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ABSTRACT 

A space frame computer program, SFRAME, has been 

developed for the analysis of post-tensioned, curved, 

continuous box girder bridges. The multi node curved beam 

element of Jirousek is incorporated into the program to 

model curved bridge geometries. The element is suitable 

for the analysis of bridges in which warping of the cross 

section is not significant. The automatic computation of 

prestressing forces, due to cables of arbitrary geometry in 

space, is included in the element formulation. The program 

also computes prestress losses due to anchorage slip and 

due to friction. In this regard, no approximations are 

required in calculating the change in angle in space along 

the cable. 

The behaviour of the element is investigated under a 

number of simple loading cases. It is shown that while the 

element gives exact results under distributed loads, or 

under concentrated loads at the end nodes, inexact results 

are produced by concentrated loads applied to internal 

degrees of freedom. An investigation of the element 

flexibility matrix identifies the reasons for these 

inaccuracies. 

The computer program is used to analyse torsional 

effects in horizontally curved continuous bridges. It is 

shown that while prestressing may balance out the bending 
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moments due to dead loads, the induced torsional moments 

add to, rather than negate, the dead load torsional 

moments. A technique is presented for computing cable 

profiles and appropriate amounts of prestressing in box 

girder sections, which simultaneously balance both bending 

and torsional moments along the bridge. In this technique 

higher order cable profiles, factored by computed 

coefficients, are superimposed on the basic cable profile 

to produce a resultant cable layout, that gives a least 

squares approximation to an exactly balanced configuration 

of both bending and torsional moments. The closeness of 

the fit is shown to depend upon the number of higher order 

terms added to the basic profile. The method is applied to 

two design examples: a two span symmetric, circularly 

curved bridge and a three span bridge with reverse 

curvatures. 
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E Young's modulus 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Overview 

During the past two decades concrete box girder 

bridges have become an obvious feature of modern highway 

systems. Cross sections may be either single or multicell, 

depending on span and width requirements. Prestressing is 

generally used in box girder bridges enabling longer 

spans, with shallower and more slender sections to be used, 

thus yielding benefits with regard to space restrictions. 

Moreover, from an aesthetic standpoint, prestressed box 

girder sections are more satisfactory than many alternative 

sections. 

With the development of complex highway interchange 

facilities in most major cities, curved highway bridges 

have become an obvious part of the urban infrastructure. 

It is likely that with continued highway construction in 

modern cities, the use of curved bridges will become an 

increasing necessity in fitting new developments within the 

pre-existing infrastructure. The recent Bow River bridge 

at Edmonton Trail and Memorial Drive in Calgary ( 43), is an 

example of such a structure. As in the case of straight 

bridges, post- tensioned, curved box girder bridges are an 



2 

economically and aesthetically satisfactory cross section. 

Box sections are particularly suitable for curved bridges 

because of their high torsional rigidity. For this same 

reason solid or voided sections, Figure 1.1, may also be 

used in curved bridges. 

Curved prestressed box girder bridges are complex 

three dimensional structures and are most accurately 

analysed using curved plate and membrane finite elements. 

However, the longitudinal distribution of bending and 

torsional moments along a curved bridge may be obtained 

with satisfactory accuracy using a less rigourous space 

frame analysis; in which the structure is modelled as an 

assemblage of one dimensional beam elements. 

Several authors ( 11,14,37,49), have identified the 

problem of induced torsional moments due to prestressing in 

curved beams. In the case of straight,beams the load 

balancing concept of Lin ( 29), enables the designer to 

balance out a predetermined portion of the beam's dead load 

by appropriate prestressing. For curved beams, however; 

while the longitudinal bending moments may still be largely 

balanced out by prestressing the beam, the horizontal 

radial forces due to prestressing produce torsion in the 

beam which tends to add to, rather than negate, the torsion 

due to external loads. 
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Solid or Voided Sections Box Sections 

Figure 1.1 Typical Bridge Cross Sections 

 I 
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1.2 Scope of Thesis  

The major aim of this thesis is to develop a technique 

for designing prestressing cable profiles in curved, box 

girder bridges such that both longitudional bending and 

torsional moments , due to the applied dead ldad, are 

simultaneously balanced at all points along the bridge. To 

perform the analysis a computer program, SFRAME ( 19), 

incorporating straight and curved beam finite elements was 

developed. The analysis of curved, prestressed bridges 

required the inclusion in the program of a general curved 

element, of arbitrary geometry in space, with the automatic 

computation of, prestressing forces included in the element 

formulation. In the present analysisno account is taken 

of concrete cracking or of material non-linearities. 

Similarly time dependent effects due to creep and shrinkage 

in the concrete are not considered. Thus only the 

behaviour of curved prestressed bridges in the linear 

elastic range is investigated. However, it is generally 

accepted that for design purposes, a knowledge of the 

distribution of forces within a structure based on linear 

elastic analysis is adequate. 
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1.3 Thesis Outline  

In Chapter Two of this thesis the appropriate 

literature, dealing with curved bridges and suitable 

methods of analysis, is identified. Specifically, 

traditional methods of analysing curved beams are outlined 

and the applicability of certain simplifying assumptions is 

discussed. In particular, the use of three dimensional 

beam analysis to model the behaviour of curved box girder 

bridges is presented. 

The availability of different curved, beam finite 

elements is discussed and the reasons for the choice of the 

multi node element of Jirousek ( 25), are justified. In 

addition, the need for automatic computation of equivalent 

nodal loads due to prestressing is advocated, and the 

advantages of being able to cater for cables of arbitrary 

geometry in space is outlined. Material dealing with 

prestressing of curved beams is presented, and a review of 

available techniques for controlling torsional effects in 

prestressed curved beams is given. 

In Chapter Three the formulation of a discrete 

isoparametric beam element, based on Timoshenko beam 

theory, is presented. The incorporation of prestressing 

loads due to cables of arbitrary geometry in space, and 

with varying prestressing force is also outlined. The 
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method of computing short term prestressing losses due to 

friction and anchor slip is discussed, and it is shown that 

losses due to vertical and horizontal components of angular 

change are computed exactly. 

Chapter Four deals with the behaviour of the curved 

beam element under some simple loading conditions. An 

investigation of the element stiffness and flexibility 

matrices is carried out to help in understanding the 

inexact behaviour of the element in certain instances. 

Based on the results obtained, recommendations are made as 

to the appropriate use of the element and its suitability 

under particular conditions of loading. 

In Chapter Five torsional effects in curved, 

post-tensioned box girder bridges are investigated using 

SFRA4E (19), and situations in which torsional moments may 

be a problem are identified. A method is developed for 

computing prestressing cable profiles that minimize the 

torsional moments along the bridge. To demonstrate the 

method, two examples are considered; a circularly curved, 

two span continuous bridge and a three span continuous 

bridge with reverse curvatures. 

Conclusions are drawn in Chapter Six as to the 

applicability and practicality of the technique developed 

in the previous chapter. In addition, the benefits of 

using the computer program, SFRPiME, are outlined. In 
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particular, the availability of a curved beam element of 

arbitrary geometry in space and the facility for automatic 

computation of prestressing forces are shown to have been 

of most importance. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Curved Girders  

2.1.1 Introduction - In designing any curved 

structural element the engineer is faced with a complex 

force distribution, involving the interaction of bending 

and torsional moments along the member length. The amount 

of material dealing with the analysis of horizontally 

curved beams is substantial and the readeris referred to 

the list of references in the state of the art review by 

McManus et al. ( 30), for a comprehensive listing of 

available literature up to 1968. While closed form 

solutions to the static response of curved girders have 

been obtained, these are in most cases not suitable for the 

design engineer because of their complexity. 

The governing differential equations for horizontally 

curved girders were formulated by Vlasov ( 48). The 

resulting sixth order equations include the effects of 

warping and are thus suitable for the analysis of sections 

in which warping torsion is significant. However, their 

inherent complexity preclude their use in practical design 

situations. A closed form solution to the equations was 

obtained by Hems and Spates ( 23). This method of 
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solution, however, is limited to situations with simple 

combinations of loads and boundary conditions. Numerical 

solutions have been obtained by Bell and Hems ( 7), and 

Hems ( 22), in the form of a finite difference and a 

Fourier series solution. These techniques are more 

generally applicable than the closed form solution and are 

suitable for the analysis of bridges in which warping 

effects may be substantial, such as multi girder curved 

bridges. 

2.1.2 Simplified Methods of Analysis - All simplified 

methods of analysis of curved girders are based on the 

assumption that warping torsion is not significant and that 

it can therefore be neglected. Thus, curved girders are 

analysed as beams in space with just six degrees of 

freedom, three displacements and three rotations, at each 

cross section. The traditional methods of structural 

analysis, such as virtual work ( 16), stiffness ( 47), and 

flexibility methods ( 35), have been applied to determine 

the longitudional distribution of bending moments and 

torques in curved members. 

Vreden ( 49), analysed continuous curved beams using 

the flexibility method. Influence lines were computed by 

the author and a number of curved beams were analysed under 

different loading conditions. Witecki ( 50) developed an 

approximate method for the analysis of curved bridges. 



10 

Bassi et al. ( 4), have shown that this method is accurate 

for small curvatures and/or short spans but becomes 

increasingly less so for longer spans or for sharply curved 

geometries. 

2.2 Applicability of Simplified Analysis  

to Box Girder Bridges  

Two assumptions govern the applicability of elastic 

space frame analysis to the analysis of box girder 

bridges ( 18); - 

(1) Plane sections remain plane on bending i.e. no 

warping of the cross section occurs. 

(2) There is no transverse distortion of the cross 

section. 

In all thin walled beams subject to torsion, out of plane 

deformation or warping will occur ( 32). If the warping is 

restrained, warping torsion will be induced in the member. 

In general, however, it may be assumed that for closed box 

beams warping effects are not significant. This is 

particularly true in situations where the span to width 

ratio of a box girder bridge is sufficiently large. As a 

general rule the ratio 10/b should be greater than 4, where 

10 is the distance between points of zero dead load moment 

and b is the distance'between outer webs ( 18). This 
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limitation is satisfied by the majority of modern curved 

box girder bridges, particularly single box sections. 

Box sections are very suited for curved bridges 

because of their high torsional stiffness. However, a box 

section will tend to distort transversely under the applied 

loading ( 22). The provision of transverse diaphragms 

within the box will, however, minimize cross sectional 

distortion. The above two conditions are also satisfied by 

solid or voided cross sections, so that a space frame 

analysis is also valid for bridges with such cross 

sections. Bassi et al. ( 4), have confirmed this and have 

used three dimensional frame analysis for solid, curved 

sections. 

Various authors have confirmed the validity of space 

frame analysis for curved box girder bridges. Scordelis 

and Larsen ( 39) , in a theoretical and experimental 

investigation of a two span, multi box section curved 

bridge have confirmed the accuracy of a space frame 

modelling. They emphasised, however, that a separate 

analysis is required to determine the transverse 

distribution of internal forces and moments within the 

individual plate elements of the box section. The results 

of the space frame analysis were compared with finite strip 

and general finite element analyses, and sufficiently close 

correlation was obtained between the three methods to 
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indicate that space frame analysis is adequate for design 

purposes. Other authors who have confirmed the 

satisfactory use of space frame modelling for curved bridge 

structures are Van Zyl and Scordelis ( 46), and El-Amin and 

Brotton ( 15) 

In a recent publication Scordelis et al. ( 38) , have 

stated that for certain box girder types, beam theory 

assumptions may be " seriously in error". However, the 

curved bridges to be discussed in the present analysis 

satisfy the conditions previously outlined, regarding span 

to width ratio of the bridge and distortional properties of 

the cross section. Therefore, a space frame modelling is 

certainly satisfactory in this case. 

2.3 Available Beam Finite Elements  

2.3.1 Introduction - In modelling a curved bridge as 

an assemblage of beam elements the most simple approach is 

to model the geometry with straight chord elements. A 

sufficiently fine mesh of straight 12 d.o.f. bar elements, 

Figure 2.1(a), will produce accurate results in many 

situations. However, for more complex bridge geometries it 

becomes increasingly difficult to accurately model the 
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bridge with straight elements. In particular, for the 

analysis of a structure with vertical as well as horizontal 

curvature, with varying superelevation or with varying 

cross sectional properties along its length, a more complex 

element is required. 

2.3.2 Curved Beam Elements - A variety of curved beam 

element formulations exists. The most basic of these are 

horizontally curved circular elements, such as the element 

of Thornton and Master ( 45), derived using a direct 

stiffness formulation. Such elements, however, offer few 

advantages over a basic straight bar element. When used to .  

model structures with varying curvature or with varying 

stperelevation a relatively fine mesh must be used for 

satisfactory results. 

An alternative formulation for curved beam elements is 

as a special form of a three dimensional isoparametric 

element, Ferguson and C1ak ( 17). This element is superior 

to the circular element above in that it is of arbitrary 

geometry in space and of variable cross sectional area. 

The element is particularly useful as a shell stiffening 

element and may also be used as a stand alone beam element. 

However, the element cross section, though of variable 

area, must be rectangular. This limits the element's 

usefulness in the analysis of many typical bridge cross 

sections. In addition, because the element isderived as a 
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modified form of a three dimensional element it does not 

exactly model beam behaviour under certain types of 

loading. Jirousek ( 25) , noted that the element is not 

successful in representing the torsional and shear response 

of a beam. It is preferable, therefore, that an element 

which is used to model assumed beam like behaviour be based 

on the appropriate beam theory rather than be derived as a 

special form of a continuum element. For this reason the 

elements of Buragohain ( 10), and Surana ( 42), in addition 

to the above element of Ferguson and Clark ( 17), are not 

considered further. 

Albuquerque ( 3), developed a curved " Semiloof" beam 

element, based on Timoshenko beam theory, for use with 

shell elements. Though based on Timoshenko beam theory, 

the element is not suitable for use as a stand alone beam 

element, because it contains special rotational degrees of 

freedom at internal " Loof" nodes to ensure compatibility of 

deformation with a shell element. Therefore, it was 

decided to adopt the element formulation outlined by 

Jirousek ( 25), instead. This latter curved element is also 

based on Timoshenko beam theory, but unlike the Semiloof 

element, the Jirousek element follows more closely standard 

isoparametrlc finite element methodology. An additional 

advantage was that this element presented greater potential 

for automatic computation of prestressing forces. The 
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element, Figure 2.1, is multinoded and in the form 

programmed for the present analysis may contain from three 

to six nodes, ( eighteen to thirty six degrees of freedom) 

The appropriate order element may be chosen according to 

the complexity of the geometry to be modelled. Difficult 

bridge geometries may be satisfactorily modelled with 

relatively few elements and arbitrary variation in cross 

sectional properties. is easily catered for. Thus the 

element is extremely versatile in character and general in 

application. 

Bazant and El-Nimeiri ( 6), developed a straight, skew 

ended, two noded beam element witheight degrees of freedom 

at each node. In addition to the usual translational and 

rotational degrees of freedom, the authors included a 

longitudional warping and a transverse distortional degree 

of freedom. Though the element is straight the skew ends 

enable it to model curved geometries more closely than an 

assemblage of 12 d.o.f. bar elements. Van Zyl and 

Scordelis ( 46), used the element in the analysis of curved 

prestressed segmental bridges. Even though the element did 

not appear as versatile, in the opinion of the present 

author, as the Jirousek element in modelling complex 

geometries, nevertheless, the skew ends would be 

advantageous in analysing curved bridges with skew 

supports. In the presentthesis, however, only curved 
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bridges with radial supports are considered. It would be 

an interesting follow through to the present work to 

compare results obtained using the Jirousek element with 

those obtained using the Bazant/El Nimeiri element in order 

to measure the actual warping and distortional effects. 

2.4 Computation of Prestressing Forces  

In a paper by Salse ( 37), equivalent nodal loads due 

to prestressing were computed by hand. This, however, 

becomes a very laborious proposition for a curved bridge in 

which there may be a number of cables with both vertical 

and horizontal components of curvature. Thus in any 

detailed computer analysis of curved bridges it becomes 

necessary to incorporate the automatic calculation of 

equivalent nodal loads due to prestressing into the 

computer program. Van Zyl and Scordelis ( 46), indicate 

that the computer program developed in that particular 

analysis automatically computed prestressing loads, but 

give no indication of the method used. Scordelis et 

al. ( 38), however, give a detailed account of the automatic 

prestressing options in finite element and finite strip 

programs developed at the University of California, 

Berkeley. In this formulation, cable coordinates may be 

input directly or, 'alternatively, the cable profile may be 

parametrically defined. Short term prestressing losses due 
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to friction and anchor slip are computed. The cable is 

discretized into an assemblage of straight segments and the 

equivalent nodal loads due to each segment are computed. 

Jirousek et al. ( 8,26), have developed a method of 

automatic computation of prestressing loads in thick shell 

elements by defining the cable profile within each element 

isoparatnetrically. The principal advantage of this 

technique, over that outlined above, is that the forces are 

computed due to the actual curved cable rather than for an 

equivalent, approximate subdivision into linear segments. 

The isoparainetric formulationi outlined for shell elements, 

is adapted in the present analysis for use with the multi 

node curved beam element of Jirousek. 

2.5 Torsion due to Prestressing in Curved Bridges  

Vreden ( 49), used the flexibility method to compute 

torsional moments due to prestressing in curved beams. It 

was shown by this author that no torsional moments are 

induced by prestressing in statically determinate curved 

beams, but that torsional moments are generated by the 

redundant reactions of indeterminate structures. Egger 

(14), developed techniques for the minimization of combined 

torsional moments resulting from external loads and 

prestressing. Two techniques were outlined: firstly the 

vertical profiles of the cables on each side of the beam 
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may be altered, thus producing unequal balancing forces due 

to each cable, Figure 2.2. The unequal upward forces 

generate a twisting moment which may be used to partially 

or completely balance the torsion produced by the external 

loads and by the horizontal radial forces due to 

prestressing. An analytical technique was presented for 

computing cable profiles and prestressing forces required 

to simultaneously balance both bending and torsion at all 

points along the beam. Alternatively, a second technique 

produces the same effect by applying different prestressing 

forces on each side of the beam. For two identical cable 

profiles two different prestressing forces will produce 

unequal upward balancing forces. This latter technique has 

the disadvantage of introducing transverse bending moments 

in the beam; however, in many situations significant 

transverse moments may be sustained by box girder or solid 

sections. 

Salse ( 37), developed governing equations of 

equilibrium for curved beams subject to prestressing forces 

and identified a method for balancing both bending and 

torsion by using prestressing cables with both vertical and 

horizontal eccentricities, Figure 2.3. However it was 

pointed out that complete balancing of torsional moments 

is, in many cases, not practically feasible; since the 
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required horizontal eccentricities may lie outside a 

reasonably sized section. In addition, the technique is 

not suitable for box sections since the prestressing 

cables, in this case, are constrained to lie within a 

particular web. However, it may be applied to solid or 

voided sections. 

Campbell and Chitnuyanondh ( 11) , proposed a 

semi-numerical technique to determine a cable profile that 

balances a proportion of the torsional moments in curved 

beams. Like Salse's'technique, horizontal eccentricities 

were introduced in the cable profile to counteract the 

torsional moments due to the applied dead load. A second 

method was also proposed, involving the use of eccentric 

intermediate supports. The eccentric supports introduce a 

concentrated torque at the supports, opposite in sign to 

the torsional moments induced by external loads and 

prestressing. 
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CHAPTER THREE 

CURVED ELEMENT DEVELOPMENT 

3.1 Introduction  

3.1.1 General - As already discussed in Chapter Two a 

number of curved beam element formulations exist in the 

literature. For the reasons outlined the element 

formulation presented by Jirousek ( 25), was deemed most 

appropriate for the present analysis. The element is based 

on Timoshenko beam theory and is developed using 

isoparametric finite element methodology. In Jirousek's 

formulation the element may be used either as a stand alone 

beam element or as a thick shell stiffening element. For 

the stand alone beam element there is no generalised 

displacement compatibility requirement between the beam and 

shell elements, and thus the formulation of the element 

stiffness matrix is correspondingly simplified. This 

simpler procedure is adopted in the present work. 

3.1.2 Timoshenko Beam Theory - Euler beam theory does 

not include , directly, the effects of shear deformation; 

although shear effects can be included in the stiffness 

matrix ( 20). Timoshenko beam theory, on the other hand, 

directly incorporates shear effects in the displacement 
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function ( 40). The total slope of the beam centreline is 

given by the sum of the effects due to bending and shear 

deformation. 

In Figure 3.1 it can be seen that the effect of pure 

bending is to rotate the cross section, ab, through an 

angle 0. In the case of pure shear it is assumed that any 

cross section ab, normal to the beam centreline in the 

undeformed state, remains vertical after deformation. Line 

elements tangent to -the centreline rotate through an angle 

'v', corresponding to the shear strain. The total slope of 

the beam centreline is given by: 

dw 
= y(x) + 0(x) dx (3.1) 

where w is the displacement. The shear deformation is: 

Y(X) = dw - e(x) 
dx 

(3.2) 

At any cross section it is assumed that the shear 

strain is the same throughout the depth of the beam ( 40) , 

Figure 3.2. Thus y(x), the shear angle, is constant over 

the cross section. This implies that the shear stress is 

constant over the beam cross section, which of course is 

not true. However, the error resulting from this 
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assumption is catered for by using the appropriate reduced 

cross sectional area ( 20). 

The shear force causing the shear strain is given by: 

= GA (dw 
r ii 

- 0) 
(3.3) 

where V is the shear force, G is the shear strain and A  is 

the reduced shear area. The bending relation is the same 

as for Euler beam theory: 

M = ElK = El dx (3.4) 

where M is the bending moment, E is Young's modulus, I is 

the moment of inertia and K is the curvature. In this 

case, however, the rotation is not given by the first 

derivative of the displacement function. Thus, because the 

bending rotation and displacement functions are independent 

they must therefore be interpolated independently in any 

finite element formulation. This matter is discussed 

further in Section 3.2.2. 

3.1.3 Isoparametric Element Formulation - The 

development of any general curved element necessitates the 

use of the isoparametric formulation ( 5,12) . Isoparametric 
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elements are obtained by mapping from local or natural 

element coordinates to the global, cartesian coordinate 

system. This mapping is defined by the Jacobian of 

transformation. The 

element will be one, 

the element. In the 

natural coordinate system of the 

two or three dimensional, depending on 

case of a beam element a single 

coordinate is required. 

interpolated in the same 

functions. If the order 

The geometry of the element is 

way as displacements, using shape 

of the shape functions defining 

geometry and displacement are the same then the element is 

said to be isoparametric. If the geometry is interpolated 

with shape functions of higher order than those defining 

the displacement function, the element is super-parametric. 

Conversely, if the shape functions defining geometry are of 

lower order than those defining the displacement field the 

element is sub-parametric. The present element development 

uses the same order of interpolation for both geometry and 

displacement. 

3.2 Theoretical Formulation  

3.2.1 Element Geometry - The global and local 

coordinate systems are shown in Figure 3.3. The element 

may contain from three to six nodes with each node defining 

a point on the beam centroidal axis. A three node element 

describes a quadratic curve in space and similarly a six 
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node element describes a quintic curve. Following standard 

isoparametric methodology a natural curvilinear coordinate, 

,may be defined, varying from -1 at the first element 

node to +1 at the element end node. Any point on the 

element centroidal axis is defined by: 

M 
= E N.() 

1=1 1 

zc M I (3.5) 

where N() is a Lagrangian interpolation function given 

by: 

N Q)   
i1) ii-1 jj+l .. im 

(3.6) 

Each shape function, N1 is a polynomial of degree m-1 and 

has the property that N = 1 for = and N = 0 at all 

other nodes. The terms and in Equation 3.5 are 

the global x,y and z coordinates respectively, of node i. 

The subscript c refers to the element centroidal axis. 

3.2.2 Displacement Functions - The element 

displacements are interpolated with the same shape 
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functions used to define the element geometry 

(isoparametric) 

M 
v() = E 

i--1 

in 

uci 

= E 
1=1 

(3.7a) 

(3.7b) 

where u,v,w are the displacements in the global x,y and z 

directions respectively of the element centroidal axis, and 

are the corresponding global rotations. It can be 

seen that the above interpolation does not use Hermitian 

shape functions, as would be used in the case of Euler beam 

theory. With Hermitian functions the displacement at any 

point along the beam is a function of the nodal 

displacements and of the first derivatives of 

displacements. With Timoshenko beam theory the rotation no 

longer corresponds to the first derivative of the total 

displacement and thus the displacements and rotations must 

be interpolated independently 'using Lagrangian 

interpolation functions. 
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3.2.3 Coordinate Transformation - The local and global 

components of displacement are related as follows: 

{ut \ ( U 

c \ l I cl 

cJ = [T] <k / 
WI 1C 

ox 

= [T] 

oz 

(3.8a) 

(3.8b) 

where the primed terms refer to te local axes and the 

unprimed terms to the global axes. The above equations may 

be written in condensed form as: 

{.u'} = (H] Jul (3.8c) 

[H] 
[T] 0 

0 [T] (3.9) 

The matrix of transformation, [ TI , cannot be uniquely 

defined by the global nodal coordinates alone. Several 

approaches are possible in defining the information 
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required to generate this matrix. A common method is to 

give the direction cosines of the local y' or z' axes with 

respect to the global axes; however it is not possible to 

interpolate nodal direction cosines to any required , point 

on the beam. For this reason an alternative approach is 

adopted in the present development. The angle,, between 

the local y' axis and the global xy plane is defined at 

each node, Figure 3.4. The magnitude of the angle may be 

computed at any point along the beam by interpolating 

between the nodal values. Thus: 

61 

(3.10) 

Given the value () , the transformation matrix, [T], may 

be defined at any point along the element. The method of 

computation outlined here follows closely the derivation in 

Jirousek's paper ( 25). 

The matrix, (TI, may be written: 

[TI = 

-x ,x Ax ,y Xxtz 

Ayt x Xyy Xy z 

_Az ,x Xzly A z 

(3.11) 
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• where IX x ,I is the vector of direction cosines of the local 

x' axis with respect to the global axes. The vectors fx ,} 
y 

and {x z x } are similarly defined. The vector {x ,} is given 

by: 

} 

'there {t} = 

and 

{ t 

xl ci J 
m 

=E 

y j=1 t z 
Z Ci) 

= /t2 + t 2 + t 

(3.12) 

(3.13) 

(3.14) 

The method of computing ( 2, ,} depends upon the 
y 

orientation of the member cross section. Whent and t 

are not simultaneously equal to zero Ix y  is computed as 

follows: 

with 

sin 

- _b±2_4—ac  
xy,y - 2a 

+/ if t, x > 0 and -/. if   < 0 
x 

(3.15) 

(3.16) 
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where a=(t2 +t2); b=2tt 
x y y  

and c=t2 sin 2-t2 2 COS cl, 

If t 0 
x 

- (tA + tA 
x t yyy xyz 

If t = 0 

A ytx - = +/ 2 - 

with +/ if t < 0 and -/ if t > 0 
y 

(3.17a) 

(3.17b) 

For the situation where t = C and t = 0 the cross 

section is parallel to the global xy plane, Figure 3.4, and 

the local y'-axis lies in the xy plane. In this case 

must be redefined as the angle between the local y'-axis 

and the global x-axis. For this condition: 

xy *y 

= cos 

= sin 

= 0 I (3.18) 

Having computed the vectors {x, } and {x, } , the 

third vector of direction cosines, {X} , is computed from 

the vector ( cross) product of the other two. 
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3.2.4 Cross Section Properties - The present element 

is valid for any compact cross section. Cross sections in 

which warping deformations are significant are not 

accurately modelled by this element. The element may be of 

any shape, subject to satisfying the above condition, and 

the cross sectional properties may vary along its length. 

The element cross section is normal to thb centroidal axis 

and thus skew sections are not considered in the analysis. 

In formulating the element stiffness matrix the following 

quantities are required: 

(1) Cross sectional area, P. 

(2) Reduced shear areas, At and Az'. 

(3) Torsional constant, J. 

(4) Principal moments of inertia, I,' and Is '. 

(5) Local ( section) coordinates of the section shear 

centre, y and z 

The above values are specified at the nodes and are 

interpolated to give the respective quantities at any 

section along the member. Thus, for cross scctional area: 

m 
A() = E N. () A. 

Other quantities are interpolated in the same manner. 

(3.19) 
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3.2.5 Strain / Displacement Relation - The vector of 

generalised strains at any section in a curved beam is 

given by: 

V t 
six 

W' 
six 

0' 
x,x , 

-  el z 

+ 0' 
y 

> 

/ 

(3.20) 

where the subscripts c and s refer to the centroidal axis 

and shear centre respectively, and , x' denotes 

differentiation with respect to the cross section normal. 

The above strain/ displacement relationship incorporates 

shear effects and assumes that the cross section is normal 

to the centroidal axis. The generalised stresses are 

obtained by multiplying the generalised strains by the 

elasticity matrix, (D] , so that: 

t} = [D] [c} (3.21) 
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where {} = 

and [D] 

EA 

GA 
zt 

Elements not 
shown are zero 

GJ 
X I 

El 
y 

El 
z 

The term N X y , is the axial force; V , and Vz , are shear 

forces in the local y' and z' directions respectively; Mx s 

is the torsional moment about an axis through the shear 

centre, and M, and M, are bending moments about the local 

y' and z' axes respectively. The terms of the [D] matrix 

are as previously defined. 

The strain vector in Equation 3.20 is given in terms 

of displacements in the local coordinate system. These are 



39 

obtained via Equation 3.8. The terms v' and w1 are given 

by the following relation, see also Figure 3.5: 

{v,} { vi} _Z t ) S c sW1 W1 x yl  
= 

(3.22) 

Inspection of the strain vector reveals that the 

differentiation of the displacements is with respect to the 

cross section normal x'; however, the displacement at any 

point along the beam is known only as a function of the 

natural coordinate, E. Thus for this element, as for all 

elements based on the isoparalnetric formulation, a scaling 

factor or Jacobian of transformation between the coordinate 

systems must be defined. Invoking the chain rule of 

differentiation yields: 

d d _ l d 
r — dlt 

ere t = / 2 + 2 + 2 
x y z 

(3.23) 

(3.24) 
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and 

t 
x 

t 
y 

tz 

(3.25) 

It can be seen that Equations 3.24 and 3.25 are identical 

to Equations 3.14 and 3.15 respectively. 

The terms of the strain matrix are now expanded. The 

dependence upon has been omitted for clarity and 

simplicity. Using Equations 3.7 and 3.8: 

U I U 
c ci 

In 

v' = [TI Z N v 
1 i . c . ci 

i= 

W I W. 
x ci 

Therefore 
1 
t 

M 
[TI z 

i=1 

dN1 

m 

elx xi 

Also = [TI y i 1 E N. 1 eyi 
= 

0' zi I zi 

(3.26) 

(3.27) 

(3.28) 
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From Equation 3.22: 

V 1 = V' - 0' Z' 
S C X S 

dv' 
C d Vs T ( 0'z) 

= v' - (e'z' + z'o' ) 
dx' x s,x' S X,X' 

From Equation 3.28 may be written: 

m 
N. 
1 

i=1 

(3.29) 

(3.30) 

where { X,} has been previously defined in Equation 3.11. 

Thus: 

= {A, } i1 a Oyi 

"ozi 

From Equation 3.19 is given by: 

M 
= E N. z'. 

S . 1 Si 
i=1 

and thus 

I °xi 
M. dN. 

1 
(3.31) 

(3.32) 



M dN. 
z  ZI t - ,x 1 

i=l a r si 

The above derivation is repeated in the following: 

Wt = W t + e  
S C X S 

w' , = w' , + (U' y ' + y ' 0' ) 
s,x c,x x s,x S X,X 

From Equation 3.19: 

M 
= Z N. y'. 

S . 1 SI. 
i=1 

dNYs'X . 
= E j 

The strain displacement relation is given by: 

t 61 
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

where Jul is the vector of nodal displacements. Using 

Equations 3.27 to 3.36 the strain displacement matrix may 

be written in expanded form as: 
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[B] = 

0 

(T 

3x3 

3x3 

i=1 

0 

dz., , dN1 
- t N1(Aj - j-- N1 (AJ - - (A J 

d 9 x 

tN1 (A 11 +_— N (A ] dN 
d 1 x' 

dN1 
TT (TI 

3x3 

3x3 

= 

(3.38) 

3.2.6 Element Stiffness Matrix - The element stiffness 

matrix is computed in standard finite element fashion: 

[S] = r [BIT ( DI [B] d9. Jo 

or [S] = tB]T(DI[B] td 

(3.39) 

(3.40) 

Numerical integration is required to integrate the 

expression above. Gaussian quadrature is used, the order 

of which depends on the order of the shape functions in the 

[B] matrix. In the present analysis the highest order term 

resulting from the product [B]T[D] [B] is N1N. Thus for 



44 

example, in the case of a five node element N () is 

quartic and the term NN is eighth order. Gaussian 

integration using k sample points can exactly integrate a 

polynomial of order 2k - 1 ( 12) , so that for exact 

integration of an eighth order function five point 

integration is required. 

In certain cases a reduced order of integration may 

give results which are as accurate, or even more accurate 

than exact integration ( 5). This is the result of the 

softening effect of reduced integration countering the 

inherent over-stiffness of a finite element discretization. 

While an order of integration one less than that required 

for exact integration gave exact results with the present 

element, a reduction of two in the order of integration in 

many cases gave completely erroneous results. It is felt 

that the extra computing cost of exact integration in the 

present element is minimal, and that there is therefore no 

benefit in using a reduced order of integration. 

3.2.7 Consistent Nodal Load Vector - Consistent nodal 

loads are computed in the usual way. In the case of 

distributed forces or couples, the consistent load vector 

is given by: 

tF} = +1 [N()} q() td (3.41) 
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The vector { N()} is a vector of nodal interpolation 

functions at the appropriate Gauss point, and q() is the 

magnitude of the distributed load at that point. For 

simplicity, the same order of quadrature is used in 

computing the consistent load vector as is used to generate 

the element stiffness matrix, even though a -lower order of 

integration would be adequate. 

The consistent load vector due to a concentrated force 

or couple, f, applied to any point on the element is given 

by: 

{F} IN f (3.42) 

where { F} and {N()} are as previously defined. 

3.3 Prestressing Effects  

3.3.1 Introduction - In the analysis of any 

prestressed bridge it is necessary to include the forces 

induced by prestressing. Ideally a computer program should 

be able to compute automatically the loads due to different 

arrangements of cables so that the design engineer may 

analyse different cable profiles, with different 

prestressing forces, without having to recompute loads for 

each individual case. In the present computer program the 

effects of prestressing are modelled as element nodal 



46 

loads. The following assumptions are -adopted ( 8,26) : 

(1) The cross sectional areas of cables, cable ducts and 

non prestressed steel are not considered when 

computing cross section properties. 

(2) The cable forces are not affected by instantaneous 

or time dependent shortening of the structure. 

The first assumption means that the element stiffness 

matrix is unaffected by the number of and location of the 

prestressing cables, or the non prestressed steel. Thus 

different cable layouts are analysed as separate load cases 

without having to recompute the structural stiffness matrix 

for each alternative cable profile. 

The method of computing prestressing forces that is 

used in the present analysis is more general than the 

traditional load balancing technique ( 29). As demonstrated 

by Rozvany ( 36), the load balancing technique does not give 

a rigourous mathematical solution but is satisfactory for 

shallow beams. For deeper beams it becomes less accurate 

to assume that the radial forces due to the cable curvature 

are vertical, Figure 3.6. According to Leonhardt ( 28), the 

non verticality of the distributed cable forces should be 

considered where the sag to span ratio exceeds 1:12. In 

the present analysis no such limitation exists because the 

exact loads due to prestressing are computed from first 

principles. 
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Commonly Assumed Vertical Load Distribution 

Actual Radial Load Distribution Adopted 
in Present Work 

Figure 3.6 Assumed and Actual Force Distribution due 
to Curvature of a Prestressing Cable 
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3.3.2 Geometric Description - When computing force 

due to prestressing on a 

problem is to define the 

location relative to the 

If the global coordinates 

cross sections are known, 

by the relation: 

curved beam element, the first 

cable's location in space and its 

centroidal axes of the element. 

of the cable at the element nodal 

the cable may be defined in space 

In 
= E N 1 .(X) 

1=1  { (3 . 43) • 

where the subscript p refers to the prestressing cable. 

The shape functions are the same polynomials defined 

by Equation 3.6. If the cable passes through the end cross 

sections of the element, Figure 3.7a, the natural 

coordinate, X, of the cable corresponds to , the natural 

coordinate of the beam centroid. This correspondence is 

assumed in the following development and thus is used 

throughout. Cables not anchored at element ends are not 

considered in the analysis, Figure 3.7b. 

In the computer program SFRAME (19), the 

eccentricities of the. cable with respect to the principal 

axes of the section are given in the input data at each 

node. The global coordinates may be computed using the 

following relation: 
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Node 
i 

(a) Permissible Cable Profile 

Node 
1 

Node 
M 

Node 
M 

(b) Invalid Cable Profile ( Cable Anchorage Point 
does not coincide with the end node of an 
element) 

Figure 3.7 A Cable Profile to be Used with the 
Jirousek Curved Beam Element 
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where 

and 

{ 
t 

{ I + [K]. 
1 I 

are the global coordinates of the 

cable at node i, 

(3.44) 

are the global coordinates of the element 

centroidal axis at node i, 

are the cable eccentricities in the y 

and z' directions at node i. 

The matrix of transformation [ K] is a 3x2 matrix given by: 

[K]. = 

A, - 

A = y z  [{A,} A,}j 

A A 
y  z  

(3.45) 
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where IX  and { XZ,} are the vectors of direction cosines 

of the local y' and z' axes at the given section, as 

previously defined in Equation 3.11. 

The shape functions N1 () are also used to define the 

prestressing force in the cable at any point along the 

cable length. The cable force is defined at each element 

node and is interpolated in the usual manner: 

M 
P(s) = E 

i=1 
(3.46) 

where P represents the absolute value of the prestressing 

force. 

3.3.3 Cable Anchorage Loads - The element loads due 

to prestressing consist of: 

(1) Point loads at anchorages and, 

(2) Distributed line loads along the cable 

Any element within the structure may contain anchorage 

points. These points must, coincide with an external node 

of the element. The anchorage loads are tangential to the 

cable axis at the nodal cross section and may be resolved 

into global components using the relation: 



52 

1 {. 
where the subscript i refers to the ith node and 

(3.47) 

unit vector tangential to the cable at the appropriate 

node. It is obtained from the following equations: 

t 
x 

{t}= t 
y 

t 
z } dN. 1 

= / t2 +t 2 +t 2 
x y z 

A 
ct t 

{ 
1 

ypi 

z. 
1 

is a 

(3.48) 

(3.49) 

(3.50) 

The vector of nodal forces may be transformed into local 

coordinates using the familiar relation: 
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{ 
1 

F 
1 

= [T] 

F1 

F2 

F3 
1 

(3.51) 

where [ TI is the transformation matrix given by Equation 

3.11. 

The nodal moments are computed using the following 

equations, see Figure 3.8: 

F (1) = - F' e' + F' 2(1) zi 3(1) e1 

= Fj(1) e'i 

F' = - Fj (1) e' 
6(1) yl } (3. 52a) 

F' - -F' + F' e' 
4(m) - 2(m) zm 3(m) ym 

F' F' e' (3.52b) 
5(m) - - 1(m) zm 

F () = Ii (m) e 

where the subscripts 1 and m refer to the first and last 

nodes, respectively, of the cable. The forces and moments 

at the anchorage nodes are transformed back into global 
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components for assembly in the overall load vector by the 

equation: 

fF} = [L]fFt} (3.53) 

where { F} and (Ft} are the vectors of anchorage forces and 

moments in the global and local coordinate systems 

respectively; and 

[T ]T 0 

0 [ T ]T 

3.3.4 Distributed Forces Due to Prestressing - The 

distributed load due to the effects of a prestressing cable 

has two components, tangential and normal. The tangential 

component is due to the variation in prestressing force 

along the cable length and is given by ( 8): 

dP 
- ds 

(3.54) 

The normal component is due to the curvature of the cable 

and is given by: 

P P 
n R (3.55) 
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where R is the radius of principal curvature, in space, of 

the cable at the point in question. 

The basic equations in the following analysis may be 

found in standard analytic geometry texts ( 34,44). The 

expression for the tangential component of distributed load 

at a point may be expanded to give: 

dP _c1 dP 1 dP 
- dsds d t d 

(3.56) 

where t is the magnitude of the tangent vector to the cable 

at the given point. Using Equation 344 the expression may 

be further expanded to give the value of tangential 

force/unit length due to prestressing: 

_ ldP_ l i 
t t d t 1 di 

(3.57) 

Calculation of the normal component of distributed 

load requires the computation of the radius of principal 

curvature at the point in question. The radius of 

principal curvature of a curve in space, at any point on 

the curve, is equal to the reciprocal of the magnitude of 

the principal normal vector at that point, Figure 3.9. The 

principal normal vector is obtained from the following 

equation: 
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Figure 3.9 Principal Normal and Tangent Vectors 
to a Cable in Space 
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Cn) = {x } - a d Cx }) 
t d p 

where Cx}= { 
x 
p 

yp 

z 
P 

(3.58) 

the vector of global coordinates of the point on the cable. 

The coefficient a is defined by: 

a = 2 {x} • {x} (3.59) 

which is the dot product of the first and second 

derivatives of the vector of global coordinates at the 

point. The magnitude of tn} is denoted by n so that the 

unit normal vector is: 

{X } = 
cn n (3.60) 

The unit normal vector is orthogonal to the unit tangent 

vector, ( X ct }, defined in Equation 3.50. The normal 

component of distributed load may now be defined as: 
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P == nP 
n R 

(3.61) 

It is of interest to note that the above vectorial 

formulation yields identical results to the equation given 

in Rozvany's discussion of Lin's paper ( 36). 

The global components of the distributed loads at the 

point may now be obtained as follows: 

I = P{X} + p n (cn A } (3.62) 

The load vector is transformed into local coordinates at 

the section in question using Equation 3.51. Equation 

3.52a may then be employed to compute the magnitude of the 

distributed moment vector at the section. Forces and 

moments are transformed back into global coordinates using 

Equation 3.53. 

- The equivalent nodal loads are computed via: 

+1 
{F} = f1 [N()} (P()} td (3.63) 
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Numerical integration is again required to compute the 

above integral. 

3.4 Short Term Prestress Losses  

Short term prestress losses in post-tensioned beams 

derive from two sources; friction between the tendon and 

the duct, and anchorage slip at the time of jacking. Both 

factors are incorporated into the automatic prestressing 

option of SFRAME. The program assumes that all tendons are 

stressed simultaneously, and that therefore, there are no 

losses due to sequential tensioning. 

3.4.1 Friction Loss - Frictional loss is made up of 

two components, the wobble effect and the curvature effect. 

The wobble effect is the amount of friction loss in an 

equivalent straight tendon and is due to misalignments and 

imperfections in the ducts or sheathing surrounding the 

tendon. Because of imperfections in the duct some friction 

exists between the tendon and the surrounding material. 

The curvature effect results from the intended 

curvature of the tendons. The force in a tendon at a point 

j, a distance s along the cable from the jacking end, 

Figure 3.10, is given by ( 31) 

P. = P e—(iic + KS) 
3 0 

(3.64) 
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Node 
Node j 

1 

13 
= Angular change in space 

between nodes i and j 

s. = Distance, measured along 
13 cable between nodes i and 

J 

Figure 3.10 Definition of Terms, ce.. and s. 
13 13 

C
a
b
l
e
 
F
o
r
c
e
 

P 
0 P = P0e + Ks). 

Jacking 
End 

s = distance along cable 

Figure 3.11 Typical Force Variation Along a 
Prestressing Cable 
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where P = jacking force 

= curvature friction coefficient 

a = angular change in radians between 

the anchorage and point j 

k = wobble coefficient 

In the present analysis the jacking force and friction 

coefficients are given as input data. The angle a, and 

distance s, along the cable are computed between each pair 

of nodal points, i and j, on the multi node beam element, 

Figure 3.10. The appropriate equations are: 

aij = cos-1 ({ x t } i {Xt}) 

fJ5 ds 
ij i 

(3.65) 

(3.66) 

where the . refers to scalar product. The vector 

defined in Equation 3.50, is a unit tangent vector to the 

cable at point i. The individual components of the vector 

represent the direction cosines of the cable at the point. 

The product of the direction cosines of any two vectors 

gives the cosine of the angle in space between the vectors. 

Two point Gaussian quadrature, adequate to exactly 

integrate a cubic function, is used in Equation 3.65. 
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Using Equation 3.64 the variation of prestressing force 

along the cable is computed. The resulting exponential 

curve, Figure 3.11, is a more accurate representation of 

the variation in force than is the stepped variation 

obtained using the method adopted by Scordelis et al. ( 38). 

This latter variation results from the angular changes in 

the cable being lumped at the ends of the straight chord 

segments used in the analysis. 

A further point of interest relates to the 

recommendations which exist in some codes of practice 

regarding the computation of the total angle subtended in 

space by a prestressing cable. The Ontario Bridge 

Code ( 33), states that for a cable with both vertical and 

horizontal components of angular change, the components in 

the two planes should be summed vectorially. The ACI 

Bridge Code ( 2) , and the ACI Manual of Concrete Practice 

(1) , on the other hand state that the total angle is 

computed by summing directly the vertical and horizontal 

anglular change. This latter approach is invalid, as can 

b&easily demonstrated by reference to Figure 3.12. The 

bridge shown is a simply supported box section with webs 

inclined at 300 to the vertical. On the basis of the ACI 

recommendations, the total change in angle along the cable 

is given by the sum of the vertical and horizontal angular 

changes, i.e. 
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Figure 3.12 A Prestressing Cable with Both Vertical 
and Horizontal Components of Angular Change 
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= VH 

This gives a total change in angle of 0.631 radians, which 

is 37% greater than would be obtained by summing the angles 

vectorially as suggested in the Ontario code. A vectorial 

addition of the components obviously gives the same change 

in angle as would be obtained if the cable lay in a 

vertical plane. It is certainly erroneous to suggest that 

the magnitude of the angular change along a cable profile, 

within a particular plane, is altered by the rotation of 

the plane in space. This is the implication of the 

approach adopted in the ACI code. 

In using SFRAME this obvious contradiction is not 

encountered, since the program computes exact angular 

changes automatically without the designer being required 

to calculate vertical and horizontal components. All that 

is required is that the designer input the required cable 

eccentricities at each node. 

3.4.2 Anchorage Slip Losses - Losses due to anchor 

slip occur in post-tensioned members when the jacking force 

is transferred to the anchorage. A small slipping occurs 

before the development of full gripping of the tendon. The 

loss of prestress due to anchorage slip may be particularly 

severe in short members ( 31). When the anchor slips a 
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distance At the jacking force drops and the frictional 

force reverses direction over the distance c shown in 

Figure 3.13. The exponential variation of prestressing 

force along the cable may be approximated with sufficient 

accuracy over the distance in question by a straight line. 

AP represents the drop in prestressing force at the 

anchorage. The lines AC and BC have equal and opposite 

slopes so that: 

API = 2c2' (3.67) 

where p1 
dP 
ds 

The anchor slip may be approximated by: 

E A 
PS ps 

where E 5 and A 5 are the Young's modulus and cross 

(3.68) 

sectional area, respectively, of the prestressing steel. 

The term in brackets is equal to the area of the triangle 

ABC. Combining Equations 3.67 and 3.68 gives: 
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P 
Al 

Slope = P' 

LP 

L 

T 

AP 

A 

B 

C 

C 

(a) , c < 9.. 

Slope = P' 

D 

C 

C= 9.. 

0. 
S 

S 

(b) c= 

Figure 3.13 Prestress Loss Due to Anchorage Slip 
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c= 
E A At 
PS PS  
2 (3.69) 

If the tendon is short c may be greater than the total 

length, t, of the tendon. In this case: 

S PS 
(3.70) 

where the term in square brackets is equal to the aea 

ABCD, Figure 3.13b. The loss of prestressing force in this 

case is given by: 

E - 5A5Q + P'2, 

The procedure above is programmed in SFRAME. On 

(3.71) 

computing AP the prestressing force at all points between 

the anchorage and point C are modified by the appropriate 

amount. The program can accomodate tendons which are 

jacked from either end or from both ends. 
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3.5 Concluding Remarks 

In this chapter the development of the Jirousek beam 

element is outlined in detail. The use of Timoshenko beam 

theory and isoparametric finite element methodology are 

successfully combined to give an element which offers 

excellent potential for the analysis of curved bridge 

structures. 

The element formulation has been extended to include 

the option of automatic computation of forces due to 

prestressing. Such an addition is vital for the analysis 

of curved prestressed bridges. The method adopted exactly 

models curved cable geometries, and as will be shown in 

Chapter Five gives very accurate results. Advantage is 

taken of the accurate geometric description of a cable in 

space to compute prestress frictional losses. Using this 

technique, no problems occur with respect to computing the 

vertical and horizontal components of angular change along 

a cable. 
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CHAPTER FOUR 

VERIFICATION OF ELEMENT BEHAVIOUR 

4.1 Introduction  

The present chapter is a divergence from the principal 

direction of the thesis, in order to investigate the 

performance of the Jirousek beam element. The purpose of 

checking the element's behaviour is twofold. Firstly, it 

is important to verify that the formulation of the element 

stiffness matrix has been programmed correctly: this is 

achieved by demonstrating that the element gives exact 

results under simple load conditions. Secondly it is 

necessary to check that the element behaves in the manner 

expected, and to identify appropriate conditions for the 

suitable use of the element. 

In its simplest form the isoparametric element reduces 

to .a straight beam. To facilitate analysis by hand and 

comparison of results, the element behaviour is 

investigated using straight simply supported and cantilever 

beams. The following examples are considered, Figure 4.1: 

(1) A 4 node single element cantilever, with a point 

load at the tip. 

(2) A 5 node single element cantilever, with a point 

load at the tip. 
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(1) 1 2 3 4 
K y 

2. 

P = 1.0 

P = 1.0 

(2) 1 5  

1 2 3 4 5_ 

(3)  :1  w=1.0 

.1  

P = 1.0 

(4) 1 4  
If I F K 

(5) 

4 4 4 

2 3 4 5 

4 1 S 

/  F K 
'4 

9.. 9. 2. 9. 

P = 1.0 

S 4 4 5 (6)  2 

1' Kr 1 

w = 1.0 

For all Cases 

9.. = 2.0 
A = 1.0 

I = 0.1 
E = 1.0 
V = 0.0 

Figure 4.1 Examples Used to Check Behaviour 
of Jirousek Element 
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(3) A 5 node single element cantilever, with a uniformly 

distributed load along its length. 

(4) A 5 node single element cantilever, with a point 

load at the node next to the tip. 

(5) A 5 node single element simple beam, with a 

uniformly distributed load along its length. 

(6) A S node single element simple beam, with a point 

load at midspan. 

The results of these examples are summarized in Tables 4.1 

to 4.6. 

4.2 Results of Sin9le Element Examples  

For Examples 1 and 2 ( end loaded cantilevers) the 

results obtained are in exact agreement with the correct 

values. In the case of the 4 node cantilever the assumed 

deflection and rotation fields are cubic. The equation of 

the deflected beam is obtained from the computed 

displacements: 

w = -1.667x 3 + 1O.0x 2 + 2.Ox (4.1) 

where x is the distance from the left end to any section. 

The beam rotation equation may also be computed using the 

results in Table 4.1: 
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Node Displacements Stress Resultants 

Deflection Rotation Shear Moment 

1 

2 

3 

4 

Bar Elements 

0. 0. 

5.288 -11.116 

16.495 -17.778 

30.672 -20.0 

1.0 

1.0 

1.0 

-2.0 

-1.333 

-0.667 

1.0 0.0 

1 

2 

3 

4 

0.0 

5.288 

16.495 

30.672 

Jirousek Element 

0.0 

-11.116 

-17.778 

-20.0 

1.0 

1.0 

1.0 

-2.0 

-1.333 

-0.667 

1.0 0.0 

Table 4.1 - 4 Node Cantilever, Example 1, Figure 4.1 
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Node Displacements Stress Resultants 

Deflection Rotation Shear Moment 

1 

2 

3 

4 

5 

0.0 

3.292 

10.334 

19.875 

30.672 

Bar Elements 

0.0 

-8.75 

-15.0 

-18.75 

-20.0 

1.0 

1.0 

1.0 

1.0 

1.0 0.0 

1 

2 

3 

4 

5 

0.0 

3.292 

10.334 

19.875 

30.672 

Jirousek Element 

0.0 

-8.75 

-15.0 

-18.75 

-20.0 

1.0 

1.0 

1.0 

1.0 

1.0 0.0 

Table 4.2 - 5 Node Cantilever, Example 2, Figure 4.1 
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Node Displacements Stress Resultants 

Deflection Rotation Shear Moment 

1 

2 

3 

4 

5 

0.0 

3.859 

10.083 

17.109 

24.0 

Bar Elements 

0.0 

-7.708 

-11.667 

-13.125 

-13.333 

2.0 

1.5 

1.0 

0.5 

-2.0 

-1.125 

-0.5 

-0.125 

0.0 0.0 

1 

2 

3 

4 

5 

0.0 

3.859 

10. 083 

17.109 

24.0 

Jirousek Element 

0.0 

-7.708 

-11.667 

-13.125 

-13 .333 

2.0 

1.5 

1.0 

0.5 

-2 .0 

-1.125 

-0.5 

-0.125 

0.0 0.0 

Table 4.3 - 5 Node Cantilever, Example 3, Figure 4.1 
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Node Displacements Stress Resultants 

Deflection Rotation Shear Moment 

1 

2 

3 

4 

5 

0.0 

2.234 

3.083 

2.234 

0.0 

Bar Elements 

-3.333 

-2.292 

0.0 

2.292 

3.333 

1.0 

0.5 

0.0 

-0.5 

-1.0 

0.0 

0.375 

0.5 

0.375 

0.0 

1 

2 

3 

4 

5 

0.0 

2.234 

3.083 

2.234 

0.0 

Jirousek Element 

-3.333 

-2.292 

0.0 

2.292 

3.333 

1.0 

0.5 

0.0 

-0.5 

-1 .0 

0.0 

0,375 

0.5 

0.375 

0.0 

Table 4.4 - 5 Node Simple Beam, Example 5, Figure 4.1 
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Node Displacements Stress Resultants 

Deflection Rotation Shear Moment 

1 

2 

3 

4 

5 

0.0 

2.667 

7.833 

14.25 0 

19.875 

Bar Elements 

0.0 

-6.250 

-10.000 

-11.250 

-11.250 

1.0 

1.0 

1.0 

1.0 0.0 

0.0 0.0 

1 

2 

3 

4 

5 

0.0 

2.682 

7.887 

14.073 

19.875 

3irousek Element 

0.0 

-6.286 

-9.952 

-11.252 

-11.250 

0.864 

1.072 

0.961 

0.581 

-0.425 

-1.495 

-l'.001 

-0.475 

-0.087 

0.019 

Table 4.5 - 5 Node Cantilever, Example 4, Figure 4.1 
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Node Displacements 

Deflection Rotation 

Stress Resultants 

Shear Moment 

Bar Elements 

1 0. 0. 1.0 -2.0 

1 0.0 -2.50 0.5 0.0 

2 1.646 -1.875 0.5 0.25 

3 2.667 0.0 0.5 0.5 

4 1.646 1.875 -0.5 0.25 

5 0.0 2.50 -0.5 0.0 

Jirousek Element 

1 0.0 -2.50 0.313 -0.063 

2 1.699 -1.836 0.566 0.289 

3 2.50 0.0 0.0 0.406 

4 1.699 1.836 -0.566 0.289 

5 0.0 2.50 -0.313 -0.063 

Table 4.6 - 5 Node Simple Beam, Example 6. Figure 4.1 
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e = 0.0x3 + 5.0x2 - 20.0x (4.2) 

It can be seen that the assumed cubic rotation field 

reduces to, the correct quadratic form. Differentiation of 

the deflection curve gives: 

W1 = -5.0x2 + 20.0x + 2.0 (4.3) 

This does not correspond in absolute value to the 

rotatation of the member; the difference being due to the 

shear deformation. The flexural deflection is always of 

higher order than the shear deflection. Since the rotation 

field is a function of the flexural deflection only; the 

rotation field for an exact solution, must be of order one 

less than the order of the deflection curve. Thus for all 

examples in which an exact solution is obtained the 

rotation field ,must always turn out to be of lower order 

than assumed by the element. 

The results obtained for the S node cantilever are 

also exact. Solving between the displacements and 

rotations, respectively, in Table 4.2 gives the following 

equations: 
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w = -l.667x 3 + 1O.0x2 + 2.0x (4.4) 

0 = 0.0x 3 + 5.0x 2 - 20.0x (4.5) 

These are seen to be identical to Equations 4.1 and 4.2 

respectively. Thus the assumed quartic deflection and 

rotation fields reduce to the correct quadratic and cubic 

functions, respectively. 

A cantilever with a uniform load has a quartic 

deflection and a cubic rotation field. Thus a 5 node 

element, with its assumed quartic deflection and rotation 

fields should perform satisfactorily. The results in Table 

4.3 confirm this. A simple beam under a uniform load also 

has a quartic deflection and cubic deflection curve. Thus 

the element again gives exact results, Table 4.4. 

Incorrect results, however, are obtained for the case 

of a 5 node cantilever, loaded at the node adjacent to the 

tip, and for the case of a simple beam under a point load 

at midspan, Tables 4.5 and 4.6. In the case of the 

cantilever, the true deflection is cubic between the load 

and the fixed end, and linear between the load and the free 

end. The solution with the isoparametric element 
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approximates this shape with one best fitting cubic curve. 

Thus the results are inexact. 

For the case of a simple beam subjected to a point 

load at midspan, the true deflected shape is given by two 

cubic curves on each side of the point load. The Jirousek 

element passes a single cubic curve through all points and 

as a result t' e computed stress resultants are not exact. 

4.2.1 Variable Section Cantilever - In order to check 

that the element gives correct results for variable cross 

sections, the beam in Figure 4.2 is considered. The 

cantilever is subjected to two loads, a unit axial force 

and a unit transverse force at the tip as shown. The cross 

sectional area, reduced shear area and moment of inertia 

are assumed to vary linearly, as shown, over the length of 

the beam. 

The deflection of the beam under axial load is given 

by: 
P1dx 

'axial = Jo EA 

which in this case gives: 

= 0.5776 
• axial 

The computed deflection is also equal to 0.5776. The 

transverse deflection of the cantilever tip is given by: 

o 2 M1M1 £ V1V1 dx 

dx + transverse El fo GA 
r 
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P = 1.0 

I I P = 1.0 

2A,2A,21 

A A r , I 

-s 

x 

Z = 1.0 

A = 1.2 

A  = 1.0 

I = 0.1 
E = 1.0 
V = 0.0 

Figure 4.2 Cantilever Beam with Linearly Varying 
Cross Section Properties 
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where M and V refer to the bending moments and shear 

force 's due to a unit transverse load at the tip. The 

deflections of the tip due to bending and shear are: 

flexural = 1.9314 shear = 1.3864 

Thus the total deflection is equal to 3.3178. The Jirousek 

element gives a value of 3.3177 which is slightly 

different. The source of the difference is the Jirousek's 

element modelling of the natural logarithmic term in the 

element's deflection field by a quartic polynomial. The 

correspondence is very close, but not quite exact. 

However, the difference is minimal and the element may be 

thus assumed to behave saisfactorily in modelling variable 

section beams. 

4.3 Analys'is of Element Stiffness Matrices  

To investigate further the behaviour of the element, 

the stiffness matrix of the Jirousek element is compared, 

for a number of simple structures, to the stiffness matrix 

from a bar element modelling. It will be seen that while 

the stiffness matrices for the two element types are quite 

different, the flexibility matrices resemble one another 

closely. However, they are not exactly the same, and the 
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unexpected behaviour of the Jirousek element under certain 

loading conditions results from the differences between the 

two. 

4.3.1 4 Node Cantilever - The structure is modelled 

using a four node Jirousek element and also using three bar 

elements, Figure 4.3. The eight degrees of freedom of the 

structure reduce to six as shown, when the boundary 

conditions are introduced. The 8x8 stiffness matrix of the 

Jirousek element is: 

Jirousek = 

.925 -. 250 -1.18 -. 356 . 338 . 150 -. 081 -. 044 

-.250 . 261 . 356 -. 177 -. 150 . 046 . 044 -. 005 

-1.18 . 356 2.70 0.0 -1.86 -. 506 . 338 . 150 

-.356 -. 177 0.0 . 926 . 506 -. 419 -. 150 . 046 

.338 -. 150 -1.86 . 506 2.70 0.0 -1.18 -. 356 

.150 . 046 -. 506 -. 419 0.0 . 926 . 356 -. 177 

-.081 . 044 . 338 -. 150 -1.18 . 356 . 925 . 250 

-.044 -. 005 . 150 . 046 -. 356 -. 177 . 250 . 261 

(4.6) 

Application of the boundary conditions by eliminating rows 

and columns 1 and 2 gives the reduced, non singular 

stiffness matrix: 
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Degrees of freedom corresponding to the 
appropriate rows and columns of the stiff-
ness and flexibility matrices, Equations 
4.7, 4.9, 4.10 and 4.11. 

Figure 4.3 Bar and Jirousek Element Models of the 
Four Node Cantilever, Figure 4.1 
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Jirousek = 

2.70 0.0 -1.86 -. 506 . 338 . 150 

0.0 . 926 . 506 -. 419 -. 150 . 046 

-1.86 . 506 2.70 0.0 -1.18 -. 356 

-.506 -. 419 0.0 . 926 . 356 -. 177 

.338 -. 150 -1.18 . 356 . 925 . 250 

.150 . 046 -. 356 -. 177 . 250 . 261 

(4.7) 

The 8x8 stiffness matrix of the three bar elements is givers 

by: 

[S I 
Bar 

.633 -. 211 -. 633 -. 21]. 

-.211 . 220 . 211 -. 080 

-.633 .21]. 1.27 0.0 -. 633 -. 211 

-.211 -. 080 0.0 . 441 . 211 -. 080 

-.633 . 21]. 1.27 0.0 -. 633 -. 211 

-.211 -. 080 0.0 . 44]. . 211 -. 080 

-.633 . 211 . 633 . 211 

-.211 -. 080 . 211 . 220 

(4.8) 

The reduced matrix is: 
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[SI 
Bar 

1.27 0.0 -. 633 -. 211 

0.0 . 441 . 211 -. 080 

-.633 . 211 1.27 0.0 -. 633 - . 211 

-.211 -. 080 0.0 . 441 . 211 -. 080 

-.633 . 211 . 633 . 211 

-.211 -. 080 . 211 . 220 

(4.9) 

The stiffness matrices corresponding to the two models are 

obviously quite different. That of the bar element is 

typically banded in character whereas the Jirousek element 

matrix is not. In addition, the magnitude of corresponding 

terms in each matrix differ quite significantly from each 

other. Inverting both matrices gives the respective 

flexibility matrices: 

[f] = 

Jirousek 

2.01 -2.18 3.81 -2.35 5.29 -2.22 

-2.18 5.67 -6.54 6.93 -11.1 6.67 

3.81 -6.54 10.3 -8.93 16.5 -8.88 

-2.35 6.93 -8.93 12.3 -17.8 13.3 

5.29 -11.1 16.5 -17.8 30.7 -20.0 

-2.22 6.67 -8.88 13.3 -20.0 20.0 

(4.10) 
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Bar 

2.32 -2.22 3.80 -2.22 5.29 -2.22 

-2.22 6.67 -6.67 6.67 -11.1 6.67 

3.80 -6.67 10.6 -8.89 16.5 -8.88 

-2.22 6.67 -8.89 13.3 -17.8 13.3 

5.29 -11.1 16.5 -17.8 30.7 -20.0 

-2.22 6.67 -8.88 13.3 -20.0 20.0 

(4.11) 

The flexibility matrices, though not identical, are 

very similar. A particular column of the flexibility 

matrix is equal to the displacement at each coordinate, due 

to a unit load at the coordinate corresponding to the 

column. For example, column 6 in Equations 4.10 and 4.11 

above corresponds to the displacements at each coordinate 

due to a unit force at coordinate 6 of the structure, 

Figure 4.2 Thus: 

h e r e 

{u} = (f] {F} (4.12) 

{F } 

0 

0 

0 

0 

0 

1 



89 

Inspection of the flexibility matrices for the models 

indicates that exact correspondence between the two occurs 

only in columns 5 and 6, representing the displacements at 

each coordinate due to a unit force and a unit couple, 

respectively, at the cantilever tip. For the case of a 

concentrated couple applied at node 3 ( coordinate 4) the 

resulting displacement vector for the Jirousek element is 

given by: 

(u} = 

-2.35 

6.93 

-8.93 

12.3 

-17.8 

13.3 

(4.13) 

The exact result, given by the bar element modelling is: 

(u} 

-2.22 

6.67 

-8.89 

13.3 

-17.8 

13.3 

(4.14) 
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Deflections only agree at the end node (coordinates 5 and 

6). Agreement occurs here because of the symmetry of the 

flexibility matrix. At all other nodes errors occur in the 

computed deflections and rotations. Figure 4.4 shows the 

true displacement and rotation field along the cantilever 

under the applied load. The deflection is quadratic from 

node 1 to node 3 and linear from node 3 to node 4. The 

rotation is linear from node 1 to node 3 and constant 

between nodes 3 and 4. The errors occuring in the Jirousek 

beam modelling are due to the fact that the four node 

element tries to model the beam deflection as a single 

cubic curve. Obviously this modelling will yield incorrect 

results. According to the principle of minimum potential 

energy ( 12,40), the beam will adopt a deflected shape which 

minimizes the total potential energy in the system. In 

this case the " system" means the structure and the forces 

that act on it. While the cubic deflection and rotation 

curves corresponding to a configuration of minimum 

potential energy may agree quite closely with the true 

displacement functions they will not give exact results. 

4.3.2 5 Node Cantilever - The stiffness matrices 

corresponding to the coordinates shown in Figure 4.5, for 

Jirousek and bar elements respectively are given by: 
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Figure 4.4 Exact and Computed Deflections and 
Rotations Using a Four Node Jirousek 
Element 
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Figure 4.5 Degrees of Freedom of the Five Node 
Cantilever, Figure 4.1 
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Figure 4.6 Degrees of Freedom of the Five Node 
Simple Beam, Figure 4.1 
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V31 
Jirousek 

ES] Bar 

4.40 0.0 -3.76 -. 559 1.56 . 271 -. 389 -. 102 

0.0 1.19 . 559 -. 820 -. 271 . 357 . 102 -. 068 

-3.76 . 559 5.91 0.0 -3.76 -. 559 . 806 . 213 

-.559 -. 820 0.0 1.51 . 559 -. 820 -. 213 . 131 

1.56 -. 271 -3.76 . 559 4.40 0.0 -1.81 -. 389 

.271 . 357 -. 559 -. 820 0.0 1.19 . 389 -. 310 

-.389 . 102 . 806 - .213 -1.81 . 389 1.30 . 250 

-.102 -. 068 . 213 . 131 -. 389 -. 310. . 250 . 312 

2.13 0.0 -1.07 -. 267 

0.0 . 533 . 267 -. 133 

-1.07 . 267 2.13 0.0 -1.07 -. 267 

-.267 . 133 0.0 . 533 . 267 -. 133 

-1.07 . 267 2.13 0.0 -1.07 -. 267 

-.267 -. 133 0.0 . 533 . 267 -. 133 

-1.07 . 267 1.07 -. 267 

-.267 -. 133 -. 267 . 267 

J4.16) 

The corresponding flexibility matrices are: 
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Jirousek 

[f] 
Bar 

1.24 -1.24 2.09 -1.29 2.68 -1.21 3.29 -1.25 

-1.24 4.25 -3.71 5.21 -6.29 4.99 -8.75 5.00 

2.09 -3.71 5.16 -5.00 7.89 -5.04 10.3 -5.00 

-1.29 5.21 -5.00 9.26 -9.95 10.2 -15.0 10.0 

2.68 -6.29 7.89 -9.95 14.1 -11.3 19.9 -11.3 

-1.21 4.99 -5.04 10.2 -11.3 14.3 -18.8 15.0 

3.29 -8.75 10.3 -15.0 19.9 -18.8 30.7 -20.0 

-1.25 5.00 -5.00 10.0 -11.3 15.0 -20.0 20.0 

(4.17) 

1.41. -1.25 2.04 -1.25 2.67 -1.25 3.29 -1.25 

-1.25 5.00 -3.75 5.00 -6.25 5.00 -8.75 5.00 

2.04 -3.75 5.33 -5.00 7.83 -5.00 10.3 - 5.00 

-1.25 5.00 -5.00 10.0 -10.0 10.0 -15.0 10.0 

2.67 -6.25 7.83 -10.0 14.3 -11.3 19.9 -11.3 

-1.25 5.00 -5.00 10.0 -11.3 15.0 -18.8 15.0 

3.29 -8.75 10.3 -15.0 19.9 -18.8 30.7 -20.0 

-1.25 5.00 -5.00 10.0 -11.3 15.0 -20.0 20.0 

(4.18) 

It can be seen that only for the case of a point load or 

couple applied at the cantilever tip ( coordinates 7 and 8) 

are exact results obtained. For a point load at coordinate 

5 the results obtained differ from the exact solution. 
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{u} 
Jirousek 

2.68 

-6.29 

7.89 

-9.95 

= 14.1 

-11.3 

19.9 

-11.3 

2.67\ 

-6.25 

7.83 

-10.0 

; u} Bar = 14.3 

-11.3 

19.9 

_11.3J 

(4.19) 

The Jirousek element models the discontinuous deflection 

fields as a continuous quartic curve. Hence the results 

obtained are inexact. It can be seen , however, that the 

two sets of results correspond more closely than in the 

case of the four node cantilever. It may be assumed, 

therefore, that increasingly more accurate results are 

obtained with increased numbers of nodes. 

4.3.3 5 Node Simple Beam - The flexibility matrices 

corresponding to the coordinates shown in Figure 4.6 are 

for the Jirousek and bar element modelling respectively: 
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[f} 
Jirousek = 

(f ]Bar 

7.67 -2.19 3.29 -2.50 . 167 -1.56 -1.71 -2.33 

-2.19 1.51 -1.25 1.70 . 265 . 995 1.29 1.56 

3.29 -1.25 3.17 -1.84 1.01 -1.29 -1.09 -1.71 

-2.50 1.70 -1.84 2.50 0.0 1.70 1.84 2.50 

.167 . 265 1.01 0.0 1.92 -. 265 1.01 . 167 

-1.56 . 995 -1.29 1.70 -. 265 1.51 1.25 2.19 

-1.71 1.29 -1.09 1.84 1.01 1.25 3.17 3.29 

-2.33 1.56 -1.71 2.50 . 167 2.19 3.29 7.67 

(4.20) 

7.67 -2.19 3.29 -2.50 . 167 -1.56 -1.71 -2.33 

-2.19 1.69 -1.25 1.65 . 313 . 979 1.25 1.56 

3.29 -1.25 3.92 -1.88 . 792 -1.25 -1.08 -1.71 

-2.50 1.65 -1.88 2.67 0.0 1.65 1.88 2.50 

.167 . 313 . 792 0.0 2.67 -. 313 . 792 . 167 

-1.56 . 979 -1.25 1.65 -. 313 1.69 1.25 2.19 

-1.71 1.25 -1.08 1.88 . 792 1.25 3.92 3.29 

-2.33 1.56 -1.71 2.50 . 167 2.19 3.29 7.67 

(4.21) 

It can be seen that exact correlation occurs only in the 

first and eighth columns. These represent the deflections 

due to unit couples at the support nodes. Under such a 

loading configuration the beam deflects as a cubic curve 

with a quadratic rotation field. This is exactly modelled 

by the element. For loads applied at internal coordinates, 
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however, inexact results are obtained. Nevertheless, it is 

possible to obtain a loading configuration in which the 

combined effects of several loads produce a correct 

solution. 

4.3.4 Uniform Load on a 5 Node Cantilever - The 

flexibility matrix corresponding to the coordinates in 

Figure 4.5 is given by Equation 4.15 for a Jirousek element 

and by Equation 4.16 for a bar element modelling. Though 

different, both matrices exhibit an exact response to a 

uniformly distributed load. The consistent nodal load 

vectors are for the Jirousek and bar element respectively: 

.711\ 

{} Jirousek I {F } 
Ear 

0.5 

0.0 

0.5 

0.0 

0.5 

0.0 

0.25 

0.02 

(4.22) 

These are again different but when multiplied by the 

appropriate flexibility matrix, the terms combine to give 

exact results; though individually each lumped load, for 

the Jirousek element, produces an incorrect result. 
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4.4 Conclusions  

The Jirousek element has been seen to give exact 

results when the appropriate order element is subjected to 

certain loads. In particular, when subjected to point 

loads at end node coordinates, or to distributed loads, the 

element gives excellent results. However inaccuracies 

occur when concentrated forces are applied to internal 

element degrees of freedom. The errors in the computed 

displacements, though small, produce more significant 

errors in the computed element stresses. The source of the 

error is the element's attempt to model discontinuous 

deflection and rotation fields by single continuous 

functions. The differences between the exact flexibility 

matrix and the Jirousek element flexibility matrix are much 

smaller than those occuring between the corresponding 

stiffness matrices. 

Overall the Jirousek beam element behaves very well. 

The element's excellent response under end nodal loading, 

and under distributed loads, in addition to its ability to 

accurately model curved geometries, make it particularly 

suited to the analysis of curved prestressed bridges. 
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CHAPTER FIVE 

TORSION CONTROL IN CURVED CONTINUOUS BRIDGES 

5.1 Introduction 

Torsional effects are in many cases very significant 

in curved bridges, even when the applied external load and 

prestressing are symmetrical about the centreline of the 

section. In the case of single span, statically 

determinate curved beams no torsional moments are induced 

by prestressing, provided the resultant force lies in a 

vertical cylindrical surface through the beam centroid, 

(49). However, for continuous curved beams the redundant 

reactions produce a combination of bending and torsion in 

the beam. 

The, torsional moments due to prestressing may be 

significant. Moreover, the torsion induced by prestressing 

and the torsion due to dead load tend to be additive. Thus 

while a typical parabolic profile as shown in Figure 5.1 

will tend to balance out the bending moments due to dead 

load, the torsional moments induced by the prestressing 

will add to the dead load torsion. In addition to the 

increased torsional moments along the- bridge, the torsion 

induced by prestressing may substantially increase the 

tendency for lifting at the bearings. Figure 5.2 is a 



100 

Ii-

Schematic Plan of Two Span Circular 
Curved Beam Torsionally Restrained 
at All Supports 

Parabolic Cable Profile 

Developed Elevation 

Figure 5.1 Two Span Circular Curved Beam 
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schematic representation of a typical torsion resisting 

support. Where large torsional restraint exists, there is 

a tendency for one bearing to lift under the effect of dead 

load. The problem is aggravated by the prestressing in 

situations where the torsional moments due to dead load and 

due to prestressing are additive. In many situations 

lifting of the bearings may be the deciding criterion in 

establishing what proportion of the maximum torsional 

moment should be balanced out. 

5.2 Demonstration Example  

Referring to Figure 5.3, the two span continuous 

bridge is analysed to demorstrate the essence of the 

problem. The given simplified cross section is adopted 

purely for demonstration purposes and it is not intended 

that it be interpreted as a practical size or shape. The 

bridge is torsionally restrained at all three supports and 

is subjected to a uniformly distributed load. This applied 

loading represents the load balanced by the given cable 

profile in an equivalent straight beam of the same span. 

The example serves to demonstrate the additive property of 

the dead load and prestressing torsional effects, and also 

as a check on the accuracy of SFRAME in modelling the 

structure. 
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The bridge was analysed by hand using the force method 

(20). Advantage was taken of the structural symmetry so 

that only a single span was considered, Figure 5.3. The 

structure was reduced to statically determinate form by the 

introduction of releases as follows: 

(1) Vertical reaction at C. 

(2) Torsional reaction at C. 

Symmetry was also availed of in the computer analysis. The 

single span beam was modelled using two 6 noded curved 

elements, Figure 5.3. Shear effects are not included in 

either case. As can be seen frpm Table 5.1 this mesh gave 

results which were almost identical to the closed form 

solution. Thus the program SFRAME closely models the 

curved beam behaviour under the external distributed load 

and the prestressing loads. The bending and torsional 

moments in Table 5.1 are plotted in Figure 5.4. It can be 

seen that the prestressing almost exactly balances the 

bending moments due to the external uniform load. This is 

in agreement with the conclusions of Witecki ( 50) , who 

noted that bending moments are largely unaffected by the 

curvature of a bridge. It is evident, however, that the 

torsion due to prestressing adds to the torsion induced by 

the external load. Furthermore, the maximum ordinates of 

the two torsion diagrams are of the same order of 
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Node Bending Moments ( MNm) 

Closed Form Computer 

Torsional Moments ( MNm) 

Closed Form Computer 

Dead Load 

1 -0.61042 -0.61042 0.00099 0.00101 

2 -0.33319 -0.33292 -0.01678 -0.01683 

3 -0.10330 -0.10313 -0.02492 -0.02496 

4 0.07872 0.07884 -0.02524 -0.02527 

5 0.21264 0.21284 -0.01955 -0.01957 

6 0.29826 0.29838 -0.00969 -0.00973 

7 0.33547 0.33558 0.00251 0.00250 

8 0.32419 0.32427 0.01520 0.01519 

9 0.26445 0.26450 0.02654 0.02652 

10 0.15633 0.15637 0.03468 0.03467 

11 0.0 0.0 0.03781 0.03780 

Table 5.1 - Comparison of Closed Form and Computer Results 

For the Beam in Figure 5.3 
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Node Bending Moments ( MNm) Torsional Moments ( MNm) 

Closed Form Computer Closed Form Computer 

Prestressing 

1 0.59678 0.59717 -0.02531 -0.02536 

2 0.32282 0.32273 -0.01815 -0.01815 

3 0.09568 0.09568 -0.01172 -0.01172 

4 -0.08377 -0.08360 -0.00602 -0.00602 

5 -0.21542 -0.21531 -0.00106 -0.00106 

6 -0.30421 -0.29919 0.00314 0.00314 

7 -0.33522 -0.33517 0.00659 0.00660 

8 -0.32331 -0.32323 0.00929 0.00929 

9 -0.26349 -0.26347 0.01120 0.01121 

10 -0.15573 -0.15559 0.01236 0.01237 

11 0.0 0.0 0.01274 0.01274 

Table 5.1. - continued. 
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Figure 5.4 Bending and Torsion Diagrams, for the Two 
Span Circular Bridge in Figure 5.3 
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magnitude; thus there is a substantial increase in 

torsional moments along the beam. 

In the example considered above all three supports are 

torsionally restrained. Many continuous curved bridges are 

constructed with some or all of the internal supports 

torsionally free. This has the effect of increasing the 

torque arm of the structure and results in an increase in 

the magnitude of the torsional moments. For the example 

just considered; the bending and torsional moment diagrams 

when the intermediate support is torsion free are shown in 

Figure 5.5. Little change occurs in the distribution of 

bending or torsional moments due to external loads. 

However, in the case of torsion induced by prestressing the 

torsional moment at the external support increases 

substantially. The combined torque at this point, as a 

result, increases by over 40%. 

5.2.1 Parameters Affecting Behaviour - Two parameters 

which govern the torsional response of a curved beam are 

the radius of curvature, R, and the ratio of bending to 

torsional stiffness EI/GJ. For a given span length, RO, 

where 0 is the angle subtended by the span it is reasonable 

to expect that torsional moments should increase in 

magnitude as the curvature increases ( radius of curvature 

decreases) . Thus for a straight beam ( R= ) under 
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Figure 5.5 Bending and Torsional Moments When Torsional 
Rotation is Free to Occur at the Central 
Support of the Beam in Figure 5.3 
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symmetric prestressing and external loads no torsional 

moments are induced. For progressively smaller radii of 

curvature the magnitude of the torsional moments increases. 

This is demonstrated in Figure 5.6. It can be seen that 

the increase in torsional moments with increased curvature 

is almost exactly linear over the range in question. 

The ratio of bending to torsional stiffness also 

affects the response of a curved beam. In Figure 5.7 the 

torsion moment diagrams, under external loads and 

prestressing, are plotted for the ratios I/J = 0.2 and i/J 

= 5.0, for a radius of curvature of 130m. Most box 

sections in practical use fall well within these limits. 

It can be seen that very little change occurs in the 

torsional moments; in fact, only a slight reduction occurs 

over a twenty five fold decrease in torsional stiffness 

relative to bending stiffness. This agrees with the 

conclusions of Bassi et al. ( 4), who noted that the 

magnitude of the torsional stiffness only affects the 

distribution of torsional moments at very low values of 

torsional stiffness. However, the reduction is more 

noticeable for more sharply curved geometries. For a 

radius of curvature of 65m, Figure 5.8, a somewhat greater 

variation in the torsional response occurs with varying 

i/J. However, such a large curvature is unlikely to be 

encountered in practice. Indeed Scordelis and Larsen ( 39), 
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have quoted a figure of 85m - 90m as being the minimum 

radius likely to be used. Thus, in the remainder of this 

thesis no further consideration need be given to the 

effects of varying the I/J ratio. 

5.3 A Method for Control of Bending and Torsion  

A method is presented below for computing the profile 

of prestressing tendons to control the bending and 

torsional moments in a curved bridge to any desired amount. 

A basic cable profile is first assumed and subsequently 

adjusted by the addition of profiles of higher order. The 

basic cable profile(s) may be chosen to balance the dead 

load bending moments for an equivalent straight beam of 

length equal to the developed length of the curved beam. 

For a box girder of uniform cross section, the basic cable 

profile is parabolic in each web. The magnitude of the 

prestressing force is chosen to balance any desired portion 

of the dead load. The chosen prestressing force, and the 

basic tendon profile, in combination with the dead load, 

produce high torsional moments; small bending moments may 

also occur. 

Additional shape functions are superimposed on the 

basic cable profile(s) to reduce the torsional moments to a 

desired amount, while maintaining the bending moments at a 

low level. The additional shape functions are chosen as 



116 

quadratic, cubic or quartic Lagrangian interpolation 

functions, Figure 5.9. These are the same shape functions 

employed in the formulation of the isoparametric element in 

Chapter Three. The eccentricity of any cable after 

adjustment will be given by: 

e = ebasic + Efl.N. (5.1) 

Here e refers to the eccentricity with respect to the 

principal axes, y' or z', of the beam cross section, 

(Figure 3.8). Ni is a shape function, Figure 5.9, and ni 

is a scaling factor applied to this shape function. 

In Section 5.4 a procedure will be presented for 

computing the best set of parameters {n} such that the 

objective of reducing torsional moments without increasing 

the bending is achieved, as closely as possible with the 

chosen shape functions ( least squares fitting 

5.4 Superposition of Eccentricities  

Consider a prestressing tendon coincident with the 

centroidal axis of a curved beam. ( e= ei= 0 ) , Figure 

5.10. Let the value of any action due to the prestressing 

be A. The eccentricty of the tendon is changed either in 

the z' or y' direction, or both, such that: 
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Figure 5.10 Superposition of Unit Cable Profiles 
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Ae 1 = (5.2) 

where n and N are as defined in the preceeding section. 

The change in the magnitude of the action due to the above 

change in eccentricity is AA. If the curvature of the 

tendon can be approximated by the second derivative of the 

eccentricity, then: 

2 
de 

K = 

d  (5.3) 

where s is the distance measured along the cable profile. 

In this case a linear relationship exists between the 

curvature and the eccentricity. Since the distributed 

force generated by a prestressing tendon is proportional to 

the curvature, for a given prestressing force the change in 

action must be directly proportional to the change in 

eccentricity. Furthermore, an inverse linear relationship 

exists between the prestressing force , P, and the 

eccentricity, e. For example, if the eccentricity is 

doubled, and the prestressing force halved, the same 

transverse forces are generated by the cable. 

If a second change in eccentricity is applied to the 

cable, Figure 5.10, we may write: 
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= n2 N2 (5.4) 

The corresponding change in action is equal to £ A2. A 

linear relationship again exists between Le2 and LA2 . The 

eccentricities e1 and e2 may be applied simultaneously 

such that the total change in eccentricity is given by: 

Ae1 + (5.5) 

Since a linear relationship exists between the changes in 

eccentricity, when applied individually, and the respective 

changes in action, the change in action due to the combined 

change in eccentricity, Ae1 + is equal to AA  + AA  

provided the curvature of the combined cable is again 

small. The direct superposition of the actions due to 

different changes in eccentricity is also true when the 

changes occur in different planes. In this case the 

resultant change in eccentricity is obtained by the vector 

sum of the individual changes; the resulting actions are 

added directly. 

As will be discussed in Section 5.7 the adjusted cable 

profiles, obtained using the present technique, may be 
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constrained to lie within the bridge cross section. For 

most practical cross sections, this ensures that the cable 

curvatures are sufficiently small that superposition of 

cable actions is valid. 

5.5 Formulation of the Method  

The formulation of a method for controlling torsion in 

curved bridges is explained in this section. The box 

girder bridge in Figure 5.11 is considered and the 

objective is to find a cable profile and prestressing force 

in each web that control bending and torsional moments to a 

desired amount. In the present development of the method 

certain assumptions are made so as to simplify the 

explanation. It is assumed that cable profiles extend from 

one end of the bridge to the other; however this need not 

be so. It is also assumed that the prestressing force is 

constant in each cable. However, once the desired cable 

profiles are obtained, the actual prestressing force along 

the tendon may be used to compute the bending and torsional 

moments. Alternatively, the actual prestressing force, at 

each nodal point, taking account of friction and anchorage 

slip losses, may be used in the analysis. However, if 

superposition of eccentricities is to be valid, the force 

at a given section must be the same for all unit shape 

function profiles and for the basic cable profile. 
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The control of torsional moments is achieved in two 

ways. Firstly, the eccentricity of the cable profile is 

adjusted by the addition of appropriate shape function 

terms. Secondly, if required, the magnitude of the 

prestressing force, which minimizes the adjusted values of 

bending and torsion, is obtained. The procedure for 

calculating the adjusted cable profile is given by the 

following six steps. 

(1) A basic cable profile is selected. A suitable 

choice is to use the cable profile for a straight bridge, 

of developed length 

curved bridge. The 

selected to balance 

moments as desired. 

equal to the developed length of the 

magnitude of the prestressing force is 

a fraction of the dead load bending 

(2) Calculate the bending and torsional moments at a 

number of sections, in. These may be chosen at the nodal 

points of the Jirousek curved elements, employed in the 

idealization of the curved beam BC, Figure 5.12. 

(3) If the bending and torsional moments obtained are 

considered satisfactory, no further calculations are 

necessary. If not, the moments may be adjusted by the 

equation: 
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Figure 5.12 Computation of Pending and Torsional 
Moments at Nodal Points 
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{M} = LAM} 
basic adjusted (5.6) 

The symbol M refers to the vectors of 2m moment values, 

both bending and torsion. The vector [iM} represents the 

changes in moment values to be achieved by the adjustment 

of the cable profiles, or by the change in magnitude of the 

prestressing forces in the two webs. The objective is to 

achieve a solution which satisfies the condition: 

{M} adjusted = {o} (5.7) 

However, this only needs to be approximately achieved, as 

will be done below. 

(4) Select the N- functions, specifying the adjustment in 

cable eccentricity over span BC, Figure 5.11. Let the 

number of shape functions for each web be n. The parabolic 

profile, Figure 5.9(b), and the cubic profiles, Figure 

5.9(e) and () are the most useful. The other parabolic 

and cubic profiles may also be used but they alter the 

eccentricity at the cable ends, which in many cases may not 

be desirable. Quartic shapes, Figure 5.9(i), (j) and ( k) 

may also be added if the vector of moments 1AMI adjusted is 
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to be brought closer to zero. In the remainder of the 

development, the shape functions in Figure 5.9 will be 

refered to as unit cable profiles. 

(5) Unit cable profiles corresponding to the shape 

functions chosen in the previous step are introduced 

separately in each web. The magnitude of the prestressing 

force is the same as in the basic cables -in Step ( 1). The 

values of bending and torsional moments for each unit 

profile are determined at the node points of the Jirousek 

elements and are listed in a column of a matrix [ A] 

(6) The following superposition equation may be written: 

(AA U ]{n} = {AM} (5.8) 

The vector {n} has 2n elements, representing the scaling 

factors for the shape functions in the two webs. When 2n = 

2m the solution of Equation 5.8 gives the values of (n} 

which will bring the bending and torsional moments to zero 

at the sections considered. As mentioned earlier, exact 

balancing is not necessary and the number of unit profiles 

can be smaller than the number of sections ( n<m ). In 

this case there are more equations than unknowns, {fl}, in 

the above set of superposition equations. Thus the set is 
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said to form an inconsistent system. Sincen<m there is no 

vector {} which exactly satisfies Equation 5.8 ( 27); in 

this case an approximate solution to the equation must be 

obtained. Premultiplying both sides by [ AA U]T gives 

= 

or (tJ]{} = fB} 

[A]T{ AM}. (5.9) 

(5.10) 

The square matrix [ U] has dimensions 2nx2n and the equation 

may thus be solved for the unknown parameters {n}. It can 

be shown that the above procedure gives a least squares 

approximation to Equation 5.7 ( 21). In other words, 

optimum use is made of the chosen shape functions to bring 

the sum of the squares of the elements of the vector IAMI 

to a minimum. 

The individual unit cable profiles in each web are 

factored by the corresponding terms of the vector {r}. The 

resulting cable profiles may be" satisfactory, in whicl-i case 

the analysis is completed by computing the resulting 

bending and torsional moments due to these profiles. More 

often, however, the computed profiles may be undesirable 
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from two standpoints.. Firstly, a web cable profile may 

extend below the depth of the beam; alternatively, the 

cable profile in one web may have a very small 

eccentricity, thus having a potentially adverse effect on 

the ultimate flexural strength of the section. If the 

cable eccentricity is too large, the prestressing force in 

the web may be increased and the cable eccentricity 

proportionately decreased. However, this also causes a 

change in eccentricity of the cable at internal supports, 

something which may not be desirable. 

Instead of adjusting the cable profile in this manner, 

constraint equations may be incorporated directly into the 

analysis to constrain the cable profiles in each web to lie 

within the depth of the beam. This will be outlined in 

Section 5.7. 

5.6 Residual Moments  

As discussed in the preceeding section, Equation 5.10 

gives a least squares approximation to a condition of 

exactly balanced bending and torsional moments. In this 

case { M} adj usted is not equal to {o}. Residual bending 

and torsional moments, (R}, occur at each section, and R1. 

is a minimum for the chosen unit cable profiles and 

prestressing forces. In general, the greater the number of 

unit cable profiles used, the smaller is the value of zR. . 
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Using Equation 5.9 the following relationship may be 

written: 

I = ER = (R}T{R} = minimum 

= { [ A] h}—{ M} IT { [AA] {n } — [ M} 

= In I T [AA 
1T 1{} - {}T[J T{} 

- {LM}T (LA] [ fl } + IAMIT [ AA] = minimum 

= (n} AU )T AU ] fl } - 21-01 T tfl}T ( AU]T(n } 

+ { A M} T [M} 

then ( AU ]T [AU ]{n} 

Therefore 

- ( AU ]T {M} 

[U](n} - (B} 101 

which is Equation 5.10. 

Thus Equation 5.10 minimizes the sum of the squared 

residual bending and torsional moments. 

5.7 Geometrical Constraint of the Cable Profile  

The adjusted cable profile in each web may be 

(5.11) 

constrained, using the Lagrange multiplier technique ( 12) 

to lie within the depth of the bridge cross section. The 

eccentricity of the adjusted cable profile is constrained 

at required sections along the bridge. At any point, c, 
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the adjustment in cable eccentricity in a given web may be 

set equal to a specified value, e. For example, the 

eccentricity of the basic cable profile at midspan may be 

such that it cannot be exceeded without going outside the 

beam depth. In this case the sum of the ordinates of the 

unit cable profiles, factored by the appropriate terms of 

the vector tn} may be set to zero, so that no change in the 

basic cable profile occurs at this section. This can be 

expressed as follows: 

N1 (c) N2 (c) ... ] h} = e (5.12) 

where N1 ( c) , N2 (C) , ... are the ordinates of the unit 

cable profiles at the section and {n} is the vector of 

computed scaling factors. Where there are more than one 

constraint this equation may be written in matrix form as: 

(Cl {n} = Q} (5.13) 

There are generally more unit cable profiles than 

constraint equations so ( Cl is a rectangular matrix with 

more columns than rows. 
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The above equation may be multiplied by the row vector 

This vector contains as many Lagrange multipliers 

as there are constraint equations. Thus: 

2{x}T( [c]{ } - {Q} ) = (o} (5.14) 

The above term may be added to the functional equation, 

5.11, in the previous section without altering its value, 

thus: 

I = {} T[]{} 2{}T{} + { AM}T{M} 

- 2{x}T( [C]{} - 2{Q} 

The stationary value of I is found via: 

DI —Co} 91  •  —{ o} 
T7  

This yields: 

[[U] (CI T1 {} = {B} 

Lc [0] J {x} = {} 

(5.15) 

(5.16) 

(5.17) 

The equation may be solved for the unknown parameters, {n}, 

and the Lagrange multipliers (x}. The zero diagonal terms 
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in the above equation cause no problem as they become non 

zero in the Gaussian elimination process. 

5.8 Method of Torsional Moment Control,  

Applied toa Two Span Bridge  

The bridge geometry is shown in Figure 5.11. The 

centreline radius is 64.0 m and the span angle is 30.28 ° . 

The bridge is symmetric and thus, as for the example shown 

in Figure 5.3, only a single span is analysed. Two six 

node Jirousek elements ( a total of eleven nodes ), are 

used to model the bridge. The bridge section is, not 

symmetric about the y' axis, and thus the shear centre does 

not coincide with the centroid. The method for locating 

the shear centre is outlined in Appendix A. 

A basic cable profile, as shown, is adopted in the 

analysis. A dead load of 164 kN/m, corresponding to the 

self weight of the cross section is to be balanced. For 

the chosen profile, the required total prestressing force 

is given as 

8s 

where w is the dead load, k is the developed length of the 

span, and s is the cable sag as shown. This gives P = 

18.70 MN; equal prestressing is assumed in both webs, so 
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that P. inner = P outer = 9.35 MN. The above represent s Step 

(1) of the analysis outlined in Section 5.5. The torsional 

moment diagram due to the dead load and basic prestressing 

is shown in Figure 5.13. The computed bending and 

torsional moments at the eleven nodes of the structure are 

listed in the vector LAM}, Step ( 2). 

{M} 

-3.236 
-3.360 
-3.021 
-2.320 
-1.357 
-0.232 
0.944 
2.078 
3.060 
3.788 
4.164 

= <.fio -> .NNm (5.18) 
-0.774 
-0.483 
-0.264 
-0.099 
0.024 
0.111 
0.162 
0.169 
0.121 
0.000 

/ 

The first eleven terms in this vector represent the 

torsional moments at the eleven points. The bending 

moments are given by the second eleven terms of the vector. 

As can be readily seen these are small; thus the basic 

prestressing balances closely the dead load bending 

moments. The value of I is equal to 86.75(MNm) 2. 

5.8.1 Profile Adjustment - Assuming that the computed 

torsional moments are excessive, we now proceed to Step 
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Figure 5.13 Torsional Moment Diagram due to Dead Load 
and Basic Prestressing, for the Two Span 
Example, Figure 5.11 
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(3) , in which the basic cable profile is adjusted by the 

addition of unit cable profiles. The method outlined in 

Section 5.5 is applied using three combinations of unit 

cable profiles. Firstly the analysis is carried out with 

only a single quadratic term applied to each web, Figure 

5.9(b). The procedure is repeated with the quadratic plus 

two cubic terms, Figure 5.9 ( e) and ( f) superimposed in 

each web. The analysis is further extended to include the 

quartic terms ( i) (j) and ( k) of Figure 5.9. This 

represents Step ( 4) of the procedure. The unit cable 

profiles are numbered as is shown in Figure 5.14. 

The bending and torsional moments corresponding to 

these unit cable profiles are computed at each nodal point 

of the structure. The moments due to each unit profile are 

listed in the corresponding column of the matrix [AA] 

The matrices [AA] generated for quadratic only, and for 

quadratic and cubic unit profiles are given below. Space 

restrictions preclude the listing of [LA] for quadratic, 

cubic and quartic terms added to the basic profiles. In 

this case there would be twelve columns, corresponding to 

six unit cable profiles in each web. For the quadratic 

unit cable profiles: 
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Inner Cable 

(1) ( 2) 

(4) (6) 

Outer Cable 

1 

1 

Figure 5.14 Unit Cable Profiles, Quadratic, 

Cubic and Quartic 



137 

[AA I 
U 

-5.542 
-4.303 
-3.107 
-1.957 
-0.853 
0.203 
1.210 
2.167 
3.074 
3.930 
4.735 
9.129 
4.760 
1.152 

-1.693 
-3.772 
-5.080 
-5.619 
-5.380 
-4.658 
-2.574 
0.000 

For the quadratic plus cubic 

-5.542 
-4.303 
-3.107 
-1.957 
-0.853 
0.203 
1.210 
2.167 
3.074 
3.930 
4.735 
9.129 
4.760 
1.152 

-1.693 
-3.772 
-5.080 
-5.619 
-5.380 
-4.658 
-2.574 
0.000 

1.581 
1.396 
1.166 
0.891 
0.569 
0.200 

-0.217 
-0.683 
-1.199 
-1.763 
-2.377 
9.000 
4.978 
1.644 

-1 .001 
-2.956 
-4.216 
-4.776 
-4.636 
-3.796 
-2.251 
0.000 

profiles the matrix is 

1.581 -10.22]. 4.301 5.728 - 3.879 
1.396 - 5.725 1.175 2.963 -1.234 
1.166 -2.298 -1.038 0.567 0.845 
0.891 0.442 -2.519 -1.085 2.188 
0.569 2.358 - 3.185 -2.132 2.867 
0.200 3.428 - 3.046 -2.571 2.887 

-0.217 3.668 -2.109 -2.401 2.238 
-0.683 3.080 0.363 -1.626 0.889 
-1.199 1.639 2.196 - 0.253 -1.059 
-1.763 - 0.375 2.991 1.723 - 4.206 
-2.377 -2.092 4.535 7.706 -14.059 
9.000 8.325 4.983 7.971 2.604 
4.978 0.774 3.571 1.143 4.787 
1.644 - 3.149 3.913 -2.466 4.480 
-1.001 - 4.316 2.319 - 3.488 2.401 
-2.956 - 3.469 - 0.432 -2.686 -0.712 
-4.216 -1.398 - 3.542 -0.782 -4.144 
-4.776 1.097 - 6.226 1.502 - 7.182 
-4.636 3.242 -7.689 3.452 -9.101 
-3.796 4.236 - 7.124 4.357 - 9.179 
-2.251 3.270 - 4.110 3.502 - 6.606 
0.000 0.000 0.000 0.000 0.000 

(5 . 19) 

(5.20), 

As in the case the vector {iM} the first eleven terms of 

each column represent the torsional moments. The second 

eleven terms are the bending moments. Individual columns 

correspond to the unit profiles numbered in Figure 5.14. 

The solution of Equation 5.10 is initially carried out 
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without geometric constraint of the prestress'ing cables. The 

computed cable eccentricities, residual moments and scaling 

factors, fn}, are given in Tables 5.2 to 5.4; for the case of 

quadratic terms only, quadratic plus cubic, and quadratic, cubic 

plus quartic terms respectively added to the basic cab1 

profiles. 

It can be seen that the greater the number of unit cable 

profiles added, the closer to an exactly balanced configuration 

are the adjusted moments. In all cases the adjusted outer cable 

profiles have eccentricities which are too large at midspan. On 

the other hand the inner cable eccentricities are decreased by 

the factored unit cables. Obviously the eccentricities in the 

outer web are unsatisfactory. However, because the forces due 

to a given cable profile are proportional to the product Pe we 

may change the cable profile and prestressing force provided the 

product Pe remains constant. While this may contravene the 

principle of superposition outlined in Section 5.4, the 

resulting cable profile is a useful first approximation to a 

satisfactory solution. The exact distribution of moments, 

resulting from this set of profiles, may be obtained by 

re-analysing the structure using SFRAME. For each of the three 

sets of computed cable profiles in Tables 5.2 to 5.4, the 

prestressing force in the outer web may be increased until the 

outer web cable lies entirely within the beam depth. However, 

decreasing the cable eccentricity at ,midspan also has the 

undesirable effect of decreasing the eccentricity over the 

internal support, Figure 5.15. 
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Pinner = 9.35 MN rrk-IX = 1.033 MNm 

2 
outer = 9.35 MN I = 2.40 (MNm) 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.023 1.003 

-0.013 0.071 

0.021 - 0.430 

0.038 -0.577 

-0.013 - 0.471 

-0.202 - 0.210 

-0.020 0.104 

0.030 0.363 

0.019 0.465 

0.009 0.312 

0.0 -0.205 

Cable Eccentricities ( m) 

Inner Outer 

-0.500 - 0.500 

-0.205 0.252 

0.034 0.849 

0.220 1.289 

0.352 1.573 

0.429 1.701 

0.452 1.673 

0.420 1.489 

0.334 1.149 

0.194 0.652 

0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.571 2 0.701 

Table 5.2 - Unconstrained Cable Profile, Quadratic 

Terms Added 
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Pinner 9.35 MN T rr1ax = 0.445 MNm 

outer= 9.35 MN I = 0. 769 ( MNm)2 

Node Residual Moments (MNm) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

1 -0.197 0.445 -0.500 - 0.500 

2 0.098 -0.091 -0.182 0.253 

3 -0.012 - 0.229 0.056 0.865 

4 -0.068 - 0.160 0.221 1.330 

5 -0.129 0.032 0.321 1.643 

6 -0.285 0.251 0.365 1.799 

7 -0.044 0.397 0.359 1.790 

8 0.061 0.286 0.312 1.611 

9 0.072 0.051 0.232 1.257 

10 0.369 - 0.123 0.125 0.722 

11 0.0 0.009 0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 -0.547 2 1.295 

3 - 0.030 5 - 0.478 

4 -0.126 6 - 0.405 

Table 5.3 - Unconstrained Cable Profile, Quadratic and 

Cubic Terms Added 
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Pinner = 9.35 MN T = 0.026 MNm 

Pouter = 9.35 MN I = 0.027 (MNm? 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

0.009 0.004 

-0.043 0.000 

-0.022 0.002 

0.041 0.003 

0.037 - 0.003 

-0.131 0.000 

0.035 0.026 

0.032 - 0.023 

-0.015 - 0.014 

-0.011 0.008 

0.0 -0.002 

Cable Eccentricities (m) 

Inner Outer 

-0.500 - 0.500 

-0.172 0.231 

0.056 0.841 

0.210 1.310 

0.296 1.623 

0.365 1.770 

0.373 1.745 

0.370 1.548 

0.310 1.184 

0.194 0.663 

0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 -0.650 ? 0.810 
3 - 0.183 5 - 0.247 
4 - 0.169 6 0.173 
7 0.255 10 0.221 
8 0.128 11 0.001 
9 0.000 12 - 0.268 

Table 5.4 - Unconstrained Cable Profile, Quadratic, 

Cubic and Quartic Terms Added 
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A Cable 2 B 

e2 

Cable 

P1e1 = P2e2 

Figure 5.15 Decreasing the Cable Eccentricity 
to Fit Within Beam 
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Transverse moments in the cross section are generated by 

the increase in the prestressing force in the outer web. 

However, given that the moment of inertia of most practical box 

sections is greater about its z' axis than about the y' axis, a 

section can sustain a significant transverse moment without 

large stresses occuring at the extreme fibres. In the following 

discussion the statically determinate transverse bending 

moments, due to different web prestressing forces, are 

considered. The determinate transverse moments give an 

indication of the changes in extreme fibre stresses due to 

different- web prestressing forces. Indeterminate transverse 

moments are generated by reactions at the bearings, but they are 

not investigated here. In the example considered, Figure 5.11, 

Iz,is given as 56.5 m4. Referring to Table 5.5, the transverse 

bending moment M, , generated by decreasing the outer cable 

eccentricity is equal to 41.9 MNm, for the solution where 

quadratic terms only are added to the basic cable profile. The 

modulus of rupture for normal density concrete may be 

approximated by fr = 0.6 v'f , so that for an assumed concrete 

strength of 40 MPa, f = 3.8 MPa. The extreme fibre stress due 

to a transverse moment of 41.9 MNni is ( for y = 5.0 m ): 

f = 41.9  = 3.7 MPa 
56.5 

While less than the modulus of rupture; this value may or may 

not be considered excessive. 
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Pouter emax Mz i 

(MN) (m) (MNm) 

Quadratic 

(a) 9.35 1.701 0.0 

(b) 15.90 1.000 41.92 

Quadratic and Cubic 

(a) 9.35 1.799 0.0 

(b) 16.82 1.000 47.81 

Quadratic, Cubic and Quartic 

(a) 9.35 1.770 0.0 

(b) 16.55 1.000 46.08 

(a) = Unconstrained Profile 

(b) = Cable Profile Factored to Fit within Bridge 

Table 5.5 - Effect of Bringing Outer Cable Profile 

Within Bridge Depth 

c 

5.8.2 Constraint of the Cable Profile - As an 

alternative to manipulating the prestressing force and 

cable eccentricity as outlined above, constraints may be 

applied to the cable profile as discussed in Section 5.7. 

It is clear from Tables 5.2 to 5.4 that the eccentricity of 

the outer cable is always greater than that of the inner 
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cable. Thus by constraining the outer cable to have a 

maximum eccentricity, the inner cable will also be forced 

to lie inside the beam depth. In the present analysis the 

change in eccentricity of the outer cable is set to zero at 

midspan. Thus referring to Figure 5.14 the constraint 

equation is, when quadratic terms only are added: 

1.0 = 0.0 (5.21) 

For the case of quadratic and cubic terms added to the 

basic prpfiles the constraint equation is: 

l.0n + 0.5625n 5 + 0.5625n 6 = 0.0 (5.22) 

where 0.5625 is the magnitude of the unit cable profiles 

(5) and ( 6), Figure 5.14, at the midspan of the beam. 

Similarly for quadratic, cubic and quar.tic terms added the 

constraint equation becomes: 

1.0n 2 + 0.5625ri5 + 0.56256 + 1.0ri 11 = 0.0 ( 5.23) 

- The quartic unit profiles ( 10) and ( 12), Figure 5.14, are 

not included since their magnitudes are zero at midspan. 

The results of the constrained analysis are shown in 

Tables 5.6 to 5.8. It can be seen that the constrained 
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inner 9.35 MN T max = 3.077 MNm 

'outer 9.35  MN I = 68. 17 ( MNm) 2 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments ( MNm) 

Bending Torsion 

-3.219 -1.968 

-1.879 -2.376 

-0.739 -2.308 

0.162 -1.869 

0.772 -1.161 

1.021 - 0.281 

1.411 0.669 

1.445 1.581 

1.191 2.355 

0.710 2.889 

0.000 3.077 

Cable Eccentricities (m) 

Inner Outer 

-0.500 - 0.500 

-0.083 0.0 

0.253 0.400 

0.507 0.700 

0.679 0.900 

0.770 1.000 

0.779 1.000 

0.707 0.900 

0.553 0.700 

0.317 0.400 

0.000 0.000 

Unit Cable Scaling Factors C Figure 5.14 

Inner Web Outer Web 

1 -0.230 2 0.0 

Table 5.6 - Constrained Cable Profile, Quadratic 

Terms Added 
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Pinner 9.35 MN Tr = 2.727 MNm 

'outer 9.35 MN I = 38.13 (MNm) 2 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments ( MNm) 

Bending Torsion 

-1.488 - 0.314 

-1.565 -1.458 

0.111 -2.076 

0.969 -2.089 

1.151 -1.633 

0.788 - 0.818 

0.573 0.250 

0.230 1.889 

0.047 2.727 

0.143 1.993 

0.000 - 0.944 

Cable Eccentricities ( m) 

Inner Outer 

-0.500 - 0.500 

-0.188 -0.013 

0.118 0.383 

0.398 0.685 

0.632 0.891 

0.801 1.000 

0.887 1.008 

0.869 0.915 

0.728 0.717 

0.445 0.413 

0.000 0.000 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.762 2 - 0.987 

3 0.381 5 0.864 

4 0.620 6 0.890 

Table 5.7 - Constrained Cable Profile, Quadratic and 

Cubic Terms Added 
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P. = 
inner 

9.35 MN T = -1.565 MNin 

P = 9.35 MN I = 10.36 ( MNm) 2 outer 

Node 

1 

2 

3. 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.420 -0.778 

-0.440 - 0.779 

0.586 - 0.854 

0.518 -1.145 

0.197 -1.544 

-0.151 0.030 

0.150 -1.565 

0.707 0.334 

0.293 0.144 

-0.548 -0.359 

0.000 - 0.236 

Cable Eccentricities ( m) 

Inner Outer 

-0.500 - 0.500 

-0.169 -0.144 

0.123 0.299 

0.386 0.690 

0.649 0.892 

0.818 1.000 

0.980 0.823 

0.989 0.594 

0.883 0.260 

0.577 0.002 

0.000 0.000 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 -0.919 2 -7.266 
3 1.071 5 18.58 
4 0.724 6 - 6.499 
7 - 0.592 10 - 15.57 
8 - 0.273 11 0.470 
9 0.296 12 15.84 

Table 5.8 - Constrained Cable Profile; Quadratic 

Cubic and Quartic Terms Added 
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analysis produces residual moments which are appreciably 

higher than those obtained in the unconstrained analysis. 

In addition the inner web cable profiles have a greater 

positive eccentricity than the corresponding unconstrained 

profiles. Thus the net effect of the geometric cable 

constraints is to produce a less optimal solution with 

respect to residual moments, but one in which no transverse 

moments are generated. 

As can be seen in Figure 5.16 the reduction in 

torsional moments achieved by the constrained adjusted 

profiles is relatively small. It is obvious that equal 

prestressing forces of 9.35 MN in each web do not give the 

greatest reduction in torsional moments. It can be seen in 

Figure 5.17 that by increasing the prestressing force in 

the outer web of the beam, while maintaining a force of 

9.35 MN in the inner web, a more significant decrease in 

torsional moments can be achieved. Referring to Figure 

5.17, a force of 14.0 MN ( approx.) in the outer web 

produces the maximum decrease in torsion. Thus by 

repeating the preceeding analysis, Steps ( 1) to ( 6) , with 

the appropriate constraints applied to the cable profile, 

an approximate best combination of prestressing forces can 

be determined. If this combination of- prestressing forces 

produces transverse moments which are too large, then a 

smaller difference in web prestressing forces can be 
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selected. Thus the designer must establish a balance 

between the desired maximum reduction in torsional moments 

and the maximum permissible transverse moment. 

5.9 Optimum Prestressing Forces  

A more elegant formulation, than the process of 

repeating the analysis for different combinations of 

prestressing forces, is to incorporate an optimization 

subroutine into the procedure, to automatically compute the 

optimum web prestressing forces. In Section 5.6 it has 

2 
been shown that I ( = ER ) is a measure of the closeness 

of any computed solution to a configuration of exactly 

balanced bending and torsional moments. In the present 

optimization procedure we seek a solution that minimizes 

the functional I. A subroutine, ZXMWD, from the IMSL 

library of fortran subroutines ( 24) , is used to compute the 

optimum combination of prestressing forces, using a direct 

search technique ( 9,41). At each stage of the search 

process a specific set of prestressing forces is assumed. 

The vector, { M}, and the matrix, ( AA] , corresponding to 

these prestressing forces are formed ( Step ( 6) of the 

analysis in Section 5.5 ). Equation 5.17 is then solved to 

give the appropriate cable profiles. The objective 

function, I, is computed and returned to the optimization 

subroutine, ZXMWD. The process is repeated until the 
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minimum value of I has been computed. The web prestressing 

forces corresponding to this value of I are the optimum 

values. The maximum and minimum prestressing forces 

allowable in each web are input as constraints to the 

problem. Thus the designer may constrain both the geometry 

of the cables ,, using Lagrange multipliers, and the 

permissible magnitudes of the prestressing forces in the 

bridge. 

5.10 Optimum Prestressing Forces for the  

Bridge in Figure 5.11  

The analysis carried out in Section 5.8 is now 

extended to include the computation of optimum prestressing 

forces. The analysis is again carried out for quadratic, 

quadratic plus cubic, and quadratic, cubic plus quartic 

unit profiles added to each web. The constraint equations 

5.21 to 5.23 are again included to constrain the cable 

profiles to lie within the bridge depth. A number of 

prestressing force constraints are applied. For each set 

of added unit cable profiles, the minimum prestressing 

force in each web was successively set at 4.70 MN, 7.0 MN, 

9.35 MN and 11.70 MN. In all cases the maximum 

prestressing force was set at a sufficiently high value, 

that it was not a governing constraint. The results of the 

analysis are given in Tables B.1 to B.12 in Appendix B, and 
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are summarized in Table 5.9. Specific reference will only 

be made to the quadratic unit profile analysis, but the 

other combinations are included for completeness. 

Inspection of Table 5.9 reveals that the optimum 

solution minimizes the force in the inner web. The outer 

web forces vary by very little as the minimum permissible 

web force is changed. For a minimum allowable web force of 

4.70 MN a large difference occurs between the optimum 

forces in each web, thus producing a high transverse moment 

of of 63.88 MNm. The extreme fibre stress corresponding to 

this moment is 5.6 MPa, which is substantially greater than 

the previously computed modulus of rupture ( 3.8 MPa ). 

Thus while the total prestressing force required in this 

case is small, the solution is not feasible because of the 

high transverse moment. 

1 specified minimum prestréssing force of 7.00 MN also 

generates prestressing forces in each web which result in a 

large transverse bending moment ( 47.45 MNm ). This again 

produces an extreme fibre stress that is greater than the 

modulus of rupture. Therefore this solution is again 

deemed unsatisfactory. 

For a minimum prestressing force of 9.35 MN a 

transverse moment is generated that produces an extreme 

fibre stress ( 2.8 MPa ) , that is less than the modulus of 

rupture. It can also be seen in thiscase that the 
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min 

(MN) 

Pinner router 

(MN) (MN) 

Ptotal 

(MN) 

I 

(MNm) 2 

Tmax 

(MNm) 

Mz' 

(MNm) 

Quadratic 

4.7 4.70 14.603 19.303 2.30 1.005 63.38 

7.0 7.0 14.417 21.417 2.47 1.061 47.45 

9.35 9.35 14.228 23.573 2.67 1.117 31.25 

11.7 11.7 14.038 25.738 2.90 1.174 14.96 

Quadratic and Cubic Terms 

4.7 4.7 15.271 19.971 0.74 0.435 67.65 

7.0 7.0, 15.089 22.089 0.76 0.438 51.77 

9.35 9.35 14.902 24.247 0.79 0.442 35.56 

11.7 11.7 14.715 26.415 0.82 0.445 19.30 

Quadratic, Cubic and Quartic Terms 

4.7 4.7 15.077 19.777 0.028 0.025 66.41 

7.0 7.0 14.899 21.899 0.034 0.028 50.55 

9.35 9.35 14.719 24.064 0.042 0.032 34.39 

11.7 11.7 14.537 26.237 0.051 0.035 18.16 

Table 5.9 - Condensed Results for Two .Span Bridge, 

Figure 5.11 
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computed optimum force in the outer web is in close 

agreement with the optimum estimated from Figure 5.17. 

This serves as a check that the results obtained from the 

optimization procedure are correct. Because the computed 

optimum force in the outer web varies little as the minimum 

allowable prestressing force is increased, the computed 

total amount of prestressing increases as P is 
mm 

increased, Table 5.9. For P . min = 9.35 MN the total 

computed prestressing force is 1.26 times the original 

force chosen for the straight beam of equivalent developed 

length. Given that the bending moments are almost exactly 

balanced and that the magnitude of the torsional moments 

are reduced very significantly, Table B.3, this force may 

not be excessive. 

Relatively little difference in the computed adjusted 

moments occur for the four values of minimum allowable web 

prestressing force. Thus all four solutions are of 

approximately equal suitability as regards control of 

bending and torsional moments. However, the resulting 

transverse moments show a wider variation in magnitude, 

Figure 5.18. It is clear from Table 5.9 that if a larger 

total prestressing force is used then the magnitude of the 

transverse moments will be decreased. Thus a trade off 

must take place between how much total prestressing force 

is to be used and how great a transverse moment can be 



157 

10.0 

60.0 

40.0 

20.0 

0.0 

j 

A 

- 

4.0 6.0 8.0 10.0 12.0 

Inner Web Force (MN) 

• Quadratic, Cubic and 
Quartic 

I Quadratic and Cubic 

A Quadratic 

4.0 6.0 8.0 10.0 12.0 

Inner Web Force ( MN) 

Figure 5.18 Variation of I and M z , with Pinner 



158 

sustained. If none of the above solutions is considered 

suitable with respect to total prestressing force and 

transverse moment, then a less optimal solution with 

respect to balancing of moments may be obtained. For 

example, in the case of Pmin = 9.35 MN a more severe 

constraint may be applied to the maximum allowable 

prestressing force. If the value of Pmax is set equal to 

12.0 MN then the force in the outer web will adopt this 

value; the force in 

The resulting value 

unconstrained P max? 

the inner web will remain at 9.35 MN. 

of I will be greater than for an 

however, the total prestressing force 

and transverse moment magnitude will be reduced. It is 

obvious, therefore, that to achieve desired cable profiles 

and prestressing forces an. iterative procedure must be 

carried out to determine satisfactory values of residual 

torsional moments, total prestressing forces and transverse 

moments. 

It can be seen in Table 5.9 that the closeness of the 

final solution to a condition of exactly balanced bending 

and torsional moments increases with an increase in the 

number of unit cable profiles added to each web. The 

resulting torsional moment diagrams, for P min =  9.35 MN, 

are plotted in Figure 5.19 for the three combinations: 

quadratic, quadratic plus cubic, and quadratic, cubic plus 

quartic. The bending moments are in all cases very small. 
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The magnitudes of the adjusted torsional moments may be 

compared with the unadjusted torsional moments in Figure 

5.13. The difference in magnitude prevents all four 

torsion diagrams being shown on the same graph. 

When quadratic, cubic and quartic terms are added to 

the basic cable profile very small residual moments occur. 

However, such complete balancing of the torsional moments 

is probably not warranted, and certainly the reduction 

achieved by using a cubic plus quadratic or even a 

quadratic analysis is satisfactory. The quadratic analysis 

is also desirable because it is the profile most commonly 

assumed by design engineers. The differences in computed 

cable profiles between the quadratic and the quadratic, 

cubic plus quartic analyses are shown in Figure 5.20. 

Though relatively small differences exist between the 

two sets of cable profiles, more significant differences in 

balancing capacity occur. Given the limitations on the 

degree of accuracy to which prestressing tendons may be 

placed on site, it may not be worthwhile to include the 

higher order terms in the analysis. 

5.11 Three Span Example  

The basic bridge geometry is shown in Figure 5.21. 

The two end spans are circular with centreline radii of 

120m and 180m respectively, and span lengths of 50.26m and 
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40.75m respectively The centre span is composed of two 

cubic spirals, of total length 50m, connecting the reverse 

circular curves. A single box section with section 

properties as shown was assumed for the analysis. It was 

assumed that the prestressing was to balance the total dead 

load due to a self weight of 142.8 kN/m. The required 

prestressing force to balance bending moments in an 

equivalent straight beam was 26.53 MN, 13.625 MN in each 

web. The corresponding basic cable profiles are shown in 

Figure 5.22. The torsional moment diagram due to combined 

dead load and prestressing is plotted in Figure 5.23. 

From the perspective of balancing torsional moments 

this example presents problems not encountered in the 

previous, symmetric example. Different radii of curvature 

occur in different spans, and different span lengths, are 

used. In addition, due to the reverse curvature, the inner 

web in Span AB, Figure 5.21, becomes the outer web in Span 

CD. As was seen in the previous two span example, a 

greater prestressing force is required in the outer web 

than in the inner, for torsional moment control. Thus 

there is a conflicting requirement between the two spans 

with respect to the web in which the greater prestressing 

force occurs. Because of the reverse curvatures, there is 

no " inner cable" or " outer cable"; for this reason cable 1 



Figure 5.22 Basic Cable Profile for the Three Span Bridge in Figure 5.21 



Torsion Diagram due to Dead Load and Basic Prestressing in 
Three Span Bridge, Figure 5.21 
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is defined to be in the inner web of Span AB and cable 2 in 

the outer web of Span AB. 

The bridge was analysed using two six node Jirousek 

elements in each span, giving a total of six elements. The 

torsion control analysis was carried out with quadratic 

terms, only, added to the basic cable profile. Unit 

quadratic cables were added to each web in the three spans; 

thus a total of six was required. The unit profiles in 

Figure 5.24 are used in the analysis. With the present 

formulation it is possible to vary individually the cable 

sags in each of the three spans, but with the same force in 

each span. 

From a number of preliminary runs it was determined 

that the maximum force constraint in the individual webs 

governed. As a result, the maximum prestressing force in 

each web was set successively at 17.5 MN, 20.0 MN, 22.5 MN, 

and 25.0 MN; and the optimum solution in each case sought. 

The cable profile constraint used in each case was: 

1.011 4 = 0.0 (5.24) 

This implies that the profile of the cable in the outer web 

of Span AB is constrained to a maximum positive 

eccentricity of l.4m. For all the solutions obtained, 

except the one in which a maximum cable force of 25.0 MN is 

prescribed, this constraint is sufficient to keep the 
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Figure 5.24 Unit Profiles Used in Three Span Bridge, Figure 5.21 
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resultant cable profiles within the bridge depth at all 

points. 

5.11.1 Analysis of Results - The condensed results of 

the analysis for maximum web forces of 17.5 MN, 20.0 MN, 

22.5 MN, and 25.0 MN are given by Solutions 1,2,3 and 4 

respectively, in Table 5.10. It can be seen that for 

Solution 1 the optimum combination of forces is the maximum 

allowable, 17.5 MN in each web. The maximum torque of 470 

MNm resulting from the basic cable profile, Figure 5.22, is 

reduced to 3.08 MNm - a reduction of 34%. This reduction 

is low, at least by comparison with the reduction achieved 

in the last example; however, no transverse moments are 

induced. 

For a force of 20.0 MN in each web the maximum torsion 

is reduced by 59% to 1.95 MNm. In this case also, no 

transverse moments are induced but the prestressing force 

required is 1.47 times that required for an equivalent 

straight bridge. For Solution 3 the optimum force in the 

inner web of Span AB is less than the maximum allowable of 

22.5 MN. The difference in cable force results in a 

transverse moment of 15.4 MNm. Using the section 

properties and dimensions given in Figure 5.21, the extreme 

concrete fibre stress is computed to be 1.9 MPa, which is 
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Soin. max P  p2 total I Tmax Mzv 

(MN) (MN) (MN) (MN) (MNm) (MNm) (MNm) 

1 

2 

3 

4 

5 

6 

7 

17.5 17.5 17.5 35.0 5.76E+2 3.08 0.0 

20.0 20.0 20.0 40.0 2.67E+2 1.95 0.0 

22.5 18.22 22.5 40.72 1.41E+2 1.11 15.4 

25.0 8.23 24.76 32.99 1.12E+2 1.49 59.5 

23.0 16.01 23.0 39.01 129E+2 1.20 25.2 

23.5 13.81 23.5 37.31 1.21E+2 1.28 34.9 

23.5 15.19 23.5 38.69 1.22E+2 1.39 29.9 

Table 5.10 - Results for Three Span Bridge, Figure 5.21 
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only half the modulus of rupture ( 3.8 MPa) calculated in 

the previous example. 

For a constraining maximum web force of 25.0 MN the 

resulting optimum cable forces are 8.23 MN and 24.76 MN. 

The total prestressing force is thus 32.99 MN, which is 

lower than for the other solutions. Because of the large 

difference in prestressing force between the two webs a 

very high transverse moment is generated. In addition, 

because of the very low force in cable 1, it no longer lies 

within the beam dimensions. Therefore this potential 

solution was not considered further. 

Given that such a large reduction in prestressing 

force in cable 1 occurs between Pmax = 22.5 MN and Pmax = 

25.0 MN, it was decided to obtain solutions for 

23.0 MN and P max = 23.5 MN, to investigate more closely the 

variation in optimum cable forces. For a maximum cable 

force of 23.0 MN, Solution 5, the total prestressing force 

is reduced, incomparison to Solution 3, Table 5.10, to 

39.01 MN. The maximum torsional moment is slightly greater 

and the transverse moment of 25.2 MNm still gives an 

extreme fibre stress ( 3.1 MPa) less than the modulus of 

rupture. For Solution 6 the total prestressing force is 

further reduced but the transverse moment rises to 34.9 MN, 

producing an extreme fibre stress of 4.3 MPa. In addition, 

cable 1 sags beneath the beam depth in Span BC, Figure 
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5.25. Thus an extra constraint has to be applied to the 

profile, namely, 

l.0n 2 = 0.0 (5.25) 

The resulting profile, Solution 7, lies entirely within the 

beam dimensions and while producing a slightly larger 

maximum torsional moment it also reduces the imbalance 

between the web prestressing forces. The resulting 

transverse moment of 29.9 MNm generates an extreme fibre 

stress of 3.7 MPa which 

of the concrete. 

It is difficult to 

is less than the modulus of rupture 

make categoric conclusions as to 

which of the above, combinations of prestressing forces is 

the best. A reduction to a maximum torsional moment of 

3.08 MNm, as achieved in Solution 1, may not be adequate. 

Similarly, the difference in web prestressing forces which 

was obtained in Solution 4 is too large and so this is not 

satisfactory. For Solution 6 the cable profile lies 

outside the girder dimensions so it too must be eliminated. 

However Solutions 2,3,5 and 7 might all be satisfactory. 

The residual torsional moment diagrams for these solutions 

are plotted in Figure 5.26. It will require a check by the 

designer of other governing design parameters to decide on 

which solution ought to be adopted. 
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Figure 5.25 Adjusted Cable Profiles for Solutions 6 and 7, Table 5.10 
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5.12 Concluding Remarks  

An analytic technique for the control of torsional 

moments in curved box girder bridges has been developed in 

this chapter. The method enables a designer to chose a 

cable profile and prestressing forces that minimize 

torsion, subject to appropriate constraints with respect to 

the prestressing and the cable geometry. The technique has 

been applied to two box girder bridge examples, and in both 

cases substantial reductions in the magnitude of torsional 

moments have been achieved. Both examples also illustrate 

that a range of potential solutions to each situation 

exists. 



176 

CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and General Conclusions  

The work outlined in this thesis' may be divided into 

two distinct parts. Firstly, the development of the 

Jirousek beam element, an element suitable for the analysis, 

of curved prestressed bridges, is presented. Secondly, a 

technique is developed for controlling torsional moments in 

curved box girder bridges by the use of appropriate- cable 

profiles and prestressing forces. 

The Jirousek element gives correct results under 

distributed loading and under concentrated loads applied to 

external nodes. However, when subjected to concentrated 

forces at internal degrees of freedom, inexact results are 

obtained. The source of the errors is the element's 

behaviour in approximating the true deflected shape by a 

continuous function. In reality, when concentrated loads 

are applied at internal nodes the deflection field is 

discontinuous at the point of application of the load. 

Thus, in structures where large concentrated forces are 

applied it is preferable to have the point of application 

of the load coincident with the end nodes of the Jirousek 

element. ' In the present analysis of curved bridges only 
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applied dead loads and 

and in addition, cable 

coincide with external 

element performed very 

prestressing loads were considered, 

anchorages were constrained to 

element nodes. As a result, the 

well under the applied loading, and 

as seen in Section 5.2, gave results in very close 

agreement with the exact values. 

The automatic computation of prestressing loads was of 

major benefit.in the present work. The method developed 

for controlling torsion requires that the bending and 

torsional moments due to a number of prestressing cable 

profiles be computed. This would have been a very tedious 

task by hand, particularly for cubic and quartic profiles. 

However, with automatic computation of prestressing forces 

the induced torsional moments are computed very easily and 

efficiently, with each cable profile being analysed asa 

separate load case. 

The method for control of torsional moments, outlined 

in this thesis, has been presented for box sections, in 

which the cable profiles are constrained to lie in a 

particular plane corresponding to the section webs. 

However, the method may also be applied to solid cross 

sections by the use of unit cables in both the y' and z 

directions of the cross section. 

A basic premise of the analysis is that superposition 

of individual unit cable profiles is possible. This has 
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been shown to be valid provided the radial forces produced 

by a prestressing tendon are linearly proportional to the 

eccentricity. All bridges in practice have a sufficiently 

small depth to span ratio to comply with this requirement. 

The technique differs from previous methods of 

controlling torsional moments in that it enables the 

designer to constrain the cable profiles and to prescribe 

the amount of prestressing to be used in the bridge. By 

specifying appropriate cable profile and prestressing force 

constraints the designer may eliminate as little, or as 

much torsional moment as he deems necessary. In this 

respect the method is more general than those previously 

proposed ( 11,14) . The method is also more general in that 

it may be applied to curved bridges of non circular 

geometry, or to bridges with both vertical and horizontal 

components of curvature. 

Two examples have been included to demonstrate the use 

of the method. The analysis of the two span symmetric 

bridge demonstrates the relative amounts of torsion that 

can be eliminated using quadratic, cubic and quartic 

analysis. In this particular example the quartic analysis 

gives an almost totally balanced configuration of bending 

and torsional moments. However, the greater reduction in 

torsional moments may not warrant the extra computational 

effort, particularly for bridges with a large number of 
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spans. Furthermore, in practice, it is not necessary to 

reduce torsional moments to zero; rather, it is sufficient 

to reduce the torsional moment such that no ( or only a 

small amount of ) additional reinforcement is required in 

the bridge. In addition, for simplicity of construction 

and detailing, designers may prefer to use parabolic cable 

profiles. 

The three span example shows that a quadratic analysis 

can achieve a significant reduction in the magnitude of 

torsional moments along a bridge. It also demonstrates 

that a number of different combinations of prestressing 

forces and cable profiles may give a satisfactory solution. 

6.2 Recommendations for Future Research  

The method presented in Chapter Five can be 

conveniently applied to the control of torsional moments in 

curved bridges. Its practical usefulness could be further 

improved, however, by the addition of some simple 

refinements. 

Firstly, as the method is presently formulated, the 

cable profile is geometrically constrained using the 

Lagrange multiplier technique. With this technique, only 

equality constraints may be applied - thus the adjusted 

cable is prescribed to have a specified eccentricity at 

some section. Using inequality constraints, the cable 
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profile could be constrained to lie within set limits, as 

is applied in the constraining of the prestressing forces. 

A second refinement of the analysis would be to 

include additional constraints on the final solution. 

These could be applied with respect to such quantities as a 

maximum allowable transverse moment and a satisfactory 

value of ultimate strength. These additional constraints 

would have the effect of further automating the procedure, 

something that is in keeping with modern design trends. 
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APPENDIX A 

LOCATION OF SHEAR CENTRE IN BOX SECTIONS 

Most box sections in practical use, though symmetrical 

about a vertical axis, are unsymmetrical with respect to 

the y' axis,, Figure A.1. Thus the shear centre no longer 

coincides with the centroid of the section, but lies on the 

z' axis at some distance above the centroid. This implies 

that the horizontal radial forces, caused by prestressing 

in a curved beam, have a proportionally higher eccentricity 

with respect to the centre of twist ( or shear centre ) of 

the cross section. 

The location of the shear centre may be computed, for 

thin walled open sections, by computing the shear flow 

through the section due to an applied shearing force in the 

appropriate direction. Moments are then taken about a 

suitable point to determine the distance of the shear 

centre from the centroid. For the case of closed sections, 

however, the shear flow around the section cannot be 

directly computed. However given that, for a cross section 

subject to bending about one of its principal axes, no 

twist occurs, we may write the following equation for any 

closed section ( 32): 
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Figure A.1 tJnsyrnmetric Box Section 
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Figure A.2 Definition of Term A s as in Equation A.1 
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1 1 ds 
W_2AG ? E 

S 

(A.1) 

where q = shear flow 

U) = angle of twist 

area enclosed by centreline of box section 

see Figure A.2 

G = shear modulus 

t = thickness 

The shear flow at some point, say point 1 of Figure A.1, 

may initially be assumed to be zero. The resulting shear 

flow at any section may then be computed using the equation 

VQ 

(A.2) 

where q0 = the shear flow at €he required section 

V = the applied shearing force 

Q = the first moment of area of the segment 

considered about the appropriate centroidal axis 

I = the moment of Inertia 

However, when substituted into Equation A.1 the shear 

flows, thus computed do not give zero twist. The assumed 

shear flows differ by a constant term, from the correct 
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distribution, required to give zero twist. Thus the 

correct shear flow is given by: 

q = + qr 

Substituting into Equation A.1 gives : 

U) 
11 ds 

= 2AGo1r) 

(A.3) 

(A.4) 

Since q is constant around the box it may be taken outside 

the integral and thus: 

%ds 

j ds 
It 

(A.5) 

The correcting term, q , may then be added to the assumed 

shear flow to give the actual shear flow distribution 

around the box, Figure A.3. Since the shear flow in the 

overhangs is determinate, the redundant shear flow only 

acts in the closed box portion of the cross section. 

Once the shear flow diagram has been obtained, the 

shear centre may be located by taking moments of forces 

about a suitable point. The shearing force along each 

section of the box is given by the integral of the shear 

flow. 
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APPENDIX B 

OPTIMIZED RESULTS FOR THE TWO SPAN BRIDGE, FIGURE 5.11 

4.70 MN T = 1.005MNm P = mm max 

P. inner = 4.70 MN I = 2.30 (MNm) 

P outer z' = 14.60 MN M = 63.38 MNm 

Node Residual Moments ( MNm) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

1 -0.025 1.005 -0.50 -0.50 

2 -0.017 0.065 0.034 0.0 

3 0.018 -0.424 0.460 0.40 

4 0.038 - 0.566 0.779 0.70 

5 -0.011 - 0.461 0990 0.90 

6 -0.197 - 0.202 1.093 1.0 

7 -0.016 0.101 1.090 1.0 

8 0.034 0.355 0.979 0.90 

9 0.021 0.458 0.760 0.70 

10 0.010 0.310 0.434 0.40 

11 0.0 -0.194 0.0, 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 0.094 2 0.0 

Table B.1 - Quadratic Terms Added To Basic Profile 

2m1n = 4.70 MN 
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P min = 7.00 MN Tmax = 1.061 MNm 

P. inner = 7.00 MN I, = 2.47 (MNm) 2 

P outer = 14.42 MN MZ = 47.45 MNm 

Node Residual Moments (MNm) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

-0.028 1.061 -0.50 -0.50 

2 -0.015 0.088 -0.015 0.0 

3 0.025 -0.425 0.195 0.40 

4 0.045 - 0.583 0.431 0.70 

5 -0.012 -0.486 0.593 0.90 

6 -0.221 -0.229 0.680 1.0 

7 -0.018 0.081 0.693 1.0 

8 0.040 0.345 0.631 0.90 

9 0.027 0.463 0.495 0.70 

10 0.014 0.336 0.285 0.40 

11 0.0 -0.145 0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 ) 

Inner Web Outer Web 

1 - 0.332 2 0.0 

Table B.2 - Quadratic Terms Added to Basic Profile, 

P = 7.0 MN 
mm 
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min = 9.35 MN Tmax = 

P inner = 9.35 MN I = 

P outer = 14.23 MN M, = 

1.117 MNm 

2.67 ( MNm)2 

31.25 MNm 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.031 1.117 

-0.013 0.111 

0.032 - 0.426 

0.052 - 0.600 

-0.013 - 0.512 

-0.245 - 0.257 

0.020 0.059 

0.045 0.335 

0.033 0.469 

0.018 0.362 

0.0 -0.095 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 -0.50 

-0.191 0.0 

0.060 0.40 

0.253 0.70 

0.340 0.90 

0.468 1.0 

0.490 1.0 

0.453 0.90 

0.360 0.70 

0.209 0.40 

0.0 0.0 

Unit Cable Scaling Factors C Figure 5.14 

Inner Web Outer Web 

1 - 0.532 2 0.0 

Table B.3 - Quadratic Terms Added to Basic Profile, 

P . = 9.35 MN 
'nj-n 
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P = 11.70 MN .1. - 1.174 MNm - 

min max 

P. = inner 11.70 MN I = 2.90 ( MNm) 2 

router = 14.04 MN Ms 14.96 MNm 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments ( MNm) 

Bending Torsion 

-0.034 1.174 

-0.011 0.135 

0.039 - 0.427 

0.060 - 0.617 

-0.014 -0.538 

-0.270 - 0.285 

-0.023 0.038 

0.051 0.324 

0.039 0.474 

0.022 0.388 

0.0 - -0.044 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 -0.50 

-0.237 0.0 

-0.022 0.40 

0.146 0.70 

0.267 0.90 

0.341 1.0 

0.367 1.0 

0.346 0.90 

0.278 0.70 

0.163 0.40,, 

0.0 0.0 

Unit Cable Scaling Factors C Figure 5.14 

Inner Web Outer Web 

1 - 0.659 2 0.0 

Table B.4 - Quadratic Terms Added To Basic Profile, 

p min = 11.70 MN 
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p • mm = 4.70 MN Tmax = 0.435 MNm 

P. inner = 4.70 MN I = 0.74 (MNm) 2 

P outer = 15.27 MN M z , = 67.65 MNm 

Node Residual Moments ( MNm) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

1 -0.193 0.435 -0.50 - 0.50 

2 0.094 - 0.090 0.084 - 0.021 

3 -0.011 -0.225 0.508 0.372 

4 -0.062 - 0.157 0.789 0.675 

5 -0.124 0.031 0.941 0.886 

6 -0.286 0.248 0.980 1.000 

7 -0.042 0.386 0.920 1.014 

8 0.063 0.278 0.776 0.925 

9 0.072 0.051 0.563 0.728 

10 0.036 - 0.119 0.301 0.421 

11 0.0 0.008 0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 0.148 2 0.297 

3 - 0.056 5 - 0.286 

4 - 0.243 6 - 0.242 

Table B.5 - Quadratic and Cubic Terms Added to Basic 

Profile, P mm . = 4.70 MN 
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'min = 7.00 MN Tma = 0.438 MNm 

Pinner = 7.00 MN I = 0.76 (MNm) 2 

Pouter = 15.09 MN M; = 51.77 MNm 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.198 0.438 

0.094 - 0.091 

-0.005 - 0.226 

-0.055 -0.159 

-0.125 0.030 

-0.309 0.248 

-0.040 0.389 

0.069 0.281 

0.079 0.052 

0.040 - 0.119 

0.0 0.007 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 -0.50 

-0.078 -0.023 

0.231 0.369 

0.441 0.673 

0.562 0.885 

0.603 1.0 

0.576 1.015 

0.492 0.927 

0.360 0.731 

0.193 0.423 

0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.288 2 0.306 

3 - 0.031 5 - 0.295 

4 - 0.163 6 - 0.248 

Table B.6 - Quadratic and Cubic Terms Added to Basic 

Profile, Pmin = 7.0 MN 
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min = 9.35 MN Tma = 0.442 MNm 

'inner = 9.35 MN I 0.79 () 2 

Pouter = 14.90 MN M, = 35.56 MNm 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.204 0.442 

0.093 - 0.091 

0.001 -0.228 

-0.048 -0.160 

-0.126 0.029 

-0.333 0.248 

-0.046 0.391 

0.075 0.284 

0.086 0.052 

0.045 - 0.118 

0.0 0.005 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 -0.50 

-0.162 - 0.025 

0.089 0.370 

0.263 0.671 

0.337 0.883 

0.410 1.0 

0.400 1.016 

0.346 0.929 

0.255 0.733 

0.137 0.425 

0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 -0.511 2 0.315 

3 - 0.019 5 - 0.306 

4 - 0.122 6 - 0.255 

Table B.7 - Quadratic and Cubic Terms Added to Basic 

Profile, P  mm . = 9.35 MN 
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Pmin = 11.7 MN Tmax = 0.445 MNm 

Pinner = 11.7 MN I = 0.82 ( MNm) 2 

'outer = 14.72 MN M, = 19.30 MNm 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

-0.210 0.445 

0.093 - 0.092 

0.007 - 0.229 

-0.041 - 0.161 

-0.127 0.029 

-0.358 0.248 

-0.048 0.394 

0.082 0.287 

0.093 0.053 

0.050 - 0.118 

0.0 0.004 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 -0.50 

-0.212 - 0.027 

0.004 0.364 

0.156 0.669 

0.250 0.882 

0.294 1.0 

0.294 1.017 

0.258 0.931 

0.192 0.736 

0.104 0.427 

0.0 0.0 

Unit Cable Scaling Factors C Figure 5.14 

Inner Web Outer Web 

1 -0.645 2 0.325 

3 - 0.011 5 - 0.316 

4 - 0.097 6 - 0.261 

Table B.8 - Quadratic and Cubic Terms Added to Basic 

Profile, P = 11.7 MN 
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p = rain 4.7 MN T max = 0.025 MNm 

P. inner = 4.7 MN I = 0.028 ( MNm) 2 

P outerz = 15. 08 .MN M , = 66.41 MNm 

Node Residual Moments (MNm) Cable Eccentricities (in) 

Bending Torsion Inner Outer 

1 0.008 0.004 -0.50 - 0.50 

2 -0.044 -0.002 0.102 -0.028 

3 -0.022 0.001 0.506 0.369 

4 0.043 0.002 0.765 0.678 

5 0.038 - 0.003 0.887 0.890 

6 -0.133 0.001 0.977 1.0 

7 0.036 0025 0.942 1.0 

8 0.034 - 0.025 0.886 0.901 

9 0.015 - 0.001 0.717 0.695 

10 -0.011 0.008 0.434 0.392 

11 0.0 -0.001 0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.055 2 0.026 
3 - 0.369 5 -0.152 
4 - 0.034 6 0.105 
7 0.512 10 0.135 
8 0.259 11 0.000 
9 0.001 12 - 0.164 

Table B.9 - Quadratic, Cubic and Quartic Terms Added 

to Basic Profile, P = 4.7 MN 
rain 
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7.0 MN T = 0.028 MNm P = mm max 

pinner = 7.0 MN I = 0.034 ( MNm) 2 

router = 14.90 MN M, = 50.55 MNm 

Node Residual Moments ( MNin) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

1 0.010 0.004 -0.50 - 0.50 

2 -0.049 - 0.003 -0.065 -0.029 

3 -0.025 0.001 0.231 0.367 

4 0.048 0.002 0.425 0.676 

5 0.042 -0.004 0.523 0.889 

6 -0.149 0.001 0.601 1.0 

7 0.039 0.028 0.589 1.004 

8 0.038 - 0.027 0.567 0.903 

9 -0.016 -0.002 0.464 0.698 

10 -0.013 0.009 0.284 0.394 

11 0.0 -0.001 0.0 0.0 

Unit Cable Scaling Factors C Figure 5.14 

Inner Web Outer Web 

1 -0.427 2 0.034 
3 -0.278 5 - 0.166 
4 - 0.260 6 0.104 
7 0.385 10 0.142 
8 0.200 11 0.001 
9 - 0.007 12 - 0.170 

Table B.10 - Quadratic, Cubic and Quartic Terms Added 

to Basic Profile, P = 7.0 MN 
mm 
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9.35 MN T = 0.032 MNm P = mm max 

pinner = 9.35 MN I = 0.042 (MNm) 2 

router = 14.72 MN M, = 34.39 MNm 

Node Residual Moments (MNm) Cable Eccentricities (m) 

Bending Torsion Inner Outer 

1 0.011 0.005 -0.50 -0.50 

2 -0.055 - 0.003 -0.151 -0.030 

3 -0.027 0.002 0.090 0.365 

4 0.053 0.002 0.251 0.675 

5 0.047 - 0.005 0.336 0.888 

6 -0.164 0.0 0.408 1.0 

7 0.043 0.032 0.408 1.005 

8 0.042 - 0.031 0.403 0.905 

9 -0.017 - 0.002 0.334 0.700 

10 0.015 0.010 0.207 0.396 

11 0.0 -0.002 0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.619 2 0.044 
3 - 0. -231 5 -0.183 
4 - 0.022 6 0.104 
7 0.320 10 0.151 
8 0.169 11 0.001 
9 0.007 12 -0.178 

Table B.11 - Quadratic, Cubic and Quartic Terms Added 

to Basic Profile, P = 9.35 MN 
flu_n 
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min = 11.7 MN Tmax = 0.035 MNm 

inner = 11.7 MN I = 0.051 ( MNm) 2 

P outer = 14.54 MN M, = 18.16 MNm 

Node 

1 

2 

3, 

4 

5, 

6 

7 

8 

9 

10 

11 

Residual Moments (MNm) 

Bending Torsion 

0.012 0.005 

-0.061 - 0.003 

-0.030 0.002 

0.058 0.003 

0.051 - 0.006 

-0.180 0.001 

0.047 0.035 

0.046 - 0.034 

-O.019 - 0.002 

-0.017 0.011 

0.0 - 0.001 

Cable Eccentricities ( m) 

Inner Outer 

-0.50 - 0.50 

-0.203 - 0.032 

0.005 0.363 

0.147 0.673 

0.224 0.887 

0.292 1.0 

0.299 1.006 

0.304 0.907 

0.256 0.072 

0.161 0.397 

0.0 0.0 

Unit Cable Scaling Factors ( Figure 5.14 

Inner Web Outer Web 

1 - 0.733 2 0.053 
3 - 0.203 5 - 0.199 
4 - 0.019 6 0.103 
7 0.281 10 0.159 
8 0.151 11 0.002 
9 0.001 12 - 0.185 

Table B.12 - Quadratic, Cubic and Quartic Terms Added 

to Basic Profile, P = 11.7 MN 


