lee. Testing circuit-partitioned 3d ic designs. In VLSI,

2009. ISVLSI ’09. IEEE Computer Society Annual Symposium on, pages 139

–144, may 2009.

[14] Hua-Sin Ye, M.C. Chi, and Shih-Hsu Huang. A design partitioning algorithm

for three dimensional integrated circuits. In Computer Communication Control

and Automation (3CA), 2010 International Symposium on, volume 1, pages 229

–232, may 2010.

[15] Bernd Hoefflinger. Itrs: The international technology roadmap for semiconduc-

tors. In Bernd Hoefflinger, editor, Chips 2020, The Frontiers Collection, pages

161–174. Springer Berlin Heidelberg, 2012.

95

[16] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel

hypergraph partitioning: Application in vlsi domain. In IEEE TRANS. VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, pages 69–529, 1999.

[17] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning.

In Proceedings of the 36th annual ACM/IEEE Design Automation Conference,

DAC ’99, pages 343–348, New York, NY, USA, 1999. ACM.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[19] F. Harary. Graph Theory. Addison-Wesley Publishing Company, Philippines,

1972.

[20] M. Aigner. Combinatorial Theory. Springer-Verlag, New York, 1997.

[21] S. Areibi and A. Vannelli. Tabu Search: A Meta Heuristic for Netlist Partition-

ing. Technical report, University of Waterloo, Waterloo, ON, N2L-3G1, 1997.

[22] E. R. Barnes. An Algorithm for Partitioning the Nodes of a Graph. SIAM

Journal of Algebraic and Discrete Methods, 3(4):541–550, 1982.

[23] S. W. Hadley, B. L. Mark, and A. Vannelli. An Efficient Eigenvector Approach

for Finding Netlist Partitions. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 11(7):885–892, 1992.

[24] F. Hadlock. Finding a Maximum Cut of a Planar Graph in Polynomial Time.

SIAM Journal of Computing, 4(3):221–225, 1975.

96

[25] B. W. Kerninghan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. Bell System Technical Journal, pages 291–307, 1970.

[26] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Conference,

pages 175–181, 1982.

[27] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multi-

level hypergraph partitioning: Application in vlsi domain. In In Proceedings

ACM/IEEE Design Automation Conference, pages 526–529, 1997.

[28] Charles Alpert, Andrew Kahng, Gi-Joon Nam, Sherief Reda, and Paul Villarru-

bia. A semi-persistent clustering technique for vlsi circuit placement. In Proceed-

ings of the 2005 international symposium on Physical design, ISPD ’05, pages

200–207, New York, NY, USA, 2005. ACM.

[29] Jianhua Li, L. Behjat, and A. Kennings. Net cluster: A net-reduction-based clus-

tering preprocessing algorithm for partitioning and placement. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 26(4):669 –

679, april 2007.

[30] Haixia Yan, Zhuoyuan Li, Xianlong Hong, and Qiang Zhou. Unified quadratic

programming approach for 3-d mixed mode placement. In Circuits and Systems,

2007. ISCAS 2007. IEEE International Symposium on, pages 3411 –3414, may

2007.

[31] Yu Cheng Hu, Yin Lin Chung, and Mely Chen Chi. A multilevel multilayer

97

partitioning algorithm for three dimensional integrated circuits. In ISQED, pages

483–487, 2010.

[32] I.H.-R. Jiang. Generic integer linear programming formulation for 3d ic parti-

tioning. In SOC Conference, 2009. SOCC 2009. IEEE International, pages 321

–324, sept. 2009.

[33] Hsien-Kai Kuo, B.C. Lai, and Jing-Yang Jou. Unleash the parallelism of 3dic

partitioning on gpgpu. In SOC Conference (SOCC), 2010 IEEE International,

pages 127 –132, sept. 2010.

[34] Cristinel Ababei, Yan Feng, Brent Goplen, Hushrav Mogal, Tianpei Zhang, Kia

Bazargan, and Sachin S. Sapatnekar. Placement and routing in 3d integrated

circuits. IEEE Design and Test, 22, 2005.

[35] Renato Hentschke, Sandro Sawicki, Marcelo Johann, and Ricardo Reis. A

method for i/o pins partitioning targeting 3d vlsi circuits. In Giovanni Micheli,

Salvador Mir, and Ricardo Reis, editors, VLSI-SoC: Research Trends in VLSI

and Systems on Chip, volume 249 of IFIP International Federation for Informa-

tion Processing, pages 259–279. Springer US, 2008.

[36] Jonathan S. Rose, W. Martin Snelgrove, Zvonko, G. Vranesic, and Senior Mem-

ber. Parallel standard cell placement algorithms with quality equivalent to sim-

ulated annealing. IEEE Transactions on Computer-Aided Design, 7:387–396,

1988.

[37] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-

98

gusta H. Teller, and Edward Teller. Equation of state calculations by fast com-

puting machines. Journal of Chemical Physics, 21:1087–1092, 1953.

[38] A. B. Kahng, S. Reda, and Q. Wang. APlace: A general analytical placement

framework. In Proceedings of ISPD, pages 233–235, 2005.

[39] Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multi-

level quadratic placement algorithm with placement congestion control. In Proc.

of ASP-DAC, pages 135–140, 2007.

[40] T. Chan, J. Cong, M. Romesis, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced

multilevel mixed-size placement. In Proc. of ISPD, pages 212–214, 2006.

[41] Hans Eisenmann and Frank M. Johannes. Generic global placement and floor-

planning. In DAC, pages 269–274, 1998.

[42] Sungho Kang. Linear ordering and application to placement. In Proceedings of

the 20th Design Automation Conference, DAC ’83, pages 457–464, Piscataway,

NJ, USA, 1983. IEEE Press.

[43] ISPD04. ibm standard cell benchmarks with pads, 2006.

99

