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In this paper we examine the possible self-organization of strongly stratified turbulence
around a local critical state by analyzing a dataset of a numerically simulated stratified
turbulent wake. To facilitate the analysis, the turbulent flow field is decomposed into a
“large-scale” flow of horizontal scales greater than the Ozmidov scale, �O, and a “small-
scale” flow of scales below �O. A local gradient Richardson number, Ri, characterizing the
large-scale flow is calculated and then utilized to produce conditional sampling of various
turbulence statistics relevant to the local dynamics. While the bulk turbulence is observed to
decay by approximately one order of magnitude in terms of the dissipation rate, the median
Ri has remained nearly constant due to the self-organization of flow structures under strong
stratification; the subsampled Ri distribution peaks around 1/4 for regions in the upper
quartile of local dissipation. Regions of small Ri are found to be associated with large
dissipation and large net transfer of energy to the small scales. Regions of “back-scatter”
of kinetic energy to large scales, where the local eddy viscosity, νe, takes a negative value,
are also observed. Occurrence of a large magnitude of both positive and negative νe appears
to be most frequent around the critical value of Ri ∼ 1/4, indicating an intense two-way
exchange of kinetic energy between the large and small scales around the local critical
state. The threshold behavior of Ri underscores the dynamical significance of the critical
Ri of 1/4 for locally self-sustained turbulence in a strongly stratified configuration and
bears some resemblance to the celebrated self-organized criticality dynamics [Bak et al.,
Phys. Rev. Lett. 59, 381 (1987)].

DOI: 10.1103/PhysRevFluids.7.104802

I. INTRODUCTION

The hypothesis of self-organized criticality [1,2] was introduced to the investigation of turbulent
flows in a stably stratified fluid recently [3,4] and was used to construct reduced models for
strongly stratified turbulence [5]. The concept of self-organized criticality (SOC) was employed to
characterize the interplay between the stable density stratification and the vertical shear of horizontal
mean velocity. It is hypothesized that the flow self-organizes into a quasiequilibrium or critical
state around which the SOC-like dynamics take place in a cyclic way. Such a self-regulated state
is characterized by a critical value of a gradient Richardson number of approximately 1/4, i.e.,
Ri ∼ 1/4, a condition that resembles the well-known Miles-Howard criterion based on the classical
linear stability analysis of parallel inviscid steady shear flows [6,7]. Alternative interpretations of
this critical state, for which Ref. [3] provided an extensive review, include a constant-flux layer near
a boundary following the Monin-Obukhov similarity theory (see, e.g., Refs. [8,9]), as well as a state
of cyclic or marginal instability due to the effects of external forcing (see, e.g., Refs. [10–13]).
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FIG. 1. Computational domain (not drawn to scale) for simulating a temporally evolving, stably stratified
towed-sphere wake [22,26]. The sphere of diameter D is assumed to be towed along the x axis at speed U0

such that the centerline of the wake is at (y, z) = (0, 0). The origin (x, y, z) = (0, 0, 0) is at the center of
the domain. The domain is of dimensions Lx × Ly × Lz = (56/3)D × (28/3)D × (20/3)D and is resolved by
Nx × Ny × Nz = 1024 × 512 × 609 grid points.

According to Ref. [4], the SOC-like dynamics in stratified geophysical turbulence satisfy two
criteria, which are paraphrased as follows:

(1) Turbulence is attracted to the critical state of Ri ∼ 1/4 through self-organization.
(2) Characteristic length scale of intermittent events that maintain SOC follows a power-law

distribution to reach a scale-invariant state [14].
Although the notion of SOC is shared by Refs. [3,4], these two pioneering studies had some con-

siderable differences. Salehipour et al. [3], using numerical simulations, considered the turbulence
ensuing the breakdown of Holmboe wave instability (HWI) at a sharp density interface—no external
forcing is applied to maintain the turbulence, while the background vertical shear is introduced
as an initial condition. The self-maintenance of SOC is through the “scouring” motions driven
by counterrotating vortex pairs that are intrinsic to Holmboe waves within which turbulence is
embedded. Although the HWI-induced turbulence decays weakly with time (see Fig. 1 of Ref. [3]),
a quasiequilibrium is reached, internally and spontaneously, between the shear production, viscous
dissipation, and scalar mixing. It is also suggested that Kelvin-Helmholtz instability (KHI) may not
initiate SOC turbulence because of the mismatch of Ri with the critical value of 1/4 (see their
Fig. 13). Smyth et al. [4], on the other hand, focused on field measurements of the equatorial
undercurrent and hypothesized a clear-cut separation of a growth regime and a decaying regime
by Ri ∼ 1/4 at various phases of the well-defined SOC cycle (see their Fig. 3). In this context, the
maintenance of the quasiequilibrium state, one that is characterized by Ri ∼ 1/4, relies critically on
two ingredients: an external forcing (i.e., an easterly trade wind) that injects energy to the mean flow,
and the resulting normal-mode instability that grows and leads to intense turbulent diffusion when
Ri < 1/4 (presumably this instability is analogous to KHI which are commonly seen in oceanic
measurements; see, e.g., Ref. [15–18]). The fact that Ri fluctuates around 1/4 is also considered
a hallmark of the marginal instability (MI) within certain oceanic flows and has been utilized to
examine the mixing properties associated with them [19,20].

In this paper, we aim to explore stratified turbulence dynamics that potentially resemble SOC
or MI in a considerably different flow scenario: turbulence in a decaying free-shear stratified flow
represented by a towed-sphere wake in a uniformly stratified fluid. The central objective of the paper
is to identify elements of SOC or MI dynamics within this particular flow: Specifically, is there
evidence that the threshold behavior of Ri, i.e., that Ri fluctuates around a critical value, also exists
in turbulence that undergoes significant decay (i.e., no equilibrium can be reached overall) due to the
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combined effects of strong stratification and the absence of external forcing [4]? And, if so, what is
the maintenance mechanism for the local and internal quasiequilibrium within the turbulence, much
like what is observed in Ref. [3], but without Holmboe waves acting as the specific internal driving
force? We aim to clarify if SOC-like dynamics can be achieved only through a specific external
forcing [4] or a specific type of primary instability [3], both of which are absent in the flow under
consideration; in other words, can the self-organization around some critical state emerge locally
and spontaneously in preexisting turbulence in a strongly stratified shear flow that is intrinsically
out of equilibrium?

Stratified wake turbulence, as it decays in time, undergoes a distinct life cycle [21] in which the
effects of stratification become increasingly dominant on the large-scale motions and the turbulence
activity becomes increasingly intermittent [22–25]. The identification of SOC-like dynamics would,
therefore, require a methodology that takes into account the potential coexistence of subcritical,
critical, and supercritical dynamics simultaneously in the flow. The bulk of this analysis will thus
be conducted using a locally defined gradient Richardson number, Ri, upon which conditional
statistics are constructed in order to reveal any threshold behavior of Ri and its implications for
the local dynamics. The statistics are based on a numerical dataset consisting of various snapshots
taken from an early-to-intermediate stratified wake, as well as a filter-based flow decomposition
technique that separates the mean flow and turbulence in a way that is appropriate for our analysis.
The dataset will be introduced in Secs. II A and II B, and the flow decomposition that enables the
locally defined Ri and various other turbulence statistics will be introduced in Sec. II C. In Sec. III
conditional sampling of various turbulence statistics relevant to the SOC-like dynamics will be
presented, in an attempt to interpret the dynamical significance of Ri and the potential maintenance
mechanism of stratified turbulence. We conclude in Sec. IV with a summary of the key findings and
recommendations for future work.

II. METHODOLOGY

A. Numerical simulation

In this paper, we consider a temporally evolving stratified towed-sphere wake (Fig. 1) of wake
Reynolds number Re ≡ U0D/ν of 25 000 and internal Froude number Fr = 2U0/ND of 4. Here U0 is
the tow speed, D is the sphere diameter, N is the buoyancy frequency (which is a constant in space),
and ν is the kinematic viscosity. The Prandtl (or Schmidt) number is set to be unity in this simulation.
The wake simulation is initialized using a two-stage auxiliary presimulation that accounts for the
effects of the sphere [22]. The top surface of the domain is free-slip and the bottom is no-slip,
mimicking a typical laboratory flume. Wave-absorbing sponge layers are configured around the
domain to damp out any internal gravity waves emitted by the turbulence and reflected off the top
and bottom boundaries, so that the waves do not reenter the domain to contaminate the turbulence.
The pseudospectral Navier-Stokes solver used to generate the specific dataset employs Fourier
discretization in the horizontal directions (x and y) and Legendre-polynomial-based subdomain
discretization in the vertical direction (z). For a compact review of the numerical scheme originally
developed by Diamessis et al. [26] to solve the incompressible Navier–Stokes equation under
Boussinesq approximation, the readers are referred to Sec. III of a recent paper, Ref. [24].

The particular Navier-Stokes solver [26] employed here has been implemented extensively to
investigate large-scale characteristics of the turbulence [23,24,27] and internal waves emitted by a
wake [23,28,29]. Spectral filtering and a penalty scheme at the subdomain interfaces (in z) were
implemented to ensure numerical stability in the aforementioned studies. For adequate resolution
of small-scale turbulence, the grid resolution in the present study (see the caption of Fig. 1) has
been chosen such that the grid spacing in the horizontal directions, h, is no more than 3.81 times
the Kolmogorov scale, �K ; such a ratio of h/�k (Table I) is comparable to similar direct simulations
of stratified shear flows found in the literature [30–32]; the vertical grid points are concentrated
near the wake centerline for enhanced resolution of the turbulence, e.g., the average grid spacing

104802-3



QI ZHOU

TABLE I. Nondimensional parameters of numerical dataset of a stratified wake of Re = 25 000 and Fr = 4.
Four snapshots (or cases) at various dimensionless time, Nt , are considered, where t is the time elapsed since
the passage of the sphere. The ratio h/�K is a measure of horizontal grid resolution discussed in Sec. II A;
Reb and Frh characterize the properties of stratified turbulence considered in Sec. II B; LH/D and LV /D are
measures of mean wake dimensions as defined in Sec. II B.

Case Nt Reb Frh h/�K LH/D LV /D

A 2.0 19 0.030 3.81 0.406 0.396
B 6.0 9.4 0.020 3.21 0.464 0.376
C 10.0 4.3 0.015 2.64 0.484 0.378
D 19.0 1.5 0.0084 2.03 0.529 0.370

for z/D ∈ [−1, 1] is approximately three times finer than the horizontal grid spacing. Spectral
filtering is relaxed substantially as compared to previously reported runs (e.g., Ref. [24]) using
the same solver for investigating large-scale characteristics of wake turbulence. The filtering is used
minimally only to a degree that is needed to contain the inevitable round-off and aliasing errors (see,
e.g., Ref. [33]); the weak filtering applied here, which impacts the wave numbers above the 78th
percentile in terms of their magnitude, is comparable to the dealiasing operation that is commonly
used in pseudospectral simulations (see, e.g., Refs. [30,34,35]). The penalty scheme [26] applied
to the subdomain interfaces is turned off as this treatment becomes redundant in a well-resolved
simulation. The simulation was carried out using 256 parallel processors provided by Compute
Canada’s Cedar cluster, costing approximately 184 000 core hours to complete.

B. Mean flow and turbulence characteristics

The analysis to be presented is mainly focused on four time instances (i.e., four cases) in the
wake’s evolution, which are summarized in Table I. As shown in Fig. 1, the spatial extent of the
wake turbulence is finite in both span (y) and vertical (z) directions. It is therefore of interest to
define the exact width and height of the flow. We follow the approach used in Ref. [24] to define the
core region of the wake for which statistics are taken. First, the velocity field U(x, t ) ≡ (U,V,W )
can be decomposed into a mean flow in the x direction and the fluctuation velocity field (denoted by
a superscript ′):

U(x, t ) = (〈U 〉x, 0, 0) + (U ′,V ′,W ′). (1)

Here and elsewhere, 〈·〉x denotes an average in the statistically homogeneous x direction, and
U′ ≡ (U ′,V ′,W ′) is fluctuation velocity. (Note that the streamwise direction x is periodic and
homogeneous, as a result of the classic approach [36] to simulate a spatially evolving shear flow
as a temporally evolving one.) The x-averaged mean flow 〈U 〉x is then fit to a two-dimensional
Gaussian profile,

〈U 〉x(y, z, t ) = Uc(t ) exp

[
−1

2

(
y

LH (t )

)2

− 1

2

(
z

LV (t )

)2]
,

where Uc is the mean centerline velocity, and LH and LV are the characteristic mean wake width
and height, respectively. The LH/D and LV /D values are tabulated in Table I for all four cases. It
can be seen that LH has grown considerably during the time interval of interest, 2.0 � Nt � 19.0,
while LV fluctuates weakly within a narrow range of values, following the collapse of the wake due
to stratification [21].
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FIG. 2. Characteristics of stratified turbulence in the stratified wake under consideration. (a) Time series
of the buoyancy Reynolds number, Reb, (b) time series of the horizontal turbulent Froude number, Frh, and
(c) Reb plotted against Frh. Circles drawn in various colors correspond to the cases tabulated in Table I and
labeled in panel (c).

Following the definition of the wake’s dimensions, the wake’s core region is then defined [24] as
a volume of the shape of an elliptic cylinder centered around (y, z) = (0, 0) (see Fig. 1), where

y2

(2LH )2
+ z2

(2LV )2
� 1. (2)

In the remainder of the paper, we will use 〈·〉 to denote a volume average over the wake’s core
region as defined above. For example, the mean dissipation rate of turbulent kinetic energy (or
simply dissipation) within the wake core can be estimated as 〈ε〉, where

ε(x, t ) ≡ 2νS′
i jS

′
i j (3)

is the locally defined dissipation rate determined by the rate of strain tensor S′
i j ≡ (1/2)(∂U ′

i /∂x j +
∂U ′

j/∂xi ) due to the fluctuation velocity, U′. Two length scales can be defined using the volume-
averaged dissipation, 〈ε〉:

�K ≡
(

ν3

〈ε〉
)1/4

and �O ≡
( 〈ε〉

N3

)1/2

,

where �K is the Kolmogorov scale, characterizing the smallest dissipative-scale eddies, and �O is
the Ozmidov scale, characterizing the largest horizontal scale that can overturn (e.g., Ref. [37]) or
the cut-off scale below which isotropic three-dimensional turbulence could exist (e.g., Ref. [38]);
we will revisit �O in the next subsection.

A first appreciation of the time evolution of stratified turbulence characteristics can be obtained
from Fig. 2—that the turbulence under consideration is nonequilibrium and strongly stratified. Two
dimensionless parameters, the buoyancy Reynolds number, Reb, and the horizontal turbulent Froude
number, Frh, are plotted against the dimensionless time, Nt , for the four cases tabulated in Table I.
Reb and Frh are defined as

Reb ≡ 〈ε〉
νN2

and Frh ≡
√

〈U ′2 + V ′2〉
N�h

,

respectively, where �h is the horizontal integral scale of turbulence, which is calculated using the
streamwise spectrum of U ′ (see details in Appendix C of Ref. [24]). The magnitude of Reb measures
the separation between the Ozmidov and Kolmogorov scales, �O/�K ∼ Re3/4

b [37], and Frh is a key
indicator of the degree of stratification and anisotropy that is commonly used in scaling analysis of
strongly stratified flows (e.g., [39–41]).

As can be seen in Fig. 2(a), the wake turbulence undergoes significant decay during the time
period under examination, 2.0 � Nt � 19.0, as the value of Reb decays by about one order of
magnitude from 19 to 1.5. This observation is different from the HWI case considered in Ref. [3],
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FIG. 3. Decomposition of the streamwise velocity, U = U + u, visualized over the oxy horizontal transect
taken at z = 0 (Fig. 1) for case A (Nt = 2.0). Top, middle, and bottom panels correspond to U , U , and u,
respectively. Velocities are normalized by the tow speed, U0. The images are close-up views for a width of
4D along the wake centerline at y = 0; the computational domain is 7/3 times wider (see Fig. 1) than what is
shown in this figure.

where a global quasiequilibrium is reached in terms of the energetics (see their Fig. 3), and it is
different from the oceanic case considered in Ref. [4], where the turbulent kinetic energy can grow
in certain phases of the dynamical cycle. In the specific context of a stratified wake, Spedding [21]
defined a nonequilibrium (NEQ) regime for 2 � Nt � 50, a regime that overlaps with the cases
under consideration in this paper.

Figure 2(b) shows that Frh also decays in time, indicating a stronger influence of stratification on
the turbulence as the flow evolves. As can be seen in Fig. 2(c), out of the four cases considered in this
paper, cases B, C, and D actually satisfy the conditions of Reb � 1 and Frh � 0.02 which were used
in Ref. [24] to define the strongly stratified regime [41] [a regime that is also termed the layered
anisotropic stratified turbulence regime (LAST) in other references, e.g., [42,43]] for the context
of wake turbulence. [Incidentally, this regime has not been as extensively studied by numerical
simulations as the weakly stratified turbulence regime—e.g., see Fig. 1(b) of Ref. [5]—presumably
due to the considerable computational cost associated with the LAST regime.] Within this regime,
stratification has strong effects on the horizontal integral-scale eddies, as indicated by Frh � 1;
strong stratification drives the spontaneous formation of the layered anisotropic flow structure in
the wake [24], which is an essential characteristic of this regime. At the same time, there still exists
a dynamic range of scales between �O and �K which allows for small-scale turbulence [44] while
Reb � 1.
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C. Flow decomposition and filtering

The common definitions of gradient Richardson number, Ri, typically include an averaging
procedure on the velocity gradients, either in space [3] or in time [4], such that the resulting Ri is,
by nature, a descriptor of the mean flow for its potential for triggering turbulence. It is postulated in
Sec. I that the SOC-like dynamics in stratified wake turbulence, if they exist, would occur in a local
and transient way, while globally the bulk turbulence undergoes significant decay (Fig. 2). It follows
from this postulation that subcritical (Ri > 1/4), critical (Ri = 1/4), and supercritical (Ri < 1/4)
regions could coexist in the flow simultaneously. Quasiequilibrium can be achieved locally by a
cyclic exchange of energy between the mean flow and the turbulence, the definition of which seems
most appropriate when formulated in a local sense. It is thus important to construct a version of Ri
that is appropriate for describing the large-scale dynamics that could vary in space. With this locally
defined Ri, one can then perform conditional sampling of various quantities that are relevant to the
local dynamics.

The critical step towards a local Ri is to separate the mean flow from the turbulence, or rather
to decompose the flow field into large scales that could drive local shear instabilities, and small
scales that are not directly impacted by stratification. It is therefore of benefit to consider a cut-off
length scale above which is the large scale or mean flow, and below which is the small scale or
turbulence—in our context, the natural choice for this cut-off scale is the Ozmidov scale, �O, which
is the largest horizontal scale that possesses enough kinetic energy to overcome the potential energy
barrier needed to overturn [45] and can be considered as the transition scale between stratified
turbulence and classical three-dimensional turbulence [37]. We thus assume that �O characterizes
the largest eddies that are not directly impacted by stratification: Scales smaller than �O can overturn
and exhibit behaviors similar to isotropic turbulence—eddies smaller than or of order �O are hardly
distorted by stratification and share many characteristics with isotropic turbulence; scales larger
than �O are manifestly affected by stratification and subject to possible self-organization which we
attempt to identify by characterizing those large-scale flows. It is worth noting that the use of �O

as an order-of-magnitude approximation for the cut-off scale between the isotropic and anisotropic
dynamics is based merely on scaling arguments; testing quantitatively whether �O is precisely such
a cut-off is outside the scope of the current study.

Indeed, a filter-based scheme is implemented to postprocess the numerical dataset so that
horizontal scales above and below �O can be separated. The postprocessing filter decomposes
the flow into a large-scale flow component, U(x, t ) ≡ (U ,V ,W ), and a residual small-scale flow
component, u(x, t ) ≡ (u, v,w). The filter-based decomposition reads

U(x, t ) = (U ,V ,W ) + (u, v,w), (4)

where all velocity components shown on the right-hand side vary in both space (all three directions)
and time, and the overline denotes the filter operation. Figure 3 shows an example of the decompo-
sition for the U velocity in case A. The filtering is performed over horizontal transects of all three
velocity components using a two-dimensional low-pass Gaussian filter (see, e.g., Ref. [46]) with
�O specified as the standard deviation of the filter function. The large-scale gradient Richardson
number, Ri(x, t ), can then be calculated using the filtered velocity,

Ri ≡ N2

(
∂U
∂z

)2 + (
∂V
∂z

)2 = N2

S2
, (5)

which we will revisit in Sec. III A. Visual inspection of the density field suggests that density fluctu-
ations due to wake turbulence generate vertical density gradients that are considerably weaker than
the background density gradient characterized by N2, presumably due to the strong stratification
prescribed for this flow. Therefore, we opt to use the background buoyancy frequency N (which is
a constant) in the above definition of Ri as a descriptor of the large-scale or mean density gradient.

In addition to Ri itself, we will also examine the exchange of energy between the large (filtered)
and small (residual) scales in Secs. III C and III D. The formulation for this analysis can often be
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found in the literature of large-eddy simulations (LES), e.g., Sec. 13 of Ref. [47], and here a brief
review is provided. Again, our aim in this paper is not to formulate an LES for the flow, but to use
the formulation as a diagnostic tool for analyzing the data.

Analogous to the Reynolds stress tensor in Reynolds-averaged Navier-Stokes equation, a
residual-stress tensor appears in the filtered momentum equation and is defined as

τR
i j ≡ UiUj − Ui Uj .

The residual kinetic energy, kr , is half of the trace of τR
i j , kr ≡ τR

ii /2, and the anisotropic residual-
stress tensor, τ r

i j , can be written as

τ r
i j ≡ τR

i j − 2
3 krδi j, (6)

where δi j is the Kronecker delta. A sink term, Pr , appears in the energy budget for the filtered
velocity field (see Sec. 13.3.3 of Ref. [47]), which is known as the rate of production of residual
kinetic energy,

Pr (x, t ) ≡ −τ r
i jSi j . (7)

Here Si j ≡ (1/2)(∂U i/∂x j + ∂U j/∂xi ) is the rate of strain tensor due to the filtered field. When
Pr > 0, energy is lost from the filtered motions (in our case, large-scale flow above �O) and
transferred to the residual motions (i.e., small-scale flow below �O). In other words, kinetic energy
follows the usual notion of cascade, moving from large scales to small when Pr > 0. Unlike the
dissipation rate which is nonnegative, it is possible that Pr < 0 locally in the flow, i.e., there exists
local back-scatter of energy within the flow, where energy is transferred from small scales to large,
strengthening the large-scale mean flow at the expense of small-scale turbulence—we will discuss
the implication of this phenomenon in the context of local SOC-like dynamics in Sec. III C. Note
that the chosen filter scale, �O, is observed to be two to three orders of magnitude smaller than the
energy-containing, horizontal integral scale, �h [24]. Therefore, small variations to the filter length
(say, within the same order of magnitude of �O) are not expected to drastically alter the partition
of energy between the filtered and residual fields, and thus small changes to the filter length would
have a minimal effect on quantities such as Si j and Ri.

Another useful concept for the discussion in Sec. III D is one related to the eddy viscosity.
Following Sec. 13.4 of Ref. [47], one can express τ r

i j using an eddy-viscosity model:

τ r
i j = −2νeSi j, (8)

where νe(x, t ) is the eddy viscosity due to the residual motions. This definition of νe assumes that
the eddy viscosity is locally isotropic and is consistent with the notion that �O is the approximate
upper bound for the isotropic scales. Substituting Eq. (8) into Eq. (7) leads to

Pr (x, t ) ≡ −τ r
i jSi j = 2νeSi jSi j, (9)

which allows one to evaluate νe based on Pr and Si j . It follows from Eq. (9) that Pr and νe have the
same sign because Si jSi j is nonnegative. When νe > 0, the residual motions diffuse the large-scale
velocity gradients in the usual sense of diffusion; when νe < 0, the large-scale velocity gradients
are strengthened by the residual motions, while kinetic energy undergoes back-scatter from small to
large scales. With the decomposition in Eq. (4) applied to the numerical data, one would have access
to both Pr and νe as they vary in space and time. Statistics of these quantities will be examined in
conjunction with Ri in the following section.

III. RESULTS AND DISCUSSION

A. Statistical distribution of Ri

According to criterion 1 for SOC postulated by Ref. [4], the critical state, which is characterized
by Ri ∼ 1/4, acts as an attractor around which the turbulence self-organizes. While the overall
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FIG. 4. Horizontal transects of 1/Ri at the center oxy plane (z = 0) shown for various times in the left
column; vertical transects of 1/Ri at the center oxz plane (y = 0) shown in the right column. Thin dashed
lines indicate the location where y = ±2LH or z = ±2LV . The color corresponding to Ri < 1/4 is deliberately
oversaturated to highlight regions of low stability. Images shown are close-up views of the central one half of
the domain in the x direction, −(14/3)D < x < (14/3)D, and of a width and depth of (4/3)D on each side the
wake centerline at (y, z) = (0, 0).

distribution of Ri could vary subtly with the characteristics of forcing, the strongest turbulence
robustly occurs around Ri ∼ 1/4. For example, as shown in Fig. 2 of Ref. [4], while the PDF of
Ri could vary slightly from year to year in the forced, equatorial current, the regions of strongest
turbulence (as characterized by large turbulent heat flux) consistently produce a peak in the PDF
at Ri ∼ 1/4. In the quasiequilibrium situation examined by Ref. [3], the horizontally averaged Ri
shows a peak in its occurrence around 1/4 for a long period of time, presumably due to the persistent
actions of the Holmboe wave.

How does Ri behave in a strongly stratified decaying turbulence where neither external forcing
nor a primary Holmboe wave instability is present? Here we examine the filtered field and calculate
the large-scale gradient Richardson number, Ri, following Eq. (5). Sample horizontal and vertical
transects of the 1/Ri field are shown in Fig. 4. (The reason why 1/Ri is considered in this paper
is that we want to avoid singularities in Ri created when the squared vertical shear, S2, i.e., the
denominator when calculating Ri, becomes zero in the virtually quiescent region outside the wake’s
core region, causing inconvenience for analysis and visualization.) The color scheme is Fig. 4 is
one such that regions corresponding to Ri < 1/4 are highlighted in bright yellow. As the wake
turbulence decays in time, the supercritical regions shown in yellow become increasingly sparse
in space. As can be seen from the vertical transects, these yellow regions appear as thin layers
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FIG. 5. Statistics of Ri: (a) PDF of 1/Ri sampled in the wake core for all four cases and (b) CDF of 1/Ri.
The median values of Ri at each time are 0.923, 1.10, 1.34, and 1.98, respectively. Gray dashed lines in panels
(a) and (b) indicate where Ri = 1/4; the volume fraction in the wake core occupied by regions of Ri < 1/4 at
each time is 0.217, 0.155, 0.113, and 0.0550, respectively.

with finite length (in x) and depth (in z). The length is typically larger than the depth, which
indicates a strong degree of anisotropy. As time goes by, the structures of thin vertical layers become
increasingly organized—for the snapshot at Nt = 19 (case D) specifically, regions of low Ri appear
over the oxz plane in the form of wavelike undulations that are aligned in a preferred orientation
on either side of the wake’s centerline. As shown in Fig. 4, the distribution of Ri is highly variable
in space, which, to a certain extent, justifies the need for a locally defined Ri in the first place
(Sec. II C).

Statistics of Ri are shown in Fig. 5(a) in terms of the PDF of the logarithm of 1/Ri sampled
within the wake’s core region defined by Eq. (2). The sampling bins are chosen uniformly at
regular intervals of log10 1/Ri, and the PDF is calculated such that it satisfies the normalization
condition

∫ ∞
−∞ f (χ )dχ = 1, where χ = log10 1/Ri and f (χ ) is the corresponding PDF. As the wake

turbulence decays, the PDF shifts gradually to the left, meaning that Ri overall increases with time.
Unlike Ref. [3] in which the horizontally averaged Ri centers around 1/4, the peak of the local Ri
shown in Fig. 5(a) consistently stays above 1/4, which seemingly contradicts criterion 1 for SOC
where Ri is required to be maintained around the critical value—this is an important issue and will
be addressed in the following subsection. Figure 5(b), showing the cumulative distribution function
(CDF) for 1/Ri, suggests that a nontrivial portion of the flow volume remains occupied by regions
of Ri < 1/4, even at the later times under consideration. While Reb has decayed by about one order
of magnitude from case A to case D (Fig. 2), the corresponding median Ri has increased only from
0.923 to 1.98 (Fig. 5), by approximately a factor of two.

B. Dissipation vs Ri

When examining criterion 1 for SOC according to Ref. [4], it is important to note that the peak in
the distribution of Ri is expected to be near 1/4, not for the entire volume of the flow, but for regions
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FIG. 6. PDF of 1/Ri sampled for the entire wake core for all four cases, plotted with a blue dashed line,
and the corresponding PDF subsampled for regions of the upper quartile of dissipation, ε(x, t ), plotted in a red
solid line. Gray vertical lines indicate where Ri = 1/4.

of the strongest turbulence. Indeed, for the oceanic measurements presented in Ref. [4], when Ri is
subsampled for regions of upper quartile of the turbulent heat flux, the peak appears near Ri = 1/4
(see their Fig. 2). A similar subsampling approach is applied to the wake data, which are shown in
Fig. 6. While the PDF does not show a peak near 1/4 for the overall volume [Fig. 5(a)], it does
move considerably closer to 1/4 for the most dissipative regions in the flow (characterized by upper
quartile of ε), which is consistent with the field data presented in Ref. [4]. This suggests that the
wake turbulence, at least for the time period under consideration, does attract the most dissipative
local turbulence events to occur around Ri = 1/4. Such a threshold behavior for Ri is an indication
of self-organization of turbulence around some critical state in the strongly stratified wake.

The reason for the shift in the PDF in Ri (Fig. 6) upon subsampling is that region of low Ri
(hence low stability) is naturally associated with high ε (i.e., vigorous turbulence). In Fig. 7 samples
taken from the dissipation field (after taking the logarithm of the dissipation, to account for the vast
range of ε and its highly nonuniform distribution in space) are shown in the same format as the plots
for 1/Ri shown in Fig. 4. Close inspection between the ε field (Fig. 7) and the 1/Ri field (Fig. 4)
reveals that regions of high 1/Ri typically correlate with regions of high ε, which is as expected.
The peak of the subsampled Ri PDF (Fig. 6) does deviate slightly from 1/4 for cases A and D; i.e.,
the peak Ri is slightly lower than 1/4 for case A, and slightly higher than 1/4 for case D. This could
be an indication that the flow is transitioning in (case A) and out of (case D) a regime for which the
self-organization is most relevant.

Figure 7 shows that, as the turbulence decays in the wake, the magnitude of ε decreases
significantly (the same color scheme is used for all panels in Fig. 7 for ease of comparison). The
differences between the structures shown by the horizontal and vertical transects become more
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FIG. 7. Same layout as Fig. 4 but showing the oxy (left column) and oxz (right column) transects of
log10 ε/νN2 at each time.

pronounced for later cases, which results from the growing anisotropy in the flow, e.g., as evidenced
by the decreasing values of Frh (Fig. 2). Relative to the fast decay in ε, the decay of 1/Ri is slower,
as evidenced by the prevalence of regions of Ri < 1/4 shown in Fig. 4 and the slow shift of the
solid orange curves shown in Fig. 6. This is critically due to the fact that the flow self-organizes into
layered anisotropic structures to preserve the vertical shear, which is a fundamental characteristic
of the strongly stratified turbulence regime [40,41,48] and could potentially be the manifestation of
the underlying flow self-organization which attracts Ri to be around 1/4 (Fig. 6). The slow decay of
1/Ri could, in turn, explain the observed reduced rate of turbulence decay in wakes (e.g., [21,49])
during the NEQ regime, as compared to the predictions based on axisymmetric self-similar profiles.

There exists a large volume of literature concerning ε and its relation to Ri (or expressed in terms
of the squared vertical shear, S2, when N2 is a constant) in decaying stratified turbulence (e.g.,
Refs. [50–54]), where both quantities (ε and Ri) are examined in the volume-averaged sense. Here
we adopt an alternative approach in which ε is conditionally sampled over regions of various value
of 1/Ri from the same flow snapshot, yielding the conditional mean of ε as a function of 1/Ri,
ε̃(1/Ri), which is shown in Fig. 8. The conditional mean, ε̃, is observed to increase monotonically
with 1/Ri, consistent with the correlation between high ε and low Ri observed in Figs. 4 and 7. Each
case under examination yields an individual curve shown in the two panels of Fig. 8, where different
normalizations for ε̃ are used. When ε̃ is normalized by νN2, as in Fig. 8(a), the variable plotted
in the vertical axis can be effectively considered as the conditionally sampled buoyancy Reynolds
number, Reb, according to local value of 1/Ri.
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FIG. 8. Conditional mean of (a) ε̃/νN2 and (b) ε̃/〈ε〉 as a function of 1/Ri shown for all four cases under
consideration. Dashed lines in panel (a) indicate linear scalings between the two variables, ε̃/νN2 ∝ 1/Ri.

Two limits seem to emerge in Fig. 8(a): In the most stable limit, 1/Ri � 1, the relation between
ε̃/νN2 and 1/Ri is close to a linear one. This is reminiscent of the approximation often made in
a strongly anisotropic situation to attribute dissipation entirely to vertical shear, ε ∼ νS2 (e.g.,
Ref. [52]), which then leads to Reb ∼ Ri−1, a relation that is observed to hold for strong stratification
and weak turbulence, Reb ∼ O(1) or smaller [53,54]. The vertical offset for different cases in this
limit, as seen in Fig. 8(a), seems to scale with the bulk dissipation rate; i.e., when ε̃ is instead
normalized by the volume-averaged dissipation, 〈ε〉, as in Fig. 8(b), the curves all collapse for small
values of 1/Ri up to 1/Ri ∼ O(1). In the most unstable limit, 1/Ri � 1, the curves seem to approach
some degree of convergence, as seen in Fig. 8(a). In this limit, at least for cases corresponding to
later times, the relation between ε̃/νN2 and 1/Ri seems to approach the linear scaling again. This
could potentially be linked to the weakly stratified limit of Monin-Obukhov scaling for constant-flux
layers (see, e.g., Sec. 6.3 of Ref. [9]), for which Reb ∼ Ri−1 also holds, albeit for a different reason
from the stable limit. In summary, the results shown in Fig. 8 indicate that the magnitude of the
dissipation ε could be dictated by different dynamics towards the two limits, Ri � 1 and Ri � 1,
respectively, as Ri deviates from the critical value of 1/4. The local Ri, which is to be interpreted
as a measure of stability, does give a reasonably good indication for how vigorous the turbulence
is, as characterized by the local ε. However, the quantitative relation between Ri and ε̃/νN2 is
most certainly not unique, as it could depend on the definition of these quantities; in fact, a large
degree of scattering can be observed from oceanic measurements (see Fig. 17 of [55] and Fig. 15
of [56])—the authors of Ref. [56] rightfully cautioned that “with no further understanding of the
forcing, it is impossible to generalize our results.”
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FIG. 9. Conditional mean of the production of residual kinetic energy, P̃r (1/Ri), when normalized by νN2,
as it varies with 1/Ri.

C. Production of residual kinetic energy vs Ri

Now we have seen evidence for flow self-organization in the wake in terms of the threshold
behavior of Ri (Fig. 6), but how are the SOC-like dynamics maintained in a decaying flow without
external forcing? Reference [4] postulated a dynamical cycle which depends critically on an external
forcing which restores vertical mean shear when Ri rises above 1/4, as well as turbulent diffusion
which smooths out the mean shear and causes Ri to increase when turbulence kinetic energy (TKE)
is at a high level (see their Fig. 3). The overall TKE undergoes a phase of growth when Ri < 1/4
and a phase of decay when Ri > 1/4, while the critical state at Ri = 1/4 characterizes the transition
between the phases. In the present analysis, however, regions of various Ri coexist within the volume
of flow (Fig. 4) at the same time. Our focus, again, is on how the local Ri, which characterizes the
local stability property of the large-scale flow (specifically, scales above the Ozmidov scale, �O; see
Sec. II C) affects the local energetics.

Here we examine how Ri affects the production of the residual kinetic energy, Pr , which is
the local rate of energy transfer from the large to small scales. When Pr > 0, the local dynamics,
i.e., kinetic energy being transferred downscale through a forward cascade to smaller scales, are
analogous to the situation in Ref. [4] where the instability triggers turbulence and allows TKE to
grow when Ri < 1/4; when Pr < 0, back-scatter (or inverse cascade) of kinetic energy exists locally
and energizes the large-scale flow, which is analogous to the effect of external forcing in Ref. [4],
i.e., the surface wind restores the mean vertical shear and reduces Ri, accompanied by decaying
TKE when Ri > 1/4. In Ref. [4] the Ri value at a given time is a sufficient indicator for whether
turbulence grows or decays—analogously, could the local Ri be such a indicator for whether Pr is
positive or negative locally in the wake flow?

To answer this question, we examine Fig. 9, which shows the conditional mean of Pr , denoted
as P̃r , as it varies with 1/Ri. First and foremost, P̃r is observed to be positive for all cases under
consideration and for all Ri sampled, suggesting that on average, the wake flow transfers energy
from large to small scales, producing a forward cascade overall regardless of the magnitude of
Ri. The direction of energy transfer, which is described by the sign of P̃r , is not determined by
Ri, unlike the case in Ref. [4] where the instantaneous Ri alone is a sufficient indicator for the
grow or decay of overall TKE at a given time. Similar to the trend shown in Fig. 8 for dissipation,
P̃r increases monotonically with 1/Ri. Statistically, regions of low Ri are associated with a large
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FIG. 10. Horizontal transects at the center oxy plane (z = 0) shown for case D (Nt = 19.0) for Pr/νN2

(top), log10 |Pr/νN2| (middle) and νe/ν (bottom), respectively. Images shown are close-up views of the central
one half of the domain in the x direction, and of a width of (4/3)D on each side of the wake centerline.

net rate of energy transfer to the small scales, and vice versa. The energy transferred to scales
below �O is expected to be transferred further downscale via the inertial subrange that could exist
(when Reb > 20; see, e.g., Ref. [57]) between �O and the Kolmogorov scale, �K , and eventually gets
dissipated by viscosity.

The distribution of Pr in physical space is examined in Fig. 10. The top panel shows a sample
horizontal transect of Pr taken for case D (Nt = 19.0), where both positive and negative Pr can be
observed. Regions of large magnitude of Pr , both positive and negative, tend to occur in wavelike
alternate stripes which are indicated by a dark red or blue color. The peak magnitude of positive and
negative Pr are in fact comparable, as can be seen in the middle panel of Fig. 10, where the logarithm
of the magnitude of Pr is shown. This suggests that forward and inverse cascades could be equally
energetic at different locations within the flow—the energy transfer is a two-way exchange driven by
local processes, which is analogous to the observation of both positive and negative shear production
in breaking internal waves (see Fig. 11 of Ref. [58]). Overall, the upscale and downscale transfer
reaches a delicate balance and produces a net positive Pr (forward cascade) as shown in Fig. 9.

D. Eddy viscosity vs Ri

In the previous subsection, we have seen that the conditional mean P̃r is positive regardless of the
value of Ri. Now what exactly is the role of the critical Ri = 1/4 in the maintenance of local SOC
dynamics? We continue to investigate this issue using the eddy viscosity, νe, which can be calculated
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FIG. 11. PDF of the normalized eddy viscosity, νe/ν, for the four cases under consideration.

from Pr and the filtered rate of strain tensor, Si j , via Eq. (9). By construction [see Eq. (9)], νe and
Pr have the same sign and convey consistent physical interpretations.

Figure 11 shows the PDF of νe (normalized by the molecular viscosity, ν) sampled within the
wake’s core region. For all four cases considered, the PDF peaks at νe/ν = 0, with the height of the
spike increasing with time, which is as a result of the growing degree of intermittency in the flow—
a larger fraction of the flow volume becomes effectively laminar-like (νe → 0) as the turbulence
decays (Fig. 7). The PDF decreases from its peak at νe/ν = 0 towards both positive and negative
values of νe. The range of νe/ν corresponding to a given PDF level shrinks with time, e.g., the range
of νe/ν corresponding to a PDF greater or equal to 10−5 is approximately [−44, 55] for case A, and
[−3.5, 5.4] for case D. While the curves look largely symmetric about νe/ν = 0, the distributions
all have a noticeable bias towards the positive νe/ν. The mean of νe stays positive in all cases,
which is consistent with the overall positive Pr observed in Fig. 9. Statistically, the overall effect of
νe is diffusive (νe > 0), i.e., to smooth out the large-scale velocity gradients; locally, the effect of
νe can be either diffusive or counterdiffusive, the latter meaning that large-scale shear is enhanced
by the negative eddy diffusivity or, equivalently, by the back-scatter associated with the negative
Pr to inject energy into the large-scale motions (Sec. II C). The presence of locally negative eddy
viscosity that restores shear, or back-scatter of kinetic energy to large scales, could be a key feature
that enables the local dynamics to spontaneously bring the local shear back beyond the critical state
at Ri = 1/4, in order to trigger turbulence and complete the local dynamical cycle.

For the above hypothesis to be valid, one would expect large magnitude of νe/ν, both positive
and negative at various phases of the local cycle, to occur frequently around the critical state at
Ri = 1/4. This is indeed the case, as shown by the joint PDF between νe/ν and the logarithm
of 1/Ri shown in Fig. 12. For all cases, the peak of the joint PDF occurs along the horizontal
axis (νe = 0) and at comparable values of Ri across all cases (since the PDF of Ri itself changes
minimally over time; see Fig. 5). Along the vertical axis, the range of νe/ν observed in each case is
reduced considerably over time, consistent with Fig. 11, which results from the decay of turbulence.
For a given value of Ri, as the magnitude of νe/ν increases, the PDF decreases significantly, as
represented by contour lines of reduced PDF levels located farther away from the peak. While the
shape of the area enclosed by each contour line is largely symmetric, the center of mass is slightly
biased towards νe > 0. As the turbulence decays, the occurrence of large magnitude of νe/ν becomes
less frequent; the asymmetry in the contour line shape, especially for the contour levels away from
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FIG. 12. Joint PDF between the normalized eddy viscoity, νe/ν, and the logarithm of 1/Ri, plotted as
contour lines for each of the four cases under consideration. The highest contour level (in yellow) corresponds
to a value of {√10, 10, 10

√
10, 100} × 10−2 for cases A, B, C, and D, respectively; for each contour level

away from the center, the corresponding PDF is reduced by a factor of 1/
√

10. The red cross plotted on the
horizontal axis corresponds to the median value of Ri. The gray vertical dashed line corresponds to Ri = 1/4.

the peak, also grows in time—a protrusion of the outermost contour lines into the larger magnitude
of νe/ν, both positive and negative, can clearly be observed in cases B, C, and D. The Ri value that
corresponds to the tip of the protrusion, allowing the PDF to access the largest magnitude of νe/ν,
appears markedly close to the critical value, Ri = 1/4. Around this critical state, one observes the
peak occurrence of large magnitudes of νe, both diffusive and counterdiffusive. There appears to be
an intensified action of turbulence, which could either diminish or strengthen the large-scale shear
locally, that occurs around Ri = 1/4, as evidenced by all cases shown in Fig. 12. This constitutes
an essential characteristic of the decaying strongly stratified turbulence that potentially allows the
self-organization of flow around Ri ∼ 1/4 to be maintained locally and spontaneously in the flow.
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IV. CONCLUDING REMARKS

In this paper we report threshold behavior of the local gradient Richardson number, Ri, in
strongly stratified turbulence identified from numerical data (Sec. II A) of a turbulent wake in a
uniformly stratified fluid. The wake flow is strongly stratified, as characterized by Frh ∼ O(0.01),
and sufficiently energetic such that Reb > 1 (Sec. II B) for the four cases under consideration.
Turbulence within this strongly stratified regime [40,41] spontaneously forms layered anisotropic
structures [42,43] within which local dynamics develop and self-maintain. We apply a flow decom-
position (Sec. II C) that separates the large scales above the Ozmidov scale (�O) that are directly
impacted by stratification, and the small scales below �O that are dominated by inertia and viscous
processes. As the turbulence decays, the median value of Ri remains approximately the same to
within a factor of two (Fig. 5), while Reb decays by approximately one order of magnitude. The
distribution of local Ri associated with the upper quartile dissipation peaks around 1/4 (Fig. 6).
Regions of small Ri are typically associated with large dissipation (Fig. 8) and large net transfer
of energy from large to small scales (Fig. 9). Regions of Ri values around 1/4 are also where the
eddy viscosity (both positive and negative) is observed to be of the largest magnitude (Fig. 12). The
observed threshold behavior of Ri reveals the self-organization of flow around s certain critical state
in strongly stratified wake turbulence.

The results presented in this paper complement two prior papers [3,4] applying the concept
of SOC to stably stratified turbulence. We observe self-organization of flow in decaying strongly
stratified turbulence in the absence of a sharp density interface that supports a certain type of
primary instability as in Ref. [3], or an external forcing that acts to periodically reduce Ri as in
Ref. [4]. This indicates that self-organization of flows around a certain critical state can be a generic
property of stratified turbulence in certain regimes, not necessarily relying on a specific external
driving mechanism. The distribution of eddy viscosity reported in Sec. III D reveals a possible
internal mechanism through which the flow self-organizes around the critical state. However, one
ought not to expect such dynamics to be relevant in all situations—in the specific context of
the stratified wake, we seem to observe an overlap between the flow’s self-organization and the
strongly stratified or the LAST regime [40–42], which is accessible only for a certain range of wake
parameters [24]. It does not seem unreasonable to expect the self-organization to be irrelevant for
wakes which are either too weakly stratified (e.g., boundary-forced flows as reviewed in Sec. 5.1
of Ref. [59]), where Ri never exceeds 1/4, or dominated by viscous effects and has no sufficient
dynamical range for overturns, such as those in the quasi-two-dimensional regime in late wakes
[21,22]. While the strongly stratified wake turbulence is grossly out of equilibrium overall, we
do observe some signatures of quasiequilibrium on a local and perhaps transient level, e.g., the
intense two-way exchange of energy between large and small scales shown in Fig. 10, and the
broad distribution of eddy viscosity over both positive and negative values as shown in Fig. 11. This
suggests that the applicability of the SOC or MI paradigm might not be limited to globally balanced
or quasibalanced flows [3,4]—it could potentially be useful for addressing numerous imbalanced
scenarios in geophysical flows [19,43] as well.

In contrast to the clear-cut separation of growth and decay of TKE by Ri ∼ 1/4 proposed in
Ref. [4], the role played by the local Ri in the wake is a subtle one, i.e., the local Ri itself does not
necessarily dictate pointwise whether the large-scale shear is enhanced or reduced by the turbulence
(Fig. 12), while statistically there does exist a positive correlation between the local value of 1/Ri
and the net forward cascade of kinetic energy (Fig. 9). We observe the self-sustaining dynamics
to be maintained in a local sense, driven by an intense two-way exchange of energy between the
large and small scales that occurs around the critical Ri = 1/4. Key to this characterization is the
occurrence of large magnitude of eddy viscosity, both positive and negative, conspicuously close to
this supposed critical state (Fig. 12). In a sense, the negative eddy viscosity, which can be thought
to be intrinsically linked to the spontaneous layering of vertical shear in the strongly stratified or
the LAST regime [40,41], is analogous to the counterdiffusive behavior of turbulent mixing, which
can lead to the layering of density within certain regions of the (Ri, Reb) parameter space [60,61]
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through the mechanism proposed by Phillips and Postmentier [62,63]—for the latter mechanism to
be functional, it has been shown that the Prandtl number may play a role (see, e.g., Refs. [35,61]).
The coupling between the turbulent mixing of momentum and scalar in these self-organized flows
could be a topic of future research. Furthermore, it remains a perplexing issue why Ri = 1/4, a
criterion developed for a specific set of conditions [6,7] that do not apply here, stays relevant for a
complex multiscale turbulent flow under consideration.

In closing, it is worth emphasizing that it is not the aim of this paper to prove that the dynamics
exhibited by the strongly stratified turbulence examined are categorically the manifestation of SOC.
Our main aim here has been to show that the threshold behavior of Ri does exist in a nonequilibrium
flow, a characteristic that is indeed reminiscent of criterion 1 for SOC outlined by Ref. [4]. Flow
characteristics reported in Secs. III C and III D shed light on how the flow self-organizes such that
Ri tends to stay around 1/4, which forms the main discovery from our analysis. Efforts have been
made to examine criterion 2 for SOC [4] concerning the power-law distribution of event sizes;
however, it turns out that the the definition used by Ref. [3] to characterize the event size would
lead to spuriously large length scales which are difficult to interpret physically. As formulating the
event size is a nontrivial task in itself and outside the scope of this paper, we opt to defer such
efforts to future studies. It is anticipated that a clear-cut test of the length scale distribution against
criterion 2 for SOC would require a large separation between the relevant length scales, such as the
energy-containing, Ozmidov and Kolmogorov lengths, which would require more computational
resources than currently available to us. A top priority for future research is thus to characterize the
various length scales in a simulation with large Reb (Reb > 20) yet small Frh [Frh ∼ O(0.01)] in
order to definitively prove the existence of SOC (or otherwise) in stratified turbulence.
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