
THE UNIVERSITY OF CALGARY

ARCHITECTURAL DESIGN OF A COMPUTING ELEMENT

FOR SIGNAL PROCESSING

by

HAKAN ORBAY

A THESIS

SUBMrim1D TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

CALGARY, ALBERTA

April, 1986

© Hakan Orbay 1986

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a accorde
a la Bibliothèque nationale
du Canada de microfilmer
cette these et de prter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
dtauteur) se rserve les
autres droits de publication;
ni la these ni de longs
extraits de celle-ci ne
doivent Ztre imprims ou
autrement reproduits sans son
autorisation §crite.

ISBN 0-315-32730-8

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Architectural Design of a

Computing Element for Signal Processing" submitted by Hakan Orbay in partial

fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. M.R. Smith
Dept. of Electrical Engineering

Dr. S.T. Nichols
Dept. of Electrical Engineering

Date It,/4://%6•1

Dr. '. S. Hope
pt. of Electrical Engineering

Prof. H.D. Baecker
Dept. of Computer Science

11

ABSTRACT

The long term objective of this research is to realize a multi-stage digital signal

processor. Each stage of the system consists of a processing unit designated to run a

specific digital signal processing (DSP) algorithm. A uniform architecture suitable

for various DSP algorithms is therefore required.

In this thesis, the development of such an architecture is discussed, with

emphasis on parallel processing and resource optimization. It was shown that the

separation of the address generation and the arithmetic operations leads to a

structured organization of the processing unit. This organization remains essentially

unchanged for various algorithms, with the exception of the address generator which

is unique to an algorithm. The architecture of the arithmetic unit was optimized for

signal processing operations.

A microprogrammable control unit was necessary in order to combine high

performance and flexibility in the processing units. For this reason, a'general

purpose microprogrammable controller was constructed as a tool for the development

of each processing unit. A software library was also provided on the host computer

to maintain simple operation of the controller.

A 16-bit FFT processor was built to demonstrate the efficiency of the

architecture and the usefulness of the general purpose controller. The parallel

architecture allowed the completion of one FF1 butterfly every four cycles with a

1'1

cycle time of 125 ns. The results indicated that, using this architecture, the real-time

implementation of the signal processor is feasible.

iv

ACKNOWLEDGEMENTS

I am indebted to my supervisor, Dr. M.R. Smith, for his guidence through the

course of this work and for invaluable advice and patience during the preparation of

this manuscript. Thanks are also due to Dr. G.S. Hope for his interest and support,

to Warren Flaman for his most appreciated assistance in the construction of the

printed-circuit boards and to Norman Bartley for many helpful discussions.

The financial assistance of Advanced Micro Devices Ltd., Ontario in supplying

various components, the University of Calgary in awarding Graduate Assistanships

and the Natural Science and Engineering Research Council of Canada in providing

operating funds are gratefully acknowledged.

.Finally, I would like to thank two special people, Monica and Ekrem. Their

constant encouragement has made this thesis possible.

v

To My Mother and Father

Anneme ye Babama

vi

TABLE OF CONTENTS

Table of Contents vii

List of Tables x

List of Figures xi

1. INTRODUCTION 1

1.1 Long-term Goals 4

1.1.1 The problem 4

1.1.2 Use of modeling 5

1.1.3 Implementation 7

1.2 Purpose and Objectives 8

1.3 Outline 8

2. MICROPROGRAMMING 10

2.0 Introduction 10

2.1 Generation of Control Information 10

2.2 Why Microprogramming? 12

2.2.1 Advantages of Microprogramming 12

2.2.2 Disadvantages of the Microprogram 14

2.2.3 Economical Considerations 14

2.3 Evolution of Microprogramming 15

2.4 Components of a Microprogrammable Control Unit 16

2.4.1 The Control Store 17

2.4.2 The Sequencer 18

2.4.3 The Condition Code Generator 20

2.4.4 The Pipeline Register(s) 21

2.4.5 The Clock Pulse Generator 22

2.5 Summary 23

3. GENERAL PURPOSE CONTROLLER 24

3.2 Organization of the General Purpose Controller 30

3.2.1 Design Considerations 31

3.2.2 The Architecture 32

vii

3.2.3 The System Clock 35

3.2.4 Specifications of the Prototype Controller 37

3.3 Loading the WCS 39

3.3.1 Downloading Procedure 40

3.4 The Task Manager 42

3.4.1 Implementation of the Task Manager 43

3.4.2 Downloading The WCSs 45

3.4.3 System Development Support 46

3.4.4 Host Communications 47

3.4.5 Other Features 47

3.5 Software Support 48

3.6 Summary 50

4. AN ARCHITECTURE FOR SIGNAL PROCESSING 53

4.1 Processing Requirements 54

4.1.1 Basic Operations of DSP 55

4.1.2 The Benchmark Algorithm 58

4.2 Functional Requirements 59

4.2.1 Parallelism and Pipelining 60

4.2.2 Functional Blocks of the Processing Unit 63

4.3 The Arithmetic Processor 66

4.3.1 Optimization of Resources •67

4.3.2 Component Technology 72

4.3.3 Data Format 73

4.3.4 Data Flow Structure 74

4.4 Architecture of the Processing Unit 76

4.4.1 The Memory 76

4.4.2 The Scaler 78

4.4.31/0 Interface 78

4.4.3.1 The Metastable Problem 82

4.5 An Example: The FFT Processor 85

4.5.1 Characterization of the Processing Unit , 85

4.5.2 Overflow Protection in tFl 88

4.5.2,1 Word Growth in a Butterfly Operation 89

4.5.3 Software for Parallel Execution 93

4.5.4 Clock Requirements 97

4.6 Summary 98

viii

5. CONCLUSIONS 100

5.1 The General Purpose Controller 100

5.2 The Digital Signal Processing Architecture 101

5.3 Recommendations for Future Research 103

REFERENCES 105

ix

LIST OF TABLES

3.1. Calculation of the delay for the CIMP instruction 36

3.2. Calculation of the delay for the CONT instruction 36

4.1. Effects of the multiplicity of the resources 69

4.2. Progress of a butterfly operation 94

4.3. Modified butterfly for overlapping 95

4.4. Two overlapped butterfly operations 95

4.5. Completely overlapped butterflies 96

4.6. Calculation of the delay for the READ operation 98

x

LIST OF FIGURES

1.1. A signal processing system 6

2.1. Fundamental blocks of a digital machine 11

2.2. Organization of a typical sequencer 19

2.3. The microinstruction register 21

3.1. Flow of control information 24

3.2. Instruction based Structure 27

3.3. Address based Structure 27

3.4. Two-level pipeline based structure 28

3.5. One-level pipeline based structure 28

3,6. Architecture of the general purpose controller 33

3.7. Typical WCS organization 39

3.8. Bank organization within the WCS 42

3.9. The task manager 44

3.10. Sequencer and WCS board 51

3.11. Task manager board 51

3.12.. WCS expansion board 52

3.13. General purpose controller 52

4.1. A perspective of designing digital signal processors 54

4.2. A pipelined parallel processing system 61

4.3. Parallel processing in different levels 62

4.4. General organization of the processing unit 67

4.5. Data flow in the arithmetic processor 75

4.6. An example of the simplified multiplier inputs 76

4.7. The architecture of the processing unit 78

4.8. The data memory 78

4.9. The scaler block 79

4.10. I/O Interface 80

4.11. Interconnection of the processing units with a system bus 81

4.12. Timing diagram of execution and data transfers 81

4.13. Timing diagram with different execution speeds 81

4.14. The metastable problem 82

4.15. Metastable problem in the control unit 84

xi

4.16. Rectification of the metastable problem 84

4.17. The FF1 processor 86

4.18. FF1' processor board 99

xii

CHAPTER 1

INTRODUCTION

In the last two decades, digital signal processing has become an increasingly

important tool for science and technology as its applications spread to such diverse

fields as geophysics, biomedical engineering, nuclear science and communications.

Originally, signal processing has been conducted using analog equipment. With the

need to process large volumes of data and the advances in the computer technology,

attention has shifted to processing in the digital domain. The flexibility of the digital

computers fostered experimentation with progressively more sophisticated algorithms,

and as a result,' new digital techniques have been developed without any apparent

analog implementation. Thus, the digital signal processing (DSP) theory, which was

originally regarded as an approximation to the analog signal theory, has evolved into

a field of its own..

Signal processing, in general, is used to extract certain characteristics of a signal

or to transform the signal into a more desirable form. For example, in EKG and

EEG analysis or in speech recognition some characteristic parameters of the signal

are estimated. Alternatively, noise or other interference may be removed from the

signal or the signal may be modified to present it in a form which is more

interpretable. Further examples of the application fields of digital signal processing

are listed below.

1

2

Geophysics: Deconvolution methods are used in analyzing seismic data to aid in

modeling the structure of the earth's interior, the study of earthquakes and

exploration for oil.

Communications: A signal transmitted over a communication channel may be

perturbed in a variety of ways, including channel distortion, fading and insertion of

background noise. One of the objectives at the receiver end is to compensate for

these disturbances. For example, signal processing may be used for filtering signals

to remove out-of-band components, echo cancellation in voice/data channels,

detection and purification of satellite signals.

Speech processing: The main problems here are speech recognition, voice

identification and verification, speech waveform parametrization, encoding and

compression. Spectral analysis and signal modeling techniques are used to aid in

recognition of the type of the signal or to characterize the voice signal.

Sonar: High resolution spectral analysis is an important tool in various sonar

activities such as generation of signal pulses or detection and analysis of echo

returns. Sonar has its applications in target detection and localization, navigation and

mapping.

These applications are just a sample of the multitude of the fields where DSP

techniques are utilized. An excellent review of the application areas of digital signal

processing is edited by Oppenheim [1].

3

This growing interest in digital processing has created a huge area of research

in the implementation of digital signal processors, both in software and hardware.

Classically, the realizations of the signal processing systems have tended towards one

of two general approachs depending on the performance requirements. Inflexible,

dedicated hardware systems were used where high performance was the priority (e.g.

[2,3]). Where a lower performance was tolerable, software implementations on

getieral purpose computers were sought (e.g. [4]). Over the past decade, attempts to

combine flexibility and high performance resulted in two new approachs,

implementation on the supercomputers and on' specialized array processors attadhed

to a general purpose host computer. Recently, advances in the integrated-circuit

technology have given rise to new high-performance components which have

dramatically changed the cost/performance criteria for all digital systems. In

particular, a range of programmable, configurable chips opened up a new dimension

in digital signal processor implementations.

In this thesis the possibility of efficient utilization .of these new components in a

DSP suitable architecture is investigated. In effect, this thesis completes the first leg

of a project which requires the hardware implementations of several DSP algorithms.

Thus, the purpose and the scope of this thesis is closely related to the objectives of

the parent project. For this reason, a brief discussion of the parent project and its

goals is given before concentrating on the scope of this report within these goals.

4

1.1. Long-term Goals

The long term objective of this research is to design a signal detection system

which implements a modeling algorithm. In this section, the signal detection

problem and its possible solutions are briefly presented.

1.1.1. The problem

This technique is directed towards the well-known problem of restoring a signal

x(t) after it has been passed through a known transformation h(t) and has been

obscured by noise n(t). The observed signal y(t) has the form

Y(t) = fx(7)h(t—&)d2. + n(t)

Taking the Fourier transform of the above equation yields

Y[f]=X[fIH[]+N[t]

Since N[f] is indeterminable, only an approximation of X[f] can be calculated by the

deconvolution of Y[f]:

;[fJ= X[fJ+.N M ..(l.3)

Taking the inverse Fourier transform of X[fj yields (t), an estimation of the input

signal x(t).

The numerical solutions for eqn. (1.3) have been extensively analyzed. The

main problem is the error introduced by the term N[f]/H[f] which is more significant

at the higher frequencies. The results can be improved by applying a window in the

5

frequency domain to increase the roll-off of X[f], but at the cost of decreasing the

resolution of (t). An alternative solution was sought that did not compromise the

obtainable resolution.

1.1.2. Use of Modeling

After removing the noise contaminated high-frequency components, modeling

can be applied in the frequency domain to extrapolate the remaining spectrum. Let's

assume that the spectrum [fl is known at the intervals of 4f. [fl can be

represented by the series

(x0, . . • , ..(1.4)

where Xm denotes the spectral component at the frequency m4f. Now assume that

there is an arbitrary frequency k4f where ±MI m < k are not significantly

contaminated by the noise. Each one of these spectral components can be

approximated by a weighted sum of the previous p samples of the spectrum,

P
Xm ajKj m < k

j=1
..(1.5)

This equation is known as prediction equation. The error between the actual

component and the predicted value Xm is given by

e = Xm - XM ..(l.6)

This error can be minimized across the data sequence Xm, 0 ≤ m < k in order to

determine the prediction coefficients a3. 'This prediction technique is known as auto-

regressive (AR) modeling, and p is referred to as the model order [5].

6

Once the prediction coefficients have been determined, The series

(x0, X1, . . . , can be predicted or extrapolated to an arbitrary number of points

to achieve the series

(Z Z,..., Xn_i,.)

It has been suggested that the spectrum [fl obtained by the modeling technique

presents a better approximatin of X[f] than iffl, especially when the inverse Fourier

transform is applied after deconvolution. The block diagram shown in fig. 1,1

represents this algorithm.

The technique described above has been improved by using the transient error

method [6]. The modified technique is a deterministic auto-regressive moving-

average (ARMA) model that produces better results than the simple AR model.

Input
Signal

Front-end
(A/D)

Display
(D/A)

F'F1

Inverse
FFI

Deconvo-
lution

Fig. 1.1. A signal processing system

AR
Modelling

7

1.1.3. Implementation

In a real time application, the number of computations involved in the algorithm

described above is too great to be handled by a single processor. The block diagram

suggests a modularization where a processor is assigned to each block. Since each

of these processors will be performing a specific job, the efficiency and the overall

speed can be improved immensely by designing dedicated processors instead of

using general purpose microprocessors.

These processors will execute the well-known algorithms for the forward or

inverse fast Fourier transform (FF1), Burg's or Levinson's AR modeling, and

deconvolution. It is observed that the data flow between the blocks can be organized

so that the overall system becomes a general purpose spectrum analyzer. For

example, a straight FFT can be calculated by bypassing most of the system, or one

may • bypass the FF1 and use the modeling algorithm and last FF1 block (the

difference between forward and reverse FFT is trivial) to estimate the spectrum of

the input signal. In the latter case, the last block could be modified to perform an

interpolating FFF algorithm [7] in order to reduce the processing time.

In general, the DSP technique specifies an order of operations, such as FFT, AR

modeling, etc., similar to fig. 1.1. The actual implementation of a particular

technique is irrelevant to the scope of this thesis and for this reason the processing

model of fig. 1.1 is adopted as an example of the implementation of a DSP

algorithm. This model is referred to as the (multi-stage) signal processing system

and each stage is called a processing unit.

8

1.2. Purpose and Objectives

The purpose of this study was to design a high performance array processing

architecture particularly targeted for DSP algorithms. The feasibility of a real-time

signal processor employing microprogrammed control was investigated. The results

of this thesis are intended to be passed on to further research to complete the design

of the processing system.

It was the objective of this thesis to build the FF1 processor block as a

demonstration of the proposed architecture. The control unit of this processor was

built as a general purpose microprogrammable controller which could be used to

control any of the processing units. It was also within the scope of this thesis to

provide a development and support system for the general purpose controller. The

development system and the controller have been brought to a stage that future

researchers who continue to complete this project will be able to utilize these units to

design and debug the implementation of other processing units within a user-friendly

environment [8].

1.3. Outline

This thesis can be examined in two sections, the design of the general purpose

controller and the development of a DSP architecture. Due to the variety of the

material discussed in this thesis,, background information about the concepts used are

given when necessary, rather than grouping all this information together. However,

we felt that a detailed introduction to the concept of microprogramming was

9

• necessary. Chapter 2 provides a historical introduction to microprogramming. The

advantages and disadvantages of microprogramming are summarized and the general

design of the components of a microprogrammed control unit are also discussed in

this chapter.

Chapter 3 deals with the construction of the general purpose controller.

Common organizations of the control unit are summarized and the architecture of the

controller is discussed. Then the motivation to design a support system for the

controller is presented, followed by the description of the support system developed.

Finally, the contents of the software library are briefly listed.

In chapter 4, an architecture for the processing units of the signal processing

system is proposed. The computational and the functional requirements of a

processing unit are discussed, arriving at an optimal architecture. Then the

components of this architecture are defined. In the final part of this chapter, the FF1

processor constructed with the proposed architecture is described.

The conclusions and suggestions for further research are presented in chapter 5.

CHAPTER 2

MICROPROGRAMMING

2.0. Introduction

As mentioned earlier, the implementation of the various processors will be

based on specialized configurable components which require complex control signal

sequences. Two basic approaches to generate the required control information are

presented and compared in this chapter. Microprogramming, the preferred approach,

is examined in detail.

The concept of microprogramming was first introduced by Wilkes in 1951[9] as

an alternative method of control unit design. Since then, microprogramming gained

a great deal of significance as it became a powerful tool' in the hands of designers

and users alike. This technique provides a highly systematical approach to design,

resulting in virtually unlimited flexibility in controller applications.

2.1. Generation of Control Information

A digital machine can be represented by four basic functional units: processing

unit (CPU), storage, interface and control unit as illustrated in fig. 2.1. It is evident

that the control unit is responsible for the sequencing and timing of all the hardware

activity within the system. Therefore, the control unit is the section where

commands (instructions) are interpreted and performed by causing the execution of a

10

11

Control Unit

CPU Memory 1/0
Interface

4....,.

Fig. 2.1. Fundamental blocks of a digital machine

series of primitive operations such as register-to-register transfers, selection of the

arithmetic-logic unit (ALU) functions, etc.

The conventional method of implementing the control unit is by designing a

sequential logic network. The commands are fetched from the storage unit (memory)

and converted into control information which activates the discrete logic circuit

which in turn activates a series of primitive operations that constitute the command.

This approach is called hardwired or conventional control. It follows that with this

approach the control unit becomes the most complicated part of the digital machine.

Once the design is completed implementing a certain set of commands (machine

instructions), it requires a non-trivial effort to alter or enhance this set.

Microprogramming, an alternative method to conventional control, can reduce

the complexity and the inflexibility of the control unit. Wilkes [10], who introduced

the term microprogramming, conceived its objective as

12

to provide a systematic alternative to the usual somewhat ad hoc procedure used for
designing the control system of a digital computer.

This method is based on the observation that a complex operation such as a machine

instruction can be completely specified by a series of primitive operations. The

control information for these primitive operations can be directly stored in a memory

element and consequently each complex operation becomes a sequence of references

to the memory element. This representation of the complex operation is called a

microprogram (or microroutine) and the memory unit is called the control storage

(or microprogram memory). Accordingly, the primitive operations stored in the

microprogram memory are referred to as micro operations (or microinstructions).

The terms in parenthesis are alternate descriptions and in this thesis, they are used

interchangeably with the preceding terms.

2.2. Why Microprogramming?

2.2.1. Advantages of Microprogramming

1. Systematic Approach

This is the most striking characteristic of microprogramming over conventional

control. The latter approach results in a random structure limited by the designer(s)

ingenuity. Microprogramming can cut the development time drastically as the

random sequential logic is replaced by a pseudo-structured microprogram.

13

2. Architectural Changeability.

The characteristics of a machine such as instruction set, word size or bus width

can be altered through microprogramming, arriving at totally different architectures

from the same hardware resources. The significance of this feature was recognized

during the early years of microprogramming as it provided a direct method of using

the old software in newer machines without any modifications. This compatibility is

achieved by providing a set of microprograms for the new machine which interprets

and executes the older system's instruction set. Such alternate sets of niicroprograms

which mimic another system are called emulators.

3. Flexibility

This advantage follows from the previous one but it needs to be reemphasized.

During the design stage of the system, the instruction set does not need to be fixed.

It can be altered and realtered to fit as specifications of the system change. In other

words, experimentation with various sets in order to find the optimum instruction set

is a possibility while the hardware is still in development stage. Experimentation on

the user's part enables him to tailor a system to the requirements of a specific

application which is described by the term adaptability.

4. Diagnosability

With microprogramming it is possible to locate the errors in the hardware much

more precisely than is possible otherwise. Machine self-tests are much easier to

implement and more versatile than when using conventional control.' Thus diagnosis

and maintenance of the hardware becomes easier and more reliable.

14

2.2.2. Disadvantages of Microprogramming

1. Speed

It is always possible to design a hardwired control which runs faster than the

microprogrammed one, even with today's high speed bipolar memories. Essentially

this was the reason that microprogramming did not gain wider attention during the

years following its introduction..

2. Lack of Support Systems

Since each microprogrammed system is essentially different, it is very difficult

to design a general purpose development system for microprogramming applications.

Most of the sophisticated equipments on the market today use a wide set of

parameters which have to be defined by the user to obtain a meaningful assembly

language. Many designers are forced to prepare their own development systems and

assemblers to debug a microprogramming project. In fact, this problem was

encountered during this research and designing a support system became necessary.

The measures we have taken will be explained later.

2.2.3. Economical Considerations

The economical feasibility of microprogrammed implementations depends on

the size and the complexity of a machine. It has been established that

microprogramming costs less than the conventional control except in very simple and

dedicated systems [11].

15

2.3. Evolution of Microprogramming

Although microprogramming received some attention during the 1950s, it was

not used or researched on a significant scale until the mid 1960s. The reasons for

this delay can be found in the memory technology of the time period. First, the

speed of memory access was significantly lower than logic speeds, and second,

memory elements were very expensive. The simplicity and the flexibility offered by

microprogramming using the technology of the era was more than offset by the cost

and the time overhead of the memory access for each microinstruction.

With the technological breakthroughs during the 1960s, microprogramming

finally became cost-effective. The first microprogrammed machines were introduced

in this time period. The IBM 360 series was a milestone in the acceptance of the

microprogramming. Most of the computers in this series were microprogrammed in

order to achieve instruction set compatibility between machines of different

capabilities and hardware organizations. Larger models of this series were hardwired

for reasons of speed.

Although these machines and others of this time period were true

microprogrammed machines, they did not offer the advantages of user-

microprogrammability. Two basic reasons for this lack were:

1. The cost of fast random access memories (RAMs) was relatively high until

1970s.

2. Manufacturers were reluctant to let users tamper with the architecture of the

system because of the effect this might have on the reliability of the machine.

16

The full power of microprogramming came into realization with the introduction of

fast, relatively cheap RAMs. Using RAMs as the control storage enables the user to

easily modify an existing instruction set in order to adapt the processor to a specific

application. This type of microprogram memory is called writable control storage

(WCS).

Finally in the mid 1970s, several manufacturers marketed microprogrammable

processors or bit-slice processors. With these off-the-shelf processors, it has become

possible for the users to design microprogrammable processors for various

applications.

Today, besides implementing an instruction set for a general purpose computer,

microprogramming is also used in dedicated machines running without a software

instruction set. Microprogrammed'instruction sets are getting progressively more

complicated. This has caused a reversed trend towards conventional control. The

feasibility range of the conventional control have been increased by the introduction

of the reduced instruction set computers (RISC). On the other hand,

microprogramming is still an indispensable tool for the designers who struggle to

achieve a degree of parallelism in processor applications.

2.4. Components of a Microprogrammable Control Unit

A general microprogrammed control unit consists of five functional blocks.

1. The Control Storage

2. The Sequencer

17

3. The Pipeline Register(s)

4. The Condition Code Generator

5. The Clock Pulse Generator

In this section, the functions of these blocks are examined with particular emphasis

on the enhancment they provide to the efficiency of the overall controller.

2.4.1. The Control Store

As mentioned before, this is the characteristic block of any microprogrammed

machine. The most common and simple form of the control store (CS) is the

ordinary memory array in which there is one microinstruction per CS word. Some

of the variations to this structure are:

a) There may be two microinstruction for each CS word. In this structure, the

output of the CS is written to two pipeline registers simultaneously, reducing the

number of memory references. Effectively this scheme halves the access time of the

control store, a limiting factor of the overall speed of the digital machine.

b) The control store may be divided into sections, which are called pages. Only

one section is accessible at a time and the selection of this page is normally done in

hardware. A page contains only a fraction of the total memory locations thus

requiring fewer address lines at the expense of extra hardware to enable switching

between pages. Therefore, if jumps between pages are not frequent, this organization

reduces the access time and the number of the bits necessary to specify a destination

microinstruction within a page.

18

c) The control store may be formed with a two level structure. The upper level

of the control store is a narrow memory and it is used to address the lower level

control store which is a wide memory unit containing a list of common

microinstructions. The lower level control store is commonly referred to as the

nanocontrol store, and accordingly programming the lower level is called

nanoprogramming. This structure reduces the total number of bits required for the

control store. An example of a machine employing such a control store organiation

is the 68000 microprocessor.

2.4.2. The Sequencer

It was suggested that one form of controlling the microprogram flow is to

append' the address of the next instruction to the current one, creating a linked list of

microinstructions [12: In this structure, the sequencer is totally eliminated or

replaced by a register and/or a combinational logic circuit to provide conditional

branches. However, it has been established that this method is merely a form of

implementing sequential logic networks [13]. A linked list of microinstructions

displays some of the poor properties of a sequential logic circuit. In particular, it is

not trivial to change a branch instruction. Since microprogramming is meant as an

alternative to sequential logic, this structure should not be discussed as a form of

microprogramming. Therefore, a true microprogrammable control unit should

include a form of address generation logic, i.e. a sequencer.

19

The basic elements of a sequencer include an address register, stack and address

multiplexer, as illustrated in fig. 2.2. In the configuration shown, the incrementer

generates the sequential address and it is latched to the address register which

behaves as a program counter. Absolute jumps are performed by transferring input

data directly to the sequencer's output. Subroutines in the microprogram are

facilitated by the stack which consists of a register ifie and a stack pointer. The

'address selected by multiplexer depends on the instruction and condition code (CC).

Therefore, the sequencer provides the microprogrammer a means of structured

DATA INPUT

CC

Inst.

Control

Signals

INST-

RUCTION

DECODE

STACK

MULTIPLEXER

ADDRESS

REGISTER

NCREMENTER

MICROWORD ADDRESS

Fig. 2.2. Organization of a typical sequencer

20

control flow within the microprogram. Loops, subroutines,, decision structures can be

implemented with simple encoded microinstructions, tremendously enchancing the

power of microprogramming.

Currently available sequencers provide some additional features for address

generation such as an increment-by-two (SKIP) instruction or a counter/register that

provides yet another source of address. A detailed discussion of variations of the

basic organization (fig. 2.2) in commercially available sequencers is given by

Andrews [14J.

2.4.3. The Condition Code Generator

Although, some microprogrammed systems integrate the condition code

generation into the sequencer, generally the condition code supplying logic is

regarded as a supporting element for the sequencer and not necessarily a part of it. In

its simplest form a multiplexer selects one of the several status signals generated by

the system to control the conditional instructions of the sequencer. In order to have

absolute power over looping instructions in the sequenëer a polarity control is

usually included. This device generates the correct level of condition code as

required by the sequencer and eliminates the need to have all signals active high or

all active low.

Several dedicated condition code generators, e.g. Am2904, are available for

handling more complicated requirements such as storing the status information for

future references or testing several status signals in one cycle.

21

2.4.4. The Pipeline Register(s)

In most microprogrammed systems, a register is placed between the outputs of

the control store and the control points of the processing unit. Such a register,

shown in fig. 2.3, serves several purposes. Most importantly it breaks the continuous

loop between the outputs of the control store and the instruction input of the

sequencer which avoids race conditions. Its other function is to hold a stable

microinstruction throughout the cycle time. This register is called microinstruction

register (MIR) or pipeline register. The name "pipeline" derives from the fact that

SEQUENCER

CONTROL

STORE

PIPELINE

REGISTER

Microword Outputs

Fig. 2.3. The microinstruction register

22

this register actually divides the control path into two parts, isolating the sequencer

and the CS from the processing unit. Thus pipelining the control store outputs

decreases the minimum required clock period, improving overall speed. In this

report, the more general name pipeline register is used for consistency.

Pipelining is not limited to the outputs of the control store, and it can be used

wherever a long path is limiting the speed. However, the increased use of pipeline

registers makes the programming more complicated. Different control unit

organizations can be arrived by employing pipeline registers on different paths.

2.4.5. The Clock Pulse Generator

The clock pulse generator is an intrinsic part of any digital state machine. In

microprogramming, unlike the sequential logic circuits, clock requirements are

usually very simple. This is due to the fact that every part of the system is

synchronized with the appearance of the data on the pipeline register. Usually a

sequential circuit demands several phases of a clock pulse which further complicates

the circuit. Normally, when converting a sequential circuit to the microprogrammed

equivalent each phase becomes a clock'cycle. One other advantage of the

microprogramming is that it provides an easy way to control the clock period

dynamically. This boosts the overall throughput if the execution of some instructions

require longer time for completion than others.

23

2.5. Summary

The microprogramming method is superior to the hardwired control for

generating complex control signal sequences, such as required by most signal

processing systems. Although a microprogrammed control unit can be realized in a

variety of ways, five basic blocks áan always be identified. These blocks are the

control store, the sequencer, the, condition code generator, the pipeline registers and

the clock generator.

In effect, this chapter provides an introduction to the next chapter, where

several different organizations of the five basic blocks will be presented, and the

design of the general microprogrammable control unit will be described.

CHAPTER 3

GENERAL PURPOSE CONTROLLER

3.0. Introduction

This chapter is dedicated to the design and implementation of a general purpose

controller. The generality is inherent in a microprogrammable control unit,

especially when it is viewed as a module which can generate any sequence of control

signals at its output. This view is emphasized in fig. 3.1, which illustrates the flow

of control information in a digital machine. The target system represents the unit

which utilizes the outputs of the control unit. The control unit is shown as a "black

box" where the outputs, the .niicroword, are related to the inputs, the status

information from the target system or an external source. The relationship, or the

transfer function of the box, is fixed in a hardwired control unit, hence the operations

System Status

External

Status
CONTROL

UNIT

microword
01

TARGET

SYSTEM

Fig. 3.1. Flow of control information

Other
 Control

Signals

24

25

of the target system are also specified. In the case of a microprogrammable control

unit, the transfer function is completely defined by the microprogram and it can be

modified to accommodate any processing unit.

This representation of the control unit is particularly interesting when the multi

stage signal processor is considered. Fig. 3.1 suggests that a processor can be

designed as two individual modules, the control unit and the processing unit (target

system). Moreover, once a general purpose controller is realized, it can be used

during the development of each stage of the signal processing system. After the

development of the individual processors, the controller can be duplicated to provide

each processor with its own control unit.

The first part of this chapter deals with the design of the controller. Various

structures are considered and the implementation of a suitable structure is described.

In order to maintain the ease of use of the general purpose controller, a separate

support system to load the control store is necessary. The design of the downloading

unit and the software support package for the controller are discussed in the second

half of the chapter.

3.1. Organization of a Control Unit

The data flow paths within the control unit can be broken into two sections by

inserting a pipeline register to the path. The pipeline registers also cause one cycle

delays between the two sections of the path. These delays are very important

because different programming structures can be achieved by altering their location

26

and number.

Fig. 3.2 illustrates a basic architecture where only one register at the output of

the control store is used. This pipeline register (PL) holds the microinstruction

during its execution. The output of the sequencer, or the address issued to the

control store, is shown as A+n, where n indicates the relative delay. Accordingly,

the output of the WCS is I(A+n), i.e. the instruction at location A+n. S(A) denotes

the status outputs of the target system in response to the instruction 1(A). This

notation is used consistently in this section.

In this structure, the statu information of the processing unit is immediately

made available to the sequencer. Therefore, during the execution of a successful

conditional branch instruction, the processing unit, the condition code multiplexer,

the sequencer and the control store are all in series and the total delay is calculated

by adding the delays in each unit. This path, a critical path, is usually responsible

for determining the minimum possible clock period.

The organization shown in fig. 3.3 is a variation of the one described above.

Since there still is one pipeline register, no improvement in speed is achieved but

this scheme requires, fewer register bits (typically 10-14) than the preyious one

(typically 40-120 bits) since only the address of the control store is registered.

However, during the address setup period, the output of the control store, or the

microinstruction, is unstable and it cannot be tied to sensitive control points. This.

fact usually more than offsets the slight advantage of the fewer register bits,

rendthing this organization impractical.

27

S(A)

cc

mux
Seq.

A+1

wcS

I(A+1)

PL

JI(A)
i

Target

System
L

S(A)

cc

mux OW
Seq.

A+1

PL

wcS

1(A)

-1
Target

System I
L

Fig. 3.2. Instruction based Fig. 33. Address based

structure structure

Fig. 3.4 illustrates an architecture where the critical path in the previous

architectures is replaced by three shorter paths. This structure isolates the delays in

each device, thereby achieving maximum clock speed possible. However,

programming with this structure is more complicated because the address of an

instruction is generated two cycles before its execution. Unlike the previous

architectures the addresses shown must be sequential for continuous execution. If

branching occurs, the microinstruction pointed by the pipeline register (PL #1)

cannot be executed, so the sequencer "freezes" for one cycle to discard this

information. Therefore, if there are a significant number of branches in the

28

microprogram, the throughput of this structure may be less than that of the first

structure even though the clock is faster.

At this point, the nomenclature needs to be clarified. The first two architectures

are not called "pipelined", although there is a delay involved, because the function

of this delay is to avoid the race conditions by breaking a continuous loop and no

gain in speed is achieved. For the third organization, however, the pipelning is

applied to divide a critical path into three parts, so it is classified as a two-level

cc

 mux

S(A-1)

Status

Register

PL

#3

Seq.

A+2

PL #1

A+1

wcS

I(A+1)

PL #2

Target
 System
L J

S(A-1)

cc

mux

Status
Register

FL
4

Seq.

Mi

wcS

I(A+1)

-1

Target

System
L J

Fig. 3.4. Two-level pipeline Fig. 3.5. One-level pipeline
based structure based structure

29

pipelined structure.

The architecture shown in fig. 3.5, an one-level pipelined organization, provides

better speed and throughput than most others. It is not necessary to "freeze" the

sequencer in this structure. However, unlike the first architecture, the conditional

branch instruction has to be executed one cycle after the required status is generated.

Therefore, while a conditional branch instruction is executed, the rest of the

instruction may not be conditional. This may be a wasted part of the instruction in

some cases, but it can be utilized for house-keeping functions within the processing

unit.

To clarify the difference between these structures, consider the following

pseudo-code for a program segment which adds two registers and performs a

conditional operation based on the result.

Rl<—Rl+R2

if (CARRY is 1) then down-shift Ri by one

The microprogram for the first and the second structures will look like

A : Ri - Ri + R2, if (not CARRY) jump A+2
A+l : down-shift Ri
A+2 :...

For the third and fourth architectures the code becomes

A : Rl - RI + R2, continue
A+l : if (not CARRY) jump A+3
A+2 down-shift Ri
A+3 ::..

30

Note that since the condition codes in the last two architectures are registered,-

the status 'CARRY' can not be examined in the same microinstruction that performs

the addition. Although the microprogram appears identical for the third and the

fourth architectures, there is a difference in the execution. In the third one, while the

instruction at address A+l is executed, the address A+2 is already issued to the

control store. If the jump is to be performed, this address has to be overwritten by

hardware measures and consequently there is an invisible one cycle delay. To

summarize, assuming that the 'CARRY' condition is true, this program segment is

executed in two cycles in the first and the second organizations, three cycles in the

fourth and four cycles in the third organization. This example highlights the

compromise made by the attempt to increase the clock speed by breaking the data

flow paths.

3.2. Organization of the General Purpose Controller

In this section, the features that a controller must possess to maintain its

efficiency over a range of applications are discussed. A general purpose controller

has a set of requirements that are different from those of a control unit targeted for a

specific processing system. These requirements should be considered before

choosing the architecture for the general purpose controller among the alternatives

described in the previous section.

The chosen architecture for the controller is described after the design

requirements. The dynamic clock control technique is introduced and

31

implementation of this technique is discussed. Finally a summary of the features

implemented in the controller is given.

3.2.1. Design Considerations

The most obvious characteristics of a general purpose controller are flexibility

and adaptability. These terms are often used synonymously as a flexible system is

usually adaptable and vice versa. By flexibility it is implied that the controller

should be expandable and microprograms should be easily loaded and modified. A

RAM based control store (WCS) is therefore necessary. On the other hand, an

adaptable system can easily be modified in order to fit the special requirements of

the applications. In order to realize adaptability, the target system should be

provided with an access to the sequencing logic enabling the execution of the

microinstructions addressed by the processing unit itself. This is particularly useful

if an addressing scheme such as interrupt processing is to be implemented in the

target system.

Another consideration is the general type of the microinstructions to be

executed by the controller. Digital signal processing or other "number-crunching"

algorithms are highly symmetric, usually consisting of several loops executed many

times. This essential unsequentiality of the routines for which the controller is

targeted implies that the sequencer must have a degree of branch-efficiency. The

two-level pipeline based structure presented in the previous section is therefore ruled

out since it limits the throughput while branching.

32

Since the general purpose controller is a separate unit, the microword outputs

should be buffered before they are transmitted off the board to the target system.

This fact, in addition to the output stability problem described previously, eliminates

the address based architecture (fig. 3.3). Introduction of the output buffers cancel the

only advantage of this structure i.e. requiring fewer register bits. Bus-driving

capability is inherent in the other structures which employ a microinstruction register

since outputs of most off-the-shelf register devices are buffered.

3.2.2. The Architecture

The block diagram of the architecture actually chosen for the general purpose

controller is shown in fig. 3.6. This organization is an adaptation of the instruction

based structure (fig. 3.2).

The controller was designed to have interfaces with two external systems: the

target system and the downloading unit. The target system can utilize all of the

microword outputs except the fields which control the sequencer and the condition

code multiplexer. The status generated by the processing unit is transmitted to the

controller via the-CC bus. The target system can also specify the address of the next

microinstruction or load parameters to the sequencer through the 'TA bus. This

fulfills the adaptability requirement described previously.

The interface bus, the instruction multiplexer (IM), the downloading logic (DL)

and the MA bus are all related to the downloading unit. The downloading unit

interface is completely defined and discussed later in this chapter. The interface bus

33

r
.MA

LJ L

r

L

cc
mux

MODE

 -cc
SEQUENCER

)sflS

JM
V-11•

Address Bus

Interface Bus

wcS

PL PL

CC Bus

D PA

TA

TARGET SYSTEM

PA, MA, TA Busses: Data sources of the sequencer
TM: Instruction multiplexer
DL: Downloading Logic

Fig. 3.6. Architecture of the general purpose controller

tll

and the Address Bus (A bus) are extended to allow the expansion of the control

store.

- 34

Now let us consider an example of the architectural adaptability of the

controller apart from the TA bus. Comparing fig. 3.5 and fig. 3.6, it is clear that the

one-level pipeline based architecture can also be realized by designing the status

register as a part of the target system. Registering the status information (CC-bus) is

particularly efficient for the ALU generated signals because of the long delay times

involved with the ALU. In DSP algorithms, the ALU status signals, especially

CARRY and overflow, are used only if the overflow prevention mechanism is

incorporated in the software (microprogram). Other signals which are frequently

examined to test the end of the loop conditions do not have significant delay times.

Thus pipelining these signals is not necessary.

The key device in implementing this architecture was the Am291OA, the

microprogram sequencer. This chip provides a compact sequencing logic completely

fulfilling the requirements of the architecture. The Am291OA can receive the address

information from three distinct sources which are reflected with the busses PA, MA

and TA in fig. 3.6. In addition, the Am29lOA also incorporates a 12-bit

counter/register and a 9 word deep stack, complemented by a powerful instruction set

[15].

The device chosen for implementing the WCS was the Am9 150, a 1K by 4 bits

random access memory chip. The distinctive characteristics of this unit are its fast

access time (25 ns) and separate input and output ports. The isolation of the input

and the output is particularly useful for tying the interface bus to the WCS since it is

desirable to have low capacitance and loading effects on the WCS output bus.

35

Standard low power Schottky components were used to implement the rest of the

controller in order to reduce the total power consumption.

3.2.3. The System Clock

Since the controller is to be used to control another system, it was not possible

to completely define the clock specifications. For this reason the clock generator

circuit was implemented to allow easy modification as required, permitting the user

to tailor the system clock according to requirements of the particular application.

The overall clock requirements of a system are determined by whichever data

flow path in the various processors has the longest delay. The delay on this path is

equivalent to the minimum cycle time of the system, thus the path is referred to as

the critical path. The usual method to find this path is to list the delay times on all

potentially critical data paths and pick the longest one. Generally, the critical path is

expected to be the one which utilizes most of the resources within one clock cycle.

For example, let us consider the conditional branch instruction (CJMP) for the

sequencer (Am29lOA). The microword output selects the condition code which in

turn selects one of the two possible addresses. The WCS must be accessed in the

same cycle that sets up the pipeline register inputs. The estimation of the delay time

is shown in Table 3.1. This delay represents the minimum clock period for any

application of the controller unless the CJMP instruction is disallowed. Next,

consider the very commonly used continue (CONT) instruction which increments the

microprogram address by one. The delay for this instruction is 80 ns (Table 3.2),

36

DEVICE PATH PART NO. DELAY

PL Clock— Output 74L5374 20 ns

CC mux Se1ect—Output 74L5153 22 ns

Sequencer CC-30utput Am2910 30 ns

WCS Addr.—*Output Am9150-25 25 ns

TOTAL 97 ns

Table 3.1. Calculation of the delay for the CJMP instruction

which is significantly less than the estimated minimum clock period. The clock

pulse period must be fixed to accommodate the longest delay, which limits the

achievable performance level. On the other hand, it is not desirable to increase the

overall system speed by disallowing certain instructions, as this would severely limit

the flexibility.

The solution to this problem is the technique known as the dynamic clock

control. In order the illustrate the improvement in the performance level consider a

hypothetical system with two different instructions, A and B, with the frequency of

usage 60% and 40%, respectively. Let us assume that instruction A requires 60 ns

and B requires 100 ns. If the clock period is fixed, it has be 100 ns to accommodate

DEVICE PATH PART NO. DELAY

PL Clock-4Output 74LS374 20 ns

Sequencer Inst.—Output Am2910 35 ns

WCS Addr.—Output Am9150-25 25 ns

TOTAL 80 ns

Table 3.2. Calculation of the delay for the CONT instruction

37

instruction B. However, if the clock rate is selectable during the execution to be

either 60 or 100 ns, the average clock rate becomes

60 x 0.6 + 100 x 0.4 = 76ns

Therefore, simply employing a dynamic clock control technique improves the

performance by approximately 25%.

Dynamic clock control was implemented on the controller using a

microprogrammable clock pulse generator, the Am2925. This device is capable of

dividing the frequency of its input (e.g. signal from a crystal) by a number between

3 and 10 as determined by 3 control inputs. For example, if the input oscillator has

a cycle time of 15 ns, the output clock period can be selected to be 45, 60, 75, 90,

105, 120, 135 or 150 ns. In the actual implementation however, only one control

input was selected by the microprogram and the other two were connected to

hardware switches. This limitation is due to the fact that the 8 different selections of

the clock period are somewhat redundant. Most of the time it is more convenient to

classify the instructions simply as "fast" or "slow" rather than determining the exact

delay for each instruction from the data books.

3.2.4. Specifications of the Prototype Controller

(1) The clock for the input of the Am2925 was generated by an external pulse

generator with variable frequency. Therefore, the user has the complete control

over the system speed through the external pulse generator, the hardware

switches and the microprogram selected frequency division. This control is

38

important because the clock requirements of the target system are not known

beforehand. In addition, the variable clock allows the user to experimentally

determine or verify speed limits of the target system.

The system clock can be run either in the continuous mode or in the

single pulse mode. Single pulse mode enables stepping through the

microprograms, which is an indispensable tool for software development. - Two

external switches were provided to select the mode of the clock and to trigger

the pulse in single pulse mode.

(2) The delay time from the clock to the pipeline outputs was 20 ns. This could

easily be improved by replacing the low-power Schottky parts with high

performance equivalents.

(3) The WCS provided with the sequencer is 1K deep with a word length of 64

bits. An expansion board containing 1K x 64 control storage is also provided,

extending the microword width to 128 bits. Out of the 128 control outputs, 8

bits are reserved for the sequencer, the condition code (CC) multiplexer and the

clock period control. An additional 12-bit field is tied to the input of the

sequencer (PA). This field is also available to the target system (TA bus).

(4) The target system is expected to provide the condition code inputs, which are

selected by a 4-to-1 multiplexer (CC mux).

39

3.3. Loading the WCS

In most machines with a writable control storage the microprogram memory is

divided into the two conceptual sections shown in fig. 3.7. The loading of the RAM

section (WCS) is done under the control of a microroutine stored in the ROM part.

The usual method of transferring the microcode to WCS from the intermediate

storage unit consists of treating the RAM module as an input/output device during

loading. In most cases, particularly where the WCS is used only to provide a very

fast medium for the microprogram memory, loading is done during the power-up

initialization and then the ROM is disabled, allowing a faster system clock. Other

machines may require interactive instructions to commence loading.

SEQUENCER

ROM

RAM

CONTROL
STORE

Fig. 3.7. Typical WCS organization

40

As far as the general purpose controller is concerned there were several

shortcomings of the loading scheme described above:

(1) The necessity of a non-volatile intermediate storage such as EPROMs, cassette

tape, etc. compromises the flexibility of the system. Modification of a

microprogram residing in the intermediate storage can only be done on a

separate device (e.g. EPROM programmer) which was simply not desirable in a

development tool.

(2) Conceptually, the intermediate storage can be eliminated by establishing direct

communications with a host computer. With this method the microprograms

can be stored and modified in the host system and then downloaded to the

WCS. However, the microroutine which facilitates the host interface must

reside in the ROM section of the WCS.

An increase in flexibility can be obtained by assigning a microprocessor to the

downloading task. The functions of the microprocessor system, the downloading

unit, are then extended to include various debugging facilities; In its final form, this

support unit is called the task manager (described later). The next section describes

the downloading procedure as implied by the chosen architecture (fig. 3.6). It will

be referred to later during the discussion of the downloading unit.

3.3.1. Downloading Procedure

There are two modes of operation for the controller, RUN and LOAD, which are

selected by the downloading unit. In the RUN mode, the loading of the WCS is

41

disabled and the sequencer receives the program flow instructions from the pipeline

register. Data input of the sequencer: can be fed from any of the three busses, PA,

MA or TA, as controlled by the microinstruction. In the LOAD mode, a special

instruction is forced to the sequencer through the instruction multiplexer.' This

instruction (JMAP) enables the MA bus and the sequencer becomes transparent

between its input and output. Consequently the downloading unit can directly

address the control storage, allowing the WCS to be loaded.

The downloading unit transfers the microprogram to the WCS through the 8-bit

data bus which was included in the interface bus (fig. 3.6). The data bus is

bidirectional in order to allow the downloading unit to read the contents of the

microprogram memory for debugging purposes. The WCS was arranged in 8-bit

modules to accommodate the 8-bit data bus. These modules are called banks.

Fig. 3.8 illustrates the bank organization of the WCS. The individual banks are

selected through the BA (Bank address) bus, which also is a part of the interface

bus. The bank-select logic demultiplexes the read and write strobe signals from the

interface" bus to the selected module, enabling one bank at a time.

Due to lack of space on the physical board, the WCS read back facility was not

implemented in the prototype controller. This limitation can be justified by the fact

that the microprogram transfers through the interface bus were found to be very

reliable. Also the documented microprograms can just as easily be modified on the

mainframe and downloaded to the WCS, avoiding the need to modify WCS using the

keyboard and then remembering (reading) the changes.

42

DATA BUS (from downloading unit)

8-bit
RAM

8-bit
RAM

Fig. 3.8. Bank organization within the WCS

3.4. The Task Manager

The motivation for a microprocessor controlled downloading unit was

established in the previous section. It was observed that such an intelligent unit

could also be utilized as a development tool or an overhead task controller. The

possibility of employing the downloading unit as the manager of several processors

was particularly appealing when the necessities of the signal processing system

(fig. 1.1) were considered. The jobs that the task manager was expected to prform

are listed below:

1. Downloading the WCSs of several controllers,

2. Giving macro instructions to the controllers,

3. Passing parameters to the target system(s),

4. Initializing the processing units upon power-up in a stand-alone mode.

The last requirement arises from the expectation that the signal processing system

43

would be assembled as a mobile unit in a later stage. In this case, the task controller

will be used to start-up the system, or it may be modified to handle the front panel

(user) interface.

In the development stage of the signal processor, the most important function of

the task manager is to facilitate host communications. The whole system (the

manager, the controller and the target system) operates under complete control of the

host computer during the development phase. Thus the discussion in the following

chapters concentrates on the host control of the system. Nevertheless, stand-alone

operation mode is also incorporated into the design of the task manager [16].

3.4.1. Implementation of the Task Manager

The task manager was built around an Intel 8031 microprocessor. The 8031

offers tremendous advantages over other general purpose microprocessors as it

combines an UART, two counters and four 8-bit bit-addressable data ports with an

8-bit ALU, a Boolean processor and 128 bytes of on-board RAM on a single chip.

The 8031 is capable of addressing 64 Kbytes of program memory (ROM) and 64

Kbytes of data memory (RAM/ROM). In addition, it supports a priority based

interrupt structure and several stack operations.

Fig. 3.9 illustrates the functional organization of the task manager. As shown

in the diagram, the task manager has interfaces with four different systems, the

microcontroller, the host, the target system and the RAM/ROM expansion board.

These interfaces represent different functions of the task manager and are described

44

SYSTEM DEVELOPMENT SUPPORT INTERFACE BUS

32-bit Data Bus

LA..
Parameters

f
Reg.

4

DATA BUS

Control

A
WCS Address

I'

Ren. Reg.

wCS

Data

r
HOST

COMPUTER

TERMINAL

L

1

-4 ,,

1.4

J

UART

8031
Addr Bus

IV
EXPANSION

Fig. 3.9. The task manager

EPROM

BANK

in the next four sections.

45

3.4.2. Downloading The WCSs

The downloading of the microprograms to the WCSs is done through the

controller interface bus. The contents of this bus are:

1. the 12-bit WCS address field,

2. an extension of the 8031 data bus,

3. the bank-select field,

4. the 2-bit WCS-select field,

5. the WCS read/write strobes and

6. the MODE signal.

All signals are sourced by the task manager except the data bus which is

bidirectional.

The downloading procedure was previously discussed without mentioning the

WCS-select field which enables the task manager to download WCSs of up to four

separate control units. Only the control unit that is identified by the WCS-select

field will respond to the read/write strobes of the interface bus. However, the

MODE signal is interpreted by all controllers regardless of the contents of the

WCS-select field i.e. all controllers are in the same operating mode (RUN or LOAD)

at any given time.

The controller interface bus was therefore optimized for downloading four

WCSs, each up to 4 Kwords deep and 16 banks (128 bits) wide. Different

organizations of the WCSs totaling up to 512 Kbanks may be achieved by modifying

the decoding logic at the controller end.

46

3.4.3. System Development Support

The target system interface is one of the features that make the downloading

unit a more general development tool. During the development of the multi-stage

signal processor (fig. 1.1), each stage or processing unit has to be tested separately.

When a stage is isolated from the others, the inputs and outputs of this stage must be

simulated in order to carry out the testing. For example, during the development of

the FlIT board, a block of data is required to be written into the data memory. Since

the front end processor may not be available, another data source is required.

The task manager is the logical choice to simulate the input and receive the

output of a processing unit. A 32-bit bidirectional data port is added to the task

manager for this purpose. Data is processed in 8-bit segments on this port and the

necessary hardware for handshaking has to be built on the target system end. An

example of the hardware and utilization of this port can be found in the next chapter.

In addition to the 32-bit data port, an 8-bit registered field was included in the

target system interface to pass any required parameters, to the processing unit. This

field is particularly useful to handle the global values which may not be implemented

in the microprogram for practical reasons. An example of such global values is the

length of the data block upon which the processing system will operate or the size

(order) of the algorithm implemented.

47

3.4.4. Host Communications

Two full duplex asynchronous serial lines with up to 9600 baud rates were

provided to maintain the host communications. One of these lines was connected to

the host and the other to a terminal. The task manager is usually transparent

between the host and the terminal but it can trap escape sequences to initiate the data

transfers through the downloading interface or the target system' interface.

All microprogram and data transfers between the host and the task manager are

carried out with the U-RECORD format which was developed specifically for this

purpose. This is a logical extension of the Motorola S-RECORD format. The data

is converted from binary to ASCII to form the U-RECORD file which also includes

several check values such as sum of the data bytes in the record, sum of the data

bytes in the . file, etc. Several different record types, including the microprogram

record and the data record (for the target system), are supported. The complete

specifications of the U-RECORD format can, be found in the manual on the control

unit [16].

3.4.5. Other Features

It was previously mentioned that the task manager may be required to run

without the host support. In this case the functions of the task manager is reduced to

the downloading of the control stores. The microprograms to be downloaded must

reside in on-board non-volatile memories. 16 Kbytes of EPROM, expandable to full

64 Kbytes, were provided for this purpose. Approximately 6 Kbytes of this space is

48

needed for 8031 programs and the rest is available for storing the microprograms.

All of the peripheral devices, except the EPROMs, were mapped into the data

memory space. In order to minimize the chip count a partial mapping method was

employed. The data memory was divided into four equal sections which are:

1. the WCS through the downloading interface bus,

2. the 32-bit data port,

3. the on-board devices, i.e. registers and the UART and

4. the RAM.

No external RAM was provided with the task manager since the internal RAM of the

8031 was found to be sufficient for the current facilities. Nevertheless, up to 16

Kbytes of RAM can be added to the system through the expansion port.

3.5. Software Support

The software support for the general purpose controller can be classified into

two groups: the microprogram development support, which consists of the META

assembler [17], and the software library for the controller. The software library was

created using C-compiler for the host computer (VAX 11/750) programs, and the

as8031 assembler [16] for the 8031 routines.

The META assembler is a general purpose assembler for microprogrammable

systems. It compiles the source code for an arbitrary, user-defined architecture using

optional mnemonics which are also user-defined. Therefore META is the assembler

with which the user should be familiar in order to utilize the controller in a

49

structured, documentable manner. META is capable of producing output in several

useful formats, including the U-RECORD format.

The, software library consists of several user-friendly programs which interact

with the 8031 to perform the various functions of the task manager. With these

programs the task manager becomes transparent between' the host and the

microprogrammable control unit. Therefore the user does not have to be familiar

with the details of the task manager. The contents and the functions of the software

library are listed below,

dwcs

Downloads microprograms from the host to the WCS of the controller. The

microprograms are normally generated by the META assembler.

download

Downloads data files to the memory of the target system.

upload

Uploads data from the target system to the host. It provides the data files in

both hexadecimal and floating point formats.

start.exec

Start the execution of the microprograms in the WCS. This programs simply

changes the operating mode of the controller from LOAD to RUN.

ehalt

Stops the execution of the microprograms.

50

addr.load

Sets the address where the execution of the microroutines commence.

datau

Generates a data file in U-record format from floating point data input.

3.6. Summary

The first phase of this thesis was completed with the construction of the general

purpose controller and the task manager (Figs. 3.10, 3.11 and 3.12). Both systems

were installed together as a unit, shown in fig. 3.13. The target system is connected

to the control unit with 4 flat cables (at the left-hand side of the picture) which carry

the microword, the condition code inputs and the system clock. The flat cables

labeled " 1" and "2" in this picture carry the 32-bit data bus and the 8-bit

parameter field, respectively.

The control unit, i.e. the combination of the controller and the task manager,,

provides an excellent means of testing any microprogrammed processing unit,

especially when used with the META assembler. During the development stage of a

signal processing algorithm implementation, the designer does not have to be

concerned about the control unit of the processor. Thus the final product can be

realized much faster. The usefulness of the software library and the development

system can be attested by the ease with which a microprogrammed implementation

of the Burg algorithm has been developed by Nichols [8].

51

Fig. 3.10. Sequencer and WCS board

p
/,.-. '.,....

Fig. 3.11. Task manager board

52

Fig. 3.12. WCS expansion board

Fig. 3.13. General purpose controller

CHAPTER 4

AN ARCHITECTURE FOR SIGNAL PROCESSING

4.0. Introduction

The design of an application oriented processor consists of two major stages,

the theoretical problem modeling and the implementation of the processing models.

These two stages can be further partitioned as illustrated in fig. 4.1 [18]. As

established in chapter 1, the purpose of this study was to design an architecture

aimed at general DSP applications and therefore its scope is limited to the

implementation stage. However, in order to develop an efficient hardware structure,

the characteristics of the operations to be performed must be specified. Accordingly,

the common computational requirements of the DSP algorithms are examined in the

first section of this chapter, followed by the presentation of a benchmark algorithm,

for which the architecture was optimized. Then the development of the architecture,

the data structure and associated component technology are discussed.

The last part of the chapter deals with the physical implementation of the

proposed architecture. A processing unit implementing a fast Fourier transform

(FF'l) algorithm was built. The parallel processing techniques and the efficiency of

the architecture are demonstrated.

53

54

Application Areas

Speech Radar Sonar

Problem

Modelling

DSP Theory

Basis Functions

Imple-

mentation

*

Architecture

Component

Technology

Fig. 4.1. A perspective of designing digital signal processors

4.1. Processing Requirements

In general, DSP theory specifies the order in which the signal is manipulated to

transform the information of interest to a desired representation. The actual signal

manipulations tend to be based on a small set of basic signal processing operations

55

such as convolution, correlation, difference equation calculation, DFT coefficient

calculation, matrix operations etc. The purpose of this section is to develop a

processing model on which the architecture will be based. This processing model is

a subalgorithm common to most DSP operations and it is called the benchmark

algorithm. A brief review of the DSP operations is given below in order to present

the establishment of the benchmark algorithm.

4.1.1. Basic Operations of DSP

1. Convolution

In general, the convolution of two signals, x[k] and h[k] is given by the

equation

N
y{n] = h[k]*x[k] = Zh[kjx[n-.k] , n= 0,1,..

It is assumed that all signals are defined for k = 0,1, . . . N.

2. Correlation

The correlation coefficients are calculated with the equation

N
[n] = : y*[k]x[n+k] ..(4.2)

where [-N,N] is the window over which the signals x[k] and y[k] are correlated and

y*[k] represents the complex conjugate of y[k].

56

3. Difference Equation Calculation

The equation

N M
y[n]=ax[n—k] - b[n—k]

•k=1
..(4.3)

represents a general infinite impulse response IIR) filter where x[k] is the input and

y[k] is the output sequences. The transfer function of the filter is defined by the

parameters ak, bk, N and M. A particularly interesting case is where N and M are

both limited to 2, giving the standard second-order filter which can be used as a

building block to construct arbitrary filters.

Another important variation of eqn. 4.3 is achieved by setting all bk's to zero

The filter then becomes a finite impulse response (.FIX) filter with the difference

equation

N
y[n] = Zaj[n—k]

k=O
..(4.4)

4. DFT Calculation

Computation of the discrete Fourier transformation is one of the most widely

required operations of the DSP. In general the DFT is represented by the equation

N-i
X[k] = x[n]eJ 2 ")' k = 0,1, . . .

n=O
..(4.5a)

where x[n] is the signal and X[k] is the frequency spectrum. The inverse' relation is

very similar,

57

• 1N-1
x[n] = - X[k]ei(2 /N)! n =, 0,1, . . .

' AO
(4.5b)

This computation is usually realized by using the well known EFT algorithms

based on the butterfly computation. One of the most commonly used butterfly

operations is represented by the equation

• A'=A+BW

B' = A — BW,

where A and B are complex numbers and W, is equal to ej(2hZ')c for the forward

transform and ej(2,11N)k for the inverse transform.

5. Frequency Translation

Complex frequency demodulation is performed by the equation

y[n] = S21 x[n]

This calculation is frequently required for band-selected analysis.

6. Magnitude Calculation

Another basic computational requirement is the calculation of the magnitude

squared of the complex sequences:

IX[k]12 = X[k]X*[k] •• • ..(4.8)

58

7. Other Numerical Operations

In general, the DSP algorithms may require several numerical operations, such

as division, logarithm, exponential and matrix manipulation. Although these

operations have no significance within the purposes of this study, they are mentioned

here to complete the list of basic operations.

4.1.2. The Benchmark Algorithm

An examination of the first six basic operations defined in the previous section

reveals some common points among these operations. Basically all of these

operations are based on complex multiplication. Furthermore, the summations in

eqns. 4.1 to 4.4 can be implemented in steps of the form

C=C+AB ..(4.9)

where A, B and C are complex numbers. Eqn. 4.9 is also similar to one half of the

butterfly calculation (eqn. 4.5). One minor difference is that some operations require

multiplication of the data point with a constant, such as ak, bk, or W,, while others

require multiplication of two data points.

We have thus established the importance of the subalgorithm, the fundamental

operation, where two complex numbers are multiplied and added to another. The

butterfly computation, which consists of two fundamental operations, was adopted as

the benchmark algorithm. The design of the architecture was based on the

computational requirements of this benchmark algorithm. Then, the multiplicative

coefficient of the butterfly operation, W,,, was generalized to accommodate the other

59

basic operations.

Although the basic operations 1 through 4 consist of repetitive computation of

the fundamental operation, each of them has a unique addressing sequence which is

reflected by the subscripts in the corresponding equations. This fact suggests that the

processing unit can be divided into two basic blocks, the address generator and the

arithmetic processor. The address generator will compute the necessary sequence of

the data addresses to be used by the arithmetic processor which will carry out the

fundamental calculation. The design of the processing units will be simplified with

this composition since each arithmetic processor can be made identical for the

multiprocessor system (fig. 1.1). The address generator specifies the algorithm(s) to

be executed in the processing unit and must therefore be designed according to the

requirements of each processor.

4.2. Functional Requirements

A processing unit is composed of several basic building blocks such as

arithmetic-logic unit (ALU), multiplier, memory, etc. The architectural design of the

processor involves specifying the types of the building blocks and the number of

blocks of each type as well as devising an interconnecting scheme. In this section, a

summary of these blocks are given in order to clarify the requirements from the

architecture.

60

Parallel processing is an important consideration for the design of the

processing unit and an understanding of this technique is essential. For this reason, a

brief review of parallelism and application of the parallel processing concept to the

DSP algorithms is given before the basic functional blocks of the architecture are

discussed.

4.2.1. Parallelism and Pipelining

The purpose of implementing parallelism in the architecture is to achieve the

maximum utilization of all resources and consequently higher speed and performance

throughout the execution of an algorithm. The basic conditions that must be met in

order to reach this objective are:

1. Complete control of each resource at any time,

2.' Non-conflicting data busses for each independent resource and

3. The algorithm must be breakable into subalgorithms which can be executed

simultaneously.

The first criterion can be easily fulfilled when microprogrammed control is

employed. The microword outputs should control the individual devices on the

system without any encoding. This type of microinstruction is called a horizontal

microinstruction. Horizontal microwords often cause wasted space in the

microprogram memory. However this is a necessary trade-off to achieve any degree

of parallel processing, particularly in the early development stages. Another trade-

off, as pointed out by the second criterion, is between the number of the data paths

61

in the system and the extent of parallelism. It is obvious that no concurrent

processing is possible when all basic resources, such as ALU, memory, register file,

etc., communicate on, a single data bus. On the other hand, an increased number of

interconnection paths• pose several practical problems, such as increased RF noise,

larger printed-circuit boards, longer development time etc.

Although breaking the algorithm into simultaneously executable subalgorithms

is normally a software related problem, an understanding of this process is essential

to incorporate the necessary facilities in the hardware. As an example, consider

three separate processes constituting a larger process, as illustrated in fig. 4.2. A

system broken into such concurrent processors operating on a single data stream is

often referred to as a pipelined system. Pipelining, in general, is an important

concept in parallel processing. Using pipelining registers in the interface allows two

synchronous prOcesses to run in different phases. For example, in fig. 4.2, the

process P2 operates on the data block processed by P1 and while nth data block is

being passed on to P2, P1 can start processing the (n+1) th data block.

P1 P3

Fig: 4.2. A pipelined parallel processing system

62

In general, concurrent computation can be performed in several levels. An

example showing the partitioning of the signal processing task of fig. 1.1 is

illustrated as a tree in fig. 4.3. Each level in this tree represents a series of pipelined

Signal Processing

Algorithm

Ft'l Front-end

Address

Generation

Burg's

Butterfly

Computation

Real

Part

Multiply

Imaginary

Part

Add

Display

Store

Fig. 4.3. Parallel processing in different levels

63

parallel processes. The stages of the signal processing algorithm form the first level

of the tree. •Each stage performs a basic operation of the DSP which can be

separable into two subalgorithms, the address generation and the fundamental

operation. Furthermore, real and imaginary parts of the data can be calculated

simultaneously with concurrent instructions such as multiply, add and store.

The interface between the address generator and the fundamental operation

processor constitutes a fine example of pipelining. The address generation must start

first to calculate the addresses required for the first fundamental operation. The

address of the first data point is transferred to a pipeline register and at the same

time the generator starts calculating the next address. The arithmetic processor,

which carries out the fundamental operation, can access the first data point as soon

as the address is in the pipeline register. In other words, the address generator

calculates the second, address while the arithmetic generator processes the first data

point. Throughout the rest of the execution of the current basic operation the address

generator stays ahead of the arithmetic processor allowing both algorithms to run

continuously.

4.2.2. Functional Blocks of the Processing Unit

The basic building blocks of the processing unit are summarized below.

1. Memory

A random access memory provides the storage for input and output data

streams. All intermediate data blocks may also be stored in the RAM.

64

2. ALU

A standard arithmetic logic unit performs the basic functions such as boolean

AND, addition, subtraction and negation.

3. Multiplier

The importance of the multiplication in DSP algorithms, especially in complex

data processing, was established previously. Therefore, the hardware multiplier

is a necessary element of any high-performance signal processing unit.

4. Scratch-pad Register File

A register file holds the temporary data values needed for the ALU or multiplier

operations. Storing such temporary values in the main memory is inefficient

because, in addition to its relative slowness, the memory access represents a

bottleneck in the arithmetic processor due to a large number of read/write

operations. For maximum efficiency, the register file should provide multiple

input and output ports. For example, two outputs for the ALU and two for the

multiplier may be needed to have both devices operating continuously, if only

one register file is available.

In most multi-ALU architectures, a register file is provided for each ALU

and consequently most LSI ALU chips in the market include a scratch-pad

register file, Hence the register file is considered a part of the ALU block

instead of a separate block. This view is followed in this study. Any referral

to ALU as a resource implies the combination of the ALU and the register file.

65

5. Pipeline Registers

As discussed in the previous section, the pipeline registers are primarily used

for interconnecting different resources, enabling one resource to operate at a

different step than the others. Often, as in the case of address generation and

the arithmetic processor, the "step" is aètually several cycles and in such cases

multi-level pipelining is required.

6. Scaler

A scaling block is necessary to implement hardware overflow protection for the

DSP algorithms. Conceptually the scaler consists of two parts, the shifter and

the overflow detection logic. The overflow detection logic can be omitted if the

scaling is to be controlled by the software (microprogram). The shifter may

also be required for numerical algorithms such as division.

7. Address Generator

As discussed before, the design of the address generator is unique to each

processing unit. In general, the structure of the address generator is complex

and it is usually implemented with general purpose ALU chips. An example is

the implementation for the Burg algorithm with 3 ALUs (Am29Ols) by Nichols

[8]. One exception to this is the FFT processor for which a single chip FF1

address sequencer is available (Am2954O).

8. Input/Output Interface

This unit performs the data transfers between the processing unit and other

systems. The specifications of the interface between processing units of the

66

overall system will be discussed later in this chapter.

9. Coefficient Memory

This memory is different from the main memory, since it is used to store the

coefficients only and it is not necessary for all processing units. The coefficient

memory is essential for the FFT processor where a ROM is used to generate the

real and imaginary parts of the constant W. A RAM may be required for

processors implementing a difference equation with variable coefficients, such

as adaptable filters.

The precalculation of the coefficients provides a . considerable

improvement in the system speed as it aoids the necessity of on-line

computation of time consuming algorithms.

Fig. 4.4 illustrates how these blocks are placed within the general structure

common to all processing units. As, it was mentioned the address generator provides

each processor with its distinct flavor. On the other hand, the architecture of the

arithmetic processing block should remain the same since all algorithms are based on

the same basic step, the fundamental operation. The next section concentrates on the

design of' this block.

4.3. The Arithmetic Processor

The elements of the arithmetic processor were introduced in the previous

section. Three critical resources, the ALU, the multiplier and the data busses

between the memory and the arithmetic processor, can be identified among these

67

EXTERNAL

INTERFACE

r Pipeline

LEegisters

r
Address I
Generator J

ALGORITHM

SPECIFICATION

MEMORY

COEFFICIENT

MEMORY

4 SCALER4
r
i Register i
I 'I

L
I File J,

V\ t7 I

\}.LU,) IMultiplier

ARITHMETIC

PROCESSOR

Fig. 4.4. General organization of the processing unit

elements. In this section the trade-offs involved with the increase in the multiplicity

of these resources are examined and an optimum combination is sought. Then the

related current component technology is reviewed and its effects on the specifications

of the data structure is examined. Finally, an interconnection scheme between the

elements of the arithmetic unit is presented.

4.3.1. Optimization of Resources

Conceivably, the computational power of the arithmetic processor can be

enhanced by increasing the numbers of the critical resources. The first trade-off in

increasing the multiplicity of the resources is between the performance and cost

(complexity) of the processor.

68

Any optimization of this trade-off should be based on the benchmark operation

which consists of two complex operations,

A' = A + BWk

B' = A _ Wk
..(4.10).

The subscript N of the coefficient Wk is dropped since we are dealing with fixed-

length data blocks. The complex equations (4.10) have to be expanded for real and

imaginary parts of A' and B',

AR = AR + (BRW—BIW) ..(4.11a)

BR = AR (BRW—BIW) ..(4. 1 lb)

Al= Al + (BRWJ+BIW) ..(4.1 ic)

Bi = A1 - (BRWIk+BIW) ..(4.hld)

where the subscripts)? and I. denote the real and the imaginary parts of a complex

number, respectively. From equations 4.11, it can be seen that the benchmark

operation requires 4 multiplications and 6 additions (subtractions). In addition 4

values, AR, A1, BR and B1, must be read and then stored, hence the data memory must

be accessed 8 times. Although the coefficients WRk and Wjk represent two additional

read operations, this does not pose a problem since the coefficients are read directly

into the multiplier through a separate bus.

In a one bus structure, the benchmark operation takes 8 cycles to complete with

the ALU staying idle for 2 and the multiplier idle for 4 cycles of the 8 cycle period.

69

Hence the efficiencies of the data bus, the ALU and the multiplier are 100%, 75%

and 50% respectively. The bottleneck is clearly the memory access, indicating that

the number of the data busses must be increased. If two busses are used instead of

one, the 8 memory accesses can be completed in 4 cycles, but the benchmark

operation requires 6 cycles as the ALU becomes the bottleneck resource. Table 4.1

illustrates the results of progressive increases in the multiplicity of the resources [19].

The "cycles" column under each resource . represents the number of the cycles

needed to complete the assigned part of the benchmark operation when the

corresponding multiplicity ("#" column) is provided. The total, number of cycles is

the greatest of the "cycles" columns for each line. The efficiency colomn is

determined by the ratio of the required number of cycles to the total number of

cycles.

TOTAL

CYCLES

DATA BUSES . ALU MULTIPLIER

Cyc. Efficiency # Cyc. Efficiency # Cyc. Efficiency

8 1 8 100% 1 6 75% 1 4 50%

6 2 4 67% 1 6 100% 1 4 67%

4 2 4 100% 2 3 75% 1 4 100%

3 4 2 67% 2 3 100% 2 2 67%

2 4 2 100% 3 2 100% 2 2 100%

1 8 1 100% 6 1 100% 4 1 100%

Table 4.1. Effects of the multiplicity of the resources

70

Table 4.1 clarifies the performance and complexity trade-off. The arithmetic

processor can be made faster and more efficient at the cost of more resources and,

consequently, more complex microprograms. The design of the other blocks in the

processing unit are also effected by the choice of the speed of the architecture. For

example, the architecture with 8 data busses demands a storage system with 8

independent data ports, which is very complicated to implement.

The structure of the address generator is another important consideration in

choosing the architecture. The butterfly operation (eqn. 4.10) can be performed "in-

place": i.e. after the operation is completed, the values A and B are not needed and

can be overwritten by A' and B respectively. Hence three addresses are required for

the benchmark operation, those of A, B and Wk. If the benchmark operation is

executed in three or more cycles, only one address needs to be generated per cycle

thus a single bus structure is sufficient for the address generator block. The

complexity of this block increases tremendously if the benchmark operation is to be

completed in less than 3 cycles.

Among the-alternatives presented in Table 4.1, the architecture with two data

busses, two ALUs and one multiplier was chosen. The reasons for using this "2-2-

1" architecture are given below:

(1) The two-bus structure is natural for complex valued data processing because the

data memory can be divided into two logical sections, real and imaginary, with

one bus assigned to each section. The same address is issued to both sections

of the memory in order to access a complex valued data. Thus the addressing

71

scheme is, in fact, simpler than that in a one-bus structure where two addresses

are required to access the real and imaginary parts of the data.

(2) With the same reasoning, two ALUs can be employed to perform the real and

the imaginary calculations separately. Thus the addition of the second ALU

causes minimal complexity in design and programming while improving the

speed by 33% over the "2-1-1" structure. The average efficiency of all three

resources is also increased from 78% to 91%.

(3) The 2-2-1 architecture. appears to be a good compromise as using two

multipliers is not feasible without at least 4 data busses.

(4) From Table 4.1, the total number of cycles required to complete the benchmark

operation is 4. Therefore only one address per cycle needs to be generated,

simplif,ing the address generator as explained previously. Since only three

addresses are used in the operation, the remaining cycle can be used

conveniently for incrementing a counter or other house-keeping tasks in the

address generator.

As it will be discussed shortly, a family of specialized devices manufactured by

the Advanced Micro Devices (AMD) were the key components of this architecture.

The "2-2-1" architecture was also suggested by AMID as the optimal complexity

[19].

72

4.3.2. Component Technology

Several microprogrammable processors with pipelined organizations are

available today. Among these components, the Am29500 family products are

particularly well suited to the needs of the arithmetic processor. The distinctive

feature of the Am29500 family components is that they employ ECL internal

technology with 'rI'L input/output levels.

The ECL technology is widely used in manufacturing high-speed integrated

circuit. However, the interface between ECL parts is always troublesome; with the

bus capacitances and the lead inductances having to be kept very low to ensure

reliable data communications. In addition the fan-out of the ECL output is low

limiting the number of devices that can be connected to a bus. These problems are

solved in Am29500 family by using ECLTIiL translators at the inputs and outputs

of the integrated circuit devices. The ilL technology, although slower, offers more

reliable communications between ICs and the signals are less susceptible to noise.

Another advantage of using the'I-IL signal levels is that it allows the designer to use

the widely available TIL logic components, such as buffers and drivers, with these

fast devices.

The two relevant devices to the arithmetic processor in the Am29500 family are

the multi-port pipelined ALU/Register file, Am295Ol, and the multiplier, Am295l7.

The Am295O 1 is a specialized 8-bit processor which executes multiple simultaneous

data operations. The bit-slice design of the ALU allows cascading any number of

Am295Ols to implement wider formats for data. The structure of the register file,

73

which contains six registers, is the key element for performing simultaneous data

transfers. The registers are pipelined and a multitude of data transfers can be

performed in one cycle. Another important advantage of the Am295O1 is that it has

3 data ports to speed up the data transactions with the memory and the multipler.

Any combination of the register operations, the ALU operations and the I/O

Instructions can be programmed to occur in the same cycle [15].

The Am29517 is a 16-bit by 16-bit multiplier with a pipelined organization that

improves its throughput. However the pipelining may be disabled to obtain a

combinational multiplying logic.

4.3.3. Data Format

The selection of the Am29S 17 as the multiplier limits the word width to 16 bits.

Since the Am295Ol is an 8-bit processor, two of these are cascaded to form a 16-bit

ALU. From here on, any refefence to ALU will imply 2 cascaded Am295Ols.

To complete the data - description, the data format must also be specified.

Generally, the best data format for DSP is the floating point format. However, with

the available components (Am295O1 and Am295l7), the floating point operations

must be carried out in software and therefore is not efficient. The block floating point

(BFP) arithmetic is preferred with these components because the errors introduced by

the truncation and scaling are less crucial in this format than it is in standard fixed-

point format [20]. In the BFP format, the data word can be viewed as a mantissa

where the common exponential is stored elsewhere. The natural choice for the

74

interval of real numbers representable in the mantissa is [- 1,1). Therefore the value

of a number formed by the bits a15, a14, . . . , a0 of the mantissa is

—a15 I aJ4I.

where a can be either 1 or 0. This representation is also called the two's-

complement floating point representation.

As indicated above, the selection of the data format is dictated by the current

component technology and it can be changed as advances are made. Other

possibilities of the data format are discussed in the next chapter.

4.3.4. Data Flow Structure

The data paths connecting the blocks of the arithmetic processor are illustrated

in fig. 4.5. Six different data busses are used to facilitate the full utilization of the

resources. The two memory access busses, as required by the "2-2-1" architecture,

are the R—bus, for the real part of the data, and the I—bus, for the imaginary part.

The Y—bus carries the output of the multiplier, while the RM, IM and C busses

provide the operands for the multiplier.

In order to generalize the architecture for all DSP basic operations, the operands

of the multiplier are selected by a multiplexer. The real and the imaginary parts of

the data from the corresponding ALUs, in addition to the real or imaginary part of

the coefficient, are the three inputs of the multiplexer. In the generalized form, the

'multiplexer is capable transferring any combination of the inputs to its output.

However this results in an overly complicated multiplexer block with high chip

75

MEMORY

real imaginary

COEFFICIENT
real/imag. ALU ALU

MULTIPLEXER

MULTIPLIER

Fig. 4.5. Data flow in the arithmetic processor

count. Therefore this block should be modified later to meet the requirements of

each processing unit. For example, for the 1-'FT computation, the external

multiplexing logic may be eliminated with the organization of fig. 4.6. On the other

hand, the magnitude square calculation (4 + X) requires both operands of the

multiplier to be sourced from the same input.

76

real/imag.
COEFFICIENT

real
ALU

imaginary
ALU

JLTIPLIER

Fig. 4.6. An example of the simplified multiplier inputs

4.4. Architecture of the Processing Unit

The final architecture of the processing unit is illustrated in fig. 4.7. This figure

is an evolution of fig. 4.4 to include the data flow structure of the arithmetic

processor (fig. 4.5). The arithmetic processor was discussed extensively in the

previous section, the design of the memory, the scaler and the I/O interface will be

presented here.

4.4.1. The Memory

The memory block is composed of two identical storage segments as illustrated

in fig. 4.8. The real and the imaginary parts of the complex data are stored in

separate segments, both 16-bits wide. Since the segments can not be addressed

separately, real and imaginary parts of the data must be accessed in the same cycle.

77

ADDRESS

GENERATOR

Multi-level

Pipe me Register

-

INTERFACE

4

MEMORY

Coefficient

Address Latch

4

COEFFICIENT

MEMORY

I

SCALER

 "4

V

REAL

ALU

A.

V

IMAGINARY

ALU

MULTIPLEXER

MULTIPLIER

Fig. 4.7. The architecture of the processing unit

78

r

Real
Address

Imaginary

DATA MEMORY

L J

Fig. 4.8. The data memory

Complex

Data

In this respect, the memory block can be viewed as a single 32-bit wide RAM.

4A.2. The Scaler

The structure of the scaler block depends on the necessities of the processing

unit. Fig. 4.9 illustrates a simple form of the scaler block for one data bus. The

scaling is performed while data is being read from the memory based on some

previous decision (i.e. overflow). For multi-bus structures, a shifter must be

provided for each data bus. This simple scheme is sufficient for most applications

where the BFP format is used.

4.4.3. 1/0 Interface

In order to carry out the isolated testing of a single processing unit during the

development stage, the task manager provides the input data and receives the output

data of the processing unit; this facility was described previously as the target system

79

r -1

Memory Shifter

'ye ow

Protection

L.:ic

SCALER
L J

Fig. 4.9. The scaler block

ALU

development support. Hence, the I/O interface must be designed to handle the

handshaking as specified by the task manager. Fig. 4.10 illustrates a simple yet

effective scheme of a completely symmetrical interface. Two back-to-back registers

allow the bidirectional data transfers while two flip-flops generate the necessary

handshaking signals. Each flip-flop is set when data is written to the corresponding

register and cleared when data is read by the other side. The data busses shown in

the figure are 32-bits, i.e. real and imaginary parts are transferred in parallel 'when

connecting to other processing units. The task manager processes the data in 8-bit

segments, so that each register must be constructed with 4 individually accessible 8-

bit registers to be able to test the processing unit with the help of the task manager.

80

SYSTEM 1

SYSTEM 2

data-ready
£

FF
4-

buffer-empty

Register 1

4

Register 2 -,

Fig. 4.10. 110 Interface

FF
2

buffer-enipty

data-ready

After the development stage, the same interface block can be used to tie the

processing units together as required by the signal processing unit of fig. 1.1. The

interconnection using a single system bus is illustrated in fig. 4.11. In order to

demonstrate the timing of processing and transferring of data blocks, let's assume

that a data block is processed in unit 1 (PU1) first, then in PU2 and PU3. The

progress of the operation is shown in fig. 4.12, where it is assumed that all

processing units require the same amount of time to carry out their respective

algorithms. The numbers on the data transfer segments are those of the transmitting

and the receiving processing units. The solid lines indicate that a PU is busy

processing the data block indicated above the line, and the dotted lines correspond-to

the time period where data transfers are performed.

81

4 £

PU1 PU2 PU3

Fig. 4.11. Interconnection of the processing units with a system bus

Data Bus

PU'

PU2

PU3

0-1 1-2 04 2.3 1-2 0-1 3-4 2.3 1-2 0-1 3-4 2-3
4$ IPI P4 P 4)4 P4 PIP 4P11p

0 1 4 2 - 3
- II 1-4 P4 1-4 P4 P

0 1 2
4 1-1- II P4' P1 P4

0 1
4_P.4 1-4 P

Fig. 4.12. Timing diagram of execution and data transfers

Data Bus

PU'

PU2

PU3

0-1 1-2 0-1 2-3 1-2 0-1 3-4 2-3 1-2 0-1
41*141 4-1. 414$P

0 1 2.
4_Pt P4 - M_Pr

4
,0 1

1.4 P4

0 1
.4 ----- *- • 01

Fig. 4.13.. Timing diagram with different execution speeds

2

82

In reality, the processing units require different time periods to complete an

operation, and the slowest PU determines overall throughput. An example is

illustrated in fig. 4.13, where it is assumed that PU2 requires more time than the

others.

4.4.3.1. The Metastable Problem

A subtle problem was encountered in the implementation of the interface logic

(fig. 4.9). The metastable problem is common to all clocked systems incorporating

an asynchronous signal. It is an unavoidable condition and results in occasional

system failure. To understand this problem let's consider the clocked system S

(fig. 4.14). The output, Y, of this system depends on the asynchronous input event

D. By asynchronous, it is implied that the occurrence of event D is not correlated to

the clock pulse signal. Every clocked system such as S has a input set-up time, t,

which means that the event D has to occur at least a time period of t before the

clock edge. If this condition is not met, the system "crashes" because the output Y

D
(Asynchronous)

S
Y

Clock, f

Fig. 4.14. The metastable problem

83

and the state of system S are not predictable. Since D is uncorrelated to the clock

there is a finite probability of the occurrence of this failure. This probability can be

calculated assuming D is totally asynchronous:

Failure Rate =
set—up time - -

t5f
clock period

where f is the clock frequency.

The metastable stable problem exist in the interface logic because of the status

signals. The status signals data-ready and buffer-empty are tested by the controller

in order to start a data transfer. However, these signals are generated by the

read/write operations originating from the task manager and therefote are totally

asynchronous to the controller. Fig. 4.15 illustrates the status signal path which is

conceptually similar to that of fig. 4.14. The set-up time for the path shown is equal

to the sum of the delays in the CC-multiplexer, the sequencer, the WCS and the set-

up time of the pipeline register. From the data books the total set-up time, t, is

estimated to be 70 ns. Hence,, with a clock frequency of 5 MHz, the rate of a failure

during a data transfer i

Failure Rate = 70ns x 5MHz = 35%.

The obvious deduction from this tremendously high probability is that a clock rate of

5 MHz is not attainable with this structure.

84

data-ready

buffer-empty

data-ready
buffer-empty

cc
mux

Seq. WCS PL
Microword

Clock

Fig. 4.15. Metastable problem in the control unit

OP Reg.
Cc

-

mux
Seq. WCS PL

Clock

Fig. 4.16. Rectification of the metastable problem

Microword

This problem was rectified by inserting a register into the signal path, as shown

in fig. 4.16. The set-up time for a register is typically 2ns so that the failure rate

with the same clock becomes

Failure Rate = 2ns x 5MHz = 1%.

Although this figure seems to be still high, it should be remembered that a register

can easily recover from a metastable condition and at worst another clock edge is

required to register the signal level. On the other hand, the recovery is unlikely if

the clock edge occurs while the sequencer or the WCS is not stabilized.

85

4.5. An Example: The FFT Processor

To demonstrate the concepts developed in this chapter an Fn processor was

built. In this section, first the hardware features of this processor and the overflow

protection mechanism are discussed. Then the development of the software for

parallel processing is presented. The block diagram of the FF1 processor is given in

fig. 4.17.

4.5.1. Characterization of the Processing Unit

The general architecture of the processing unit was described in the previous

sections. As mentioned before, the characterization of a processing unit designated

for a specific algorithm is reduced to the definition of 5 blocks,

1. The address generator(s), to specify the algorithm(s) to be executed,

2. the scaler, to protect the processor from overflow failure,

3. the multiplexer block, to supply the necessary data to the multiplier,,

4. the type of coefficient memory, (if any), and

5. the pipeline registers.

In the following subsections, the FFT processor is defined by the specification of

these blocks. The design of the scaler block is discussed in the next section.

4.5.1.1. The Address Generator

A single chip FFT sequencer, Am2954O, was used as the address generator.

Although the Am2954O is capable of generating addresses for a large variety of FF1'

algorithms, we will concentrate on the radix-2, decimation-in-time (DIT) FFT

86

INTERFACE
Multi-level

Pipe inc Register

FF1'

ADDRESS

GENERATOR

Coefficient

Address Latch

MEMORY

Ovcifiow

PoeUre

Logf

COEFFICIENT

MEMORY

Moe eche

SHIFTER

REAL

ALU

 49. SHIFTER

IMAGINARY

ALU

MULTIPLIER

Fig. 4.17. The FYI' processor

87

algorithm. The definition of this algorithm and other variations of FYI' algorithms

can be found in many sources (e.g. [21]). The Am2954O was also employed to

download/upload the data block by addressing the data memory sequentially.

The transform length is one of the parameters required for the Am2954O and

this is set by the task manager through the parameter register mentioned earlier. The

length of the data block is necessarily a power of 2 due to the Am2954O

specifications. The setting of the transform length independently of the kF1 software

allowed compact microprograms. Since the end-of-loop cnditions were generated

by the Am2954O, software counters to keep track of the ' execution were not required.

4.5.1.2. The Multiplexer

The multiplexer block was not necessary 'for the FF1 processor since only

multiplication with a coefficient was required. The organization shown in fig. 4.6

was implemented.

4.5.1.3. The Coefficient Memory

The coefficient required for the butterfly operation is

W / —e1k =cosek+jsin9k

Currently available sine/cosine ROMs were used to generate the real and imaginary

components of the coefficient Wk. These ROMs are Am29526/7 (—SiflOk) and

Am29528/9 (—cosOk).

88

4.5.1.4. The Pipeline Registers

Two pipeline registers, each two level deep were required to hold the two data

addresses for the butterfly operation. The two level depth was necessary for

overlapping the execution of the butterflies.

A single latch was sufficient for the coefficient address since it does not change

during the execution of a butterfly.

4.5.2. Overflow Protection in FFT

In this section we will first identify the requirements of the FFI algorithm for

the overflow protection logic. From the definition of the DFT,

N—i nk
X[k] =

n=0

where k[n] I ≤ a, it is clear that

N—i
[k]I ≤ I Ix[n]I < sN

P2=0

Therefore the maximum word growth in an FF1 computation is limited. This upper

bound of the word growth allows that immunity from overflow can be achieved by

simply scaling the input data by N. However, this method reduces the effective

word length and therefore is not very efficient. An alternative method is to scale the

data block only when necessary. For this purpose the word growth in one butterfly

of the radix-2, DIT FkT algorithm is analyzed. The results suggest an effective

method for overflow protection.

89

4.5.2.1. Word Growth in a Butterfly Operation

The computation of the FFT of N data points (N = 2) consists of log2N (m)

passes with each pass consisting of N/2 butterfly operations of the form

A'= A+BWc

B'= A_BWk

..(4.12a)

..(4.12b)

The operands of the butterfly operation can be defined as, in both rectangular and

polar coordinates,

A = AR + jA1 = RA ..(4.13a)

B = BR + jB1 = RBe188 ..(4.13b)

Wk= W- i- jW= ..(4.13c)

where j =

As specified earlier, a data word can only represent a number in the interval

[-1,1), hence

—1 ≤ AR, A1, BR, B1, W, W1k < 1 ..(4.14)

Consequently, the magnitude of a complex number represented with two data words

is less than or equal to or

O≤ RA, RB≤ 42

90

Now consider the multiplication of B and Wk,

BWk = RBe1OBe1Ok

= RBcos(OB+Ok) + jRBsin(OB+Ok)

which results in the rotation of B by 0k If O& + 0k is a multiple of 90°, B becomes

purely real or purely imaginary after the rotation. This is crucial to the word growth

analysis because the components of BWk is no longer bound by the word limits:

-'1 - ≤ RBcos(OB+Ok), RBsin(OB+Ok) ≤ t:

From (4.12) and (4.16),

B = AR - RBCOS(BB+ek)

B = A1 - Rlisin(eB+ek)

..(4.17)

..(4.18a)

..(4.18b)

These equations can be combined with (4.14) and (4.16) to determine the limits of

B and B:

—1— ≤ B, B ≤ i+ñ ..(4.19)

This result shows that the absolute value of a component of B can grow from 1

to a maximum of i+I, or approximately 2.41 times its original value. Since every

data point is processed once in each pass, this result is valid for all passes.

Based on eqn. (4.19), the optimum overflow prevention strategy is to -scale the

data block before each pass so that the maximum absolute value of the real or

imaginary part of the data block will be 1/2.41. This method, however, is not

practical. An alternate solution which is implementable in BFP format is discussed

91

in the next subsection.

4.5.2.2. Implementation of the Scaler

A simple implementation of hardware division consists of a shifter which can

divide the data by powers of 2. Two shifters are inserted in the real and imaginary

data paths as shown in fig. 4.17. These shifters, implemented by Am25S1Os, can

shift the input data by 0, 1 or 2 bits, corresponding to division by 1, 2 or 4

respectively.

From the results of the previous section it is clear that a real or imaginary

component can grow by more than 2 but less than 4 in any pass. Therefore,

overflow can be prevented in a pass .by keeping the absolute values of all

components less than or equal to 0.25 before the pass. To achieve this condition, the

data block must be tested after every pass and scaled down if the real or imaginary

part of any data point is greater than 0.25. The scaling factor is determihed by the

following conditions:

• If any component is greater than 0.5 then scale by 4.

• If all components are smaller than 0.5 but some component is greater than 0.25

then scale by 2.

Hence the overflow prevention problem is reduced to design the logic circuit to

generate. these conditions.

92

As discussed earlier, a real number, x, is represented in two's complement

fractional binary format as

x = —q152° + a142 1 + + a2'5 ..(4.20)

where a is the nth bit value which is 1 or 0. Following logic equivalences can be

verified from eq. (4.20):

x≤ 0.5 E a15 .a14

x<-0.5 a15.a 14

where • represents the logical-and operation. Combining these equations yields

RkI≥O.5
(a1) + (a15-a14)

a15 9 a14

where + and ® denote the logical-or and exclusive-or operations respectively.

Similarly,

S M 0.25 ≤ N ≤ 0.5

0.25)

R . (a5 0 a13)

..(4.22)

Equations (4.21) and (4.22) show a simple way to determine the range of a

component. These tests must be repeated for the real and imaginary parts of all data

points. The results, R and S, from each component are registered by a pair of flip-

flops which detect a " 1" at their respective inputs. The state equations for these

flip-flops are

93

Y1 Ylp+RR+RI

Y2P + (SR + S1)]

where the subscript p denotes the previous state and subscripts R and I indicate real

and imaginary tests respectively.

A practical approach is to test each data point as it is written back to the

memory as a result of an FF1' butterfly, rather than searching the entire data block

after the pass is completed. In this method the flip-flops are clocked every time a

data point is written into the memory. After the pass is completed, the outputs of

these flip-flops are transferred to another pair of flip-flops which select the amount of

shift (0, 1 or 2) to be performed by the shifters. As a result, each component will b

scaled down by the same amount as it is read by the arithmetic processor for the

next pass.

4.5.3. Software for Parallel Execution

The progress of a butterfly operation in the arithmetic processor is illustrated in

Table 4.2. The register file operations are not shown to simplify the diagram,

however some of the visible delays are associated with the register file. For

example, the multiplier output is generated one cycle after the value of B is read

because this value has to be written to the register file first. As observed from

Table 4.2, the butterfly operation requires 9 cycles although each device is

operational for only 4 cycles of this period. In order to achieve the efficiency figures

derived in section 4.3.1, the butterfly operations have to be overlapped in a way that

94

CYCLE #

1

2

3

4

5

6

7

8

9

DATA BUSSES REAL ALU

READ B

READ A

A = AR + BRWR

IMAG. ALU MULTIPLIER

BRWR

BRWJ

= AR - BRWR = AJ+BRWI B1W1

= A - B1W1 B=AJ - BRWJ BJWR

B = B + B1W1 B = - BJWR

'WRITE B'

WRITE A'

= A' + BIWR

Table 4.2. Progress of a butterfly operation

all devices will be operational at all times. Hence a repetition ' rate of 4 cycles is

required.

The butterfly operation as shown in Table 4.2 can not be overlapped with a rate

of 4 cycles because the "Read B" operation at the first cycle has to be repeated at

the 5th cycle and then at the 9& cycle which conflicts with the "Write A" operation.

The progress of the butterfly can be modified slightly, as shown in Table 4.3, to get

rid of this problem. With this organization, the butterfly operations can be

completely overlapped. Table 4.4 shows two overlapped butterflies which can be

extended to fill all cycles. The operation of the whole processing unit with

completely overlapped operations is shown in Table. 4.5.

95

CYCLE #

1

2

3

4

5

6

7

8

9

10

CYCLE #'

1

2

3

4

S

6

7

8

9

10

11

12

13

14

DATA BUSSES REAL ALU IMAG. ALU MULTIPLIER

READ B

READ A

A=AR+BRWR

BRWR

BRWI

A = AR - BRWR A =AJ±BRWJ B1W1

4=4- B1W1 B=AI - BRWI BIWR

B = B + B1W1 B = B - BIWR

WRITE B'

WRITE A'

= A; + BIWR

Table 4.3. Modified butterfly for overlapping

DATA BUSSES REAL ALU IMAG. ALU MULTIPLIER

READ B (1)

READ A (1) BRWR (1)

4 (1) BRWI (1)

READ B(2) B(1) A(1) B1W1(1)

4(1) B(1) BIWR (1)

READ A(2) B(l) B(1) BRWR (2)

WRITE B' (1) A; (2) A (1) BRWI (2)

B; (2) A; (2) B1W1 (2)

WRITE A' (1) 4 (2) B; (2) BIWR (2)

B (2) B (2)

WRITE B' (2) A (2)

WRITE A' (2)

Table 4.4. Two overlapped butterfly operations

CLE

.oaxess
Generator

i.'ais Auur.
PL

CoCf. MCh.
Register DATA BUSSES REAL ALU

Mt.J' TIP
IMAG. ALU X Y Output

Inst. Output Inst. Output

I COUNT HOLD Al (-1) READ A (-1) B (-2) B(-2) B (-1) sin (- 1) BRWR (-1)

2 HOLD B PUSH B B2 (-2) WRITE B' (-2) A (- 1) A; (-2) B1 (-1) sin (4) BRWI (-1)

3 HOLD W Bi LATCH READ B B (-1) A;' (4) B1 (-1) cos (-1) B1W1 (-1)

4 A PUSH A A2 (-2) , WRITE A (-2) A (4) K(-1) B5 cos BIWR (-1)

5 COUNT (1) HOLD Al READ A B (-1) B1 (-1) 115 sin B5W

6 HOLD B (1) PUSH B (1) B2 (-1) WRITE B' (-1) A A; (-1) B1 sin BRWI

7 HOLD W (1) BI (1) LATCH (1) READ B (1) 11 A B cos 111W1

8 A (1) PUSH A (1), A2 (-1) WRITE A' (-1) A B BR (1) cos (1) BIWR

9 COUNT (2) HOLD Al (1) READ A (1) B' Bit (1) sin (1) BRWR (I)

10 HOLD B (2) PUSH B (2) 112 WRITE B' A (1) A; B1 (1) sin (1) BRWI (1)

11 HOLD W (2) BI (2) LATCH (2) READ B (2) B (1) AT (1) B (1) cos (1) B1W1 (1)

12 A (2) PUSH A (2) A2 WRITE A' A (1) BI (1) BR (2) cos (2) 111W5 (1)

13 COUNT (3) HOLD Al (2) READ A (2) B (1) B; (1) BR (2) sin (2) BRWR (2)

14 HOLD B (3) PUSH B (3) B2 (I) WRITE B' (1) A (2) A; (1) B1 (2) sin (2) BRWI (2)

15 HOLD W (3) '
BI (3) LATCH (3) READ B (3) B (2) Al (2) Bt (2) cos (2) B1W1 (2)

16 A(S) PUSH A(S) A2(l) WRITE A' (1) A(2) Bj'(Z) Bit (3) cos (3) B1W(2)

Table 4.5. Completely overlapped butterflies

97

The required time to compute an N-point FFT can now be estimated. An N-

point FFT is performed in log2N passes with N/2 butterflies in each pass. Therefore,

if the cycle period is t, the total time required for the FFT is

TN= tj N log2N or,

=2tN1og2N ..(4.24)

In reality, the first and last two butterflies are not totally overlapped with the

other butterflies because the pipeline has to be filled before the parallel execution and

it has to be emptied after. These end effects have to be included in the total time for

precision. It has been observed that the filling and emptying of the pipeline requires

an additional 22 cycles, thus equation 4.24 becomes

TN = (2Nlog2N + 22)t ..(4.25)

4.5.4. Clock Requirements

The slowest device in the FFT processor is the memory, which is implemented

with 4 Am9128s. Using this fact and the block diagram of the processor (fig. 4.17)

the critical path on this system is indicated as the path for the Read operation, i.e.

the path from the address register to the ALU. The delay' on this path was calculated

to be 112 ns (Table 4.6). To determine the minimum.clock period the delay from

the clock to the outputs of the pipeline register at the control unit (20 ns) must be

added to this figure. Thus the minimum clock period was estimated to be 132 ns.

However, the delays shown in Table 4.6 are maximum values and we were able to

98

DEVICE PATH PART NO. DELAY

Addr. Reg. sel.—output Am29520 12 ns

Data Memory Addr. setup Am9 128 70 ns

Bus Driver input—*output 74LS244 12 ns

Shifter input—output Am25S10 8 ns

Reg. File data setup Am29501 10 ns

TOTAL 112 ns

Table 4.6. Calculation of the delay for the READ operation

operate the FFT processor with a clock frequency of 8 MHz (125 ns period).

Equation 4.25 can now be determined numerically. For example, the time

required to compute the discrete Fourier transform of a 1024 point data block is

T1024 = (2x1024x1og21024 + 22) 125 ns = 2.56 ms

4.6. Summary

In this chapter, we have shown that a uniform structure for different processing

units can be achieved by separating the address generator and the arithmetic

processor. These blocks can then be operated concurrently improving overall speed

and the performance of the unit. The architecture of the arithmetic processor is

identical for different DSP algorithms because, in all cases, the computations of the

fundamental operation is required. A particular DSP algorithm can be specified by

defining its address generator.

An architecture for the arithmetic processor, suggested by AND, was found to

be optimal for repetitive computations of the fundamental operation. Overall

99

organization of the processing unit was discussed emphasizing parallel processing.

An FFT processor board, shown in fig. 4.18, was constructed to demonstrate the

efficiency of the presented architecture. A very high performance level was achieved

with the implementation of overlapped butterflies and concurrent real/imaginary

operations. This processor completes one butterfly operation every four cycles with

an experimentally determined cycle time of 125 ns.

Fig. 4.18. FF1' processor board

CHAPTER 5

CONCLUSIONS

The research towards the objective of designing the basic tools for

microprogrammed implementations of DSP algorithms consisted of two phases:

1. Construction of the general purpose controller

2. Development of a DSP-suitable architecture

The results obtained from each phase are examined separately in the next two

sections.

In the final section of this chapter, suggestions for improving various aspects of

the proposed signal processing system are presented.

5.1. The General Purpose Controller

A versatile microprogrammable controller and development tool has been

constructed. This unit was intended to be used during the development stage of the

individual processing units 'within the signal processing system. It is capable of

1. Generating control signals which can be used by any processing unit in a

128-bit horizontal microword format.

2. Executing microprograms, which are stored in the host computer or the

on-board memory, in continuous or single-step mode.

3. Transferring data blocks from the host computer to the processing unit and

100

101

back.

In addition, the modular design allows using the host-interface unit of the controller

as the task manager. This unit is capable of downloading multiple RAM-based

microprogrammable control units. A software library provides easy access to all

functions of the controller from the host computer using simple commands.

Although the general purpose controller was designed to meet the requirements

of DSP oriented implementations, its applications are not limited. For example, its

potential application in regulating the speed of a rotating machine was recognized

during the early development stage [22]. The controller is also in use by Nichols[8]

to develop a processor for auto-regressive modeling using Burg's algorithm.

5.2. The Digital Signal Processing Architecture

In the second phase of this thesis, an architecture suitable for signal processing

applications has been developed following suggestions made by AMID [19]. Three

• major points have been demonstrated:

(1) Most signal prdcessing algorithms consist of repetitive computations of the

fundamental operation with an addrssing scheme unique to the algorithm.

Hence, once a processing unit for one DSP operation is realized, another

operation can be implemented by modifying only the address generator.

• (2) The two data bus, two ALU, one multipler architecture suggested by AMID

yields a very good performance level with a reasonable level of complexity.

102

(3) Very efficient, highly parallel processors can be achieved when sufficient data

flow paths and complete control of all resources are available.

The proposed architecture have successfully been tested for the radix-2 FF1

algorithm. To illustrate the performance of the FFI processor, let us consider the

computation of 1024-point complex FF1. The required time for this calculation on

the FFT processor was etimated to be 2.56 ms. In comparison, the TMS32O1O, a

popular signal processing chip, requires 69.4 ms [23]'. This tremendous improvement

is a result of several techniques, which are

1. Parallel processing, which is reflected as overlapped butterfly operations,

concurrent computations of the real and imaginary parts, and simultaneous

addition and multiplications.

2. Pipelining, which improves the speed by isolating the delays in the

individual components.

3. Hardware generation of data addresses, to avoid, the significant amount of

time required to calculate the addresses in software.

103

5.3. Recommendations for Future Research

The signal processing system described in chapter 1 is yet to be completed. As

mentioned before, the processing units can be realized by designing an appropriate

hardware address generator for the arithmetic processor developed in this thesis. The

FFT processor board constructed during this research may be directly used in this

system. However, since the FF1 processor was designed simply as a test-bed for the

architecture, the address generator of this board may be found inadequate for some

applications. In particular, the input data is assumed to be pre-scrambled as required

by the FEE algorithm. Hence there are no provisions for bit-reversed scrambling of

the data block. Therefore, the addition of an address generator for data scrambling is

recommended if this board is to be used later.

The interface between the processing units should be improved. Since the data

flow is necessarily towards one direction in a pipelined system, uni-directional busses

between consequent processors can be used instead of a system bus (fig. 4.11). Also

the I/O registers shown in fig. 4.10 do not adequately isolate the processing units.

Replacing these registers with first-in-first-out (FIFO) memories is recommended.

An important limitation of the architecture is the data word length. The 16-bit

integer arithmetic may not provide sufficient precision for some applications. As

discussed in chapter 4, the selection of this data format was dictated by the available

components. Several new 32-bit parallel multipliers, such as Am29323, have been

announced recently. The word length can therefore be extended to 32 bits as these

products become available. The 32-bit ALU can be constructed by cascading four

104

Am2950l devices.

Another exciting new product is the Am29325, a 32-bit floating point ALU.

When used with an external 'register file such as Am29334, also a recent

announcement, this device may replace the Am2950ls and the multiplier. This

possibility is particularly interesting because the general outline of the "2-2-1"

architecture can be preserved by using three Am29325s, possibly with one of them

wired as a multiplier, tremendously increasing the flexibility, the adaptability and the

precision of the resulting processing units.

REFERENCES

1.- A.V. Oppenheim, Applications of Digital Signal Processing, Prentice-Hall

(1978).

2. M.C. Pease, "An Adaptation of the Fast Fourier Transform for Parallel

Processing," J. Ass. Comput. Mach. 15 pp. 252-264 (April 1968).

3. B. Gold and T. Bially, "Parallelism in Fast Fourier Transform Hardware,"

IEEE Trans. Audio Electroacoust. AU-21 pp. 5-16 (Feb.1973).

4. K.J.M. Campbell, "A Microprocessor Based Spectrum Analyzer,' MSc Thesis,,

Dept. of Elec. Eng., U. of Calgary, (1984).

5. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE 63 pp. 561-

580 (Apr. 1975).

6. M.R. Smith, S.T. Nichols, R.M. Henkelman, and M.L. Wood, "Application of

Parametric Modeling in Magnetic Resonance Imaging," Submitted as a paper

to IEEE Trans. Med. Images, (1986).

7. J.D. Markel, "FFT Pruning," IEEE Trans. Audio Electroacoust. AU-19, no.

4 pp. 305-311 (Dec. 1971).

8. S.W. Nichols, "Microprogrammed Implementation of AR Modeling," MSc

Thesis, Dept. of Elec. Eng., U. of Calgary, (expeted completion July, 1986).

105

106

9. M.V. Wilkes, W. Renwick, and D.J. Wheeler, "The Design of the Control Unit

of an Electronic Digital Computer," Proc. of lEE, pp. 121-128 (June 1958).

10. M.V. Wilkes, "The Growth of Interest in Microprogramming: A Literature

Survey," Computing Surveys 1 pp. 139-145 (Sept.1969).

11. S.S. Husson, Microprogramming: Principles and Practices, Prentice-Hall

(1970).

12. D.K. Banerji and J. Raymond, Elements of Microprogramming, Prentice-Hall

(1982).

13. G. Hope, Integrated Devices in Digital Circuit Design, Wiley (1981).

14. M. Andrews, Principles of Firmware Engineering in Microprogram Control,

Computer Science Press (1980).

15. Data Book, Bipolar Microprocessor Logic and Interface, Advanced Micro

Devices (1985).'

16. H. Orbay and M.R. Smith, "A Development Tool for Microprogrammable

Systems: General Purpose Controller," Report #28 CO 85, Dept. of Elec. Eng.,

U. of Calgary, (Sept. 1985).

17. M.R. Smith, "A METAASSEMBLER for developing microwords for a

microprogrammed architecture," Report, #19 PS 85, Dept. of Elec. Eng., U. of

Calgary, (March 1985).

18. B.A. Bowen and W.R. Brown, "Signal Processing and Signal Processors,"

VLSI Systems Design For Digital Signal Processing, Vol.' 1, Prentice-Hall,

107

(1982).

19. J.W. Locke, Designing Digital Signal/Array Processors with the Am29500

Family, Advanced Micro Devices (1984).

20. A.V. Oppenheim and C.J. Weinstein, "Effects of Finite Register Length in

Digital Filtering and the Fast Fourier Transform," Proc. IEEE 60 pp. 957-976

(Aug. 1972).

21. A.V. Oppenheim and R.W. Schafer, Digital Signal' Processing, Prentice Hall

(1975).

22. M.R.Smith, T.Grant, and H.Orbay, "A Development System for High Speed

Microprogrammable Sequential Controllers," presented at Compint 85,

Montreal, Quebec, (Sept. 1985).

23. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution Algorithms, Wiley

(1985).

