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ABSTRACT 

The long term objective of this research is to realize a multi-stage digital signal 

processor. Each stage of the system consists of a processing unit designated to run a 

specific digital signal processing (DSP) algorithm. A uniform architecture suitable 

for various DSP algorithms is therefore required. 

In this thesis, the development of such an architecture is discussed, with 

emphasis on parallel processing and resource optimization. It was shown that the 

separation of the address generation and the arithmetic operations leads to a 

structured organization of the processing unit. This organization remains essentially 

unchanged for various algorithms, with the exception of the address generator which 

is unique to an algorithm. The architecture of the arithmetic unit was optimized for 

signal processing operations. 

A microprogrammable control unit was necessary in order to combine high 

performance and flexibility in the processing units. For this reason, a'general 

purpose microprogrammable controller was constructed as a tool for the development 

of each processing unit. A software library was also provided on the host computer 

to maintain simple operation of the controller. 

A 16-bit FFT processor was built to demonstrate the efficiency of the 

architecture and the usefulness of the general purpose controller. The parallel 

architecture allowed the completion of one FF1 butterfly every four cycles with a 

1'1 



cycle time of 125 ns. The results indicated that, using this architecture, the real-time 

implementation of the signal processor is feasible. 
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CHAPTER 1 

INTRODUCTION 

In the last two decades, digital signal processing has become an increasingly 

important tool for science and technology as its applications spread to such diverse 

fields as geophysics, biomedical engineering, nuclear science and communications. 

Originally, signal processing has been conducted using analog equipment. With the 

need to process large volumes of data and the advances in the computer technology, 

attention has shifted to processing in the digital domain. The flexibility of the digital 

computers fostered experimentation with progressively more sophisticated algorithms, 

and as a result,' new digital techniques have been developed without any apparent 

analog implementation. Thus, the digital signal processing (DSP) theory, which was 

originally regarded as an approximation to the analog signal theory, has evolved into 

a field of its own.. 

Signal processing, in general, is used to extract certain characteristics of a signal 

or to transform the signal into a more desirable form. For example, in EKG and 

EEG analysis or in speech recognition some characteristic parameters of the signal 

are estimated. Alternatively, noise or other interference may be removed from the 

signal or the signal may be modified to present it in a form which is more 

interpretable. Further examples of the application fields of digital signal processing 

are listed below. 

1 
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Geophysics: Deconvolution methods are used in analyzing seismic data to aid in 

modeling the structure of the earth's interior, the study of earthquakes and 

exploration for oil. 

Communications: A signal transmitted over a communication channel may be 

perturbed in a variety of ways, including channel distortion, fading and insertion of 

background noise. One of the objectives at the receiver end is to compensate for 

these disturbances. For example, signal processing may be used for filtering signals 

to remove out-of-band components, echo cancellation in voice/data channels, 

detection and purification of satellite signals. 

Speech processing: The main problems here are speech recognition, voice 

identification and verification, speech waveform parametrization, encoding and 

compression. Spectral analysis and signal modeling techniques are used to aid in 

recognition of the type of the signal or to characterize the voice signal. 

Sonar: High resolution spectral analysis is an important tool in various sonar 

activities such as generation of signal pulses or detection and analysis of echo 

returns. Sonar has its applications in target detection and localization, navigation and 

mapping. 

These applications are just a sample of the multitude of the fields where DSP 

techniques are utilized. An excellent review of the application areas of digital signal 

processing is edited by Oppenheim [1]. 
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This growing interest in digital processing has created a huge area of research 

in the implementation of digital signal processors, both in software and hardware. 

Classically, the realizations of the signal processing systems have tended towards one 

of two general approachs depending on the performance requirements. Inflexible, 

dedicated hardware systems were used where high performance was the priority (e.g. 

[2,3]). Where a lower performance was tolerable, software implementations on 

getieral purpose computers were sought (e.g. [4]). Over the past decade, attempts to 

combine flexibility and high performance resulted in two new approachs, 

implementation on the supercomputers and on' specialized array processors attadhed 

to a general purpose host computer. Recently, advances in the integrated-circuit 

technology have given rise to new high-performance components which have 

dramatically changed the cost/performance criteria for all digital systems. In 

particular, a range of programmable, configurable chips opened up a new dimension 

in digital signal processor implementations. 

In this thesis the possibility of efficient utilization .of these new components in a 

DSP suitable architecture is investigated. In effect, this thesis completes the first leg 

of a project which requires the hardware implementations of several DSP algorithms. 

Thus, the purpose and the scope of this thesis is closely related to the objectives of 

the parent project. For this reason, a brief discussion of the parent project and its 

goals is given before concentrating on the scope of this report within these goals. 



4 

1.1. Long-term Goals 

The long term objective of this research is to design a signal detection system 

which implements a modeling algorithm. In this section, the signal detection 

problem and its possible solutions are briefly presented. 

1.1.1. The problem 

This technique is directed towards the well-known problem of restoring a signal 

x(t) after it has been passed through a known transformation h(t) and has been 

obscured by noise n(t). The observed signal y(t) has the form 

Y(t) = fx(7)h(t—&)d2. + n(t)  

Taking the Fourier transform of the above equation yields 

Y[f]=X[fIH[]+N[t]  

Since N[f] is indeterminable, only an approximation of X[f] can be calculated by the 

deconvolution of Y[f]: 

;[fJ= X[fJ+.N M ..(l.3) 

Taking the inverse Fourier transform of X[fj yields (t), an estimation of the input 

signal x(t). 

The numerical solutions for eqn. ( 1.3) have been extensively analyzed. The 

main problem is the error introduced by the term N[f]/H[f] which is more significant 

at the higher frequencies. The results can be improved by applying a window in the 
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frequency domain to increase the roll-off of X[f], but at the cost of decreasing the 

resolution of (t). An alternative solution was sought that did not compromise the 

obtainable resolution. 

1.1.2. Use of Modeling 

After removing the noise contaminated high-frequency components, modeling 

can be applied in the frequency domain to extrapolate the remaining spectrum. Let's 

assume that the spectrum [fl is known at the intervals of 4f. [fl can be 

represented by the series 

(x0, . . • , ..(1.4) 

where Xm denotes the spectral component at the frequency m4f. Now assume that 

there is an arbitrary frequency k4f where ±MI m < k are not significantly 

contaminated by the noise. Each one of these spectral components can be 

approximated by a weighted sum of the previous p samples of the spectrum, 

P 
Xm ajKj m < k 

j=1 
..(1.5) 

This equation is known as prediction equation. The error between the actual 

component and the predicted value Xm is given by 

e = Xm - XM ..(l.6) 

This error can be minimized across the data sequence Xm, 0 ≤ m < k in order to 

determine the prediction coefficients a3. 'This prediction technique is known as auto-

regressive (AR) modeling, and p is referred to as the model order [5]. 
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Once the prediction coefficients have been determined, The series 

(x0, X1, . . . , can be predicted or extrapolated to an arbitrary number of points 

to achieve the series 

(Z Z,..., Xn_i,.) 

It has been suggested that the spectrum [fl obtained by the modeling technique 

presents a better approximatin of X[f] than iffl, especially when the inverse Fourier 

transform is applied after deconvolution. The block diagram shown in fig. 1,1 

represents this algorithm. 

The technique described above has been improved by using the transient error 

method [6]. The modified technique is a deterministic auto-regressive moving-

average (ARMA) model that produces better results than the simple AR model. 

Input  
Signal 

Front-end 
(A/D) 

Display   
(D/A) 

F'F1 

Inverse 
FFI 

Deconvo-
lution 

Fig. 1.1. A signal processing system 

AR 
Modelling 
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1.1.3. Implementation 

In a real time application, the number of computations involved in the algorithm 

described above is too great to be handled by a single processor. The block diagram 

suggests a modularization where a processor is assigned to each block. Since each 

of these processors will be performing a specific job, the efficiency and the overall 

speed can be improved immensely by designing dedicated processors instead of 

using general purpose microprocessors. 

These processors will execute the well-known algorithms for the forward or 

inverse fast Fourier transform (FF1), Burg's or Levinson's AR modeling, and 

deconvolution. It is observed that the data flow between the blocks can be organized 

so that the overall system becomes a general purpose spectrum analyzer. For 

example, a straight FFT can be calculated by bypassing most of the system, or one 

may • bypass the FF1 and use the modeling algorithm and last FF1 block (the 

difference between forward and reverse FFT is trivial) to estimate the spectrum of 

the input signal. In the latter case, the last block could be modified to perform an 

interpolating FFF algorithm [7] in order to reduce the processing time. 

In general, the DSP technique specifies an order of operations, such as FFT, AR 

modeling, etc., similar to fig. 1.1. The actual implementation of a particular 

technique is irrelevant to the scope of this thesis and for this reason the processing 

model of fig. 1.1 is adopted as an example of the implementation of a DSP 

algorithm. This model is referred to as the (multi-stage) signal processing system 

and each stage is called a processing unit. 
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1.2. Purpose and Objectives 

The purpose of this study was to design a high performance array processing 

architecture particularly targeted for DSP algorithms. The feasibility of a real-time 

signal processor employing microprogrammed control was investigated. The results 

of this thesis are intended to be passed on to further research to complete the design 

of the processing system. 

It was the objective of this thesis to build the FF1 processor block as a 

demonstration of the proposed architecture. The control unit of this processor was 

built as a general purpose microprogrammable controller which could be used to 

control any of the processing units. It was also within the scope of this thesis to 

provide a development and support system for the general purpose controller. The 

development system and the controller have been brought to a stage that future 

researchers who continue to complete this project will be able to utilize these units to 

design and debug the implementation of other processing units within a user-friendly 

environment [8]. 

1.3. Outline 

This thesis can be examined in two sections, the design of the general purpose 

controller and the development of a DSP architecture. Due to the variety of the 

material discussed in this thesis,, background information about the concepts used are 

given when necessary, rather than grouping all this information together. However, 

we felt that a detailed introduction to the concept of microprogramming was 
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• necessary. Chapter 2 provides a historical introduction to microprogramming. The 

advantages and disadvantages of microprogramming are summarized and the general 

design of the components of a microprogrammed control unit are also discussed in 

this chapter. 

Chapter 3 deals with the construction of the general purpose controller. 

Common organizations of the control unit are summarized and the architecture of the 

controller is discussed. Then the motivation to design a support system for the 

controller is presented, followed by the description of the support system developed. 

Finally, the contents of the software library are briefly listed. 

In chapter 4, an architecture for the processing units of the signal processing 

system is proposed. The computational and the functional requirements of a 

processing unit are discussed, arriving at an optimal architecture. Then the 

components of this architecture are defined. In the final part of this chapter, the FF1 

processor constructed with the proposed architecture is described. 

The conclusions and suggestions for further research are presented in chapter 5. 



CHAPTER 2 

MICROPROGRAMMING 

2.0. Introduction 

As mentioned earlier, the implementation of the various processors will be 

based on specialized configurable components which require complex control signal 

sequences. Two basic approaches to generate the required control information are 

presented and compared in this chapter. Microprogramming, the preferred approach, 

is examined in detail. 

The concept of microprogramming was first introduced by Wilkes in 1951[9] as 

an alternative method of control unit design. Since then, microprogramming gained 

a great deal of significance as it became a powerful tool' in the hands of designers 

and users alike. This technique provides a highly systematical approach to design, 

resulting in virtually unlimited flexibility in controller applications. 

2.1. Generation of Control Information 

A digital machine can be represented by four basic functional units: processing 

unit (CPU), storage, interface and control unit as illustrated in fig. 2.1. It is evident 

that the control unit is responsible for the sequencing and timing of all the hardware 

activity within the system. Therefore, the control unit is the section where 

commands (instructions) are interpreted and performed by causing the execution of a 

10 
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Control Unit 

CPU Memory 1/0 
Interface 

4....,. 

Fig. 2.1. Fundamental blocks of a digital machine 

series of primitive operations such as register-to-register transfers, selection of the 

arithmetic-logic unit (ALU) functions, etc. 

The conventional method of implementing the control unit is by designing a 

sequential logic network. The commands are fetched from the storage unit (memory) 

and converted into control information which activates the discrete logic circuit 

which in turn activates a series of primitive operations that constitute the command. 

This approach is called hardwired or conventional control. It follows that with this 

approach the control unit becomes the most complicated part of the digital machine. 

Once the design is completed implementing a certain set of commands (machine 

instructions), it requires a non-trivial effort to alter or enhance this set. 

Microprogramming, an alternative method to conventional control, can reduce 

the complexity and the inflexibility of the control unit. Wilkes [10], who introduced 

the term microprogramming, conceived its objective as 
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to provide a systematic alternative to the usual somewhat ad hoc procedure used for 
designing the control system of a digital computer. 

This method is based on the observation that a complex operation such as a machine 

instruction can be completely specified by a series of primitive operations. The 

control information for these primitive operations can be directly stored in a memory 

element and consequently each complex operation becomes a sequence of references 

to the memory element. This representation of the complex operation is called a 

microprogram (or microroutine) and the memory unit is called the control storage 

(or microprogram memory). Accordingly, the primitive operations stored in the 

microprogram memory are referred to as micro operations (or microinstructions). 

The terms in parenthesis are alternate descriptions and in this thesis, they are used 

interchangeably with the preceding terms. 

2.2. Why Microprogramming? 

2.2.1. Advantages of Microprogramming 

1. Systematic Approach 

This is the most striking characteristic of microprogramming over conventional 

control. The latter approach results in a random structure limited by the designer(s) 

ingenuity. Microprogramming can cut the development time drastically as the 

random sequential logic is replaced by a pseudo-structured microprogram. 
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2. Architectural Changeability. 

The characteristics of a machine such as instruction set, word size or bus width 

can be altered through microprogramming, arriving at totally different architectures 

from the same hardware resources. The significance of this feature was recognized 

during the early years of microprogramming as it provided a direct method of using 

the old software in newer machines without any modifications. This compatibility is 

achieved by providing a set of microprograms for the new machine which interprets 

and executes the older system's instruction set. Such alternate sets of niicroprograms 

which mimic another system are called emulators. 

3. Flexibility 

This advantage follows from the previous one but it needs to be reemphasized. 

During the design stage of the system, the instruction set does not need to be fixed. 

It can be altered and realtered to fit as specifications of the system change. In other 

words, experimentation with various sets in order to find the optimum instruction set 

is a possibility while the hardware is still in development stage. Experimentation on 

the user's part enables him to tailor a system to the requirements of a specific 

application which is described by the term adaptability. 

4. Diagnosability 

With microprogramming it is possible to locate the errors in the hardware much 

more precisely than is possible otherwise. Machine self-tests are much easier to 

implement and more versatile than when using conventional control.' Thus diagnosis 

and maintenance of the hardware becomes easier and more reliable. 



14 

2.2.2. Disadvantages of Microprogramming 

1. Speed 

It is always possible to design a hardwired control which runs faster than the 

microprogrammed one, even with today's high speed bipolar memories. Essentially 

this was the reason that microprogramming did not gain wider attention during the 

years following its introduction.. 

2. Lack of Support Systems 

Since each microprogrammed system is essentially different, it is very difficult 

to design a general purpose development system for microprogramming applications. 

Most of the sophisticated equipments on the market today use a wide set of 

parameters which have to be defined by the user to obtain a meaningful assembly 

language. Many designers are forced to prepare their own development systems and 

assemblers to debug a microprogramming project. In fact, this problem was 

encountered during this research and designing a support system became necessary. 

The measures we have taken will be explained later. 

2.2.3. Economical Considerations 

The economical feasibility of microprogrammed implementations depends on 

the size and the complexity of a machine. It has been established that 

microprogramming costs less than the conventional control except in very simple and 

dedicated systems [11]. 
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2.3. Evolution of Microprogramming 

Although microprogramming received some attention during the 1950s, it was 

not used or researched on a significant scale until the mid 1960s. The reasons for 

this delay can be found in the memory technology of the time period. First, the 

speed of memory access was significantly lower than logic speeds, and second, 

memory elements were very expensive. The simplicity and the flexibility offered by 

microprogramming using the technology of the era was more than offset by the cost 

and the time overhead of the memory access for each microinstruction. 

With the technological breakthroughs during the 1960s, microprogramming 

finally became cost-effective. The first microprogrammed machines were introduced 

in this time period. The IBM 360 series was a milestone in the acceptance of the 

microprogramming. Most of the computers in this series were microprogrammed in 

order to achieve instruction set compatibility between machines of different 

capabilities and hardware organizations. Larger models of this series were hardwired 

for reasons of speed. 

Although these machines and others of this time period were true 

microprogrammed machines, they did not offer the advantages of user-

microprogrammability. Two basic reasons for this lack were: 

1. The cost of fast random access memories (RAMs) was relatively high until 

1970s. 

2. Manufacturers were reluctant to let users tamper with the architecture of the 

system because of the effect this might have on the reliability of the machine. 
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The full power of microprogramming came into realization with the introduction of 

fast, relatively cheap RAMs. Using RAMs as the control storage enables the user to 

easily modify an existing instruction set in order to adapt the processor to a specific 

application. This type of microprogram memory is called writable control storage 

(WCS). 

Finally in the mid 1970s, several manufacturers marketed microprogrammable 

processors or bit-slice processors. With these off-the-shelf processors, it has become 

possible for the users to design microprogrammable processors for various 

applications. 

Today, besides implementing an instruction set for a general purpose computer, 

microprogramming is also used in dedicated machines running without a software 

instruction set. Microprogrammed'instruction sets are getting progressively more 

complicated. This has caused a reversed trend towards conventional control. The 

feasibility range of the conventional control have been increased by the introduction 

of the reduced instruction set computers (RISC). On the other hand, 

microprogramming is still an indispensable tool for the designers who struggle to 

achieve a degree of parallelism in processor applications. 

2.4. Components of a Microprogrammable Control Unit 

A general microprogrammed control unit consists of five functional blocks. 

1. The Control Storage 

2. The Sequencer 
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3. The Pipeline Register(s) 

4. The Condition Code Generator 

5. The Clock Pulse Generator 

In this section, the functions of these blocks are examined with particular emphasis 

on the enhancment they provide to the efficiency of the overall controller. 

2.4.1. The Control Store 

As mentioned before, this is the characteristic block of any microprogrammed 

machine. The most common and simple form of the control store (CS) is the 

ordinary memory array in which there is one microinstruction per CS word. Some 

of the variations to this structure are: 

a) There may be two microinstruction for each CS word. In this structure, the 

output of the CS is written to two pipeline registers simultaneously, reducing the 

number of memory references. Effectively this scheme halves the access time of the 

control store, a limiting factor of the overall speed of the digital machine. 

b) The control store may be divided into sections, which are called pages. Only 

one section is accessible at a time and the selection of this page is normally done in 

hardware. A page contains only a fraction of the total memory locations thus 

requiring fewer address lines at the expense of extra hardware to enable switching 

between pages. Therefore, if jumps between pages are not frequent, this organization 

reduces the access time and the number of the bits necessary to specify a destination 

microinstruction within a page. 
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c) The control store may be formed with a two level structure. The upper level 

of the control store is a narrow memory and it is used to address the lower level 

control store which is a wide memory unit containing a list of common 

microinstructions. The lower level control store is commonly referred to as the 

nanocontrol store, and accordingly programming the lower level is called 

nanoprogramming. This structure reduces the total number of bits required for the 

control store. An example of a machine employing such a control store organiation 

is the 68000 microprocessor. 

2.4.2. The Sequencer 

It was suggested that one form of controlling the microprogram flow is to 

append' the address of the next instruction to the current one, creating a linked list of 

microinstructions [12: In this structure, the sequencer is totally eliminated or 

replaced by a register and/or a combinational logic circuit to provide conditional 

branches. However, it has been established that this method is merely a form of 

implementing sequential logic networks [13]. A linked list of microinstructions 

displays some of the poor properties of a sequential logic circuit. In particular, it is 

not trivial to change a branch instruction. Since microprogramming is meant as an 

alternative to sequential logic, this structure should not be discussed as a form of 

microprogramming. Therefore, a true microprogrammable control unit should 

include a form of address generation logic, i.e. a sequencer. 
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The basic elements of a sequencer include an address register, stack and address 

multiplexer, as illustrated in fig. 2.2. In the configuration shown, the incrementer 

generates the sequential address and it is latched to the address register which 

behaves as a program counter. Absolute jumps are performed by transferring input 

data directly to the sequencer's output. Subroutines in the microprogram are 

facilitated by the stack which consists of a register ifie and a stack pointer. The 

'address selected by multiplexer depends on the instruction and condition code (CC). 

Therefore, the sequencer provides the microprogrammer a means of structured 
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Fig. 2.2. Organization of a typical sequencer 
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control flow within the microprogram. Loops, subroutines,, decision structures can be 

implemented with simple encoded microinstructions, tremendously enchancing the 

power of microprogramming. 

Currently available sequencers provide some additional features for address 

generation such as an increment-by-two (SKIP) instruction or a counter/register that 

provides yet another source of address. A detailed discussion of variations of the 

basic organization (fig. 2.2) in commercially available sequencers is given by 

Andrews [14J. 

2.4.3. The Condition Code Generator 

Although, some microprogrammed systems integrate the condition code 

generation into the sequencer, generally the condition code supplying logic is 

regarded as a supporting element for the sequencer and not necessarily a part of it. In 

its simplest form a multiplexer selects one of the several status signals generated by 

the system to control the conditional instructions of the sequencer. In order to have 

absolute power over looping instructions in the sequenëer a polarity control is 

usually included. This device generates the correct level of condition code as 

required by the sequencer and eliminates the need to have all signals active high or 

all active low. 

Several dedicated condition code generators, e.g. Am2904, are available for 

handling more complicated requirements such as storing the status information for 

future references or testing several status signals in one cycle. 
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2.4.4. The Pipeline Register(s) 

In most microprogrammed systems, a register is placed between the outputs of 

the control store and the control points of the processing unit. Such a register, 

shown in fig. 2.3, serves several purposes. Most importantly it breaks the continuous 

loop between the outputs of the control store and the instruction input of the 

sequencer which avoids race conditions. Its other function is to hold a stable 

microinstruction throughout the cycle time. This register is called microinstruction 

register (MIR) or pipeline register. The name "pipeline" derives from the fact that 

SEQUENCER 

CONTROL 

STORE 

PIPELINE 

REGISTER 

Microword Outputs 

Fig. 2.3. The microinstruction register 
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this register actually divides the control path into two parts, isolating the sequencer 

and the CS from the processing unit. Thus pipelining the control store outputs 

decreases the minimum required clock period, improving overall speed. In this 

report, the more general name pipeline register is used for consistency. 

Pipelining is not limited to the outputs of the control store, and it can be used 

wherever a long path is limiting the speed. However, the increased use of pipeline 

registers makes the programming more complicated. Different control unit 

organizations can be arrived by employing pipeline registers on different paths. 

2.4.5. The Clock Pulse Generator 

The clock pulse generator is an intrinsic part of any digital state machine. In 

microprogramming, unlike the sequential logic circuits, clock requirements are 

usually very simple. This is due to the fact that every part of the system is 

synchronized with the appearance of the data on the pipeline register. Usually a 

sequential circuit demands several phases of a clock pulse which further complicates 

the circuit. Normally, when converting a sequential circuit to the microprogrammed 

equivalent each phase becomes a clock'cycle. One other advantage of the 

microprogramming is that it provides an easy way to control the clock period 

dynamically. This boosts the overall throughput if the execution of some instructions 

require longer time for completion than others. 
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2.5. Summary 

The microprogramming method is superior to the hardwired control for 

generating complex control signal sequences, such as required by most signal 

processing systems. Although a microprogrammed control unit can be realized in a 

variety of ways, five basic blocks áan always be identified. These blocks are the 

control store, the sequencer, the, condition code generator, the pipeline registers and 

the clock generator. 

In effect, this chapter provides an introduction to the next chapter, where 

several different organizations of the five basic blocks will be presented, and the 

design of the general microprogrammable control unit will be described. 



CHAPTER 3 

GENERAL PURPOSE CONTROLLER 

3.0. Introduction 

This chapter is dedicated to the design and implementation of a general purpose 

controller. The generality is inherent in a microprogrammable control unit, 

especially when it is viewed as a module which can generate any sequence of control 

signals at its output. This view is emphasized in fig. 3.1, which illustrates the flow 

of control information in a digital machine. The target system represents the unit 

which utilizes the outputs of the control unit. The control unit is shown as a "black 

box" where the outputs, the .niicroword, are related to the inputs, the status 

information from the target system or an external source. The relationship, or the 

transfer function of the box, is fixed in a hardwired control unit, hence the operations 
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of the target system are also specified. In the case of a microprogrammable control 

unit, the transfer function is completely defined by the microprogram and it can be 

modified to accommodate any processing unit. 

This representation of the control unit is particularly interesting when the multi 

stage signal processor is considered. Fig. 3.1 suggests that a processor can be 

designed as two individual modules, the control unit and the processing unit (target 

system). Moreover, once a general purpose controller is realized, it can be used 

during the development of each stage of the signal processing system. After the 

development of the individual processors, the controller can be duplicated to provide 

each processor with its own control unit. 

The first part of this chapter deals with the design of the controller. Various 

structures are considered and the implementation of a suitable structure is described. 

In order to maintain the ease of use of the general purpose controller, a separate 

support system to load the control store is necessary. The design of the downloading 

unit and the software support package for the controller are discussed in the second 

half of the chapter. 

3.1. Organization of a Control Unit 

The data flow paths within the control unit can be broken into two sections by 

inserting a pipeline register to the path. The pipeline registers also cause one cycle 

delays between the two sections of the path. These delays are very important 

because different programming structures can be achieved by altering their location 
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and number. 

Fig. 3.2 illustrates a basic architecture where only one register at the output of 

the control store is used. This pipeline register (PL) holds the microinstruction 

during its execution. The output of the sequencer, or the address issued to the 

control store, is shown as A+n, where n indicates the relative delay. Accordingly, 

the output of the WCS is I(A+n), i.e. the instruction at location A+n. S(A) denotes 

the status outputs of the target system in response to the instruction 1(A). This 

notation is used consistently in this section. 

In this structure, the statu information of the processing unit is immediately 

made available to the sequencer. Therefore, during the execution of a successful 

conditional branch instruction, the processing unit, the condition code multiplexer, 

the sequencer and the control store are all in series and the total delay is calculated 

by adding the delays in each unit. This path, a critical path, is usually responsible 

for determining the minimum possible clock period. 

The organization shown in fig. 3.3 is a variation of the one described above. 

Since there still is one pipeline register, no improvement in speed is achieved but 

this scheme requires, fewer register bits (typically 10-14) than the preyious one 

(typically 40-120 bits) since only the address of the control store is registered. 

However, during the address setup period, the output of the control store, or the 

microinstruction, is unstable and it cannot be tied to sensitive control points. This. 

fact usually more than offsets the slight advantage of the fewer register bits, 

rendthing this organization impractical. 



27 

S(A) 

cc 

mux 
Seq. 

A+1 

wcS 

I(A+1) 

PL 

JI(A) 
i 

Target 

System 
L  

S(A) 

cc 

mux  OW 
Seq. 

A+1 

PL 

wcS 

1(A) 

-1 
Target 

System I 
L  

Fig. 3.2. Instruction based Fig. 33. Address based 

structure structure 

Fig. 3.4 illustrates an architecture where the critical path in the previous 

architectures is replaced by three shorter paths. This structure isolates the delays in 

each device, thereby achieving maximum clock speed possible. However, 

programming with this structure is more complicated because the address of an 

instruction is generated two cycles before its execution. Unlike the previous 

architectures the addresses shown must be sequential for continuous execution. If 

branching occurs, the microinstruction pointed by the pipeline register (PL #1) 

cannot be executed, so the sequencer "freezes" for one cycle to discard this 

information. Therefore, if there are a significant number of branches in the 
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microprogram, the throughput of this structure may be less than that of the first 

structure even though the clock is faster. 

At this point, the nomenclature needs to be clarified. The first two architectures 

are not called "pipelined", although there is a delay involved, because the function 

of this delay is to avoid the race conditions by breaking a continuous loop and no 

gain in speed is achieved. For the third organization, however, the pipelning is 

applied to divide a critical path into three parts, so it is classified as a two-level 
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pipelined structure. 

The architecture shown in fig. 3.5, an one-level pipelined organization, provides 

better speed and throughput than most others. It is not necessary to "freeze" the 

sequencer in this structure. However, unlike the first architecture, the conditional 

branch instruction has to be executed one cycle after the required status is generated. 

Therefore, while a conditional branch instruction is executed, the rest of the 

instruction may not be conditional. This may be a wasted part of the instruction in 

some cases, but it can be utilized for house-keeping functions within the processing 

unit. 

To clarify the difference between these structures, consider the following 

pseudo-code for a program segment which adds two registers and performs a 

conditional operation based on the result. 

Rl<—Rl+R2 

if (CARRY is 1) then down-shift Ri by one 

The microprogram for the first and the second structures will look like 

A : Ri - Ri + R2, if (not CARRY) jump A+2 
A+l : down-shift Ri 
A+2 :... 

For the third and fourth architectures the code becomes 

A : Rl - RI + R2, continue 
A+l : if (not CARRY) jump A+3 
A+2 down-shift Ri 
A+3 ::.. 
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Note that since the condition codes in the last two architectures are registered,-

the status 'CARRY' can not be examined in the same microinstruction that performs 

the addition. Although the microprogram appears identical for the third and the 

fourth architectures, there is a difference in the execution. In the third one, while the 

instruction at address A+l is executed, the address A+2 is already issued to the 

control store. If the jump is to be performed, this address has to be overwritten by 

hardware measures and consequently there is an invisible one cycle delay. To 

summarize, assuming that the 'CARRY' condition is true, this program segment is 

executed in two cycles in the first and the second organizations, three cycles in the 

fourth and four cycles in the third organization. This example highlights the 

compromise made by the attempt to increase the clock speed by breaking the data 

flow paths. 

3.2. Organization of the General Purpose Controller 

In this section, the features that a controller must possess to maintain its 

efficiency over a range of applications are discussed. A general purpose controller 

has a set of requirements that are different from those of a control unit targeted for a 

specific processing system. These requirements should be considered before 

choosing the architecture for the general purpose controller among the alternatives 

described in the previous section. 

The chosen architecture for the controller is described after the design 

requirements. The dynamic clock control technique is introduced and 
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implementation of this technique is discussed. Finally a summary of the features 

implemented in the controller is given. 

3.2.1. Design Considerations 

The most obvious characteristics of a general purpose controller are flexibility 

and adaptability. These terms are often used synonymously as a flexible system is 

usually adaptable and vice versa. By flexibility it is implied that the controller 

should be expandable and microprograms should be easily loaded and modified. A 

RAM based control store (WCS) is therefore necessary. On the other hand, an 

adaptable system can easily be modified in order to fit the special requirements of 

the applications. In order to realize adaptability, the target system should be 

provided with an access to the sequencing logic enabling the execution of the 

microinstructions addressed by the processing unit itself. This is particularly useful 

if an addressing scheme such as interrupt processing is to be implemented in the 

target system. 

Another consideration is the general type of the microinstructions to be 

executed by the controller. Digital signal processing or other "number-crunching" 

algorithms are highly symmetric, usually consisting of several loops executed many 

times. This essential unsequentiality of the routines for which the controller is 

targeted implies that the sequencer must have a degree of branch-efficiency. The 

two-level pipeline based structure presented in the previous section is therefore ruled 

out since it limits the throughput while branching. 
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Since the general purpose controller is a separate unit, the microword outputs 

should be buffered before they are transmitted off the board to the target system. 

This fact, in addition to the output stability problem described previously, eliminates 

the address based architecture (fig. 3.3). Introduction of the output buffers cancel the 

only advantage of this structure i.e. requiring fewer register bits. Bus-driving 

capability is inherent in the other structures which employ a microinstruction register 

since outputs of most off-the-shelf register devices are buffered. 

3.2.2. The Architecture 

The block diagram of the architecture actually chosen for the general purpose 

controller is shown in fig. 3.6. This organization is an adaptation of the instruction 

based structure (fig. 3.2). 

The controller was designed to have interfaces with two external systems: the 

target system and the downloading unit. The target system can utilize all of the 

microword outputs except the fields which control the sequencer and the condition 

code multiplexer. The status generated by the processing unit is transmitted to the 

controller via the-CC bus. The target system can also specify the address of the next 

microinstruction or load parameters to the sequencer through the 'TA bus. This 

fulfills the adaptability requirement described previously. 

The interface bus, the instruction multiplexer (IM), the downloading logic (DL) 

and the MA bus are all related to the downloading unit. The downloading unit 

interface is completely defined and discussed later in this chapter. The interface bus 
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and the Address Bus (A bus) are extended to allow the expansion of the control 

store. 
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Now let us consider an example of the architectural adaptability of the 

controller apart from the TA bus. Comparing fig. 3.5 and fig. 3.6, it is clear that the 

one-level pipeline based architecture can also be realized by designing the status 

register as a part of the target system. Registering the status information (CC-bus) is 

particularly efficient for the ALU generated signals because of the long delay times 

involved with the ALU. In DSP algorithms, the ALU status signals, especially 

CARRY and overflow, are used only if the overflow prevention mechanism is 

incorporated in the software (microprogram). Other signals which are frequently 

examined to test the end of the loop conditions do not have significant delay times. 

Thus pipelining these signals is not necessary. 

The key device in implementing this architecture was the Am291OA, the 

microprogram sequencer. This chip provides a compact sequencing logic completely 

fulfilling the requirements of the architecture. The Am291OA can receive the address 

information from three distinct sources which are reflected with the busses PA, MA 

and TA in fig. 3.6. In addition, the Am29lOA also incorporates a 12-bit 

counter/register and a 9 word deep stack, complemented by a powerful instruction set 

[15]. 

The device chosen for implementing the WCS was the Am9 150, a 1K by 4 bits 

random access memory chip. The distinctive characteristics of this unit are its fast 

access time (25 ns) and separate input and output ports. The isolation of the input 

and the output is particularly useful for tying the interface bus to the WCS since it is 

desirable to have low capacitance and loading effects on the WCS output bus. 
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Standard low power Schottky components were used to implement the rest of the 

controller in order to reduce the total power consumption. 

3.2.3. The System Clock 

Since the controller is to be used to control another system, it was not possible 

to completely define the clock specifications. For this reason the clock generator 

circuit was implemented to allow easy modification as required, permitting the user 

to tailor the system clock according to requirements of the particular application. 

The overall clock requirements of a system are determined by whichever data 

flow path in the various processors has the longest delay. The delay on this path is 

equivalent to the minimum cycle time of the system, thus the path is referred to as 

the critical path. The usual method to find this path is to list the delay times on all 

potentially critical data paths and pick the longest one. Generally, the critical path is 

expected to be the one which utilizes most of the resources within one clock cycle. 

For example, let us consider the conditional branch instruction (CJMP) for the 

sequencer (Am29lOA). The microword output selects the condition code which in 

turn selects one of the two possible addresses. The WCS must be accessed in the 

same cycle that sets up the pipeline register inputs. The estimation of the delay time 

is shown in Table 3.1. This delay represents the minimum clock period for any 

application of the controller unless the CJMP instruction is disallowed. Next, 

consider the very commonly used continue (CONT) instruction which increments the 

microprogram address by one. The delay for this instruction is 80 ns (Table 3.2), 
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DEVICE PATH PART NO. DELAY 

PL Clock— Output 74L5374 20 ns 

CC mux Se1ect—Output 74L5153 22 ns 

Sequencer CC-30utput Am2910 30 ns 

WCS Addr.—*Output Am9150-25 25 ns 

TOTAL 97 ns 

Table 3.1. Calculation of the delay for the CJMP instruction 

which is significantly less than the estimated minimum clock period. The clock 

pulse period must be fixed to accommodate the longest delay, which limits the 

achievable performance level. On the other hand, it is not desirable to increase the 

overall system speed by disallowing certain instructions, as this would severely limit 

the flexibility. 

The solution to this problem is the technique known as the dynamic clock 

control. In order the illustrate the improvement in the performance level consider a 

hypothetical system with two different instructions, A and B, with the frequency of 

usage 60% and 40%, respectively. Let us assume that instruction A requires 60 ns 

and B requires 100 ns. If the clock period is fixed, it has be 100 ns to accommodate 

DEVICE PATH PART NO. DELAY 

PL Clock-4Output 74LS374 20 ns 

Sequencer Inst.—Output Am2910 35 ns 

WCS Addr.—Output Am9150-25 25 ns 

TOTAL 80 ns 

Table 3.2. Calculation of the delay for the CONT instruction 
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instruction B. However, if the clock rate is selectable during the execution to be 

either 60 or 100 ns, the average clock rate becomes 

60 x 0.6 + 100 x 0.4 = 76ns 

Therefore, simply employing a dynamic clock control technique improves the 

performance by approximately 25%. 

Dynamic clock control was implemented on the controller using a 

microprogrammable clock pulse generator, the Am2925. This device is capable of 

dividing the frequency of its input (e.g. signal from a crystal) by a number between 

3 and 10 as determined by 3 control inputs. For example, if the input oscillator has 

a cycle time of 15 ns, the output clock period can be selected to be 45, 60, 75, 90, 

105, 120, 135 or 150 ns. In the actual implementation however, only one control 

input was selected by the microprogram and the other two were connected to 

hardware switches. This limitation is due to the fact that the 8 different selections of 

the clock period are somewhat redundant. Most of the time it is more convenient to 

classify the instructions simply as "fast" or "slow" rather than determining the exact 

delay for each instruction from the data books. 

3.2.4. Specifications of the Prototype Controller 

(1) The clock for the input of the Am2925 was generated by an external pulse 

generator with variable frequency. Therefore, the user has the complete control 

over the system speed through the external pulse generator, the hardware 

switches and the microprogram selected frequency division. This control is 
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important because the clock requirements of the target system are not known 

beforehand. In addition, the variable clock allows the user to experimentally 

determine or verify speed limits of the target system. 

The system clock can be run either in the continuous mode or in the 

single pulse mode. Single pulse mode enables stepping through the 

microprograms, which is an indispensable tool for software development. - Two 

external switches were provided to select the mode of the clock and to trigger 

the pulse in single pulse mode. 

(2) The delay time from the clock to the pipeline outputs was 20 ns. This could 

easily be improved by replacing the low-power Schottky parts with high 

performance equivalents. 

(3) The WCS provided with the sequencer is 1K deep with a word length of 64 

bits. An expansion board containing 1K x 64 control storage is also provided, 

extending the microword width to 128 bits. Out of the 128 control outputs, 8 

bits are reserved for the sequencer, the condition code (CC) multiplexer and the 

clock period control. An additional 12-bit field is tied to the input of the 

sequencer (PA). This field is also available to the target system (TA bus). 

(4) The target system is expected to provide the condition code inputs, which are 

selected by a 4-to-1 multiplexer (CC mux). 



39 

3.3. Loading the WCS 

In most machines with a writable control storage the microprogram memory is 

divided into the two conceptual sections shown in fig. 3.7. The loading of the RAM 

section (WCS) is done under the control of a microroutine stored in the ROM part. 

The usual method of transferring the microcode to WCS from the intermediate 

storage unit consists of treating the RAM module as an input/output device during 

loading. In most cases, particularly where the WCS is used only to provide a very 

fast medium for the microprogram memory, loading is done during the power-up 

initialization and then the ROM is disabled, allowing a faster system clock. Other 

machines may require interactive instructions to commence loading. 

SEQUENCER 

ROM 

RAM 

CONTROL 
STORE 

Fig. 3.7. Typical WCS organization 
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As far as the general purpose controller is concerned there were several 

shortcomings of the loading scheme described above: 

(1) The necessity of a non-volatile intermediate storage such as EPROMs, cassette 

tape, etc. compromises the flexibility of the system. Modification of a 

microprogram residing in the intermediate storage can only be done on a 

separate device (e.g. EPROM programmer) which was simply not desirable in a 

development tool. 

(2) Conceptually, the intermediate storage can be eliminated by establishing direct 

communications with a host computer. With this method the microprograms 

can be stored and modified in the host system and then downloaded to the 

WCS. However, the microroutine which facilitates the host interface must 

reside in the ROM section of the WCS. 

An increase in flexibility can be obtained by assigning a microprocessor to the 

downloading task. The functions of the microprocessor system, the downloading 

unit, are then extended to include various debugging facilities; In its final form, this 

support unit is called the task manager (described later). The next section describes 

the downloading procedure as implied by the chosen architecture (fig. 3.6). It will 

be referred to later during the discussion of the downloading unit. 

3.3.1. Downloading Procedure 

There are two modes of operation for the controller, RUN and LOAD, which are 

selected by the downloading unit. In the RUN mode, the loading of the WCS is 
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disabled and the sequencer receives the program flow instructions from the pipeline 

register. Data input of the sequencer: can be fed from any of the three busses, PA, 

MA or TA, as controlled by the microinstruction. In the LOAD mode, a special 

instruction is forced to the sequencer through the instruction multiplexer.' This 

instruction (JMAP) enables the MA bus and the sequencer becomes transparent 

between its input and output. Consequently the downloading unit can directly 

address the control storage, allowing the WCS to be loaded. 

The downloading unit transfers the microprogram to the WCS through the 8-bit 

data bus which was included in the interface bus (fig. 3.6). The data bus is 

bidirectional in order to allow the downloading unit to read the contents of the 

microprogram memory for debugging purposes. The WCS was arranged in 8-bit 

modules to accommodate the 8-bit data bus. These modules are called banks. 

Fig. 3.8 illustrates the bank organization of the WCS. The individual banks are 

selected through the BA (Bank address) bus, which also is a part of the interface 

bus. The bank-select logic demultiplexes the read and write strobe signals from the 

interface" bus to the selected module, enabling one bank at a time. 

Due to lack of space on the physical board, the WCS read back facility was not 

implemented in the prototype controller. This limitation can be justified by the fact 

that the microprogram transfers through the interface bus were found to be very 

reliable. Also the documented microprograms can just as easily be modified on the 

mainframe and downloaded to the WCS, avoiding the need to modify WCS using the 

keyboard and then remembering (reading) the changes. 
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Fig. 3.8. Bank organization within the WCS 

3.4. The Task Manager 

The motivation for a microprocessor controlled downloading unit was 

established in the previous section. It was observed that such an intelligent unit 

could also be utilized as a development tool or an overhead task controller. The 

possibility of employing the downloading unit as the manager of several processors 

was particularly appealing when the necessities of the signal processing system 

(fig. 1.1) were considered. The jobs that the task manager was expected to prform 

are listed below: 

1. Downloading the WCSs of several controllers, 

2. Giving macro instructions to the controllers, 

3. Passing parameters to the target system(s), 

4. Initializing the processing units upon power-up in a stand-alone mode. 

The last requirement arises from the expectation that the signal processing system 
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would be assembled as a mobile unit in a later stage. In this case, the task controller 

will be used to start-up the system, or it may be modified to handle the front panel 

(user) interface. 

In the development stage of the signal processor, the most important function of 

the task manager is to facilitate host communications. The whole system (the 

manager, the controller and the target system) operates under complete control of the 

host computer during the development phase. Thus the discussion in the following 

chapters concentrates on the host control of the system. Nevertheless, stand-alone 

operation mode is also incorporated into the design of the task manager [16]. 

3.4.1. Implementation of the Task Manager 

The task manager was built around an Intel 8031 microprocessor. The 8031 

offers tremendous advantages over other general purpose microprocessors as it 

combines an UART, two counters and four 8-bit bit-addressable data ports with an 

8-bit ALU, a Boolean processor and 128 bytes of on-board RAM on a single chip. 

The 8031 is capable of addressing 64 Kbytes of program memory (ROM) and 64 

Kbytes of data memory (RAM/ROM). In addition, it supports a priority based 

interrupt structure and several stack operations. 

Fig. 3.9 illustrates the functional organization of the task manager. As shown 

in the diagram, the task manager has interfaces with four different systems, the 

microcontroller, the host, the target system and the RAM/ROM expansion board. 

These interfaces represent different functions of the task manager and are described 
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3.4.2. Downloading The WCSs 

The downloading of the microprograms to the WCSs is done through the 

controller interface bus. The contents of this bus are: 

1. the 12-bit WCS address field, 

2. an extension of the 8031 data bus, 

3. the bank-select field, 

4. the 2-bit WCS-select field, 

5. the WCS read/write strobes and 

6. the MODE signal. 

All signals are sourced by the task manager except the data bus which is 

bidirectional. 

The downloading procedure was previously discussed without mentioning the 

WCS-select field which enables the task manager to download WCSs of up to four 

separate control units. Only the control unit that is identified by the WCS-select 

field will respond to the read/write strobes of the interface bus. However, the 

MODE signal is interpreted by all controllers regardless of the contents of the 

WCS-select field i.e. all controllers are in the same operating mode (RUN or LOAD) 

at any given time. 

The controller interface bus was therefore optimized for downloading four 

WCSs, each up to 4 Kwords deep and 16 banks (128 bits) wide. Different 

organizations of the WCSs totaling up to 512 Kbanks may be achieved by modifying 

the decoding logic at the controller end. 
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3.4.3. System Development Support 

The target system interface is one of the features that make the downloading 

unit a more general development tool. During the development of the multi-stage 

signal processor (fig. 1.1), each stage or processing unit has to be tested separately. 

When a stage is isolated from the others, the inputs and outputs of this stage must be 

simulated in order to carry out the testing. For example, during the development of 

the FlIT board, a block of data is required to be written into the data memory. Since 

the front end processor may not be available, another data source is required. 

The task manager is the logical choice to simulate the input and receive the 

output of a processing unit. A 32-bit bidirectional data port is added to the task 

manager for this purpose. Data is processed in 8-bit segments on this port and the 

necessary hardware for handshaking has to be built on the target system end. An 

example of the hardware and utilization of this port can be found in the next chapter. 

In addition to the 32-bit data port, an 8-bit registered field was included in the 

target system interface to pass any required parameters, to the processing unit. This 

field is particularly useful to handle the global values which may not be implemented 

in the microprogram for practical reasons. An example of such global values is the 

length of the data block upon which the processing system will operate or the size 

(order) of the algorithm implemented. 
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3.4.4. Host Communications 

Two full duplex asynchronous serial lines with up to 9600 baud rates were 

provided to maintain the host communications. One of these lines was connected to 

the host and the other to a terminal. The task manager is usually transparent 

between the host and the terminal but it can trap escape sequences to initiate the data 

transfers through the downloading interface or the target system' interface. 

All microprogram and data transfers between the host and the task manager are 

carried out with the U-RECORD format which was developed specifically for this 

purpose. This is a logical extension of the Motorola S-RECORD format. The data 

is converted from binary to ASCII to form the U-RECORD file which also includes 

several check values such as sum of the data bytes in the record, sum of the data 

bytes in the . file, etc. Several different record types, including the microprogram 

record and the data record (for the target system), are supported. The complete 

specifications of the U-RECORD format can, be found in the manual on the control 

unit [16]. 

3.4.5. Other Features 

It was previously mentioned that the task manager may be required to run 

without the host support. In this case the functions of the task manager is reduced to 

the downloading of the control stores. The microprograms to be downloaded must 

reside in on-board non-volatile memories. 16 Kbytes of EPROM, expandable to full 

64 Kbytes, were provided for this purpose. Approximately 6 Kbytes of this space is 
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needed for 8031 programs and the rest is available for storing the microprograms. 

All of the peripheral devices, except the EPROMs, were mapped into the data 

memory space. In order to minimize the chip count a partial mapping method was 

employed. The data memory was divided into four equal sections which are: 

1. the WCS through the downloading interface bus, 

2. the 32-bit data port, 

3. the on-board devices, i.e. registers and the UART and 

4. the RAM. 

No external RAM was provided with the task manager since the internal RAM of the 

8031 was found to be sufficient for the current facilities. Nevertheless, up to 16 

Kbytes of RAM can be added to the system through the expansion port. 

3.5. Software Support 

The software support for the general purpose controller can be classified into 

two groups: the microprogram development support, which consists of the META 

assembler [17], and the software library for the controller. The software library was 

created using C-compiler for the host computer (VAX 11/750) programs, and the 

as8031 assembler [16] for the 8031 routines. 

The META assembler is a general purpose assembler for microprogrammable 

systems. It compiles the source code for an arbitrary, user-defined architecture using 

optional mnemonics which are also user-defined. Therefore META is the assembler 

with which the user should be familiar in order to utilize the controller in a 
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structured, documentable manner. META is capable of producing output in several 

useful formats, including the U-RECORD format. 

The, software library consists of several user-friendly programs which interact 

with the 8031 to perform the various functions of the task manager. With these 

programs the task manager becomes transparent between' the host and the 

microprogrammable control unit. Therefore the user does not have to be familiar 

with the details of the task manager. The contents and the functions of the software 

library are listed below, 

dwcs 

Downloads microprograms from the host to the WCS of the controller. The 

microprograms are normally generated by the META assembler. 

download 

Downloads data files to the memory of the target system. 

upload 

Uploads data from the target system to the host. It provides the data files in 

both hexadecimal and floating point formats. 

start.exec 

Start the execution of the microprograms in the WCS. This programs simply 

changes the operating mode of the controller from LOAD to RUN. 

ehalt 

Stops the execution of the microprograms. 
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addr.load 

Sets the address where the execution of the microroutines commence. 

datau 

Generates a data file in U-record format from floating point data input. 

3.6. Summary 

The first phase of this thesis was completed with the construction of the general 

purpose controller and the task manager (Figs. 3.10, 3.11 and 3.12). Both systems 

were installed together as a unit, shown in fig. 3.13. The target system is connected 

to the control unit with 4 flat cables (at the left-hand side of the picture) which carry 

the microword, the condition code inputs and the system clock. The flat cables 

labeled " 1" and "2" in this picture carry the 32-bit data bus and the 8-bit 

parameter field, respectively. 

The control unit, i.e. the combination of the controller and the task manager,, 

provides an excellent means of testing any microprogrammed processing unit, 

especially when used with the META assembler. During the development stage of a 

signal processing algorithm implementation, the designer does not have to be 

concerned about the control unit of the processor. Thus the final product can be 

realized much faster. The usefulness of the software library and the development 

system can be attested by the ease with which a microprogrammed implementation 

of the Burg algorithm has been developed by Nichols [8]. 
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Fig. 3.10. Sequencer and WCS board 

p . ... 
/,. ... .. .. .-. '.,.... 

Fig. 3.11. Task manager board 
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Fig. 3.12. WCS expansion board 

Fig. 3.13. General purpose controller 



CHAPTER 4 

AN ARCHITECTURE FOR SIGNAL PROCESSING 

4.0. Introduction 

The design of an application oriented processor consists of two major stages, 

the theoretical problem modeling and the implementation of the processing models. 

These two stages can be further partitioned as illustrated in fig. 4.1 [ 18]. As 

established in chapter 1, the purpose of this study was to design an architecture 

aimed at general DSP applications and therefore its scope is limited to the 

implementation stage. However, in order to develop an efficient hardware structure, 

the characteristics of the operations to be performed must be specified. Accordingly, 

the common computational requirements of the DSP algorithms are examined in the 

first section of this chapter, followed by the presentation of a benchmark algorithm, 

for which the architecture was optimized. Then the development of the architecture, 

the data structure and associated component technology are discussed. 

The last part of the chapter deals with the physical implementation of the 

proposed architecture. A processing unit implementing a fast Fourier transform 

(FF'l) algorithm was built. The parallel processing techniques and the efficiency of 

the architecture are demonstrated. 

53 
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Fig. 4.1. A perspective of designing digital signal processors 

4.1. Processing Requirements 

In general, DSP theory specifies the order in which the signal is manipulated to 

transform the information of interest to a desired representation. The actual signal 

manipulations tend to be based on a small set of basic signal processing operations 
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such as convolution, correlation, difference equation calculation, DFT coefficient 

calculation, matrix operations etc. The purpose of this section is to develop a 

processing model on which the architecture will be based. This processing model is 

a subalgorithm common to most DSP operations and it is called the benchmark 

algorithm. A brief review of the DSP operations is given below in order to present 

the establishment of the benchmark algorithm. 

4.1.1. Basic Operations of DSP 

1. Convolution 

In general, the convolution of two signals, x[k] and h[k] is given by the 

equation 

N 
y{n] = h[k]*x[k] = Zh[kjx[n-.k] , n= 0,1,.. 

It is assumed that all signals are defined for k = 0,1, . . . N. 

2. Correlation 

The correlation coefficients are calculated with the equation 

N 
[n] = : y*[k]x[n+k] ..(4.2) 

where [-N,N] is the window over which the signals x[k] and y[k] are correlated and 

y*[k] represents the complex conjugate of y[k]. 
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3. Difference Equation Calculation 

The equation 

N M 
y[n]=ax[n—k] - b[n—k] 

•k=1 
..(4.3) 

represents a general infinite impulse response IIR) filter where x[k] is the input and 

y[k] is the output sequences. The transfer function of the filter is defined by the 

parameters ak, bk, N and M. A particularly interesting case is where N and M are 

both limited to 2, giving the standard second-order filter which can be used as a 

building block to construct arbitrary filters. 

Another important variation of eqn. 4.3 is achieved by setting all bk's to zero 

The filter then becomes a finite impulse response (.FIX) filter with the difference 

equation 

N 
y[n] = Zaj[ n—k] 

k=O 
..(4.4) 

4. DFT Calculation 

Computation of the discrete Fourier transformation is one of the most widely 

required operations of the DSP. In general the DFT is represented by the equation 

N-i 
X[k] = x[n]eJ 2 ")' k = 0,1, . . . 

n=O 
..(4.5a) 

where x[n] is the signal and X[k] is the frequency spectrum. The inverse' relation is 

very similar, 
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• 1N-1 
x[n] = - X[k]ei(2 /N)! n =, 0,1, . . . 

' AO 
(4.5b) 

This computation is usually realized by using the well known EFT algorithms 

based on the butterfly computation. One of the most commonly used butterfly 

operations is represented by the equation 

• A'=A+BW 

B' = A — BW, 

where A and B are complex numbers and W, is equal to ej(2hZ')c for the forward 

transform and ej(2,11N)k for the inverse transform. 

5. Frequency Translation 

Complex frequency demodulation is performed by the equation 

y[n] = S21 x[n] 

This calculation is frequently required for band-selected analysis. 

6. Magnitude Calculation 

Another basic computational requirement is the calculation of the magnitude 

squared of the complex sequences: 

IX[k]12 = X[k]X*[k] •• • ..(4.8) 
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7. Other Numerical Operations 

In general, the DSP algorithms may require several numerical operations, such 

as division, logarithm, exponential and matrix manipulation. Although these 

operations have no significance within the purposes of this study, they are mentioned 

here to complete the list of basic operations. 

4.1.2. The Benchmark Algorithm 

An examination of the first six basic operations defined in the previous section 

reveals some common points among these operations. Basically all of these 

operations are based on complex multiplication. Furthermore, the summations in 

eqns. 4.1 to 4.4 can be implemented in steps of the form 

C=C+AB ..(4.9) 

where A, B and C are complex numbers. Eqn. 4.9 is also similar to one half of the 

butterfly calculation (eqn. 4.5). One minor difference is that some operations require 

multiplication of the data point with a constant, such as ak, bk, or W,, while others 

require multiplication of two data points. 

We have thus established the importance of the subalgorithm, the fundamental 

operation, where two complex numbers are multiplied and added to another. The 

butterfly computation, which consists of two fundamental operations, was adopted as 

the benchmark algorithm. The design of the architecture was based on the 

computational requirements of this benchmark algorithm. Then, the multiplicative 

coefficient of the butterfly operation, W,,, was generalized to accommodate the other 
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basic operations. 

Although the basic operations 1 through 4 consist of repetitive computation of 

the fundamental operation, each of them has a unique addressing sequence which is 

reflected by the subscripts in the corresponding equations. This fact suggests that the 

processing unit can be divided into two basic blocks, the address generator and the 

arithmetic processor. The address generator will compute the necessary sequence of 

the data addresses to be used by the arithmetic processor which will carry out the 

fundamental calculation. The design of the processing units will be simplified with 

this composition since each arithmetic processor can be made identical for the 

multiprocessor system (fig. 1.1). The address generator specifies the algorithm(s) to 

be executed in the processing unit and must therefore be designed according to the 

requirements of each processor. 

4.2. Functional Requirements 

A processing unit is composed of several basic building blocks such as 

arithmetic-logic unit (ALU), multiplier, memory, etc. The architectural design of the 

processor involves specifying the types of the building blocks and the number of 

blocks of each type as well as devising an interconnecting scheme. In this section, a 

summary of these blocks are given in order to clarify the requirements from the 

architecture. 
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Parallel processing is an important consideration for the design of the 

processing unit and an understanding of this technique is essential. For this reason, a 

brief review of parallelism and application of the parallel processing concept to the 

DSP algorithms is given before the basic functional blocks of the architecture are 

discussed. 

4.2.1. Parallelism and Pipelining 

The purpose of implementing parallelism in the architecture is to achieve the 

maximum utilization of all resources and consequently higher speed and performance 

throughout the execution of an algorithm. The basic conditions that must be met in 

order to reach this objective are: 

1. Complete control of each resource at any time, 

2.' Non-conflicting data busses for each independent resource and 

3. The algorithm must be breakable into subalgorithms which can be executed 

simultaneously. 

The first criterion can be easily fulfilled when microprogrammed control is 

employed. The microword outputs should control the individual devices on the 

system without any encoding. This type of microinstruction is called a horizontal 

microinstruction. Horizontal microwords often cause wasted space in the 

microprogram memory. However this is a necessary trade-off to achieve any degree 

of parallel processing, particularly in the early development stages. Another trade-

off, as pointed out by the second criterion, is between the number of the data paths 
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in the system and the extent of parallelism. It is obvious that no concurrent 

processing is possible when all basic resources, such as ALU, memory, register file, 

etc., communicate on, a single data bus. On the other hand, an increased number of 

interconnection paths• pose several practical problems, such as increased RF noise, 

larger printed-circuit boards, longer development time etc. 

Although breaking the algorithm into simultaneously executable subalgorithms 

is normally a software related problem, an understanding of this process is essential 

to incorporate the necessary facilities in the hardware. As an example, consider 

three separate processes constituting a larger process, as illustrated in fig. 4.2. A 

system broken into such concurrent processors operating on a single data stream is 

often referred to as a pipelined system. Pipelining, in general, is an important 

concept in parallel processing. Using pipelining registers in the interface allows two 

synchronous prOcesses to run in different phases. For example, in fig. 4.2, the 

process P2 operates on the data block processed by P1 and while nth data block is 

being passed on to P2, P1 can start processing the (n+1) th data block. 

P1 P3 

Fig: 4.2. A pipelined parallel processing system 
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In general, concurrent computation can be performed in several levels. An 

example showing the partitioning of the signal processing task of fig. 1.1 is 

illustrated as a tree in fig. 4.3. Each level in this tree represents a series of pipelined 
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Burg's 

Butterfly 
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Real 
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Imaginary 

Part 

Add 

Display 

Store 

Fig. 4.3. Parallel processing in different levels 
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parallel processes. The stages of the signal processing algorithm form the first level 

of the tree. •Each stage performs a basic operation of the DSP which can be 

separable into two subalgorithms, the address generation and the fundamental 

operation. Furthermore, real and imaginary parts of the data can be calculated 

simultaneously with concurrent instructions such as multiply, add and store. 

The interface between the address generator and the fundamental operation 

processor constitutes a fine example of pipelining. The address generation must start 

first to calculate the addresses required for the first fundamental operation. The 

address of the first data point is transferred to a pipeline register and at the same 

time the generator starts calculating the next address. The arithmetic processor, 

which carries out the fundamental operation, can access the first data point as soon 

as the address is in the pipeline register. In other words, the address generator 

calculates the second, address while the arithmetic generator processes the first data 

point. Throughout the rest of the execution of the current basic operation the address 

generator stays ahead of the arithmetic processor allowing both algorithms to run 

continuously. 

4.2.2. Functional Blocks of the Processing Unit 

The basic building blocks of the processing unit are summarized below. 

1. Memory 

A random access memory provides the storage for input and output data 

streams. All intermediate data blocks may also be stored in the RAM. 
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2. ALU 

A standard arithmetic logic unit performs the basic functions such as boolean 

AND, addition, subtraction and negation. 

3. Multiplier 

The importance of the multiplication in DSP algorithms, especially in complex 

data processing, was established previously. Therefore, the hardware multiplier 

is a necessary element of any high-performance signal processing unit. 

4. Scratch-pad Register File 

A register file holds the temporary data values needed for the ALU or multiplier 

operations. Storing such temporary values in the main memory is inefficient 

because, in addition to its relative slowness, the memory access represents a 

bottleneck in the arithmetic processor due to a large number of read/write 

operations. For maximum efficiency, the register file should provide multiple 

input and output ports. For example, two outputs for the ALU and two for the 

multiplier may be needed to have both devices operating continuously, if only 

one register file is available. 

In most multi-ALU architectures, a register file is provided for each ALU 

and consequently most LSI ALU chips in the market include a scratch-pad 

register file, Hence the register file is considered a part of the ALU block 

instead of a separate block. This view is followed in this study. Any referral 

to ALU as a resource implies the combination of the ALU and the register file. 
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5. Pipeline Registers 

As discussed in the previous section, the pipeline registers are primarily used 

for interconnecting different resources, enabling one resource to operate at a 

different step than the others. Often, as in the case of address generation and 

the arithmetic processor, the "step" is aètually several cycles and in such cases 

multi-level pipelining is required. 

6. Scaler 

A scaling block is necessary to implement hardware overflow protection for the 

DSP algorithms. Conceptually the scaler consists of two parts, the shifter and 

the overflow detection logic. The overflow detection logic can be omitted if the 

scaling is to be controlled by the software (microprogram). The shifter may 

also be required for numerical algorithms such as division. 

7. Address Generator 

As discussed before, the design of the address generator is unique to each 

processing unit. In general, the structure of the address generator is complex 

and it is usually implemented with general purpose ALU chips. An example is 

the implementation for the Burg algorithm with 3 ALUs (Am29Ols) by Nichols 

[8]. One exception to this is the FFT processor for which a single chip FF1 

address sequencer is available (Am2954O). 

8. Input/Output Interface  

This unit performs the data transfers between the processing unit and other 

systems. The specifications of the interface between processing units of the 
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overall system will be discussed later in this chapter. 

9. Coefficient Memory 

This memory is different from the main memory, since it is used to store the 

coefficients only and it is not necessary for all processing units. The coefficient 

memory is essential for the FFT processor where a ROM is used to generate the 

real and imaginary parts of the constant W. A RAM may be required for 

processors implementing a difference equation with variable coefficients, such 

as adaptable filters. 

The precalculation of the coefficients provides a . considerable 

improvement in the system speed as it aoids the necessity of on-line 

computation of time consuming algorithms. 

Fig. 4.4 illustrates how these blocks are placed within the general structure 

common to all processing units. As, it was mentioned the address generator provides 

each processor with its distinct flavor. On the other hand, the architecture of the 

arithmetic processing block should remain the same since all algorithms are based on 

the same basic step, the fundamental operation. The next section concentrates on the 

design of' this block. 

4.3. The Arithmetic Processor 

The elements of the arithmetic processor were introduced in the previous 

section. Three critical resources, the ALU, the multiplier and the data busses 

between the memory and the arithmetic processor, can be identified among these 
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Fig. 4.4. General organization of the processing unit 

elements. In this section the trade-offs involved with the increase in the multiplicity 

of these resources are examined and an optimum combination is sought. Then the 

related current component technology is reviewed and its effects on the specifications 

of the data structure is examined. Finally, an interconnection scheme between the 

elements of the arithmetic unit is presented. 

4.3.1. Optimization of Resources 

Conceivably, the computational power of the arithmetic processor can be 

enhanced by increasing the numbers of the critical resources. The first trade-off in 

increasing the multiplicity of the resources is between the performance and cost 

(complexity) of the processor. 
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Any optimization of this trade-off should be based on the benchmark operation 

which consists of two complex operations, 

A' = A + BWk 

B' = A _ Wk 
..(4.10). 

The subscript N of the coefficient Wk is dropped since we are dealing with fixed-

length data blocks. The complex equations (4.10) have to be expanded for real and 

imaginary parts of A' and B', 

AR = AR + (BRW—BIW) ..(4.11a) 

BR = AR (BRW—BIW) ..(4. 1 lb) 

Al= Al + (BRWJ+BIW) ..(4.1 ic) 

Bi = A1 - (BRWIk+BIW) ..(4.hld) 

where the subscripts )? and I. denote the real and the imaginary parts of a complex 

number, respectively. From equations 4.11, it can be seen that the benchmark 

operation requires 4 multiplications and 6 additions (subtractions). In addition 4 

values, AR, A1, BR and B1, must be read and then stored, hence the data memory must 

be accessed 8 times. Although the coefficients WRk and Wjk represent two additional 

read operations, this does not pose a problem since the coefficients are read directly 

into the multiplier through a separate bus. 

In a one bus structure, the benchmark operation takes 8 cycles to complete with 

the ALU staying idle for 2 and the multiplier idle for 4 cycles of the 8 cycle period. 
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Hence the efficiencies of the data bus, the ALU and the multiplier are 100%, 75% 

and 50% respectively. The bottleneck is clearly the memory access, indicating that 

the number of the data busses must be increased. If two busses are used instead of 

one, the 8 memory accesses can be completed in 4 cycles, but the benchmark 

operation requires 6 cycles as the ALU becomes the bottleneck resource. Table 4.1 

illustrates the results of progressive increases in the multiplicity of the resources [ 19]. 

The "cycles" column under each resource . represents the number of the cycles 

needed to complete the assigned part of the benchmark operation when the 

corresponding multiplicity ("#" column) is provided. The total, number of cycles is 

the greatest of the "cycles" columns for each line. The efficiency colomn is 

determined by the ratio of the required number of cycles to the total number of 

cycles. 

TOTAL 

CYCLES 

DATA BUSES . ALU MULTIPLIER 

# Cyc. Efficiency # Cyc. Efficiency # Cyc. Efficiency 

8 1 8 100% 1 6 75% 1 4 50% 

6 2 4 67% 1 6 100% 1 4 67% 

4 2 4 100% 2 3 75% 1 4 100% 

3 4 2 67% 2 3 100% 2 2 67% 

2 4 2 100% 3 2 100% 2 2 100% 

1 8 1 100% 6 1 100% 4 1 100% 

Table 4.1. Effects of the multiplicity of the resources 
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Table 4.1 clarifies the performance and complexity trade-off. The arithmetic 

processor can be made faster and more efficient at the cost of more resources and, 

consequently, more complex microprograms. The design of the other blocks in the 

processing unit are also effected by the choice of the speed of the architecture. For 

example, the architecture with 8 data busses demands a storage system with 8 

independent data ports, which is very complicated to implement. 

The structure of the address generator is another important consideration in 

choosing the architecture. The butterfly operation (eqn. 4.10) can be performed "in-

place": i.e. after the operation is completed, the values A and B are not needed and 

can be overwritten by A' and B respectively. Hence three addresses are required for 

the benchmark operation, those of A, B and Wk. If the benchmark operation is 

executed in three or more cycles, only one address needs to be generated per cycle 

thus a single bus structure is sufficient for the address generator block. The 

complexity of this block increases tremendously if the benchmark operation is to be 

completed in less than 3 cycles. 

Among the-alternatives presented in Table 4.1, the architecture with two data 

busses, two ALUs and one multiplier was chosen. The reasons for using this "2-2-

1" architecture are given below: 

(1) The two-bus structure is natural for complex valued data processing because the 

data memory can be divided into two logical sections, real and imaginary, with 

one bus assigned to each section. The same address is issued to both sections 

of the memory in order to access a complex valued data. Thus the addressing 
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scheme is, in fact, simpler than that in a one-bus structure where two addresses 

are required to access the real and imaginary parts of the data. 

(2) With the same reasoning, two ALUs can be employed to perform the real and 

the imaginary calculations separately. Thus the addition of the second ALU 

causes minimal complexity in design and programming while improving the 

speed by 33% over the "2-1-1" structure. The average efficiency of all three 

resources is also increased from 78% to 91%. 

(3) The 2-2-1 architecture. appears to be a good compromise as using two 

multipliers is not feasible without at least 4 data busses. 

(4) From Table 4.1, the total number of cycles required to complete the benchmark 

operation is 4. Therefore only one address per cycle needs to be generated, 

simplif,ing the address generator as explained previously. Since only three 

addresses are used in the operation, the remaining cycle can be used 

conveniently for incrementing a counter or other house-keeping tasks in the 

address generator. 

As it will be discussed shortly, a family of specialized devices manufactured by 

the Advanced Micro Devices (AMD) were the key components of this architecture. 

The "2-2-1" architecture was also suggested by AMID as the optimal complexity 

[19]. 
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4.3.2. Component Technology 

Several microprogrammable processors with pipelined organizations are 

available today. Among these components, the Am29500 family products are 

particularly well suited to the needs of the arithmetic processor. The distinctive 

feature of the Am29500 family components is that they employ ECL internal 

technology with 'rI'L input/output levels. 

The ECL technology is widely used in manufacturing high-speed integrated 

circuit. However, the interface between ECL parts is always troublesome; with the 

bus capacitances and the lead inductances having to be kept very low to ensure 

reliable data communications. In addition the fan-out of the ECL output is low 

limiting the number of devices that can be connected to a bus. These problems are 

solved in Am29500 family by using ECLTIiL translators at the inputs and outputs 

of the integrated circuit devices. The ilL technology, although slower, offers more 

reliable communications between ICs and the signals are less susceptible to noise. 

Another advantage of using the'I-IL signal levels is that it allows the designer to use 

the widely available TIL logic components, such as buffers and drivers, with these 

fast devices. 

The two relevant devices to the arithmetic processor in the Am29500 family are 

the multi-port pipelined ALU/Register file, Am295Ol, and the multiplier, Am295l7. 

The Am295O 1 is a specialized 8-bit processor which executes multiple simultaneous 

data operations. The bit-slice design of the ALU allows cascading any number of 

Am295Ols to implement wider formats for data. The structure of the register file, 
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which contains six registers, is the key element for performing simultaneous data 

transfers. The registers are pipelined and a multitude of data transfers can be 

performed in one cycle. Another important advantage of the Am295O1 is that it has 

3 data ports to speed up the data transactions with the memory and the multipler. 

Any combination of the register operations, the ALU operations and the I/O 

Instructions can be programmed to occur in the same cycle [15]. 

The Am29517 is a 16-bit by 16-bit multiplier with a pipelined organization that 

improves its throughput. However the pipelining may be disabled to obtain a 

combinational multiplying logic. 

4.3.3. Data Format 

The selection of the Am29S 17 as the multiplier limits the word width to 16 bits. 

Since the Am295Ol is an 8-bit processor, two of these are cascaded to form a 16-bit 

ALU. From here on, any refefence to ALU will imply 2 cascaded Am295Ols. 

To complete the data - description, the data format must also be specified. 

Generally, the best data format for DSP is the floating point format. However, with 

the available components (Am295O1 and Am295l7), the floating point operations 

must be carried out in software and therefore is not efficient. The block floating point 

(BFP) arithmetic is preferred with these components because the errors introduced by 

the truncation and scaling are less crucial in this format than it is in standard fixed-

point format [20]. In the BFP format, the data word can be viewed as a mantissa 

where the common exponential is stored elsewhere. The natural choice for the 
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interval of real numbers representable in the mantissa is [- 1,1). Therefore the value 

of a number formed by the bits a15, a14, . . . , a0 of the mantissa is 

—a15 I aJ4I. 

where a can be either 1 or 0. This representation is also called the two's-

complement floating point representation. 

As indicated above, the selection of the data format is dictated by the current 

component technology and it can be changed as advances are made. Other 

possibilities of the data format are discussed in the next chapter. 

4.3.4. Data Flow Structure 

The data paths connecting the blocks of the arithmetic processor are illustrated 

in fig. 4.5. Six different data busses are used to facilitate the full utilization of the 

resources. The two memory access busses, as required by the "2-2-1" architecture, 

are the R—bus, for the real part of the data, and the I—bus, for the imaginary part. 

The Y—bus carries the output of the multiplier, while the RM, IM and C busses 

provide the operands for the multiplier. 

In order to generalize the architecture for all DSP basic operations, the operands 

of the multiplier are selected by a multiplexer. The real and the imaginary parts of 

the data from the corresponding ALUs, in addition to the real or imaginary part of 

the coefficient, are the three inputs of the multiplexer. In the generalized form, the 

'multiplexer is capable transferring any combination of the inputs to its output. 

However this results in an overly complicated multiplexer block with high chip 
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COEFFICIENT 
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Fig. 4.5. Data flow in the arithmetic processor 

count. Therefore this block should be modified later to meet the requirements of 

each processing unit. For example, for the 1-'FT computation, the external 

multiplexing logic may be eliminated with the organization of fig. 4.6. On the other 

hand, the magnitude square calculation (4 + X) requires both operands of the 

multiplier to be sourced from the same input. 
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Fig. 4.6. An example of the simplified multiplier inputs 

4.4. Architecture of the Processing Unit 

The final architecture of the processing unit is illustrated in fig. 4.7. This figure 

is an evolution of fig. 4.4 to include the data flow structure of the arithmetic 

processor (fig. 4.5). The arithmetic processor was discussed extensively in the 

previous section, the design of the memory, the scaler and the I/O interface will be 

presented here. 

4.4.1. The Memory 

The memory block is composed of two identical storage segments as illustrated 

in fig. 4.8. The real and the imaginary parts of the complex data are stored in 

separate segments, both 16-bits wide. Since the segments can not be addressed 

separately, real and imaginary parts of the data must be accessed in the same cycle. 
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In this respect, the memory block can be viewed as a single 32-bit wide RAM. 

4A.2. The Scaler 

The structure of the scaler block depends on the necessities of the processing 

unit. Fig. 4.9 illustrates a simple form of the scaler block for one data bus. The 

scaling is performed while data is being read from the memory based on some 

previous decision (i.e. overflow). For multi-bus structures, a shifter must be 

provided for each data bus. This simple scheme is sufficient for most applications 

where the BFP format is used. 

4.4.3. 1/0 Interface 

In order to carry out the isolated testing of a single processing unit during the 

development stage, the task manager provides the input data and receives the output 

data of the processing unit; this facility was described previously as the target system 
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development support. Hence, the I/O interface must be designed to handle the 

handshaking as specified by the task manager. Fig. 4.10 illustrates a simple yet 

effective scheme of a completely symmetrical interface. Two back-to-back registers 

allow the bidirectional data transfers while two flip-flops generate the necessary 

handshaking signals. Each flip-flop is set when data is written to the corresponding 

register and cleared when data is read by the other side. The data busses shown in 

the figure are 32-bits, i.e. real and imaginary parts are transferred in parallel 'when 

connecting to other processing units. The task manager processes the data in 8-bit 

segments, so that each register must be constructed with 4 individually accessible 8-

bit registers to be able to test the processing unit with the help of the task manager. 
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After the development stage, the same interface block can be used to tie the 

processing units together as required by the signal processing unit of fig. 1.1. The 

interconnection using a single system bus is illustrated in fig. 4.11. In order to 

demonstrate the timing of processing and transferring of data blocks, let's assume 

that a data block is processed in unit 1 (PU1) first, then in PU2 and PU3. The 

progress of the operation is shown in fig. 4.12, where it is assumed that all 

processing units require the same amount of time to carry out their respective 

algorithms. The numbers on the data transfer segments are those of the transmitting 

and the receiving processing units. The solid lines indicate that a PU is busy 

processing the data block indicated above the line, and the dotted lines correspond-to 

the time period where data transfers are performed. 
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In reality, the processing units require different time periods to complete an 

operation, and the slowest PU determines overall throughput. An example is 

illustrated in fig. 4.13, where it is assumed that PU2 requires more time than the 

others. 

4.4.3.1. The Metastable Problem 

A subtle problem was encountered in the implementation of the interface logic 

(fig. 4.9). The metastable problem is common to all clocked systems incorporating 

an asynchronous signal. It is an unavoidable condition and results in occasional 

system failure. To understand this problem let's consider the clocked system S 

(fig. 4.14). The output, Y, of this system depends on the asynchronous input event 

D. By asynchronous, it is implied that the occurrence of event D is not correlated to 

the clock pulse signal. Every clocked system such as S has a input set-up time, t, 

which means that the event D has to occur at least a time period of t before the 

clock edge. If this condition is not met, the system "crashes" because the output Y 

D 
(Asynchronous) 

S 
Y 

Clock, f 

Fig. 4.14. The metastable problem 
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and the state of system S are not predictable. Since D is uncorrelated to the clock 

there is a finite probability of the occurrence of this failure. This probability can be 

calculated assuming D is totally asynchronous: 

Failure Rate = 
set—up time - - 

t5f 
clock period  

where f is the clock frequency. 

The metastable stable problem exist in the interface logic because of the status 

signals. The status signals data-ready and buffer-empty are tested by the controller 

in order to start a data transfer. However, these signals are generated by the 

read/write operations originating from the task manager and therefote are totally 

asynchronous to the controller. Fig. 4.15 illustrates the status signal path which is 

conceptually similar to that of fig. 4.14. The set-up time for the path shown is equal 

to the sum of the delays in the CC-multiplexer, the sequencer, the WCS and the set-

up time of the pipeline register. From the data books the total set-up time, t, is 

estimated to be 70 ns. Hence,, with a clock frequency of 5 MHz, the rate of a failure 

during a data transfer i 

Failure Rate = 70ns x 5MHz = 35%. 

The obvious deduction from this tremendously high probability is that a clock rate of 

5 MHz is not attainable with this structure. 



84 

data-ready 

buffer-empty 

data-ready  
buffer-empty 

cc 
mux 

Seq. WCS PL 
Microword 

Clock 

Fig. 4.15. Metastable problem in the control unit 

OP Reg. 
Cc 

- 

mux 
Seq. WCS PL 

Clock 

Fig. 4.16. Rectification of the metastable problem 

Microword  

This problem was rectified by inserting a register into the signal path, as shown 

in fig. 4.16. The set-up time for a register is typically 2ns so that the failure rate 

with the same clock becomes 

Failure Rate = 2ns x 5MHz = 1%. 

Although this figure seems to be still high, it should be remembered that a register 

can easily recover from a metastable condition and at worst another clock edge is 

required to register the signal level. On the other hand, the recovery is unlikely if 

the clock edge occurs while the sequencer or the WCS is not stabilized. 
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4.5. An Example: The FFT Processor 

To demonstrate the concepts developed in this chapter an Fn processor was 

built. In this section, first the hardware features of this processor and the overflow 

protection mechanism are discussed. Then the development of the software for 

parallel processing is presented. The block diagram of the FF1 processor is given in 

fig. 4.17. 

4.5.1. Characterization of the Processing Unit 

The general architecture of the processing unit was described in the previous 

sections. As mentioned before, the characterization of a processing unit designated 

for a specific algorithm is reduced to the definition of 5 blocks, 

1. The address generator(s), to specify the algorithm(s) to be executed, 

2. the scaler, to protect the processor from overflow failure, 

3. the multiplexer block, to supply the necessary data to the multiplier,, 

4. the type of coefficient memory, (if any), and 

5. the pipeline registers. 

In the following subsections, the FFT processor is defined by the specification of 

these blocks. The design of the scaler block is discussed in the next section. 

4.5.1.1. The Address Generator 

A single chip FFT sequencer, Am2954O, was used as the address generator. 

Although the Am2954O is capable of generating addresses for a large variety of FF1' 

algorithms, we will concentrate on the radix-2, decimation-in-time (DIT) FFT 
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algorithm. The definition of this algorithm and other variations of FYI' algorithms 

can be found in many sources (e.g. [21]). The Am2954O was also employed to 

download/upload the data block by addressing the data memory sequentially. 

The transform length is one of the parameters required for the Am2954O and 

this is set by the task manager through the parameter register mentioned earlier. The 

length of the data block is necessarily a power of 2 due to the Am2954O 

specifications. The setting of the transform length independently of the kF1 software 

allowed compact microprograms. Since the end-of-loop cnditions were generated 

by the Am2954O, software counters to keep track of the ' execution were not required. 

4.5.1.2. The Multiplexer 

The multiplexer block was not necessary 'for the FF1 processor since only 

multiplication with a coefficient was required. The organization shown in fig. 4.6 

was implemented. 

4.5.1.3. The Coefficient Memory 

The coefficient required for the butterfly operation is 

W / —e1k =cosek+jsin9k 

Currently available sine/cosine ROMs were used to generate the real and imaginary 

components of the coefficient Wk. These ROMs are Am29526/7 (—SiflOk) and 

Am29528/9 (—cosOk). 
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4.5.1.4. The Pipeline Registers 

Two pipeline registers, each two level deep were required to hold the two data 

addresses for the butterfly operation. The two level depth was necessary for 

overlapping the execution of the butterflies. 

A single latch was sufficient for the coefficient address since it does not change 

during the execution of a butterfly. 

4.5.2. Overflow Protection in FFT 

In this section we will first identify the requirements of the FFI algorithm for 

the overflow protection logic. From the definition of the DFT, 

N—i nk 
X[k] = 

n=0 

where k[n] I ≤ a, it is clear that 

N—i 
[k]I ≤ I Ix[n]I < sN 

P2=0 

Therefore the maximum word growth in an FF1 computation is limited. This upper 

bound of the word growth allows that immunity from overflow can be achieved by 

simply scaling the input data by N. However, this method reduces the effective 

word length and therefore is not very efficient. An alternative method is to scale the 

data block only when necessary. For this purpose the word growth in one butterfly 

of the radix-2, DIT FkT algorithm is analyzed. The results suggest an effective 

method for overflow protection. 
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4.5.2.1. Word Growth in a Butterfly Operation 

The computation of the FFT of N data points (N = 2) consists of log2N ( m) 

passes with each pass consisting of N/2 butterfly operations of the form 

A'= A+BWc 

B'= A_BWk 

..(4.12a) 

..(4.12b) 

The operands of the butterfly operation can be defined as, in both rectangular and 

polar coordinates, 

A = AR + jA1 = RA ..(4.13a) 

B = BR + jB1 = RBe188 ..(4.13b) 

Wk= W- i- jW= ..(4.13c) 

where j = 

As specified earlier, a data word can only represent a number in the interval 

[-1,1), hence 

—1 ≤ AR, A1, BR, B1, W, W1k < 1 ..(4.14) 

Consequently, the magnitude of a complex number represented with two data words 

is less than or equal to or 

O≤ RA, RB≤ 42  
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Now consider the multiplication of B and Wk, 

BWk = RBe1OBe1Ok 

= RBcos(OB+Ok) + jRBsin(OB+Ok) 

which results in the rotation of B by 0k If O& + 0k is a multiple of 90°, B becomes 

purely real or purely imaginary after the rotation. This is crucial to the word growth 

analysis because the components of BWk is no longer bound by the word limits: 

-'1 - ≤ RBcos(OB+Ok), RBsin(OB+Ok) ≤ t: 

From (4.12) and (4.16), 

B = AR - RBCOS(BB+ek) 

B = A1 - Rlisin(eB+ek) 

..(4.17) 

..(4.18a) 

..(4.18b) 

These equations can be combined with (4.14) and (4.16) to determine the limits of 

B and B: 

—1— ≤ B, B ≤ i+ñ ..(4.19) 

This result shows that the absolute value of a component of B can grow from 1 

to a maximum of i+I, or approximately 2.41 times its original value. Since every 

data point is processed once in each pass, this result is valid for all passes. 

Based on eqn. (4.19), the optimum overflow prevention strategy is to -scale the 

data block before each pass so that the maximum absolute value of the real or 

imaginary part of the data block will be 1/2.41. This method, however, is not 

practical. An alternate solution which is implementable in BFP format is discussed 
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in the next subsection. 

4.5.2.2. Implementation of the Scaler 

A simple implementation of hardware division consists of a shifter which can 

divide the data by powers of 2. Two shifters are inserted in the real and imaginary 

data paths as shown in fig. 4.17. These shifters, implemented by Am25S1Os, can 

shift the input data by 0, 1 or 2 bits, corresponding to division by 1, 2 or 4 

respectively. 

From the results of the previous section it is clear that a real or imaginary 

component can grow by more than 2 but less than 4 in any pass. Therefore, 

overflow can be prevented in a pass .by keeping the absolute values of all 

components less than or equal to 0.25 before the pass. To achieve this condition, the 

data block must be tested after every pass and scaled down if the real or imaginary 

part of any data point is greater than 0.25. The scaling factor is determihed by the 

following conditions: 

• If any component is greater than 0.5 then scale by 4. 

• If all components are smaller than 0.5 but some component is greater than 0.25 

then scale by 2. 

Hence the overflow prevention problem is reduced to design the logic circuit to 

generate. these conditions. 
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As discussed earlier, a real number, x, is represented in two's complement 

fractional binary format as 

x = —q152° + a142 1 + + a2'5 ..(4.20) 

where a is the nth  bit value which is 1 or 0. Following logic equivalences can be 

verified from eq. (4.20): 

x≤ 0.5 E a15 .a14 

x<-0.5 a15.a 14 

where • represents the logical-and operation. Combining these equations yields 

RkI≥O.5 
(a1) + (a15-a14) 

a15 9 a14 

where + and ® denote the logical-or and exclusive-or operations respectively. 

Similarly, 

S M 0.25 ≤ N ≤ 0.5 

0.25) 

R . (a5 0 a13) 

..(4.22) 

Equations (4.21) and (4.22) show a simple way to determine the range of a 

component. These tests must be repeated for the real and imaginary parts of all data 

points. The results, R and S, from each component are registered by a pair of flip-

flops which detect a " 1" at their respective inputs. The state equations for these 

flip-flops are 
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Y1 Ylp+RR+RI 

Y2P + (SR + S1)] 

where the subscript p denotes the previous state and subscripts R and I indicate real 

and imaginary tests respectively. 

A practical approach is to test each data point as it is written back to the 

memory as a result of an FF1' butterfly, rather than searching the entire data block 

after the pass is completed. In this method the flip-flops are clocked every time a 

data point is written into the memory. After the pass is completed, the outputs of 

these flip-flops are transferred to another pair of flip-flops which select the amount of 

shift (0, 1 or 2) to be performed by the shifters. As a result, each component will b 

scaled down by the same amount as it is read by the arithmetic processor for the 

next pass. 

4.5.3. Software for Parallel Execution 

The progress of a butterfly operation in the arithmetic processor is illustrated in 

Table 4.2. The register file operations are not shown to simplify the diagram, 

however some of the visible delays are associated with the register file. For 

example, the multiplier output is generated one cycle after the value of B is read 

because this value has to be written to the register file first. As observed from 

Table 4.2, the butterfly operation requires 9 cycles although each device is 

operational for only 4 cycles of this period. In order to achieve the efficiency figures 

derived in section 4.3.1, the butterfly operations have to be overlapped in a way that 
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CYCLE # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

DATA BUSSES REAL ALU 

READ B 

READ A 

A = AR + BRWR 

IMAG. ALU MULTIPLIER 

BRWR 

BRWJ 

= AR - BRWR = AJ+BRWI B1W1 

= A - B1W1 B=AJ - BRWJ BJWR 

B = B + B1W1 B = - BJWR 

'WRITE B' 

WRITE A' 

= A' + BIWR 

Table 4.2. Progress of a butterfly operation 

all devices will be operational at all times. Hence a repetition ' rate of 4 cycles is 

required. 

The butterfly operation as shown in Table 4.2 can not be overlapped with a rate 

of 4 cycles because the "Read B" operation at the first cycle has to be repeated at 

the 5th cycle and then at the 9& cycle which conflicts with the "Write A" operation. 

The progress of the butterfly can be modified slightly, as shown in Table 4.3, to get 

rid of this problem. With this organization, the butterfly operations can be 

completely overlapped. Table 4.4 shows two overlapped butterflies which can be 

extended to fill all cycles. The operation of the whole processing unit with 

completely overlapped operations is shown in Table. 4.5. 
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CYCLE # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

CYCLE #' 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

11 

12 

13 

14 

DATA BUSSES REAL ALU IMAG. ALU MULTIPLIER 

READ B 

READ A 

A=AR+BRWR 

BRWR 

BRWI 

A = AR - BRWR A =AJ±BRWJ B1W1 

4=4- B1W1 B=AI - BRWI BIWR 

B = B + B1W1 B = B - BIWR 

WRITE B' 

WRITE A' 

= A; + BIWR 

Table 4.3. Modified butterfly for overlapping 

DATA BUSSES REAL ALU IMAG. ALU MULTIPLIER 

READ B (1) 

READ A (1) BRWR (1) 

4 (1) BRWI (1) 

READ B(2) B(1) A(1) B1W1(1) 

4(1) B(1) BIWR (1) 

READ A(2) B(l) B(1) BRWR (2) 

WRITE B' (1) A; (2) A (1) BRWI (2) 

B; (2) A; (2) B1W1 (2) 

WRITE A' (1) 4 (2) B; (2) BIWR (2) 

B (2) B (2) 

WRITE B' (2) A (2) 

WRITE A' (2) 

Table 4.4. Two overlapped butterfly operations 
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.oaxess 
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PL 

CoCf. MCh. 
Register DATA BUSSES REAL ALU 

Mt.J' TIP 
IMAG. ALU X Y Output 

Inst. Output Inst. Output 

I COUNT HOLD Al (-1) READ A (-1) B (-2) B(-2) B (-1) sin (- 1) BRWR (-1) 

2 HOLD B PUSH B B2 (-2) WRITE B' (-2) A (- 1) A; (-2) B1 (-1) sin (4) BRWI (-1) 

3 HOLD W Bi LATCH READ B B (-1) A;' (4) B1 (-1) cos (-1) B1W1 (-1) 

4 A PUSH A A2 (-2) , WRITE A (-2) A (4) K(-1) B5 cos BIWR (-1) 

5  COUNT (1) HOLD Al READ A B (-1) B1 (-1) 115 sin B5W 

6 HOLD B (1) PUSH B (1) B2 (-1) WRITE B' (-1) A A; (-1) B1 sin BRWI 

7 HOLD W (1) BI (1) LATCH (1) READ B (1) 11 A B cos 111W1 

8 A (1) PUSH A (1), A2 (-1) WRITE A' (-1) A B BR ( 1) cos (1)  BIWR 

9 COUNT (2) HOLD Al (1) READ A (1) B' Bit (1) sin (1) BRWR (I) 

10 HOLD B (2) PUSH B (2) 112 WRITE B' A (1) A; B1 (1) sin (1) BRWI (1) 

11 HOLD W (2) BI (2) LATCH (2) READ B (2) B (1) AT (1) B (1) cos (1) B1W1 (1) 

12 A (2) PUSH A (2) A2 WRITE A' A (1) BI (1) BR (2) cos (2) 111W5 (1) 

13 COUNT (3) HOLD Al (2) READ A (2) B (1) B; (1) BR (2) sin (2) BRWR (2) 

14 HOLD B (3) PUSH B (3) B2 (I) WRITE B' (1) A (2) A; (1) B1 (2) sin (2) BRWI (2) 

15 HOLD W (3) ' 
BI (3) LATCH (3) READ B (3) B (2) Al (2) Bt (2) cos (2) B1W1 (2) 

16 A(S) PUSH A(S) A2(l) WRITE A' (1) A(2) Bj'(Z) Bit (3) cos (3) B1W(2) 

Table 4.5. Completely overlapped butterflies 
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The required time to compute an N-point FFT can now be estimated. An N-

point FFT is performed in log2N passes with N/2 butterflies in each pass. Therefore, 

if the cycle period is t, the total time required for the FFT is 

TN= tj N log2N or, 

=2tN1og2N ..(4.24) 

In reality, the first and last two butterflies are not totally overlapped with the 

other butterflies because the pipeline has to be filled before the parallel execution and 

it has to be emptied after. These end effects have to be included in the total time for 

precision. It has been observed that the filling and emptying of the pipeline requires 

an additional 22 cycles, thus equation 4.24 becomes 

TN = (2Nlog2N + 22)t ..(4.25) 

4.5.4. Clock Requirements 

The slowest device in the FFT processor is the memory, which is implemented 

with 4 Am9128s. Using this fact and the block diagram of the processor (fig. 4.17) 

the critical path on this system is indicated as the path for the Read operation, i.e. 

the path from the address register to the ALU. The delay' on this path was calculated 

to be 112 ns (Table 4.6). To determine the minimum.clock period the delay from 

the clock to the outputs of the pipeline register at the control unit (20 ns) must be 

added to this figure. Thus the minimum clock period was estimated to be 132 ns. 

However, the delays shown in Table 4.6 are maximum values and we were able to 
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DEVICE PATH PART NO. DELAY 

Addr. Reg. sel.—output Am29520 12 ns 

Data Memory Addr. setup Am9 128 70 ns 

Bus Driver input—*output 74LS244 12 ns 

Shifter input—output Am25S10 8 ns 

Reg. File data setup Am29501 10 ns 

TOTAL 112 ns 

Table 4.6. Calculation of the delay for the READ operation 

operate the FFT processor with a clock frequency of 8 MHz (125 ns period). 

Equation 4.25 can now be determined numerically. For example, the time 

required to compute the discrete Fourier transform of a 1024 point data block is 

T1024 = (2x1024x1og21024 + 22) 125 ns = 2.56 ms 

4.6. Summary 

In this chapter, we have shown that a uniform structure for different processing 

units can be achieved by separating the address generator and the arithmetic 

processor. These blocks can then be operated concurrently improving overall speed 

and the performance of the unit. The architecture of the arithmetic processor is 

identical for different DSP algorithms because, in all cases, the computations of the 

fundamental operation is required. A particular DSP algorithm can be specified by 

defining its address generator. 

An architecture for the arithmetic processor, suggested by AND, was found to 

be optimal for repetitive computations of the fundamental operation. Overall 
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organization of the processing unit was discussed emphasizing parallel processing. 

An FFT processor board, shown in fig. 4.18, was constructed to demonstrate the 

efficiency of the presented architecture. A very high performance level was achieved 

with the implementation of overlapped butterflies and concurrent real/imaginary 

operations. This processor completes one butterfly operation every four cycles with 

an experimentally determined cycle time of 125 ns. 

Fig. 4.18. FF1' processor board 



CHAPTER 5 

CONCLUSIONS 

The research towards the objective of designing the basic tools for 

microprogrammed implementations of DSP algorithms consisted of two phases: 

1. Construction of the general purpose controller 

2. Development of a DSP-suitable architecture 

The results obtained from each phase are examined separately in the next two 

sections. 

In the final section of this chapter, suggestions for improving various aspects of 

the proposed signal processing system are presented. 

5.1. The General Purpose Controller 

A versatile microprogrammable controller and development tool has been 

constructed. This unit was intended to be used during the development stage of the 

individual processing units 'within the signal processing system. It is capable of 

1. Generating control signals which can be used by any processing unit in a 

128-bit horizontal microword format. 

2. Executing microprograms, which are stored in the host computer or the 

on-board memory, in continuous or single-step mode. 

3. Transferring data blocks from the host computer to the processing unit and 

100 
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back. 

In addition, the modular design allows using the host-interface unit of the controller 

as the task manager. This unit is capable of downloading multiple RAM-based 

microprogrammable control units. A software library provides easy access to all 

functions of the controller from the host computer using simple commands. 

Although the general purpose controller was designed to meet the requirements 

of DSP oriented implementations, its applications are not limited. For example, its 

potential application in regulating the speed of a rotating machine was recognized 

during the early development stage [22]. The controller is also in use by Nichols[8] 

to develop a processor for auto-regressive modeling using Burg's algorithm. 

5.2. The Digital Signal Processing Architecture 

In the second phase of this thesis, an architecture suitable for signal processing 

applications has been developed following suggestions made by AMID [19]. Three 

• major points have been demonstrated: 

(1) Most signal prdcessing algorithms consist of repetitive computations of the 

fundamental operation with an addrssing scheme unique to the algorithm. 

Hence, once a processing unit for one DSP operation is realized, another 

operation can be implemented by modifying only the address generator. 

• (2) The two data bus, two ALU, one multipler architecture suggested by AMID 

yields a very good performance level with a reasonable level of complexity. 
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(3) Very efficient, highly parallel processors can be achieved when sufficient data 

flow paths and complete control of all resources are available. 

The proposed architecture have successfully been tested for the radix-2 FF1 

algorithm. To illustrate the performance of the FFI processor, let us consider the 

computation of 1024-point complex FF1. The required time for this calculation on 

the FFT processor was etimated to be 2.56 ms. In comparison, the TMS32O1O, a 

popular signal processing chip, requires 69.4 ms [23]'. This tremendous improvement 

is a result of several techniques, which are 

1. Parallel processing, which is reflected as overlapped butterfly operations, 

concurrent computations of the real and imaginary parts, and simultaneous 

addition and multiplications. 

2. Pipelining, which improves the speed by isolating the delays in the 

individual components. 

3. Hardware generation of data addresses, to avoid, the significant amount of 

time required to calculate the addresses in software. 
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5.3. Recommendations for Future Research 

The signal processing system described in chapter 1 is yet to be completed. As 

mentioned before, the processing units can be realized by designing an appropriate 

hardware address generator for the arithmetic processor developed in this thesis. The 

FFT processor board constructed during this research may be directly used in this 

system. However, since the FF1 processor was designed simply as a test-bed for the 

architecture, the address generator of this board may be found inadequate for some 

applications. In particular, the input data is assumed to be pre-scrambled as required 

by the FEE algorithm. Hence there are no provisions for bit-reversed scrambling of 

the data block. Therefore, the addition of an address generator for data scrambling is 

recommended if this board is to be used later. 

The interface between the processing units should be improved. Since the data 

flow is necessarily towards one direction in a pipelined system, uni-directional busses 

between consequent processors can be used instead of a system bus (fig. 4.11). Also 

the I/O registers shown in fig. 4.10 do not adequately isolate the processing units. 

Replacing these registers with first-in-first-out (FIFO) memories is recommended. 

An important limitation of the architecture is the data word length. The 16-bit 

integer arithmetic may not provide sufficient precision for some applications. As 

discussed in chapter 4, the selection of this data format was dictated by the available 

components. Several new 32-bit parallel multipliers, such as Am29323, have been 

announced recently. The word length can therefore be extended to 32 bits as these 

products become available. The 32-bit ALU can be constructed by cascading four 
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Am2950l devices. 

Another exciting new product is the Am29325, a 32-bit floating point ALU. 

When used with an external 'register file such as Am29334, also a recent 

announcement, this device may replace the Am2950ls and the multiplier. This 

possibility is particularly interesting because the general outline of the "2-2-1" 

architecture can be preserved by using three Am29325s, possibly with one of them 

wired as a multiplier, tremendously increasing the flexibility, the adaptability and the 

precision of the resulting processing units. 



REFERENCES 

1.- A.V. Oppenheim, Applications of Digital Signal Processing, Prentice-Hall 

(1978). 

2. M.C. Pease, "An Adaptation of the Fast Fourier Transform for Parallel 

Processing," J. Ass. Comput. Mach. 15 pp. 252-264 (April 1968). 

3. B. Gold and T. Bially, "Parallelism in Fast Fourier Transform Hardware," 

IEEE Trans. Audio Electroacoust. AU-21 pp. 5-16 (Feb.1973). 

4. K.J.M. Campbell, "A Microprocessor Based Spectrum Analyzer,' MSc Thesis,, 

Dept. of Elec. Eng., U. of Calgary, ( 1984). 

5. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE 63 pp. 561-

580 (Apr. 1975). 

6. M.R. Smith, S.T. Nichols, R.M. Henkelman, and M.L. Wood, "Application of 

Parametric Modeling in Magnetic Resonance Imaging," Submitted as a paper 

to IEEE Trans. Med. Images, (1986). 

7. J.D. Markel, "FFT Pruning," IEEE Trans. Audio Electroacoust. AU-19, no. 

4 pp. 305-311 (Dec. 1971). 

8. S.W. Nichols, "Microprogrammed Implementation of AR Modeling," MSc 

Thesis, Dept. of Elec. Eng., U. of Calgary, (expeted completion July, 1986). 

105 



106 

9. M.V. Wilkes, W. Renwick, and D.J. Wheeler, "The Design of the Control Unit 

of an Electronic Digital Computer," Proc. of lEE, pp. 121-128 (June 1958). 

10. M.V. Wilkes, "The Growth of Interest in Microprogramming: A Literature 

Survey," Computing Surveys 1 pp. 139-145 (Sept.1969). 

11. S.S. Husson, Microprogramming: Principles and Practices, Prentice-Hall 

(1970). 

12. D.K. Banerji and J. Raymond, Elements of Microprogramming, Prentice-Hall 

(1982). 

13. G. Hope, Integrated Devices in Digital Circuit Design, Wiley ( 1981). 

14. M. Andrews, Principles of Firmware Engineering in Microprogram Control, 

Computer Science Press ( 1980). 

15. Data Book, Bipolar Microprocessor Logic and Interface, Advanced Micro 

Devices (1985).' 

16. H. Orbay and M.R. Smith, "A Development Tool for Microprogrammable 

Systems: General Purpose Controller," Report #28 CO 85, Dept. of Elec. Eng., 

U. of Calgary, (Sept. 1985). 

17. M.R. Smith, "A METAASSEMBLER for developing microwords for a 

microprogrammed architecture," Report, #19 PS 85, Dept. of Elec. Eng., U. of 

Calgary, (March 1985). 

18. B.A. Bowen and W.R. Brown, "Signal Processing and Signal Processors," 

VLSI Systems Design For Digital Signal Processing, Vol.' 1, Prentice-Hall, 



107 

(1982). 

19. J.W. Locke, Designing Digital Signal/Array Processors with the Am29500 

Family, Advanced Micro Devices (1984). 

20. A.V. Oppenheim and C.J. Weinstein, "Effects of Finite Register Length in 

Digital Filtering and the Fast Fourier Transform," Proc. IEEE 60 pp. 957-976 

(Aug. 1972). 

21. A.V. Oppenheim and R.W. Schafer, Digital Signal' Processing, Prentice Hall 

(1975). 

22. M.R.Smith, T.Grant, and H.Orbay, "A Development System for High Speed 

Microprogrammable Sequential Controllers," presented at Compint 85, 

Montreal, Quebec, (Sept. 1985). 

23. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution Algorithms, Wiley 

(1985). 


