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ABSTRACT 

In this thesis, adaptive methods are studied and used to develop a cell levitation 

apparatus control system. Modelling is used to study the apparatus. The most promising 

adaptive algorithm is implemented for the control of the apparatus. 

Eight identification methods are used to determine system model parameters. They 

are a least squares method, an extended least squares method, a generalized least squares 

method, an instrumental variable method, a correlation function least squares two step 

method, a maximum likelihood method, a nonlinear least squares method and FFT 

method. The model is identified for the first time. 

Four adaptive control algorithms were simulated in this study. A P1 parameter 

optimal adaptive controller, a pole-assignment adaptive controller and two new adaptive 

algorithms are proposed. The newer algorithms are a pole-shifting dual loop adaptive 

controller and an approximate series compensation adaptive controller. Real time control 

are used to verify the simulation results. 
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CHAPTER 1 

INTRODUCTION 

1.1 SIGNIFICANCE OF THE CELL LEVITATION APPARATUS 

A cell levitation apparatus is used to characterize the dielectric properties of intact 

biological cells through their dielectropheretic response. The dielectric properties of the 

cells are of interest in several areas of physiology, biophysics and bio-engineering. It is 

important in the understanding of the human body to measure the physiological 

parameters using impedance techniques and study the biological effects of electromagnetic 

field[1]. The precise measurements of the electrical (dielectric) properties of biological 

cells and subsequent determination of cellular parameters can provide a diagnostic tool 

for detection of various physio-chemical effects on cells and discrimination between 

normal cells and "diseased" cells ( such as cancer cells) in the clinical field. In cell 

electrofusion dipole-dipole cellular interaction plays an important role in membrane 

destabilization, though the fundamental mechanisms involved remain to be fully 

understood. Here the requirement for the optimal applied field parameters ( such as field 

strength, pulse shape and duration, and field frequency) is crucial for obtaining better 

"yield", which requires thorough understanding of the electrical properties of the intact 

cells, the cell-medium interface, as well as cell-cell interaction. 

1.2 PREVIOUS DIELECTRIC STUDIES 

The frequency-dependent dielectric properties of biological particles are measured 

using the cell suspension method. Here the dielectric parameters, capacitance and 

conductance of the cell in suspension are measured over a wide frequency range using 
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a sensitive impedance bridge technique. More recently, the micropipette technique has 

been devised and used to measure the conductance and capacitance of individual cells[2]. 

Such inquisition, although sensitive enough to detect single channel activation in 

biomembranes, is restricted to low-frequency measurement. The dielectric parameters may 

be alternatively obtained by a motional or force response. Here both linear rotating AC 

electric field ( electrorotation) or non-uniform AC electric field ( dielectrophoresis or 

DEP) may be used for such a purpose. The newer methods of electrorotation and 

dielectrophorion have been applied in many different ways. The use of a feedback 

controlled non-uniform electric field has facilitated the levitation of individual intact cells. 

This method enables investigation of cellular frequency dependent polarization response 

over a wide frequency range. 

1.3 SIGNIFICANCE OF ADAPTIVE CONTROL 

The frequency dependence of the dielectric response here is monitored by 

measuring the time averaged levitation voltage squared (V2) over the frequency range 

of interest. Past studies reveal that the polarization response of biological cells exhibits 

a marked frequency dependence, in the region of dielectric dispersion. In such a case, the 

feedback control parameters require adjustment in order to obtain stable levitation. Thus, 

full automation of the DEP levitation operation requires an adaptive technique to 

automatically adjust the feedback controller parameters. 

1.4 PREVIOUS WORK OF ADAPTIVE CONTROLLER 

The original adaptive control idea can be retraced to Kalman's paper on the design 

of a self-optimizing control system[3] in 1958. In 1970, Peterka applied this idea to the 
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parameter-unknown system[4]. By 1973, Astrom and Wittenmark proposed the self-

tuning regulator[5]. Their work ushered in the adaptive control epoch. Disadvantage of 

their algorithm is that it can not be used in a non-minimum phase system. In 1975, Clarke 

and Gawthrop proposed a self-tuning controller[6] to overcome the disadvantages of a 

self-tuning regulator, however this method requires the selection of a weight factor in the 

aim function. Therefore, in 1976, Edmund[7] proposed the pole-shifting/pole assignment 

adaptive controller. Important work on this algorithm was done by Wellstead, et al.[8] 

This method has advantage in every field over the above-mentioned algorithms except for 

the optimal criterion. Although the pole assignment adaptive controller has been used 

widely in the last decade, it may experience instability problems in some instances. The 

pole-shifting adaptive controller is therefore proposed to resolve such a problem. Like 

pole assignment adaptive controller, pole-shifting adaptive controller was proposed by 

Edmund, and developed and completed at the University of Calgary by O.P Malik and 

G.S. Hope.[9] This method overcomes the weakness of a pole-assignment adaptive 

controller. Furthermore, PID adaptive controller, LQG and generalized predictive. 

controller (GPC) etc. were proposed respectively. Goodwin made a useful contribution 

on stability and convergence of self-tuning controller[1O]. 

The adaptive control method had been used in biomedical instrumentation. Some 

successful examples are, arterial gas pressure[11], and blood pressure[12]. The 

adaptive control strategy is new to DEP based cell levitation, which is the topic of 

discussion in this thesis. 



4 

1.5 THESIS OUTLINE 

In this thesis, a cell-levitation apparatus control system model is presented. Eight 

identification methods are used to obtain model parameters. Four kinds of adaptive control 

methods are presented to resolve the control problem. Two of them are proposed by the 

author. One is a dual loop adaptive control algorithm. The other is an approximate series 

compensation adaptive algorithm. The system simulations of these algorithms are 

presented. Experiments are conducted to verify the salient controller characteristics of the 

various control methods. 

In chapter 2, the cell-levitation apparatus control is discussed. In chapter 3, 

modelling methods, procedures and results for various different methods are described. 

In chapter 4, adaptive control algorithms are used to design the control system. Two new 

adaptive control algorithms proposed by the author are discussed in detail and computer 

simulation results are given. In chapter 5, the real time control results are shown. 

Conclusion and evaluation of the theoretical developments as well as the control results 

are given in Chapter 6. 
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CHAPTER 2 

CELL-LEVITATION APPARATUS CONTROL SYSTEM 

2.1. INTRODUCTION TO CELL LEVITATION 

In order to develop an adaptive control methodology for application in DEP 

levitation, the basic knowledge of the cell-levitation apparatus is required. This chapter 

describes the operational characteristics of the cell-levitation apparatus. The basic 

knowledge of the cell-levitation apparatus experiment such as the instrument composition, 

single and dual frequency levitation methods, are discussed. The details of a conventional 

digital P1 controller are presented. 

2.2 INTRODUCTION TO CELL-LEVITATION APPARATUS 

To measure the characteristics of the biological cells, the cells are required to be 

immersed in a suspending medium. The electrical dielectric response of the cells is 

influenced by the electrical properties of the various cellular compartments and those of 

the suspending medium. For cells denser than the suspending medium, the DEP force is 

used to counteract the gravitational force to levitate a cell in the suspension liquid. Figure 

2.1 shows a schematic view of the cell levitation chamber with a cell ( black dot) located 

in a non-uniform electric field and a positive DEP force shown to be exerted upon the 

particle between the chamber electrodes. 

A sectional view of the levitation chamber and a block diagram of the feedback 

controlled levitation apparatus is shown in Figure 2.2. The cone-plate electrode assembly 

is housed in a plexiglass chamber with glass covered windows to aid in the optical 

monitoring of the chamber contents. The window on one side is removable in order to 
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Figure 2.1 Cell-levitation apparatus electric field structure 

clean the chamber and introduce a fresh dilute cell suspension each time a new 

experiment is conducted. In order to eliminate medium evaporation and the influence of 

the air current, the window is sealed with vacuum grease. The assembled chamber is 

mounted and held in place with spring-loaded clips on a vertical microscope stage with 

the chamber electrodes connected to a wide band summing amplifier. 

A conventional light source fitted with an infra-red filter is used to illuminate the 

chamber and the cell image is focused on to a MOS solid state video camera and 

displayed on a TV monitor. The video signal from the camera is also made available to 
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a real-time image acquisition PC board which is plugged into a 286-based IBM-AT 

computer. This computer is interfaced to two signal generators via the GPIB-488 bus to 

facilitate the controls of both the amplitude and frequency of the voltage applied to the 

chamber electrodes. 

To determine the frequency dependent polarized response, the frequency of the 

applied voltage and the electric field is varied automatically in the range 10 Hz to 5x107 

Hz. And then, the instrument records the scanning frequency and root of mean square of 

control voltage, from which the cell properties may be extracted using a suitable cell 

model. 

At every frequency test point, 25 data samples are taken at the required position 

of 200 ±1 pixel, ( about 70 pm) from the conic electrode as measured on the screen. The 

error must not exceed ±1 pixel to accurately determine the characteristics of the cell. 

Sampling continues at the fixed frequency, until 25 consecutive data points are acquired. 

Although the above single frequency levitation schematic can give good data 

samples over its useful range, the frequency band over which the cell can be stably 

levitated is limited. In the low frequency range, the DEP force becomes negative and 

hence a single frequency input is inadequate in levitating the cell. In such a case, a dual 

frequency levitation scheme is used to levitate the cell. 

The main principle of dual frequency levitation schematic is to utilize a positive 

DEP force to compensate the gravitational force when levitating at low frequency, i.e. two 

ac voltages of different frequencies f1 and f2 may be synthesized to achieve this. Analysis 

shows that the mean-square sum of two sinusoids is approximately equal to the sum of 
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the mean-squares of each sinusoid, provided the frequencies are well separated.[13] 

When the frequency is reduced to a point where single frequency DEl? force is 

inadequate, the dual frequency system is invoked. The two sinusoidal voltages are 

summed and applied to the levitation chamber electrodes, one with fixed frequency, fH1 

and controllable amplitude, VHC, and the other a scanning frequency, f, and fixed 

amplitude, Vf. 

2.3 INTRODUCTION TO CONVENTIONAL CONTROL SYSTEM 

A conventional digital PID controller has been used to control the levitation 

voltage,[14] The system is shown in figure 2.3. It consists of a controller, a control 

executer which converts controller output voltage into DEP force to levitate cell against 

the gravitational force. 

The control aim is to keep the cell levitated at a fixed location between the 

Ref 
+ 

controller 

U 

executor plant 
y 

Figure 2.3 Control system block diagram 
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chamber electrodes ( 200 pixel - about 70 pm from the upper electrode ). When the 

electric field frequency is varied from 10 Hz to 50 MHz, the PD controller parameters 

are adjusted manually by an operator. When the system is initialized, the frequency is set 

to 5x106 Hz, because at this frequency, most cells are readily stabilized by the controller 

under the action of a positive DEP force. Typical PID parameters are as follows: 

proportional gain is 0.05, integral gain is 0.005, differential gain is 0.001, controller 

output range is 0 to 7 r.m.s.(root-mean-square). Since the differential gain is 

approximately zero ( 1/50th of the proportional gain ), the controller has dominant P1 

characteristics. 
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CHAPTER 3 

MODELLING OF CELL-LEVITATION APPARATUS 

3.1. INTRODUCTION 

In order to control the cell position in the cell-levitation apparatus system, it is 

necessary to determine the plant model so that the control system can be designed and 

simulated. First, a model from the analysis of the physical characteristics is used to 

determine knowledge such as structure and disturbance. Second, group system 

identification methods are used to determine model parameters and time delay. 

3.2. ANALYTICAL MODEL OF THE CELL-LEVITATION APPARATUS 

The various forces which act on a cell are shown in figure 3.1, assuming. a net 

downward force. 

Figure 3.1 Physical analysis of the cell model 
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In figure 3. 1, Fmg is the gravitational force, Fdrag is the viscous drag force, and FD 

is the DEP force required to levitate a cell. V and a are the yelocity and acceleration of 

the cell respectively, m is the mass of the cell. The equation of spherical particles 

subjected to be above force is given by[16]: 

Fmg - (FDEP + F ag) = meffa (3.1) 

where 

meff is effective value of the mass and m ff = 4irr3(p2-p1)/3 

m = 4itr3p2/3, Fmg = mg 

If Frag = uv, the equation 3.1 can be written as 

'mg - FD - uv = mefia (3.2) 

where 

u is the friction factor and u = 67Tr, il is the viscosity of the fluid, r is the radius 

of the sphere, p, is a density of the medium and P2 is density of the mass of the cell. 

The equation 3.2 can also be written as 

dp d 2 

where 

Fmg - FDEP = u + meff 

dt de 

p is the position of the cell. 

(3.3) 

Rewriting this equation in the Laplace form, the following equations,are obtained: 
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1 
P(s) = 

G(s) = 

S( meffs + u) 

1 

[Fmg(S) - FD(s) I (3.4a) 

(3.4b) 
s( mCffs + u) 

Furthermore, the relation between DEP force and controller output voltage is 

FDEFoCV[17]. The system block diagram is shown in figure 3.2. From the equations 3.4a 

and 3,4b, some conclusions are apparent: 

Ref 
+ 

frequency disturbance determinant disturbance 

controller 

U 

f 

1- executor 
EP —1 

ms+u 

Figure 3.2 Block diagram of the model 

1) this system is the second order system with a pure integral part. 

2) if the DEP force can be considered as system input, this system has a 

determinant disturbance which depends upon cell characteristics. 

3) the pure integral in the system makes it open loop unstable. Unless the DEP 

force is exactly equal to mg, the system output changes. Control results in chapter 5 show 



14 

that these results are very close to the practical situation. 

The system structure, i.e. model order, can be determined. However, the 

parameters of the model for different cells, different liquid, different frequency, can not 

be determined by using mechanics analysis. So a system identification method is needed 

to obtain model parameters. 

3.3 IDENTIFICATION OF THE CELL-LEVITATION APPARATUS SYSTEM 

3.3.1 INTRODUCTION OF THE IDENTIFICATION ALGORITHMS 

The system identification problem includes two points. One is estimating the 

model order, the other is estimating the model parameters. If the system order is known 

from the analysis of the physical characteristics, the system identification problem is 

reduced to a parameter estimation problem. In this, stage, the order of the model is known. 

There are a number of identification methods which can be used. Generally 

speaking, each method is suited to a given condition. For other conditions, it may be ill 

suited. So, based on this view, several methods are used to identify this system. 

3.3.2 FVF METHOD 

This is a widely used method in the signal processing field[18]. In this project, 

the FFT method is used as a starting point. The results from this method have some errors 

because the poles and zeros are obtained ñsing a curve fit on the bode plot of the system 

transfer function instead of numerical values calculated directly from identification. The 

system poles and zeros are synthesized to create an equivalent bode, plot. In the real 

application, it is impossible to obtain perfect curve fitting. Thus, the errors of this curve 

fitting is a minimum based on a least squares fit or some criteria. It is very difficult to 
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judge which curve gives the best values for poles and zeros. So the results from this 

method are not very correct and the detailed description is omitted. 

3.3.3 RECURSIVE LEAST SQUARES METHOD(RLS) 

This is one of the most commonly used identification methods. Theoretical 

analysis has proven that this method converges to the true value for a white noise 

disturbance. But this method is inaccurate when the noise is coloured. This method is 

often used as starting point to determine the basic parameter range. Then for the improved 

accuracy, a method which will handle coloured noise is needed. 

The equation for the system output, y(k), is as follows: [ 19] 

11 n 

'y(k)= -1 ay( k - i) + b1u(k-i) + e(k) (3.5) 
M 

where 

u(k) is the system input, e(k) is the system error, a1, b1( i = 1, 2, ..., n) are 

parameters to be identified, n is the order of the model and k is the sample number. 

The least squares estimation, ° LS' can be found 

1 n.fN 

mm J(0) -( )e2(k) (3.6) 

N k—n+1 

Let: 

J(8) is loss function of the system. 

= [-y(k-1), ... , -y(k-n), u(k-1), ... ,u(k-n)] 

oT = [a1, a2, ... , a, b1, b2, ... , b ] 

And the PRBS will be used as the input to the system. PRBS is a close approximation 
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to white noise. 

The equation of the least squares method is as follows: 

where 

OLS _ fT \-1T - 'W N1VN) W NYN 

VN = [0 n' 0 ii+i' ' °N+n-1]2nxN 

(3.7) 

This method requires large memory and extensive computation. Therefore a recursive 

method is needed. 

The equation for the recursive least squares method is as follows:[20] 

°k+I = 9k + 

kPk+1 

Pk+l= [ 'k - 

[.y(k+l) PTk+Ik I (3.8a) 

I (3.8b) 
1 + 

This recursive methods is not directly applicable when the parameters vary with 

time since new data are swamped by past data. However, the algorithms can be modified 

to handle time varying parameters by discounting old data. The exponentially weighted 

least squares method, which satisfies the following recursive equations, could handle this 

case. 

9 k+1 = 9k + 

'kPk+1 

A. + 
[y(k+1) - PTk+1k I (3.9a) 
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1 'kPk+1Pk+1 'k - (3.9b) 

x. k+l ] + (pTP(p 

where 

? is the forgetting factor. 

3.3.4 RECURSIVE EXTENDED LEAST SQUARES METHOD(RELS) 

This method is well suited to coloured noise. Although Ljung found that this 

method does not converge in some cases[21], experience shows that convergence is not 

a problem in practical applications. Although this method gives more accurate estimation 

of parameters a1 and b1 than the least squares method in the coloured noise case, its 

weakness is that it does not give an accurate measurement of the noise, parameter c1. The 

equation is as follows: 

A(i')y(k) = B(z')u(k) + C(z')(k) (3.10) 

where 

A(z') = 1 + a1z' + ... + az 

B(z 1) = b0z' + ... + b,1zf" 

C(z) = 1 + c1z" + ... + cz 

and { (k) I is new information series. 

If {(k)} is measurable, equation 3.10 can be written as 

y(k) Pk8 + (k) 

where 

= { -y(k-1); ... , -y(k-n), u(k-1), ... , u(k-n), 

(k-n)] 

(3.11) 
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OT=[ ai bo bicic J 

but { (k)} is unknown. Defining k as: 

= [-y(k-1), ... , -y(k-n), u(k-1), ... , u(k-n), 

(k-n)] 

{ (k) } is given by the following equation, 

(k) = y(k) - TkOkl 

kIk+1 

l+ T A 
'I' k+i k'1'k+l 

D 
L kPk+1'+'T k+1'"o k 

1 OT p 
.1. + k+IL kPk+1 

(3.12) 

(3.13) 

[y(k+1) - TO I (3.14a) 

I (3.14b) 

Because matrix Pk extension corresponds to a least squares method, this method is given 

an extended least squares designation. The method is widely used. 

3.3.5 RECURSIVE GENERALIZED LEAST SQUARES METHOD(RGLS) 

This is another method to deal with coloured noise.[22][231 Compared to the 

extended least squares method, this method gives not only relatively accurate parameters 

a, and b1, but also a relatively accurate noise parameter c1. But the simulation results show 

that, at large noise levels, this method may noi converge to the proper value. The 

equations of this method are as follows: 

Let a system be described as: 

A(z 1)y(k) = B(z 1)u(k) + 
1 

C(z) 
(k) (3.15) 
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where 

A(z 1) = 1 +'a111 + ... + ;z" 

B(z') = b0z' + ... + b11 z 

C(i') = 1 + c1z' + ... 

Let 

yf(k) = C(z')y(k) 

uf(k) = C(z')u(k) 

defining 

Pk = [-yf(k-l), ... , -y1(k-n), uf(k-1), ... , u(k-n)] 

01' = [ a, ... , a,, b0, ... 

the system model can be written as 

yf(k) = T kO + (k) 

(3.16) 

(3.17) 

Because the noise model is unknown, an iterative method is needed to estimate the 

C(i1) polynomial. Let 

e(k) - 

1 

C(z') 
(k) (3.18) 

Using the following slack method, polynomials A(z'), B(z') and C(z 1) can be 

determined. 

a) let C(z') equal I, by the common RLS method to obtain parameters of 

polynomial A(z') and B(z'). 
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b) use A(z') and B(z 1) to get the error series { e(k)} 

e(k)=A(i')y(k) - B(z')u(k) (3.19) 

c) use { e(k)} and equation C(z')e(k) = (k) to get C(z 1) 

d) use C(z') as a filter to get y(k) and uf(k). 

e) use f(k) and uf(k) to get A(z') and B(z') by the common RLS method. 

f) substitute new values of A(z') and B(z) to get new C(z 1) repeatedly until the 

desired accuracy is met. 

3.3.6 RECURSIVE INSTRUMENTAL VARIABLE METHOD(RIV) 

This is another method used to deal with coloured noise. The main advantage of 

an RIV method is that it is not necessary to know the ordçr of the noise. RELS and 

RGLS require that the order of the noise be known, i.e. the order of the C(z') is known. 

In a practical application, the order of the noise is unknown. This method cannot be used 

to get the noise model. The basic idea of this method is described as follow: [24] 

From least squares method equation 

+ 

where 

(3.20) 

T_r 
V - ... , 4N I 

if [WTW]-1 is singular and PTV - 0, the estimation converges to the true value. For 

coloured noise,W"V does not converge to the true value. But this equation give us an 

inspiration. If a matrix Z with the same dimension as W can be found, 

yqT8y (3.21) 

It can be pre-multiplied by ZT to obtain 
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ZTY = zTWO + ZTV 

From least squares method, it is known that if 

[WTZZTIF].l 

exists, we can obtain the following estimation 

OV=[TTZZrT]-ITTzzry=[ZTT] -IVY 

Using equation 3.21, we have 

Ors,=[ZTW] lZT[W8 + v] = 8 + [ZTP].1ZTV 

(3.22a) 

(3.22b) 

(3.22c) 

(3.22d) 

if the matrix [ZT1P]..l is singular and ZTV converges to 0 when data number n - infinity. 

Matrix Z is called an instrumental variable. Here the instrumental variable is chosen as 

x(k) = u(k - flb) (3.23) 

where nb is the order of polynomial B(z'). It can be proven that this instrumental variable 

makes the estimation converge to the true value in the presence of coloured noise.[25] 

Similar with least squares method, recursive instrumental variable algorithm is 

OJ% k+1 = IV k + 

'k+1 [ 'k - 

kPk+1 

+ Tp 

D T 
£k k+1P k+1D k 

[y(k+1) - cTO I (3.24a) 

I (3.24b) 

3.3.7 CORRELATION FUNCTION LEAST SQUARES 

TWO STEP METHOD(CORLS) 

This method is also commonly used to handle coloured noise, especially, when the 

noise is very large. This method uses correlation function in combination with RELS, 

RGLS and RIV, and it is more accurate than RELS, RGLS or RIV alone. The 
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disadvantage is that it can not obtain the noise model paramter.[26] 

The basic idea is that the correlation function analysis method is used to determine 

system pulse response, and then the parameter model is obtained by identifying system 

pulse response with the least squares method. 

Step one: 

Let system input { u(k) } and output { y(k) } follow a stationary stochastic process: 

A(z')y(k) = B(z')u(k) + C(z 1)(k) (3.25) 

where 

A(z 1) = 1 + alt' + ... + az 

B(z') = b0z' + ... + b.1z 

C(z 1) = 1 + c1z' + ... + cz 

and {(k)} is new information series. 

The auto-correlation function of an input signal is 

1 
= lim  g(6)R(k-) 

N—+oo N 

Where an input signal is white noise, equation 3.26 can be written as 

g(p) 

1 

R(0) 

(3.26) 

R(p) (3.27) 

If the system input, { u(k) }, is not related to the random series { (k) }, the equation 

y(k) + a1y(k-1) + ... + ;y(k-n) = 

b0u(k-1) + ... + bu(k-n) + (k) (3.28) 

can be written as 
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R(p) + a1R(p-l)+ ... + aR(p-n) 

=b1R(p-1) + ... + bR(p-n). (3.29) 

Step two: 

Use least squares method to identify parameters a1, ..., ar,, b0, ... , b. The system 

model parameters can be calculated and the result is more accurate than the least squares 

method. 

3.3.8 RECURSIVE MAXIMUM LIKELIHOOD METHOD(RML) 

This method has a long history, and is widely used. If the noise test is correct, this 

method gives very good results. The equation of this method is as follows:[27] 

Let a system be described as: 

1 
A(z')y(k) = B(z 1)u(k) + 

C(i1) 
(k) (3.30) 

where y(k), u(k) and (k) are model output, input and new information respectively, and 

A(z') = 1 + az' + ... + az" 

B(z) = b01' + ... + b 1z" 

C(z') = 1 + c1z' + ... + c,,z" 

In this case, maximum likelihood estimation is equivalent to minimizing the following 

equation 

N 

JN(9 ) = W2(k,8) 
k=1 

where 

(3.31) 
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W(k,O)=C(z'){A(z')y(k) - B(z 1)u(k)] (3.32) 

8 = [a1, ... ,a, b0, ... , b.1, c1, ... , cj (333) 

Using Taylor series, an approximate maximum likelihood recursive method can be 

obtained. The equations are as follows: 

8k+l=Ok + Kk+l(k+1) (3.34) 

k+1 

Kk+l=Pk  (3.35) 
1 + 

Pk- [I-Kk≤) jPk.1 (3.36) 

,(k)=y(k) - tpT(k)8(k-1) (3.37) 

= [- y(k-1), ... , -y(k-n), uf(k-1), ... , 

(3.38) 

yf(k) = C(z')y(k) (3.39) 

u1(k) = C(z')u(k) (3.40) 

(k) = C(z')(k) (3.41) 

Some authors show that this algorithm has better convergence properties than the 

extended least squares method and converges to a local minimum value of an estimation 

criterion according to probability 1[28]. 

3.3.9 NONLINEAR LEAST SQUARES METHOD(NRLS) 

According to theoretical analysis, the relation between voltage and electric force 

is FD V2, so a nonlinear method is used. There are lots of methods to solve nonlinear 
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system identification problem. The method selected here is the Hammerstein model. The 

equation of this method is as follows: 

Let the system nonlinear part be approximated by the following series: 

r0 + r1x + r2x2 + r3x3 + r4x4 + (3.42) 

input 
r0+ r1x + r2x2+ 

A(z 1) 

B(1 1) 

output 

Figure 3.3 Nonlinear least squares method - Hammerstein model 

If this part is cascaded with linear system which can be described by an nth order 

differential equation, this method can describe many , kinds of nonlinear systems. If 

nonlinear part is cascaded before linear part, it is Hammerstein model. For this system, 

the nonlinear part of the system is only V2, i.e. it has only the x2 item. So an 

identification could use the system input signal squared to identify the system directly. 

3.4 MODEL ORDER JUDGEMENT 

The above-mentioned methods require that the model order be known. In practical 

applications, the measured input and output of the system contains other components, 
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such as video camera and image processing hardware, as shown in figure 2.2. The whole 

system may be more than second order as shown in equation 3.4b. So the model order 

is not known. For further verification, several model order estimation criteria are used and 

the results are compared. If most of results are close, they are considered reasonable. In 

this project, the following four criteria are used. 

1) Loss function ( or sum .of error squares) 

in 
J(n) Z e2(k). 

2 k=1 

(3.43) 

2) AIC (Akaike information criterion )[29] 

AIC(K) = -210g(L)+2K (3.44) 

where 

K is the number of parameters in the polynomials A(z'), B(z) and C(i') 

(if C(z') is used in the model). 

L is the maximum value of the likelihood function[30]. 

3) Noise error squares estimation 

N 

where 

N 

e2(k) 
k=1 

N is the length of the sampling data. 

4) FPE( final prediction error )[32] 

N+Na+Nb 

FPE(Na, Nb) = ( 
NNa+Nb 

(3.45) 

(3.46) 
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where 

Na and Nb are the orders of the model polynomials A(z') and B(z'). 

N is the length of the sampling data. 

O2 is the noise error squares estimation. 

The model order is usually determined using an open loop identification. In the 

closed loop identification, the system input and output are correlated with each other, so 

the methods of model order judgement could be in error. Generally speaking, the model 

order should be known for closed loop identification. Although there are methods 

proposed to judge model order in closed loop identification, a complicated calculation is 

needed. So in practical applications, theoretical analysis and open loop order judgement 

methods are combined. The results are compared to obtain reasonable values. 

3.5 IDENTIFICATION EXPERIMENT DESIGN 

In the identification experiment, some problems must be considered. 

1) noise length. 2) noise amplitude. 3) sampling period. 

1) noise length: 

In order to get an accurate identification, the PRBS noise should cover the whole 

dynamic process. If this process is too long, the system characteristics could change and 

the identification may be inaccurate. So a method commonly used is to apply a step signal 

to the system to determine the system dynamic process. time. 

2) noise amplitude: 

In a linear system, larger noise amplitude gives more accurate identification. But 

for a nonlinear system, which is the normal case in a practical application, large noise 
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amplitude forces the system beyond the linearized range. The identification will have 

errors. In this system, the system reference input is equal to 200. 5% of the system 

reference signal is selected, i.e. noise amplitude is 10. 

3) sampling interval 

In order to get accurate identification results, a suitable sampling interval must be 

adopted. As the sampling interval is increased, the identification is more robust. If the 

system has very close multi-poles, shorter sampling interval must be adopted in order to 

distinguish these poles. But the shorter sampling interval choice normally makes the 

system identification very sensitive. Too short a sampling interval, sometimes, interferes 

with identification convergence if the model order is chosen lower than the practical 

system order. When smp1ing interval is too short, the higher poles and zeros cannot be 

neglected any more. 

The sample frequency or break frequency, f, is based on Shannon sampling 

theory. 

1 
fs=-

2T0 

where 

To is sampling interval, f is break frequency. 

Some authors express the sample interval as:[31] 

To Tmm 

(3.47) 

(3.48) 

where Tmin is system minimum time constant. Practical experience shows that this is the 

conservative choice. For most systems, a more appropriate choice is T0=2Tmm. An all 
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round values often used is [32] 

T0 ( 0.05 0.1 )Ta (3.49) 

where Ta is main system time constant. 

3.6 IDENTIFICATION OF CELL-LEVITATION APPARATUS 

The identification process includes three steps. In the first step, important 

frequency points are selected and the above-mentioned identification methods are used 

to determine the parameters. Second step, sample data using the single frequency method 

to obtain a plot of the identification parameters v.s. frequency from approximately 103 Hz 

to i0 Hz. Third step, using the dual frequency method, the parameters in the remaining 

10 Hz to 103 Hz are obtained. 

3.6.1 RESULTS AT IMPORTANT POINTS 

The standard frequency band extends from 5x105 Hz to 5x106 Hz. In this 

frequency band, the model parameters are basically constant, even for different cells. So 

this frequency band is chosen as a starting point. Two groups of data are obtained at 

frequencies of 5x105 Hz and 5x106 Hz. 

A) Data group 1: 

This group data is sampled at frequency 5x105 Hz: 

The number of sampling data points is, 300 and the sampling interval is 0.317 

second. The identification process is as follows: 

First step: first, second and third order models are tried respectively; 

Second step: the poles and zeros close to origin are cancelled one by one, using 

theoretical analysis and sum of error squares. Because normally, the poles and zeros close 
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to origin are very small, if they cancel each other, the sum of error squares does not 

change significantly. 

Third step: the identified parameter from different methods are compared and the 

most likely values are selected. 

The table 3.1 shows the identification results of data group 1. The results from the 

six different methods are shown for different model orders. After cancelling poles and 

zeros close to origin, the results from different identification methods are as follows: 



algorithm order al a2 a3 bO bi b2 ci c2 c3 

RLS 

1 -.9423 -.872 

2 -1.026 0.7187 -.6754 -3.449 

3 -.7704 -.2632 0.0067 -.7019 -3.611 -1.031 

• 1 -.65 -.01 

RIV 

• 

2 -.956 -.1859 -.5503 -3.408 

3 -.838 0.0414 .09937 -.0574 -3 -.2782 

RELS 

1 -.9291 -.8765 .0792 

2 -1.026 0.007 -.6785 -3.446 .00297 -.0011 

3 -.7956 -.1928 -.0461 -.7509 -3.519 -1.065 .067 .1487 .2577 

RML 

1 -.9423 -.872 

2 -1.026 .0072 -.6754 -3.449 

3 -.7704 -.2632 .00676 -.7019 -3.611 -1.031 

CORLS 

1 -.5503 -1.698 .7632 

2 -1.048 -.0159 -.8279 -3.529 .1099 .0737 

3 -.2887 -.8059 -.0216 -.7424 -4.103 -2.661 .2419 .1944 .3219 

GRLS 

1 -.3943 1.0558 -.812 

2 -.98 -.0336 -.6515 -3.42 -.0206 -.0779 

3 -.4629 -.5789 .03342 -.7036 -3.7 -1.892 -.4433 .1746 -.2675 

TABLE 3.1 IDENTIFICATION RESULTS OF DATA GROUP 1 
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1) RLS method: 

al=- 1.02 b0=-0.6854 bl=-3.456 

J=103.265 62=.688 AIC=- 106 FPE=.702 

2) RTV method: 

al=- 1.02 b0=-0.6786 bl=-3.4593 

J=103.26 (y2=.688 AIC=-106. FPE=0.7023 

3) RELS method: 

al = -1.022 b0=-.6877 bl=-3.454 c1-.042 

J=103.26 62=,6884 

4) RML method: 

al=- 1.019 bo=-0.6766 

J=103.26 ô2=0.688 

5) CORLS method: 

al=- 1.119 b0=-0.952 

J=138.1 O=0.92 

6) GRLS method: 

al=- 1.02 b0=-0.6641 

J=103.39 =.6892 

AIC=-106 FPE=O.702 

bl=-3.4584 

AIC=- 106 FPE=0.7023 

bl=-3.6153 

AIC=-18.78 FPE=0.939 

bl=-3.497 cl=0.223 

AIC=- 105.7 FPE=0.703 

From this group of very different identification methods, the following conclusion may 

be arrived at. The identification results of most of methods are similar. That means this 

overall identification is reasonable and can be accepted. Correlation function least squares 

two step method(CORLS) gives an identification which noticeably deviates from the other 
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techniques. That is because this identification is carried out on a closed loop system and 

the input signal has an output component which makes correlation function errors. Non-

linear least squares method results are as follows 

al=-O.916 bO=O.598 bl=-1.283 J=1532 

This method gives results different from the other methods. In this system, the linear 

factor dominates the square factor and so this method is considered to be inaccurate. 

B) Data group 2 

The identification results for group 2 are summarized in table 3.2. The 

identification process is the same as group 1 except that the system frequency is 5x106 

Hz. After cancelling pole and zeros close to origin, the modçl parameters are obtained. 



• algorithm order al a2 a3 bO bi b2 ci c2 c3 

RLS 

1 -.9313 -.0884 

2 -1.041 .0056 -.6517 -4.15 

3 -.7747 -.282 .0078 -.6887 -.6527 -4.157 

• 

BJV 

1 -.6949 -.019 V 

2 -.7517 -.185 -.2462 -4.186 

3 -.8933 -.518 .4827 -.3253 -4.075 .0825 

RELS 

1 -.8959 V  -.882 1785 

2 -1.064 .021 -.674 -4.17 -.206 -.016 

3 -.8309 -.223 .0065 -.6864 V -4.28 . -1.003 -.5518 .0067 .0267 

RML 

1 -.9313 -.8835 

2 -1.04 .0056 -.6517 -4.149 

3 -.7747 -.282 .0078 -.6887 -4.314 -1.237 

CORLS 

1 1.02 V 6.251 

2 -1,075 .4462 -.677 -4..122 

3 -1.057 -.02 -.03 -.8839 -4.314 -.261 

GRLS 

1 -.191 1.605 -.9047 

2 -1.004 -.002 -.526 -4.06 -.0931 -.316 

3 -.647 -.344 -.0171 -.548 -4.25 -1.6 -.399 -.231 -.1077 

TABLE 3.2 IDENTIFICATION RESULTS OF DATA GROUP 2 
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1) RLS method: 

al=- 1.0366 bO=-.6527 

J=66.25 2_17 

2) RIV method: 

al=:-.8036 b0.1302 

bl=-4. 157 

AIC=-239.2 FPE=.45 1 

bl=-3.687 

J211.1 ô1.4O7 AIC=108.51 FPE=1.435 

3)RELS method: 

al=- 1.0494 bO=-..6902 bl=-4.205 

J66.6O3 =.444 

4) RML method: 

al=- 1.366 bO=-.6527 

J=66.252 

5) CORLS method: 

al=- 1.12 

J=83.763 

6) GRLS method: 

al=- 1.04 

J=66.284 

=.4417 

bo=-.93 

d2=.5584 

b0=-.678 

ô=.4419 

AIC=.237.6 FPE=.453 

bl=-4. 1573 

AIC=-239.2 FPE=.4506 

bl=-4.324 

AIC=-168.8 FPE=.5697 

bl=-4. 1895 

AIC=-239 FPE=.4508 

From these results, the following observations are made: 

1) This system is basically first order system. Although theoretical analysis shows 

that this system is the second order system, the parameter a2 is small, difficult to be 

identified and does not affect the results. 
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2) This system has an approximately one step time delay. 

3) This system contains first order coloured noise which has relative small affects 

on system identification. 

3.6.2 RESULTS OF SINGLE FREQUENCY CONDITION 

For single frequency method, the frequency changes from 5x107 Hz to 8x103 

Hz. The aim of this experiment is to determine how the system parameters vary with 

frequency. The RELS identification method is used in this identification. If the accuracy 

of the parameters obtained from this method is suspect, other methods are used to obtain 

the additional values. The data which is suspected of containing errors is discarded if the 

identification parameters from these data by different metho.ds are quite different. The 

experiment conditions are as follows: 

cell diameter 40 pm; 

distance from electrode to cell 200 pixel ( 70 pm); 

Figure 3.4 shows that the identification value of parameter a1 is about - 1.03±0.02. 

The parameter bias is about 2% average value, that means that parameter a1 does not 

change with frequency change. Figure 3.5 shows the identification result of parameter b0. 

The parameter b0 is about - 1.3±0.3, the bias is about 30% of average value. The figure 

3.6 shows parameter b1. From this figure, we can see that parameter b1 is consistent over 

much of the frequency range. However at the low end, the DEP force diminishes, which 

is reflected in the identification value variation at frequency lower than 1x105 Hz. The 

parameter value changes from -7.5 to -4, the variation is about 50% of the normal value. 

From these results, some conclusions can be obtained. 
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1) parameter a1 is basically constant, does not change with frequency change. 

2) 1b01 << IbI at normal frequency. That means the parameters b0 is less important 

than parameter b1, and also this system is non-minimum phase system. 

3) The parameter Ib1I changes greatly in the lower frequency range( < 1x105 Hz 

). It becomes smaller. 

3.6.3 RESULTS OF DUAL FREQUENCY CONDITION 

In order to extend the levitation range to lower frequencies, a dual frequency 

levitation scheme is introduced into this system. In order to control this system, the dual 

frequency system ig also identified. The results of this system are shown in figures 3.7 

to 3.9. From these identification results, the following conclusions are obtained: 

1) parameter a1 is .similar to single frequency condition, parameter value is about - 

1.03±0.02, the bias is about 2% of the average value. 

2) The value of the parameter b0 is small, -0.6±0.2, the bias is 30% of the average 

value. Compared to single frequency, the value of the b0 is smaller, that is because the 

diameter of the cell in figures 3.7 to 3.9 is 30 pm but the diameter of the cell in figures 

3.4 to 3.6 is 40 pm. Normally, the larger the diameter of the cell, the heavier the cell. 

3) parameter b1 is quite different from the, single frequency parameter value. It 

• does notchange as much as the dual frequency. The average value is about -0.95±0.15, 

the bias is % 15 of the average value. The value is also smaller than single frequency 

because the diameter of the cell for the dual frequency condition is smaller than for the 

single frequency condition. 

4) In dual frequency condition, parameter Ib0I is not << parameter Ib1I. 



VALUE OF PARAMETER al 
1 

-1.01 

-1.02 

-1.03 

-1.04 

-1.05 

-1.06 
1 .OE+O7Hz 1.OE+04Hz 1.OE+05Hz 1.OE+06Hz 

FREQUENCY( Hz) 

Figure 3.4 parameter al 

diameter40 urn, distance=70 urn 

- single frequency condition - 



VALUE OF PARAMETER bO 
-0.6 

-0.8 

-'.4 

—1.6 I I I I I till I I I 11111 1 I I Ill I 

1.OE+O4Hz 1.OE+O5Hz 1.OE+O6Hz 
FREQUENCY( Hz) 

Figure 3.5 Parameter bO 

diameter40 urn, distance70 urn 

- single frequency condition - 

1.OE+O7Hz 



VALUE OF PARAMETER bi 

, I I I III I 111111 1 I II 11111 

1.OE+O4Hz 1.OE+O5Hz 1.OE+O6Hz 
FREQUENCY( Hz) 

Figure 3.6 Parameter bi 
d1ameter40 urn, distance70 urn 

- single frequency condition - 

1.OE+O7Hz 



VALUE OF PARAMETER al 
I 

-1.04 

I I I I III I 1111111 I I 1111111 I I 111111 -1.08 
1.OE+0211z 1.OE+03Hz 1.OE+04Hz 

FBEQUECY( Hz) 
1.OE+O5Hz 

Figure 3.7 Parameter al 

diameter30 urn, distance70 urn 

- dual frequency condition - 

1.OE+08H 



VALUE OF PARAMETER bO 
—0.1 

—0.3 

—0.5 

—0.? 

—0.9 

1.OE+02Hz 

I 
1.OE+03Hz 

I I I 11111 I I I I 11111 

1.OE+04Hz 
FREQUENCY( Hz) 

Figure 3.8 Parameter bO 
diameter30 urn, distance 70 urn 

- dual frequency condition - 

1.OE+O5Hz 

I I lilt 

1.OE+06H 



VALUE OF PARAMETER bi 

1.OE+O5Hz 1.OE+O4Hz 
FREQUENCY( Hz) 

Figure 3.9 parameter bi 
d1arneter30 urn, distance=70 urn 

- dual frequency condition - 

1.OE+0611 



44 

CHAPTER 4 

ADAPTIVE CONTROL SYSTEM DESIGN 

4.1 INTRODUCTION 

Since Astrom's first paper on an adaptive regulator, adaptive techniques have 

developed very rapidly. They have spread to an adaptive predictor, an adaptive filter, etc, 

and 'have been widely used in control system, signal processing, telecommunication and 

other fields. 

In this project, four adaptive algorithms are tested for application in feedback 

controlled DEP levitation of biological cells. These include a pole assignment adaptive 

controller, a PT adaptive controller, a pole-shifting dual-loop, adaptive controller and an 

approximate series compensation adaptive controller. The later two adaptive controllers 

are those that were proposed by the author. 

The following sections describe the simulation results. The cell-levitation apparatus 

model is selected from the identification parameters in section 3.6. The parameters are 

selected as follows: 

A(z 1) = 1 - 1.056 z'1 

B(z 1) = l.076z' + 5.226z 2 

In the simulation, the identification algorithm is recursive least squares algorithm. 

4.2 POLE ASSIGNMENT ADAPTIVE CONTROLLER: 

4.2.1 INTRODUCTION TO ALGORITHM 

Pole assignment adaptive control is a classic design method[9]. This method is 

adopted in this project as the first step because it has been extensively applied in the past 
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and proven to be very useful. The block diagram is shown in figure 4.1. 

[Noise 

C 

A 

Ref 

H 
F 

4  

A 

 -J 

Figure 4.1 Block diagram of a pole assignment 

adaptive control system 

Considering the following system model 

A(z')y(k)=B(z')u(k)+C(z')(k) z ≥ 1 

where 

(4.1) 

A(z')=1+a1z'+...+bz 

B(z')=b0z1+. ..+b 1z 

C(z')=1+C1z'+...+Cz 

and { u(k) } is the system input, { y(k) } is the system output and { (k) } is white noise. 

The closed loop transfer function is 

W m(Z ') Bm(Z 1)/Am(Z 1) (4.2) 
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The feedback control strategy is as follows, 

F(11)u(k) = H(z 1)Ref(k) - G(z')y(k) (4.3) 

where 

F(i'), G(z 1) and H(z 1) are polynomials and depend on the closed loop poles and 

zeros. { Ref(k) } is the system reference signal. 

The task of control system design is to choose suitable values for F, G and H so 

that closed loop has stable poles and zeros. i.e. 

B(z')H(z') 1B(Z 1) 

(4.4) 

A(z 1)F(z 1) + B(z 1)G(z') Am(z') 

The F and G are determined from a Diophantine equation[33] 

AF+BG=Am (4.5) 

If A and B are coprime, the polynomials F and G of the above equation have minimum 

resolution for the following conditions: 

degF flf = ri - 1 (4.6a) 

degG rig na 1 (4.6b) 

where 

degF and degG are the orders of polynomials F(z') and G(z'), flf, n, ng and na 

also express the orders of polynomials F(z'), B(z 1), G(z') and A(z') respectively. 

For non-minimum phase system, normally, the control system designers do not 

cancel the plant zeros. However if H(z') is chosen as pure gain, it forces the system 

output to track the input signal. 
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The closed loop output equation of the system can be 'written as follows 

where 

Am(i') 

y(k)= 
B(z')H(z 1) 

Ref(k) + 
C(z 1)F(z 1) 
  (k) (4.6c) 

Am(Z4) Am(Z 1) 

A(z')H(z') C(z')G(z 1) 
u(k)= Ref(k) -   (k) (4.6d) 

Am(Z4) Am(k) 

The system output error equation is 

e(k) = Ref(k) - y(k) 

z')-B(z 1)H(z 1) C(z')F(z') 
Ref(z 1)   (k) 

Am(Z) Ap( 1) 

(4.6e) 

Using the final value theorem, the steady-state error is given by if the noise is 

neglected) ' 

e(oo) = e(z') = lim(l-z')Ge(z')Ref(k) (4.6f) 
z•'-+l z1=1 

For step input 
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R 
Ref(k)=Rr(k), Ref(k)- 

1-z' 

For ramp input 

RT0z1 
Ref(k)=kRr(k), Ref(z)— 

where 

To - sample interval 

r(k) - unit step input 

In order to eliminate the steady state error, the error transfer function in the z domain 

should have the following form 

Ge(Z 1)(1Z 1)MF(Z 1) (4.6g) 

where 

for step input M=1 

for ramp input M=2 

From Eqs (4.6f) and (4.6g), for eliminating the steady state error, the feed forward 

polynomial H(f) can be calculated as follows: 

(1) for step input 

Ge(Z')lB(Z')A'(Z')H(Z) = 1 - 
z'-41 

.. lim H(z')=h0 = Am(1)B'(1) (4.6h) 

(2) for ramp input 

the condition of eliminating steady state error becomes 



dz' 
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(a) Ge(Z') = 1 - B(z')A'(z 1)H(z') (4.6i,a) 

d 
(b)  [Ge(Z 1)] = 0 (4.6i,b) 

dz' 1z' 

From (4.6i,a) 

H(z 1)=h0+ h1z'= Am(1)B'(1) 

From (4.6i,b) 

d 

Ge(Z')I 

I dz' 

I z•'=I 

= - B(z"A '(z')h1 - 
Iz'=l 

Iz'=i 

= - B(')A'(z')h1 - H(z') {(z')A'(z')+z'[(B(z')A'(z')]')I 

- H(z')(z 1)A'(z')-z'H(z')[1(z')A,'(z')J 'I 
6=i 

= - H(l)-'hl - 1 - 

Iz"=l 

=0 

h1 = -H(1){ 1+[(z')A'(z')]'H(1)}I 

IZ'=i 

ho' - h1 

Moreover, if the Diophantine equation is replaced by 

A(z')F(z') + B(z')G(z') = C(z')Am(z') (4.6k) 
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where 

The closed loop equation becomes 

B(z 1)H(z 1) F(fl) 
y(k)— Ref(k) +  (k) 

C(z')Am(z') Am(z') 

Comparing Eq. 4.6k with Eq. 4.6c,we can see that the disturbance term 

F(z 1) C(z')F(z') 
  (k) is rather smaller than  (k). Hence, 

Am(z') A(') 

by introducing polynomial C(z') into the Diophantine equation (4.6k), the closed loop 

output disturbance can be suppressed a great deal. So it is reasonable to use Diophantine 

equation (4.6k) instead of Eq. (4.6c) when the system is contaminated by coloured noise. 

4.2.2 SIMULATION RESULTS 

According to Diophantine equation, the controller polynomials F and G are: 

F(z 1) = 1 + f11' 

G(z') go 

the closed loop pole is selected from the identified plant pole, i.e. 

Am (Z ') = 1 + cza1z' 

where a is a shifting factor. In this system, parameter a1 is 1.056. The closed loop pole 

of approximately 0.7 is selected if a = 0.7. 

The resolution matrix is as follows: 
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lb0 

a1 b1 

f1 

90 

(a - 1) a1 

0 

The simulation results are shown in figures 4.2 to 4.6. From these figures, the following 

observations can be obtained: 

1) The system parameters converge very well. 

Figures 4.2, 4.3 and 4.4 show the system parameters a1, b0 and b1 respectively. In 

Jess than 20 steps, the parameter a1 converges to -1.056, andhas some ripple. This wave 

is between -1.05 to - 1.06 and the error is less than ±1% of 1.056. This is considered 

adequately converged. The parameter b0 converges to 1.1 in 20 steps. The error is equal 

to (1.1-1.076)11.076, 3% of 1.076, so it is still considered adequately converged. The 

parameter b1 converges to about 5.35, the error is about (5.35-5.23)15.23, less than 3% of 

5.23. So the all of the parameters converge very well in 20 steps. 

2) The pole assignment adaptive control system gives good control. 

Figure 4.5 shows the system input/output. From this figure, it can be seen that 

there is no overshoot in the system output during the dynamic process. The value of the 

closed loop pole is real. The system output is near the reference value 200 pixel but a 

little larger than reference signal about 1 pixel during steady state. The reason is that the 

white noise added in the system output is positive and mean square value is 1, which 

imitates the control requirement that control accuracy should be between 200±1. The 

control effort becomes stable in 20 steps at value 2, which is equal to 2 volts. 

In all of the figures, the dynamic process lasts less than 30 steps. Simulation is 
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continued beyond 30 steps to demonstrate that the algorithm maintains the output at a 

continuous stable value. It is felt necessary to verify this point because the open loop 

unstable system can often be stabilized in the dynamic range by pole cancelling. When 

the pole is inside the unit circle of the z domain, pole cancelling is an effective method 

for both dynamic and steady state condition. When the pole is on or outside the unit circle 

in the z domain, pole cancelling always leads to an increase in the output in the non-

dynamic range in the closed loop system. 
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4.3 P1 ADAPTIVE CONTROLLER 

4.3.1 INTRODUCTION TO ALGORITHM  

The plant model equation is 

A(z')y(k) = B(f)u(k) + (k) (C(z 1) = 1) (4.7a) 

The P1 controller equation is 

G(i1) 
u(k)= [Ref(k) - y(k)] (4.7b) 

l- z' 

where 

G(z')=g0 + g1z' = g0[1 + g'1z'] 

T1-i-T0 
g0 = iç  

Ti 

g1 = 

91 Ti 
g'1= 

g0 T1+T0 

Ke the proportional coefficient of the PT controller 

Tj  the integral time constant of the P1 controller 

TO the sample interval 

Substituting Eq (4.7b) to Eq (4.7a), we have the closed loop output equation 

y(k)— 
B(z')G(z'). 

 Ref(k) +  (k) 
(1-z')A(z')+B(z 1)G(z') (1-z')A(z')-+-B(z')G(z1) 
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or 
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Y 

Figure 4.7 Block diagram of a P1 adaptive controller 

g0(b0z' + b1z2)(1+g0z') 
- Ref(z 1) +  (k) (4.7c) 
(1-z')A(z')+B(z')G(z') (1-z')A(z')+B(z')G(z') 

1-z,' 

From the PT control experience, it is known that good control can be obtained if 

the steady state gain is kept constant as the frequency changes. So a parameter optimal 

PT adaptive controller which is based on this idea is adopted. When the identification 

parameters b0 and b1 increase, the controller gain should be automatically reduced so as 

to maintain the system gain constant, such that 

g0(b0+ b1) = constant (4.7d) 
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Ke 
g'1=   (4.7e) 

g0 

where K. is predetermined by test. 

The error equation of the closed loop system is 

e(k)=Ref(k)-y(k) 

(1-z')A 1-z 

- Ref(k) -   (k) (4.70 
(l-z')A+BG (1-z')A-i-BG 

It is evidently seen that the steady state error of the stable closed loop system is 

zero. i.e. 

e(oo)=0 

The advantage of this method is that it uses a conventional PD controller structure 

for all situations. This means that there are no switching dynamics. Sometimes, switching 

dynamics harm the system. Problems arise when a cell is light in colour which may arise 

from being out of focus of the camera. In this case, it is very difficult for the image 

processing part of the system to detect the cell pcsition. 

The stability of this system is checked by identifying the closed loop poles at 

frequency 5x105 Hz and 5x106 Hz respectively, 1 decade apart in the flat band region of 

the DEP spectrum. The typical values at these frequencies are as follows: 

5x105 Hz: a1 = - 1.27 a2= 0.419 

The closed loop poles are calculated approximately 

Pi = 0.689 + j0.3045 

P2 = 0.689 - j0.3045 
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6x106 Hz: a1 = -1.32 a2= 0.52 

The closed loop poles are calculated approximately 

Pi = 0.6735 + j0.32 

P2 = 0.6735 - j0.32 

The closed loop pole position shows that system is very stable and with damping 

in the system. 

4.3.2 SIMULATION RESULTS 

The plant model equation from section 3.6 is used here also: 

A(z') = 1 - 1.056z' 

B(z') = 1.076z' + 5.226z 2 

The identification uses the exponentially weighted least squares method. The 

forgetting factor, X, is chosen as 0.99. The parameters b0 and b1, which are used to 

calculate the system gain, use the average value of the last 50 steps. 

Figure 4.7 shows the P1 adaptive controller block diagram. Figures 4.8 to 4.12 

show simulation results. Figure 4.8 shows the parameter a1. The parameter converges to 

-1.056 in 20 steps. After 20 steps, the parameter is around - 1.056 with slight wave, 

oscillating between - 1.054 and -1.058. Figure 4.9 shows the parameter b0. The parameter 

converges to about 1.1 in 20 steps. After 20 steps, the parameter b0 holds constant. Figure 

4.10 shows parameter b1. The parameter converges to 5.23 in 20 steps and then hold 

constant.. Figure 4.11 shows control system output. The system output has very large 

overshoot, which is (390-200)1200, almost 100%. The system dynamic process lasts 40 

steps. In control experimentation, the operator puts the cell close to the set point manually 
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before switching to closed loop system control. This large overshoot does not exist unless 

the operator switches to the closed loop tontrol when the cell is far away from 200 pixel 

(70 pm from top electrode), which, normally, is not considered as good experimental 

practice. Figure 4.12 shows the control effort, which has large overshoot, and after 40 

steps, the control effort is stable at 1.5 volt. From these observations, the following 

conclusions can be obtained: 

1) The system is very stable, which can be seen from step 30 to step 100. 

2) The system has a large overshoot, but, this dynamics is not troublesome in the 

application. 
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4.4 POLE-SHIFTING DUAL LOOP ADAPTIVE CONTROLLER 

4.4.1 INTRODUCTION TO ALGORITHM 

PID adaptive controllers proposed in the last ten years can be divided into five 

types, i.e. i) pole assignment PID adaptive controller, ii) pole and zero cancellation 

principle PID adaptive controller, iii) rule based PD adaptive controller obtained from 

experience, iv) PD adaptive controller based on quadratic criterion and v) expert or 

intelligent PID adaptive controller. Generally speaking, PD adaptive controllers can not 

handle the open loop unstable system unless they are placed in the feedback path. Some 

PID adaptive controllers often cancel open loop system poles to get an ideal system 

response. In a practical application, pole and zero cancellation techniques can not, really 

cancel poles or zeros. In an open loop stable system, the controller zeros and open loop 

poles, that are very close to each other, can be cancelled with negligible effect. But for 

an open loop unstable system, unstable poles can not really be cancelled. So the system 

response contains the exponential components which increase with time, and finally  cause 

system instability. [34] A new algorithm is proposed to overcome this difficulty. 

Figure 4.13 shows the main idea of this algorithm. The internal loop structure is 

the same as the pole assignment algorithm. The outside loop structure is a PID adaptive 

controller. Similar to the pole assignment design method, the internal loop pole and zero 

can be expressed by a group of equations. The pole and zero polynomials are respectively 

Ainmai(Z 1) = A(z')F(z') + B(z')G(z') . (4.7) 

Binmai(Z 1) = B(z')H(z 1) (4.8) 



69 

White noise 

Ref 

-o PID H 

internal loop 

1 U 

G 

Plant 

1.. 

Figure 4.13 Dual loop adaptive controller 

The outside loop is pole-shifting PD adaptive controller, S(z') is polynomial, I(z 1) equal 

to 1 -z1 . So the whole closed loop system pole and zero polynomials are 

Am(Z ') = Ainmai(i')I(Z ') + Bi nai(Z')S(Z') 

Bm(Z') = S(Z')Bintemai(Z') 

(4,9) 

(4.10) 

if the closed loop poles can be chosen reasonably, this system can deal with open loop 

unstable system because the internal loop has polynomial G(z') in the feedback path. 

In some cases, for example, a first order system, the algorithm does not satisfy 

Diophantine equation. One of the parameters is adjusted on-line, which is similar to fixing 

b0 in the identification of the self-tuning regulator. The following example gives an 

explanation of this idea. Considering a first order open loop unstable system 

A(z') = 1 + a111 (4.11a) 
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B(z') = b0z' + b, Z-2 (4.11b) 

where 

Ia1l > 1, i.e. open loop unstable. 

Ib0I < Ib1I, i.e. non-minimum phase system. 

we have the following internal loop equation, 

y(k) 

where 

BH I F 

 u(k) +  (k) 
AF+BG AF+BG 

Bm F 
 u(k) +  
A1, Al. 

(k) (4.12) 

+ B(z 1)G(z 1) 

1 + f1z' (4.13a) 

G(z') = g0 (4,13b) 

H(z 1) = 1 . .(4.14) 

Considering the internal loop as an extended system, a pole assignment or pole-shifting 

P1 adaptive controller is used as an outside loop. Then we have the closed loop output 

equation 

y(k)= 

or 

BS (1-z')F 
 Ref(k) +  (k) 
(1-z')Am+BmS (1Z1)Am+BinS 
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B1S I ( 1-z ')F 
y(k)= Ref(k) +  

Am Am 

where 

Am(Z')=( 1-z')A(z')+B1(z')S(z') 

or 

(k) 

Am(z')=( 1-z')[A(z')F(z')+B(z 1)G(z 1)J+B(z')H(z')S(z') 

Choosing 

S(z 1) = g0 + g1z' 

z1 

the closed loop equation can be written as 

(4.f5a) 

(4.15b) 

(s0+s1z')(b0z'-i-b1z') 
y(k)— Ref(k) 

(1-z')[(1+a1z 1)(1+f1z')+g0(b0z'+b1z 2)1+(s0+s1z')(b0z 1+b1z') 

(1-z')(l + f1z') 
+   (k) (4.16) 

(1-z')[(l+az')( 1+f1z')+&(b0z1+b1z2)]+(s0+s1z')(b0z'+z 2)} 

Let the closed loop poles be placed as a pole shifting PT controller 

Am(Z 1) = 1 + xâ1z' (4.17) 

where cx is shifting factor, then the pole shifting polynomial equation is 

(1-z')[(1+(xz 1)(1+f1z')+g0(b0z'+b1z2)]+(s0+s1z')(b0z'+z 2)=1 + aâ1z' 

When the system parameters are known, the controller parameters F(z'), G(z') and S(z') 

can be solved by using the following matrix equation: 
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1 b0 0 

a1-1 b1-b0 b0 

-a1 -b1 b1 

fl 

g0 

S1 

l+aa1-a1-s0b0 

a1 - b1s0 

0 

The parameter s0 is placed in the right side because there are only three equations. with 

four unknown parameters f1, g0, s0, s1. So s0 is fixed and its value depends on simulation 

or real time test. 

The output error equation of the closed loop system is 

e(k)= Ref(k) - y(k) 

(1-z 1)A1 (1-z')F 
Ref(k) -   (k) 

(1-z')A1-i-BS (1-z')A+BS 

From this equation, we can see that the steady state error of the closed loop system is 

e(oo) = 0 

The above conclusion is evident because the outside controller is a Fl controller which 

can eliminate any output error produced by the system. 

Moreover, if the contaminated noise is a coloured one. C(z')(k), the closed loop 

equation should be modified as below: 

BmS (1-z ')CF 
y(k)— Ref(k) +  (k) 

(1Z')Am+BmS 

Comparing eq (4.17e) with eq (4.17c), it is evidently seen that the closed loop output 

noise of eq (4.17e) is smaller than that of eq (4.17c). 
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4.4.2 SIMULATION RESULTS 

The model equation is shown as 

A(z') = 1 - l.056z' 

B(z') = 1.076z-'+ 5.22612 

s0 = 0.13 ( it is chosen by simulation) 
C-

The simulation results are shown in figures 4.14 to 4.18. Figure 4.14 shows 

parameter al, the identified value is approximately -1.056. There is a deviations about the 

identified parameter value between - 1.05 to - 1.06, 1% of average of a1. Figure 4.15 shows 

parameter b0. The figure shows that parameter converges to 1.06 which is a little smaller 

than the model value 1.076. But this error is very small, (1.076 - 1.06)/1.076 < 2% of 

model value. Figure 4.16 shows the parameter b,. The figure shows that parameter b, 

converges to 5.24 which is a little larger than the model value, error is (5.24 - 5.226 

)/5.226 < 1% of the model value b1. Figure 4.17 shows the system output. The simulation 

results show that system is very stable which is the main concern, and the system has an 

overshoot although the closed loop pole is close to 0.7. This overshoot mainly comes 

from the extra zero from P1 control part s + s11' which can be rewritten as s0( 1 + s1/s01 

'). Figure 4.18 shows the system control effort, the control effort dynamic process finishes 

in 30 steps and is stable at 1.5 volts. 
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4.5 APPROXIMATE SERIES COMPENSATION ADAPTIVE CONTROLLER 

4.5.1 INTRODUCTION TO ALGORITHM 

The series compensation method is a conventional design method which is based 

on frequency domain design. The new approximate series compensation method was 

proposed by Dr. Streets and K.H.H.Lau.[35] The proposed new adaptive algorithm is 

based on his work on s domain but is extended to the adaptive case here. 

The desired system phase margin is PM. 

PM 70 - P0 (4.18a) 

= tan((90 + PM)/2) (4.18b) 

td   (4.18c) 

wc 

where 

P0 is the desired system overshoot, f3 is the width angle of the -1 slope at the 

crossover. td is half of the system response time, w is the crossover frequency. 

From chapter 3, the model of cell-levitation apparatus system is expressed as: 

ke 
G(s) =   (4.19) 

s(s + a) 

According to the conventional series compensation method, the controller could have the 

following structure for a type II system: 
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K(s+b) 
F(s) =  (4.20) 

s(s + c) 

where 

b=w/P, c=wxi3, if a>> w  

According to conventional series compensation method, the desired system is 

expressed in terms of criteria such as the system response time, the system overshoot, and 

the system steady state velocity or acceleration error. So from equation 4.18, for the 

known system response time, td and w can be obtained. The phase margin is known from 

the desired system overshoot, therefore, f3 can be obtained. Thus, controller parameters 

b and c are selected (if a>> w) and finally, using the identified plant model parameters, 

the plant gain K, is determined. 

For an adaptive control system, the system parameters are unknown and need to 

be identified on line. Thus Streets' equations are modified to z, transfer function. 

The controller equation is 

where 

cb0z' + cb1z2 
(4.22) 

1 + ca1z' + ca2z2 

cb0 = k(k1 + k2) (4.23) 

cb1 = -k(k1eT + k2) (4.24) 

cal = -(1 + eT) (4.25) 

Ca2 = e (4.26) 
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b 
k1 = (4.27) 

C 

c - b 
k2 

c 
(4.28) 

T is sampling interval, b and c are the parameters of controller in Laplace form. The plant 

model is expressed as follows: 

b0z' + b1z2 
(4.29) 

1-a1z'+a2z2 

Since 1b11 >> Ib0I and Ia1I >> Ia2I, the gain of the plant model G(s) can be 

approximated very closely as 

k= 
6, a1 
 In( ) 
â1 -1 T 

The following steps explain this new adaptive controller method. 

(4.30) 

Step 1: Calculate controller parameter b and c according to desired criterion.' 

Step 2: Use equation 4.22 to obtain the discrete controller equation parameters. 

step ' 3: Use the identified plant parameters and quation 4.30 to calculate 

system gain k. 

Step-4: Use k and desired closed loop system steady state velocity or acceleration 

gain to get controller gain 1cr. 

When plant model parameter changes, controller parameter k changes accordingly. 
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4.5.2 SIMULATION RESULTS 

In simulation, only two parameters a1 and b0 ( in terms a1z' and b0z2 ) are 

identified. The adaptive controller methods is used to obtain results. The simulation 

results are shown in figures 4.19 to 4.23. The figure 4.19 shows that parameter a1 

converges to -1 in 20 steps, the error is about (1.056-1)11.056, 5% of 1.056. The 

parameter b0 converges to 5.25 in 20 steps, the error is (5.25-5.226)15.226, less than 1% 

of 5.226 . Figure 4.21 shows the system output. The system dynamics last 40 step, the 

overshoot is about (280-200)/200, 40% of 200. Figure 4.22 shows the control effort. The 

control effort dynamic process lasts 40 steps and converge to very small value. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 INTRODUCTION 

The basic experiment conditions are given in section 2.2 and the equipment 

arrangement is shown in figure 2.2. The following modifications are made to 

accommodate the adaptive case. The personal computer described in section 2.2 is used 

not only for the conventional digital PB) controller, but also for the adaptive controller 

and the related identification. In the identification, the exponentially weighed least squares 

method given in section 3.3.3 by equations 3.9a and 3.9b is implemented. For the real 

time control, the pole assignment algorithm of section 4.2 covering equations 4.3 to 4.6b 

and P1 adaptive controller of section 4.3 covering 4.7a to 4.7f are implemented. 

Compared with the experiment procedures described in section 2.2, the following 

procedures and modifications are used for the adaptive control. The experiment starts at 

a high frequency of 5x106 Hz using the conventional digital PID controller. Then the 

noise is added into the system, and identification is continued until the parameters 

converge. Then the system switches to the adaptive controller. When system output is 

stable into 200±1 pixel which is the control aim, identification is stopped to keep the cell 

in position. After sampling 25 data in this frequency as described in section 2.2, the 

system automatically scans to a lower frequency and samples data again. This procedure 

continues until system output exceeds the 200±1 band. The identification mechanism is 

restarted and continued until the parameters converge to new value. The new controller 

parameters are adopted. The system is stable in 200±1 and the procedure is used to scan 
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the complete frequency range. 

In identification, the forgetting factor in exponentially weighed least squares 

method is varied from 0.95 to 1. The values of the last 20 steps are averaged to get a 

more accurate result. The PRBS noise is externally applied at the reference input, and its 

amplitude is ±4, 2% of set point reference signal. The identification process length is 

determined by comparing different step length such as 30 steps and 50 steps by the 

experiment. 

Table 5.1 shows the relation between identification results and identification steps. 

The experiment conditions are given below. 

The cell diameter is 30 pm, the distance between the cell and the electrode is 200 

TABLE 5.1 RELATION BETWEEN IDENTIFICATION AND STEP LENGTH 

test order b0 in group 1 b0 in group 2 

1 -6.236 -4.823 

2 -5.208 -5.845 

3 -5.456 -5.183 

4 -5.248 -5.122 

5 -5.187 -5.145 

6 -5.291 -4.400 

7 -4.808 -5.208 

8 -5.240 -5.211 

9 -5.670 -4.447 

10 -5.215 -4.941 

average -5.36 -5.032 

Max +10.3% +16.1% 

Mm -10.3% -12.6% 
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pixel ( 70 pm), the frequency is 5x106 Hz. The test is divided into two groups, 

each group is repeated 10 times. The group 1 has a length of 50 steps, and group 2 has 

a length of 30 steps. 

Table 5.1 shows that group 1 is more accurate than group 2. That is the maximin 

error and minimum error in group 1 are smaller than group 2. Longer step identification 

is very time consuming, and considered unnecessary. So 50 steps was selected. 

The system output, control effort, parameters al and bO at different frequencies 

are obtained in detail. 

5.2 POLE ASSIGNMENT ADAPTIVE CONTROLLER 

5.2.1 THE SYSTEM CHARACTERISTICS FOR THE STARTING PHASE 

The pole assignment adaptive controller from section 4.2 is used as a starting 

point. Figures 5.1 to 5.4 show the results of the adaptive control. From these results, 

some observations are obtained. 

a) in first 50 steps, parameters al and bO ( in figure 5.1 and 5.2) converge to - 1.04 

and -3.8 respectively. 

b) after 50 steps, the system switches to the pole assignment adaptive control 

algorithm. Figure 5.3 shows that, when the system switches, the system has a dynamic 

overshoot, to the peak value of 230, 15% of reference value. After this process, this 

system settles to the 200±1 range, which is what is wished. 

5.2.2 THE SYSTEM CHARACTERISTICS IN LOW FREQUENCY BAND 

The figures 5.5 to 5.12 show typical sets of control results of pole assignment 

adaptive control system in low frequency for frequency of 8x104 Hz and 5x104 Hz. 
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Identification mechanism is started and parameters are updated. From these results, some 

observations are obtained. 

a) The parameters a1 and b0 converge to - 1.046 from -1.045 and -2.3 from -2.45 

respectively at frequencies 8x104 Hz. At frequency 5x104 Hz, they converge to - 1.044 

from -1.043 and to - 1.75 from - 1.9 respectively. These results verify off-line 

identification, the parameter a1 basically does not change, but the parameter b0 reduces 

as the frequency changes to lower value. This is shown in figures 5.5, 5.6, 5.9 and 5.10). 

b) When the noise is added into the system reference input, the system output has 

a relatively large perturbation. The peak value is about ±15, 7.5% of the reference. In 100 

steps, the system output is stable into the 200±1 range as shown in figures 5.7 and 5.11. 

c) The control value becomes larger when frequency becomes lower. At frequency 

5x106 Hz, control value is about 2.1 Volt, and at 8x104 and 5x104, it becomes 3.5 Volt 

and 5.1 Volt respectively. 

The above-mentioned three points resemble the following analysis of the system. 

From the view of control engineering, the parameter b0 reduction means that the system 

steady state gain becomes smaller, so in order to obtain the same output value 200, the 

control voltage value should be larger. Or from the system mechanical model, if the 

electric force equals the Fmg of the cell, the system output does not change. So the 

control aim is to make the electric force constant when frequency changes. The relation 

between controller voltage and electric force is V2 oc FD, i.e FD U = K(f)V2. If K(f) 

becomes smaller with frequency reduction, V should become larger. 
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5.3 P1 ADAPTIVE CONTROLLER 

Although the pole assignment adaptive control system can obtain good control 

result, a number of observations of control system quality showed that when the cells are 

light in colour, which may be from being out of focus, switching dynamics between 

conventional PD controller and the pole assignment adaptive controller make the image 

processing part unable to catch the cells correctly, the controller looses control and cells 

drop to bottom. 

5.3.1 SYSTEM CHARACTERISTICS IN STARTING PHASE 

Figures 5.13 and 5,14 show the convergence of parameters a1 and b0 at frequency 

1x106 Hz. Figure 5.15 shows that the system output does not have large dynamics. Peak 

value in whole identification process is ±2, 1% of the reference value, much better than 

using the pole assignment adaptive controller. Especially, there is no dynamic process 

between conventional PID controller and adaptive controller. This is the main advantage 

of this method. 

5.3.2 SYSTEM CHARACTERISTICS IN LOW FREQUENCY BAND 

Figures 5.17 and 5.18 show that the parameters a1 andb0 converge to - 1.009 from 

-1.014 and -1 from - 1.4 respectively at frequency 1600 Hz. Figures 5.19 and 5.20 show 

the system input/output and control effort respectively at frequency 1600 Hz. 

The observations of control system quality over 80 tests indicate that this method 

gives good control for cells with widely varying parameters, and also gives good control 

for system startup. So it is adopted as the main control algorithm. 
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CHAPTER 6 

CONCLUSIONS 

The objective of the thesis was to design and implement an adaptive controller for 

the cell-levitation apparatus. The work described in the thesis can be divided into: 

(a) development of the model of cell-levitation apparatus which is based on 

mechanical analysis, and FF1', least squares, extended least squares, instrumental variable, 

maximum likelihood, generalized least squares, correlation least squares two step and 

nonlinear least squares method. The parameters of the cell-levitation apparatus system are 

obtained for the first time. 

(b) development of the adaptive control system of cell-levitation apparatus based 

on four adaptive control algorithms, pole assignment adaptive controller, PT adaptive 

controller, pole-shifting dual loop adaptive controller and approximate series compensation 

adaptive controller. 

(c) real-time implementation of the several adaptive control algorithms. 

6.1 MODEL OF CELL-LEVITATION APPARATUS 

The first contribution of this thesis is to give the model of cell-levitation apparatus. 

From the mechanical analysis of cell-levitation apparatus, a model of the second order 

structure considering disturbance is obtained. The advantage over the model in references 

is that it is considering a disturbance, so a more accurate model to describe the system 

is obtained, and then the model parameters are identified so that the parameterized model 

is obtained first time. 
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6.2 ADAPTIVE CONTROL SYSTEM 

The second contribution of this thesis is to propose two adaptive controllers, one 

is pole shifting dual loop adaptive controller, the other is an approximate series 

compensation adaptive controller. The first method is mainly to overcome the weakness 

of a lot of PD adaptive controllers which can not handle an open loop unstable system. 

The second new algorithm is also a new adaptive control method which is especially 

suitable to the system with pure integral part. Other two adaptive controllers are also used 

in system design, they are pole assignment adaptive controller and P1 adaptive controller. 

The simulation results show that these methods can obtain good results. 

6.3 REAL-TIME IMPLEMENTATION 

In realtime application, pole assignment adaptive controller and P1 adaptive 

controller are used. Control results show that both methods can obtain good control 

results. They reduce the operator work and make the system easier to use and user 

friendly. 

6.4 FURTHER RESEARCH 

The work of this thesis makes the system easier to use. Because the purpose of 

this cell-levitation apparatus is to make the square of control variation minimum, some 

new adaptive algorithms should be proposed. These algorithms should be able to not only 

make system stable but also make the control effort minimum. 
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