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ABSTRACT 

Kinematic differential GPS positioning is used to achieve accurate, real-time 

positions and velocities of a moving platform on land, in the air and at sea. In a dynamic 

environment, however, the deviations or biases from the assumed system and 

observation models are often significant. This results in a degradation of the accuracy 

and reliability of the estimated positions and velocities. Therefore, quality control 

methods are inevitably needed in a real-time positioning system to insure the system is 

functioning properly. In this thesis, the statistical quality control methods for use in 

kinematic GPS positioning are investigated. The general recursive formulas for bias 

influence analysis and reliability analysis in Kalman filtering are derived and the bias 

influence characteristics and the minimum detectable bias (MDB) values of the more 

important biases in differential kinematic GPS positioning are studied. A real-time 

statistical testing and implementation procedure for use in kinematic GPS positioning is 

given based on the state space two-stage Kalman filtering technique, hypothesis testing 

theory and reliability analysis. This procedure is for the detection of common biases such 

as cycle slips in the carrier phase and outliers in phase rates and pseudoranges, and for 

the elimination of their influences on the kinematic GPS positioning results. All the 

derived formulas and algorithms were implemented in a software package called 

QUALIKIN on a 386 micro-computer. The application of the statistical quality control 

methods and testing of the software was performed on two GPS data sets collected in 

land semi-kinematic mode over a well-controlled traverse. Analysis of the results 

indicates that, with a data rate of one second or higher, the testing procedure developed 

herein can correctly detect, identify and estimate carrier phase cycle slips between 

consecutive epochs occurring at the one cycle level on multiple satellites under low and 
111 



medium vehicle dynamics. The detection and adaptation of phase rate and pseudorange 

outliers is also possible. The magnitude of the detectable outliers is dependent on the 

corresponding measurement accuracy, satellite geometry and the number of the outliers 

present. Further studies of quality control methods are recommended. Among them are 

the extension of the testing procedure to incorporate the system bias detection and 

adaptation for high dynamic surveying and navigation systems, application of the theory 

to integrated systems such as GPS/INS, and investigation of the carrier phase ambiguity 

initialization methods in the kinematic mode. 
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NOTATION 

i) Symbols 

ah north acceleration 

ae east acceleration 

ah up acceleration 

b bias vector 

b0 minimum detectable bias vector with power l- L 

13, C influence matrices that determine how the bias vector b enters 

into the Kalman system and observation equations, respectively 

c speed of light 

d degree of freedom in chi-square distribution, number of biases 

e observation noise 

eie phasor or complex vector e10 = cose + i sine 

H design matrix 

H0 null hypothesis 

Ha' 

alternative hypothesis 

Kk Kalman gain matrix 

m dimension of the innovation vector at each epoch, or 

number of update observations at each epoch 

N carrier phase ambiguity 

N(O, Q) normal probability distribution with expectation 0 and covariance 

matrix  

p pseudorange observation (m) 

P Kalman state vector covariance matrix 

xli 



Q Kalman filter process noise covariance matrix 

QV covariance matrix of innovation vector 

R Kalman filter observation noise covariance matrix 

R earth radius 

S sensitivity matrix related to the innovation vector 

TG global model test statistic. 

T global failure test statistic 

local failure test statistic 

t local identification test statistic 

U sensitivity matrix related to the predicted Kalman state vector 

V sensitivity matrix related to the updated Kalman state vector 

v innovation vector, or predicted residual vector 

V north velocity 

Ve east velocity 

Vh up velocity 

w process noise 

x state vector 

z observation vector 

a significance level or Type I error, 

a inverse of correlation time of the stochastic Markov process 

13 Type llerror 

1-13 power of test 

non-centrality parameter in chi-square distribution 

Li GPS carrier wavelength 

ko critical value of X which satisfies the given power 1-po and 

significance level a0 

xli' 



Kalman filter transition matrix 

cJ carrier phase observations (m) 

chi-square probability distribution 

4) geodetic latitude 

2. geodetic longitude 

h geodetic height 

p range from receiver to satellite 

VAN double difference carrier phase ambiguity 

ii) Defined Operators 

(+) Kalman update 

(-) Kalman prediction 

derivative with respect to time 

HT matrix transpose 

Q 1 matrix inverse 

single difference between receivers 

V single difference between satellites. 

V deviation in 

S correction to 

bias-free or bias-ignored Kalman filter estimated value 

bias-corrected Kalman filter estimated value 

norm operator 

- distributed as 
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MDB Minimum Detectable Bias 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Kinematic surveying with the Global Positioning System (GPS) plays a key role 

in a number of positioning activities, such as precise navigation, airborne gravimetry and 

gradiomeiry, airborne photogrammetry and Automatic Vehicle Location (AVL). With the 

full deployment of 24 GPS satellites in the near future and improved receiver 

technologies (e.g. all-in-view satellite receivers), kinematic GPS surveys, which include 

the determination of position, velocity or even acceleration of a moving platform, may 

become a routine job for geodesists and surveyors. As we know from conventional 

geodetic surveys, the quality assessment of surveying results generally involves accuracy 

analysis, reliability analysis and statistical testing of the estimated quantities and adequacy 

of the adjustment model. Accuracy analysis deals with the propagation of random errors 

through the geometric strength of the network or the adjustment model, while reliability 

analysis and statistical testing,which are the primary elements of quality control, deal with 

the self-check ability of the model or system to blunders or biases that occur in 

observations or in the systems. Up to now, extensive investigations and tests have been 
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done in the accuracy analysis of kinematic differential GPS surveys. The agreements of 

0.2 m (Root Mean Squares) in kinematic positions and 0.05 m s1 (Root Mean Squares) 

in velocities with the Inertial Navigation Systems (INS) have been made by using both 

pseudorange and carrier phase observations (Lachapelle et al, 1989; Schwarz et al, 1989; 

Cannon, 1987). The reliability analysis and statistical testing in kinematic GPS surveys, 

however, is just at its initial stage. Teunissen and Salzmann (Teunissen, 1990; Salzmann 

and Teunissen, 1989) introduced the quality control concept of conventional geodetic 

surveys into kinematic surveying systems and developed the general quality control 

theory based on the standard state space Kalman filtering model and statistical hypothesis 

testing. The first application and adaptation of this theory to kinematic GPS positioning 

was given by Wei et al ( 1990) and Lu and Lachapelle (1990). 

It is known that by using GPS pseudorange, carrier phase and phase rate (i.e. 

Doppler frequency) observations in a Kalman filter, the instantaneous position, velocity 

and even acceleration of a thoving platform can be determined (Schwarz et al,1989; 

Cannon,1990; Hwang and Brown, 1990). If the assumed dynamic and observation 

models are correct, the Kalman filter provides the optimal position and velocity estimates 

in a statistical sense. In a dynamic environment, however, the deviations or biases from 

the assumed models are often significant. For instance, the loss/re-lock of a carrier phase 

signal on a satellite will cause the corresponding integrated carrier phase observations to 

jump abruptly, which falsifies the measurement update model. Likewise, a pre-

determined constant velocity model for vehicle motion may be invalidated due to high 

vehicle accelerations in some parts of the trajectory. Such deviations or biases will 

certainly lead to some errors in the filtering results. Therefore, reliability analysis and 

real-time testing and adaptation for possible biases is of great importance in kinematic 

GPS surveys in order to prevent the degradation of position and velocity estimates. 
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1.2 OUTLINE OF THESIS 

The primary objective of this thesis is to apply the quality control methods to 

kinematic GPS surveys. The general formulas and procedures for reliability analysis and 

bias detection and adaptation in Kalman filtering are derived. A software package, 

QUALIKIN, that performs reliability analysis, real-time statistical testing and adaptation 

for possible biases in pseudo-range, carrier phase and phase rate observations along with 

kinematic differential GPS positioning and/or semi-kinematic positioning, is developed. 

The quality control theory for the state space Kalman filtering is described in 

Chapter 2. Firstly, a more general recursive bias influence formulation on filtered 

quantities is introduced by using a two-stage Kalman filter method. Then, a real-time 

statistical testing procedure for use in the Kalman filter is given based on the hypothesis 

testing theory and the Minimum Detectable Bias (MDB) concept. The system model and 

the observation model for kinematic positioning used in this research are outlined in 

Chapter 3. In Chapter 4, the influence characteristics of different biases (e. g. cycle 

slips) on kinematic positioning results and the corresponding minimum detectable biases 

are investigated. In Chapter 5, methods for carrier phase ambiguity initialization are 

reviewed. In particular, the ambiguity function method (Mader, 1990) is discussed and 

tested for phase ambiguity resolution in kinematic mode. The processing results of real 

data sets and the applicability of statistical methods for detecting and correcting biases in 

observations are listed in Chapter 6. Some conclusions and recommendations are given 

in Chapter 7. 
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CHAPTER 2 

THEORY OF QUALITY CONTROL IN KALMAN FILTERING 

The quality control method, i.e. reliability analysis and statistical testing of the 

adequacy of adjustment models, has been widely used for network design and data 

processing in conventional geodesy, photogrammetry and surveying (Baarda, 1968; Li, 

1986; Peizer, 1986). In systems engineering, it is often called fault detection, diagnosis 

and adaptation (Basseville,1988; Frank,1990). With the advent of the global positioning 

system (GPS), kinematic surveying is now becoming a recognized surveying method on 

land, in the air and on the sea. Therefore, it is natural and important to introduce and 

apply the quality control method to this new kinematic surveying method to insure the 

correctness of the results obtained. 

In this chapter, the general concept of quality control in dynamic systems 

engineering is first reviewed. Then, two-stage Kalman filter formulas are derived, which 

are useful for analyzing the bias influence on Kalman filter output quantities. And 

finally, the formulation of testing procedures and reliability analysis is presented. 
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2.1 GENERAL DESCRIPTION 

The process of quality control or fault detection, diagnosis and adaptation in 

dynamic systems essentially consists of three stages (Basseville,1988; Teunissen,1990): 

residual generation, decision making and adaptation or estimation, as shown in Fig. 2.1. 

system 
and 

sensor 
outputs 

residual 
—4w-generation 

calculation 
of 

decision 
statistics 

failure 
decision 

and 
identification 

adaptation 
measures 

final 
output 

L I L   I L__I. 
residual generation decision making adaptation 

Fig. 2.1 Process of Quality Control in Dynamic Systems 

The residual generation is based on the knowledge of the normal behaviour of the 

system and the characteristics of the failures. For detection purposes, constructed 

residuals should significantly and quickly reflect the influences of possible failures or 

biases which occurred in the analyzed system, and remain unbiased, normally close to 

zero, in the absence of failures or biases. In kinematic surveying systems like GPS and 

Inertial Navigation Systems (INS), Kalman filtering is widely used for data processing. 

In this case, one suitable choice of residual generation is the filter output of innovation 

sequence, i.e. predicted residuals (Wilisky, 1976; Teunissen, 1990). The generation of 

innovation sequence and its properties are given in Section 2.2. 
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Decision making is the construction of decision functions or test statistics based 

on the generated residuals. Decision functions or statistics are then calculated using the 

residuals to determine if any failure has occurred in the system. In some cases, failure 

identification or isolation should also be carried out. For innovation-based detection 

systems like Kalman filters, a number of statistical tests to be performed on the 

innovations have been suggested. Among them are the Chi-square statistic and the 

Generalized Likelihood Ratio (GLR) test (Teunissen, 1990; Wilisky, 1976; Mehra and 

Peschon, 1971). Due to its simplicity and easy implementation, the real-time Chi-square 

test is used in this research for detecting and isolating the possible biases (e.g. cycle slips 

on some satellites) in the kinematic GPS surveying model. 

Adaptation is system reconfiguration to accommodate the failure, or to estimate 

the failure or bias and then correct its influences on system outputs. Reconfiguration 

measures are often used in a system with a high degree of parallel hardware redundancy 

(e.g. voting system), while analytical correction methods are usually adopted in a single 

feedback system. For 1inematic surveying with a single GPS system, only real-time 

analytical correction methods are possible. For this purpose, two-stage Kalman filter 

techniques are derived for real-time bias estimation and correction. 

Another important aspect of quality control is the reliability analysis of the 

systems. This concept was mainly developed by geodetic scientists (Baarda, 1968; 

Teunissen, 1990) and has not yet been discussed in system engineering literature. 

Generally speaking, reliability is concerned with the self-checking ability of the system 

model for possible biases and the effects of undetectable biases on the estimated results. 

One of the numerical measures for reliability in dynamic systems is the minimum 

detectable bias (MDB) (Teunissen, 1990), which is the minimum bias value that can be 

detected with a certain probability by a specified bias testing statistic in an a level test. 
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The importance of reliability analysis lies in the design stage of a dynamic system. By 

examining the reliabilities of different design schemes, an efficient system with sufficient 

control on the presence of certain biases can be obtained. In kinematic GPS surveys, for 

instance, the reliability analysis can be conveniently used for investigating the minimal 

detectable cycle slips occurring on a certain satellite and the cycle slips effect on position 

and velocity determination. This problem and the application of reliability analysis in 

kinematic differential GPS surveys are discussed in Chapter 4. 

2.2 TWO-STAGE KALMAN FILTER 

Under the nominal conditions that the system and observation model and the 

statistical model are correct, the Kalman filter provides estimates of the state vector which 

are unbiased and of minimum variance. Due to the dynamic environment and possible 

failures of some system components, deviations or biases from the predetermined filter 

model are often encountered in practice. An important class of biases, which is suitable 

to represent cycle slips in carrier phase measurements and outliers in pseudorange and 

phase rate observations, are the constant biases with unknown magnitudes. Usually, 

there are two ways to treat these kinds of biases when they are detected in the system 

dynamic model or the observation model. Firstly, one can augment the state vector of the 

original model by adding components to represent the bias terms. The filter then 

estimates these terms as well as the original states. This mechanism, for example, is 

implemented in the well-known program SEMIKIN for estimating the cycle slips in 

carrier phase measurements (Cannon, 1990). Secondly, the bias terms can be estimated 

separately from the original filter states by using the bias-free, i.e. the nominal Kalman 

filtering results. This is the so-called two-stage Kalman filter (Friedland, 1969; Ignagni, 
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1981). Mathematically, these two methods are equivalent. However, the second method 

has the advantages of being computationally efficient and convenient for both bias 

influence analysis and reliability analysis of filtering results. Therefore, it is used in this 

research for reliability analysis and processing software development. 

2.2.1 Bias-free Kalman Filtering 

The general Kalman filter equations are well documented in Gelb ( 1974). For a 

system described by the following equations 

Xk=kXk4 + Wk, 

ZkHkXk + ek 

WkN(O,Qk), 

ek — N(O,Rk), 

the optimal estimate of the state vector xk and its covariance matrix are given by 

(2.1) 

(2.2) 

Prediction: Xk() = k Xk1(+) (2,3) 

Pk(-) k Pk1(+) + OJ (2.4) 

Update: Xk(+) = Xk(-) + Kk [ Zk - Hk Xk() ] (2.5) 

Pk(+) = { I - Kk HkJ Pk(-) (2.6) 

Kk = Pk(-)H[ HkPk(-)H + Rk i1 ' (2.7) 

where (-) denotes the predicted quantities, i.e. before update, 

(+) denotes the updated quantities, 

xk is the state vector, 

1k is the transition matrix, 
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Pk 

Kk 

Qk 

Rk 

Hk 

Zk 

is the state 'covariance matrix, 

is the Kalman gain matrix, 

is the covariance matrix of the system process noise wk, 

is the covariance matrix of the observation noise ek, 

is the design matrix, and 

is the observation vector for updating. 

If the equations (2.1) and (2.2) correctly specify the underlying system model and 

observation model, the Kalman algorithm from equations (2.3) to (2.7) gives the 

minimum variance, unbiased estimate of the state vector x at each epoch k. In this case, 

the innovations, i.e. the predicted residuals vk described as 

Vk = Zk - Hk Xk(-) 

are a zero mean, Gaussian white noise sequence with covariance matrix 

Qvk = Rk + Hk Pk()H 

(2.8) 

(2.9) 

(Mehra and Peschon, 1971; Wilisky, 1976; Teunissen, 1989). Any deviation or bias 

arising from the system model (2.1) or from the observation model (2.2) may cause the 

innovation sequence (2.8) to depart from its zero mean and whiteness properties. This 

makes the innovation sequence an ideal generated residual sequence in Kalman filtering 

for detecting the abnormal behaviours of the system. 
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2.2.2 Two Step Estimation of State Vector and Bias Vector 

In the presence of constant biases with unknown magnitudes in the functional 

model of Kalman filtering, equations (2.1) and (2.2) can be reformulated as: 

Xk = k Xk 1 + Bkb + Wk, Wk N(O, Qk) 

Zk = Hk Xk + Ckb + ek, ek - N(O, Rk), 

(2.10) 

(2.11) 

where b is the bias vector. The matrices Bk and Ck determine how the components of 

the bias vector b enter into the dynamics and observations respectively. In the case when 

only observations have biases, Bk = 0. Similarly, if only the dynamics have biases, Ck 

=0. If no biases present in the model, Bk = 0 and Ck = 0. 

In one step (simultaneous) estimation, the bias vector b in (2.10) and (2.11) is 

appended to the original state vector x with the dynamics bk = bk1 to form a new state 

vector y = (x, b). Then, the new state vector y is estimated by the conventional 

Kalman algorithm (2.3) to (2.7) based on the augmented model 

YkFkYk1 + GWk, Wk - N(O, Qk) 

Zk = Lk Yk + ek, ek - N(O, Rk) 

with the partitioned matrices 

G= 0) Lk=(Hk, Ck) . 
Fk= ( ( Bk)  

(2.12) 

(2.13) 

(2.14) 

This method preserves the mathematical simplicity, but has the disadvantages that it 

increases the dimension of the state vector and is not suitable for reliability analysis and 

bias influence analysis in Kalman filtering. 
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The two step estimation of states and biases overcomes the disadvantages in the 

above one step estimation procedure. The basic idea for two step estimation of states x 

and biases b is as follows. In the first step, we ignore the bias terms in (2.10) and 

(2.11), and perform the conventional bias-free Kalman filtering procedure. Due to the 

omission of bias terms, we then obtain the biased state estimates, k( --) and xk(-) , and 

the biased innovations vk that contain the information on the biases. In the second step, 

the bias vector b is estimated by using the innovations obtained in the first step, and the 

biased state estimates, k(+) a n d xk(-) are corrected for the bias influences. 

Mathematically, two step estimation of states and biases is equivalent to one step 

estimation. The proof is given by Friedland ( 1969) and Ignagni ( 1981). Here, only an 

intuitive derivation is given and the emphasis is placed on the computational aspects. 

a. Bias influences on bias-free state estimates 

If the bias vector were perfectly known, as is the case when we analyse the 

influence of a specified bias vector on the Kalman filtering results, the optimal estimates 

of the state vector x in ejuations (2.10) and (2.11) would be 

Xk(-) kXk1(+) + Bkb 

Xk(+) = Xk() + Kk( Zk Hk'k(-) - Ckb) 

while the innovations with known biases would be 

Vk = Zk - Hk'k(-) - Ckb 

(2.15) 

(2.16) 

(2.17) 

where b is the true value of the constant bias vector, Kk is the Kalman gain matrix 

defined by (2.7) of the bias-free model, and k(-) and k(+) are the bias-corrected 

Kalman state estimates before and after update, respectively. 
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Since the Kalman filter estimator is a linear estimator and the bias influence on the 

filter estimates, as reflected in (2.16) and (2.17), is also linear in nature, we can formally 

write the relationships between the bias-ignored estimates k(-) and 2 k(+) and bias-

corrected estimates k(-) and xk(+) as (Friedland, 1969): 

Xk(-) = Xk() + Ukb (2.18) 

Xk(+)=Xk(+)+Vkb . (2.19) 

For the same reason, the relationship between the corresponding bias-ignored 

innovations vk and the bias-corrected innovations Vk can be written as 

Vk = '1k + Skb (2.20) 

where Uk, Vk and Sk are called sensitivity matrices . Equations (2.18), (2.19) and 

(2.20) indicate that in the presence of biases, the optimal Kalman filter state (bias-

corrected) estimates can be obtained by adding corrections to the bias-free or bias-ignored 

Kalman filter estimates. 

Substituting equations (2.15), (2.3) and (2.19) into (2.18), we obtain the 

recursive form for computing Uk, namely: 

Uk=CDkVk1 + Bk 

Similarly, the recursive forms for Vk and Sk can be derived as: 

Uk - KkSk 

Sk=HkUk + Ck. 

(2.21) 

(2.22) 

(2.23) 

The initial value for the recursive computations of Uk, Vk and Sk starting at epoch k is 

Vk-1 = 0 in equation (2.21). It is noted that the computations of Uk, Vk and Sk are 
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independent of the measurements. They can be computed beforehand using the specified 

dynamics model, observation model and bias type. Equations (2.21), (2.22) and (2.23) 

are of great importance in bias influence analysis. If a bias occurs in the system, its 

influence on the bias-free Kalman filtering estimates Ck() , k(+) and vk, as shown in 

(2.21), (2.22) and (2.23), are -Ukb, -Vkb and SO, respectively. In kinematic GPS 

surveys, the most likely biases are carrier phase cycle slips, outliers in pseudorange and 

phase rate observations, and the deviations of the vehicle motion from the assumed 

dynamics. Their influence on kinematic GPS position and velocity determination is to be 

investigated in Chapter 4. 

b. Bias estimation 

In real data processing, the true value of the bias vector b is usually unknown. It 

is required that the bias vector be estimated in real time in order to correct its influences 

on the filtering results. This can be achieved by utilizing the equation (2.20). Rewriting 

(2.20) in the form: 

VkSkb+Vk (2.24) 

the bias-free Kalman filter innovations vk can then be considered as a quasi-measurement 

vector, Sk as a design matrix and 'ik, the bias-corrected innovations, as the quasi-

measurement noise. Based on the properties of Kalman filtering and equation (2.17), the 

bias-corrected innovation sequence '1k is a white noise sequence with the covariance 

matrix at each epoch: 

= Hk Pk(-) H + Rk, (2.25) 

where k(-) is given by equation (2.4). 
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From the above discussions, it is obvious that the bias vector b can be recursively 

estimated with a Kalman filter algorithm or an equivalent sequential least squares method 

using the measurement equation defined by (2.24) with the measurement white noise 

covariance matrix (2.25). The Kalman filter algorithm for recursive estimation of the bias 

vector b has the form (Ignagni, 1981) 

= b k-1) ( bo = 0) (226) 

P(-)(k) = P,(k-1) ( Pb(0) given), (2.27) 

= G(k) + Kb(k)[ Vk - SO (k) I ' (2.28) 

P(k) =[ I-Kb(k)Sk]P(k) ' (2.29) 

Kb(k) = p (k) S [ Sk p (k) S + HkPk(-)H + Rk ]-1 (2.30) 

This constitutes the second stage of two-stage Kalman filtering, i.e. bias estimation. It is 

noted from equation (2.30) that we need to invert a matrix of dimension that is equal to 

the number of observations at each epoch. In the kinematic GPS positioning model, the. 

number of biases is usually smaller than the number of observations at each epoch. 

Therefore, the equivalent Bayes form or phase expressions (Krakiwsky, 1990) are more 

favourable than the Kalman algorithm given by (2.26) through (2.30), since the Bayes 

form inverts a matrix of dimension that is equal to the number of biases. 

c. Bias influence correction and adaptation 

According to equations (2.18) and (2.19), once the bias estimates are obtained, 

the bias-ignored Kalman filter estimates, k(-) and k(+) , and their covariance matrices 

can be recursively corrected for the bias influences by the following set of equations: 

X() + Uk b(k) (2.31) 
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= x(+) + Yk b(k) 

= P(-) + UkP;(k)U 

P(+) = Pk(±) + VkP(k)V 

k) = UkP(k) 

P(k) = VkP(k)' 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

where (-) , (+), P(-), P(+) are the optimal unbiased state estimates and their 

corresponding covariance matrices, which have taken into account the influence of the 

biases in the models. In the derivation of (2.33) to (2.36), the fact that the state vector x 

initially and at all subsequent epochs is uncorrelated with the biases b has been used. 

2.3 TESTING PROCEDURES AND RELIABILITY MEASURES IN 

KALMAN FILTERING 

2.3.1 Testing Statistics for Biases 

Failure detection and identification are the most important and yet the most 

difficult aspects in the quality control of Kalman filtering. Generally speaking, failures or 

malfunctioning of a Kalman filter may be caused by two error sources. One is the errors 

arising from the function models, such as the unmodelled biases in the measurements and 

system dynamics. The other source is the errors arising from the stochastic models 

defined mainly by the covariance matrices of the system process noise wk and the 

measurement noise ek. 
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In differential (double difference) kinematic GPS surveying, the functional model 

errors, such as the cycle slips in carrier phases, are frequent and have severe influences 

on position determination. The stochastic model errors, relatively speaking, are much 

less significant than the functional model errors. The measurement noise in a surveying 

session is mainly specified by the instrumentation and environment and can be considered 

as a constant (Lachapelle, 1990). The system process noise, on the other hand, is 

determined by the vehicle motion. In a low or medium dynamic surveying system with a 

high output data rate, the first-order Gaussian-Markov process can be used to model the 

velocity states or acceleration states of the vehicle motion (Schwarz et al, 1989; Cannon, 

1990). In practical computations, we usually use slightly larger values for measurement 

variance and process noise spectral density to cope with the unpredictable statistical 

behaviors of the system. Therefore, in the following the statistical models of the Kalman 

filter are considered correct and the focus is placed on the detection and isolation of biases 

in the function models. 

In order to develop the statistics for bias detection, we first define a vector 

consisting of n+1 epochs of innovations of equation (2.8). 

V = ( vi , Vl+1 , V1+2, \ 
  I+n)T (2.37) 

As we know from section 2.2, under normal conditions when the Kalman filter models 

are specified correctly and no biases are present, the innovation sequence is a zero mean, 

Gaussian white noise sequence. In this case, vector v has a normal distribution 

v - N(O, Q) (2.38) 

where Qv is a block-diagonal matrix since the innovations are uncorrelated from epoch to 

epoch (Teunissen and Salzmann, 1989). However, if a bias vector b of dimension d is 



17 

present in the functional models, the zero mean of the innovations at each epoch is no 

longer holds. Instead, the innovation sequence is biased, as known from (2.20), by a 

value Skb. This leads to 

with 

v - N(Vv, Q) (2.39) 

VV=Sv .b, (2.40) 

S=   ST T (2.41) 
1+n) 

l+n 
where S., is a ( mi )-by-d matrix and mi is the dimension of v. 

i=' 

Thus, the problem of detection of the bias vector b can be formulated as the 

testing of the null hypothesis H0 against the alternative hypothesis Ha: 

H0: v - N(0, Q,) versus Ha: v - N(Vv, Q) (2.42) 

The testing statistic for the above problem (2.42) is well documented in a number of 

publications (Teunissen, 1986, 1990; Rao,1973 ) and is given by 

To vTQ.,l S., (SEQ.,' Sw)' S'Q,' v (2.43) 

Since the matrix Qv is block diagonal, (2.43) can be further reduced to the summation 

form based on (2.37), (2.41): 

1+n 1+n 1+n 

TG = ( STQ V, )T ( STQ S )-I(  STQ v) (2.44) 
M i=1 i=1 

Under the null hypothesis H0, TG has a central 2-distribution, i.e. 

TG - 2(d,0) under H0 , (2.45) 
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while under the alternative hypothesis Ha, T0 has a non-central X2-distribution, i.e. 

To - 2(d,X) under Ha, (2.46) 

where d is the degrees of freedom which is equal to the number of biases and 2 is the 

non-centrality parameter which is defined by 

'+n 

2=bT( STQ Si )b . (2.47) 
i=1 

The null hypothesis that there are no such biases b present in the model is accepted if TG 

is less than the upper a-percentage point of the central x2-square probability distribution 

2( d, 0 ), i.e. 

H0 is accepted if T0 ≤ d, 0). (2.48) 

Otherwise, H0 is rejected in favour of Ha, meaning that the specified bias vector b is 

statistically significant under the significance level or risk level a. 

The test statistic of (2.44) can be sub-divided into two cases. They are the so-

called local model test (LMT) and global model test (GMT) (Teunissen and Salzmann, 

1989). If only the current one epoch innovation is used to form the statistic (2.44), it is 

called a local test. This corresponds to n=0 in (2.44). Otherwise, it is a global test which 

means that more than one epoch of innovations have been included in the computation of 

the statistic T0. The main advantage of the global test is the better detection power for 

systematic model bias trend (Teunissen and Salzmann, 1989; Lu and Lachapelle, 1990). 

But we pay for it with increased computational complexity and time. 

In real-time data processing, once a bias vector b is detected and estimated, its 

effects on the bias-free Kalman filter results should be immediately corrected in order to 
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prevent further deterioration in subsequent epochs. This can be done by the algorithms 

of the two-stage Kalman filter given in the previous subsection 2.2.2. 

2.3.2 Reliability Measures in Kalman Filtering 

When applying the statistical testing for certain postulated biases, we are likely to 

make two types of errors. A Type I error is the rejection of the null hypothesis H0 when 

it is true. The probability of making this type of error (false alarm) is the test significance 

level or risk level a. A Type II error is the acceptance of H0 when the alternative 

hypothesis Ha is actually true. The probability of making type U errors is denoted by 3, 

which is related to the non-centrality parameter 2 of the alternative test distribution and 

the given significance level a. Unfortunately, type I and type II errors can not be 

minimized at the same time. They are related through the non-centrality parameter of the 

alternative test distribution. By fixing any two of a, 13 and ?, the third one can be 

computed. Generally, the larger the non-centrality parameter of the alternative test 

distribution, the smaller the probability 13 of type II error or the larger the power 1-f3 of 

the statistical test. In this case, we may ask a question on how large the non-centrality 

parameter X should be in order to satisfy a pre-determined power 1-J3 of the statistical 

test associated with a significance level a0. This readily brings us to the important 

concept of reliability in geodetic science (Baarda 1968; Pelzer, 1988, Teunissen, 1990). 

Reliability is mainly concerned with the effects of possible biases in the model on 

the estimated results and the ability of the redundant information in the model to check 

against the model biases or misspecifications. In Kalman filtering, the influences of fixed 

biases on the filtering results can be easily investigated by using two-stage Kalman filter 

equations (2.18), (2.19) and (2.20), while the ability to detect the individual bias in the 
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system, which is usually termed internal reliability in surveying, is measured with the 

quantity of minimum detectable bias (MDB). 

Suppose X0 is the minimum value of the non-centrality parameter which satisfies 

the given test power 1-f3 and significance level c. From (2.47), we immediately obtain 

the minimum detectable bias (MDB) vector b0 as 

'+n 

= b( S Q Si)bo (2.49) 
i=1 

For a single bias, b0 is reduced to a scale and (2.49) can be written as 

b0= 
1+n 

S''& i .. vi S ) 
i=1 

(2.50) 

Equation (2.50) shows that the magnitude of a single bias should at least reach b0 in 

order to be detected with the power 1-PO in an ct significance level test. This property is 

utilized in the testing procedures to be described in the next subsection. 

The minimum detectable bias vectors corresponding to the Local Model Test and 

the Global Model Test are referred to as Local MDB and Global MDB vectors 

respectively. For multiple biases, the quadratic form (2.49) describes a hyper-ellipsoid if 

XO is held to a constant value. The axes of this hyper-ellipsoid are the inverses of the 
1+n 

square roots of the eigenvalues of the matrix (S Q Si ) which has a dimension 
i=1 

equal to the number of biases. 

Nomograms (Baarda, 1968) and tables (Caspary, 1987) have been provided for 

calculation of the non-centrality parameter ?t,. For example, in a one-dimensional 

alternative hypothesis test (2.46) with the degrees of freedom equal to one, ? is equal to 
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(4.13)2 when we set 1= 20% and a0 = 0.1% . The computation of Si and Q , as 

known from the two-stage Kalman filter algorithm, is independent of the actual 

measurements. Hence, the MDB of a specified bias can be computed before the filter is 

actually implemented. This makes the MDB a useful tool in Kalman filter design. An 

efficient filter design with required reliability control on the postulated biases can be 

achieved by examining the different filter operation schemes. 

2.3.3 Testing Procedures 

The test statistic (2.43) or (2.44) is aimed at detecting a specified bias vector b of 

dimension d through the sensitivity matrix S. In a particular application, however, we 

are usually not sure beforehand when and what kind of biases will occur in the system. 

It is therefore necessary to establish testing statistics to detect first whether there is a 

failure or malfunctioning in the underlying filter operations or not. This can be realized 

by leaving the bias vector b completely unspecified, that is, letting the dimension of the 

bias vector b equal to the dimension of the innovations vector v (Teunissen and 

Salzmann, 1989). In this case, the matrix Sv in (2.41) becomes a square invertable 

matrix. Thus, it can be eliminated from the test statistic (2.43), which results in 

1+n I+n 

T = VT Q,1 V VTQVj - x2( m, 0) under H0 (2.51) 
i=1 i=1 

Equation (2.51) is basically a failure or alarm test that tells us whether there is anything 

wrong in the system or not. If n = 0 in (2.51), i.e. only the current one epoch 

innovations are used, it is called a Local failure or Local alarm test, which has the form: 

= v Q; v - X2(mj, 0) under H0 (2.52) 
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Once the failure test (2.51) or (2.52) signifies a failure present in the system, the 

diagnosis of the failure sources, i.e. bias identification or isolation process, is conducted. 

For this purpose, an approach similar to data-snooping (Baarda,1968) is employed in this 

research. That is, each individual postulated bias source is tested separately until all the 

possible bias sources are examined. This corresponds to the case when the dimension of 

the bias vector b in (2.40) is chosen equal to one at each time. Thus the test statistic 

(2.43) reduces to a one-dimensional identification or slippage test (Teunissen and 

Salzmann, 1989): 

1+n 

(I s?'Qv)2 
- i=1 

Lg - 

1+n 
X2(1,O) under Ho , (2.53) 

where si is a one dimensional vector and computed by equation (2.23). For instance, if 

one suspects sensor failures or outliers in the Kalman filter measurement model, one can 

chooses Ck in (2.11) or (2.23) as 

C3k( 0,..., 0, 1, 0,..., 0)T 

1 i M k 

(2.54) 

for  = 1, 2. .... mk. This means that each observation is tested in turn to search biases. 

If n is set to zero in (2.53), i.e. only the current epoch innovations are used for 

bias identification, it is called a Local identification and has the form: 

- (sTQv)2  
tg - STQSI 2(1,O) under Ho (2.55) 

Resear'ch experiences (Lu and Lachapelle, 1990; Wei et a!, 1990) have shown that 

the local failure test (2.52) and the local identification test (2.55) are suitable for bias 
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detection and identification in differential kinematic GPS surveying, since the most 

common and severe biases are cycle slips which are multiples of the carrier wavelength 

(19.02 cm). Therefore, the local test statistics (2.52) and (2.55) are used in the 

developed testing procedures. 

Unfortunately in some cases, especially in large or multiple bias situations, the 

identification test (2.55) is too sensitive and may lead to many false bias alarms, 

signifying more biases than there are actually present. To overcome or alleviate this 

problem, a new step is introduced in the testing procedure by using the concept of 

minimum detectable bias (MDB). That is, for a bias signified by (2.55), its estimated 

value is compared against its corresponding MDB value. If the estimated value of the 

bias is larger than its corresponding MDB value, then this bias is considered an actual 

bias present in the Kalman filter models, otherwise it is considered as a false bias alarm 

and eliminated from the bias vector b. By using this method, only the biases with more 

than the detection power 1-DO are retained and estimated. 

Summarizing the above discussions, we arrive at the following testing procedures 

as depicted in Figure 2.2, which can be executed in parallel with the real-time Kalman 

filter algorithm. 
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Fig. 2.2 Flowchart of the Testing Procedure for Use in Kalman Filters 
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CHAPTER 3 

KINEMATIC DIFFERENTIAL GPS POSITION AND 

VELOCITY ESTIMATION MODEL 

Generally speaking, there are two kinds of models used for combined processing 

of pseudorange, carrier phase and phase rate (Doppler frequency) observations in precise 

kinematic differential GPS (DGPS) surveys. One is the complementary filter or batch-

solution (Seeber et al, 1986; Hwang and Brown , 1990), in which one type of 

observable (e.g. pseudorange) is used for correcting the positions derived by another 

type of observable (e.g. carrier phase). The advantage of this type of modelling is that it 

does not require assumptions on the motion behaviour of the moving platform. 

However, this type of model cannot directly output the velocity and acceleration 

estimates. The second type of model is the integrated filter or state space Kalman filter 

model (Schwarz et al, 1989; Hwang and Brown, 1990), in which all available 

observations are processed simultaneously through a Kalman filter that describes the 

kinematic surveying system. This type of model has been widely tested under different 

environments and has yielded very good position and velocity estimation results in 

kinematic and semi-kinematic surveying (Schwarz et al, 1989; Cannon et al, 1990; 

Cannon, 1990; Cannon, 1991). Therefore, the integrated filter or state space Kalman 

filter model is used in this research for kinematic GPS data processing. 
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3.1 SYSTEM MODELS 

In kinematic GPS surveying, if the satellite positions are considered fixed, the 

status of a moving vehicle can be described by the vehicle's position, velocity and 

acceleration in three-dimensional space, through the use of kinematic motion equations in 

physics (Schwarz etal, 1989). Usually, the constant velocity or constant acceleration 

model is adopted in surveying practice. The adequacy and accuracy of these models 

depends on the dynamics of the vehicle motion and the measurement update interval At. 

A detailed investigation and comparison of the model behaviours is given in Schwarz et a! 

(1989). Experiences in this research show that a one second or higher data output rate is 

preferred for bias detection purposes when the constant velocity model or the constant 

acceleration model is used as the system model for land vehicle kinematic surveying 

systems. With the improvement of GPS receiver technology, most new receivers, such 

as the Department's Ashtech LD-XII, have a one Hz or higher data output rate. With 

such a short time interval between epochs, the constant velocity model or the constant 

acceleration model seerni adequate for most of the kinematic land surveying tasks. 

3.1.1 Constant Velocity Model 

Using the satellite-receiver double difference observables of the GPS system as 

the update measurements, the constant velocity model describing the vehicle motion 

consists of three position states (&, 6?., 6h) and three velocity states 6Ve, 'h) 

Thus, the state vector x6 of the constant velocity model is given as 

= ( ö4, öÄ, oh, OVn, 5''e' 0''h )T , (3.1) 
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where 4 is the latitude, ?. the longitude, h the height, V the north velocity, V. the east 

velocity, and Vh the up velocity. Here we assume that before the kinematic run begins, 

the carrier phase ambiguity parameters have been resolved correctly by some common 

method, such as antenna swapping or occupying the initial baseline for about 10-15 

minutes to allow for a static solution. Therefore, the ambiguity parameters are held fixed 

and do not appear in the state vector. 

The states Eve, 6h in (3.1) can be assumed to behave as a random walk or 

a first-order Gauss-Markov process, according to the vehicle motion. If the first-order 

Gauss-Markov process is used to describe the behaviour of the three velocity states, the 

transition matrix of the state vector x6 has the form (Schwarz et al, 1989): 

(CD 0 T ) (3.2) 

where all submatrices are diagonal and of dimension (30), which can be expressed as: 

C 003 = diag( c) with c 1 - exp(-a1 t)), (3.3) 
ai 

T(zt)33 = diag( tj) with ti = exp( -( jtt) (3.4) 

D3x3 = diag( 1/R, hR c0s4, 1), (3.5) 

where aj is the inverse of the correlation time of the stochastic Markov process, it is the 

update interval and R is the earth radius. 

The covariance matrix Qk of the system process noise related to x6 can be 

computed by simple numerical integration when the spectral density matrix of the system 

noise Q(t) is specified (Gelb, 1974), i.e. 
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Qk = J 6(t)Q(t)6(t) th 
In the constant velocity model, Q(t) usually has the form 

0 0 
Q(t)= Q2(t)J' 

(3.6) 

(3.7) 

where Q2(t) = diag( qv n  qv e (t), qv h (t) ) are spectral densities of the three velocity states. 

3.1.2 Constant Acceleration Model 

Similar to, the constant velocity modelling of the vehicle motion, the constant 

acceleration model uses the position states (&, öÄ., oh), velocity states (OVn) OVe, OVh) 

and acceleration states (Oan) Oae, Oah) to describe the motion of the vehicle in 

3-dimensional space. This leads to the following filter state vector 

xg = (&I, 8?, Oh, OVA, 8Ve, OVh, Oa, Oae, 5ah )T , (3.8) 

where the three additional acceleration states Oa, 6ae, 6ah, corresponding to north, east 

and up accelerations respectively, are added. In this model, the three acceleration states 

are considered to be driven by Gaussian noise and to behave as a random walk or a 

Gauss-Markov process depending on the vehicle dynamics. If the first-order Gaussian-

Markov process is used to describe the acceleration states, the transition matrix of state 

vector (3.8) reads 

= 

(I Dzt FD 

01 C 

\0 0 T  

(3.9) 
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where submatrices C, T and D are defined as in (3.3), (3.4) and (3.5). The submatrix F 

has the form 

F(t)33 = diag( f1) with fi = —1-(exp(-a.t) + (xAt - 1) . (3.10) 
cx 

The covariance matrix of the system noise is computed by simple numerical 

integration 

At = (3.11) 

with the spectral densities 

Q(t) = 

(0 0 0 '\ 

00 0 

0 Q3(t) 1 

(3.12) 

where Q3(t) = diag( qan  q(t), a (t) ) are spectral densities of the three 

acceleration states. 

The models described above are similar to those in Schwarz et al ( 1989) with one 

difference. In Schwarz et al ( 1989), a carrier phase cycle slip is treated as a random state 

and estimated by the augmented Kalman filter algorithm, whereas in our approach, a 

cycle slip occurring on a satellite is treated as a constant bias to be recursively estimated 

and corrected by a two-stage Kalman filter. 
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3.2 OBSERVATION MODEL 

Observations are used for updating and correcting the Kalman filter states 

predicted by the system model. Basically, the GPS system provides two fundamental 

observables for geodetic surveying purposes. They are the code pseudorange observable 

and the carrier phase observable. For most of the navigation/geodetic GPS receivers, 

another type of observable, the instantaneous phase rate (Doppler frequency) is also 

output for instantaneous velocity determination of the moving vehicle. 

The basic observation equation for raw pseudorange observations, p, is 

(Lachapelle, 1990): 

p = p + c(dt - dT) + dp + d10 + d0 + e(p) (3.13) 

where p is the geometric range between the receiver antenna and a satellite, 

c is the speed of light, 

dt, dT are the satellite and receiver clock errors respectively, 

dp is the range error resulted from satellite orbital errors, 

djon, d 0 are the ionospheric and tropospheric corrections, respectively, 

and c(p) is the pseudo-range measurement noise. 

The pseudorange measurements are instantaneous and unambiguous, but their 

high measurement noise level limits their use in practice for precise positioning. The 

typical measurement noise of pseudoranges is in the order of 1 to 4 metres for C/A code 

and within the submetre level for P code. Furthermore, pseudorange observables are 

vulnerable to multipath influences which can often result in errors up to 20 m level in C/A 

code measurements (Lachpe1le, 1990). 
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The observation equation for raw carrier phase observations,, is (Wells et al, 

1986; Lachapelle, 1990) 

= p + c(dt - dT) AN + dp - d10 + dtrop + E(c) 

where 0 lmeasured cycles ((D in meters), 

N is the initial carrier phase cycle ambiguity, 

is the carrier phase measurement noise, 

and 21 is the wavelength of the carrier signal (metre). 

(3.14) 

The main advantages of the carrier phase observable are its low measurement 

noise level (usually about 2 mm) and its low sensitivity to multipath effects (usually not 

exceeding O,25X). But, in order to use carrier phase observables to obtain precise and 

reliable kinematic positioning results, the initial carrier phase ambiguity N should be 

correctly resolved before kinematic data collection begins. Also, the lock on carrier 

signals of the satellites should be maintained during data collection unless the cycle slip 

problem can be effectively solved by some methods or external sources. A cycle slip is a 

discontinuity in the received carrier phase observations, which results in a change in the 

integer ambiguity N. 

Phase rate or Doppler frequency is the time derivative of the phase. The 

observation equation of phase rate can be expressed as: 

= p + c(dt-d)+ d - dion  + dtrop +(c) . (3.15) 

where ( •) denotes the derivative with respect to time. The linearized form of (3.15) in 

the geodetic coordinate system (4, X, h) is given by (Lu et al, 1990) 
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ax Dy Dz ax az (a—+ b— + c—) + )T aZ (a—+b--+c—)h 
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+ + ap 8ve  ap 
+Vh+c(6dt öd) + p - dion + dtrop +) 

ao R Rcos4 ah 

(3.16) 
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The above raw observables are severely affected by different error sources, such 

as orbital errors, satellite clock and receiver clock errors and atmospheric errors. One 

effective way to eliminate or reduce these error terms is to form the differenced 

observables from the raw ones. Differencing of simultaneous observations usually 

cancels the common error terms. In UPS data processing, the widely used differencing 

modes are the single difference(SD), double difference(DD) and triple difference(TD) 

(Remondi, 1984; Wells et al, 1986). In this research, the (receiver- satellite) double 

difference (DD) observables of pseudo-range, carrier phase and phase rate are used as the 

measurement updates in the Kalman filter for kinematic UPS position and velocity 

estimation. Thus, the observation model reads as follows: 

VAp = VAp + VAd0 + VAdtrop + VAc(p) (3.17) 

VM = VAp + ?VAN - VAd10 + VAd 0 + VAe() (3.18) 
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= VAP - + VLdtrop + (3.19) 

where VA is the double difference operator between two stations and two satellites 

(Wells et al, 1986). 

It is noted that double difference observations cancel out the satellite clock errors 

and receiver clock errors, and reduce the orbital and atmospheric errors. Another 

advantage of the double difference GPS observable is that the integer nature of cycle 

ambiguity VAN in (3.18) can be exploited. Once the integer ambiguity is resolved, it can 

be held fixed in kinematic surveys. Unfortunately, if cycle slips occur in carrier phase 

observations, which is often the case in real kinematic surveys, the phase measurement 

update equation (3.18) is no longer valid but biased by a constant value, which in turn 

results in erroneous position and velocity estimates in the filter. Therefore, it is necessary 

to have some ways to detect and correct cycle slips in the observation model. This is one 

of the main problems to be dealt with in the quality control of precise kinematic GPS 

surveying. 
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CHAPTER 4 

RELIABILITY ANALYSIS IN KINEMATIC 

DIFFERENTIAL GPS SURVEYS 

Reliability analysis in kinematic GPS surveys includes two aspects, the minimum 

detectable bias (MDB) in the filter models and the influences of the undetectable bias on 

the filtering results. In this Chapter, the bias influence characteristics on position and 

velocity estimation are investigated and the MDB values of some common biases in 

kinematic GPS surveys are examined. All these analyses can be done prior to the actual 

survey campaign, based on the theoretical formulas given in Chapter 2 and the assumed 

surveying conditions. Familiarity with the bias influence behaviors and the MDB values 

of some common biases as well as their correlation with the satellite number and satellite 

geometry is very helpful in the planning stage of kinematic GPS surveying. 

4.1 BIAS INFLUENCES ON POSITION AND VELOCITY ESTIMATION 

IN KINEMATIC DIFFERENTIAL GPS SURVEYS 

This section investigates the theoretical influences of different kinds of biases on 

the position and velocity estimation by using two-stage Kalman filter formulation. In 

kinematic GPS surveys, the most common biases in the observation (double difference) 
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model are cycle slips in carrier phases, outliers in pseudoranges and outliers in phase 

rates. The likely biases when using the system model are the acceleration errors in the 

constant velocity model and the acceleration disturbances in the constant acceleration 

model. In the following sub-sections, the bias influence for each kind of bias is 

developed. The total influence of biases are then the summation of the influences of each 

kind of bias, since the bias influences on Kalman filtering results are linear in nature. 

These theoretical bias influences, based on the adopted models and assumed surveying 

environments, lead to a better understanding of the problems and concerns in kinematic 

GPS positioning. 

In order to inter-compare the magnitude of the different bias influences on 

position states and velocity states, we define a scalar term as follows: 

Local Bias-to-Noise Ratio in states (LBNR) is the ratio between the 

bias Vxi in a given Kalman state x, caused by a bias vector b, and its 

standard deviation i.e. LB NR = Vx / axi. 

In the following computations, we used a part of the trajectory of the semi-

kinematic GPS surveying run carried out in Kananaskis Country on Julian day 222, 

1990. This part of the trajectory consisted of 59 epochs (4 minutes duration) and started 

at 494132 seconds (UPS time). Six satellites were available above an elevation angle of 

150 in this part of trajectory. The dilutions of precision for latitude, longitude and height 

within the adopted trajectory are given in Fig. 4.1. The height dilution of precision is 

good but relatively poorer than the latitude and longitude dilutions of precision. The 

maximum speed of the vehicle reached 80 km h1. The standard deviations assumed for 

the pseudorange, carrier phase and phase rate observations were 4 m, 2 cm and 5 cm s1. 

The output data rate was 4 seconds. All the computations were done using the program 
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package QUALIKIN described in Chapter 6 and the constant velocity model was 

employed as the system model of the Kalman filter for bias influence analysis. 
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Fig. 4 1 Dilution of Precision for Part of the Trajectory of Day 222, 1990 

(a) Influences of Cycle Slips in Carrier Phase Observations 

In double difference (receiver-satellite) carrier phase observations, cycle slips can 

be modelled as constant biases following the epoch at which they occur. One example of 

the influence of carrier phase cycle slips on the estimated positions and velocities is 

shown in Fig. 4.2. Here we assume that one cycle slip ( 19.02 cm) occurs on SV 11 at 

494132 second. Six satellites (SVs 2, 6, 9, 11, 13, 18) are available simultaneously. 

The data interval is 4 seconds. The pseudorange and phase rate observations as well as 

the system model are assumed bias-free. In Fig. 4.2, the cycle slip influence on the 

updated (estimated) Kalman filter states is plotted, since the biases in the observation 

model mainly affect the measurement update process. V4, V2. and Vh denote the scalar 

errors (LBNR) in the estimated latitude, longitude and height, respectively, caused by the 

assumed one cycle slip. VV, VVe and VVh are the scalar errors (LBNR) in the 
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estimated north velocity, east velocty and up velocity, respectively. Another example 

under the same condition is shown in Fig. 4.3 where two satellites (SVs 11, 18), instead 

of one, are assumed to have two cycle slips at 494132 second. 
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Fig. 4.2 Cycle Slip Influences on Positions and Velocities -- One Cycle Slip on 

One Satellite 
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From the above examples, we note that carrier phase cycle slips mostly affect the 

estimated positions as opposed to the estimated instantaneous velocities. For one cycle 

slip occurring on one satellite, the maximum influence on latitude estimates, as shown in 

Fig. 4.2(a), reached about 8 times their standard deviations, or about 10 cm in absolute 

magnitude. The more satellites affected by cycle slips, the more severe the influences. 

The total influence of multiple cycle slips is the summation of the individual cycle slip 

influences because of the linear property of the bias effects on the Kalman filtering 

results. Also as shown in Figures 4.2 and 4.3, the cycle slips have a long-term effect on 

the estimated positions. Their influences on the estimated positions are not constant, but 

slowly drift in time with the changing satellite geometry. Since the time span in these 

examples was short (4 minutes), the drift effect was not very significant. Cannon ( 1991) 

has shown one example in which the drift in height component, resulting from the 

introduction of one cycle slip in carrier phase observations, reached about 14 cm after a 

one hour period. Therefore, real-time correction and adaptation of the cycle slips in 

double difference observations are important to assure the correctness of the kinematic 

positioning results. 

(b) Influences of Outliers in Pseudorange Observations 

We define an outlier herein as an instantaneous bias that only affects the epoch at 

which it occurs. Outliers may be present in pseudorange observations due to the 

multipath influence. One example of pseudorange outlier influences on the estimated 

positions and velocities is shown in Fig. 4.4. In this figure, a pseudorange outlier of 20 

mis assumed on SV 9 at 494132 second where six satellites (SVs 2, 6, 9, 11, 13, 18) 

were in view and the vehicle was moving at a speed of 36 km h'. 
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Fig. 4.4 Pseudorange Outlier Influences on Positions and Velocities 

From the single outlier case shown in Fig. 4.4 and other test computations, we 

notice that the magnitude (LBNR) of the influences of pseudorange outliers on positions 
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and velocities is much smaller than that due to cycle slips and practically can be neglected. 

This is caused by the lower a priori standard deviation of pseudorange observations. The 

pseudorange outliers mainly affect the positions as opposed to the velocities. 

Furthermore, such effects are only limited to the current and subsequent few epochs 

when no bias occurs on the phase and phase rate measurements. This means that the 

Kalman filter can reduce the outlier influence on the estimated states after a few epochs of 

measurement updates. Here we assume that the system model is correct. 

(c) Influences of Outliers in Phase Rate Observations 

Unlike the carrier phase observation which is the accumulated cycles of the 

received carrier signal, phase rate (Doppler) is an instantaneous observation that reflects 

the changing range rate from the receiver to the observed satellite. The likely biases in 

phase rate observations are outliers presert on each single measurement. Shown in. 

Fig. 4.5 are the influences on the estimated positions and velocities for an outlier of 

0.5 m occurring at 494132 second in the phase rate observation of S  11, where six 

satellites (SVs 2, 6, 9, 11, 13, 18) are in view. 
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influences on velocities are limited to the epoch at which the outlier occurs and the 

following few epochs. The Kalman filter can effectively reduce the outlier influences on 

the filtering states after a few epochs of observation updates. This is due to the nature of 

an outlier, which, by its definition, only affects one observation at a single epoch. 

(d) Influences of the Bias in the System Kinematic Model 

Besides the biases in the observation model, biases in the system model may exist 

due to deviations between the assumed and the actual vehicle motion. According to the 

Kalman filter algorithm, system model biases mainly affect the propagation of the filter 

state vector k(-) , which in turn influences the computation of the innovation sequence 

or predicted residuals. If the measurements are correct (bias-free), then the inaccurately 

predicted states 2k(-) can be corrected by the measurement updates through the Kalman 

gain matrix Kk. 

Shown in Fig. 4.6 is one example of the system bias influences on the predicted 

states k(-)' i.e. the predicted positions and velocities. Here we assume that within a 

constant velocity model (3. 1), a single acceleration bias of 2 m occurs on the system 

state V, the main direction of the trajectory, for 6 consecutive epochs from time 494132 

to 494152. The data interval is 4 seconds. The local bias-to-noise ratio (LBNR) in this 

example is defined by V4(-)/(-) 
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From Fig. 4.6, one can see that the acceleration bias in the system model severely 

affects the corresponding predicted states öclk(-) and V(-). The absolute magnitudes 

of influences reach 16 metres in latitude and 8 m in northing velocity. These 

influences are limited to the epochs at which the system bias occurs. The shorter the 

update interval, the smaller the magnitude of influence. For instance, under the same 

conditions but at an update interval of 1 second, the magnitudes of influence reduce to 1 

metre in latitude and 1 m in northing velocity. In order to limit the system bias 
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influences on the innovation sequence and facilitate the detection of observation biases, a 

high data update rate (e.g. 1 Hz or higher), is recommended. 

4.2 MDB IN KINEMATIC DIFFERENTIAL GPS SURVEYING MODEL 

Minimum Detectable Bias (MDB) analysis is an important tool for Kalman filter 

design. It tells us about the filter's theoretical ability to detect a bias at a certain 

magnitude under the assumed surveying conditions. Based on the formulas given in 

Section 2.3.1 of Chapter 2, the MDB values of some typical biases in the kinematic GPS 

position and velocity estimation models are investigated in this section. These biases 

include the carrier phase cycle slips, outliers in pseudoranges and outliers in phase rate 

measurements. 

In all the following computations, the same trajectory from Julian Day 222, 1990 

described in Section 4.1 was used. The non-centrality parameter for MDB computations 

is set to Xo = (4.13)2, which corresponds to 0.1% and 20% probabilities of Type I and 

Type If errors, respectively, in a one-dimensional hypothesis test. Corresponding to the 

testing statistics and the testing procedure used in the bias detection and identification in 

kinematic GPS surveying, the local MDB (or the instantaneous MDB at each epoch) for a 

single bias case is of great importance, which, from equation (2.50), is given by 

b0 = 
A.0  

STQ; Si 
(4.1) 

where i is the index for epochs. Here we define the single bias case as the case where no 

biases other than the specified one are presented in the processing models. The 

relationship between the local MDB values and the satellite geometry is also examined. 
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(a) MDB for Carrier Phase Cycle Slips 

Cycle slips are common biases occurring during carrier phase measurements. 

They can be treated as constant biases in the receiver-satellite double difference 

observables if the initial carrier phase ambiguities are resolved and held fixed during the 

kinematic survey. 

Fig. 4.7 shows the improvements in minimum detectable bias values at each 

epoch in double difference carrier phase observations of SV 02 with different satellite 

coverages. The corresponding GDOP values of different satellite coverages is given in 

Fig. 4.8. The four, five and six satellite coverages used for comparisons are (SVs 6, 2, 

9, 11), (SVs 6, 2, 9, 11, 13) and (SVs 6, 2, 9, 11, 13, 18). Here we assume that only 

the concerned biases, i.e. cycle slips, are presented in the observations and the system 

model is errorless. 
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Fig. 4.7 Local MDB Improvement in Double Difference Carrier 'Phase 

Observations on SV 02 with the Different Satellite Coverages. 
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As shown in Figures 4.7 and 4.8, the MDB values at each epoch in the double 

difference carrier phase observations of SV 02 with the 4 satellite coverage, where the 

GDOP values reach approximately 10, are about 1 metre (i.e. 5 cycles of Li frequency). 

With the 5 and 6 satellite coverages, where the GDOP values are around 3.2, the 

corresponding MDB values drop to about 0.1 metre (i.e. 0.5 cycle of Li frequency). 

These MDB values reflect the best or theoretical values that the statistical testing can 

detect with a given testing power for a single bias present in the carrier phase 

observations, under the assumed surveying conditions. Comparing Fig. 4.7 with Fig. 

4.8, we can see a correlation exists between the local (or instantaneous) MDB value and 

the satellite geometry. The stronger the geometry, the better the ability to detect a bias in 

the carrier phase observations. For reliable cycle slip detection on any individual satellite, 

GDOP :5 4 or coverage with five or more satellites is recommended. 

(b) MDB for Outliers in Phase Rate Observations 

An outlier can be modelled as an instantaneous bias appearing at a specific epoch. 

Outliers in phase rate measurements mainly affect the instantaneous velocity estimation. 
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Fig. 4.9 shows the improvements in the minimum detectable outlier at each epoch in 

double difference phase rate observations of SY 02 with the different satellite coverages. 

The GDOP values corresponding to each satellite coverage are the same as those shown 

in Fig. 4.8. 
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Fig. 4.9 Local MDB Improvements in Double Difference Phase Rate 

Observations on SY 02 with the Different Satellite Coverages. 

It is noted that in the 4 satellite coverage, the minimum detectable outlier on SV 02 

in phase rate observations at each epoch is about 0.5 m If the available satellites 

increase to 5 or 6, the corresponding MDB values at each epoch for a single phase rate 

outlier drop to 0.3 m s-1 This also means that the stronger the geometry, the better the 

detectability for phase rate outliers on each satellite. 

(c) MDB for Outliers in Pseudorange observations 

Pseudorange outlier detection is one of the main concerns of GPS integrity 

monitoring. Using the reliability analysis method given in this research, the minimum 
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detectable pseudorange outlier can be easily obtained. The following example shows the 

local MDB value at each epoch for the single outlier case in the pseudoranges of SV 02. 
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Fig. 4.10 Local MDB Improvements in Double Difference Pseudorange 

Observations on SV 02 with the Different Satellite Coverages. 

Fig. 4.10 indicates that the minimum detectable pseudorange outlier at each epoch 

on SV 02 is about 18 m with the given testing parameters in the estimation filter. This 

means that if a single outlier occurs in the pseudoranges on SV 02, it can be detected with 

80% probability only when this outlier is larger than 18 m. This value is approximately 

.4.5 times the pseudorange standard deviation. Furthermore, the MDB values does not 

improve much with the increase in the number of satellites. This is due to the much 

lower precision of the pseudoranges as compared to those of the carrier phase and phase 

rate observations in the filter. 

The MDBs of the system biases can also be investigated as above. The numerical 

results are not given here. Generally, the minimum detectable acceleration bias in the 

constant velocity model, based on the trajectory and parameters given in Section 4. 1, is 

about 2 m s2. 
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Summarizing the discussions in this Chapter, we conclude that reliability analysis 

is a useful tool in Kalman filter design. It is able to provide us some insights about the 

bias influence characteristics and the minimum detectable bias values for the concerned 

biases, in the designed filters. Thus, a reliable filter operation scheme and a better 

understanding of the estimated results can be achieved. 
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CHAPTER 5 

CARRIER PHASE AMBIGUITY INITIALIZATION FOR 

DIFFERENTIAL KINEMATIC GPS SURVEYS 

In order to obtain cm-level accuracy with differential kinematic GPS positioning, 

the carrier phase ambiguities VAN in the measurement update eqn. (3.18) have to be 

resolved over the initial baseline before the vehicle goes into kinematic mode and phase 

lock should be maintained on a minimum number of satellites thereafter (e.g. 4 satellites 

in a good geometry). However, during a kinematic GPS survey, cycle slips on all or 

most of the available satellites may occur due to carrier signal obstruction by objects or 

other tracking problems. In such a situation, the initially resolved carrier phase 

ambiguities VAN of all the corresponding satellites, which are held fixed in equation 

(3.18), will change by an arbitrary integer number of cycles. Therefore, the new carrier 

phase ambiguities VAN of all or most of the satellites have to be resolved again or re-

initialized during kinematic mode in order to maintain cm-level positioning accuracy. 

This is a difficult task that has not yet been fully solved. In this chapter, existing 

methods that are currently used for carrier phase initialization in differential kinematic and 

semi-kinematic GPS data processing are discussed. 
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5.1 PHASE AMBIGUITY INITIALIZATION IN STATIC MODE 

Carrier phase ambiguity initialization in static mode may be carried out at the 

beginning of a kinematic or semi-kinematic GPS surveying session to obtain the initial 

double difference phase ambiguities of each satellite. Once the initial phase ambiguities 

are resolved, they are held fixed and used as constant corrections to the carrier phase 

observables in the subsequent kinematic or semi-kinematic survey unless the ambiguities 

are affected by cycle slips. Currently, there are several ways used for carrier phase initial 

ambiguity resolution in a kinematic or semi-kinematic survey., Among them are ( 1) 

surveying over a known baseline of sufficient accuracy, (2) performing an antenna 

swapping manoeuvre (Hofmann-Wellenhof and Remondi, 1988), (3) occupying an initial 

unknown baseline sufficiently long to allow for a static solution of the initial baseline 

vector and the carrier phase ambiguities and (4) searching by the ambiguity function 

method (Remondi, 1990; Mader, 1990). All of these methods require that the initial 

baseline be relatively short to limit the orbital and atmospheric effects on the double 

difference observables. The fourth method, i.e. the. ambiguity function method, can also 

be used for phase ambiguity initialization in kinematic mode and therefore is discussed in 

the next section. 

Surveying over a known initial baseline is the simplest method for initial phase 

ambiguity resolution. In this case, the initial baseline vector is held fixed and only the 

unknown ambiguity parameters VAN are solved for by using the collected static 

differential GPS phase data. The application of this method in practice, however, may be 

limited because a known baseline may be not always available in the surveying area. 

Antenna swapping is a time saving phase initialization method that does not 

require a priori knowledge of the initial baseline. This method is well described in 
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Hofmann-Wellenhof and Remondi (1988). Suppose that a pair of GPS receivers are 

placed at the two ends of an initial baseline. After collecting GPS data for a few epochs, 

the two antennas are swapped and a few more epochs of data are collected. During the 

process of antenna exchange and data collection, phase lock on at least 4 GPS satellites 

should be maintained. The effect of the swap is to produce a reversal of the satellite-

receiver geometry while keeping the initial carrier phase ambiguities unchanged. By 

utilizing the information of the geometry change embodied in the data collected before and 

after antenna swapping, the initial baseline vector can be determined and hence the initial 

carrier phase ambiguities can be resolved. From the antenna swap procedures described 

above, we may note that the length of the initial baseline should be no more than tens of 

metres in order to make the antenna swap easy and practical. 

Occupying an initial baseline for a period sufficiently long to allow for a static 

batch least squares solution of the baseline vector and the initial phase ambiguities is the 

most widely used method for phase ambiguity initialization at the beginning of a 

kinematic or semi-kinematic GPS survey. This method can be applied to a baseline up to 

a few kilometres in length and also does not require the prior knowledge of the baseline 

except that one point of the baseline is held fixed and used as a master station for 

differential data processing. But we pay for these advantages with a sufficiently long 

static occupation time on the baseline, which is to allow for the satellites to "move 

appreciably" in order to accumulate sufficient geometry information for baseline vector 

and phase ambiguity determination. The required occupation time mainly depends on the 

satellite geometry and the carrier phase measurement noise, provided the atmospheric 

(ionospheric and tropospheric) effects can be neglected. In the field tests of this research 

with Ashtech LD-XII GPS receivers, 8 minutes of continuously static tracking data 

without cycle slips (4 second data rate) seemed sufficient to resolve the initial baseline 
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vector and the initial phase ambiguities over a baseline less than 1 kilometre in length, 

when five or more satellites were available simultaneously with a GDOP value ≤ 3.5. 

For reliable ambiguity resolution for baselines up to a few kilometres in length, 10-30 

minutes of static occupation is usually required. 

5.2 PHASE AMBIGUITY INITIALIZATION IN KINEMATIC MODE 

When cycle slips are detected or present on all or most of the available satellites in 

kinematic mode and when the testing procedure together with the Kalman filter cannot 

resolve the correct integer ambiguities, some other carrier phase ambiguity initialization 

methods are then needed. Currently, there are several techniques used for the ambiguity 

resolution in kinematic GPS surveying or the "on the fly" ambiguity resolution: Among 

them are the extrawide-laning technique (Wubbena, 1989), the least squares ambiguity 

search technique (Hatch, 1990) and the ambiguity function method (Counselman et al 

1981; Remondi, 1984; Mader, 1990). Each of them has its own advantages and 

limitations. The extrawide-laning can be performed very quickly on individual satellites 

but it requires dual-frequency P-code GPS measurements. The least squares ambiguity 

search technique is a little faster computationally than the ambiguity function method 

(Hatch, 1990), but its theoretical foundation is not clear at this time and still under 

development. It requires more than seven GPS satellites in view simultaneously for 

instantaneous ambiguity resolution. The ambiguity function method, on the other hand, 

is more involved computationally but has a good theoretical foundation and can be used 

in static mode or kinematic mode with multiple epochs of observations. For 

instantaneous ambiguity resolution in kinematic mode, it also requires 7 to 8 visible 

satellites (Mader, 1990). In this research, the ambiguity function method is tested and 
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employed as an optional method for carrier phase ambiguity initialization in kinematic 

mode as well as in static mode. 

5.2.1 Ambiguity Function Method (AFM) 

The ambiguity function was first introduced by Counselman and Gourevitch 

(1981) and later by Remondi (1984) for static GPS carrier phase data processing. Its 

application in kinematic GPS surveying was recently discussed and tested by Mader 

(1990). Simply, the ambiguity function can be written as: 

K 

A(x,y,z) = 
k=1 

N-i 
21t ( Vi. (Xo, YO, Zt )obs - VL (x, )', Z)comp) 

j=1 

(5.1) 

where K is the number of observation epochs, N the number of satellites at each epoch, 

H is the norm operator, e10 is the complex vector or phasor defined by 

e18=cosO+i sin8, VMJ (x0, y0, Zo)obs is the observed double difference observation 

in cycles at the correct position (x0, y0 ,' z0) and VLIJ (x, y, z)comp is the 

corresponding computed double difference observation in cycles at the trial position 

(x,y,z). 

An important characteristic of the phasor within the ambiguity function is that it is 

invariant under integer cycle changes (full revolutions), i.e. e10 + 2ir n) = e10 

Therefore, the initial integer ambiguities and (static data) cycle slips in the double 

difference carrier phase observations will have no influence on the value of the ambiguity 

function. The magnitude of the ambiguity function is then solely determined by the 

fraction of cycles. This is why the ambiguity function can be used for resolving the 

baseline vector and the ambiguities based on the the ambiguous carrier phase data. 



56 

Apparently, if the trial position (x,y,z) equals the correct position (x0,y0,z0) and 

if we further assume the observed and computed observations are error-free (which is not 

realistic but makes the illustration simple), the observed double difference observation 

VicJ (x0, y0, zO)ObS of each satellite will exactly equal its corresponding computed 

double difference observation VMJ (x, y' z)comp upon a difference of a constant 

integer of cycles that have no influence on the value of the ambiguity function or phasors. 

Under such a situation, the ambiguity function (5.1) will reach its maximum value of N-i 

(i.e. A(x0,y0,z0) = N-1) .for a single epoch of observations with N observed satellites 

because in this case each phasor in (5.1) is identical, having the form e10 = 1. For other 

trial positions (x,y,z) (x0,y0,z0), A(x,y,z) < N- i. If the observation errors or other 

kinds of errors are taken into account, the maximum value of the ambiguity function at 

(x0,y0,z0) will be a little smaller than N-i, i.e. A(x0,y0,z0) = N-i. Also, at the trial 

positions that are very close to the correct position (x0,y0,z0), we have A(x0,y0,z0) 

N- i. Unfortunately, in the neighborhood around the correct position there may be some 

other trial positions at which the ambiguity function reaches a relative maxima. For 

example, a single phasor ei27t (Vb (xo, yo, Zo )obs - VA (x, y, Z)comp) may have the same 

value at the correct position (x0,y0,z0) as it has at all other positions where the difference 

in the calculated distance between the jth satellite and the base satellite used in the double 

differencing changes by an integer number of wavelengths. To overcome this problem, 

the phase observations from different satellites, different epochs and even different carrier 

frequencies are combined together to compute the value of the ambiguity function at a 

certain trial position. When enough measurements from different satellites and epochs 

are combined, all the relative maximas will be suppressed except the one at the correct 

position (x0,y0,z0). 
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According to the above explanations, the ambiguity function method works as 

follows. Select a volume of space around the approximate estimate of the correct point. 

For example, the volume could be a cube with 2 metre sides or 1 metre sides depending 

on the accuracy of the approximate estimate of the position. The defined search cube 

must include the correct position or the technique will fail. This cube is then divided into 

a grid of points separated in all directions by 0.1 to 0.25 cycles of Li frequency. At each 

trial point or grid point, the value of the ambiguity function is computed for all the 

measurements included in the computation. Note that each measurement could increment 

the value of the ambiguity function by at most unity. If at a trial point the contribution of 

one of the measurements is less than a predetermined minimally acceptable value, e.g. 

0.7, then this trial position cannot be the correct position and the next trial position is 

tested. The trial position at which the ambiguity function obtains the maximum value will 

almost certainly be the correct position if enough measurements are included in the 

computation. Mader ( 1990) has shown that for reliable instantaneous phase ambiguity 

resolution by using only one epoch of observations, simultaneous measurements from 7 

to, 8 satellites should be available in order to suppress all the false maximas of the 

ambiguity function. Once the correct position is obtained, the carrier phase ambiguities 

can then be calculated by using the corresponding measured carrier phase observations. 

The determination of the search volume or the initial estimate of the correct 

position is important for the successful application of the ambiguity function method. 

Since the computation time impractically increases with the increase of the search volume, 

the initial estimate of the correct position should be as accurate as possible. In the static 

mode, the initial estimate of the position can be calculated by triple difference or double 

difference (floating ambiguity) least squares method based on the available phase 

observations. The obtained accuracy may be well below the 1 metre level for short 
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baselines (Remondi, 1990). If the receiver is in motion, the approximate position at a 

kinematic epoch can be provided by the filter running with floating carrier phase 

ambiguities based on the updates of measured pseudo-ranges and carrier phase 

observations. A more accurate estimate (below 1.5 m at 1) is achievable when the 

phase-filtered pseudorange model or sequentially adjusted phase and pseudorange model 

is used to compute the kinematic positions (Cannon, 1987). If P-code measurements areS 

available, approximate positions at the kinematic epochs can be determined more 

accurately (e.g. less.than 1 m at 1), which leads to a small search volume and reduces 

the computation time. 

5.2.2 Results of Phase Initialization by Ambiguity Function 

Semi-kinematic data sets collected over a will-established traverse in the 

Kananaskis region near Calgary (e.g. Cannon et al, 1990) were used to test the ambiguity 

function method for carrier phase ambiguity initialization. The detailed description of the 

field tests are given in Chapter 6. The first field test was carried out on Day 222, 1990 

and the second on Day 121, 1991. 

In the data set of Day 121, 1991, there were 10 times of loss of lock on all the 

satellite signals within the initial 8 minute static positioning session over the initial 

baseline (32 metres). This was due to receiver malfunctioning at the master station. 

These losses of lock caused discontinuities or cycle slips in the carrier phase observations 

of all the available satellites. Because there were too many cycle slips in the short 

observation span, the ambiguity function method was chosen for the initial ambiguity 

determination since this method is not affected by cycle slips. Because only five satellites 

were visible and only Li carrier frequency data was collected, 5 epochs of observations 
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evenly distributed among the initial 8 minutes of static positioning data were used in the 

computation of the ambiguity function. The one metre cube around the initial position 

was searched with a grid step of 0.1 cycles of the Li wavelength. This resulted in 

125,000 trial positions to be tested. The computation time was surprisingly long. It took 

1233 seconds or 21 minutes on a 386 micro-computer with 33 MHz clock speed and a 

387 math-coprocessor. The resolved VA carrier phase ambiguities over the initial 

baseline are given in Table 5.1. When the search volume was decreased to a 0.5 metre 

cube, which brought 15625 trial positions to be tested, the corresponding computation 

time then dropped to only 154 seconds or 2.5 minutes. 

SV No. 
Resolved phase ambiguities (Li cycles) 

(Base sat. SV 11) 

SV 02 

SV 16 

SV 18 

SV 19 

738688.9269 

1001841.9916 

1108864.9352 

1064656.9996 

Table 5.1 Resolved Initial Phase Ambiguities by the Ambiguity Function Method 

Using 5 Epochs of Observations from the Data Set on Day 121, 1991. 

It can be seen that the estimated phase ambiguities in Table 5.1 are very close to 

integers. By rounding them to their nearest integers, we then attain the correct integer 

carrier phase ambiguities which are held fixed in the following kinematic GPS 

positioning unless they are affected by cycle slips. 

The ambiguity function method can also be used for the carrier phase ambiguity 

initialization in the kinematic mode. For reliable instantaneous phase ambiguity 
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resolution, simultaneous observations from 7 to 8 satellites at a single epoch should be 

available and included in the computation of the ambiguity function in order to suppress 

all the false maximum peaks of the function. Table 5.2 shows one example of phase 

ambiguity determination in kinematic mode. One epoch of Li observations at 494792 

second from the data set of Day 222, 1990 was used, where 7 satellites were available 

simultaneously with a GDOP value around 3. The vehicle was moving at a speed of 

60 km h1. The distance between the roving and the master receivers was 1.7 km. The 

search was carried out within a one metre cube around the approximate position of the 

roving receiver with a grid step 0.1 cycle (0.02 m). This also brought 125,000 trial 

positions to be tested. However, when compared with the first example where five 

epochs of observations were combined, the computation time was dramatically decreased 

in this single epoch search. It took 154 seconds or 2.5 minutes on a 386 micro-computer 

with 33 MHz clock speed and a 387 math-coprocessor. 

SV No. 
Resolved phase ambiguities (Li cycles) 

(Base sat. SV 06) 

SV 02 

SV 12 

SV 09 

SV 11 

SV 13 

SV 18 

- 596929.9804 

411736.9784 

662742.9918 

- 541409.9890 

116458.9419 

- 398648.9204 

Table 5.2 Resolved Phase Ambiguities by the Ambiguity Function Method in 

Kinematic Mode Using One Epoch of Observations on Day 222, 1990 
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The correct carrier phase integer ambiguities at this kinematic epoch were then 

obtained by rounding the estimated phase ambiguities in Table 5.2 to their nearest 

integers. Since no cycle slips occurred from the beginning to the present epoch (494792 

seconds), the ambiguities obtained by the ambiguity function method were the same as 

the initial phase ambiguities resolved by the static batch least squares method at the 

beginning. 

If less than 7 or 8 satellites are available simultaneously at a single epoch, multiple 

epochs of measurements from the moving receiver can be used together in the ambiguity 

function computation to suppress the false maximas. In this case, the change in-observed 

phase between the epochs selected will be used to calculate the change in position of the 

moving receiver. These position changes will then be used for each position in the search 

volume at the first epoch to predict the position to be used for the ambiguity function 

computation at the second and any subsequent epochs. Unlike the static case, no cycle 

slips are allowed between these kinematic epochs. 

Table 5.3 shows -one example where two measurement epochs of kinematic data 

were used in the computation of the ambiguity function to search the phase ambiguities. 

In the field test on Day 121, 1991, only five satellites were in view at the beginning of 

the session. This made the instantaneous phase ambiguity search by ambiguity function 

method unreliable due to the few measurements available at a single epoch. Therefore, 

observations from two epochs (330453 seconds and 330473 seconds) were combined in 

the computation of the ambiguity function. The distance between these two kinematic 

epochs was 251 metres. The search volume was a one metre cube with a grid of 0.02 m, 

which resulted in 125,000 trial positions. The computation time was 1326 seconds or 22 

minutes. When the search volume was decreased to a 0.5 metre cube, the computation 

time was reduced dramatically to 165 seconds or 2.7 minutes. 
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SV No. 
Resolved phase ambiguities (Li cycles) 

(Base sat. SV ii) 

SV 02 

SV 16 

SV 18 

SV 19 

738688.9997 

1001841.9943 

1108864.9872 

1064657.0003 

Table 5.3 Resolved Phase Ambiguities by the Ambiguity Function Method in 

Kinematic Mode Using Two Epochs of Observations on Day 121, 

1991 

It can be seen that after rounding the ambiguities in Table 5.3 to their nearest 

integers, they are equal to the results given in Table 5.1. Since no cycle slips were found 

from the beginning of the kinematic mode to the present epochs, the carrier phase 

ambiguities should remain unchanged. This is another proof that we have resolved the 

correct initial phase ambiguities in this surveying session. 

From the above examples and test computations, we may conclude that the 

ambiguity function method is an accurate method for resolving carrier phase ambiguities, 

but the long computation time prohibits the use of this method in real-time applications. 

The computation time is mainly affected by two factors, the size of the search volume and 

the number of measurement epochs used in the function computation. In kinematic GPS 

surveys, it is difficult to obtain a search volume that is smaller than a one metre cube 

when cycle slips occur on all or most of the available satellites. If a large search volume 

has to be used at the beginning of the computations, we may first carry out the searching 

with a coarse grid (e.g. 0.257. - 0.5? spacing step) over the volume. Once a more 

accurate approximate position is obtained and thus a smaller search volume can be 

defined, a second search with a fine grid (e.g. 0.1? spacing) can be conducted. Using 
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this method, the computation time can be greatly reduced (Remondi, 1984). The number 

of measurement epochs used in the ambiguity function computations is another factor 

affecting the computation time. From a computational point of view, the single epoch 

case takes the least computing time, but 7 to 8 satellites in view simultaneously are 

needed for reliable phase ambiguity resolution. When the full 24 GPS satellites are in 

orbit by 1993, this requirement will be met about 80% of the time. With the currently 

available computing facilities, it seems that the ambiguity function method can only be 

used for post-missin data processing. 
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CHAPTER 6 

TESTING AND RESULTS 

The computer program QUALIKIN has been developed by the author as part of 

this thesis. This program can perform the described reliability analysis, statistical testing 

and adaptation methods along with kinematic differential GPS position and velocity 

estimation. The implementation and structure of the program is first presented in this 

chapter. Its applicability for field data processing is then tested using the data collected 

over the traverse in Kananaskis Country with two Ashtech L-Xll GPS receivers. The 

suitability as well as the limitations of the proposed testing and adaptation procedures for 

bias detection and correction in kinematic GPS surveying are also investigated in this 

chapter. 

6.1 DESCRIPTION OF THE PROGRAM QUALIKIN 

Based on the theories and algorithms given in the previous chapters, the post-

mission program QUALIKIN for QUALIty control analysis in KINematic GPS 

positioning has been developed. It runs on a micro-PC 386 computer and needs about 

400K RAM. Most of the program was written in FORTRAN 77. The decoding and pre-

processing segments were written in C-Languge. The whole program package consists 
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of about 8000 lines of code including comments and can be divided into two parts, the 

pre-processor and the main processor. The function of the pre-processor is to decode the 

raw GPS binary data and create the standard input observation and ephemeris files 

required by the main processor. The main processor then processes the GPS data and 

outputs the desired quantities, such as the vehicle's position and velocity and the detected 

bias values. The pre-processor is receiver-dependent. Different kinds of receivers 

require different pre-processors due to the different raw data structures output by the 

receivers. The main processor, on the other hand, can process the data collected by 

different kinds of receivers as long as the pre-processor provides the observation and 

ephemeris data files with the required standard input formats of the main processor. Fig. 

6.1 shows the flowchart of the main processor of the program QUALIKIN. 

In addition to performing the reliability analysis, statistical testing and bias 

adaptation in kinematic GPS surveying, QUALIKIN can also process various kinds of 

differential GPS positioning data, such as static positioning data, semi-kinematic 

positioning data and kinematic positioning data. The batch least squares approach is 

utilized to process the static GPS data, while the Kalman filter given in Chapter 3, along 

with the statistical testing and adaptation procedures, is employed to process the 

kinematic UPS data. The mathematical correlations among the double difference 

observations are taken into account both in the batch least squares and in the Kalman filter 

measurement updates. The initial carrier phase ambiguities can be resolved in this 

program by any one of the following techniques: ( 1) surveying over a known baseline, 

(2) occupying an unknown initial baseline for 10-15 minutes to allow for a static solution 

or (3) searching by the ambiguity function method. 



Read the processing control 
parameters, EPH data & 

stop/go times etc. 

Read monitor and remote 
observation files and match 

time for epoch i 

Correct the satellite clock error and 
compute tropospheric corrections 

if the options are set 

Kalman filter 
prediction 
andupdating 

Bias detection, 
identification and 

adaptation by the testing 
procedure given in 

Fig. 2.2 

Output the kinematic 
position and velocity 

Yes 

No 

Yes 

Yes 

Batch least squares 

Output the adjusted 
static control point 

Fig. 6.1 Flowchart of the Main Processor of the Program QUALIKIIN 
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In the statistical testing and bias estimation and adaptation modules, only the 

statistics for testing observation biases, such as cycle slips in carrier phase, outliers in 

pseudorange and outliers in the phase rate measurement, are implemented in this program 

system because for most of the kinematic GPS surveying tasks, the constant velocity or 

constant acceleration model seems adequate with high data rate (≥ 1 Hz) GPS receivers 

now available. The testing procedures coded in these modules are already given in Fig. 

2.2 of Chapter 2. If biases in the GPS observations are detected and identified, the bias 

estimation and adaptation steps are then carried out. If a loss of lock on all satellites 

occurs or cycle slips are found on most of the available satellites and the filter itself can 

not resolve the correct phase ambiguities, an ambiguity search by ambiguity function 

method (AFM) is then invoked within the program. 

A final remark should be made about the detection and estimation of carrier phase 

cycle slips in kinematic GPS observations. Generally speaking, a cycle slip may occur, 

under two situations: (i) a cycle slip between two consecutive epochs, which does not 

result in a lost measurement to that satellite (i.e. relock again before the second epoch); 

and (ii) a cycle slip between measurement gaps, which means that we lose track (no 

measurements) on a satellite for several epochs and resume track again afterwards. For 

the first situation, we have to first detect and then estimate the cycle slips. But for the 

second situation, the detection step may be not necessary because we are almost sure that 

a gap in the collected data set suggests a cycle slip has occurred on the corresponding 

satellite. In this case, only the estimation step for cycle slips (or new phase ambiguity) is 

needed upon relocking on the satellite. Once the cycle slip or the new ambiguity is 

estimated and resolved, its correctness, or its internal consistency with other 

observations, is tested by the given statistics in the following epochs. 
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6.2 DESCRIPTION OF THE FIELD TESTS 

The University of Calgary traverse located along Highway 40 in the Kananaskis 

region was used to test the testing procedures and the program. Eight control points, 

about 1 km apart within this traverse, had been previously established with a relative 

accuracy 2-5 cm using static differential GPS techniques (Cannon et al, 1990). Offset 

points from the known traverse points were also established on both sides of the 

Highway to provide easy access for a vehicle. The sketch of the offset points is shbwn 

in Fig. 6.2. These known control points were utilized for comparison with the 

positioning results obtained by the program QUALIKIN. 

Li  
Banff 

Trans-Canada Hwy Calgary 

(monitor station) 16AW 

16BW 

17W 

17AW 

17BW 

17CW 

17DW 

  Kananaskis centre 

4 

Fig. 6.2 Sketch of the Test Traverse Control Points 

Field tests were carried out on Day 222, summer 1990 and Day 121, spring 1991 

in differential semi-kinematic (stop/go) surveying mode. Two Ashtech LD-XII 

receivers, owned by the Department of Surveying Engineering, were used to collect data. 

These receivers have 12 tracking channels and a maximum of 2 Hz data rate. Therefore, 
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all-in-view GPS satellites could be tracked simultaneously. During the tests, the initial 

baseline, which is about 30 m long from point 16AW (as master station) to 16AE, was 

first occupied for about 10 minutes to allow for the baseline vector and carrier phase 

ambiguity resolution. The antenna of the moving receiver was then hand carried from the 

starting control point, mounted on the car roof and driven to the next control point. On 

arrival at the next control point, the antenna was moved from the car roof onto the control 

point performing 2-3 minute static positioning. This procedure was repeated until all the 

control points were visited. When the vehicle travelled from one point to another point, 

the receiver kept tracking satellites and collecting the data so that the vehicle's position 

and velocity in kinematic mode could be determined. In both tests, the maximum vehicle 

speed reached about 80 km h1. On Day 222, 1990, Li data were collected at a 4 second 

interval, while on Day 121,1991, the data logging interval was changed to 1 second. The 

detailed observation information of these field tests is given in Table 6.1. 

Day Data Rate Satellites Observed Duration 
of Test 

Dilution of Precision 

HDOP •vDoP 

222 
(1990) 

4 sec SVs 2, 6, 9, 11, 12, 
13,18 

62 min. 1.351.01 2.46-1.60 

121 
(1991) 

1 sec. SVs 2, 6, 11, 16, 18, 
19 

48 mm. 1.42-4.45 2.25--2.87 

Table 6.1 Observation Information for the Semi-Kinematic Tests 
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6.3 POSITIONING RESULTS 

The differential GPS data sets collected in the field tests were processed using the 

developed program QUALIKIN with the statistical testing functions performed. The 

differences between the obtained coordinates of the control points and the known ground 

truth provide a first check and evaluation of the proposed processing techniques and the 

program. The independent assessment of the kinematic positioning results between the 

control points is however impossible in this case, since no other kinematic positioning 

systems with compatible accuracy could be used during the tests. But in order to provide 

some kind of check and comparison for the kinematic pOsitioning results obtained by 

QUALIKIN with the statistical testing method performed, the same data sets were 

processed using the program KINSRVY from the Ashtech GPPS suite of programs. The 

kinematic positioning results from both QUALIKIN and KINSRVY were compared to 

give an internal performance evaluation of the developed program and the testing 

algorithms. 

6.3.1 Day 222 Results 

The data set collected on Day 222, 1990 was considered very good. The average 

HDOP and YDOP values were about 1.35 and 2.5, respectively. Up to seven satellites 

were in view during most of the session. The double difference initial phase ambiguities 

were correctly resolved by batch least squares method using the 10 minute static data over 

the initial baseline which was not held fixed. SV 06 was chosen as the base satellite for 

double differencing, since this satellite is tracked from the beginning to the end and has a 

high elevation angle. The constant acceleration model was adopted as the system model 
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in the kinematic data processing with the spectral densities 0.05 m2 s5 for all three 

acceleration states (san, öae, 8ah). Fig. 6.3 shows the agreement at the control points. 
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Fig. 6.3 Position Differences with the Control Points for Day 222, 1990 

Differences with the known control points were generally less than 5 cm except in 

height on two points, 17W and 17DW. The root mean squares (rms) computed using the 

differences with the known control points were 2.82 cm in latitude, 3.44 cm in longitude 

and 6.73 cm in height. 

The accuracy of kinematic position and velocity estimation could not be checked 

independently due to the lack of extra positioning systems in this project. The internal 

accuracy output from the Kalman filter were good. Standard deviations were about 1.5 

cm in latitude, 1.2 cm in longitude and 3.6 cm in height. For velocity estimation, the 

standard deviations were about 5 cm s1 in northing, 4 cm s1 in easting and 11 cm s1 in 

the up direction. A comparison of the kinematic positions obtained by QUALIKIN and 

KINSRVY at each epoch is plotted in Fig. 6.4. The agreement of the results is within 
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7 cm in all three dimensions, which is the same level as between KINSRVY and 

SEMIKIN (Cannon et al, 1990). 

For statistical testing, only two pseudorange outliers were detected and estimated. 

One outlier was 23.60 m on SV 02 at 493976 seconds. The other was 25.34 m on sv 

12 at 495796 seconds. Since the MDB value for pseudoranges was about 18 metres in 

this surveying session, only the outliers or multipath effects that were larger than 18 

metres on pseudoranges could be detected as biases. In this data set, SV 02 and SV 12 

did have numerous phase losses (missing data epochs) due to the lower satellite elevation 

and forest shadow. But their new phase ambiguities upon relock of the satellites were 

resolved correctly in the program using the redundant satellites. No other cycle slips 

were found. 
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Fig. 6.4 Differences Between QUALIKIN and Ashtech KINSRVY for 

Kinematic Results of Day 222, 1990 
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6.3.2 Day 121 Results 

There were 12 occasions in the data set collected on day 121, 1991 that all 

satellites simultaneously lost phase lock for 5 to 15 seconds due to receiver 

malfunctioning at the master station. This made the data processing very difficult. As 

described in Chapter 5, the initial carrier phase ambiguities were resolved by the 

ambiguity function method (AFM), since there were 10 data gaps within the initial 8 

minutes of static positioning. During the following kinematic and semi-kinematic data 

processing, the ambiguity re-initialization by AFM was performed twice at control points 

16BW and 17CW due to the occurrences of loss of phase loék on all satellites. Since the 

data rate was 1 second, the constant velocity model was used as the system model in the 

kinematic data processing with the spectral densities 0.2 m2 s3, 0.2 m2 s3 and 0.1 

M2 s3 for three velocity states 8Vn) W e and 6h respectively. Fig. 6.5 shows the 

agreement at the control points. 
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Fig. 6.5 Position Differences with the Control Points for Day 121, 1991 
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It can be seen that the differences with the known control points are generally 

within 5 cm except in the height component. The rms are 3.1 cm in latitude, 3.6 cm in 

longitude and 7.4 cm in height. The results from these two field tests provided a good 

check of the positioning repeatability of the processing method and the GPS system. 

In this data set, one pseudorange outlier was detected at 332227 seconds on SV 

18 with the estimated bias value at 21.3 metres. No other cycle slips were found other 

than the data gaps in the carrier phase observations. The internal accuracy of the 

kinematic positions was about 1.5 cm, 1.2 cm and 3.5 cm for latitude, longitude and 

height respectively. The comparison of the kinematic positioning results with the output 

of KINSRVY was not given here due to the frequent restarts in the KINSRVY execution 

caused by the frequent carrier phase losses. 

6.4 DETECTION AND ADAPTATION FOR SIMULATED BIASES 

In this section, different observation biases, such as carrier phase cycle slips 

between consecutive epochs, outliers in pseudoranges, and outliers in phase rates, are 

deliberately introduced in the data sets collected in the field experiments in order to 

evaluate the bias detection ability of the proposed statistical testing procedure in the 

program QUALIKIN. Carrier phase cycle slips, which is one of the limiting factors in 

high precision kinematic GPS positioning, sometimes can be easily detected. For 

instance, in the loss-relock on a satellite case in Ashtech receivers, a simple data editing 

method like phase prediction, which is to compare the predicted carrier phase with the 

measured one (Cannon, 1987), would be able to detect the cycle slip because in this case 

the cycle slip may amount to hundreds or even thousands of cycles. In real data 

processing, some simple data editing methods are always used to detect the possible large 
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cycle slips. The purpose of statistical testing is then to detect and correct the remaining 

small cycle slips in the observations. Once the cycle slip or the new ambiguity on a 

satellite is estimated and applied on the subsequent carrier phase observations, its 

correctness or its internal consistency with the observations of other satellites is checked 

by monitoring the filter performance using the testing statistics. This is the reason why 

statistical testing is considered to be a quality control method in kinematic GPS 

positioning. 

6.4.1 Detection and Adaptation for Simulated Cycle Slips 

In the following computations, cycle slips on a single satellite and on multiple 

satellites were simulated at the kinematic epochs between the control points 16AE and 

16BW, where the vehicle was accelerating. The simulated cycle slips on the 

corresponding satellites were at the one cycle level (19.02 cm). 

Table 6.2 summarizes the detection and estimation results for simulated cycle 

slips in the data set of l5ay 121, 1991. The MDB analysis shows that the minimum 

detectable cycle slips in a single satellite case is about 0.5 cycle. Therefore, one cycle slip 

was added to the carrier phase observations on the corresponding satellites starting at the 

epoch time 330456 (GMT seconds), where the vehicle was moving at a speed of 

36 km h1 and with an acceleration of about 1 m Five satellites (SVs 02, 11, 16, 18, 

19) were simultaneously tracked and the data rate was 1 second. SY 11 was used as the 

base satellite in double diffeiencing. The constant velocity model was adopted in 

processing. 
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Case 

Satellites with 
cycle slips Detect Identify 

Final estimated bias values(Cycles) 

No. of 
satellites SV No. 

SV No. Estimated 
value 

True 
value 

1 
Single 
sat. SV 02 yes yes SV 02 - 0.964 - 1.00 

2 Two sat. 
SV 02 

SV 18 
yes yes 

SV 02 

SV 18 

- 1.265 

+ 0.801 

- 1.00 

+1.00 

3 Three sat. 

SV 02 

SV 18 

SV 16 

yes yes 

SV 02 

SV 18 

SV 16 

-1.078 

0.883 

0.785 

-1.00 

+1.00 

+1.00 

All sat. 

SV 02 

SV 18 

SV 16 

SV 19 

yes yes 

SV 02 

SV 18 

SV 16 

SV 19 

-1.115 

0.748 

0.865 

1.055 

-1.00 

+1.00 

+1.00 

+1.00 

Table 6.2 Results of Cycle Slip Detection and Estimation for Simulated Cycle 

Slips in the Data Set of Day 121, 1991 (1 Second Data Rate). 

From Table 6.2, we can see thatin all cases the one cycle level slips in the carrier 

phase observations could be correctly detected, identified and estimated. After rounding 

the estimated cycle slips to their nearest integer, we arrived at the exact simulated cycle 

slip values in the data set. These results indicate that the proposed statistical testing 

procedure is effective in carrier phase cycle slip detection and identification with data sets 

of one second data rate or higher, when a constant velocity model is used. In this case, 

the acceleration disturbance in the system model, i.e. constant velocity model, can be 

allowed to reach 1— 2 m s2, which are the usual accelerations in the land vehicle case. 
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Unfortunately, the above conclusions do not always hold for data sets with 

slower data rate intervals (e.g. 4 second data rate), especially when the vehicle is 

accelerating. This is due to the influences of system biases that are not modelled in the 

constant velocity model or constant acceleration model. The longer the data rate interval, 

the poorer the applicability of these system models. Because the testing procedure is 

based on the innovation sequence which can be affected by both the system bias and 

observation bias, the separation of the system bias and observation bias is very difficult 

when both of them are present. 

Table 6.3 shows the results of cycle slip detection and estimation for simulated 

cycle slips in the Day 222, 1990 data set. Six satellites were observed at a 4 second data 

rate. The system model was the constant acceleration model. A one cycle level slip was 

added to the carrier phase observations of the corresponding satl1ites at the time 494144 

seconds, when the vehicle was moving with an acceleration of about 0.33 m s2. 

From Table 6.3 and other testing runs, we observe that under small accelerations, 

usually less than 0.3 m 2, the statistical testing procedure can correctly detect, identify 

and estimate the one cycle level slip occurring on a single satellite in a data set with four 

second data rate. When the number of satellites with simultaneous cycle slips increases 

to four or the number of satellites without slips decreases to three, the statistical testing 

procedure can detect that there are some problems in the data set, but sometimes cannot 

identify the satellites which have one cycle level slips, as shown in Case 4 and Case 5 of 

Table 6.3. This is caused by the influences of the unmodelled system biases, and also by 

the corresponding increase of the MDB values on each satellite as the number of biases 

increases. With more satellites having cycle slips and with longer measurement update 

intervals, the system bias effects and the observation bias effects are interwoven in a 
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complicated manner. This makes the identification or isolation of small cycle slips on 

different satellites a very difficult task in kinematic data processing. 

Case 

Satellites with 
cycle slips 

Detect Identify 

Final estimated bias values(Cycles) 

Num. of SV No. Estimated True 
satellites SV No. value value 

Single 
sat. SV 02 yes yes SV 02 1.001 +1.00 

SV 02 SV 02 1.012 +1.00 
2 Two sat. 

SV 18 
yes yes 

SV 18 0.968 +1.00 

'Three 

SV 02 SV 02 1.012 +1.00 

3 sat. SV 18 yes -yes SV 18 1.040 +1.00 

SV 13 SV 13 - 0.940 - 1.00 

4 Four sat. 

SV 02 

SV 18 yes 

no 

(only 3 sat. 
2,9,13 

(Correctly identified 
when cycle slips 

+1.00 

+1.00 

SV 13 signified increase to 5 cycle 
- 1.00 

with cycle level) 
SV 09 slips) 1.00 

SV 02 no +1.00 

SV 18 (only 3 sat. (Correctly identified +1.00 
5 All sat. SV 13 

yes 2,9,13 
signified 

when cycle slips 
increase to 5 cycle 

- 1.00 

SV 09 with cycle level) - 1.00 

SV 11 slips) 
. +1.00 

Table 6.3 Results of Cycle Slip Detection and Estimation for Simulated Cycle 

Slips in the Data Set of Day 222, 1990 (4 Second Data Rate). 

The situation is much improved when the cycle slips on each corresponding 

satellite is increased to the 5 cycle level. In this case, all cycle slips in Case 4 and Case 5 

defined in Table 6.3 can be correctly detected and identified. But the estimated cycle slips 



80 

on some satellites, when rounded to their nearest integer values, may differ within the 

one cycle level from their true values. In some extreme situations, when the acceleration 

changes between epochs exceeds 1 m s2, we may even fail to correctly identify the one 

cycle level slip on a single satellite case in the data set with 4 second data rate. Therefore, 

the high data rate (e.g. 1 second or higher) is required for cycle slip detection and 

identification at the one-cycle level in a highly dynamic environment. 

Once the biases are detected, identified and estimated at a certain epoch, the 

adaptation or correction of the bias influences on the corresponding Kalman filtering 

results can be immediately carried out by the given two-stage Kalman filter algorithm. 

Figure 6.6 shows part of the results of cycle slip adaptation for the single satellite 

case, i.e. Case 1 given in Table 6.2. In this figure, the cycle slip free positioning results 

were used as a reference. The differences between the results with and without cycle 

slips adaptation by the two-stage Kalman filter method are plotted separately in order to 

show the effectiveness of the adaptation procedure. Only 21 epochs of kinematic results 

are plotted in this figure. 
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Fig. 6.6 Comparison of the Results with and without Cycle Slip Adaptation for 

the Single Cycle Slip Case 
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As shown in Fig. 6.6, the bias adaptation method eliminates the cycle slip 

influences on the positioning results output by the Kalman filter. Also, from the results 

without detection and adaptation for the simulated bias, it can be seen that the position 

errors caused by the cycle slips change very little from epoch to epoch within this short 

(21 seconds) observation span. This is due to the little change and nearly constant 

satellite geometry within this short time. The magnitudes of the influence at the first 

epoch with the cycle slips present were - 10.2 cm, 7.0 cm and -7.3 cm for latitude, 

longitude and height respectively. These magnitudes of the cycle slip influences well 

match the theoretical influence values of - 10.4 cm, 7.1 cm and -7.2 cm in latitude, 

longitude and height respectively, which are computed by the influence analysis formulas 

given in Chapter 2. The cycle slips influences on the velocity states are practically zero 

and thus not plotted. 

6.4.2 Detection and Adaptation for Simulated Outliers in Phase Rate 

Observations 

• Outliers in phase rate observations mainly affect the velocity determination in 

kinematic GPS surveys. In order to access the ability of the testing procedure to detect 

the phase rate outliers, different situations were simulated with the data set of Day 121,-

1991. In this data set, the worst minimum detectable outlier (MDB) on a single satellite 

was about 0.5 m s1. Therefore, the phase rate outliers at the level of 0.95 m s1 were 

simulated on a single satellite as well as on multiple satellites at the epoch time 330456, 

where the vehicle travelled with an acceleration of about 1 m 2 Table 6.4 shows the 

results of the phase rate outlier detection, identification and estimation. The system 

model used is the constant velocity model. 
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Case 

Satellites with 
phase rate 
outliers Detect Identify 

Final estimated bias values (m s1) 

SV No. Estimated 
value 

True 
value 

Num. of 
satellites SV No. 

Single 
sat. 

SV 02 yes yes SV 02 - 0.957 - 0.95 

2 Two sat, 
SV 02 

SV 18 
yes yes 

SV 02 

SV 18 

- 1.080 

+0.858 

- 0.95 

+0.95 

SV 02 SV 02 - 1.036 - 0.95 

3 Three sat. SV 18 yes yes SV 18 0.857 +0.95 

SV 16 SV 16 1.023 +0.95 

SV 02 SV 02 - 0.886 - 0.95 

All sat. SV 18 yes yes SV 18 0.915 +0.95 

SV 16 SV 16 1.234 +0.95 

SV 19 SV 19 1.082 +0.95 

Table 6.4 Results of Bias Detection and Estimation for Simulated Phase Rate 

Outliers in the Data Set of Day 121, 1991 (1 Second Data Rate). 

Table 6.4 shows that in all cases the outliers in phase rate observations can be 

correctly detected and identified. The estimated outliers are very close to the true values. 

Therefore, the phase rate outlier influences on the velocity determination can be well 

eliminated by the testing and adaptation procedure in a data set with a high data rate. 
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6.4.3 Detection and Adaptation for Simulated Outliers in Pseudorange 

Observations 

Pseudorange outliers are likely to occur in a multipath environment. They mainly 

affect the position deteituination in GPS kinematic surveys. Fortunately, their influence 

on the estimated positions are practically negligible in the combined processing of carrier 

phase and pseudorange observations. This is due to the much lower observation 

precision of pseudoranges as compared to carrier phases. Table 6.5 gives the results of 

detection and estimation for the simulated pseudorange outliers in the data set of Day 121, 

1990. The MDB value for individual pseudorange outliers in this data set is about 18 m 

when using a standard deviation of 4 metres for single difference pseudorange 

observables. Therefore, 30 m outliers were added on the corresponding observations at 

epoch time 330456 seconds. 

Table 6.5 and the other simulated runs show that the testing procedure can 

correctly detect and identify the single pseudorange outlier case if the pseudorange bias is 

greater than its corresponding MDB value. However, as the number of satellites with 

outliers increases, the detectability for multiple outliers becomes poorer. This is because 

the rapid increase of the MDB values in a multiple outlier situation due to the much lower 

observation precision of pseudoranges. In Case 4 of Table 6.5, only if the outliers on all 

the satellites increase to 80 m, can the testing procedure correctly detect, identify and 

estimate all the simulated biases. However, even with the 80 m pseudorange outliers on 

all the satellites left uncorrected, the influence on the estimated kinematic position is only 

about 0.136 cm. 
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Case 

Satellites with 
pseudorange 
outliers Detect Identify 

Final estimated bias values (m) 

SV No. 
SV No. Estimated 

value 
True 
value 

Single 
sat. 

SV 16 yes yes SV 16 24.903 30.00 

2 Two sat. 
SV 16 

yes yes 
SV 16 24.933 30.00 

SV 18 SV 18 30.120 30.00 

SV 02 110 30.00 

3 Three sat. SV 18 yes (Only two 
sat. iden-

. 30.00 

SV 16 tified 2,18) 30.00 

SV 02 30.00 
(Correctly detect 

4 All sat. SV 18 
no no and identify when 30.00 

SV 16 biases increase to 30.00 

SV 19 
80 m) 
1 30.00 

Table 6.5 Results of Bias Detection and Estimation for Simulated Pseudorange 

Outliers in the Data Set of Day 121, 1991 (1 Second Data Rate). 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

In precise kinematic GPS surveys, a quality control method is inevitably needed 

for real-time data processing because of the possibility of biases like carrier phase cycle 

slips and outliers in phase rate and pseudorange measurements. In this thesis, the 

statistical quality control method for use in kinematic GPS positioning based on the state 

space models was investigated. Firstly, the general recursive formulas for bias influence 

analysis and reliability analysis (MDB) were derived for the Kalman filter design. Then a 

real-time statistical testing and adaptation procedure was developed based on the two-

stage Kalman filtering technique, hypothesis testing theory and reliability analysis 

concept. This procedure introduced a new step of bias confirmation by using the concept 

of minimum detectable bias (MDB) and aimed to automatically detect the common 

observation biases and eliminate their influences on GPS kinematic positioning results. 

All the derived formulas and algorithms were implemented in a software package 

QUALIKIN and tested using real GPS data sets collected in the field tests. 

The bias influence analyses show that carrier phase cycle slips mainly affect the 

estimated positions, while the phase rate outliers mainly affect the estimated velocities. 

Cycle slips in double difference observables have a severe long-term influence on 

position estimation. The influence magnitude can be larger than 10 cm in kinematic 
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position estimation for a one cycle slip occurring on a single satellite, even with a good 

satellite geometry. Therefore, real-time correction and adaptation for this kind of bias is 

necessary to assure the correctness of the kinematic positioning results. Instantaneous 

outliers in the observation and system models, on the other hand, only affect the current 

and the following few epochs of the filtering results. This means that the Kalman filter 

can reduce automatically the effects of instantaneous outliers after a few epochs of 

measurement updates. In the combined processing of carrier phase, pseudorange and 

phase rate observations, the influence of outliers in C/A code pseudoranges on GPS 

positioning results is negligible due to the much lower measurement precision of 

pseudoranges. However, the proposed testing procedure can still detect pseudorange 

outliers of the order of 18 m present on a single satellite (assuming 4 m observation 

precision assigned to single difference pseudoranges). This provides some control on 

large multipath effects along a surveying trajectory. 

The minimum detectable bias (MDB) analysis of kinematic GPS surveys indicateS 

that the observation biases detectable by statistical testing is basically a function of the 

satellite geometry and the measurement precision. The MDB shows the theoretical 

minimum bias value that the statistical testing method can detect with a predetermined 

probability for an individual bias, under the assumption that no other bias except the 

concerned one is present in the system and observation models. In this sense, the MDB 

analysis together with the bias influence formulas in the Kalman filtering provides a 

useful tool for kinematic and dynamic system design. 

The implementation and testing of the developed statistical quality control method 

in kinematic GPS positioning software was an essential part of this research. The 

program package QUALIKIN developed by the author can perform the reliability (MDB) 

analysis and statistical testing and bias adaptation in kinematic differential GPS surveying 
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and navigation. It can also process static and semi-kinematic differential GPS data. The 

successful processing of the real semi-kinematic data sets collected from two field tests 

shows the suitability and the applicability of the developed program system and the 

derived testing procedure. 

The investigation of the detection of simulated biases between consecutive epochs 

indicates that, with a data rate of one second or higher, the testing procedure can correctly 

detect, identify and estimate cycle slips occurring at the one cycle level on multiple 

satellites under normal land vehicle motion scenarios. Also, under the same assumption, 

the testing procedure can effectively detect outliers at the 1 m s1 level in phase rate 

observations on multiple satellites and eliminate their effects on the filtering results. 

However, the above conclusions are not always true for data sets with slower data rate 

intervals (e.g. 0.25 Hz), especially when the vehicle is accelerating. This is due to the 

influence of the system biases that are unmodelled in the constant velocity model or 

constant acceleration model. The longer the data rate interval, the poorer the applicability 

of these system models. Therefore, a high data output rate, e.g. 1 second or higher, is 

recommended for the detection and identification of small cycle slips in a high dynamic 

environment of land vehicle motion. 

Since it is the first time that statistical quality control methods have been used and 

tested in the kinematic GPS data processing, there are a number of problems left to be 

studied further. The first would be the incorporation of detection and adaptation of 

system model biases in the proposed testing procedure for high dynamic surveying and 

navigation environments. Based on the theoretical formulas developed herein, it is easy 

to do this in the testing procedure but it requires an elaborate and complicated bias search 

algorithm to distinguish between the observation bias and system bias. The extension of 

the statistical testing method to the smoothing algorithm would be useful for kinematic 
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GPS data post-processing and thus needs investigation. The other problem of interest 

would be the application of the quality control methods to some other integrated systems 

such as GPS/INS. In this kind of systems, the system model could be more accurately 

described than that of a sole GPS positioning system and we would have more redundant 

measurements available. Thus, the results of statistical testing would be more accurate 

and reliable. The third problem to be investigated further is the carrier phase ambiguity 

resolution in kinematic mode, i.e. "on the fly" ambiguity resolution. In cases where long 

data gaps are present on all available satellites in kinematic mode, no methods up to now 

can satisfactorily resolve the new phase ambiguities by using GPS alone. Some 

promising and efficient techniques to handle this problem are to use precise integrated 

systems (Cannon, 1991 ) or to use the P-code GPS receivers. More tests with the high 

data rates (e.g., 2 - 4 Hz) are needed in order to fully evaluate the ability of the statistical 

quality control methods. With the improvement of GPS technology, the enhancement of 

the processing methods and the full deployment of the GPS constellation in the near 

future, kinematic GPS positioning is expected to achieve reliable and accurate results and 

find wider applications. * 
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