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Abstract

A new interactive certificate for matrix rank, based on the certification of a maximal
nonsingular submatrix, is described. Versions of this for matrices over abstract fields
and integer matrices are each described.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms — algebraic algorithms,
analysis of algorithms; F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems — computations in finite fields, computations on
matrices; interactive certificates

General Terms

Algorithms, Performance, Reliability, Theory

Keywords

Interactive certificates, black box matrix computations, randomized algorithms, computa-
tions over finite fields, matrix rank

1 Introduction

Recently a variety of “certificates in linear algebra” (and, more generally, certificates in
symbolic computation) have been proposed, notably by Kaltofen, Li, Yang and Zhi [4],
Kaltofen, Nehring, and Saunders [5] and by Dumas and Kaltofen [2]. As defined in this
work (and, indeed, quoting Kaltofen et. al. [4]), “a ‘certificate’ is an input-dependent data
structure and an algorithm that computes from that input and its certificate the specified
output, and that has lower computational complexity than any known algorithm that does
the same when receiving the input. Correctness of the data structure is not assumed
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but validated by the algorithm (adversary-verifier model).” This motivates the following,
which will be used to investigate certificates in this report. The first two criteria concern
the reliability of certificates while the third concerns efficiency. All three are taken from
the recent literature on certificates and have been used to assess them in this work. The
fourth and fifth have received less attention but merit consideration when the first three
are insufficient to compare certificates.

Criterion #1 — Perfect Completeness: A correct certificate will always be accepted
by a verifier.

Criterion #2 — Soundness: The probability that an incorrect certificate is accepted
by a verifier can be made to be arbitrarily small.

Criterion #3 — Efficiency of Verification: Resources required by a verifier to (with
high probability) confirm that a static certificate is accurate — or, as suggested below,
confirm that a “prover” is providing correct information in an interactive protocol — is
minimized.

Criterion #4 — Certificate Size: The size of the data structure provided as a certifi-
cate.

Dumas and Kaltofen also considered “interactive certificates” — interactive protocols in
which information is being exchanged, in multiple rounds, between provers and resource-
limited verifiers. As they note, these can be converted to (non-interactive) certificates
— with the validity of verification procedures “subject to standard computation hardness
assumptions from cryptography.” See Dumas and Kaltofen [2] for an extensive discussion
of this and references.

In any case, this motivates another criterion that might be used to assess interactive cer-
tificates:

Criterion #5 — Communication Complexity: The number of bits of information
(or, for computations over an abstract field, the number of field elements) that must be
passed between the prover and the verifier during the protocol.

In the following, a new interactive certificate for the rank of a matrix, based on the cer-
tification of a maximal nonsingular submatrix, is provided. This is inspired by — and
uses many of the same ideas — as interactive certificates for the rank of a matrix over
an abstract field, and for an integer matrix, given by Dumas and Kaltofen [2], as well as
an earlier non-interactive certificate for the rank of an integer matrix given by Kaltofen,
Nehring and Saunders [5].

The new certificate is — arguably — a little bit simpler than these earlier certificates
for matrix rank. When verifying the rank of a matrix over an abstract field the cost of
verification is also — very slightly — reduced: While the required number of matrix-times-
vector products is unchanged, the number of additional arithmetic operations required
to certify the rank of a matrix A ∈ F

n×m for a large field F drops to a number that is
linear in n +m; if A has rank r then O(r log2max(n,m)) ⊆ O(min(n,m) log2 max(n,m))
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additional operations on bits are also used. In the small field case this suffices to ensure
that an incorrect certificate is incorrectly certified with probability at most 1/|F|. Since
the new certificate uses the same method to certify that a submatrix is nonsingular as the
certificate of Dumas and Kaltofen, the probability that an incorrect certificate is accepted
is the same, for both certificates, in this case.

Similar — modest — improvements are obtained for the cost to verify an interactive certifi-
cate for the rank of an integer matrix. The cost to verify is most significantly reduced if the
verifier has access to a “black box” to compute Ax mod p for a vector x ∈ Z

m×1 and a posi-
tive integer prime p that the verifier can specify. In this case, the cost to verify drops to two
applications of this black box along with a small number of additional operations on bits:
If one wishes to bound the probability that an incorrect certificate is accepted by a positive
constant ǫ such that ǫ−1 is at most polynomial in n+m+log2 ‖A‖ then the expected number
of these additional operations is linear in the sum of (n+m)(log2 n+log2 m+log2 log2 ‖A‖)
and a polynomial function of log2 n+log2m+log2 log2 ‖A‖. The expected number of addi-
tional operations on bits increases if the verifier has access to a black box for the computa-
tion of Ax, instead, simply because the entries of a product Ax may be significantly larger
than a prime p, when the vector Ax mod p ∈ Z

n×1
p is required to complete the protocol.

It should be noted that it is also possible to certify the rank of a matrix by certifying the
evaluation of a Boolean or arithmetic circuit using the techniques of Goldwasser, Kalai
and Rothblum [3] and Thaler [9]. This may result in further reductions of the cost for
verification, at least when the matrix whose rank to be verified is dense and unstructured.
However, as Dumas and Kaltofen note, these methods require a prover and verifier to share
access to a trusted Boolean or arithmetic circuit for the computation to be verified. Since
the certificates presented by Kaltofen, Nehring and Saunders, Dumas and Kaltofen, and
in this report do not require this, these latter certificates are more generally applicable.

The version of the new certificate for matrices over abstract fields is presented in Section 2,
while the version for integer matrices is found in Section 3. It should be confessed that
that there has been no attempt to optimize various functions or constants included in the
description of the certificate for the rank of an integer matrix. Instead, a version of the
protocol whose soundness is easily proved has been presented.

Acknowledgments: Jean-Guillaume Dumas has commented on a previous draft of this
report. His corrections and comments were extremely helpful.

2 Certifying the Rank of a Matrix over an Abstract Field

Suppose now that A ∈ F
n×m for positive integers n and m. An interactive protocol that

can be used to certify that A has rank r is as follows.

Commitment: The prover sends the rank r to the verifier along with the location of a
maximal nonsingular submatrix of A, that is, integers i1, i2, . . . , ir and j1, j2, . . . , jr such
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that 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 < . . . jr ≤ m, and the r × r submatrix of A
with rows i1, i2, . . . , ir and columns j1, j2, . . . , jr is nonsingular.

Challenge: The verifier sends values α1, α2, . . . , αr, β1, β2, . . . , βm−r ∈ F to the prover. If
F is a small finite field then these should be chosen uniformly and independently from F;
they should be chosen uniformly and independently from a finite subset S of F otherwise.

Response: The prover returns a pair of vectors

x =




λ1

λ2
...

λm


 ∈ F

m×1 and y =




µ1

µ2
...

µm


 ∈ F

m×1

satisfying the following properties — all of which are checked by the verifier, who accepts
the certificate if and only if they are all satisfied.

(a) For 1 ≤ h ≤ m, if h /∈ {j1, j2, . . . , jr} then λh = 0— so that Ax is a linear combination
of columns j1, j2, . . . , jr of A.

(b) For 1 ≤ h ≤ r the ithh entry of the vector Ax is equal to αh.

(c) Let k1, k2, . . . , km−r be integers such that 1 ≤ k1 < k2 < · · · < km−r ≤ m and
{j1, j2, . . . , jr} ∪ {k1, k2, . . . , km−r} = {1, 2, . . . ,m} — so that

{j1, j2, . . . , jr} ∩ {k1, k2, . . . , km−r} = ∅.

Then, for 1 ≤ h ≤ m− r, µkh = βh.

(d) Ay = 0.

Henceforth let C ∈ F
r×r be the submatrix of A with rows i1, i2, . . . , ir and columns

j1, j2, . . . , jr that is specified by the prover during the commitment phase of this proto-
col.

Lemma 2.1. The above protocol is perfectly complete.

Proof. Suppose that A has rank r. Then it is certainly possible to identify a maximal
nonsingular submatrix during the commitment phase of this protocol. It can therefore be
assumed that C is such a matrix, so that C also has rank r.

Consider any sequence of values α1, α2, . . . , αr, β1, β2, . . . , βm−r ∈ F returned by the verifier
as a challenge to a prover. It is necessary and sufficient to confirm that these values can
be used by the prover to produce vectors x, y ∈ F

m×1 satisfying properties (a)–(d) as given
above.
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A vector x ∈ F
m×1 satisfying properties (a) and (b) can be obtained by setting the jthh

entry of x to be the hth entry of

C−1




α1

α2
...
αr


 ∈ F

r×1

for 1 ≤ h ≤ r, and by setting all other entries of x to be zero— it is immediate from the
above definition of C that properties (a) and (b) are then satisfied.

Let D ∈ F
r×m be the submatrix of A including rows i1, i2, . . . , ir. Let E ∈ F

r×(m−r) be the
submatrix of D including columns k1, k2, . . . , km−r (as defined in property (c), above). Let




ν1
ν2
...
νr


 = C−1 × E ×




β1
β2
...

βm−r


 ∈ F

r×1. (2.1)

A vector y ∈ F
m×1 satisfying properties (c)–(d) can now be produced by setting the

jthh entry of y to be −νh for 1 ≤ h ≤ r, and setting the kthℓ entry of y to be βℓ for
1 ≤ ℓ ≤ m − r. It is immediate from the above definition that property (c) is satisfied.
Since the columns of C are columns j1, j2, . . . , jr of the above matrix D, it follows by the
definition of ν1, ν2, . . . , νr at line (2.1), above that Dy = 0. Since every row of A is a linear
combination of the rows of D, Ay = 0 as well, as needed to establish property (d).

Lemma 2.2. Suppose that information provided by the prover during the commitment
stage is incorrect, that is, either the matrix C is singular, or C is nonsingular but the rank
of A is strictly greater than r.

(a) If F is a small finite field and the verifier chooses values α1, α2, . . . , αr, β1, β2, . . . , βm−r

uniformly and independently from F, then the verifier mistakenly accepts the certifi-
cate with probability at most |F|−1.

(b) If the verifier chooses values α1, α2, . . . , αr, β1, β2, . . . , βm−r uniformly and indepen-
dently from a finite subset S of F, then the verifier mistakenly accepts the certificate
with probability at most |S|−1.

Proof. It suffices to establish part (b) of the claim; part (a) follows directly by setting S
to be F when F is a small finite field.

Suppose the matrix C is singular, and let s < r be the rank of C. Let z1, z2, . . . , zs+1 be
indeterminates over F and consider a matrix D ∈ F[z1, z2, . . . , zs+1]

(s+1)×(s+1) such that
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• the (s+1)×s submatrix of D including the first s columns is a submatrix of C whose
principal s× s submatrix is nonsingular. That is, this is a submatrix of A including
rows ı̂1, ı̂2, . . . , ı̂s+1 and columns ̂1, ̂2, . . . , ̂s such that

1 ≤ ı̂1 < ı̂2 < · · · < ı̂s+1 ≤ n and {̂ı1, ı̂2, . . . , ı̂s+1} ⊆ {i1, i2, . . . , ir},

1 ≤ ̂1 < ̂2 < · · · < ̂s ≤ m and {̂1, ̂2, . . . , ̂s} ⊆ {j1, j2, . . . , jr},

and the s× s submatrix of A including rows ı̂1, ı̂2, . . . , ı̂s and columns ̂1, ̂2, . . . , ̂s is
nonsingular.

• the final column of A has the indeterminates z1, z2, . . . , zs+1 as entries.

Let f(z1, z2, . . . , zs+1) = det(D). Consideration of a Laplace expansion of the determinant
of D along the final column confirms that f is a polynomial with total degree at most
one in z1, z2, . . . , zs+1 and also that this polynomial is not identically zero: The coefficient
of zs+1 is the product of ±1 and the determinant of the principal s×s submatrix of D. For
1 ≤ a ≤ s+ 1, let ha ∈ Z such that 1 ≤ ha ≤ r and ı̂a = iha

. If f(αh1
, αh2

, . . . , αhs+1
) 6= 0,

then it is impossible for the verifier to produce a vector x ∈ F
m×1 satisfying properties (a)

and (b) — for the vector
[
α1 α2 . . . αr

]T
∈ F

m×1 is not in the column space of C. It
now follows by a straightforward application of the Schwartz-Zippel lemma [8, 10] that if
C is singular then the probability that verifier accepts is at most 1/|S|.

Suppose next that C is nonsingular but the rank of A is greater than r. Let z1, z2, . . . , zm−r

be indeterminates over F and consider a matrix E ∈ F[z1, z2, . . . , zm−r]
(r+1)×(r+1) such that

• The (r + 1) × r submatrix of E including the first r columns is a submatrix of A
including rows i1, i2, . . . , ir and k where 1 ≤ k ≤ n, k /∈ {i1, i2, . . . , ir}, and the kth

row of A is not a linear combination or rows i1, i2, . . . , ir of A; since the rank of A
exceeds r, some such value k must certainly exist. This submatrix should also include
columns j1, j2, . . . , jr, so its leading r × r submatrix is the above matrix C.

• Consider a vector ζ ∈ F[z1, z2, . . . , zm−r]
m×1 such that, for 1 ≤ a ≤ m− r, the entry

of this vector in position ka is the indeterminate za — and whose remaining r entries
are all 0. Let the final column of E be the column consisting of the entries in positions
i1, i2, . . . , ir, k of the vector Aζ — noting that each entry of this column is then a
polynomial with total degree at most one in z1, z2, . . . , zm−r.

Let g(z1, z2, . . . , zm−r) = det(E). Once again, consideration of a Laplace expansion of
the determinant of E along the final column of E confirms that g is a polynomial with
total degree at most one in the indeterminates z1, z2, . . . , zm−r. Now let ℓ ∈ Z such that
1 ≤ ℓ ≤ m − r and the submatrix Ê ∈ F

(r+1)×(r+1) of A with rows i1, i2, . . . , ir, k and
columns j1, j2, . . . , jr, kℓ is nonsingular — again, some such integer ℓ must now exist. To
see that g is nonsingular, it suffices to note (by another consideration of the Laplace
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expansion along the final column) that the coefficient of zℓ in g is ± det(Ê). Finally, it
should be noted that if g(β1, β2, . . . , βm−r) 6= 0 then it is impossible for the prover to return
a vector y ∈ F

m×1 satisfying properties (c) and (d) — for if y satisfies property (c) and
g(β1, β2, . . . , βm−r) 6= 0 then at least one of the entries of Ay in positions i1, i2, . . . , ir, k
must be nonzero. Another application of the Schwartz-Zippel lemma establishes if C is
nonsingular and the rank of A exceeds r then the probability that the verifier accepts is at
most 1/|S|, once again.

The following is easily verified by an inspection of the above protocol.

Lemma 2.3. Let N = max(n,m). The cost to the verifier, to participate in the above
protocol, includes (and is limited to)

• O(r logN) ⊆ O(min(n,m) logN) operations on bits — needed to perform O(r) oper-
ations on integers between 1 and N , in order to confirm that the integers supplied by
the prover during the commitment phase are as described above.

• the cost to choose m values uniformly and independently — from F if F is a small
finite field, or from a finite subset S of F otherwise.

• Two matrix-times-vector products, in order to compute the vectors Ax and Ay.

• (m− r)+ r+(m− r)+n = 2m+n− r ≤ 2m+n comparisons of pairs of values in F

in order to confirm that properties (a)–(d) are satisfied.

Thus the cost to verify is comparable to — and arguably, very slightly lower — than the
cost to apply the protocol for matrix rank of Dumas and Kaltofen [2]. While it is necessary
to apply this protocol repeatedly to obtain a desired level of soundness when F is a small
finite field, this is also true of Dumas and Kaltofen’s protocol: Each uses essentially the
same technique to establish r as a lower bound for matrix rank (described in [2] as a
protocol for nonsingularity), and this must be iterated.

3 Certifying the Rank of an Integer Matrix

The certification of the rank of an integer matrix is also of interest. With that noted,
suppose that

A =




a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m
...

...
. . .

...
an,1 an,2 . . . an,m


 ∈ Z

n×m.

Let ‖A‖ = ‖A‖∞ = maxi,j |ai,j|, so that log2 ‖A‖ is the maximal bit length of any entry
of A. Two classical results are of use when designing and analyzing algorithms to certify
the rank of an integer matrix as given above:
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• Hadamard’s Inequality states that if n = m then |det(A)| ≤ nn/2‖A‖n, so that
log2 |det(A)| < n(12 log2 n+ log2 ‖A‖).

• The Prime Number Theorem concerns the number π(x) of (positive integer)
primes that are less than or equal to a given positive integer x. Proofs of asymptotic
bounds for this value can be found in a variety of texts. The somewhat more precise
bounds given below are from Rosser and Schoenfeld [7]:

x

lnx

(
1 +

1

2 lnx

)
< π(x) <

x

lnx

(
1 +

3

2 lnx

)
if x ≥ 59.

More recent, sharper, bounds are now known for larger n as well. However, the above
is sufficient for this report.

With that noted, and considering an matrix A ∈ Z
n×m as above, and for a given positive

constant ǫ such that 0 < ǫ ≤ 1, set ℓ = max(min(n,m), 2),

λ = 4× ǫ−1 × ℓ
(
1
2 log2 ℓ+ log2 ‖A‖

)
, (3.1)

and set µ ∈ Z to be the smallest power of two such that

µ ≥ max(2λ ln λ, 64). (3.2)

Note that if B is a square and nonsingular submatrix of A then ‖B‖ ≤ ‖A‖. It therefore
follows by the above that

π(4µ)− π(µ) >
4µ

ln(4µ)

(
1 +

1

2 ln(4µ)

)
−

µ

lnµ

(
1 +

3

2 lnµ

)

(by the Prime Number Theorem)

≥
3µ

lnµ

(
1 +

3/4

2 ln µ

)
−

µ

lnµ

(
1 +

3

2 lnµ

)

(since µ ≥ 64 = 43, so that ln(4µ) ≤ 4
3 lnµ)

=
2µ

lnµ

(
1−

3/8

2 ln µ

)

>
µ

lnµ

> λ (since µ ≥ 2λ ln λ)

≥ 4× ǫ−1 × log2(det(B))
(by Hadamard’s Inequality and the above definition of λ)

≥ log2(det(B)) (since det(B) ≥ 1 and ǫ−1 ≥ 1).

It follows that there exists a prime p such that µ < p ≤ 4µ that does not divide the deter-
minant of B. Furthermore, if q is chosen uniformly from the set of primes that are greater
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than µ and less than or equal to 4µ then the probability that q divides the determinant
of B is at most ǫ/4. This is useful for considering the following protocol to certify the rank
of an integer matrix A ∈ F

n×m as shown above.

Commitment: The prover sends the following information:

• the rank, r, of A;

• the location of a maximal nonsingular submatrix C of A, that is, integers i1, i2, . . . , ir
and j1, j2, . . . , jr such that 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 < · · · < jr ≤ m,
and the r × r submatrix C of A with rows i1, i2, . . . , ir and columns j1, j2, . . . , jr is
nonsingular;

• a prime p such that µ < p < 4µ, for µ as at line (3.2), above, that does not divide
the determinant of C.

Challenge: After verifying that µ < p < 4µ and p is prime, the verifier sends the following
values:

• Integers α1, α2, . . . , αr such that 0 ≤ αi < p for 1 ≤ i ≤ r;

• an integer q such that µ < q < 4µ (which will be chosen as a prime selected uniformly
from this range if the verifier is honest and wishes to detect an incorrect certificate
with high probability);

• integers β1, β2, . . . , βm−r such that 0 ≤ βj < q for 1 ≤ j ≤ m− r.

Response: The prover responds by returning the following — which should satisfy the
following properties. The certificate should be accepted if and only if all of the following
(relevant) properties are satisfied.

The prover should always return a vector

x =




λ1

λ2
...

λm


 ∈ Z

m×1

satisfying properties (a) and (b):

(a) For 1 ≤ h ≤ m, if h /∈ {j1, j2, . . . , jr} then λh = 0— so that Ax is a linear combination
of columns j1, j2, . . . , jr of A.

(b) For 1 ≤ h ≤ r the ithh entry of the vector Ax is congruent to αh mod p.
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The prover should also return one the messages invalid, singular, or nonsingular along with
additional data corresponding to each.

If the message invalid is sent then no additional information is returned. The verifier
should confirm property (c):

(c) Either q ≤ µ, q ≥ 4µ, or µ < q < 4µ and q is composite.

If either singular or nonsingular is returned, instead, then the verifier should confirm
property (d). This is, of course, trivial if the verifier used a reliable process to choose q
during the challenge stage:

(d) µ < q < 4µ and q is prime.

If the message singular is sent then the prover should also return a vector

ys =




σ1
σ2
...

σm


 ∈ Z

m×1

along with an integer k. The verifier should confirm that properties (e)–(g) are also satis-
fied:

(e) For 1 ≤ h ≤ m, if h /∈ {j1, j2, . . . , jr} then σh = 0 — so that Ays is a linear
combination of columns j1, j2, . . . , jr of A.

(f) For 1 ≤ h ≤ r, 0 ≤ σih < q. Furthermore, 1 ≤ k ≤ r and σik 6= 0.

(g) For 1 ≤ h ≤ r the ithh entry of Ays is divisible by q.

Finally, if the message nonsingular is sent then the prover should return a vector

yn =




τ1
τ2
...
τm


 ∈ Z

m×1.

The verifier should confirm that properties (h)–(i) are also satisfied.

(h) Let k1, k2, . . . , km−r be integers such that 1 ≤ k1 < k2 < · · · < km−r ≤ m and
{j1, j2, . . . , jr} ∪ {k1, k2, . . . , km−r} = {1, 2, . . . ,m} — so that

{j1, j2, . . . , jr} ∩ {k1, k2, . . . , km−r} = ∅.

Then, for 1 ≤ h ≤ m− r, τkh = βh.
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(i) Each entry of Ayn is divisible by q.

The proof that this interactive certificate is perfectly complete is similar to, but a bit more
complicated than, the proof of Lemma 2.1.

Lemma 3.1. The above protocol is perfectly complete.

Proof. Suppose A has rank r. Then it is certainly possible to identify indices i1, i2, . . . , ir
of rows and j1, j2, . . . , jr of columns that are as described for the commitment stage, above,
such that the matrix C ∈ Z

r×r consisting of the entries of A in these rows and columns is
nonsingular. As noted above (using C in place of the matrix B in the above analysis), if
µ is as above then π(4µ) − π(µ) > log2(det(C)), so that there exists a prime p such that
µ < p < 4µ and C mod p is nonsingular in Z

r×r
p .

Consider any choice of integers α1, α2, . . . , αr, q, and β1, β2, . . . , βm−r with the properties
included in the description of the above challenge stage that might be supplied by the
verifier. It is necessary and sufficient to establish that the prover can return information
during the response stage such that properties (a), (b), and whichever of properties (c)–(i)
that are relevant, are all satisfied.

Since C mod p is nonsingular in Z
r×r
p , there exist integers γ1, γ2, . . . , γr such that 0 ≤ γi ≤

p− 1 for 1 ≤ i ≤ r and

C ×




γ1
γ2
...
γr


 ≡




α1

α2
...
αr


 mod p.

A vector x ∈ Z
m×1 satisfying properties (a) and (b) can now be obtained by setting the

jthh entry of x to be γh for 1 ≤ h ≤ r and by setting all other entries of x to be zero.

Suppose now that q ≤ µ, q ≥ 4µ, or q is composite. Then it suffices for the prover to
send the message invalid. Property (c) is then satisfied as well, and properties (d)–(i) are
irrelevant. It therefore remains only to consider the case that µ < q < 4µ and q is prime
— in which case property (d) is also satisfied.

Suppose first that C mod q is singular in Z
r×r
q . In this case the prover should send the

message singular. Properties (h) and (i) are irrelevant, so it suffices to show that it is
possible for the prover to return a vector ys ∈ Z

m×1 and an integer k as described above
such that properties (e)–(g) are satisfied.

Since C mod q is singular in Z
r×r
q there exist integers ζ1, ζ2, . . . , ζr such that 0 ≤ ζh ≤ q−1

for 1 ≤ h ≤ r, and integer k such that 1 ≤ k ≤ r, ζk ≥ 1, and

C ×




ζ1
ζ2
...
ζr


 ≡




0
0
...
0


 mod p.
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It is easily checked that if ys ∈ Z
m×1, the jthh entry of ys is ζh for 1 ≤ h ≤ r and all other

entries of ys are zero, then properties (e)–(g) are all satisfied.

Finally, suppose that C mod q is nonsingular in Z
r×r
q . In this case the prover should send

the message nonsingular. Properties (e)–(g) are irrelevant, so it suffices to show that it is
possible for the prover to return a vector yn ∈ Z

m×1 such that properties (h) and (i) are
satisfied.

Let D ∈ Z
r×m be the submatrix of A with rows i1, i2, . . . , ir. Let E ∈ Z

r×(m−r) be the
submatrix of D including columns k1, k2, . . . , km−r (as defined in property (h) above). Let
η1, η2, . . . , ηr be integers such that 1 ≤ ηh ≤ q for 1 ≤ h ≤ r, and such that

C ×




η1
η2
...
ηr


 ≡ E ×




β1
β2
...

βm−r


 mod q. (3.3)

Since C mod q is nonsingular in Z
r×r
q , such integers η1, η2, . . . , ηr certainly exist. A vector

yn ∈ Z
m×1 satisfying properties (h) and (i) can now be produced by setting the jthh entry

of yn to be q− ηh for 1 ≤ h ≤ r and setting the kthℓ entry of yn to be βℓ for 1 ≤ ℓ ≤ m− r.
It is then immediate that property (h) is satisfied. Since the columns of C are columns
j1, j2, . . . , jr of the above matrix D, it follows by the definition of η1, η2, . . . , ηr at line (3.3)
above that Dyn ≡ 0 mod q. Since every row of A mod q is a Zq-linear combination of the
rows of D mod q, Ayn ≡ 0 mod q as well, establishing property (i).

Similarly, some of the details of the proof of Lemma 2.2 are useful when establishing a
claim about the soundness of the above certificate:

Lemma 3.2. Suppose that the information provided during the commitment stage is in-
correct, that is, either p is not a prime such that µ < p ≤ 4µ, the matrix C mod p ∈ Z

r×r
p

is singular, or C mod p is nonsingular but the rank of A is strictly greater than r.

Suppose, as well, that

• q is chosen uniformly from the set of primes that are greater than µ and less than 4µ,

• α1, α2, . . . , αr are chosen uniformly and independently from the set of nonnegative
integers that are less than p, and

• β1, β2, . . . , βm−r are chosen uniformly and independently from the set of nonnegative
integers that are less than q.

Then the verifier mistakenly accepts the certificate with probability at most ǫ.

Proof. It suffices to note that an incorrect certificate is only accepted if at least one of the
following events takes place. The first of these can always be detected by the verifier. The
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claim follows by the fact that each of the last four of these events occurs with probability
at most ǫ/4.

(a) p is not a prime such that µ < p < 4µ.

(b) p is prime, µ < p < 4µ, and C mod p is a singular matrix in Z
r×r
p , but the vector

[
α1 α2 . . . αr

]T
∈ Z

r×1
p is in the column space of C mod p.

(c) p is prime, µ < p < 4µ, and C mod p is nonsingular in Z
r×r
p , but C mod q is singular

in Z
r×r
q .

(d) C mod q is nonsingular in Z
r×r
q and the rank of A is greater than r, but A mod q has

rank r in Z
n×m
q .

(e) C mod q is nonsingular in Z
r×r
q and the rank of A mod q is strictly greater than r,

but it is possible for the prover to return a vector yn ∈ Z
m×1 satisfying the above

properties (h) and (i).

The probability of event (b) can be bounded using the argument applied to prove Lemma 2.2
in the case that the matrix C is singular — applying this argument to the matrix C mod p ∈
Z
r×r
p . Since Zp is a finite field with size p and µ < p < 4µ, it follows by this argument that

the probability of this event is at most p−1 < µ−1 < ǫ/4.

If C mod p is nonsingular in Z
r×r
p then C is certainly nonsingular in Z

r×r. The probability
of event (c) can therefore be shown to be less than ǫ/4 by noting that the number of primes
between µ and 4µ is greater than 4ǫ−1 × log2(det(C)), as noted above. Since q is chosen
uniformly from this set of primes, and at most log2(det(C)) such primes can divide the
determinant of C, this establishes the claimed bound.

Suppose next that C mod q is nonsingular in Z
r×r
q — so that C is nonsingular in Z

r×r as
well — but the rank of A is greater than r. In this case there exist integers k and ℓ such
that 1 ≤ k ≤ n, k /∈ {i1, i2, . . . , ir}, 1 ≤ ℓ ≤ m, ℓ /∈ {j1, j2, . . . , jr}, and the submatrix
D ∈ Z

(r+1)×(r+1) of A including entries in rows i1, i2, . . . , ir, k and columns j1, j2, . . . , jr, ℓ
is nonsingular. The probability of event (d) can now be shown to be at most ǫ/4 by
repeating the argument used to bound the probability of event (c), with D replacing C —

for event (d) can only occur if D mod q is singular in Z
(r+1)×(r+1)
q .

Finally, the probability of event (e) can be bounded using the argument applied to prove
Lemma 2.2 in the case that the matrix C is nonsingular but the rank of A exceeds r —
with C mod q ∈ Z

r×r
q and A mod q ∈ Z

n×m
q replacing C and A, respectively. Since the

values β1 mod q, β2 mod q, . . . , βm−r mod q are chosen uniformly and independently from
the finite field Zq, a bound of q−1 < µ−1 ≤ ǫ/4 is immediate.

Consider the cost to the verifier to participate in this protocol. O(min(m,n) log2(m+ n))
operations on bits can be used to verify that 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 <
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· · · < jr ≤ m, and the indices of r rows and columns have been communicated by the
prover during the commitment stage. Since

log2 µ ∈ Θ(log2 λ) ⊆ Θ(log2(min(n,m)) + log2 log2 ‖A‖+ log2 ǫ
−1),

the binary representations of µ and p each have length that is at most linear in log2 n +
log2 m+ log2 log2 ‖A‖, provided that ǫ−1 is at most polynomial in n+m+ log2 ‖A‖.

The AKS primality test [1] can therefore be used to verify that µ < p < 4µ and p is prime
using a number of bits that is polylogarithmic in the input size. Moreover, the variant of
this test provided by Lenstra and Pomerance [6] can be used to check this using a number
of operations on bits that is in O((log2 n+ log2m+ log2 log2 ‖A‖)

7) in the worst case.

It is necessary to choose an prime q such that µ < q < 4µ uniformly from the set of all such
primes in order to form a challenge. An odd integer in this range can certainly be chosen
using an expected number of operations on bits that is in O(log2 µ), which is logarithmic
in the input size, once again. This is only being described as an “expected number of bits”
because of the minor inconvenience of choosing the leading pair of bits of this integer, when
one has access to a sequence of uniformly and independently selected bits: The leading
bits should form the binary representation of either 1, 2, or 3.

Since there are 3
2µ odd integers in this range, and π(4µ)− π(µ) > µ

lnµ as noted above, the

probability that a uniformly selected odd integer in this range is prime is at least 2
3 lnµ .

Now, since (1 − 1
x)

x < e−1 for every real number x > 1, it follows that if at least ⌈23 lnµ⌉
odd integers are selected uniformly and independently from this range then the probability
that none of them is prime is at most e−1 < 1

2 . This can be used to establish that the
expected number of operations on bits required to select the prime q during the challenge
is at most polynomial in O((log2 n+ log2m+ log2 log2 ‖A‖)

8).

Suppose next that ℓp and ℓq are positive integers such that 2ℓp < p < 2ℓp+1 and 2ℓq < q <
2ℓq+1 — so that 2ℓp , 2ℓq ∈ {µ, 2µ}. An integer α1 that is uniformly selected from the set
of integers between 0 and p − 1 is easily obtained by choosing ℓp + 1 bits uniformly and
independently and using these to form the binary representation of a nonnegative integer β
such that 0 ≤ β < 2ℓp+1. If β < p as well then α1 can be set to be β; the process fails (with
probability less than one-half) otherwise. The expected number of independent repetitions
of the process needed to accumulate α1, α2, . . . , αr is at most 2r. The expected number
of repetitions of a similar process to accumulate β1, β2, . . . , βm−r is at most 2(m − r).
Since O(log2 µ) operations on bits are required for an application of either of these, the
expected number of operations on bits needed to accumulate α1, α2, . . . , αr, β1, β2, . . . , βr
is in O(m log2 µ).

It remains only to bound the number of operations on bits, and matrix-times-vector prod-
ucts by A, needed to verify that all of properties (a)–(i) that are relevant are satisfied. The
verification of property (a) requires O((m− r) log2 µ) operations on bits.

Verification of property (b) requires a multiplication of A by in integer vector whose
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entries have length in O(log2 µ), in order to produce a vector Ax whose entries are in-
tegers with length in O(log2 m + log2 ‖A‖ + log2 µ) = O(log2 m + log2 ‖A‖ + log2 ǫ

−1).
O(r(log2m+ log2 ‖A‖+ log2 ǫ

−1) log2 µ) operations on bits are certainly sufficient to com-
plete the verification of this property. Property (g) can be verified at this cost as well,
while the number of operations on bits needed to complete the verification of property (i)
(after a matix-times-vector product) is in O(n(log2m+ log2 ‖A‖+ log2 ǫ

−1) log2 µ).

As noted above, there is nothing that the verifier needs to do to check properties (c) and (d)
— this has already been done.

Finally, properties (e), (f) and (h) can be verified using O((m − r) log2 µ) operations on
bits, O(r log2 µ) operations on bits, and O((m− r) log2 µ) operations on bits, respectively.

As suggested in the introduction the largest of these costs — the costs to verify proper-
ties (b), (g), and (i) — drop significantly if the verifier has access to a reliable process (or
“black box”) for the multiplication of A by a specified vector modulo a specified prime,
instead of one for multiplication of A by an integer vector. In particular, after applications
of this black box, completion of the verification of property (b) requires r comparisons
of integers that each have length in O(log µ). Completion of the property (g) requires
the comparison of r such integers to zero. Completion of the verification of property (i)
requires the comparison of n such values to zero, instead. The number of additional op-
erations required to complete the verification of properties (b) and (g) therefore falls to
O(r log2 µ). The number of additional operations required to complete the verification
of property (i) falls to O(n log2 µ) — and, indeed, to O(n) such operations, if unpadded
binary representations of the desired matrix-vector product are supplied by the black box.

It is never necessary to verify more than one of properties (g) and (i). The following can
now be established from the above.

Lemma 3.3. Consider the cost to verify an interactive certificate for the rank of an integer
matrix A ∈ Z

n×m using the above, protocol, in such a way that an incorrect certificate is
accepted with probability less than ǫ. Suppose, as well, that ǫ−1 is at most polynomial in
n+m+ log2 ‖A‖.

(a) If the verifier has access to a black box for the multiplication of A by a a given integer
vector x ∈ Z

m×1, then the cost to verify includes

• at most two applications of this black box to compute products Ax1 and Ax2
where the binary representations of each of the entries of the vectors x1 and x2
has length in O(log2 n+ log2 m+ log2 log2 ‖A‖), and

• an additional number of operations on bits. The expected number of such oper-
ations is in

O((n +m)(log2 n+ log2 m+ log2 ‖A‖)(log2 n+ log2m+ log2 log2 ‖A‖)

+ (log2 n+ log2 m+ log2 log2 ‖A‖)
8).
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(b) If the verifier has access to a black box for the multiplication of A by a vector x ∈ Z
m×1

modulo a prime p, where where x and p are specified by the verifier, then the cost to
verify includes

• at most two applications of this black box to compute Ax1 mod p1 and Ax2 mod
p2, where the binary representations of p1, p2, and each of the entries of x1
and x2 has length in O(log2 n+ log2 m+ log2 log2 ‖A‖), and

• an additional number of operations on bits. The expected number of such oper-
ations is in

O((n +m)(log2 n+ log2 m+ log2 log2 ‖A‖)

+ (log2 n+ log2 m+ log2 log2 ‖A‖)
8).

There is no guaranteed bound for the worst-case cost to verify using the above version of
the protocol. However, the protocol is easily modified to obtain such a bound — without
significantly increasing the expected cost to verify — as well. To begin, one should change
the definition of λ (at line (3.1)) by doubling this value — so that

λ = 8× ǫ−1 × ℓ
(
1
2ℓ+ log2 ‖A‖

)
.

With this change, the probability that an incorrect certificate is accepted because of any
of the conditions considered in the proof of Lemma 3.2, is now reduced to ǫ/2.

Suppose next that one has a protocol to uniformly select a value from a fixed set that uses
t operations on bits in the worst case — but that fails, instead of producing such a value,
with probability at most 1/4. Suppose, as well, that one wishes to obtain k values that are
selected uniformly and independently from this set — and that the probability that this
process is allowed to fail is at most ǫ/8.

Note first that if one makes 3k independent attempts to select values then the expected
number of uniformly and independently selected values is equal to ck, for a real number c
such that 2 < 9

4 ≤ c ≤ 3,while the maximum number of such values that can be obtained
is 3k.

Let p be the probability that fewer than k uniformly and independently selected values
have been obtained. Then the expected number of values obtained is certainly at most

pk + 3(1− p)k = 3k − 2pk

so that

ck ≤ 3k − 2pk,

that is,

2pk ≤ (3− c)k ≤ k
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and p ≤ 1
2 . It follows that if this process is iterated at least ⌈log2(8× ǫ−1)⌉ times then the

probability that all of these attempts, to obtain k uniformly and independently selected
values, fail is at most ǫ/8. Consequently at most 3k⌈log2(8×ǫ−1)⌉ ∈ O(k log2 ǫ

−1) iterations
of the initial process are required — and O(kt log2 ǫ

−1) operations on bits are used, in the
worst case, by a process that either returns k values sampled uniformly and independently
from the desired set, or fails with probability at most ǫ/8.

Consider now the process used by the verifier to select the prime q — ignoring, for the
moment, the cost to select integers uniformly and independently from the set of odd in-
tegers between µ and 4µ. A continuation of the analysis given above establishes that if
⌈23 lnµ⌉×⌈log2(8× ǫ−1)⌉ such integers are sampled uniformly and independently from this
set, then the probability that they are all composite is at most ǫ/8. Since the binary
representations of these odd integers each have length in O(log2 µ), a process that uses a
number of operations on bits that is polynomial in O((log2 n + log2 m + log2 log2 ‖A‖)

9)
(excluding the cost to sample from a set of odd integers) in the worst case, and that fails
with probability at most ǫ/8, is easily obtained — assuming, as above, that ǫ−1 is at most
polynomial in n+m+ log2 ‖A‖.

Now consider the problem of sampling from the above set of of odd integers — considering,
in particular, the leading pair of bits of each of these integers. A process using t ∈ O(1)
operations on bits to choose these leading bits, which fails with probability 1

4 , is easily de-
scribed: Choose a pair of random bits — accepting if these are the binary representations
of either 1, 2 or 3, and failing if these are form the binary representation of 0. The number,
k of integers that are required, is the number ⌈23 lnµ⌉ × ⌈log2(8× ǫ−1)⌉ mentioned above.
It now follows by the above that a process that uses O(log2 n + log2 m + log2 log2 ‖A‖)

2)
operations on bits in the worst case can be used (with the same assumption concerning ǫ−1

as above) to choose the leading pairs of bits of the binary representations of the desired
integers, or to fail with probability at most ǫ/8. The remaining bits of the binary repre-
sentations integers can then be selected — without increasing the probability of failure,
and also using O(log2+ log2 m+log2 log2 ‖A‖)

2) operations in the worst case — simply by
selecting the remaining (non-constant) bits uniformly and independently.

Next consider the uniform selection of an integer x such that 0 ≤ x ≤ p−1 — or such that
0 ≤ x ≤ q−1 — in order to address the uniform and independent selection of α1, α2, . . . , αr

and of β1, β2, . . . , βm−r. Processes that sample uniformly from the desired sets, using a
number of operations on bits in O(log2 µ) and failing with probability at most 1

2 , have
already been described. A process (for each of p and q) with the same asymptotic worst-
case cost that fails with probability at most 1

4 , is easily obtained: Apply the process that
has already been described. If it succeeds then report its output. Otherwise repeat the
process.

Setting t ∈ O(log2 µ) and k = r, and with the same assumption about ǫ−1, a process that
either produces α1, α2, . . . , αr as required, or fails with probability at most ǫ/8, is now
easily obtained. The number of operations used on bits in the worst case is in O(r(log2 n+
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log2 m + log2 log2 ‖A‖)
2). Setting k = m − r one obtains a process that either produces

β1, β2, . . . , βm−r as required or fails with probability at most ǫ/8; the number of operations
on bits used in the worst case is in O((m− r)(log2 n+ log2 m+ log2 log2 ‖A‖)

2).

Finally, consider an interactive protocol that is as described above except that the modified
processes to choose q and α1, α2, . . . , αr, β1, β2, . . . , βm−r are used. If any of the modified
processes fails then the verifier “gives up” and accepts the information supplied by the
prover during the commitment phase. Assuming the availability of a black box to compute
Ax mod p for a specified integer vector x and prime p, the expected cost for verification is
still as given in part (b) of Lemma 3.3. The number of additional operations on but used,
in the worst case, is in

O(n(log2 n+ log2 m+ log2 log2 ‖A‖) +m(log2 n+ log2m+ log2 log2 ‖A‖)
2

+ (log2 n+ log2 m+ log2 log2 ‖A‖)
9)

assuming, once again, that ǫ−1 is at most polynomial in n+m+ log2 ‖A‖.

It remains only to consider the communication complexity of this protocol. Since r ≤
min(n,m), the following is easily proved by inspection of the above protocol.

Lemma 3.4. Consider the cost to verify an interactive certificate for the rank of an integer
matrix A ∈ Z

n×m using the above protocol, in such a way that an incorrect certificate is
accepted with probability less than ǫ. Suppose, as well, that ǫ−1 is at most polynomial
in n + m + log2 ‖A‖. Then — after (and excluding) the communication of the matrix A
from the verifier to the prover — O(m(log2 n+log2 m+log2 log2 ‖A‖)) bits are transmitted
between the prover and verifier during the execution of this protocol.
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