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Table S1. The –SO3H acidity of various carbon materials after sulfonation with concentrated 
H2SO4 under different conditions. 

Carbon Sulfur source Temp 
(°C) 

Time 
(h) 

-SO3H 
(mmol/g) 

Ref 

Xylose hydrocarbon after 190 °C 
hydrothermal carbonization for 24 
h 

H2SO4 (98 %), 1 g: 20 
mL 

150 15 0.31 [1] 

Porous carbon from 800 °C 
pyrolysis of resorcinol-
formaldehyde resin for 1 h 

H2SO4, 0.2 g: 10 mL 80 8 0.39 [2] 

resorcinol-formaldehyde resin 
pyrolysis at 800 °C for 2 h 

H2SO4 (95%), 
acid/carbon ratio of 47 

140 20 0.44 a [3] 

Coffee residue activated carbon by 
ZnCl2 under CO2 at 600 for 4 h 

H2SO4 (98 %), 1 g: 20 
mL 

200 24 0.45 a [4] 

Activated carbon H2SO4 (>98 %), 7 g: 100 
mL 

150 12 0.544 [5] 

Activated carbon H2SO4, 1 g: 10 mL 180 24 0.56 a [6] 
Coffee residue activated carbon by 
ZnCl2 under CO2 at 600 for 4 h 

H2SO4 (98 %), 1 g: 20 
mL 

180 24 0.57 a [4] 

Mesoporous silica‐carbon 
composite 

H2SO4, 1 g: 20 mL 150 15 0.57 [7] 

Rubber char from charring at 
520 °C for 2 h 

H2SO4 (98.3%), 10 g: 
100 mL 

120 5 0.64 a [8] 

Coffee residue activated carbon by 
ZnCl2 under CO2 at 600 for 4 h 

H2SO4 (98 %), 1 g: 20 
mL 

160 24 0.66 a [4] 

Wood powder char obtained from 
400 °C charring for 80 min 

H2SO4 (95-98 %), 10 g: 
100 mL 

80 3 0.67 a [9] 

D-glucose or sucrose char H2SO4 (> 96%), <20 g: 
200 mL 

150 15 0.7 [10] 

Coffee residue activated carbon by 
ZnCl2 under CO2 at 600 for 4 h 

H2SO4 (98 %), 1 g: 20 
mL 

140 24 0.72 a [4] 

resorcinol-formaldehyde resin 
activated by ZnCl2 at 400 °C 

H2SO4, 1 g: 10 mL 150 8 0.94 [11] 

Coal after carbonization at 350 °C 
for 2 h 

H2SO4 135 4 1.09 [12] 

Porous carbon from 800 °C 
pyrolysis of resorcinol-
formaldehyde resin for 1 h 

H2SO4 (98 %), 0.2 g: 10 
mL 

80 8 1.10 [13] 

Sugar-derived carbon spheres 
pyrolysis at 850 °C for 1 h 

H2SO4 (95%), 
acid/carbon ratio of 47 

140 20 1.34 a [3] 

Mesoporous polydivinylbenzene 
polymer 

H2SO4, 1.5 g: 70 mL (30 
mL dichloromethane, 
and 20 mg Ag2SO4 as 

catalyst) 

80 24 2.1 a [14] 
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Note: a estimated from the sulfur content. 

 

 

Scheme S1. Addition of sulfuric acid to alkenes and the following hydrolysis of the obtained 
alkyl hydrogen sulfate [15]. 

 

 

Scheme S2. Sulfonation of alkanes to generate sultone [16]. 

 

 

Scheme S3. Sulfonation of alkanes to generated sulfonic acid [17]. 
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(a) (b) (c) 

Figure S1. Washing solutions during the preparation of sulfonated petcoke. (a) First three washes 
with deionized water (pH < ~2), (b) fourth wash with deionized water (pH > ~4) showing the 
suspension of the carbon particles that could not be broken even with centrifuging at 6000 rpm 
for 5 min as shown in (c). 
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(a)  

(b)  

Figure S2. (a) GC analysis of the products after esterification of octanoic acid with methanol, 
and (b) Mass spectrum of methyl octanoate produced by the esterification reaction. 
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Figure S3. FTIR spectra of different carbon materials before sulfonation. The downward peaks 
around ~2200 cm−1 in the SMC spectrum were related to the atmospheric CO2. 

 

Figure S4. The FTIR spectrum of PC-SiWBM4 and PC-SiWBM24. The large peaks from ~1300 
cm-1 to 400 cm-1 were associated with the silica in the samples because silica was not separated 
from the sample after ball milling. 
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Figure S5. The relationship between FTIR peak area at 600-900 cm−1 and aromatic hydrogen 
concentration of (a) salicylic acid and (b) dibenzothiophene.  

 

Figure S6. Relationship between peak area at 1130 cm‒1 and –SO3H acidity of the sulfonated petcoke 
samples. The arrows show the correction of peak area for the ball-milled samples based on the 
assumption that the peak area was linearly correlated to the –SO3H acidity, as seen in the calibration 
curves for salicylic acid and dibenzothiophene (Figure S5). 
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(a)  

(b)  

Figure S6. Conversion of octanoic acid over different catalysts with lines of best fit (a) and 
residuals associated with the fits (b). 
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Figure S7. The reusability of the sulfonated petcoke as solid acid catalyst for octanoic acid 
esterification. Reaction conditions: methanol: octanoic acid = 40:1 molar ratio, 60 °C, 500 rpm. 

 

Figure S8. Preparation of sulfonated petcoke with impregnation method. 
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