
University of Calgary Technical Report 2009-935-14

Expert Recommendation with Usage Expertise

David Ma1

davma@ucalgary.ca
David Schuler 2

ds@cs.uni-sb.de
Thomas Zimmermann1,3

tz@acm.org
Jonathan Sillito 1

sillito@ucalgary.ca
1 Department of Computer Science, University of Calgary, Canada
2 Department of Computer Science, Saarland University, Germany

3 Microsoft Research, USA

Abstract

Global and distributed software development increases the
need to find and connect developers with relevant expertise.
Existing recommendation systems typically model expertise
based on file changes (implementation expertise). While
these approaches have shown success, they require a sub-
stantial recorded history of development for a project. Pre-
viously, we have proposed the concept of usage expertise,
i.e., expertise manifested through the act of calling (using)
a method. In this paper, we assess the viability of this con-
cept by evaluating expert recommendations for the ASPECTJ
and ECLIPSE projects. We find that both usage and im-
plementation expertise have comparable levels of accuracy,
which suggests that usage expertise may be used as a sub-
stitute measure. We also find a notable overlap of method
calls across both projects, which suggests that usage exper-
tise can be leveraged to recommend experts from different
projects and thus for projects with little or no history.

1. Introduction

For software development teams, a question often asked is
who knows what? Developers, struggling with source code,
may pose such questions as who can help me with this file?
Managers, charged with the responsibilities of assigning
tasks or organizing code reviews, may ask who has expe-
rience with SQL? Ideally the best candidate for these tasks
would be the person who can produce the best result in the
shortest time; in other words, those who have the most rel-
evant expertise. Inconveniently these experts may often be
located on different floors or even in different locales. Con-
sidering that developers separated by only 20 meters com-
municate as infrequently as developers separated geograph-
ically [1], it is unlikely that the developers will know who
the experts are.

Early research into this area involved the use of expertise
recommendation systems based on manually provided ex-

pertise data. However, the data in these systems was rarely
precise and rarely up to date [9]. Recent approaches will
often automatically infer developer expertise based variants
of the Line 10 Rule. The Line 10 Rule stems from a version
control system that stores the commit author in line 10 of
the log message. Through the act of changing a file, the de-
veloper is considered to have gained expertise for the said
file. This type of expertise is also referred to as implemen-
tation expertise [2]. While such approaches have shown
promise, the implicit criteria for recommending developers
for a file is that there must be at least one commit by the
developer for the file. Thus these recommendation systems
cannot be applied to files/projects with no or little history.

In earlier work we proposed usage expertise [13]; the
accumulation of expertise by calling (using) methods. By
simply calling a method, a developer demonstrates that they
know what the method does (without necessarily knowing
implementation details). Furthermore, when method calls
are added to existing code, developers are required to have
an understanding of the source code surrounding the loca-
tion of change (usually characterized by existing method
calls). In other words, developers demonstrate usage exper-
tise for the added method call and the surrounding context.

In this paper, we compare the accuracy of usage ex-
pertise based recommendations (including context) against
implementation based recommendations through an em-
pirical study of the ECLIPSE and ASPECTJ projects. We
also propose an approach towards leveraging usage ex-
pertise to recommend developers from projects that use
the same external libraries or frameworks (recommending
across projects). For example, is it possible to recommend
developers from the ECLIPSE project for tasks in the AS-
PECTJ project (or vice versa)?

Our results indicate that usage expertise, with context,
can recommend with accuracy similar to implementation
expertise. This suggests that usage expertise can be as
a substitute for implementation expertise based systems.
Furthermore, results indicate that providing cross-project
recommendations is possible given an adequate overlap of

1

University of Calgary Technical Report 2009-935-14

shared external dependancies. The implications of this are
that not only can usage expertise produce recommendations
across projects, but also, that it may be possible to recom-
mend for projects with no or little history.

In Section 2 we describe how we use reconstructed CVS
commits to model developer expertise (expertise profiles).
Section 3 discusses the set of heuristics we use to infer de-
veloper expertise from developer expertise profiles. Sec-
tion 4 details how experiments have been applied in this
study. Section 5 presents the corresponding results of our
experiments. Section 6 outlines the potential threats to va-
lidity. Section 7 summarizes related research. Section 8
concludes the paper with a summarization of our findings
as well as a discussion of future avenues of study.

2. Quantifying Expertise

2.1. Data Collection

Our approach can be applied to any version control sys-
tem history. However, we base our data collection on
CVS repositories since many open source projects currently
make use of it.

We reconstruct a CVS history via the use of the APFEL
tool [15] which clusters file revisions into a CVS commit
using a sliding time window approach [16]. A reconstructed
operation is composed of one or more file revisions r. Each
revision is the result of a single CVS commit R, where r ∈
R. Each commit can then be aggregated into a history of
CVS commits H , where R ∈ H .

2.2. Activity Computation

By reconstructing commit operation we can then compute
the changes made during each commit. These changes are
computed using a comparison of the abstract syntax tree of
a file both before and after a commit R.

We can compute the methods that have been added or
changed within a commit operation R (implementation ex-
pertise), denoted as C(R). We define C(R) as follows:

C(R) = {m | r ∈ R, m ∈ D(r)}

• Where m is a method

• Where D(r) is the set of added or changed methods
for a revision r.

In the example below, the commit Rex yields the following
set of changed methods:

C(Rex) = {update()}

Additionally we compute the multi-set (i.e., a set allowing
for duplicate members) of added method calls N(R) during
a commit (usage expertise). We define N(R) as follows:

N(R) = {n | m ∈ C(R), n ∈ E(m)}

• Where n is a method call

• Where E(m) is the set of added method calls for a
changed method m

In the example below, the commit Rex added calls to three
methods within the method body of update():

N(Rex) = {addTest(), worked(), refreshStatus()}

The set of new method calls N(R), the set of added
or changed methods C(R) and the author of a commit
author(R) serve as the input for the construction of ex-
pertise profiles.

2.3. Expertise Profiles

For each project developer the data mined from the version
archives is aggregated into an expertise profile. Such a pro-
file contains the methods changed by a developer (imple-
mentation), the methods called (usage) as well as the fre-
quency of each change or call. We can define the expertise
profile P for a developer d as follows:

Pd = (Id, Ud, cfreqd, ufreqd)

Id is the set of methods changed by a developer d over a
history of CVS commits H . Ud denotes the set of methods
called by a developer d over H . We now define Id and Ud

as follows (m denotes a method):

Id = {m | m ∈ C(R), R ∈ H, author(R) = d}

Ud = {n | n ∈ N(R), R ∈ H, author(R) = d}
Let cfreqd be the frequency in which a method is changed.
cfreqd is defined as follows:

cfreqd(m) = | {R | R ∈ H, m ∈ C(R), author(R) = d} |

Similarly let ufreqd be the frequency in which a method is
called. Also recall that N(R) is a multi-set which allows
for more than one instance of a method call:

ufreqd(m) = | {R | R ∈ H, n ∈ N(R), author(R) = d} |

As an example, Table 1 shows the expertise profile of Erich
Gamma mined from the ECLIPSE CVS archive. For brevity,
we report only simple method names. Erich mostly changed
methods related to testing and UI (which is no surprise be-
cause he is one of the inventors of JUNIT), and used lis-
teners and progress monitors frequently. We note that it is
also possible to compute expertise profiles on a weekly (or
monthly) basis to model only recent developer activity.

2

University of Calgary Technical Report 2009-935-14

Table 1. Partial expertise profile for E.Gamma

Six most frequently changed Six most frequently used

createPartControl 185 addSelectionListener 72
aboutToStart 163 openError 57
createControl 148 addModifyListener 35
rerunTest 143 refreshStatus 31
menuAboutToShow 142 addTest 29
testFailed 136 worked 26

2.4. Partial Program Analysis

Unlike Williams and Hollingsworth [14], our approach does
not build (compile, link) snapshots of a system to compute
inserted method calls. As they point out, such interactions
with the build environment (compilers, make files) are ex-
tremely difficult to handle and will inevitably result in high
computational costs. Instead, we analyze only the differ-
ences between single revisions (commit log comparisons).
Our preprocessing is then fundamentally cheaper as well
as platform/compiler independent. Note that method sig-
natures cannot be fully resolved. Instead we are limited to
identifying methods using only their names (e.g., addTest)
and the number of arguments (e.g., (1)). As a result, the
precision of call identification is roughly 68% [15]. How-
ever, alternative approaches to partial program analysis can
raise precision to as much as 91% [4]. For more details on
how changes are recovered from commits, we refer to the
APFEL plug-in [15].

3. Scoring Expertise

We propose six different heuristics which infer expertise
(usage or implementation) by analyzing developer activity.
Given a query Q and a developer d: each heuristic will
quantify a developer’s expertise denoted as Ed(Q) . Each
heuristic produces a ranked ordering of the most qualified
developer(s).

3.1. Usage Expertise Heuristics

Here we infer developer aptitude with heuristics based on
usage profiles. We propose four possible measures because
we do not know yet which heuristic yields the “best” rec-
ommendations and to gain insight into what characterizes
an effective measure. In the context of inferring usage ex-
pertise we define the contents of each query Q as a non
empty set of method calls.

3.1.1 Depth of Method Knowledge

Each call for a method is quantified as a linear increase in
expertise for the method. Thus for a set of methods the
developer with the most expertise is the developer with the
largest sum of calls. Formally we define this as:

Ed(Q) =
∑

m ∈ Q
ufreqd(m)

Given a set of methods Q, expertise is defined as the sum of
the frequency of calls for any method m where m ∈ Q.

The computation of expertise is based on situations
where developers will utilize a similar set of method calls.
A developer will have comparatively more expertise over
the queried set if he/she has demonstrated a greater depth of
understanding over a set of methods (judged by frequency).

3.1.2 Breadth of Method Knowledge

Here we consider developers to have expertise for a method
with at least a single call. Thus the best developer(s) for a
queried set of methods are the developers who have called
the most members of the set at least once. Formally we
define this as:

Ed(Q) =| {m | m ∈ Ud, m ∈ Q} |

Thus given a set of methods Q we define the expertise of a
developer d in terms of how many methods m, where m ∈
Q, were called at least once.

An example situation suited for this heuristic can be
described using two developers Alice and Bob who de-
velop similar components of a system; thus implying simi-
lar method call patterns and frequencies. Alice, has demon-
strated knowledge over a larger set of methods (that also
happen to belong in the query set Q) and thus is determined
to have comparatively more expertise than Bob.

3.1.3 Relative Depth of Method Knowledge

Frequency of calls by a single developer are normalized rel-
ative to frequency of calls by the entire developer popula-
tion. Commonly used methods are weighed less than rarely
called methods. Formally we define this as:

Ed(Q) =
∑

m ∈ Q

ufreqd(m)
ufreqD(m)

Where D is the entire developer population and ufreqD

(m) is the frequency in which m was invoked by all devel-
opers.

Consider for instance a Q that contains extract (called
1000 times) and insert (called 500 times). Again we will
return to our favorite developers Alice and Bob. Alice in-
vokes the extract method a total of 15 times and insert

3

University of Calgary Technical Report 2009-935-14

method 5 times. Meanwhile Bob invokes both extract and
insert a total of 10 times each.

Alice =
15

1000
+

5
500

= 0.025

Bob =
10

1000
+

10
500

= 0.03

Each developer has an equivalent number of overall method
calls but under this measure Bob is said to have more knowl-
edge of the methods in set Q.

3.1.4 Relative Breadth of Method Knowledge

Again we consider developers calling methods at least once
to have knowledge. However, calls to methods used by a
large portion of developers is scored lower than methods
called by only a few developers. This measure favors devel-
opers who have called the widest range of methods with an
emphasis on rarely called methods.

This measure combines both approaches where expertise
is quantified using 1) the breadth of expertise over Q and 2)
the frequency in which a method was called relative to the
global frequency. Let cd(m) be a function with the range of
{0, 1}: 1 indicating that a developer has called a method at
least once, 0 otherwise. We formally define cd(m) as:

cd(m) = min(| {m | m ∈ Ud, m ∈ Q} |, 1)

Given cd(m) we now quantify expertise as follows:

Ed(Q) =
∑

m ∈ Q

cd(m)
P

d∈D cd(m)

Where
P

d∈D cd(m) is the number of developers for a project
that have called method m at least once.

3.2. Implementation Expertise Heuristics

Using the implementation profile of a developer and a query
Q in the form of a set of methods, we infer the developer’s
aptitude for the query as described below.

3.2.1 Method Change Frequency

Anvik and Murphy [2] measure implementation expertise
using frequency of changes to files. Conversely, we measure
implementation expertise using frequency of changes to
methods. A developer who commits changes to methods is
said to have acquired knowledge for that set. Higher change
frequencies will then imply a greater depth of knowledge
for a particular method, that is:

Ed(Q) =
∑

m ∈ Q
cfreqd(m)

Recall that cfreqd is defined as the frequency of methods
changes. Thus for a given set of methods Q, expertise for
a developer d is measured as the raw frequency of changes
done on methods belonging to Q.

It may be the case that developer changes are local to
a particular location. But the raw frequency of changes
made to that location may be large enough such that a devel-
oper who has made a disproportionate amount of changes
to a single location have more inferred expertise (under this
heuristic) than a developer who has made changes over a
broader spectrum of methods.

3.2.2 Most Recent Change(s)

Fritz and Murphy [5] suggest that it is not only the fre-
quency of developer activity but also the recency of activ-
ity as indicators of knowledge. As an increasing amount
of change is applied to a method it is often the case that
the structure and behavior of a method will deviate further
and further from previous incarnations. This measure quan-
tifies implementation expertise on the basis of developers
who have demonstrated the most recent expertise over Q.
The time in which a developer d has changed a method m
can be obtained by the numeric timestamp associated with
a commit R.

Thus the developer who has the highest sum of times-
tamps is the developer who has most recently changed the
set of methods Q. We now define this measure as follows:

Ed(Q) =
∑

m ∈ Q
Td(m)

Where Td(m) is the numeric timestamp representing the
most recent date in which developer d modified method m.
Td(m) is 0 when developers have never modified m.

Note that this heuristic favors developers who have made
the most recent changes to the overall set Q rather than indi-
vidual elements of the set. Consider the following example
where Q = a, b:

TAlice(a) = 100 TAlice(b) = 0 EAlice(Q) = 100
TBob(a) = 75 TBob(b) = 70 EBob(Q) = 150

TCarol(a) = 90 TCarol(b) = 90 ECarol(Q) = 180

Although Alice has committed a more recent change than
Bob or Carol she is classified as having smaller degree of
expertise given the smaller scope of her changes.

4. Methodology

In evaluating usage expertise, we considered our objectives
in terms of two dimensions:

• Is usage expertise as precise as implementation expertise
when recommending developers for a single project?

4

University of Calgary Technical Report 2009-935-14

!"#$%&'$()!*

1 2 3 n

+%,-&.$/

1

0$1%&/)&234 Expert Within

Top-N?

0$1%&/)&23(
51$%6

3

Expert Within

Top-N?

+%,-&.$/

1

0$1%&/)&234 Expert Within

Top-N?

0$1%&/)&23(
51$%6

2

Expert Within

Top-N?

!"#$%&'$()!7

2

January 06 October 06

Figure 1. Experiment Overview

• Could usage expertise be used to recommend developers
outside of a particular project (across projects)?

We base our evaluation on data mined from the ECLIPSE
and ASPECTJ CVS repositories. Specifically, we take data
occurring between the months of January and October of
2006 (roughly ten months) to form profiles/evaluate exper-
tise. The choice of a ten month data collection period is not
arbitrarily chosen, but rather the reasons are threefold:

• Because of previous experience with the data collected
during this time.

• The variance in team size and the corresponding commit
rates. ECLIPSE, having almost ten times the number of
active committers when compared to ASPECTJ, recorded
roughly nine times the number of commits during this ten
month period (9000 versus 1000 commits). We are con-
fident that anomalies associated with individual commits
will be mitigated with the sheer mass of evidence (i.e.,
the 1000 commits).

• By limiting the period of time in which data is collected
we implicitly reduce the impact of knowledge decay as a
confounding factor. Constraining the historical reach of
profile data reduces instances where developers have all
but forgotten a method. Conversely should a developer
continually demonstrate activity on a particular method
(call or change) then the developer is intimately aware of
the method and thus be safely considered an expert.

4.1. General Experiment Procedure

Figure 1 depicts the general procedure used for our exper-
iments. Given a commit Rm, we create a developer exper-
tise profile for each developer in a project, Pd, trained on
repository data prior to Rm. We then apply the previously
described heuristics using Pd to quantify the amount of ex-
pertise each developer has for a set Q. Thus each heuristic
will assess a score for each developer, of which the highest
score(s) indicate the developers with the most expertise. We
then incrementally update Pd using the recovered changes
in Rm and repeat the above procedure for all remaining
commit operations (Rm+1 . . . Rn). We determine the pre-
cision of each heuristic in terms of the overall percentage in
which a ‘successful’ recommendation appears in the Top-N
results (hit rate).

We apply this procedure to two different sets of exper-
iments. The details of each experiment, how Q is formed
and how we define success are explained below.

4.2. Recommending Within Projects

These experiments compare the precision of usage and im-
plementation expertise in the context of providing recom-
mendations for individual projects. To perform this com-
parison, we test with three different types of queries:

Implementation. The added or changed methods during
a commit R

Usage. The added method calls during a commit R.

Usage with context. The added method calls during a
commit R plus the method calls added prior to R for
the same location (context).

We define a successful recommendation as the appear-
ance of the actual expert for Q within the Top-Nth recom-
mendation. Where the commit author is considered to be
the actual expert. The underlying assumption is that who-
ever made (committed) the change had the expertise to do
so. In some cases we may recommend a developer who
may have had the expertise but did not do the change. How-
ever, accounting for such a situation would lead to higher
hit rates. In other words, the precision reported in this pa-
per can be considered a lower bound.

4.3. Recommending Across Projects

This set of experiments is intended to determine the possi-
bility of making cross project recommendations with usage
expertise. In other words, is it possible to recommend devel-
opers working on the ECLIPSE project for tasks in ASPECTJ
(and vice versa).

5

University of Calgary Technical Report 2009-935-14

0%

25%

50%

75%

100%

Top-1 Top-3 Top-5 Top-7 Top-9

C
ro

s
s
 P

ro
je

c
t

R
e
c
o

m
m

e
n
d

a
ti
o

n
s

Depth Breadth Relative Depth Relative Breadth

Figure 2. Recommending Across Projects

To test this we now consider commits from both projects.
For any given commit we train usage profiles on data, be-
longing to either project, occurring prior to the commit. We
limit our possible queries to only the method calls added
during a commit (i.e., the Usage scenario from above).

Here we define a successful recommendation as a devel-
oper recommended from other projects. That is, given a Q
created from a reconstructed ECLIPSE commit, a successful
recommendation would be a developer from the ASPECTJ
project in the Top-Nth recommendation (and vice versa).
Note that without a user study we cannot be certain if these
recommendations correct; we leave this as future work.

5. Findings

5.1. Expertise Within Projects

Figure 3 illustrates our results for recommending within
projects. The left plot shows favorable results when rec-
ommending for ASPECTJ. With the first recommendation
(N=1), 3 of the 4 usage based measures perform close to
the best implementation based heuristic. As N increases,
hit rates begin to converge until finally usage overtakes im-
plementation when N is 7. Note that ASPECTJ had roughly
20 active committers and thus as N increases experts may
incidentally appear in the Top-N rankings without strong
evidence of developer expertise.

However, this trend does not repeat for ECLIPSE project
(right plot). When N is less than 9, the accuracy of usage
based heuristics is less than the accuracy of implementation
based heuristics. We speculate that the disparity in results
could possibly be attributed to the scope of dependencies
on external libraries. With a smaller code base, modules in
ASPECTJ are likely to be managed by only a small set of in-
dividuals. ECLIPSE on the other hand has multiple authors
for any given sub-project which in turn increases the prob-
ability that a file has been touched by multiple developers.
Thus these two activity trends may result in a smaller over-

lap used methods in ASPECTJ (more likely to recommend
the commit author) and a larger overlap of used methods in
ECLIPSE (less likely to recommend the commit author).

5.2. Context Improves Accuracy

Figure 4 depicts the increased hit rates when recommend-
ing with usage plus context based queries. The improve-
ment is especially pronounced in the ECLIPSE project with
roughly a 25% improvement over hit rates from using only
usage expertise queries. Given as few as the Top-2 recom-
mendations we see that Change Frequency is roughly 75%
accurate (compared to under 50% without context). This
suggests that (unsurprisingly) only a handful of developers
contribute the bulk of changes to methods. So it is likely
that developers understand the calls surrounding the loca-
tion of change, given that they were directly responsible for
adding the previous methods; evidence that querying with
context is based on solid ground.

5.3. On Usage Expertise Heuristics

Results do not clearly depict any one heuristic as superior.
Thus we cannot yet conclude how to best leverage usage
expertise for recommendation. Conversely, it may also be
the case that perhaps inferring based on breadth or relative
depth of expertise are indeed equally effective.

What we can conclude is when considering the commit
author as the only expert, inferring with Depth yields lower
hit rates. This disparity is especially pronounced when
recommending for the ECLIPSE project using both usage
and usage with context. Similar to our explanation in Sec-
tion 5.1, ECLIPSE developers may rely on commonly used
methods. When developers (other than the commit author)
call these common methods frequently they will be exten-
sion score higher in expertise, thus explaining these results.
This is not to say that Depth is inherently a poor measure,
but rather, that it recommends developers with the most ex-
pertise in commonly used methods. Relative Depth on the
other hand favors developer activity consisting of calls to
rarely called methods; methods that the commit author is
likely to be the sole user of. Thus results lead us to con-
clude that Relative Depth accurately models the behavior of
the commit author and will yield higher results when the
commit author is considered as the expert.

5.4. On Recommending Across Projects

Figure 2 paints a favorable picture regarding the prospects
of recommending across projects. Intuitively, for the hit
rate to be as high as 75%, there must be sufficient over-
lap in the calls to external libraries. By extension this

6

University of Calgary Technical Report 2009-935-14

0%

25%

50%

75%

100%

Top-1 Top-3 Top-5 Top-7 Top-9

AspectJ

O
v
e
ra

ll
H

it
ra

te

Depth Breadth Relative Depth Relative Breadth Change Frequency Recent Changes

0%

25%

50%

75%

100%

Top-1 Top-3 Top-5 Top-7 Top-9

Eclipse

Figure 3. Hit rates within projects. Implementation (light) versus usage expertise (dark).

0%

25%

50%

75%

100%

Top-1 Top-3 Top-5 Top-7 Top-9

AspectJ

O
v
e
ra

ll
H

it
ra

te

Depth Breadth Relative Depth Relative Breadth Change Frequency Recent Changes

0%

25%

50%

75%

100%

Top-1 Top-3 Top-5 Top-7 Top-9

Eclipse

Figure 4. Hit rates within projects. Implementation (light) versus usage expertise with context (dark).

means that recommendations are at the very least, possi-
ble. When rarely called methods are given more weight
(Relative Depth/Breadth), we are more likely to recommend
inter-project developers, given that the overlap of internal
methods is likely to be low.

While we cannot claim for our experiment that the cross-
project recommendations are in fact “good” recommenda-
tions, we demonstrated the feasibility of providing recom-
mendations across projects. Assessing the quality of these
recommendations is only possible with user studies; which
we leave as future work.

6. Threats to Validity

The ability to generalize our results to a larger set of projects
is bound by the limited size of our data set. Our experiments
were applied to two projects and although a common trend
was observed in our results we cannot claim that these pat-
terns apply to other projects. Further, both projects are open
source which entails its very own distributed development
structures. We do not claim that our observations hold when
considering proprietary software projects.

With respect to evaluating the effectiveness of recom-
mendations across projects we note that the pool of devel-
opers in each evaluated project is mutually exclusive. Thus
it was the case that recommendations could not be made
across projects using implementation expertise. We con-

7

University of Calgary Technical Report 2009-935-14

sider this a limitation rather than a threat to the external va-
lidity of our results. Certainly there are instances where de-
velopers are involved in multiple projects. But it is seldom
the case where multiple developers contribute to the same
set of projects. Thus it is challenging to test without mining
a contrived data set for expertise profiles.

Measuring the accuracy of heuristics was done via a
comparison of the list of recommendations with the author
of a commit operation. Given the level of indirection be-
tween us and the development, team we cannot say for sure
if the author is in fact responsible for all the changes during
a commit. Further, it is difficult to determine if the author
is truly an expert without having direct contact with the au-
thor him or herself. However, we argue that this is not a con-
founding factor. It is may be the case that the commit author
did not implement the changes but still acquires experience
through reviewing of such code (in accordance to commit
policies). Also, the author may not be the developer with
the most expertise but certainly he or she has demonstrated
that they have sufficient expertise to commit a change.

Our approach (with exception of the Most Recent
Change heuristic) does not account for both the implicit
and explicit decay of programmer knowledge as time pro-
gresses. As previously mentioned we limit our analysis of
data to commits occurring within the span of under a year
as one possible technique mitigate the effects of knowledge
decay by discarding knowledge that is years old. Still the
presence of false positive recommendations exists due to
heuristics which do not account for such decay. Recent
work by Matter [8] incorporates a 3% weekly decay on in-
active developer activities provides the best level of preci-
sion and recall. While the details of their experiments differ
than the ones described in this paper the model of a weekly
decay of knowledge can also be applied to our heuristics.

By considering only recorded CVS commits we also ac-
knowledge the potential for false negatives. That is, devel-
opers that may in reality have expertise over a set of meth-
ods but is not accounted for in our definition of an expertise
profile. Developers may have accumulated such through
activities external to the modification of code (documenta-
tion, involvement with design process, communicating with
peers) or perhaps in other projects.

7. Related Work

Our approach for expert recommendation is not the first to
mine software repositories. However, previous approaches
are based on variants of implementation expertise, implying
that they are specific to a given project. By mining usage ex-
pertise instead, we get project independent expertise which
is transferable across projects. This allows us to recom-
mend for newcomers to software projects. In addition our
approach allows for recommendations for code with little or

no history.
Anvik and Murphy propose and compare three different

ways to determine implementation expertise from bug re-
ports [2]. Two approaches involve analyzing source reposi-
tory check-in logs. Here a bug report is linked to the source
repository to obtain a change set for each report. Then the
containing module for each entry in the change set is deter-
mined at file or package level. From this containing module
a list of all developers who previously made changes to it is
compiled. In their third approach, they determine expertise
from a bug network. A bug network consists of all bugs that
are connected by a relationship (e.g. duplicate, depends on).
From this network they use the carbon-copy lists, comments
and resolver information to compile a list of experts.

Minto and Murphy present the Emergent Expertise Lo-
cator (EEL) that presents experts to a developer based on
the recently edited or selected files [11]. Their approach
uses the coordination requirements framework introduced
by Cataldo et al. [3]. The experts for a set of files is com-
puted by using information from the version control system
on which files are changed together and how often a devel-
oper changed a particular file.

Mockus and Herbsleb present the Expertise
Browser [12] that uses experience atoms (EA) as a
measure of expertise. These EA’s are gathered by mining
the source repository using author and change information.
Then each EA can be associated with several domains (such
as author, organization, technology or release version).
Later the experience atoms can be queried for finding
experts for the different domains.

McDonald and Ackerman propose a recommendation ar-
chitecture called Expertise Recommender [10] that uses ex-
pertise profiles for organization members. These profiles
are built using two heuristics: change history and calls to
tech support. The change history heuristic assigns exper-
tise to all authors that modified a file and the tech support
heuristic assigns expertise based on previously completed
support calls. When a new call to tech support comes in,
these profiles are queried to find members of the organiza-
tion that can assist in solving the problem at hand.

Recently Kagdi, Hammad and Maletic propose a tool,
xFinder [6], that ranks expertise based primarily upon the
changes to files. Specifically candidates were ranked along
the premises of change expertise, experience, as well as the
proportion of contributions of a developer. Similar to the
approach taken in this paper, their data collection is also
computationally lightweight given that their data can be ob-
tained by only examining commit logs. Using as many as
eight open source projects they conclude that the range of
accuracy of their recommendation falls between 43% and
82%. However, xFinder requires projects to have a decent
amount of recorded history and also cannot recommend
across projects.

8

University of Calgary Technical Report 2009-935-14

8. Conclusions and Consequences

In this paper we showed empirically that usage expertise
produces recommendations with an accuracy comparable to
implementation expertise. We also presented an approach to
improve recommendations by also considering the implicit
understanding of the surrounding context.

Our results also revealed that between the ECLIPSE and
ASPECTJ project there is a substantial overlap of calls to
external (or shared) libraries; alluding to the possibility of
cross-project recommendations. While we did not assess
the correctness of cross-project expert recommendations,
we have demonstrated the possibility in this paper. We
expect that the precision will be similar across projects to
the precision within projects, for which usage expertise per-
forms similar to implementation expertise.

To summarize, usage expertise can enhance traditional
expert recommendation systems. In particular, they will al-
low recommendations for files and projects with little to no
history and from unrelated parts of a project.

In addition to the work presented in this paper, we plan
to expand on the following in future work:

• Recommending for projects with little to no history.
We plan to conduct an empirical study to determine if
recommendations can be made for brand new projects or
for projects without an existing history.

• Evaluating precision across projects. We plan to con-
duct a user study to determine if cross-project recommen-
dations are precise.

• Relation between usage expertise and quality. Experts
produce code of higher quality (e.g., fewer defects) than
novices. An empirical study is needed to determine if
experts, as judged by heuristics inferring usage expertise,
also produce a corresponding level of quality?

• Improve precision of data collection. In our study,
method calls are not fully resolved because we use a
conservative strategy for ambiguities like overwritten and
overloaded methods. We plan to use fragment class anal-
ysis [4] to collect precise data on archived repositories.
Further, we will also mine real time method usage data
via an ECLIPSE plugin.

• Combining implementation and usage expertise. A
combined usage and implementation expertise metric
may also lead more precise results. In addition, taking
both types of expertise into account can be used to assign
different roles for developers. For instance they can be
considered as consumers or producers of methods, which
can help to facilitate communication amongst them.

• Combining expertise with tasks and bug reports. Ad-
ditional data sources such as task and bug reports can

augment profiles. By monitoring tasks, we can recom-
mend tasks to developers (which might be relevant for
their work). Bug reports can also be enriched with exper-
tise information, e.g., when a bug report contains source
code or stack traces, we can recommend experts for it.

• Measuring API consumption. For API producers, we
can provide information about how their API is used and
by who. They can ask consumers for feedback on the
API, inform them about upcoming changes, or even in-
form them about serious bugs in the API. Moreover, they
can obtain information about the popularity of methods.
This helps to prioritize and plan efforts where heavily
used methods would receive more attention, while rarely
used methods are candidates for deprecation.

9. Acknowledgements

A shorter version of this paper will be published at ICSM
2009 [7]. Many thanks to the ICSM review committee and
Reid Holmes for valuable feedback on this project. This
research was funded in part by NSERC and an IBM Jazz
Faculty grant.

References

[1] T. J. Allen. ”Managing the Flow of Technology: Technology
Transfer and the Dissemination of Technological Informa-
tion Within the RD Organization”. MIT Press, 1977.

[2] J. Anvik and G. C. Murphy. Determining implementation
expertise from bug reports. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repos-
itories, page 2, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[3] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: implica-
tions for the design of collaboration and awareness tools.
In CSCW ’06: Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages
353–362, New York, NY, USA, 2006. ACM Press.

[4] B. Dagenais and L. Hendren. Enabling static analysis for
partial java programs. In OOPSLA ’08: Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented pro-
gramming systems languages and applications, pages 313–
328, New York, NY, USA, 2008. ACM.

[5] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s ac-
tivity indicate knowledge of code? In ESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT sym-
posium on The foundations of software engineering, pages
341–350, New York, NY, USA, 2007. ACM.

[6] H. H. Kagdi, M. Hammad, and J. I. Maletic. Who can help
me with this source code change? In ICSM, pages 157–166.
IEEE, 2008.

9

University of Calgary Technical Report 2009-935-14

[7] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Expert
recommendation with usage expertise. In Proceedings of
the 25th IEEE International Conference on Software Main-
tenance, September 2009.

[8] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug re-
ports using a vocabulary-based expertise model of develop-
ers. In MSR 09: Proceedings of the 2009 intl. working con-
ference on Mining software repositories. ACM, 2009.

[9] D. W. McDonald and M. S. Ackerman. Just talk to me: a
field study of expertise location. In CSCW ’98: Proceedings
of the 1998 ACM conference on Computer supported coop-
erative work, pages 315–324, New York, NY, USA, 1998.
ACM.

[10] D. W. Mcdonald and M. S. Ackerman. Expertise recom-
mender: a flexible recommendation system and architecture.
In Proceedings of the 2000 ACM conference on Computer
supported cooperative work, pages 231–240. ACM Press,
2000.

[11] S. Minto and G. C. Murphy. Recommending emergent
teams. In Mining Software Repositories, 2007. ICSE Work-
shops MSR ’07. Fourth International Workshop on, page 5,
2007.

[12] A. Mockus and J. D. Herbsleb. Expertise browser: a quan-
titative approach to identifying expertise. In ICSE ’02: Pro-
ceedings of the 24th International Conference on Software
Engineering, pages 503–512, New York, NY, USA, 2002.
ACM Press.

[13] D. Schuler and T. Zimmermann. Mining usage expertise
from version archives. In Proceedings of the Fifth Inter-
national Working Conference on Mining Software Reposito-
ries, May 2008.

[14] C. C. Williams and J. K. Hollingsworth. Automatic min-
ing of source code repositories to improve bug finding
techniques. IEEE Transactions on Software Engineering,
31(6):466–480, June 2005.

[15] T. Zimmermann. Fine-grained processing of CVS archives
with apfel. In Proceedings of the 2006 OOPSLA Workshop
on Eclipse Technology eXchange, New York, NY, USA, Oc-
tober 2006. ACM Press.

[16] T. Zimmermann and P. Weissgerber. Preprocessing CVS
data for fine-grained analysis. In Proceedings of the First
International Workshop on Mining Software Repositories,
pages 2–6, May 2004.

10

