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Heat shock protein-90-alpha, a prolactin-STATS target gene
identified in breast cancer cells, is involved in apoptosis

regulation
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Abstract

Introduction The prolactin-Janus-kinase-2-signal transducer
and activator of transcription-5 (JAK2-STAT5) pathway is
essential for the development and functional differentiation of
the mammary gland. The pathway also has important roles in
mammary tumourigenesis. Prolactin regulated target genes are
not yet well defined in tumour cells, and we undertook, to the
best of our knowledge, the first large genetic screen of breast
cancer cells treated with or without exogenous prolactin. We
hypothesise that the identification of these genes should yield
insights into the mechanisms by which prolactin participates in
cancer formation or progression, and possibly how it regulates
normal mammary gland development.

Methods We used subtractive hybridisation to identify a
number of prolactin-regulated genes in the human mammary
carcinoma cell line SKBR3. Northern blotting analysis and
luciferase assays identified the gene encoding heat shock
protein 90-alpha (HSPI0A) as a prolactin-JAK2-STAT5 target
gene, whose function was characterised using apoptosis
assays.

Results We identified a number of new prolactin-regulated
genes in breast cancer cells. Focusing on HSP90A, we
determined that prolactin increased HSP90A mRNA in

cancerous human breast SKBR3 cells and that STAT5B
preferentially activated the HSP90A promoter in reporter gene
assays. Both prolactin and its downstream protein effector,
HSP90a, promote survival, as shown by apoptosis assays and
by the addition of the HSP9O0 inhibitor, 17-allylamino-17-
demethoxygeldanamycin  (17-AAG), in both untransformed
HC11 mammary epithelial cells and SKBR3 breast cancer cells.
The constitutive expression of HSP90A, however, sensitised
differentiated HC11 cells to starvation-induced wild-type p53-
independent apoptosis. Interestingly, in SKBR3 breast cancer
cells, HSP90a promoted survival in the presence of serum but
appeared to have little effect during starvation.

Conclusions In addition to identifying new prolactin-regulated
genes in breast cancer cells, we found that prolactin-JAK2-
STATS induces expression of the HSP90A gene, which
encodes the master chaperone of cancer. This identifies one
mechanism by which prolactin contributes to breast cancer.
Increased expression of HSP90A in breast cancer is correlated
with increased cell survival and poor prognosis and HSP90a
inhibitors are being tested in clinical trials as a breast cancer
treatment. Our results also indicate that HSP90o promotes
survival depending on the cellular conditions and state of cellular
transformation.

Introduction
The proliferation and functional differentiation of mammary epi-
thelial cells is highly dependent on the action of prolactin [1].

These effects of prolactin are mainly mediated through the pro-
lactin receptor Janus kinase-2-signal transducers and activa-
tors of transcription-5 (JAK2-STAT5) pathway, and results in

17-AAG: 17-allylamino-17-demethoxygeldanamycin; bp: base pairs; C/S: cytokine inducible SH2 containing protein; EGF: epidermal growth factor;
ERBB2: erythroblastic leukaemia viral oncogene homolog 2; HRP: horseradish peroxidase; HSP90: heat shock protein 90; JAK2: Janus kinase-2;

STAT: signal transducers and activators of transcription.
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mammary epithelial cell proliferation and the differentiation of
alveolar cells during pregnancy. On weaning, a large propor-
tion of these alveolar cells die off in a massive wave of apopto-
sis and tissue remodelling [2]. Generally speaking, prolactin
and STATS5 are thought to induce genes for survival in the dif-
ferentiated cells, while STAT3 is thought to induce genes
required for apoptosis [3].

Prolactin signalling has also been implicated in mammary and
breast cancer, including invasive [4] and non-invasive breast
cancer [5-7]. The transgenic expression of prolactin results in
increased tumour formation in mice [8-10]. Crossing prolactin-
deficient mice with oncogenic polyoma middle-T antigen
transgenic mice demonstrated that prolactin decreased the
latency of tumour formation and increased tumour growth
[11]. Using a cross with SV-40T oncogene transgenics and
prolactin receptor null mice, and transplant of the epithelium to
endocrine normal mice, the prolactin receptor was demon-
strated to increase neoplasia and positively impact the transi-
tion to invasive carcinoma [12].

In humans, high serum prolactin levels increase the risk of
breast cancer for women [4,7,13]. Although expression of the
prolactin receptor is more often found in oestrogen receptor-
positive breast tumours, which tend to have a better progno-
sis, it is also found in many oestrogen receptor-negative breast
tumours [14]. The gene encoding the prolactin receptor is also
highly expressed in a subset of breast tumours with poor prog-
nosis and is part of a set of prognostic gene markers [15]. Pro-
lactin is not only secreted by the pituitary gland, but is also
produced locally in the majority of breast tumours and is
thought to act in an autocrine and/or paracrine fashion [6].
Although prolactin can transduce signals through multiple
pathways, the activation of STAT family members, which are
downstream of prolactin and other growth factors has also
been implicated in tumourigenesis [16,17]. Prolactin-regu-
lated target genes are not yet well defined in breast cancer
cells. Only recently have large-scale attempts at identifying
prolactin target genes been performed using the mammary
gland and these have been limited to normal mammary epithe-
lial cells [18-24].

The heat shock protein 90-alpha (HSP90a) protein is referred
to as the cancer chaperone [25,26], a molecular chaperone of
proteins involved in essential signal transduction pathways
regulating proliferation, differentiation, apoptosis, angiogen-
esis, metastasis, oncogenesis [27-29], genetic variation
[30,31], invasion [32] and cellular transformation [33]. It is dis-
tinct from HSP9OP [34], a protein encoded by a related gene,
which is constitutively expressed. HSP90a gene expression is
elevated in breast cancers [35-37] and is correlated with
decreased patient survival [35-37]. HSP90 inhibitors bind
specifically and preferentially to HSP90a and B in cancerous
cells versus normal cells [38]. Inhibition of HSP90 results in
the proteosomal degradation of many HSP9O0 client proteins.
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Client proteins include erythroblastic leukaemia viral onco-
gene homolog 2 (ERBB2) and AKT/protein kinase B [39] and
their loss results in apoptosis. HSP90 inhibitors, such as
geldanamycin derivatives like 17-allylamino-17-demethoxy-
geldanamycin (17-AAG), have entered clinical trials for the
treatment of breast and prostate cancer and melanoma
[27,40,41].

Prolactin-regulated target genes in breast cancer cells are
likely to also function in normal cells, but under appropriate
regulation. We hypothesised that prolactin-regulated genes in
breast cancer cells would also have important functions in
non-transformed mammary epithelial cells and may potentially
contribute to cancer progression when deregulated. Using a
subtractive hybridisation approach, we identified a number of
cancer-related genes whose expression is modified by the
addition of prolactin in the human breast adenocarcinoma cell
line, SKBR3. We specifically identified the therapeutically
important gene, HSP90A as a STAT5 regulated target gene.
HSP90A appears to regulate survival differentially depending
on the cellular levels of its protein product HSP90q, the pres-
ence of survival factors and the status of cellular transforma-
tion.

Materials and methods
Antibodies

Polyclonal rabbit antibodies against HSP90a were acquired
from StressGen (Victoria, BC, Canada), and rabbit anti-
STATSB from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Mouse anti-phospho-histone 2A.X (Ser139) clone
JBW301 and anti-GRB2 antibodies (Upstate, Charlottesville,
USA) and mouse anti-GRB2 (BD Biosciences, Ontario, Can-
ada) were also acquired. GRB2 was used as a loading control
[42].

Plasmids

The HSP90A-luciferase reporter gene contains about 1.8 kb
of promoter sequences (Xho I-Hind ll) of the human HSP90A
gene cloned into pLux F3 (KS89 a XL Lux). Expression con-
structs for the B-galactosidase gene, STAT5A and STAT5B
[43], STAT1 and STAT3 (pME18S) and prolactin-receptor
[44] have been described. The DNA encoding human
HSP90A (2199 bp, accession number [GenBank:X15183])
was amplified by PCR from cDNA prepared from SKBR3 cells
(SMART cDNA synthesis kit, Clontech Laboratories, Mountain
View, CA, USA). The resulting DNA was cut with Bam HI and
Not | (New England Biolabs, Ipswich, MA, USA) (adaptors on
the primers), subcloned into pcDNA 3.1/Zeo(+) behind the
constitutively active cytomegalovirus immediate early pro-
moter (CMV) and the expected sequence verified.

Cell culture and cell lines

SKBRS cells, a human breast cancer cell line, were grown in
Dulbecco's Modified Eagle Medium with L-glutamine and 10%
fetal bovine serum. Undifferentiated HC11 cells, a mouse
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mammary epithelial cell line [45], were cultured in RPMI with
fetal bovine serum and maintained in 0.01 pug/ml epidermal
growth factor (EGF) and 5 ug/ml insulin. Confluent cells
became competent to respond to lactogenic hormones after
incubation in 0.01 pg/ml EGF for one to four days and then 5
pg/ml insulin and 1 x 107 M dexamethasone for one day
(option if treating with EGF for only one day). Differentiation
was then induced (for three days if insulin and dexamethasone
pre-treatment was used, or four days if not) with 1 x 107 M
dexamethasone, 5 ng/ml insulin and 5 ng/ml prolactin. Undif-
ferentiated HC11 cells were transfected with HSP9OA-
pcDNA 3.1/Zeo(+) (HC11-HSP90a) or the empty vector
pcDNA3.1/Zeo(+) (HC11-EV) using Lipofectamine 2000
(catalogue 11668-019, Invitrogen Corporation, Carlsbad, Cal-
ifornia, USA) according to the manufacturer's instructions.
Transfected cells were selected as a pool with zeocin treat-
ment and constitutive expression was verified by both northern
and western blotting.

Subtractive hybridisation libraries

RNA was prepared (RNeasy, Clontech, Heidelberg, Germany)
from SKBR3 cells seeded at 1 x 108and 2 x 106 cells per 15
cm plate, starved of fetal bovine serum the following day for 16
hours and then treated with or without 5 ug/ml prolactin for 60
minutes in the presence of 10 nM cycloheximide. The subtrac-
tion hybridisation libraries were prepared using the SMART
PCR cDNA Synthesis Kit and the PCR Select Subtractive
Hybridization kit (Clontech, Heidelberg, Germany), and
probed using the PCR Select Differential Screening kit (Clon-
tech, Heidelberg, Germany). Positive clones were sequenced
to obtain their identity.

Northern blotting

Total RNA was extracted using peqGOLD Trifast (peqLab,
Erlangen, Germany) and resolved on a formaldehyde agarose
gel. The blot was blocked using ExpressHyb (Clontech, Hei-
delberg, Germany), and hybridised with radioactively labelled
probes (Strip-EZ DNA, Ambion, AMS Biotechnology Ltd). A
DNA probe encoding exon 3 of the human CIS gene [46] was
amplified using the forward primer 5-GCT GGT ATT GGG
GTT CC-3' and the reverse primer 5'-TGA GGG CTC TGT
ACA TGA AAG-3' The fragments were gel purified (Qiaquick
Gel Extraction Kit, Qiagen GmbH, Hilden, Germany).

Electrophoretic mobility shift assays

Electrophoretic mobility shift assays using a radioactively
labelled fragment of the bovine B-casein promoter were per-
formed as described [47]. Essentially the double strand STAT
responsive element from the B-casein promoter was prepared
and radioactively labelled before incubation with protein
extracts. The complexes were resolved on a non-reducing gel
and autoradiographed.
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Transfection and luciferase assays

Transfection using calcium chloride and luciferase assays
using Hela cells was performed as described [48] using over-
night treatments with 5 pg/ml prolactin. A B-galactosidase
gene was included to compare transfection efficiencies in indi-
vidual experiments.

Western blotting

Soluble protein extracts were prepared in a buffer containing
1% Nonidet-P-40, 50 mM Tris pH 7.5, 5 mM ethylene glycol
tetraacetic acid and 200 mM sodium chloride, with freshly
added protease and phosphatase inhibitors: 1 mM sodium
vanadate, 20 uM phenylarsine oxide, 1 ng/ml leupeptin, 0.5
pg/ml aprotinin, 100 pM phenylmethylsulphonyl! fluoride and 1
mM DTT. After protein concentrations were measured with the
Bio-Rad Assay, 50 nug of each lysate was resolved by 15%
SDS-PAGE and then transferred to Hybond-P PVDF transfer
membrane (catalogue RPN303F, Amersham, GE Healthcare,
Baie d'Urfé, Québec, Canada). The membrane was blocked in
5% non-fat milk in tris-buffered saline with 0.05% Tween 20
and incubated with 1 pg/ml of primary antibody mouse anti-
phospho-histone H2A.X (Ser139), clone JBW301 (Upstate,
Millipore, Billerica, MA, USA) followed with horseradish perox-
idase (HRP)-conjugated goat anti-mouse secondary antibody.
The signal was developed by solutions prepared with 250 mM
luminal solution, 90 mM p-coumaric solution, 1 M Tris pH 8.5
and 30% hydrogen peroxide.

Apoptosis assay

HC11 cells transfected with either the empty vector HC11-EV
or with the HSP90a. expression construct (HC11-HSP90w)
were plated at 130,000 cells/well of a 96-well plate and differ-
entiated as above, then starved by the absence of serum and
hormones. SKBRS cells were plated at 10,000 cells/well. The
presence of mono- and oligo-nucleosomes in the cytoplasm
were qualitatively measured using the Cell Death Detection
Elisa Plus Kit (Roche, Mississauga, ON, Canada). Essentially,
protein extracts were incubated with anti-DNA (HRP-coupled)
and anti-histone (biotin coupled) antibodies, before incubation
in streptavidin-coated 96-well plates. Colorimetric detection
was performed at the absorbance wavelength of 405 to 490
nm.

Results
SKBR3 human breast carcinoma cells are responsive to

prolactin through STAT5-mediated gene transcription

To investigate the role of prolactin in breast cancer, we set out
to identify prolactin responsive genes in the breast cancer cell
line, SKBR3. We first examined the prolactin-based activation
of STAT5 and the induction kinetics of previously identified
STAT5-dependent genes. SKBR3 cells were treated with dif-
ferent doses of prolactin and the activated DNA-binding form
of STATS was visualised in electrophoretic mobility shift
assays (Figure 1a). The experiment shows that prolactin is
able to activate STAT5 in SKBR3 cells in a dose-dependent
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Prolactin-STAT5-mediated signal transduction in SKBR3 cells. (a)
Electrophoretic mobility shift assays were carried out with a radioac-
tively labelled B-casein gene promoter probe and protein extracts of

SKBRS cells treated for one hour with the indicated amounts of prolac-

tin (PRL). The arrows indicate the positions of the signal transducers
and activators of transcription (STAT5) DNA complex and of a super-
shifted complex formed in the presence of a STAT5 specific antibody
(Ab). (b) SKBR3 cells were seeded one day, the next day starved of
serum overnight and the following day were stimulated (or not) with 5
pg/ml prolactin for the times indicated in the absence of cycloheximide
(CHX) unless indicated. In each lane 20 pug of RNA were applied. The
northern blot was first hybridised with labelled DNA encoding cytokine
inducible SH2 containing protein (CIS) and then rehybridised with a

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) specific probe.
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manner. A STAT5 specific antibody was used to confirm the
specificity of the protein-DNA complex (Figure 1a). Prolactin
stimulation of 60 minutes resulted in activation and binding of
STAT5 to DNA response elements present in the B-casein
promoter. Of note is the lack of STAT5S activation in the
absence of prolactin stimulation. SKBR3 cells have previously
been shown to express the prolactin gene [49], but perhaps
the endogenous levels of prolactin are not sufficient to induce
activation of the JAK2-STAT5 pathway.

We next followed the kinetics of cytokine-inducible-SH2-con-
taining protein (C/S) mRNA induction as a function of prolactin
treatment of SKBR3 cells. The C/S gene [50] is a known tar-
get of the JAK2-STAT5 pathway activated by interleukin-2 or
erythropoietin in lymphoid cells and is important for feedback
inhibition [51,52]. The amount of C/S mRNA increased within
60 minutes of treatment and was further enhanced in the pres-
ence of cycloheximide, an inhibitor of protein synthesis (Figure
1b). The level of C/S mRNA reached a maximum at four hours
and remained high for at least 18 hours. This confirmed that
SKBRS cells are appropriate to study the early induction of
prolactin-JAK2-STAT5-regulated genes and that a time point
of 60 minutes would result in the production of early target
genes.

Prolactin-regulated genes in SKBR3 breast cancer cells
To identify additional genes regulated by prolactin in SKBR3
cells, we prepared subtraction hybridisation libraries. Based
on the above observations, SKBR3 cells were treated for 60
minutes with 5 pg/ml prolactin and the RNA was used for
preparation of the subtractive hybridisation libraries. Cyclohex-
imide was added to cell preparations, both untreated and
treated with prolactin in order to avoid identification of second-
ary targets. We prepared subtraction libraries for the genes
differentially expressed on prolactin treatment (forward) and
for genes expressed in the absence of prolactin (reverse). The
two libraries were used in the differential screen for prolactin-
regulated genes. About 1200 gene fragments were screened
from the forward library and 770 from the reverse library.
Genes were screened using Southern blotting in batches of
100 genes using the forward and reverse libraries as probes.
The genes with the most intense differential signal on each
blot, as measured using a Biorad phosphoimager (Bio-Rad,
Munich, Germany), were selected for sequencing. Seventy-
two positive clones selected on the basis of high expression in
the forward (Table 1) or reverse libraries (Table 2) were
sequenced and identified. Some genes were observed more
than once (Tables 1 and 2), also indicating high differential
expression. Of the 51 genes represented, 19 genes with the
highest expression levels were rescreened in dot-blots using
both the unsubtracted probes (cDNA) and subtracted probes
and the expression patterns of 16 of the 19 genes were con-
firmed (86%) (Tables 1 and 2).
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Table 1

Forward library - Genes upregulated in the presence of prolactin

Confirmed Observed Function Accession number Protein name

RNA-related functions

mRNA splicing [Swiss-Prot:Q81YB3 Serine/arginine-related nuclear matrix protein
mRNA transport [Swiss-Prot:Q8N1F7 KIAA0095 protein, Nup93
2 RNA-binding protein [Swiss-Prot:P09651 Heterogeneous nuclear ribonucleoprotein A1

Chaperone

* 5 Heat shock [GenBank:BAA13431] Heat shock protein 90 alpha and beta
[Swiss-Prot:075322]

2 Heat shock [GenBank:AAD11466] Heat shock 70 KD protein 1 and 2 and heat
[GenBank:AAD21817] shock 70 KD protein 1-like
[GenBank:AAD21815
[GenBank:AAD21816
[Swiss-Prot:P34931

Part of the TCP1 complex [GenBank:CAG33352] TCP-1-beta, CCT-beta
ER-resident chaperone [Swiss-Prot:P06761 GRP78, BiP

Protein synthesis

* 5 Protein synthesis [Swiss-Prot:Q14222 Elongation factor-1 alpha
Upregulated in metastasis [Swiss-Prot:Q9NQ50] 39S ribosomal protein L40, mitochondrial

precursor, L40mt, MRP-40

Electron transport

* 2 Oxidative phosphorylation [GenBank:AAD13930]  Mitochondrial hinge protein, OXPHOS system
complex lll mitochondrial subunit

Mitochondrial electron transport chain [Swiss-Prot:Q15070 inner membrane protein OXA1L, mitochondrial
precursor

Mitochondrial electron transport chain [GenBank:BAA77673] NADH dehydrogenase subunit 4

Transport

ER-to-Golgi transport [Swiss-Prot:075935 Dynactin subunit 3, dynactin complex subunit 22
kDa subunit, p22

Proteasome

Regulatory subunit of proteasome [Swiss-Prot:Q13041 268 proteasome regulatory subunit S2, p97,

function tumour necrosis factor type 1 receptor-associated
protein 2

Proteasome [Swiss-Prot:P25789 Proteasome component C9, macropain subunit
C

Ubiquitination

Heterodimerising with cullin-1 to [GenBank:AAD29715] Ring box protein 1

catalyse ubiquitin polymerisation

Survival

* Survival [GenBank:AAB87479] TEGT protein, BAX inhibitor 1
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Table 1 (Continued)

Forward library - Genes upregulated in the presence of prolactin

* 2 Caspase-9 inhibition [Swiss-Prot:000165 HA1-associating protein Hs1-binding protein
Miscellaneous
Activity in milk [Swiss-Prot:P07195 L-lactate dehydrogenase H chain LDH-B
2 ECM-receptor interaction [GenBank:BAA76814] KIAA0970 protein, fibronectin type Ill domain
containing 3A
Toll-like receptor-mediated interferon [GenBank:AAD34590] T2K protein kinase homolog (mouse)
response
* 2 Iron storage [Swiss-Prot:P02794 Ferritin heavy chain, ferritin H subunit

Endosome location

Regulation of nonmuscle myosin Il
nucleic acid synthesis
Retaining proteins in the ER

Peptide-modifying enzyme component

[Swiss-Prot:Q99805

[Swiss-Prot:014950
[Swiss-Prot:P30085
[Swiss-Prot:Q08013
[Gi:2894085]

Transmembrane 9 superfamily protein member 2
precursor, p76

Myosin regulatory light chain
UMP-CMP kinase 1, cytidylate kinase
TRAP gamma, SSR-gamma

P40 mRNA for lanthionine synthetase C-like
protein 1

Prolactin-regulated genes. cDNA fragments identified preferentially in the forward library (presence of prolactin) was sequenced. Sequences
that were identical to those that encoded human proteins are presented using the protein accession number. Genes that were identified more
than once are indicated as the number of times observed. Genes that were confirmed by a second screen are marked with an asterisk.

BAX = Bcl2-associated X protein; BiP = binding protein; CCT-beta = chaperonin-containing TCP-1 complex; UMP-CMP = citidine
monophosphate; ER = endoplasmic reticulum; GRP78 = 78 KD glucose-regulated protein precursor; NADH = nicotinamide adenine dinucleotide
plus hydrogen; Nup93= nuclear pore complex protein; NF45 = nuclear factor of activated T-cells 45 kDa; OXA1L = oxidase assembly 1-like
protein; OXPHOS = oxidative phosphorylation; TCP-1-beta = T-complex protein 1, beta subunit; TEGT = testis enhanced gene transcript; TRAP
gamma = translocon-associated protein, gamma subunit; SSR-gamma = signal sequence receptor gamma subunit.

Although there were no pre-existing large studies of prolactin-
regulated genes in breast cancer cells, we compared our
results with other prolactin-related studies. Of note, 11 of the
genes we identified overlapped with those previously identi-
fied as downstream targets of the prolactin pathway. In one
study, prolactin gene targets were identified by gene array
using regenerated mammary glands from prolactin-receptor-/-
and cyclin D-/- mammary epithelial cell transplants. Cyclin D1
was thought to represent a secondary target of prolactin, and
therefore genes identified in this screen would represent
effectors downstream of prolactin and upstream of cyclin D1
[18]. Although the transplants were nontransformed cells,
unlike SKBR3 cells, we noted some similarities. Genes that
were identical in this study and our report include the genes
encoding the mouse ferritin heavy chain gene, HSPs 70, 71
and 84 (HSP90B). We also found overlap with prolactin-reg-
ulated genes identified in the rat Nb2-11¢ lymphoma cell line
[63], including HSP70 and HSP86 (HSP90A). Genes found
to be similar (either functionally related or different subunits of
a complex) between these two studies and ours include Sec
23 [18] and Sec 22 [563] (similar to Sec 24 in our study), elon-
gation factor 2 [18,53] (similar to elongation factor 1 alpha),
lactate dehydrogenase 1 A chain [18] (similar to lactate dehy-
drogenase H chain), myosin heavy chain (similar to myosin
regulatory light chain), T-complex protein 1 e and h subunits
[53] (similar to T-complex b subunit). The degree of overlap
with the prolactin-regulated genes of these two studies is
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comparable with the level previously described between other
prolactin target gene studies [19]. The diversity of the gene
lists found in each study is thought to derive from the differ-
ences between experimental conditions, cell types and meth-
ods.

HSP90A is a prolactin-induced gene in SKBR3 human
breast cancer cells

The gene HSPI90A was identified five times in the initial group
selected for sequencing; and based on its high representation,
differential expression and its function in cancer cells, was
used for further analysis.

We used northern blotting analysis to independently verify the
induction of the HSP90A gene in SKBR3 cells by prolactin.
We plated cells at two different confluences (about 40% and
60% confluent on the day of stimulation) as was performed for
the preparation of the library. Both populations responded to
60 minutes of prolactin treatment with the increase in
HSPI90A mRNA, but the dose response of HSPI0A induction
in the two-cell population was distinguishable. Cells at the
higher confluence exhibited a maximal response at 1.5 ug/ml,
whereas cell at lower confluence required 5 ug/ml for maximal
induction (Figure 2a). Higher concentrations of prolactin
reduce the maximal response. The observed lower level of
total RNA in high confluence cells treated with 10 png/ml prol-
actin, and potentially the inhibitory presence of CIS, may
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAD34590
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P02794
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q99805
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O14950
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P30085
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q08013

Table 2
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Reverse library - Genes upregulation in the absence of prolactin

Confirmed Observed Function

Accession number

Protein name

RNA-related functions

Splicing factor

Translational regulation

[Swiss-Prot:075533

[Swiss-Prot:Q8TB72

Splicing factor 3B subunit 1, spliceosome-
associated protein 155

Pumilio homolog 2, pumilio-2, KIAA0235 fragment

Chaperone

Chaperone

[Swiss-Prot:060925

Prefoldin subunit 1

Protein synthesis

Activates the trk oncogene

[Swiss-Prot:P62424

60S ribosomal protein L7A, surfeit locus protein 3,
PLA-X polypeptide

Electron transport

Electron transport

Selenium metabolism and
protection oxidative stress

Electron transport

[GenBank:AAC25442
[Swiss-Prot:Q99475

[RefSeq:NP_055217] +
[GenBank:EAW62308
[GenBank:AAH90048
[GenBank:AAH01390
[Swiss-Prot:014949

NADH dehydrogenase subunit 2 homo sapiens

Km-102-derived reductase like factor, thioredoxin
reductase

Ubiquinol-cytochrome c reductase complex
ubiquinone binding protein QP-C, complex Il
subunit VII

Transport

* Vesicle trafficking protein transport

* Protein transport

[GenBank:BAA07558

[GenBank:CAI15005

Hypothetical protein KIAAO079, HA3543, SEC24-
related protein C

Coatomer alpha subunit, Alpha-COP

Proteasome

Proteasome

[Swiss-Prot:P25788

Proteasome component C8, macropain subunit C8,
proteasome subunit alpha type 3 multicatalytic
endopeptidase complex subunit C8

Ubiquitination

Deubiquitinating enzyme tumour

suppressor

Ubiquitin-specific protease
cysteine proteases

Ubiquitin cycle

[GenBank:BAA74872

[GenBank:AAH64516
[GenBank:NP_005144
[Swiss-Prot:Q14694
[GenBank:ABM86690
[GenBank:ABM83479

[G1:4929720]
[GenBank:NP_057490
[Swiss-Prot:Q9Y3C8
[GenBank:AF151884

KIAA0849 protein, CYLD gene

KIAA0190 ubiquitin specific peptidase 10

Ubiquitin-fold modifier conjugating enzyme 1
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http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8TB72
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60925
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P62424
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAC25442
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q99475
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EAW62308
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005144
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q14694
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABM86690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABM83479
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_057490
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9Y3C8
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF151884
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Table 2 (Continued)

Reverse library - Genes upregulation in the absence of prolactin

Transcription factors

Transcription factor

[Swiss-Prot:Q12905

Interleukin enhancer-binding factor 2, NF45 protein

Transcription factor complex, RNA  [GenBank:CAA10029 NS1-binding protein
binding
Miscellaneous
* 2 N-oligosaccharyl transferase [GenBank:CAB41763 DJ343K2.2.1, ribophorin Il isoform 1
complex
Unknown [Swiss-Prot:095801 Tetratricopeptide repeat protein 4
Kinase [GenBank:BAA76815 KIAA0971 protein, FAST kinase domains 2
Mitochondrial fusion [Swiss-Prot:095140 MFN2, KIAA0214 protein, CPRP1
[GenBank:AAD02058
Calcium binding [Swiss-Prot:P62158 Calmodulin
Glycolytic and gluconeogenesis [Swiss-Prot:P06733 Alpha-enolase, 2-phospho-D-glycerate hydro-lyase,
pathways Second product- enolase 1, MBP-1, plasminogen-binding protein
transcription factor
2 Palmitoyl-(protein) hydrolase [PIR:I58097] Palmitoyl protein thioesterase precursor, EC
activity 3.1.2.22
* Iron ion transport [GenBank:gi:37432 Transferrin receptor, p90, CD71
* 2 Unknown OR Wht signalling [GenBank:gi:1167502 Hypothetical protein TI-227H wnt 13
pathway [GenBank:gi:1524104

Prolactin-regulated genes. cDNA fragments identified preferentially in the reverse libraries (absence of prolactin) were sequenced. Sequences
that were identical to those that encoded human proteins are presented using the protein accession number. Genes that were identified more

than once are indicated as the number of times observed. Genes that were confirmed by a second screen are marked with an asterisk.
Alpha-COP = alpha coat protein; CPRP1 = caprine prolactin-related protein-1; CYLD = cylindromatosis; FAST = Fas-activated serine/threonine;
MFN2 = mitofusin-2, transmembrane GTPase; MBP-1 = C-myc promoter-binding protein; NADH = nicotinamide adenine dinucleotide plus
hydrogen; NS1 = non-structural 1 protein; NF45 = nuclear factor of activated T-cells 45 kDa; wnt 13 = wingless-type MMTV (mouse mammary

tumour virus) integration site family, member 2B.

explain the reduction in signal observed in higher confluence
cells at 10 ug/ml. Another alternative is that the high concen-
tration of prolactin induced a refractory state of prolactin signal
transduction [54]. These results confirm that the HSP90A
gene is a prolactin-regulated gene in the human mammary car-
cinoma cell line, SKBR3.

We then investigated whether there was an increase in the
encoded protein HSP90a. in prolactin-treated SKBR3 cells.
SKBR3 cells were cultured in the absence or presence of pro-
lactin and protein extracts were resolved by SDS-PAGE.
Western blotting using antibodies directed against HSP90a
indicated that there is a two-fold increase in the amount of
HSP90a protein in prolactin treated cells (Figure 2b). Prolac-
tin therefore induces both the expression of HSP90OA mRNA
and increases HSP90a protein in breast cancer cells.

We also investigated the response of the HSP90A gene in
mouse mammary epithelial HC11 cells. HC11 cells exist in an
undifferentiated state until competent cells are stimulated
appropriately with lactogenic hormones, dexamethasone,
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insulin and prolactin, to differentiate and produce milk proteins
[55]. We compared the levels of HSP90A mRNA in HC11
cells in their undifferentiated state and after a one-hour treat-
ment of competent cells with lactogenic hormones, including
prolactin (Figure 2¢), simulating the time point used in SKBR3
cells. Lactogenic hormone induction resulted in a rapid four-
fold increase of HSP9OA mRNA in HC11 cells, as quantified
by phosphoimager analysis of northern blots using actin as a
loading control. We also observed up to a two-fold increase in
HSP90a. protein, peaking at 48 hours of lactogenic hormone
induction of HC11 cells (Figure 2d). This demonstrated that
the HSP90OA mRNA and protein are elevated during early
mammary epithelial cell differentiation in response to lac-
togenic hormones.

The promoter of the HSP90A gene is preferentially
activated by STAT5B

Inspection of the human HSP90A gene upstream sequence
indicated the presence of at least two potential STAT-binding
DNA elements that could bind STAT1, STAT3 or STAT5 [56]
(nucleotides  1611-1603  and 1177-1185, [Gen-


http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q12905
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAA10029
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAB41763
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O95801
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BAA76815
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O95140
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAD02058
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P62158
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P06733
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=gi:37432
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=gi:1167502
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=gi:1524104
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HSP90.. is a prolactin regulated target gene. (a) Dose response of the heat shock protein 90 alpha (HSP90A) gene to prolactin in SKBR3 cells
assessed by northern analysis. SKBR3 cells were seeded to achieve low and higher confluence before treatment for one hour with the indicated
doses of prolactin (PRL). Total RNA was transferred to a nylon membrane, and the blot probed with the HSP90A gene fragment. (b) Western blot
analysis: HSP90a. protein is increased about two-fold in SKBR3 cells in response to 5 ug/mL prolactin. (c) Northern analysis: HSP90o. mRNA is
increased about four-fold in HC11 cells in response to a one hour treatment of lactogenic hormones, prolactin, dexamethasone and insulin (DIP)
compared with undifferentiated (U) HC11 cells treated with epidermal growth factor and insulin. (d) Western blot of HSP90a. protein extracts from
undifferentiated, competent (C) HC11 cells or after DIP treatment for the time indicated. Production of beta-casein is observed after 96 hours when
the cells are fully differentiated. Longer exposures show a small amount of beta-casein after 72 hours.

Bank:U25822]). Although STAT1 and STAT3 have been
reported to respond to prolactin, the prolactin signal is mainly
conferred through the activation of STAT5A and STAT5B, two
highly homologous members of the STAT family [57]. In order
to investigate the prolactin responsiveness of the HSP90A
gene promoter, we conducted reporter assays using a gene
construct containing about 1.8 kb of the human HSP90A
upstream regulatory sequence fused to a luciferase reporter
gene. We transfected Hela cells with expression vectors for
the long form of the human prolactin-receptor, the HSP90A-
luciferase reporter construct and various STATSs.

Prolactin activation of cells transfected with STAT5B, or
STAT5A and STAT5B together, caused over a four-fold or an
over two-fold increase in luciferase activity, respectively, when

compared with cells without exogenous STAT5 expression
(Figure 3a). As the induction in the presence of exogenous
STAT5A alone was not statistically significant, the significance
of the STAT5A/5B result may be due to the presence of
STATS5B. The smaller effect of the combination of STAT5A/5B
over STAT5B alone may be due to the sequestering of
STATS5B through the formation of heterodimers. We also per-
formed reporter assays in both COS-7 as well as SKBR3 cells
and obtained similar results with respect to the preferential
transcription of the reporter by STAT5B rather than STAT5A
(data not shown). In Hela cells, a small effect of STAT1 and
no effect of STAT3 on luciferase activity were observed (Fig-
ure 3b). STATSB is the predominant form of STATS in breast
tumour cell lines including SKBR3 [58] and most likely contrib-
utes to the elevated expression of HSP90a in breast cancer
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Figure 3
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Prolactin-STATS5 induction of a HSP90A promoter-luciferase reporter gene. Hela cells were transiently cotransfected with DNA encoding the
prolactin-receptor, the indicated signal transducers and activators of transcription (STATs), the heat shock protein 90 alpha (HSP90A)-luciferase
reporter and -galactosidase. Luciferase assays were performed 48 hours post transfection and the luciferase activity values normalised with f3-
galactosidase levels. Fold induction was calculated using the normalised luciferase activity from transfected cells in the absence of prolactin. An
asterix indicates that the results are significantly different (p < 0.05 t-test) compared with the sample with no STAT proteins. Each bar represents the
average of three to five experiments with standard deviation. (a) STAT5A and/or STAT5B. (b) STAT1 and/or STATS3.
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cells. These reporter assays confirm that HSP90A is a prolac-
tin-STATD regulated target gene.

Prolactin acts as a survival factor in differentiated HC11

cells

Following the line of reasoning that prolactin acts as a survival
factor in breast cancer cells [59-63] and that STAT5 promotes
survival in normal mammary epithelial cells [64,65], we tested
whether the addition of prolactin to starved, untransformed
mammary epithelial HC11 cells would rescue differentiated
cells from apoptosis. HC11 cells were induced to differentiate
after they reached confluence by the addition of the lactogenic
hormones prolactin, dexamethasone and insulin. Differentiated
HC11 cells were then starved of serum and lactogenic hor-
mones with individual hormones returned as indicated for 72
hours, followed by analysis of mono- and oligo-nucleosomes
as an indicator of apoptosis (Figure 4). Serum and hormone
withdrawal of HC11 cells is known to induce apoptosis [66].
Each of the lactogenic hormones, including prolactin, greatly
protects HC11 cells equally well from apoptosis when serum
and other lactogenic hormones are removed.

Constitutive HSP90A expression sensitises mammary
epithelial cells to apoptosis in starved HC11 cells

We reasoned that HSP90a would have important functions
downstream of prolactin not only in cancerous breast cells, but
also in untransformed mammary epithelial cells, such as
HC11. For this purpose, we created HC11 cell lines that

Available online http://breast-cancer-research.com/content/10/6/R94

either constitutively expressed the gene for human HSP90a
(HC11-HSP90w) or carried the empty vector (HC11-EV).
There is a two-fold increase in HSP90a. in the HC11-HSP90a
line. Given that we showed that prolactin is a survival factor in
HC11 cells, we then investigated whether the HC11-HSP90a
cells were susceptible to apoptosis induced by the removal of
prolactin and other survival factors. We used two independent
methods.

First, we used an antibody against phosphorylated-histone
2A.X as a marker of the apoptotic DNA damage [67] that
occurs in response to starvation. As expected, there was little
to no indication of phosphorylated-histone 2A.X in the undiffer-
entiated, competent or differentiated cells, which are cultured
in the presence of serum and hormones (Figure 5a). Differen-
tiated cells were then starved of serum and all lactogenic hor-
mones for up to 48 hours to induce apoptosis. The HC11-
HSP90a cell lines were more sensitive to starvation than the
parental HC11 cells or cells expressing the empty vector. After
24 hours of serum and hormone withdrawal, phospho-histone
2A. X is easily detected by western blot in the HC11-HSP90a
cells, but not as easily in the control HC11 cells (Figure 5b) or
cells carrying the empty vector (HC11-EV) (not shown as the
response was similar).

We then investigated whether the amount of HSP90a differs
between the differentiated and starved cells. When cells are
starved for 24 hours, the amount of HSP90a in control cells

Figure 4
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Prolactin is a survival factor for HC11 cells. Differentiated HC11 cells were starved of serum and hormones and with specific hormones added
back alone as indicated. After 72 hours, cytoplasmic extracts were prepared and analysed by sandwich ELISA for apoptotic mono- and oligo-nucle-
somes. All rescue treatments of prolactin (P), dexamethasone (D) or insulin (I) significantly reduced apoptosis caused by starvation of hormones and
serum (pos), for example, between prolactin rescue and positive control, p = 0.001 in a t-test. Negative control (neg) are cells in differentiation
medium (DIP) without starvation. Each bar represents the average of three experiments with standard deviation.
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Figure 5
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Constitutive HSP90A expression sensitizes cells to apoptosis. (a) Protein extracts were prepared from control parental HC11 or heat shock pro-
tein 90 alpha (HSP90a)-HC11 (line 2) cells that were cultured as undifferentiated (U), competent (C) or differentiated (D) cells. (b, ) Differentiated
parental HC11 and two different pools of HC11-HSP90a cells (lines 1 and/or 2) were induced to differentiate and then starved of lactogenic hor-
mones and serum for the time indicated. Equal amounts of protein were resolved by SDS-PAGE (159%). An antibody was used to detect phosphor-
ylated-histone 2A.X, and an antibody against GRB2 was used as a loading control. (d) Differentiated control HC11 and HC11-HSP90a. cells (line
2) were starved or not apoptosis was assessed by the relative quantities of mono- and oligo-nucleosomes (apoptotic index). Each bar represents the
average of three experiments with standard deviation. t-test, *p = 0.02 at 24 hours, **p = 0.00004 at 48 hours.

decreases slightly, but remains more constant in the cells con-
stitutively expressing HSP90A, HC11-HSP90a cells (Figure
5c). We can not be certain that the effect on survival we
observed (shown in Figure 5b) is due to the differential protein
levels between the differentiated and starved cells in the two
cell lines, or to the overall two-fold elevated levels of HSP90o
in the HC11-HSP90a line. The greater amounts of phospho-
histone 2A.X at 24 hours of starvation indicate that constitutive
expression of the gene encoding HSP90a. increases levels of
the marker for DNA damage, phospho-histone 2A.X, and may
sensitise the cells to apoptosis.

To confirm that the phosphorylation of histone 2A.X repre-
sented events that occur during apoptosis, we also qualita-
tively assayed the mono- and oligo-nucleosomes generated
due to apoptotic DNA nuclease activation. As both HC11-
HSP90a cell lines behaved similarly, we used only line two for
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further characterisation. The HC11 cell lines were treated as
shown in Figure 5b, and equal amounts of the cytoplasmic
extracts were assessed for the presence of mono- and oligo-
nucleosomes. HC11-HSP90a cells clearly had higher levels
of nucleosomes than control cells HC11-EV (empty vector)
after 24 and 48 hours of starvation, indicating greater levels of
apoptosis (Figure 5d). These results support that although
prolactin acts as a survival factor in the absence of prolactin or
other survival factors, HC11 cells constitutively expressing
HSP90a. are sensitised to starvation-induced apoptosis.

We used the HSP9O inhibitor 17-AAG to confirm our results.
First, we confirmed that HSP90a promotes survival in the
presence of prolactin and serum. Differentiated HC11-
HSP90c. (Figure 6a) or HC11-EV cells (Figure 6b) were
untreated or treated with 1 ug/mL 17-AAG either in differenti-
ation medium (dexamethasone, insulin and prolactin plus



serum) or starvation medium (no serum or hormones) for a
total of 24 hours before measuring apoptosis. Consistent with
the role of HSP90a promoting survival, inhibition of HSP90 by
17-AAG induced apoptosis in differentiated HC11-HSP90a
(Figure 6a) and HC11-EV cells (Figure 6b) in the presence of
survival factors such as prolactin and serum. HSP90a also
promotes survival in the control HC11-EV cell line in starvation
medium, as demonstrated by the increase in apoptosis with
the addition of the inhibitor 17-AAG (Figure 6b).

Second, we confirmed that constitutive expression of
HSP90a promotes apoptosis in starved cells. Consistent with
the effect of constitutive HSP90a expression on the sensitisa-
tion of HC11 cells, 17-AAG reduced the starvation-induced
apoptosis (Figure 6a). Overall, starvation enhanced the gen-
eral level of apoptosis in differentiated cells of both cell lines,
although the effects of the HSP9O0 inhibitor were different.
Together this confirms our initial observations and indicates
that HSP90a functions to promote survival in differentiated
cells in the presence of survival factors, but that constitutive
expression sensitises these immortal mammary epithelial
HC11 cells to starvation-induced apoptosis.

HSP90o promotes survival in breast cancer cells
Increased expression of HSP90a has been reported in breast
cancer, including SKBR3 cells [35], and cytotoxicity has also
been reported for the use of HSP90a inhibitors in breast can-
cer cells, including SKBR3 [68-70]. To test the role of
HSP90a in SKBR3 cells, we assessed oligo-nucleasome for-
mation in the presence and absence of 17-AAG and in the
presence or absence of serum. HSP90a promotes survival, in
the presence of serum, as indicated by the increase in apop-
tosis after treatment with 17-AAG (Figure 7). Interestingly,
overall there was less apoptosis in the absence of serum and
the amount of apoptosis was independent of 17-AAG. In gen-
eral, cancer cells are known to be resistant to apoptotic stim-
uli, but the role of HSP90w in the absence of serum seems to
be minimal. HSP90a. promotes survival of SKBR3 cells in the
presence of serum.

Discussion

We used a subtractive hybridisation approach to identify a
number of prolactin-regulated target genes in the human
breast cancer cell line SKBR3. By focusing on the HSP90A
gene in particular, we determined that the HSP90a protein
has the potential to regulate survival differently in normal
(immortal) mammary epithelial cells depending on the context
of the hormonal milieu and the constitutive expression of the
gene encoding HSP90a.. As HSP90a is a central therapeutic
target for breast cancer treatment, this also elevates the impor-
tance of prolactin and specifically identifies one mechanism for
its contribution to breast cancer.

Available online http://breast-cancer-research.com/content/10/6/R94

Prolactin regulated genes in breast cancer cells

We identified a number of genes in our screen of breast can-
cer SKBR3 cells whose expression either increased or
decreased in response to prolactin. Some of the genes have
been previously associated with cancer progression (T com-
plex protein-1 beta [71], tetratricopeptide repeat protein-4
[72]), cancer survival (Bax inhibitor 1 [73], mitofusion 2
[74,75]), heterogeneous nuclear riboprotein A1 [76]), drug
resistance (T complex protein-1, HSP70 [77]), or cancer cell
migration (Hs1 binding protein [78,79]). Prolactin signalling
has been implicated in each of these phenomena in breast
cancer cells though its role in drug resistance has not yet been
thoroughly examined.

Prolactin-JAK2-STAT5-regulates HSP90A, a
therapeutically important gene

In this study, we also identified HSP90A as a prolactin-
induced STAT5-activated target gene. HSP90a. is a molecular
chaperone of a large number of proteins involved in critical sig-
nal transduction pathways. The role of HSP90a. downstream
of prolactin helps explain the multiple effects of prolactin in
normal cells and emphasises the significant contribution of
prolactin-JAK2-STAT5 signal transduction to breast cancer.

HSP90 in cancer cells is present in an active form, in a multi-
chaperone complex with high ATPase activity, in contrast to
the HSP90 in normal cells, which is in an inactive, uncom-
plexed form. It is thought that these differences account for the
high affinity of cancer-associated HSP90a for the inhibitory
ATP mimetic drugs such as 17-AAG [38]. Chemotherapeutic
drugs, such as 17-AAG, inhibit HSP90 and usually result in
the degradation of HSP9O0 client proteins [80]. There are mul-
tiple client proteins of HSP90q, including steroid hormone
receptors such as oestrogen receptor, protein kinases, cell
cycle proteins and transcription factors that are essential tar-
gets in cancerous cell growth, survival, immortalisation, angio-
genesis and metastasis [81]. The prolactin-mediated
induction of HSP90a implicates prolactin in the acquisition or
maintenance of each of those cancer-related traits.

Prolactin is a survival factor in HC11 cells

We also determined that prolactin, dexamethasone and insu-
lin, each act as survival factors in differentiated mammary epi-
thelial HC11 cells. Insulin [66,82] and the glucocorticoid
receptor have previously been identified as survival factors
[83,84]. There is existing evidence showing a survival role for
prolactin in breast cancer cells [59-63], and for STATS5 in nor-
mal mammary epithelial cells [64,65]. The survival function of
prolactin is partially due to the prolactin-mediated activation of
AKT/protein kinase B [85,86]. AKT/protein kinase B is a sur-
vival factor and a regulator of mammary gland involution, as
transgenic mice expressing constitutively active AKT/protein
kinase B in the mammary gland showed delayed involution and
a delayed onset of apoptosis [87,88]. AKT/protein kinase B is
also a client protein of HSP90 [89,90].
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Figure 6
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Inhibition of HSP90a by 17-AAG defines roles for survival as well as apoptosis in HC11 cells. The presence of mono- and oligo-nucleosomes
was measured as an indication of apoptosis (apoptotic index). (@) HC11-heat shock protein 90 alpha (HSP90a) cells or (b) HC11-EV cells were dif-
ferentiated and left untreated or treated with 1 uM of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in either differentiation medium (prolactin,
dexamethasone and insulin (DIP)) or starvation medium for 24 hours. Comparison of untreated to 17-AAG-treated HC11-HSP90a. (t-test *p =
0.003) or HC11-EV (t-test *p = 0.006) cells after differentiation. Comparison of untreated to 17-AAG-treated HC11-HSP90a (t-test *p = 0.04) or
HC11-EV (t-test *p = 0.001) cells in the absence of serum and hormones. Each bar represents the average of three experiments with standard devi-
ation. Each cell line was tested independently and so the absolute levels of nucleosomes can be compared only within each panel.
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Treatment of SKBR3 cells

HSP90o promotes survival only in the presence of serum in SKBR3 breast cancer cells. Apoptosis was assessed by measuring the presence
of mono- and oligo-nucleosomes as an indication of apoptosis (apoptotic index). Addition of 500 nM 17-allylamino-17-demethoxygeldanamycin (17-
AAG) to SKBR3 cells increases apoptosis (t-test *p = 0.01). Starvation alone reduces the overall level of apoptosis observed in SKBR3 cells with
serum (untr) (t-test p = 0.004). Each bar represents the average of three experiments with standard deviation. HSAP90o. = heat shock protein 90

alpha.

HSP90u promotes survival depending on the cellular
context

The prolactin-JAK2-STAT5 target gene, HSP90q, can contrib-
ute to survival in the presence of prolactin, but sensitises
untransformed mammary epithelial HC11 cells to starvation-
induced apoptosis when constitutively expressed. We con-
firmed these results with the use of 17-AAG.

There is evidence for the pro-apoptotic function of HSP90a in
other cell types [91-93]. We can also hypothesise that the pro-
apoptotic function is due to the action of one of the client pro-
teins either stabilised under these conditions, such as mutant
p53, or disengagement from one of its client proteins such as
AKT/protein kinase B. Although it is known that HSP90 stabi-
lises mutant p53 forms [94], many of these mutant forms con-
tribute to cellular immortalisation and transformation. The
mutant forms of p53 in HC11 cells are thought to contribute
to their immortalisation [95], but it is not known if, under cer-
tain conditions, mutant p53 could contribute to the sensitisa-
tion of cells to starvation-induced apoptosis as does wild-type
p53 [96]. The fact that HSP90 can stabilise mutant p53 forms
that can contribute to immortalisation and transformation
emphasises a contribution of prolactin to these functions, as
one of its upstream inducers.

We propose that the switch from survival to apoptosis in
untransformed cells involves the loss of survival factors and
the availability of HSP90a.. In contrast, the switch is absent in
SKBRS breast cancer cells, which do not respond to 17-AAG
during serum starvation. HSP90 is important for proliferation
and survival, as SKBR3 cells have been shown to respond to
17-AAG by a reduction in proliferation [68,70] and an increase
in apoptosis [68,69]. This latter observation is consistent with
our results in this report. Possible mechanisms involved in loss
of HSP90-mediated survival after 17-AAG treatment include
the loss of AKT/protein kinase B [97] or ERBB2 [69,98,99].

Together with our results, this indicates that in addition to a
role in survival, HSP90a also has a pro-apoptotic role that may
be cell-type specific, specific to the hormone milieu in the envi-
ronment or specific to the cellular state of transformation and
complement of tumour-suppressor proteins. We hypothesise
that HSP90a together with prolactin-mediated events support
survival in differentiated or cancerous cells, whereas HSP90a
alone may sensitise differentiated mammary cells to wild-type
p53-independent apoptosis depending on the cellular context.

Page 15 of 18

(page number not for citation purposes)



Breast Cancer Research Vol 10 No 6 Perotti et al.

Conclusion

The evidence for a contribution of prolactin and STAT5 to
breast cancer cell survival, breast cancer progression and to
chemotherapeutic response is strengthened by our observa-
tions that prolactin treatment of human breast cancer cells reg-
ulates a number of genes associated with cancer progression,
including the therapeutically important target gene, HSP90A.
HSP90a. is important for malignant progression in breast can-
cer, but when elevated in untransformed mammary epithelial
cells may participate in a switch between survival and apopto-
sis.
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