THE UNIVERSITY OF CALGARY

A New Approach For Modular Test Generation
by

Abdel-Fattah Yousif

A THESIS ,
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA
" AUGUST, 1995

(© Abdel-Fattah Yousif 1995

THE UNIVERSITY OF CALGARY
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a thesis entitled “A New Approach For Modular
Test Generation” submitted by Abdel-Fattah Yousif in partial fulfillment of the re-

quirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Jun Gu
Dept. of Electrical and Computer Engineering

t
Dr. D. Irvine-Halliday v
Dept. of Electrical and Computer Engineering

\

Dr. N. Bshodty =/
Dept. of Computer Science

Dr. E. P. Nowicki
Dept. of Electrical and Computer Engineering

\/Q‘«Q«Jl(W/(/\/P

Dr. G. Gopalakrishnan, External Reader
Dept. of Computer Science, University of Utah

Date: August 15, 1995

ii

ABSTRACT

Advances in VLSI technology have now made it possible to integrate increasing
number of devices on a single chip. The reliability of a chip is of foremost importance
to a VLSI design engineer. Due to the limitations on the number of pins and the
. Increasing circuit complexity, it is very difficult to test a chip within a reasonable

cost.

Most design systems support hierarchical design methc.‘;ds in order to contain and
reduce the design complexity. Although testing is considered one of the most complex -
problems in VLSI design, it has not been yet incorporated in the hierarchical design
cycle of .VLSI circuits. This thesis presents a novel approach for modular test gener-
ation of VLSI circuits. The test activities in our modular test generation system are
hierarchical. This implies that tﬂe modular test system presented in this thesis can be
integrated in most of the existing CAD design tools. The benefits of this integration
are enormous, such as reduced design cycles for improved testability, better control
over the test quality, and better test strategy planning for the product at a higher

level of abstraction.

In order tc; accorplish this task, we present a new and powerful gate-level frame-
- work for test generation. This framework is referred to as the Global Automatic Test
- Pattern Generation (GATPG). Experimenta] results on our GATPG system shows
that it is fast, efficient, and guarantees a high test quality. We have éxtended the do-
main of the GATPG system by genérating tests that implicitly cover multiple faults

in a circuit. Finally, we present test assembly procedures which hierarchically gener-
iii :

ate chip tests from module’s tests. These procedures implement a novel framework
" which gﬁa,rantees the hierarchical control of test activities in circuit design. Unlike
current approaches, tests are generated incrementally at different levels in the circuit
hie.rarchy. In order to show the benefits of modular test generation over gate-level test
generation, a cost m;)del for our test system is present'ed. The cost model sh-ows that
the speedup factor of the modular test generation system outperforms other existing

systems.

The impact of the modular test generation framework on the design cycle are
discussed at the end of this thesis. We also propose a framework for test strategy
selection at the chip level aiming at reducing the test application time and minimizing

the hardware that might be needed to improve the chip testability.

v

Acknowledgement

This work would not have been possible without the help of many other people.
I am extremely grateful to my supervisor Jun Gu, who has been an invalhabie source
of guidance and friendship throughout my graduate research work. Jun helped me
in improving my research quality a,na in developing a writing style for effectively
communicating my research ;esglts. Jun was a constant inspiration and Qonﬁdencze

builder for everything I did throughout m); research work. I cannot thank him enough

for his efforts in supporting my work right from the start.

I am indebted to Prof. Graham Birtwistle for his constant encouragement and
technical advice on many occasions. I would like to thank Prof. Jim Hasslett for
his support as a member of my supervisory committee. I also thank Prof. Nader

Bshouty, Prof. Ed Novicki, Prof. Irvine Halliday and Prof. Ganesh Gopalkrishnan

for serving on'my thesis examination committee.

I am also grateful to my colleagues R. Puri, H Kenawi, A.‘Ha,nda, L. Ying and 3
Bin Du whom I had lengthy discussions which helped me develop new directions
in my work. A crucial step in the evolution-of this work came during the review
of a report with H. Kenawi who pointed out to the modular aspects of the back
propagation a,lgorithm. R. Puri gave me valuable comments on the completeness of
my test generation algorithm. I owe my edu.ca,t;ion to my parents and my wife who

gave me the strength to overcome the difficulties encountered during the long road

to this Ph.D.

Finally, I would like to acknowledge the financial support provided by the Electrical
v

- and Computer Engineering Department at the University of Calgary and the NSERC

Strategic Grant MEF0045793 and the NSERC Research Grant OGP0046423.

vi

To

my family

vii

CONTENTS

APPROVAL PAGE . . .o e e e e e e e e e e e e e i1
ABS T R AC T . .. e i
ACKNOWLEDGEMENTo oo oo v
DEDICATION i e e vii
TABLE OF CONTENTS. U vii
LIST OF TABLESo o oo xii
" LIST OF FIGURES e xiii
CHAPTERS

1. INTRODUCTIONt it eeeeen, O 1
1.1 Overview of VLSI Testing e e e e 1

1.2 Testing Cost and Testability Analysis e 3

1.3 Faults in VLSI Systems. e e 5
1.3.1 Fault Models i e 6
1.3.1.1 Transistor-level Fault Models 6

1.3.1.2 Gatelevel Fault Models 7

1.4 Fault Equivalence and Dominance e 8

1.5 Scope of the Thesis e e e 9

1.6 Motivationsand Goals, 10
1.7 Contributions of.the Thesis v v v v v v i i i 13

1.8 Structureof the Thesis v i i i i .. 14

1.9 Summary e, 16
2. BACKGROUND AND PREVIOUS WORK 17
2.1 Preliminaries and Notations EEREEE 17

2.2,

2.3

2.4

2.5

26

The Test Generation Problem e e e e e e e e 19

2.2.1 Problem Formulation . AR e e e e 19
2.2.2 NP—Completeness' of Test Generation 21
Test generation strategies e 21
2.3.1 Path Sensitization e e e e e e e 22
232 Comsistency 23
2.3.3 Redﬁ_ndancy and undetectability S 24
Current ’I“esi; Generation Approaches 25
2.4.1 Random Test Generators e e e e e e e e e 25
2.4.2 Deterministic Test Pattern Generators 26
Modular Test Generation, 28
SUMIMATY « o v v v v e e e et e e e e e 31

3. GLOBAL TEST-BASED MODEL FOR TEST GENERATION ..- 33

.3.1 Global Testing and Backtracking 33
3.2 Global Automatic Test Pattern Generation (GATPG.) 35
3.3 Important Issues in the GATPG Framework 37
3.4 Modular Aspects in the GATPG Framework 39
3.5 Characterization of Test Primitives, 4l
36 Test Quality e e e e 44
3.7 Summary e e e e e e e e e e e e . 46
4. AN EFFICIENT GATPG ALGORITHM FOR COMBINATIONAL

CIRCUITS................ S 47
4.1 The Test Generation Model . . . e 47
4.1.1 Global Testing Issues S e ... 48

- 4.1.2 Test Generation Framework 50

4.2 Problem Formulation e e e B2
421 Problem representation L. L L., 52
4.2.2 Logic Representation in the GATPG Algorithm 83

4.2.3 Extensions and Simplification of the Test Problem 55

43 The GATPG Algorithm o v oo oot . 57.
4.3.1 Back-Fault-Propagation for Logic Gates 57

4.3.2 The Back-Fault-Propagation Procedure 60"

ix

4.3.3 Multiple Path Sensitization 65

4.4 Data Structure and Tree Pruning 70

44.1 Data Structureo ovi it 70

4.4.2 Pruning the Assignment Tree e e 72

4.5 Constructing the Test Primitives 73

4.5.1 Algorii;hm Complexity e .. 19

4.6 Experimental Results e e e 81

' 4.6.1 Two Phase Implementation”8

46.2 Single Phase Implementation 85

4.7 Prabticality of the GATPG Algorithm 88

4.8 Summary e ... 89

5. THE GENERATION OF TEST PATTERNS WITH MAXIMAL

MULTIPLE FAULT COVERAGE 91

5.1 Introduction i e e e 92
52 PreviousWork IR ITIR IR 93 |

5.3 Preliminaries P 94

5.4 Multiple Faults Analysis 95

5.5 Two Models for Test Set Augmentation 97

5.6 Two Procedures for Test Set Augmentation 100

5.6.0.1 The Maximum Control Set Procedure 100

5.6.0.2 Sensitization Path Elimination Procedure 104

5.7 Experimental Results on the 74LS181 ALU Circuit 106

5.8 Multiple Fault Detection Using the GATPG Framework. 111

581 TheApproach ST L. 111

'5.8.2 Implementation and Results 116

5.9 SUMMAIY * « o v v e vt e e e e e 119

" 6. THE MODULAR TEST GENERATION SYSTEM . . e 121

6.1 Introduction IR 121

6.1.1 The Modular Test Generation Approach [P 123

6.1.2 Syst.em level test assembly e e e 126

6.2 The Test Assembly Procedures . e 131

6.21. AnExample. 135

6.22 TestLength 141

6.3 Modular Test Cost . e e e e e e e e 142
6.4 Suﬁlmary 147
7. TEST STRATEGIES IN MODULAR TEST GENERATION ENVI—
RONMENT e 148
7.1 High level strategy selection e e e e . 148
7.1.1 - Full Chip Testing e 149
712 MacroTesting i it 154
7.1.2.1 The Current Approach in Macro Testmg 155
7.1.2.2 A New Framework for Macro Testing 157
7.1.2.3 Soft Testing T se v 187
7.1.2.4 Hard Testing 158
7.2 Summary e S e e e 161
8. CONCLUSIONSouiiiinrnnannn... B 162 -
REFERENCES PO 167

x1

1.1

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

LIST OF TABLES

Tests for 3-input NAND gate.

Real execution performance of our algorithm in a two—phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS’85 benchmark
combinational logic circuits. Time units: seconds.

Real execution performance of our algorithm in a two-phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS’89 benchmark
combinational logic circuits.

Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS’85 benchmark

combinational logic circuits. Time units: seconds.

Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS’89 benchmark
combinational logic circuits.

Performance comparison between the BFP algorithm and the Transitive
Closure (TC) algorithm on a SUN SPARC 2 workstation for large
ISCAS benchmark circuits. Time unit: seconds.

A summary for the simulation study done by Hughes.

Results obtained after applying the first experiment on the 74LS181 ALU.

Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC
2 workstation with the ISCAS’85 benchmark combinational loglc cir-
cuits. Time units: seconds. oL,

Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC 2

81

83

86

87

88

109

109 .

117

workstation with the ISCAS’89 benchmark combinational logic circuits. 118

xii

1.1

1.2

2.1

2.2

2.3

24

3.1

3.2
3.3

3.4
41

4.2
4.3
4.4

4.5

4.6

LIST OF FIGURES

A three-input NAND gate example e
Two faults which are functionally equivalent..
Example to illustrate test generation terminology.

A Combinational circuit used in formulating test generation as an n-
dimensional 0-1 state space search problem.

A simple circuit to describe sensitization. e
Example of redundancy. IR AR P
An example of a set of .faults:
A combinational circuit block example. e e e e e
An example to illustrate modular heuristics.

An example of a transistor level fault that cannot be described using the
stuck-at model. o L

An example showing the propagation and justification procedures at the
modular test level. e e e e e

The back fault assignments fora NAND gate.

Single and multiple path sensitization of faults. . .". -

BFP: a back-fault-propagation algorithm that globally sensitizes output -

CONES. . . . v v v v v v s v s o e e e s e e e e e e e e e e e e e e e e

A circuit example for marking nodes associated with fanout structures and

the sub~tree of logic assignments at nodem.
xiii

18

62

4.7 Comparison outcomes for logic assignments at fanout stems. . PERIREP
48 A MPS example. . . . o
4.9 Searcil space representation for a 3-stem fan;)ut stn-lcture. e
4.10 The multiple path sensitization procedure. e e e e e e
411 A cifcuit example. s e U
4.12 The data structure for fhe circuit example.
4.13 A combinational circuitexample.
4.14 Test generation for the first output.cone. SRR EEE
4.15 Test generation fo;: the secondl output cone.
4.16 The generated test primitive. L L

4.17 A circuit example for explalnmg the space complexity of the GATPG
algorithm. L

5.1 An example to illustrate testing terminology. e .
5.2 - Example for the different PI sets of a fault under test.

5.3 Identify(): a procedure used to determine the different prlmary input
sets for fault funder¢. L0 o oL,

5.4 Max_Control: the procedure used to determine a maximal control set

for a single fault f underatest¢.

5.5 An example to illustrate the Max_Control() procedure.
5.6 An example which illustrates the sensitization path elimination procedur;a.

5.7 The 74LS181 ALU c.ircuit diagram e e e e

- 5.8 A general data structure for two 1;a,ults in a circuit. . . . SR e

xiv

64

69

79

105

5.9 Control logic assignments for implicit multiple fault covérage (a) single
. fault coverage (b) double fault coverage (c) triple fault coverage (d) all
multiple fault coverage. L L L. 113

5.10 The impact of 1mp11c1t multiple fault control as51gnments on the data

structure. L e e . 118
6.1 Circuit hieraréhy in modular test éenefation e e e e e e 127
6.2 The modular deC(')mposition of large ASICs in the design lstage. 129
6.3 The system-level test assembly procedure. P ¥/
6.4 Test assembly procedure at the module level. . . . e B 133
6.5 An example showing module sele;,ction in the test assembly procedux_‘es. . 134
6.6 Hierarchical description of a 3-to—-8 decoder circuit. e e 136
6.7 The circuit diagram and the test primitive for a 1~to-2 decoder. 137
6.8 The test primitive for the 2-to-4 decoder. e | 139
6.9 A modified circuit diagram to illustrate the cube intersection process. . . 140
6.10 A circuit hierarchy for explaining the cost model. .". 143

6.11 A graph showing the speedup factor for modular test generation over gate

level test generation. e e e 146
7.1 A classification of high level test strategles. e - 150
7.2 A general model for sequential circuits., . 152
7.3 A sequential circuit modified for scan path design technique. 153
7.4 A test interface ele?nent and its a,ppli_c'ation in macro testing. 156

7.5 . An example showing how can we determine the lowest level i in the circuit
hierarchy at which macro testing is applied. 160

Xv

CHAPTER: 1

- INTRODUCTION

The advances in VLSi technology during the last decade have had a great impact
on testing. Due to the increase in circuit size and the limited accessibility to the
internal nodes of a circuit, the costs of testi.ng a chip have become a substantial part
of the overall chip costs. The testing cost is justifiable because it is much less than .

the cost of having the chip fails in the field.
1.1 Overview of VLSI Testing

Test techniques are introduced into the process of VLSI design in order to dis-
cover defects in digital systems. Test activities are interwoven with the VLSI design.
Architectural design consists of partition.ing a VLSI chip into realizable functional
blocks. Thé logic design of these blocks should be synthesized in a testable form or

the synthesized logic should be analyzed and improved for testability.

Faulty VLSI chips could be produced during meanufacture because of photolithog-
raphy errors, deficiencies in process quality, or improper design. Even if the chip is
manufactured perfectly, it could subsequently wear-out in the field due to electromi-
gration, hot-electron'injection, or other reasons. Environmental effects, such as alpha.

particles and cosmic radiation can also cause a circuit to produce erroneous data.

Testing is experienced at-various stages in the production of a system: the dies are

tested during fabrication, the packaged chips before insertion in the boards, the boards

2

after assembly, and the entire system when compiete. As far as the level of VLSI chip
testing is concerned; a test generation algorithm is used to provide the necessary test
vectors which, if applied to the chip, will expose most of the faults occurring at this
level of manufacturing. The test cost at this level is brimérily determined by the' '
cost of generating these test vectors. Consequently, a new diécipline has emerged
to probe the testability problem of a circuit more thoroughly in order to give the
| designer feedback without taking the risk of sﬁbmitting a circuit design which is not
testable. Indeed, deéign,for testability has been very well recognized and served by

many researchers and integrated into commercial design methodologies.

When considering which test patterns to generate for testing a complex circ;uit,
one should first consider how good the patterns are for detecting the possible physical
failures in the circuit. It may be impossible to consider all possible physical failul:es.
Hence, tejst patterné are generated to detect some set of modeled faults in the circuit.
For example, any line in the gateilevel representation of the circuit permanently stuck
at logic 0 or 1. The ﬁeasure of test quality in this case could be the percentage of

' the stuck-at faults detected by the patterns, and is called fault coverage for the fault
class. A typical goal might be to achieve a fault coverage for single stuck faults of

99% for the chip.

Fault coverage is determined by a fault simulation program. Simulation of all
faults in a large circuit with many tens of thousands of gates may take a prohibitive
amount of computer time. Statistical sampling procedures for simulating a fraction of

the total faults are commonly used for measuring the effectiveness of the test patterns.

1.2 Testing Cost and Testability Analysis

For decades, designers have regarded testability as a troublesome activity, neces-
sary to support the manufacturing process. Extra hafdware for testability has been
considered as an area overhead and test pattern generation effort has been considered .
as limiting the time for creative design. Howe:ver, the continuous growth of circuit
complexity made testing difficult and time consuming. On the other hand, quality
‘ assurance and reliability have gained much in importance. Better quality testing is
required, which complicates the test process even further and by several orders of
magnitude. Therefore, the cost of testing has become a critical part of the total chip
production cost. It can be as high as 70%. Needless to say, testability has become an

irrefutably important part of the design trajectory.

Attemi)ts; to understand circuit attributes that influence testability have produced
the two.concepts of ‘observability and controllability.Observability refers to the ease
with which the state of -interna‘,l signals can be deterrﬁined at the circuit output
leads. Controllability refers to the ease of producing a specific internal signal value
by applying signals to theé circuit input leads. Many of the Design For Testability
(DFT) techniques are g,t‘tempts to increase the observability or controllability of a
circuit design. ‘A straight forward approach to do this is‘to introduce test poi.nts, that
is, additional circuit inputs and outputs to be used during tesfing. There is always a
cost associated with adding test points. For circuit boards adding test points is often
well justified. On the other hand, for ICs, the cost of test points can be prohibitive

because of IC pin limitations.

A straightforward method for determining the testability of a circuit is to use an
Automatic Test Pattern Generation (ATPG) program to generate the tests and de-

termines the fault coverage. The running time of the program, the number of test

4

patterns generated, and the fault coverage then provide a méasure of the testability
éf the circuit. The difficulty with this approach is mainly the large expense involved
in running the ATPG program. Also, the ATPG program may not provide sufficient
information abou.t how to improve the testabiiity of a circuit with poor testability.
To overcome these difficulties, a number of programs have been written to calculate
estima,'tes:of the testability of a design without actually funnihg an ATPG program
such as TEMAS (Testability Measure Program) and SCOAP (Sa,ndia Controllabil-

ity/Observability Analysis Program) [25].

- These Testability Measure (TM) programs implement aylgori;chms that attémpt to
predict for a specific circuit the cost (;‘unning time) of generating test patterns. In
the process of calculating the testability measure, information 1s developed i‘dentifyiﬁé'
those portions of the circuit which are difficult to test. This information can be use'd

as a guide to circuit modifications that improve testability.

No accurate relationship between circuit characteristics and testability has yet |
been demonstrated. Thus the circuit paranieters calculated by the TM programs
are heuristic and have been chosen on the basis of experience and study of existing
ATPG programs. It is not surprising that the various authors of ™ programs have
chosen different circuit characteristics for their estimates of testability. The technique |
used to demonstrate that a given TM program does indeed give'a,n indication of
circuit testa,bilit.y is to run bofh the TM program and also an ATPG program on a
number of different circuits. A monotonic relation between the TM and the ATPG
run time is offered as a proof that the TM program produces a good estimate of circuit
testability. The difficulty with this Yalidation technique is the high cost of running
enough examples to be reliable. Some interesting results obtained by using statistical

methods to evaluate the testability measure ﬁrogra,m approach are presented in [3].

1.3 Faults in VLSI Systems

- As systems increase in corﬁplexity, it is useful to be able to describe faults at
various levels of abstraction in the system. A fault which is describ‘ed at a very low
level, for example the level of tr'ansistors, may very af:curately describe the physical
‘phenomena causing thé ;’ault but, because of the extfemely large number of transistors
in a VLSI chip, the model may ioe intractable for the purpose of deriving tests for the
fault, T'he two requirements for fault models are dccuracy and tractability. Accurq,cy
means realistic faults should be modeled, while tractability implies that very complex
systems should be handled. These requirements are in some sense contradictory.
Recent research, therefore, ‘dea,ls with deriving realistic models at higher levels which

can accurately capture the faults at lower levels.

As an gxample, consider a contact between two conducting lines in a VLSI circuit.
If the contact is faulty, then the fault can be described at this level of abstraction as
a break between two lines. It may also turn out that the break is equivalent; to the
input of a ga{;e being permanently set to logic 0. The fault can then be described at
the gate levél of abstraction as a stuck-at 0 fault. It would be simpler for the purpose

of ana,lys-is to consider the fault at the highest possible level of abstraction.

A physical failure can also lead to the output of a module being at- a nonlogical
value (for example, indeterminate level between logic 0 and 1). Such faults are difficult
to describe and detect, but the errors due to these faults may also be detected by

error detection techniques.

1.8.1 Fault Models

Fault models are descriptions of the effect of a defect or failure in a circuit. As
discussed earlier, fault models are driven by the requirement to derive high quality
tests for complex circuits. Thus a useful fault model will naturally lead to a test

generation procedure for the fault.

1.3.1.1 Transistor-level Fault Models

Defects in present day integrated circuits can be abstracted to shorts and opens
in the interconnects and degradation of devices. Fault models at the transistor level,
therefore, can characterize physical failures quite accurately. Unfortunately, as the
complexity of VLSI increases, the number of potential faults at the device and in- -
terconnect level also increase dra;stically. Nevertheless, it is necessary to study the
effects of failures at the transistor level and to develop acculia,te fault models at this
level. Betterﬁnderstanding of the effects of failures can be used to develop accurate
fault models at higher levels which can be applied to cdmplex systems. Thié a,pproadc.h |
is a.nalog'ous to that used in the hierarchical.'design of VLSI systems where complex

circuits are built from smaller cells.

Fault models proposed at the transistor level incorporate one or more of the fol-

lowing classes of faults:

e shorts and opens of transistors or interconnections.
o delay effects of failures.
e coupling or crosstalk between nodes of a circuit.

o degradation of elements.

7

Shorts and opens are inclu;led in most fault models while the more accurate and
more complex models include delays. Fault models where activity on one node affects
the logic values on anothér node in the circuit are primarily applied to memories.
Fault models which incorporate degradations of elements (for example, transistor
‘parameter chaﬁges, or changes in the value of a resistor) are usually used in-analog

circuits.

1.3.1.2 Gatq-'level Fault Models

Early fault models were developed at the logic gate level. The popularity of this

approach can be attributed to several reasons.

o Such models are simple to design and use.

e Many faults in discrete technologies can be r.epresented‘by faults at the logic:

gate level.

e Use of such fault models allows many of the powerful results in mathematics

relating to Boolean algebra to be applied to deriving tests for complex systems.

o A fault model at the logic gate level can be used to represent faults in many
different technologies if, in fact, defects and faults in these technologies can be

mapped to gate faults.

One of the earliest and still widely used faﬁilt models at the gate level of abstraction
. is the stuck-at model. In this model, it is assumed that physical defécts and faults
will result in tl*ie lines at tllle.logic gate level of the circuit being permanently stuck-at
logic 0 or 1. This model has been the source of a great deal of research. It is still

very popular since it has been shown that many defects at the transistor and circuit

(I

—

Figtre 1.1. A three-input NAND gate example

level can be modeled by the stuck-at fault model at the logic level. In practice, only

single stuck faults are considered in a circuit.

A subset of the stuck fault model is the pin fault model, where only input/output
pins of a module are assumed to be stuck-at 0 or 1ﬂ under failure. This has been used
sometimes when testing printed circuit boa,rds' with many VLSI devices. Unfortu-
nately, this fault model does not even include a high percentage of ga,tellevel stuck

faults within the module in most cases and is, therefore, inappropriate for VLSL

1.4 Fault Equivalence and Dominance

Consider ‘the three input NAND gate shown .in Figure 1.1. This gate has four-'
lines (three inpﬁts and one output) and would, therefore, have eight stuck-at faults,
each line stuck a,t; 0 or 1. However, the ‘faults A, B,or C étuck-'at 0 would result
in the output D being permanently 1 and, therefore, it is impossible to distinguish
between aﬁ input stuck at 0 from the output stuck at 1. These faults are said to
be equivalent. Now consider the fault A-stuck-at-1. In order to detect this fault, a
0 has to be applied on A, a,ncll 1s at B and C so that the effect of the fault can be
propagated to D. The cc;rrecf value of D will be a 1 and it will be a 0 under fault. -

This test for A-stuck-at-1 will, therefore, also detect the fault D-stuck-at-0.. Hence,

A-stuck-at-1 is said to dominate D-stuck-at-0.

Using the relations of equivalence and dominance allows mary faults to be com-

Table 1.1. Tests for 3-input NAND gate.

A B C D Fault Class

1 1 1 0 A/0,B/0,C/0,D/1
0 1 1 1 A/LD/0

1 01 1 B/1,D/0"

1 1 0 -1 C/1,D/0

bined into a single class, reducing the number of faults to be considered in a complex -
system. A three-input NAND gaté, therefore, will have four different fault classes
and the tests for these faults are shown in Table 1.1. In the table, the fault consisting

of one line ! stuck-at-0 is shown as /0.

The notion of-equivalence and dominance can be applied to more complex circuits. .
Thus two faults which are iﬁ different parts of a larger circuit could possibly be
equivalent. Figure 1.2 shows a simple circuit with four inputs and one output. Stuck-
at-1 faulés on the two lines marked a and b are equivalent, that is, the function under
either faults is the same. However, equivalences such as these are more difficult to
detect and, in practice, only equivalences and dominances around a gate are normally
considered. More information on the concepts of the fault equivalence and dominance,

as well as the idea of reducing the number of fault classes by fault collapsing, are found

in [38, 49].

1.5 Scope of the Thesis

The thesis develops and implements a number of test generation frameworks ab
the gate and modular levels of abstraction. The procedures associated with this
implementation aim at integrating the test genefation process within the hierarchical

framework of designing VLSI circuits. This reciuires devel.oping an understa',nding for

10

ar e p S

s—-a-1 a

- s—a-1 b
Yo— >3
2z O———o|

Figure 1.2. Two faults which are functionally equivalent.

the interface between gate level and modular level test generation approaches.

The test problem is well understood in combinational and synchronous seﬁuential
: ci£cuits. Thus, we limit the discussion in this thesis to co;rnbinationa,l and synchronous
sequential circuits. Asynchronous circuits are bey;ond the scope of this thesis. Another
restriction is that tzhe" thesis is primarily concerned with the stuck-at fault model
during test generation. Other fault models can be used at low level of abstraction.
The resultént tests can then be used by the modular test system to create chip tests.

This approach is not part of the thesis work.

The thesis also deals with single faults (except in Chapter 5). This means that
only one fault might exist in the chip during the test application. The purpose of the
test generation system is to find test vectors for the modeled single faults in a circuit.

" Multiple fault existence is dealt with only in Chapter 5.

1.6 Motivations and Goals

There is much effort that has been spent on reéearch for powerful Computer Aided
Design (CAD) tools to support the design of VLSI and ASICs with a fast turnarolmd

time. Unfortunately, most of these tools reg'ard the test pattern generation problem as

11

a back-end process, that is looking at the testability issues after the circuit is designed.
This is the classical way of solving the testability problem: as an afterthought. Not

surprisingly, users have had poor experiences with such tools.

This explains the need for m01;e powerful test tools that support the test develop-
ment du;ring the design stage. This is especially true for the development of coinplex
ASICs. These chipé are tailored towards their application and require dedicated test

‘genera,tion., This is time consuming e;,nd therefore costI}‘;'. Since they are often pro-
duced in limit;ed quantities, the relative cost of test program development becomes
excessive. Even Worse, these test development times place a serious burden on the

development of competitive ASICs that require a short time-to-market.

The need for efficient techniques for testing VLSI circuits arises due to the fact .
that co'mpanies are continuousiy faced with decisions to cha;lge and modify their
designs. Each chip in the new design must be tested properly in order to eliminate
chips with physical fajlures. A sm'a,ll chranges in any of the circuit modules might
invalidate the efforts spent on generating tests for the original design. More fest
efforts will then be needed to level up the test quality of the chip. With the current
approaches in test generation, this effort, although automated, is enormous in terms
of computer resources arid the man-hour involved in it. In order to keep pace of
the short design cycle, efficient ATPG tools must be readily available for the test
engineer. Accordingly, the decisions made in choosing the test strategy will be highly

influenced by these tools.

This thesis aims at proviciing the test engineer with powerful ATPG algorithms
which will provide a range of test strategies at any level of abstraction. Our goal is
to build powerful tools for testing VLSI circuits hierarchically. Cost and test quality

will always be considered in any of these tools. In short, this thesis describes an

12

ATPG system for combinational circuits, an implicit maximal multiple fault coverage’

— single phase ATPG system , and modular (hierarchical) test procedures.

The ATPG system for combinational circuits has two major features which are
highly desirable by test engineers. Unlike other ATPG systems, it is single phase
which implies that the random test generation phz;se is not included in the test system.
All test patterns generated by the test system are deterministic. The other feature
which is unprecedented in other test sysfems is the globai test approach in which
tests are generated. Global test generation implies that ;nore than one tar.get fault
are considered by the test a,lgofithm, as opposed to the single target fault strategy that
is currently adopted by other test algorithms. These two features not only generated
qua,lity test vectérs with large fault coverage but also enabled us to produce test :
primitives for modules under test. The term test primitive is used to describe testn
sets for different modules. The efficiency of the test generation system was enhanced
by including a powerful procedure which will allow. the generated test sets to have
maximal multiple fault coverage. As far as we know, no existing test system was able

to provide such test sets.

The final step in tHis thesis is the u;se of the above test system to hierarchically
generate test patterns for a modular design using the test primitive of each module.
-.In order to achieve this objective, symbolic paths between modules must be cre-
ated in order to move freely from one module’s inputs/outputs ‘to another quule’s
inputs/outputs. Current hierarchical ATPG systems use the transfer (funct:ional)s
mode of modules to create thesé paths. In our approach, we did not separate the
test set from the symbolic pa,ths‘of a module. This is one of the most important

achievements of this work because it shows that our test system is truly modular and

inherently efficient. We start by generating test primitives which serves both as test

13

patterns and symbolic paths for faults across a module. Then, we describe a new

procedure for modular testing using the generated test sets.

If full scan is chosen as the strategy for testing a chip, then, the circoit in its mod-
ular form will be dealt with as combmatlonal c1rcu1t Therefore the comb1nat1onal
test generator will be apphed at each module separately Each test pr1m1t1ve will be
attached to a module. A modular test procedure will then be applied in order to

assemble the chip tests at the primary inputs.

1.7 Contributions of the Thesis

A major contribution of this thesis is a novel and efficient modular test generation
methodology that significantly reduces the complexity in testing large VLSI circuits.

The most significant elements of this thesis are as follows:

o The identification of the requirements for a truly modular test generation system.
The test interface between one level of abstraction and a higher level is-clarified.
The performance failure of current hierarchical test systems is explained. We
have formally characterized the test primitives and stated the conditions under
which test primitives can provide a complete test and functional description for

a module (Chapter 3).

¢ An eflicient global automatic test pattern generation algorithm (GATPG) to
generate the test prlmltlves with the required spec1ﬁcat10ns is presented. The
algorithm is capable of generating tests with a 100% fault coverage in a very
. short time compared to other approaches The GATPG approach provides 1.6
to 47 speed-up factors over current approaches. “This performance is achieved
because of the application of the novel global search strategy where faults are

searched collectively using shared search spaces for faults. Also, an efficient tree

14

pruning technique is applied to the algorithm in order to limit the memory size

during its execution (Chapter 4).

o A direct relationship between the global test generation framework and multiple
fault testing is established. ‘A new view i)oint in the analysis of multiple faults
behavior is presented. This analysis is later adopted in our GATPG system to

generate tests that implicitly cover multiple faults in a circuit (Chapter 5).-

® An efficient modular test generation methodology is presented. The test ac-
tivities in this methodology is hierarchical making it the first known approach
with 'the potential of being integrated into ‘the hierarchical framework for de-
signing VLSI circuits. ’i‘his methodology requires no extra heuristics for m<;du-
lar /hierarchical test generation. Thus, it can be integrated into VLSI CAD tools -

with minimal programming efforts (Chapter 6). -

* A cost model for hierarchical test generation is presented. The speed up factor
using our modular test generation system over low level test systems is shown

to be increasing with the increase in the circuit size (Chapter 6)..

o A revision of the test strategies at the chip-level in the context of the modular
test generation system is presgnted. We propose different strategies to optimize
- the test quality -of the chip. A novel approach for minimizing the hardware
addition to the chip design through macro testing is presented. The purpose of
this approach is to iniprove the test quality of chips without loosing large silicon

area.
1.8 .Structure of the Thesis

The thesis is organized as follows:

Chapter 1 is an introduction to this work. In Chapter 2, some background about

15

the test problem and the related issues are presented. In Chapter 3, the new model
for global Automatic Test Pattern Generation (ATPG) system will be presented. In
Chapter 4, a combinational test generation algorithm based on the global ATPG
model is presented. The GATPG a,igorithm will be presented v‘vith' two implementa-
tions, namely, two phase and single phase test generatif)n systems. In the two phase
implementation, a random test generator is used as a front end during test gel‘ler-
“ation. Random testing will cover most of the easy to detect faults in the circuit.
In the single phase irhplementation, the random phase is not considered in the test
generation process. The two implementations will enable us to compare our results

adequately with other existing algorithms.

In order to enhance the efficiency of the combinational test generation algorithm, .
we have modified our algorithm to generate test set;s with maximal multiple fault
coverage. In order to ensure that the 'whole test set achieves a maximal multiple fault
coverage, all test vectors must be generated deterministically, i.e., the single phase
implementation is used in this part of the thesis. The single phase test system with
implicit maximal multiple fault coverage is presented in Chapter 5. Also in Chapter
5, the necessary analysis for éeneratiing tests with maximal. multiple fault coverage is

presented.

Chapter 6 discuses the modular test generatic;n procedures that We propbse in this
thesis. The modular test procedures and the hierarchical test control are presented -
in this chapter. In Chapter 7, we present the framework for test strategy selection
at the éhip level, in the context of the modular test generation system. We propose
some new techn’iques to minimize the test application time and control the hardware

addition as well. Chapter 8 concludes the thesis.

16
1.9 Sﬁmmary

In this chaI;ter, motivations that initiated the interest in the testing problem have
been introduced. The cost of manufacturing a VLSI chip is shown to be very much
affected by the testability ﬁgure of the chip. Design for testability, testablllty analysis
programs, and new test generation algorithms are a normal consequence for the test

process requirements.

The large number and comp.lex nature of physical failures dictates that a practical
approach to testing should a,voidrworking directly with the physical failures. :In moﬁt
cases, in fact, one is not. usually concérned with discovering the exa;:t physical failure;

. what is desired is m;arely to determine the existence of (er absence of) any physical
failure. One épproach for solving this problem is to describe the effects of physical.
failures at some higher levels of abstraction. This descriprtion is called a fault model.
Thé stuck-at fault model will be used throughout this thesis to gener;zte test patterns

which cover the physical failures in VLSI circuits.

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, the test generation problem for rcoinbina,tional circuits is‘ presented.
Section 1 presents the test generation terminologies used throughout this thesis. The -
test problem complexity is identified and formulated in Section 2. The test strategies
for current test pattern generation algorithms will be presented in Section 3. Although
numerous approaches to test generation have been reporte;i, only a few of these
approaches are used in test systems. Section 4 presents usome of filese-approaches
such as the D-Algorithm, PODEM (Path Oriented DEcision Making), and FAN.
The test strategies for these algorithms Wi.H be explored. The relationship between
combinational test generation and the modular testing app.roa.ch will .then be discussed

in Section 5.

2.1 Preliminaries and Notations

Common terminology pertaining to test ger';eration for logic circuits is readily
introduced with an exa,miale. Figure 2.1 shows a combinational logic circuit and a
test for a single stuck fault that causes node h to permanently assume a 0 state. A
.stuck—at-l (s/1) fault on a signél node causes that node to permanently assume the
1 state. A stuck-at-0 (s/0) fault causes a permanent 0 on éhe faulted node. The five
valued logic (0, 1, X, D, D) is used to describe the behavior of a ¢ircuit with failures.

The logic value D designdtes a logic value 1 for a node in the error free circuit and a 0

18

for the same node in the failing circuit, D is the compliment of D, and X designates a
DON'T CARE value. A behavior difference between the good circuit and th¢ failing
circuit propagates along a sensitized path. In Figure 2.1, the signal path h, j (the bold
line) is referred t.o as a sensitized path. Externally controllable nodes are referred to
as primary inputs. Externally obseljva,ble nodes are referred to as primary outg}uts.
In Figure 2.1 assignment of the values 1, 1, X, X, 0 to the primary inputs a, b, ¢, d, -

e, respectively, constitutes a test for the fault A.s/0,

Figure 2.1. Example to illustrate test generation terminology.

Definition 1 : Two faults are said to be compatible if there exists at least one test

vector which detects both faults.

. Definition 2 : Two faults are said to be collapsed if the detection of one fault
implies the detection of the other fault. The two faults can also be referred to as

indistinguishable faults.

Definition 3 : The D-drive refers‘t_o the node with a logic value-D or D and is
uéed by the test generation algorithm to bring it closer to the .prima,ry outputs. In
Figure 2.1, node h represents a D-drive to the test generation process. If at any time
in the test generation procedure, more than one node carries the logic values D or D,
then we refer to these nodes as the D-frontier. The test generation algorithm picks .

up one of these nodes to drive the test process, i.e., selecting the D-drive node.

19

Definition 4 : The implication procedure refers to the process of using the im-
plication rules of Iogic‘ gates to propagate signa,i values at gate input nodes to their
output nodes. This procedure is rused to check the implication of logic aésignments
'madé during the test generation procedure. The result .is used as a éuide tc; the next

step in the test procedure.

Definition & : Consisteﬁcy check is a procedure used by test generation algorithms
to check if the previously made decisions meet some objectives set by the .a,lgorithm.
The decisions macie by the test generation algorithm are referred to as inconsistent
if they don’t meet the objectirves set by the algorithm. It must be noted that these

objectives vary during the test procedure.

2.2 The Test Generation Problem

With the progress of VLSI technology, the problem of fault detection for logic
circuits is becoming more and more difficult. In developing tests for digital circuits,
the faults that will actually occur are unknown. Instead, test sets are developed to

detect a specific set of faults.

2.2.1 Problem Formulation

As Goel [24] stated in.his paper, the test generation problem can be formulated as
a search of the n-dimensional 0-1 state space of primary input patterns of an n-input
combinational loéic circuit. For examplé, in Figure 2.2, g is an internal node and the
objective is to generate a test for the stuck fault g s/0. The logic value at g can be
_expressed as a Boolean function of the primary inputs X, Xz, ey X Similariy, each
primary output (y;, 7 = 1, 2, ..., m) can be expressed as a Boolean function of the

state on node g as well as the primary inputs X;, X, ..., X,.

20
Let g= G(X1, X2y «ey X3)
and y; = Yi(g, X, Xo, ... Xn) -
where I<j<mand X;=0orlforl<i<n.

The problem of test generation for g s/0 can be stated as one of solving the

following set of Boolean eqﬁations:
G(X1, Xz, ooy X)) =1
Yi(1, X1, X, ..., X2) @ Y;(0, Xy, Xo, ..., Xp) =11

for at least one j,i <j<mand X;=0orlforl <i<n..

The first equation implies that a s/0 fault is first excited to logic 1 (opposité to the
stuck-at level), while the second equa.tion iI.nplies that.the change of the logic value .
at the fault location can be observed at the primary outputs. Ther set of equations

for g s/1 ‘are the same as above except that G is set equal to 0.

x| |yl
x2 L y2

Xn

. ym

Figure 2.2. A Combinational circuit used in formulating test generation as an
n-dimensional 0-1 state space search problem.

In short, test generation can be viewed as a search of an n-dimensional 0-1 space
defined by the variables X; (1 < i < n) for points that satisfy the above set of
equatjons. More generally, the search will result in finding a k-dimensional subspace

(k < n) such'that all points in the subspace will satisfy the above set of equations.

21

2.2.2 NP-Completeness of Test Gerneration

The concept of NP-Completeness is used to prove that the amount of time required
to solve a specific problém is beyond a certain practical limit [4]. The pfoblem of fest
generation, which is known f;o Belc_mg to the class of NP—complete probiems, can be
viewed as a finite space search problem [24]. For a circuit with N primary inputs, there
exists 2N cbmbinations of input assignments. Automatic Test Generation (ATG)
algorithms basically search for a point in the primary inp.ut space that corresponds

to a test pattern and consequently, to a solution of the search probleni.

The NP—complefeness property of the test generation problem necessitates that
various heuristics be developed to create practical solutions for it. The PODEM [24]
and FAN [21] élgorithfns are elegant examples in this regard. Many other fault anal- -
ysis problems, such as the determination of the size of minimal test sets, coverage
of multiple faults by single-fault test sets, and coverage of faulf.s“ by randomly gener-
ated test sets are similarly besieged by their inherent complexity, a;nd their solutions

require thoughtful insights.

2.3 Test generation strategies

The goal of any Automatic Test Pattern Generation (ATPG) system is to to be able | |
to detect the éxisténce of faults in a circuit. It might be helpful to be able to pinpoint
the exa.ct nature and location of a fault within a circuit, but this is not necessary for
most purposes. A common strategy for ATPG systems has been established through
the last two decades. Within the context of this strategy, the test generation task is
divided into two phases. In the first phase, random test vectors are generated and
simulated to ‘cover as many faults in a circuit as possible. In the second phase, a

deterministic algorithm is applied to the rest of the undetected faults in the circuit.

22

The deterministic algorithm applies its search strategy on a single target fault and
the resultant vector (if any) is simulated to cover any other fault that can be detected
using the same vector. The single target fault strategy implies that there is at most

one fault in a circuit.

2.3.1 Path Sensitizationr

Most ATPG algorithms apply a path sensitization technique as the basis for many
detailed procedures during the deterministi;: test generation phase. Sensitization is
a technique where a path consisting of many nodes is created to help propagate a
stuck-at fault in a circuit. Searching the input space for a. test pattern is equivalent

to searching for a single (or multiple) sehsitizing path.

Consider the circuit of Figure 2.3 and the fault 7 s/0. In order to detect this fault
by a procedure that allows access only to. the prifnary input lines (1, 2, 3, 4, 5, and
6) and the primary output line (15), it is essential that a test vector fnust somehow
create a change on line 7 and ensure that the change car.l be seen on line 15. That
is, the tesf vector must produce a 1 on line‘ 7, and line 15 should be sensitized to line
7 in the sense that the output created on line 15 clearly shows whether the signal‘on
" line 7 is 0 or 1. If the path from line 7 to line 15 is traced in Figure 2.3, the first

condition for sensitization is that line 10 be a 0. Indeed, if line 10 is a 1, then line 13.
would be 1 irrespective of the value on line 7. 'II.’l other words, a 1 on linle 10 would
“desensitize lin.,e 7 to line 13. Moreover, since there is no other path to transmit the
value on line 7 to line 15, line 10 being a 1 will also desensitize line 7 to line 15. Thus
assuming that line 10 is a 0 the next condition for the sensitization is that line 14
‘be a 1. If both of these condltlons exist in the circuit, then when a 0(1) is applied to

hne 7, the circuit output is going to be a 0(1). In other words, any input vector that

23

can create a 1 on line 7, 2 0 on line 10, and a 1 on line 14 will in the fault free circuit
produce a 1 on the output line, and in the faulty circuit a 0 on.the output line, and

will, therefore, be a test vector for 7 s/0.

1
x1 7
x2_2)

10
x3_3 | g 13
4 15
x4 —= - 14
11
12
x5__ 3| 9
X6 8

Figure 2.3. A simple circuit to describe sensitization.

The concept of sensitization needs to be explained further in the situations involv-
ing more than one path from the faulty line to a primary output line, and in the case
of multiple stuck-at faults. In summary, the concept of sensitization is fundamental to
understanding how a fault is detected from the input-and output lines only. However,
the process of determining a sensitized path(or paths) in a general situation is not a

simple procedure.

2.3.2 Consistency

As shown above, some logic assignments and conditions are needed to carry out
the sensitization process. However, just formulating such conditions does not always
guarantee that an input vector satisfying such conditions also exists. Thus, formulat-

ing conditions to create a change and to propagate the change along a sensitized path

24

is just one step. The second equally important step is to determine which, if any,
vector(s) satisfies such conditions. When this process is carried out by exploring the

circuit structure, it is often referred to as the line justification or consistency process.

An ideal line justification algorithm will, at each step, make a decision that will
not have to be changed. In general, however, this is not possible since making an
irreversible decision requires knowledge which is not availablé at th'e time of decision
and can be obtained 6nly by reversing the de<':ision and starting again. The most one
~ can do in this situation-is to use some insights or heurisfics so that as few decisions
as possible are changed. Actually, it is due to this decision process that the test

generation problem is NP-complete [21].

'2.3.3 Redundancy and undetectability

A fault is said to bé undetectable if there is .no vector to detect this fault, and the
line associated with the fault is called ;x redundant line. For instance, in the trivial
circuit of Figufe 2.4, the fault 5 s/1 is undetectable, since sensitizing it would require
that each of lines 3, 4, and 6 be a 1, ifnplying in turn that =1,z =1, and Z7. T2
= 1. These being contradictory requirements, one can conclude that if 5 s/1 existed
in the circuit, then as far as the input/output behavior is concerned, the circuit is
going to behave as if there is no fault in it. Such an undetectable fault would seem to’
be harmless when not probed further. However, as previous research in the area has
shown, in order to be able to carry out an effective detection for the detectable faults,
one must know where the redundant lines in the circuit are. For example, in the
circuit of Figure 2.4, the mput vector (1, 1, 0) is a test vector for a 1 s/0. However,
(1, 1, 0) cannot test 1 s/0 in the presence of the undetectable fault 5 s/ 1. Thus,

an undetectable fault can invalidate the testing of some detectable faults if both are

25

present simultaneously.

x1 ; 6
x2
4 4 7
x3___ |

5

Figure 2.4. Example of redundancy.

Another effect of an undetectable fault is its impact on the test ge'nerating efforts
for a gi\-/en circuit and a fault set. If a fault set is undetectable, any resources spent
in trying to obtain a test vector are wasted. It is thu§ useful to remove all the
undetectable faults from the fault set before the test generation step. As it turns out,
even the process of determining whether a fault is detectable or not is as complex
as the test genera,tio-n process which is NP-complete. The best hope, therefore, is to
avoid the a,ppeara,n-ce of redundant lines during the design phase of the circuit under

consideration.

2.4 Current Test Generation Approaches

2.4.1 Random Test Generators

The concept of generating test vectors for a digital circuit by some random process
probably provides the simplest approach to the test generation problem [2, 52]. The
major current issues for random test pattern generation a,r.e: selecting the test length,
. detérmining the fault coverége, and identifying random-pattern resistant faults (faults

that are hard to detect with random patterns). These could, in principle, all be ac-

26

complished by a full single-stuck fault simulation of the network to be tested [56). The
development of special-purpose equipment is decreasing the cost of fault simulation.
Despite this cost reduction, full fault simulation remains expensive for large circuits

that require long random test sequences for adequate fault coverage.

The only viable alternative to full fault simulation appears to be the use of a
probabilistic model of random test generation [39]‘. ‘Probabilistic methods do not
‘give exact fault coverage values, but they do provide more insight into the relations

between circuit characteristics and test parameters.

2.4.2 Deterministic Test Pattern Generators

The problem of deterministicé,lly generating a test pattern for a given fault is to -

find a combination of assignments of logic values (0 or 1) to the primary inputs which:

e excite the target fault,

e monitor the target fault at, at least one of the primary oufputs.'

Since the properties of deterministic test generation fulfill the requirements for
a systematic search problem, automatic test generation algorithms usually build a
decision tree and apply a backtracking search procedure [21, 24], in order to find a

solution for problem.

The D-algorithm [44, 45] is probably the most known test generation algorithm. It
develops a five-valued {0, 1, X, D, D} calculué to be able to carry out the sensitization
and the line justification procedures in a very formal manner. In this calculus, each -
line can b"e.either a 0, 1, X (unknown), D, or D. The faulty line is assigned a D

or D depending on the fault on the line. The next step is to use the calculus and

27

G

the circuit structure information to determine values on the other lines so that the
. D or D can be sensitized to the prirﬁa.wi'y output line. A line justification step is then
carried out to justify the va,lu;as assigned in the preceding step. Both the sensitization |
and line justification steps may have to be carried out many times before a test vector

is obtained.

The PODEM (Path-Oriented Decision Makihg) algorithm was introduced in par-
ticular to perform better than the D ;a,lgoritfl;n for circuits containing mostly XOR
gates. It was, however,. demonstrated to have a better performance than the D--
a.lgorithm f01: various other i:ypes of circuits as well. The approach taken by PODEM .
appears to be the first to treat the test generation problem as a classic branch;a,nd-
bound problem. More fundamentally, the algorithm starts by assigning a value of '
0 or 1 to a selected primary input (Pi) line, and then determines its implication on
the propagation of D or D to a primary output line. If no inconsistency is found, it
_again someﬁow selects another Pi line and, assigns a 0 or 1 to it, and then repeats the
process, which is referred to as branching. Since DALG (D-Algorithm) and PODEM
are complete algorithms, given enough time, both will generate tests for each testable

fault.

v

It is obvious that to accelerate an algorithm for test géneration, it is necessary to
reduce the number of occurrences Qf rba,cktracks (branching-bounding cycles) in the
algorithm’ and to shorten the pi‘ocessiﬁg time between backtracks. Based on that,
the FAN [21] algorithm started with the basic ‘cénjecture that the PODEM does not
fully exploit ‘ifs framework. FAN has émployed a better heuristic in the boﬁnding-'
and-branching steps to speedup the test generation process. Resplts show that FAN
is more efficient and fastér than PODEM. The average number of backtracks in FAN

is lower compared to that of PODEM.

C28
Schulz et al. -further impréved the performance of FAN by improving the impli-
cation procedure and built a test generation syétem called SOCRATES [51]. They
described a unique sensitization procedure and a,n. improved multiple backtrace pro-
cedure. Marques and Sakallah [53] have presented several new techniques to prune -
the search space in palt}; sensitization problems. These techniques explore dynamic
information provided by the search process, both before and ai:tell inconsistencies are
detected. In other approaches, a forward propagation procedure has beeq used in
providing the necessary information to guide the test generation process. Jone and
Madden [28] have applied this technique to generate a minimal single fault tests for
fanout—free coﬁbinational circuits. They have also proved that this minimal test set
_covers all the multiple faults in the circuit. This technique is proved to be much more
difficult for the general class of combinational circuits [13]. In general, using different |

strategies for test géngration lowers the testing time [40].

There are other algorithms which have used formal methods for test generation.
Larrabee [33] applied a satisfiability (SAT) algorithm to Boolean formulae which
express the Boolean difference between the correct and faulty circuits. Chakradhar

et al. gave a transitive closure algorithm for test generation [12].

It is expected that the trend for new approaches and improvements over current

approaches will continue.

2.5 Modular Test Generation

Modular testing has been proposed as an alternative to the brute testing of VLSI
chips. The goal of modular tesi;in’g is to simplify the chip test by partitioning the
chip into modules and test each module separately. This technique is compatible with

the hierarchical approach in ciesigning VLSI circuits which is available on most CAD

29
tools today.

The typical VLSI circuit or ASIQ (Application Specific Integrated Circuit) con-
tains not only random logic but also RAMs, ROMs, PLAs, and compléx macros such
as microprocessor ‘cores, data paths, and multipliers. Designers create some of these
blocks with logic synthesis or module generator; others are predesigned macros. Be;
calise of this variety of structures and functions, such ICs are called heterogeneous
circuits. A test engineering system must cover a large variety of highly complex, het-
erogeneous circuits, but most available tools handle random logic only. Applying a
modular test strategy is one of the most efficient ways to tackle these heterogeneous
circuits. Within the module concept, each block is made controllable and observable
I independently. Then, the testing of the chip is reduced to testing the modules sepa-
rately, where each of the modules is best tested with its own dedicated test technique.
This approach is also reférred 1;0 as Macro Testing. Macro testing completely solves

the chip level test problem and ensures high fault coverage.

The success of modular testing depends entirely on tile technique used in achieving
full controllability and observability for the primary inputs and outputs of each mod-
ule in a chip. In this context, module testing does pose some challenging problems:
partitioning, selecting a test technique suited to the separate module, aésembling:
module tests up to.a chip test, and executing a module test independently of its en-
vironment. Solving t}.lese problems may lead to a chip with a significant test quality,
not oniy at the chip level but also at the board level. Nevertheleéé, resolving these
issues will always come at undesirable cost. We have seen many examples where
the chip manufacturer compromise the chip quality, by not adding DFT (Design For

Testability) measures such as modular testing, in order to reduce the cost of produc-

tion.

30

Reésearchers have tried to solve these problems with brilliant ideas but with little
success due to the costs assoc.iated with the;ir feqhniques. The most notable Wori& in
this direction was presented in [18] where each module is made fully controllable and
observable indepeﬁdently through busses and extra hardware. This hardware is added
at the modular level so that the accessibility of' each module is guaranteed. Although
this technique is practically sound, the dra,Wba,ck.in mo.st cases is the extra cost (not

only in terms in area but also in terms of delay) agsociat'ed with this technique:

Other researchers [43, 41] used algorithmic approaches to generate tests for each
module and use the functionality of other modules to create chip tests from a module’s
tests. In [54], instead of using functional heuristics to generate chip tests, symbolic
paths which represent the <;nto mapping between the PIs and POs of a module and t
the PIs and POs of a chip are.: created.” These symbolic paths, representing the
controllability and observability of a module with respect to the chip’s Pls and POs,
are used to generate the chip test.s from the module tests. This avoids the drawbacks
of adding extra hardware to the chip, but it adds the extra cost of running the
modular test assembly algorithm. In the matter of fact, the major arawback of
-algorithmic techniques for modular testing is that the test quality of the chip is lower
than the test quality using extra ha,rdV\.Iare techniques. ;I‘he reason(being that the
extra hardware technique improves the controllability and observability of modules
while the algorithmic aépfoa.ch does not. This fact, although extremely important

seems to be gone unnoticed by the researchers in this field.

Another fact which we believe favors adding extra hardware for better testability
over the algorithmic approach is the resultant test length for the chip; a crucial figure
in determining the test cost. The test length of the chip under test using extra

hardware techniques equals to the total number of tests for all the modules in the

31

ohip. On the other hand, in the algorithmic approach, the test assembly will map the
module tests into ch1p tests. Some of the test vectors of a module may not be. mapped
due to unJustlﬁable logic assignments (controllability or observability problem) In
this case, the de31gner will either compromise the test quality by ignoring this vector
or decide to run ATPG system to cover the faults originally detected by the module
test vector. Normally, the ATPG algorithm will be low level (not modular) and may
results in more than one test. vectors. It is safe to say that such approaches do not

realize truly modular or hierarchical test systems.

2.6 Summary

In this chapter, the test generation problem has beon' presented and formulated.
It has been shown that the test generationl problem is a complex problemrand is con- -
sidered to be Nl?—comple‘_ce. Different approaches have been used to tackle the test
problem, either by randomly genora’cing test vectors or by using other deterministic"
test generation methods. Test generation, as‘ a spaco‘ search problem, has evolved
in designing efficient algorithms as the case in PODEM and FAN. Most of the test
syétems reported for this decade are based on these two algorithms. SOCRATES [51]
algorithm, for instance, is an improved version of FAN. Based upon the sophisticated
strategies of tlle FAN algorithm, an improved implication procedure, an improved
unique sensitization procedure, and an improved multiple baoktrack procedure are
described.- In general, however, most of the work in the testing area is useful under
very specific circumstances. Despite the steady growth in the area of digital oystem
‘testing, it has yet to witness the development of a consistent framework which can
provide efficient testing algorithms for large and complex systems. Modular. (hierar-
chical) testing is shown to be one of the most promising approaches for solvirlg the

test problem for large and complex circuits.

32

After researching the above problems, we have came to some conclusions concern-
ing modular or hierarchical test generation. The most important conclusion is that
any modular testing system can survive only if the cost issues are considered within :
its test strategy. Secondly, test' quality should not be cc;mpromised, otherwise, the
test efforts cannot be justified. In order to achieve that, we have proposed in this
 thesis new powerful techniques for the test generation of test Ye_ctors‘ for VLSI circuits.
The framework on which these tools are built is global test generation. It is a new
and povi/efful framework which creates new directions in de,ﬁni‘ng the test gerIeration
problem. This tools have been designed so that their benéfits go beyond the chip levél
testing to the modular (hierarchical) level of testing. We propose different s;nra,tegies
for modular testing to suite different applications and DFT techniques. These tools

and procedures will be presented in CH&pters 3,4,5,6,and 7.

 CHAPTER 3

GLOBAL TEST-BASED MODEL FOR TEST
GENERATION

In this chapter, we present a new model for test generation. We developed a test
model that is based on a non-target fault strategsr. We refer to such strategy as
global test generation. We have also established the first formal characterization of
the test primitives generated within the proposed test model. This characterization
will ensure that each test primitive can be dealt with as a test entity. The test entity
should be an integral part in any module design. First,.we define the term Global
ATPG (GATPQG) within -the context of the test problem. Then, we identify the
necessary requirements to build such a system. This must be done in the light of our
goal, namely, how to build a test generation system that can be integrated efﬁéientiy

in a hierarchical® test system?

3.1 Global Testing and Backtracking

Our model for test generation aims at eliminating backtracking during test gen-
eration. Backtracking is the most time consuming procedure in current ATPG al-
gorithms. In order to solve this problem, we have developed a new technique called

global test generation. Global testing means that tests are generated collectively for

1The terms modular and hierarchical will be used interchangeably throughout this thesis. Mod-
ular test generation will be used whenever test generation for modules at some level in the design
hierarchy is considered. Hierarchical test generation will be used when referring to the hierarchical
control of the test activities at different levels in the circuit hierarchy.

34

all the testable faults in a circuit, i.e., the only input to the test algorithm is the circﬁit
structure (there is no input set of modeled faults). We 'may also refer to this system
as a non-target fault test generation system because, unlike other a,‘pproaches, it does
not start execution with a tafget fault. We believe éha.t this is the first approach that

models with the test problem in this way.

Figure 3.1. An example of a set of faults.

Global testing also offer‘s an alfernative to search strategy,switchir‘lg which is l;ased
on target fault testing. Consider the set of faults shown in Figure 3.1. A line between
fi and f; means that fault f; is corhpatible with fault f;. There are three compatible
set of faults in Figure 3.1: (f2, fa), (f3, f5), and (f1, f4, f6). Let us assume that each
set of compatible faults requires‘a distinct search strategy tc; cover the faults that be-
longs to this set. Then, three search strategies must be employed in a test generation
system to achieve the minimum number of backtrackings. On the other hand, in the
context of global testing, all faults are considered collectively for testing. Tests will be
generated for all testable faults while redundant faults will be automatically singled
out during the test process.‘ The difference between our 'approavch and conventional

test generation is that we require the generation of all unique sensitization paths,

35

without reference to the faults which they sensitize.

3.2 Global Automatic Test Pattern Generation (GATPG)

Although we claim that GATPG has not been presented before, giobal ATPG
is a term that is used by test engineers to describe the test generation process for
heterogeneous circuits. The term global refers to the ability to generate tests for
different design applications, such as memories, combinational circuits, and finite
state machines, that exists on the same chip. Therefore, as far as the test generation
process at the gate level is concerned, global test generation is not considered before,
and hence, our claim still holds. In qrder to explain what we mean by global ATPG,
it is better to look at current test strategies in more detail and then evolve with a

clear idea about the concept of global testing in test generation algorithms.

There are some distinct features that are cornmon to most ATPG systems. Among
~ these features is that the ATPG system resources are directed to searching the space
. of a circuit to find a test cover for one particular fault, referred to as the targét
fault. As explained in the previous chapter, the search process is complex and time
consuming. Therefore, it is much easier to consider only one target fault during the
search process. There has been so much dedication to solve the test problem within
this framework. Such framework succeeded because of its simplicity in relating f;o the
complex test problem. Another feature that is common in current ATPG systems
is the two phase approach. The first phase in any of the existing ATPG systems is
the random test generation phase. Over 90% of the modeled faults in a circuit are
covered during thi.s phase. The second phase, which normally takes most of the test
generation time, is the deterministic pattern gene1‘ati6n 'ph'c;,se. In this phase, faults

that are not covered by the random vectors are searched. As a result, a cover for a

36

fault is generated or the fault is proved to be redundant, that is, a test which covers |

this fault does not exist.

- As the circuit size and éomplexity increases, less number of faults are detected by
the random phase. More faults in complex circuits happen to be random vectors resis-.
tant. In order to control the time-to-market issue, the efficiency of the d'eterminist‘;ic
test generator must be increased to contain the increase in the number of uncovered

' faulfs in random phase. Judging by the publishéd results for current ATPG systems,
it is easy to see that these systems take large amounts of time to generate tests and
to prove redundancy for a limited number of faults. This does not mean that current
ATPG systems 'do not solve the test problem, but it simply means that they cannot

be used efficiently, i.e., cost—wise, with complex circuits.

We propose a completely different framework for sp‘lving the test problem. Our
approach is based on what we call global ATPG. The approach is global because it
considers the problem of generating tests for more than one fault simultaneously. We
do not use the ter'm target fault because the GATPG does not use any explicit set of
faults as target faults. In the context of GATPG, tests are generated without referring |
to the faults they cover. At any time during the GATPG process, man‘y faults may
evolve as candidates to be covered simultaneously. The conéept of having more than
one fault explbred at any time in the search space makes the computations in the
search space universal anci covér the sub-search space of many faults simultaneously.
This does not necessarily means that such framework will target multiple—faults,
but it rather aims at utilizing common search spaces for different faults to generate

common sub-solutions.

Consider the circuit shown in Figure 3.2 and the single faults a/1 and b/1 (a and b

are stuck-at 1). These two faults are not compatible because they have different logic

37

3

e

D_

Combinational OUT
Medule

PIs

Figure 3.2. A combinational circuit block example.

assignment reqﬁireménts at the inputs of the AND gate. As depicted from the figure,
if a test cover exists for one fault, a test for the other fault will also exist. The logical
search space for both faults is the same in the combinational module but different
o;lly at the AND gate. A typical ATPG systém will search the combinational module
space twice before a test for each fault is generated, as long as the generated cover
for one fault does not cover the other fault. Giobal search, on the other hand, would
allow the search of the combina,_tiona,l module only once. .This will create a common
sub-solution for both faults by assigning logic values to all primary inputs except at
nodes a and b. It is clear that to implement such methodology, the sea?.rch space for
both faults must be explicitly exposed to the search algo?ithm. This requirement will

be provided in Chapter 4.

3.3 Important Issues in the GATPG Framework

Now that the concept of global ATPG is defined, it is worthwhile investigating the
possibility of modifying current ATPG a,.pproaches so that they might incorporate
the global test concept within their framework. We believe that this is an important

point, otherwise we will not be able to justify the need for a new test algorithm.

Global testing can be applied to the test generation problem for current ATPG

algorithms in many ways. One way is to search the circuit for test covers for more

WA

38
than one fault simultaneously. Another way is to apply different search strategies, in
a rr-lu_ltiple search strategy system, globally. These approaches will decrease either the

number of search cycles or the average time needed to cover a single fault. Eventually,

the overall test generation time will decrease as well.

" Current fest generation systems use only single target fault strategy. The idea is
that they generate a cover f_or a target fault and then fault sirnulate this cover to
reduce the number of faults in the list of target fa,ult;s. Let us éssume that an ATPG
system has been modified to search for covers for more than one fault simultaneously.
In order to apply global testing techniques in such systems, one should make sure that
the starting set of taréet faults, which will be searched simultaneously contains incom-
patible faults. Otherwise, faults which can be covered with a single test vector might .
be searched by exposing their combined search space. This deﬁnitely will cause waste
in computer resources. However, the problem of searching a circuit for incompatible
sets of faults is itself NP-hard which makes it even difficult i;o apply GATPG to the
test problem with the current approaches. The multiple search strategy approach

can be applied to current ATPG systems using multiprocessor environment in which

"each processor uses a separate search strategy for the fault under test. Large speed

up factors may be achieved on the expense of more complicated hardware systems.

Therefore, none of the GATPG approaches can be implemented efficiently within the

-context of current ATPG systems.

Since we have justified the need for a new global test framework, it is helpful to
look at the expectations and challenges that lie ahead in implementing GATPG sys-

tems. Two facts can be extracted from the discussion of Figure 3.2. It is expected

that the test generation time will depend entirely on the algorithm’s implementation

because the search space of each part in a circuit will be explored only one time in the

39

context of ‘globalr search for tests. Therefore, the efficiency of the test procedures that
are applied to the different parts of a circuit will determine the overall efficiency of
the test system. Of course, the circuit (%omplexity will have l'ci great impact on the sys-
tem’s performance but it is better to think of an implementation which simplifies the
test process rat‘herﬂ than being concerned about how compléx a circuit is. An imple-
mentation which iﬁdorporé,tes test procedures that I;ut differeni; circuit complexities

on equal footage will be highly desired.

The other fact which appears to Be very challenging in the implementation of
glc;bal ATPG systems is.the memory requirements. The very thought that the search
space of many faults will be explored simultaneously by the test algorithm makes it
appear very difficult to manage large size circuits. But égairi, one thing we learn from .
other ATPG systems, there will always be some constraints imposed on the search
space. For instance, the limit on the number of backtracks used by most ATPG
aléorithms alms at reducing the search space for the test problem. Our challenge is
to devise a way to contain the spaée expldsion during the test process in such a way

that optimal performance is achieved without degradation in test quality.

3.4 Modular Aspects in the GATPG Framework

The ultimate goal of our GATPG algorithm is to generate tests that can be used
efficiently in a modular test generatidn system. The GATPG algorithm will be re-
ferred to as a low level test system since it generates tests at the gate level, while

modular testing will be referred to as a high level test system.

A system is modular when it can be described as a collection of modules with
limited, well-defined interfaces. A test system is modular if it can use the set of test

'vectors which covers all the faults in the module and a description of well-defined

40

interfaces of modules to generate tests at the primary inputs of a chip. The test set of
a module is referred to as the test primit.ive of the module. The well-defined interfaces

are accessible thrc.)ugh high level description (netlist) of the system’s modules.

The most important aspect in the design of modular test generation systems is
how well defined is the interface betx;veen the test generation élgorithm for the internal
circuitry .of the modules (low level testing) and the modular test procedures which
tra.n‘slate the test primitive to the chip’s primary inputs (modular testiné level). This
particular point, although ignored by researchers, has a great impact on how truly
modular the test system is. The description of the interface between the two levels
- of testing shoulrd be sufficient to assure that .the modular test procedure will function
completely at the system level, without reference to internal circuitry of modules. .
Any referral to the internal circuitry of modules will cause the system to flip back
to low level testing. It should be noted that the test int.:erfz.mce at the two levels of
testing is represented merely by the test primitives of modules, i.e., the output from

low level testing will be the only input to high level testing.

It must be emphasized here that current hierarchical test systems fail to deliver
the above mentioned requirements for modular test systems. Although the term test
primitives is used regularly in these approaches, it has never been formally defined or
looked at in more depth to determine the conditions and constraints that if imposed on
the test primitive would render the test system fully hierarchic@l. Instead, researchers
have looked at the two levels of testing (low and modular testing le\}els) differently
and devised ways to solve each testing level separately. The results from these efforts
showed a gap between what the system is specified to do and what it can deliver.
This fact manifests itself in different ways. For ekample, in ‘[54], test primitives are

not the only data that define the interface between modules. A procedure which

41

calculate the observability and controllability at the modular level is incorporated
in c;rder to completely define’the modules test interfaces. The time to run such
procedure and the memory space occupied by.data will deﬁniteb'/ increases the cost
of test generation. Another manife;tation of the problem can be seen in [43] where
the heuristics used for modular testing is based on the functionality of modules. At
any time during modular testing, the system functional.heuristiCS may fail due to
~ the limitatio;ls imposed on these heuristics. In that case, the test system flattens
the circuit to the.low level of a:bstraction and then appiies low level test generation
heuristics to cover the fault under test. Such behavior, if repetitive, makes us question
the efficiency of such systems. We must keep in mind that the purpose of modulan
testing is to control the test complexity o% VLSI chips. In conside;ring any module in .
tile circuit, irrelevant detaifs about the other modules can be suppressed by hiding .
them behind the interfaces. Eventually, a truly hierarchical test system will use the
test primitives of a low level test system as descriptions of input data at the next

level.

3.5 Characterization of Test Primitives .

It is imperative that for a modular test system to be successful, its underlying
low level test generator must inherently support modular testing. Since our GATPG
system represents the low level test algorithm Which will geneliate the ’qesf primitives.,
it is reasonable to characterize the required information in a test primitive and develop

a strategy to generate this information during test generation.

In order to characterize the test primitives, we need to determine first what kind
of heuristics are necessary at the modular test system. Then, we will try to match

these heuristics with corresponding requirements from the test primitives. Once all

42

heuristics at the modular level are matched with corresponding information in the test
primitives from the low level of testing, only then will the proper interface between

the two levels of testing be achieved.

e
i
[
|
‘ |
Module n Modﬁle —>
B e —
- ‘-——l—’ N
|
| Module
> A
i
Module
D

Chip boundary

Figure 3.3. An example to illustrate modular heuristics.

Consider the circuit shown in Figure 3.3. If the test prﬁnitive of module B is to be
mapped into the primary inputs/outputs at the chip boundary, we expect a number
of heuriétics to be applied. These heuristics‘involve the propagation and justiﬁcatidn
.of the logic values in the test primitivé of module B across the inputs/outputs of
other modules. The number of successfully mapped test vectors will determine how
many faults in module B will be covéred by the chip test vectors. Some tesf vectors
in the test rprimitive may not b'e mapped to the chip boundary due to the lack of
controllability from ‘the c'hip’s primary inputs, which is responsible for sétting the

logic values at the inputs of module B to the values specified in the test primitive.

In order to match these complex heuristics at the modular test level,. the test

primitive should include information on the one to one onto mapping across the

43

module’s inputs/outputs. This information is usually referred to as symbolic paths. .
Generally, the problem of generating symbolic paths is dealt with as a separate issue
from the problerm of generating test primitives. In our approach, on the other hand,
we did not separate thesé two problems but rather dealt with them as a single entity.
Therefore, our GATPG framework aims at generating test primitives according to

the following criteria:

¢ BEach pattern in the test primitive represents a sensitization path that is gener-
ated using our GATPG algorithm. In other words, the test primitive includes

the test vectors for the module under test.,

o Propagation and justification heuristics are represented symbolically within the
test primitive. This representation allows the modular heuristics to be applied
without referénce to the internal circuitry of the module. “This representation is
complete, i.e.; there is no need for any other procedures or data representation

during modular testing.

o The representation of symbolic paths is achieved using test procedures in our
GATPG system. Therefore, no additional functional heuristics are needed to

generate them.

The first- criterion is the only one that we share with other existing hierarchical
test systems. The other criteria are two further improvementsv in the direction of
fully modular test generation system. The second criterion states that the interface
between the low and modular levels of testing is well-defined, which guarantees suc-
cessful modular heuristics without exception. The third criterion states that in order
to generate symbolic paths, we really do not néed any extra procedures. This is

because the heuristics used to generate these paths is the same one used in our test

44

generation system. Since test vectors and symbolic paths use the same heuristics,
they are generated globally as well. This fact adds another level of simplicity in our
test generation system. The impact of these representations in the test primitives is

substantial as will be seen in the coming chapters.

3.6 Test Quality

Since we have developed a general idea abo‘ut our test strategy, it is equally im-
portant to look at the impact of GATPG on the test quality; Test quality will be
affected by the efficiency of the test algofithm and the fault model used in the test
procedure. The efficiency of the GATPG algorithm will be judged by the fault cov-
erage and the time it takes to generate the test vectors. These issues Qill be dealt
with after the implementation of the GATPG algorithm. The fa,ult‘ model, on the
other hand, is a priori condition and should be considered before the implementation
of the GATPG. However, we have decided to take a challengiﬁg step in the design of
our A;I‘PG system in order to ensure the test quality, that is eliminating the random
test generation phése as a front end iﬁ our system.‘ Our GATPG is‘ single phése, 7,
which means that the GATPG is responsible for generating all the tests required to
cover all the rriodele.d faults in a circuit. In this way, we ensure that the test quality
of our system is always maintained regardless of the circuit complexity and however

resistant its behavior is to random testing.

The accuracy of the fault model is defined as the number of ph}llsical defects thét
are captured by thg modeled faults in respect to fhe total number of possible manu-
facturing defécts. The stuck-at fault model is the most popular.model among others
and can represents most of the physical defects in VLSI systems. However, it has

been shown that the classical gate level stuck-at model is inaccurate for some faults

45

T1 . T2

=

T3

T4

Figure 3.4. An example of a transistor level fault that cannot be described using the
stuck-at model.

in today’s CMOS process. Consider, for exa,mpl;a, the'NAND gate shown in Figure
3.4. If transistor 7 is permanently open, then this fault can only be detected by a
-two—pattern test. The initial pattern sets the output C to a low value (4=1, B=1).
Then, the evaiuation pattern tries to turn T} 6n (A=0, B=1). In case T; fails, the
output remains low, otherwise, the output becomes high. This type of faults cannot

be captured using the stuck-at model.

As far as our modular test system is concefned, any fault model used at lower
test level should not alter the way the test primitives are genefa,tqd. As a matter of
fact, any low level test system may use any suitable test procedures with any fault
model as long as it génerates the test primitives as specified before. Since we are
dealing with circuits at the gate level, the stuck-at fault model haé been chosen for

implementation in our GATPG algorithm.

46
3.7 Sumfnary

In this chapter, we have presented a new framework and a teét model for solving the
problem of test pattern generation. Our model for test generation aims at eliminating
backtracking. In order to solve this problem, we have devel.oped a new technique called
global test'éeneration. Global testing means that tests e;re_ generéted colléctively for

all the testable faults in a circuit.

Since our ijective is to build a modular test 'genera,tion system, we have analyzed
t.he different modular aspects in the context of our proposed global test generation
framework. We have identified the required features in our GATPG system that will
léad us to a successful implementation of a single fault and a modular test generation
sy.s.tem. Accordingly, the test primitives have been cha,racterizea in the light of our -
objective. The impact of our test strategy on the test quality has been discussed as

- well.

CHAPTER 4

AN EFFICIENT GATPG ALGORITHM FOR
COMBINATIONAL CIRCUITS

The global test-based model described in the previou‘s chapter will be used as a
guideline for the design of an efficient global a,u'toma,tic test pattern generation a;1g0—
rithm for combinational circuits. The GATPG is a single phase global test generation
system. In this chapter, we will describe ;che necessary design steps needed to imple-
ment the global framework in the test problem. Again, it is emphasized that decisions
at this stage will be highly depender;t on the final goal of this algorithm. The interfaée
between procedures needed at the modular test level and those needed at the GATPG
level will always be in mind in order to achieve a complete and sufficient description
for the test primiti\./eé generafed by the GATPG algorithm. Experimental results will
be given at the end of this chapter. The core of this cha,pi;er will be presented in the
ICCD95 [58]. |
4.1 The Test Generation Model

The test generation model is a detailed description of how the global test framework
is going to be applied to the test problem. We will first discuss some global testing
issues, the test generation problem, and then presents an outline of how to approach

and implement the test generation algorithm.

48

4.1.1 Global Testing Issues

By looking back into the desired description of a tést primitive which will guarantee
the creation of a fully modular test level, it is imperative that the justification and
propagation procedures at the modular level must be represented in the GATPG
algorithm. The question which can be asked is what exactly is meant i:)y propagation
and justification? At the modular level, the propagation procedure can be defined
as a procedure which propagates some logic values at the inputs of a module to its 7
output nodes (probably using a simulator). The justification procedure does the s:ame
thing, but, the other way around, that is generating input logic as;s,ignments that will
justify some known output logic values. Both procédures represent mapping logic
values between the inputs and outputs of modules. Therefore, the. keyword here is
mai)ping.

" Let us now conside;r rthe test problem and see how can we incorporate this key
issue in thc? test generation procedures. First, such a mapping as explained aBove
has never been thought of in any of the existing ATPG systems. The reason is that
the purpose of such systems is to generate tésts for the whole chip without support
for any higher test levels. Even when some of these systems are used to generate
‘tests for modules, they usually use another procedure to achieve higher test levels, as

explained in Chapter 3.

In order to elaborate on the mapping issue, consider the module shown in Figure
4.1. In order to propagate a set of logic values from the ‘prirna,ry inputs to the priﬁlary
oﬁtput, .é.n implication procedure should be applied where the output of ‘a module
is determined by the input logic values. The implication procedure is simple and

straightforward. The justification procedure, on the other hand, requires the back

49

Propagation

High-level -
Pls Module POs

‘ Justification

Figure 4.1. An example showing the propagation and. justiﬁcatioh procedures at the
modular test level.

prc;pagation of the logic values at the primary outputs to the primary inputs. This
step is very complicated and time consuming when applieci to large circuits. The
outcome from tl’ie justification step depends on the circui{; structure, i.e., gi\;en some
logic assignments at the primary outputs, there may be one or rmore vectors that can
be mapped to the primary inputs while there might be a case where no vectors can be
mapped to the module’s primary inputs. We conclude from the above discussion that
mapping can be achieved at the gate level using implication and back propagation
procedures. Throughout the rest of the thesis, the.term mapping information will
be used to Iexpr.gass the data generated by the GATPG algorithm which represent the
data needed to perform the propagation and justification procedures at the high level
of tesf, without reference to the module’s internals. This term must not be confused
with the term fault mapping which is used to expre.ss the transiation of a fault value
at a primary output of a module to a number of fault patterns at the primary inputs

of the same module.

Although our aim is to create a test system, there is no discussion so far on how

the test vectors are generated. As mentioned earlier, high level test interface issues

50

are resolved ﬁrst and then the test strategy will be adapted accordmgly Now, it is
important to decide Wthh strategy we are going to use to generate the test vectors:
The first thought is to use any knowr strategy for test generation, but then we will
eﬁd up with a system that has maﬁy of the disadvantages of other hierarchical ATPG
systems. The cost issue comes to the picture if we try to incorpora,te one strategy for
test generation and another strategy for creating the mapping inférma,tion because
we will be loosing time in running two different élggriichi’ns, one for generating the
- mapping information and the other for test generation. Instead, we have adapted and
eﬁzbedded the concept of global test generation within the frémewori(of the mapping
procedures. In this way, all the necessary information (test vectors and mapping) in
the test primitive are derived from a single algorithm. As a matter of facf, we will
generate a single set of patterns within a test primitive which represents both t?he test

and mapping information.

.4.1.2 Test Generation Framework

Since the mapping procedures deal pr'imarily with inputs and outputs of modules,
it is better to direct our attention to a test framework Wilich puf more emphasis on
thé fault behavior across the inputs/outputs of modules. In order to adapt the test
generation strategy within this framework, we have to explain the difference between
the problem of generating a test for a fault inside a circuit and a fault at the boundary
of a module. A fault internal to the circuit needs to be excited (its logic'va,lue set to
the ol;posite of its fault value, i.e., a s/1 fault is excited to 0) and be observed at one
of the primary outputs of the ch?p. The fault éxcitation step is achieved through the
forward propagation of logic values at the primary inputs to the fault location. The

fault observation step requires not (;nly the propagation of fault from its location to a

51

primary output node, but also requires justification of 19gic values so that no conflict
in logic a;ssignments is created. On the other hand, a fault at the i)rimary output
of a circuit needs only to be excited for the fault to be detected. Accordingly, it is
much easier to deal with faults at the primary outputs rather than those internal to

the circuit.

The quesfion that now arises is tha,t. if we start with a fault at a primary outp‘ut,
is it possible to genefate ‘tests for a,lltthe faults inside a circuit? The answer is
deﬁpitely yes, because.any path that segsitize é, fault internal to the circuit must
eventually end up at one primary output. Put in test generation terms, any testable
fault in a circuit must be compatible with one or more p'rima,ry output faults. The
next question is how can we achieve the creation of such tests? Given a fault at a -
primary output, it is p_ossible to trace back the different path's between the primary
output and the internal nodes in a circuit. The procedure which can achieve this
purpose is the back propagation algorithm described above in the mapping procedure.
When applied to the test generation problem, the back propagation algorithm will
create many sensitization paths e’volvir.lg from a primary output node 'a,nd extend
through the circuit internals and terminate at the primary ’inputs. Fach sensitization
path represents a series of faults that are detected by the resultant test vector. The
- existence of many i)a,ths simultaneously makes the test system global. This test
strategy can also be described.as the problem of mapping a fault logic value to its
equivaient set of fault and control logic values at the primary inputs. rI“herefore, the
back propagation procedure is used to- generate test vectors and as a part in generating
mapping information. The forward propagation procedure is used only in generating
mapping information. In this way, a corr}plete test primitive can be generated within

a single procedure and without any software overhead. The challenge is to develop

52
an efficient implementation for the GATPG algorithm.

4.2 Problem Formulation.

The problem of mapping a fault logic value at a primary output of a circuit to a
set of test vectors at the primary inputs is formulated. The test procedures on the

basic logic gates will then be defined.

4.2.1 Problem representation

Consider the combinational module shown in Figure 4.2. . The black box represents
a circuit structure with only one primary output. -Frqm the ba,sic' definition of testing,
for any internal fault (D or D) inside the black box, this fault must propagate to and .
be ob‘served at the primary output to be covered. The fault may be obser'\/e;i at the

primary output as a D or a D logic vlaue.

Xl

Combinational F
circuic

Xn

Figure 4.2. A combinational circuit block.

The logic value at the primary output can be expressed as a Boolean function of
the primary inputs X1, X2,.., Xn. Global testing can be achieved by tracing back
the different ‘se‘nsitizatiori paths 1t.>etvs(een the primary inputs and outputs sta,ri;ing at’
a primary output node. The problem of global test generation can be stated as one

of solving each of the following two equations:

F(X1,X5,..,X,) = D (4.1)

53

F(X{,Xé,,X,’l) = D~ (4.2)

where X, Xz;, ...y X may assume any combination of the logic 'va,lues 0', 1, X, D,
or D, where X is the don’t care ldgic_: value. We will refer to the logic values 0, 1,
and X as the control logic values, while D and D as the fault logic values. The test
vector Xi, X3,..., X will be referred to as a fault pattern because it might include a
fault logic valué. In each fault pattern, the control logic values allow the fault logic
value to propagate to the primary output. This creates.a sensitization path between
the primary inputs and the primary output with all the compatible fat_xlts on that -
path covéred by the same fault pattern. This definition of global testing reduces the
test generation problem to that of searching a circuit for all the éensitiza’sion paths

between the primary inputs and outputs.

4.2.2 Logic Représentation in the GATPG Algorithm

The five-valued logic representation has been used in the above discussion to ex-
plain some basic issues in our GATPGHa,lgorithr’n. However, the need for the gener-
ation of a complete test primitive has lead us to the conclusion that the five-valued
logic representation will not be adequate.” In current ATPG systems, the fault logic
values D and D are used to represent a node stuckfat—O and stucl{—a.t—_l, respectively.
For example, in the fault—free circuit, the logic value of a node with a D fault value

is 0, and in the faulty circuit the logic value of the node is 1.

Since we are dealing with the problem of mapping faults across modules, we are
not really interested in the absolute type of faults, but rather interested in the relative
fault values between two nodes during the mapping process. Therefore, in our ap-

proach, a D or a D fault value will be used to express both stuck—at-0 and stuck-at-1

54

faults. A node which carries a D or a D logic vélue will have the potential of both
types of fa,}llts being covere.d for this particular ;mde. Let us assume that the GATPG
algorithm starts the back propagation process with a D fault value at the primary
output. Any internal node that carries a similar D value 1s compatible with the fault
at the primary outptit. kIn other words, the sensitization path which passes through
the two nodes will cove;' faults with the same polarity at the two nodes (both s/0 or
both s/1). On the other hand, if their polarities are different, i.e., the iqterna,l node
has a D fault vallue, then, the sensitization path covers two compatibler faults with
different “pc')lariﬁies (one s/1 and the other s/0). Since the algorithm always krows
what value the primary output started with, in is easy to de;termine the fault—free
and faulty response of any node by looking at the fault value it holds. Accordingly,
the generated test vector not only carries information about‘ the test path but also |
specifies its forward implication on the output logic value. This explains why at the
lo,v;r level test generation using our 'GATPG algorithm, the forward propagation step

is not needed.

We have considered the situation where both types of faults can be covered mby the
test system. There arc‘ar other situations where only one type of fault (s/1 or s/0) can
be detected while the other type is redundant. It sega-r;ls that a{ddiﬁg two more fault
values to the logic representation would include this situation in our test system. For
instance, on'e fault value describes a s/0 redundant case, while the other describes the
s/1 fault redundancy case. However, the algorithm has thelextra task of determining
the fault response at the primary output as yvell. For instance, the algorithm should
determine which typé of fault is covered and what is the output value in the faulty
and fa,ult—free circuit. The;:efore, four fault values has been included with the five-

valued logic representation. The resultant 9-valued logic representation is used in our

55

GATPG to express the logic values at different nodes in a circuit. The logic values
0, 1, and X are referred to as control logic values, while the logic values D, D, FD,
FD, TD, and TD are referred to as fault logic values. The fault logic va,iues are used
to express the relative fault values on a sensitization patﬁ between an internal node
in the circuit and a primary output. They are also used to determine the response
at the primary output (faulty and fault-free valugs). The fault iogic values FD, FD,
TD, and TD express a nodé with the potential of having only one type of stuck—
at fault (s/O or s/1) being detected. For instance, FD and FD repregenf a node -
carrying a s/1 fault logic value with the primary output having a logic value of 0 and

1, respectively, for the fault-free response.

4.2.3 Extensions and Simplification of the Test Problem

It is interesting to know that with the above representation of logic values, it is
possible to further simplify the test problem. Since we interpreted a D or a D ;ms fault
values that represent both types of stuck—at faults, then, starting with either value
at a primary output means 'tha,t we propagate both types ofafa,ults simultaneously
(globally). As a result, we need to solve only one of the above two equations. There--
fore, in %‘,he GATPG algorithm, a D f;ault logic value will be assigned to the primary
output and mapped into a number of input fault patterns at the primary inputs. To -
probe more on this concept, the following definition and proposition will give more -

insight into the above discussion.

Definition 1 The partial complement of an input fault pattern which retains a D or
a D fault value is another fault pattern with its only fault logic value 'complemented
and each control logic value kept unchanged. For instance, the partial complement of

the fault pattern (0, 1, D) is (0, 1, D).

56

Proposition 1 If the input fault pattern (Xi, X, ..., X,) which retains a D or a
D fault value is a test cover for the fault s/0 (or s/1) at any node on a sensitization
path, then, the partial complement of this fault pattern is a test cover for the fault s/1

(or s/0) at the same .node.

A partial complement of the fault pattern at the prim'a,ry inputs éauses only the
fault logic values rto be corhplemented at a,llw nodes residing on the pa:th and retaining
one of the fault logic values D or D. The iﬁtuition of’ this proposition is that all faults
on the sensitized path can be covered for both s-a-0 and s-a-1 faults, using the lfault
pattern and its partia,ll complement, provided that the input fa,l;lt pattern retains one
of the fault values D or D. The partial complement is :equivalent to the problem of
back propagating a D at the primary output (instead of the D logic value) to map it

into primary input fault patterns.

If, on the other hand, there exist some input fa,ult. Patterns where none of the
_primary inputs has a D or a D fault logic value, then, the input fault pattern will
retain one of the other four fault values. -in such case, the input fault pattern will
support only one type of stuck—at fault to be detected and the partial complement

~step will not be applied.

For multiple output circuits, we need to extend the definition of the global testing
problem. A sufficient condition for testing an internal fault in a circuit is to observe
the fault at one (or more) node of the primary outpuﬁs. Accordingly, test generation
can be achieved by iteratively generating tests for each output cone. This can be
achieved by assigning a fault logic value (a D or a D) to one primary output and

don’t care values to the other outputs.

57

We can then formulate the test generation problem for the general class of combi-

national circuits as one of solving the following set of equations:

Fi(X1, X2, 0, Xn) = D (4.3)

Fo(X1, Xz, X)) = X . (4.4) -

forall 7, 1 < r < m and r # i; where m is the number of primary éutputs in a circuit.
4.3 The GATPG Algorithm
The purpose of the GATPG algorithm is to generate, all poésible fault patterns

at the primary inputs of a circuit. To achieve this goal, a Back-Fault-Propagation

procedure has been developed and is presented in this section.

4.3.1 Back—Fault—-Propagation for Logic Gates

. Back-propagation of logic values is a well known technique that has been used both
by combinational and sequential ATPG algorithms. In the context of current ATPG
algorithms, back—propagation and backtracing a.re used to create nodes in a decision
tree and to justify some previously assigned logic values in a branch-and-bound search
environment. In our approach, back-propagation is used to enumerate the possible
logic assignments at some nodes in a circuit. No decision tree or justification steps

are required.

The basic operation of the test algorithm is to back-propagate a fault or a control
logic value at the ‘output of a logic gate to its inputs. Uniqqe fault and control
logic assignments are used during the back—propaga;tién process across the gate’s
input/output nodes. Figure 4.3 show's a NAND gate with its output beingrassigned

different logic values. The algorithm uses all the possible combinations of fault and

58

control logic values at the gaté’s inputs which uniquely _imbly the logic value at the
gate;s output. As shown in Figure 4.3, for instance, the possible faﬁlt patterns at
the NAND gate inputs (a and b, respectively) are (1, D) and (D, 1) with the gate’s
output being assigned a D fault value. Back fault assignments with a similar form

can be defined for OR, XOR, and other types of gates (or modules). .

= O]
O
o’

SN o&—nP 0 xB—"N\ ¢
00— xOB—b o

ﬂ a — 1 TD a
L FD “‘—b c__gTb _ D_b‘ c__,FD
FD 1 g—2D ™ 1 o0—2

Figure 4.3. The back fault assignments for a NAND gate.

From Figure 4.3, it can be seen that single path sensitization (SPS) is sgp}):orted
by the test algorithm. This irﬁplies t?ha,t faults are covered using only one 'pa,th,.'even
though multiple paths for a fault might exist which will simulténeo_usly cover the fault.
To elaborate on this point, coﬁsider the circuit structure shown in Figure 4.4. Let us
assume that there is a fault residing at the source node of the fanout sﬁructure, as
shown in figure. If this fault prépaga,tes in the forward difection, rhore than one fault
path will be created. As the circuit structure converges at the output NAND gate,
many possibilities exist which allow for any combination of faults (or no faults at all)
to appear at the in'puts' of the NAND gate. If the fault is successfully propagated to
- the output of the NAND gate with more than one fault value assigned to the inputs

of the NAND gate, the fault is said to be sensitized through multiple paths. Multiple

99

- paths may also cause the faults at the inputs of the NAND gate to mask each other
and thus destroying the sensitization structure. For instance, if one input carries a
D fault logic value and the other input carries a D fault logic value, the output of
the NAND gate will always be one, even though the effect of the fault is propagated

from the fault location to the inputs of the gate.

forward

pathl
fault ee——>»

location

R \ :h— and

path2

\l

|
\

backward

-
<«

athl
fault 0

locatior

r
)

v
or
S
path2

Figure 4.4. Single and multiple path sensitization of faults.

In the GATPG algorithm, only the back propagation is allowed. Therefore, lookin%
at the same example in the backward direction, the GATPG enforces the inputs of the
NAND gate to carry one and only one fault at a time. For this particular example,
three dioices will be allowed for the 3-input NAND ga,te: Each one of these choices
represents a path with one fault value at one of the inputs and control logic v'a,lues for
the other two inputs. When the fault at one of the inputs propagates to the fanout
structure, only one stem node will carry the fault logic value, hence, multiple path

sensitization is not possible in the back propagation procedure.

In some cases, however, multiple path sensitization (MPS) must be applied to

60

cover a fault. One‘way of achieving MPS, for instance, is to add the assignment
(D, D) to the inputs of the NAND gate shown in Figure 4.3 (when the output is
- D). Such assignment will have the effect of increasing the size of the assignment tree
in the GATPG algorithm. ‘Hence, multiple fault assignmen.ts at the inputs of logic
gates are not considered in the GATPG algorithm. However, an efﬁcieﬁt procedure
which supports MPS and uses only the SPS assignments will be presented later in

the discussion.

4.3.2 The Back—Fault—Propagatibn Procedure

The key to fast performance is the use of necessary assignments during test gen-
eration [14]. The Back—Faul£—Propagation procedure guarantees that only consistent .
iogic assignments at the different nodes be progressively propagated toward the pri-
mary inputs. Redundant faults cause conflict assignments to appear in ‘the node
assignment tree. In this procedure, the rdetection and removal of conflict assignments
occurs at the fanout stems. Therefore, the back—prépagation process stops at fanout

" stems to resolve conflicts in the logic assignment tree.

The back-fault-propagation procedure starts at a primary output node and ends’
by collecting the fault patterns at the primary. inputs. Durirfg,r this procedure, a tree
of logic assignments is created. Each node in a éircuitvwill be assigned one or more
logic values. We refer to the string of logic values assigned to a circuit node as the

logic queue of that node.

Definition 2 The logic queue is an ordered set of logic values dssigned to a circust
node. The first logic value in the set is at the head of the queue while the last element

in the set is at the tail of the queue.

61

For instance, the logic queue of input a of the NAND gate shown in Figure 4.3
(with its output tied to D) is denoted by g, and has a length of two with logic D at -
the head of the queue and logic 1 at the tail of the queue. This can be written as g,
= {D, 1}. | o .

A general -outline for the Back—Fault—i’ropagation (BFP) procedure is shown in
Figure 4.5. As discussed earlier,_test generation i‘s achieved by generating tests for
each output cone in a circuit. This is indicated by the first for statement in Figure
4.5. An arbitrarily selected primary output is assigned an arbitrary fault logic value

(D or D). The remaining primary outputs are assigned X logic values.

During its execution, the algorithm allows some logic queues to back-propagate
their logic contents while delaying the propagation.of some other logic queues until .
certain requirements are met; a marking procedure is used by the algorithm to achieve

this purpose.

Definition 3 A node is said to be marked if the logic value, at the head of its logic

queue, is enabled for back-propagation.

The back—fault-propagation procedure continuyes the back-propagation of faults as
long as there exists at least one marked node in the output cone (the while statement).
The back_propa,ga,te function in Figure 4.5 assigns uniqﬁely inﬁplied logic values to
the inputs of a logic gate according to the gate’s output logic value. After each back-
propagation step, the BFP procedure checks if any of the newly assigned 'nocies is
a stem of a fanout structure (the first if statement). The back—propagation process
stops at fanout stem nodes. This occurs by unmarking all the newly assigned fanout

stem nodes from the preceding back-propagation step.

Consider the circuit example and its associated assignment tree shown in Figure

62

Input : A circuit’s netlist.
Output : A set of test patterns.

Procedure Back_Fault_propagation() {
for each primary output;
{
assign a D logic value to a selected primary output;
assign don’t care to other primary outputs;
while there is a marked node 7 in the output cone;
{
back_propagate(g;,, gate_type);
if any of the assigned nodes is a stem node;
if all the stems in a fanout point are assigned;

{

compare(gs,, Jsyye-s Jsm);
mark nodes associated with the fanout structure;

}

else unmark the stem nodes;

}

partial_complement(fault patterns);
fault_simulate();

}

Figure 4.5. BFP: a back—fault—propagation algorithm that globally sensitizes output
cones.

63

level 1

level i+1

Figuré 4.6. A circuit example for marking nodes associated with fanout ‘structures
and the sub-tree of logic assignments at node m.

4.6. Each node in the tree represents the marking status of a cir;cuit node after it
is assigned a logic value. An ”X” sign iﬁside a node represents an unmarked node;
otherwise'it is marked. A line drawn between two nodes in a tree represents the logic
assignment of the circuit; node associated with that edge. An asterisk besides a tree ‘
node indicates that t};is node is a fanout stem. Each node in a tree has a level of
assignment. For instance, node m is at the i;;, level of assignment, while nodes A and

-k are at the ¢, + 1 level of assignment. *

Suppose that node m has been assigned a fault logic value D, Thenl a,fteriapplying
the ba,ck_prépaga,te function to this node, nodes & and k will be assigned as shown
in the figure. The algorithmn unmarks node k. The reason is that it is nc;t known
which logic assignment will be consistent with the logic assignments at the‘other stem
node. Hence, the algorithm delays the back propagation of this logic assignment until

conflicts are resolved between the fanout stems.

Only when all the fanout stems are assigned logic values, the algorithm uées the
compare() procedure, as shown in Figure 4.5, to compare the logic values assigned to
the fanout stems. The consistent logic values will be extracted and assiéned to the
source node of the fanout structure. In the above circuit example, if the compare()

procedure results in a conflict assignments between the fanout stems, then, the subtree

.

64

1 1

Conflict 0
0 D

D D

Partially-conflict TD. __FD 0
1 0

. D 1

ict-f

Conflict-free D . .
LX . X

Figure 4.7. Comparison outcomes for logic assignments at fanout stems.

of logic assignments at node h will be discarded. A comparison example between some -
logic assignments in fanout structures is shown in Figure 4.7. As shown in this figure,

three outcomes may result:

o Conflict assignments: In this case, thére exists no ‘current assignment to the
‘, source node that sets the logic value at eé,ch stem node to the desired value.
Hence, no logic value is assigned to the source node. The logic values at the stem
nodes and their accompanying gate inputs will be removed from the assignment
tree. Fo.r example, if the logic values assigned to node r in Figure 4.6 are in
conflict with those at node k&, then, the logic assignments of nodes A, k, and r

. will be discarded.

o Partial conflict: In this case, a sensitization path with only one type of stuck-at
fault can be supported by the current stem nodes assignments. Consequently, a
D or a D fault value at a stem node will disappear and be replaced by a single

fault logic value that is compatible with the control logic value assigned to the

1

65

other stem. For instance, the fault logic value F'D in Figure 4.7 is assigned to
the source node of the fanout structure after comparing the fault logic value D
with the control logic value 0. Hence, F'D represents a s/1 fault with a fault—free

logic value of 0 at the primary output.

e Conflict~free: In this case, either a complete match occurs between the logic’
values at the stern nodes or one of the stems has an X logic value. The source

node can then be assigned logic values as shown in the bottom of Figure 4.7.

It can be concluded that there exists only one fault value associated with each
sensitized path. Therefore, although different sensitization paths may share some

control logic values, each one retains its fault logic value.

The marking of nodes is always revisited after the execution of each compare pro-
cedure as shown in Figure 4.5. For instance, if a successful comparison, i.e., either
partial conflict or conflict—free, occurs, the source node.of the fanout structure is
marked. On the other hand, if thé comparison results in inconsistent logic assign-

ments, this node will be unmarked.

4.3.3 Multiple Path Sensitization

Multiple Pé,th sensitization occurs due to the existence of fanout structures in a
circuit. In the GATPG algorithm, MPS is approached by the local search of fanout
- str'uctures to find a,. set of consistent logic assignments which allow more than one
stem node to carry a fault logic value. This fault logic value will be assigned to the

source node of the fanout structure.

The back-fault~propagation procedure accounts for faults which can only be cov-

ered by MPS using the cube intersection of the logic assignments associated with each

66

g=D (Initialization Value)
level 1

level 2

Figure 4.8. A MPS example.

stem node in a fanout structure. In order to achieve MPS using cube intersection, -
all stem nodes must carry consistent fault logic values in order to generate a new
sensitization structure which allows more than one stem node to carry fault values
simultaneously. Consider the circuit shown in Figure 4.8. The single faults b;/0 and
b2/0 can be covered through SPS, however, the fault 5/0 can only be covered using
MPS. The logic assignment tree, shown in Figure 4.4, behaves as a multiple-valued
tree. Each bundle of nodes proceed together and form a subtrfae of logic assignments.
The two bolded paths in the logic assignment tree repre'sent the paths where the stem
“nodes b; and b, carry fault logic values. The logic assignments associated with these
nodes are (a=1, bl=D, c=1) and (a=1, b;=D, c=1). The cube intersection of these
two patterns results in the assignments (a=1, b=D, ¢=1). The resultant test vector
(1, D, 1) and its partial complement cover the faults /0 and /1. These fa,ults’can
only be covered thro.ugh MPS. In this way, MPS can be achieved using SPS logic

assignment and without further increasing the size of the dssignment tree.

67

The procedure which implements multiple path sensit;izatipn is shown in Figure
4.10. The MPS procedure terminates if a multiple path(s) W}..’liCh sensitize both type of
nodes (s/0 and s/1) at the source point of the fanout structure is created, otherwise,
the procedure continues. If cube intersectio.ll results in conflict of assignments between
two stem node paths; the pro-cess continues with other stem nodes until a multiple’
path sensitization with maximal number of étem nodes is c;'eated. This process can
be illustrated usiﬁg the example shown in Figure 4.9. The search space for a three-
stem fanout structure is shown in the figure. If the multiple path procedu.re sta,rts.
with stem 1 in the multiple path sensitization list, the path a,;ssociated wi_th stem 1
@s compared with that of stem 2. The conflict may occur if the two fault en,t‘ri\es of
the stem nodes a,r'e not consistent or any control logic a‘ssignment in the region of
intersection between the stem nodes is in conflict. If such conflict exists, it means
that it is not possible to support a sensitizétién structure ‘which allows stem 1 and
stem 2 to carry fault logic values simultaﬁeo.usly. ‘Accordingly, the search space for
stem 2 Wiil not be considered any further, as shown in Figure 4.9. The procedure will.

then try the cube intersection between the sensitization paths of stem 1 and stem 3.

In order to determine which fault entries for stem nodes are consistent with each
o'éher, faﬁlts are compared at different entries. For example, a DF fault logic value
on a stem node will result in a conflict if compared with another stem node carrying
any of.the fault values FD, TD, or TD. An interestingr case may occur when one
stem node carries, for instance, an F'D fault value while the other stem carries a D.
Since D represents both type of faults while FD represents only a s/1 type of fault,
it is expected that comparing these two fault values would 1;esults in the sensitization
of a s/1 fault. However, although both fault values support a s/1 sensitization path,

they produce different logic values at the pﬁmary output of the circuit. An FD fault

68

search space for
stem 1

= (=53

stem 3 .] w

.....

Search space of stem 2
is removed

Figure 4.9. Search space representation for a 3-stem fanout structure.

value covers a s/1 fault with a fault—free output logic value of 0, while a D fault value .
would support a s/1 fault with a fault—free output logic of 1. This simply show that
although faults at the fa,nou‘t' stems can be excited properly, the faults propagated
from the stem nodes will mask each other before they successfully propagate to t%le
primary output. This process is called path sensitization failure or destruction. In
short, the following list of fault pairs represent the fault comparison, for each pair,
which results in a conflict-free fault assignments at two stem nodes. These pairs
are: (D, D), (D, D), (D, FD), (D, TD), (D, FD), (D, TD), (FD, FD), (TD,
TD), (FD, FD), and (TD, TD). Any other pair of faults will result in conflict fault

assignment.

" For a fanout structure with n number of stems, the MPS procedure takes a max-
imum of (n-1) + (n-2) + ... + 1 cube intersection steps to terminate. Hence, the

procedure is linear with the number of stems and does not cause any degradation in

the GATPG algorithm’s perfoi*mance.

Input : Stem nodes sensitization paths:.
. Output : MPS-list A set of stems with MPS.

Procedure Mult-Path-Sens.() {
for each stem node i;
o
Let j=i+1;
Let MPS-list=i;
while j is less than the number of stems;
{ .
cube-intersect(SPS-path[i], SPS-pathlj]);
if conflict free cube intersection;
MPS-list=j ;
if MPS-list covers the source node for both type of faults;
exit;
else continue search;
else j=j‘+1;

Figure 4.10. The multiple path sensitization procedure. -

69

70
4.4 Data Structure and Tree Pruning

The BFP procedure allows all possibilitiés of path sensitizatioﬁ to be considered.
Consequently, the queue sizes of some nodes in a circgit_ might explode exponentially.
Since the test géneration appr(-)a,ch used in the B'FP procedure is different from current
ATPG systems where backtrack limit‘ is used to impose space constraint in the éea.rch
frocess, a new methodology sl}ould be employed to contain the space complexity

"and to prune the assignment tree during back propagatioq. The efficiency of a test
generation algorithm greatly depends on its implementation, hence, a description of
the data structure used in implementing the BFP procedur;a is presented, then tree

pruning will be discussed.

4.4.1 Data Structure

Consider the circuit shown in Figure 4.11. The dynamic change‘ of the data struc-
ture during the back—propagation process for the circuit example is also shown in
Figure 4.12. Each segment in Figure 4.12 corresponds to a different level of assign-
ment. As shown in this figure, the data structure of the BFP procedure is a two
dimensional array of circuit nodes. The first column in the array represent current
nodes which carry fault Io‘gic values (fault entries). All other nodes retain control
logic values (control entries). Starting Witil a node carrying a fault logic value, a
horizontal move represents a sensitization path logic assignment for a node on the
path. A vertical move in the control éntries, if it exists, represents another set of logic
values which sensitizes different path for the same entry node which carries the fault

value.

Figure 4.12 shows that the circuit requires three levels of assignment before all

71

the stem nodes are completely assigned. After applying the Compare(.) procedure,'it
is apparent that MPS from node b is not possib'le because of the conflict fault logic
entries at nodes b; and b, (curbé intersection will result in conflict of assignment). On
;che other hand, SPS of faults at each entry in the first column in the data structure
can be extracted. For instance, at level 3 of assignments, in the first fault entry
(a=D), the test pattern (a:D; b=0) is generated due to the conflict—free assignments
at the stem node.s. b; and b,. This fault pattern along with its partial complement
cover the two faults a/0 and a/1. For the second entry (61=D), only the fault b;/1
can be covered because of the partial conflict with the loéic value at node b;. Aft;er
comparing the logic values at the stem nodes, node b will be assigned the fault value

FD (not shown in figure).

S

Figure 4.11. A circuit example.

b

It is clear that some node assignments are shared by sensitization paths for different
faults. For instance, the first and second fault entries share the node assignment
- by=0. This is different from current ATPG approaches where test generation efforts
are dedicated to single target faults. On the other hand, the GATPG algorithm allows

. for global test pattern generation in a shared search space environment.

2

Control entries

Fault entries

Figure 4.12. The data structure for the circuit example.

4.4.2 Pruning the Assignmeht Tree

The horizontal length (numbér of nodes in the horizc;ntal_dirfaction) of the data
s.tructure used in the BFP procedure is limited by tile ;1umber of nodes assigned at
some level during back-propagation. The vertical dimension-of the data structure,
however, will explode exponentially if enumerat;ion of logic values is allowed at all
levels of assignment. For ins?ance, consider the fault entry by=D in Figure 4.12. At
level 3 of .assigﬁment, two sensitization paths are createci which support the fault
entry at node b,. Eventually, as ’cheT number of levels of assignrﬁents inci‘eases, the
number of paths associated with each fault entry will, in the worst case, increase

exponentially.

A key factor in controlling the space complexity of the GATPG algorithm would
be to limit the number of sensitization paths associated with each fault entry in the
data structure. Therefore, the BFP procedure keeps track of the possible number-

of sensitization paths for each fault entry and compares it to a preset limit. If the

73
number of possible paths exceeds that limit, then only one pattern is allowed for

each consequent back—propagation step.. Otherwise, full enumeration of logic values

is allowed.

The preset limit for the maximum number of sensitization paths associated with
each fault in our implementation ranges from 2 to 5 depending on the circuit com—
plexity. This limit is generé.lly smaller than the backtrack limit used in current ATPG
algorithrhs. The reason is that at some level of assignment, only a small portion of the
search space is exposed and a small number of alternatives might be needed. If at any
level, some of these alternatives are in conflict, the algorithm creates more options for
the next levels of assignment by allowing full enu.mera.tion of logic values across the
logic gates until the number of alternatives reaches the preset limit. In this way, the’
GATPG algorithm can deterministically genérates tests globally without ﬁsing la,rgé
memory space. This approach also ensures that every testable fault \.ivill be covered
while redundant faults will be singled out. A redundant fault will result in a complete
conflict of assignments for all the control entries associated with it. Consequently,
redundant faults nearest to the primary outputs are not p.rocessed any further :by the
algorithm. All paths between the primary inputs and the visited redundant faults will
not be processed as well. This technique enhances the performance of our algorithm

and saves test generation time.

4.5 Counstructing the Test Primitives

Since the GATPG algorithm is described in details, an example which illustrates
the procedures for test generation and the construction of the test primitivés is pre-
sented. The example circuit is shown in Figure 4.13. The GATPG algorithm will be

applied to the circuit example in order to generate the test primitive.

74

a
. } : po[0] _ -

_}——f
o . . DD_

Figure 4.13. A combinational circuit example.

Figure 4.14 shows a highlight for the first output cdn;a for the c'ircuit and the
corresponding data structure used by the GATPG algorithm. The GATPG algorithm
takes three levels of assignmen;cs to completely map the fault value at the primary
output to the circuit’s primary inputs. For each fault entry, one sensitization path will
be selected as an input vector which covers the fault entry location. A ca,xl‘eful choice -
shéuld be made to decide which values (path) to keep and which to ignore because we
might be faced with different choices, as shown in Figure 4.14. The first fault entry
will have only one sensitization path which is represented by ’the logic entries: a=D,
a1=1, b=0, and c,=X. After the compare procedure is applied, the test pattern which
- represents this fault entry will be: D, 0, 1, X for a, b, ¢, and d, respectivel_y. The first
fault entry cannot propagate through the other path vx{hich carries the assignments |

c=0 and b=X, because, in this case, ¢; and ¢, are in conflict.

The second fault entry, on the other Hiand, may have two valid paths. The first is
represented by the assignmenf a=1, b=0, and c,=X. This path created the test pattern
1, 0, D, and X for «, b, ¢, and d, respectively. The other path has the assignments:

‘a'=1, =0, and b=X. There is a partial conflicts between the assignments of the two

stem nodes of the fanout point. This will result in the test pattern: 1, X, DF', and

75

1

G

ot

r
|
|
|
L-

abcd

b i i -
- OoO—0n.
OO A

MPS

Figure 4.14. Test generation for the first output cone.

76

X, which implies that this test will cover only one type of stuck—ét f:ault (¢ s/1, for
' instance). The better choice is to chose the first path because it répresents a cover for
both type of stuck—at faults for all the nodes on that path. The bold lines in Figure
4.14 represent the different paths that are chosen by the GATPG algorithm to cover

all the faults in the circuit example.

The test patterns shown in -Figure 4.14 are generated by cénSidering all the fault
entries in the data structure.. The first four entries in the test patterns table afe the
one extracted from each entry through SPS. The last en-try is e#tracted by apply-
ing the MPS. procedure. In this procedure, the sensitization paths associated with
the fault entries for the two stem nodes are cube intersected. Since each entry has
two possible paths, four cube intersections may be performed before a MPS pattern

is generated. Currently, the ATPG algorithm halts if one MPS path is. generated,

otherwise continue with the cube intersection procedure.

Similar procedures are applied to the second cone of the circuit example as shown in
Figure 4.15. Figure 4.16 shows the final test primitive for the module under test which
corresﬁonds to the circuit example. The first entry in the test priinitive is the 6utput
cone number. This is followed by the list of generated test patterns. Following each
test pattern is the logic values of the output nodes when the corresponding pattern
is applied at the inputs of the circuit under test. This information is produced after
the generation of each test pattern, where the test pattern is simulated (forward
propagation) and evaluated at th¢ primary outputs. In tﬂis particular example, with

each output cone, one of the two primary outputs always carries an X logic value.

In this way, the test primitive totally characterizes the test behavior of the circuit.
It can be seen that the test primitive can also be used to evaluate the functionality

of the circuit. If the test primitive is to be used at the gate-level of testing, the test

7

T

T
O
Q
L

Figure 4.15. Test generation for the second output cone.

| Po(0

The.circuit example PO (1)

Test primitive for the circuit example.

Output Cone (0)
%k & Kok ok ok ok ok ok ok ok kok ok

abecd PO (0) PO(1)

DO1X D X
10DX D X
0D1X D X
01lDx D X
11DX D X

Output Cone (1)

Khkkhkhkhhkkhkkhkhhikhk

abcd PO(0) PO(1)
X

XD10 D
X1DO X D
X0Dl1 X D
X01Dp = X D

X D

X1D1

Figure 4.16. The generated test primitive.

78

79

L -
o i
fanout struct2 o fanout struct1
vl

Figure 4.17. A circuit example for explaining the space cdmplexity of the GATPG
-algorithm.

primitive will represent the test patterns for the circuit. If it is to be used at the
modular level of testing, the test primitive will also serve as the mapping information

across the module’s terminals.

4.5.1 Algorithm Complexity

‘As shown in the above discussion, the GATPG algorithm minimizes the size of the
logic assignment tree by allowing only the consistent logic assignments to occur at
any nc;de during the back—propagation process. It also applies ‘pruning criteria which
effectively reduces the space complexity of the test generation process. The space
compiexity of the GATPG algorithm is determined by the size of the data structure
during the back propagation process. As discussed before, the horizontal length of -
the data structure is always limited by ti1e number of nodes assigned during the back
propagation process. A-t any time, during this process, the number of valid paths
associated with each fault entry is less than a fixed nun"lber, i.e., the preset limit.
Therefore, the number of fault entries in the data structure are the only nodes which

are left unconstrained in order to ensure the coverage of all testable faults in a circuit.

It is interesting to notice that the number of fault entries in a data structure

80
depends mainly on the cifcuit complexity, not on the number of nodes in a circuit.
This fact can be expléined using the circuit example shown in Figure 4.17. In this
example, during the back propagation process, any sensitization path from fanout
structure 1‘ (structl in figure) must pass through the stem nodes of struct2. For
instance, r‘the bolded path at stem i will be back propagated through two single
path sensitizations; one time through node m while 'ther other one through node
n. Of cc;urse, it is assumed that there are no mofe fanout structures in the path
between structl and struct2 in the figure. ‘rAccor.dingly, the three paths at the first
fanout structure will be translatéd into six singlg path sensitizations coming out of
the second fanout structure. In general, a circuit with a maximum of N cor;secutive
fanout structures in a path, with each structure i on the path having an m(:) stem

nodes, the expectéd maximum number of fault entries will be:
m(0) * m(1) %x m(N — 1).

This number can be huge for large circuits. Fortunately, iﬁ our algorithm, we only
deal with output cones instead of éhe whole circuit. "This tecﬂnique drastically de-
creases the number of fault entries in the data structure and inherently partitions the
circuit under test. The above space complexity figure explains why the experimental
results in the next section show a performance which does not reflect the size of the
circuit under test, for instance, large circuits may take less test generation time than

smaller ones.

The time complexity of the BFP algorithm is mainly determined by the time taken
during the Compare() procedure. If a fanout structure has an m number of stems,
the compare procedure time complexity is O(m). As mentioned before, the rmiltiple

path sensitization procedure has a linear time complexity with the number of stems

81
in a fanout structure, i.e., O(m). Also, in the worst case, if the algorithm has to

perfbrm the compare procedure for each sensitized path in the circuit, then the time

complexity will be:
O(m) * Number of fault entries.

;I‘herefore, the time complexity, once more, reflects the circuit complexity; not the
circuit size. All the operations involved in building the data structure and the ﬂcom—»
pare pi'ocedure are very. simple an.d do not include any decision making procedures.
‘Therefore, they are fast anci efficient, which resulted in the superior time performance

of our algorithm.

4.6 Experimental Results

Table 4.1. Real execution performance of our algorithm in a two—phasé implementa-
tion on a SUN SPARC 2 workstation with the ISCAS’85 benchmark combinational

logic circuits. Time units: seconds.

Circuits RTPG DTPG _Fault # Test
‘ faults CPU | Dfault Rfault CPU | coverage | vectors
C432 495 0.7 20 4 0.4 100% 77
C499 741 1.5 9 8 1.1 100% 69
C880 911 - 2.1 31 0 2.1 100% 141
C1355 1542 5.2 24 8 1.1 100% 102
C1908 1851 7.8 21 7 7.0, 100% 98

C2670t | 2120 * 11.5 360 115 19.9 100% 344
C3540t1 | 3271 12.8 26 131 21.8 100% 266
C5315% | 5271 25.6 20 59 33.1.| 100% 322
C6288t | 7710 41.1 0 34 04 | 100% 75
C756562f | 7011 52.0 406 131 36.8 100% 209

The GATPG test generator and a fault simulator were implemented in C on a
SUN SPARC 2 workstation. The ISCAS’85 and '89 benchmarks were used to evalu;a,te

the performance of the test generation algorithm. We generate test vectors for the -

v

82

combinational circuitry for the ISCAS’89 benchmark by breaking the loops connecting
to the flip flops into primary inputs and outputs. 'fI‘he GATPG algorithm is used to
generate tests for each circuit, then, the generated patterns in the test primitives
are used to fault simulate the‘ modeled faults reported in the benchnlla.rks. We are
re‘porti‘ng resulté; for two system implementations of the GATPG algorithm. In the
first implementation, we have purposely included a random test generation phase as
~ a front end to the GATPG algérithm. In the second irﬁplementation, the GATPG is
used as a single phase test algorithm without the random phase. In this way, we can

fully evaluate the potential of the GATPG algorithm.

4.6.1 Two Phase Implementation

In the first implementation, the random test generation is first applied and is
followed by a deterministic test ggneration based on the GATPG.@lgorithm'. Results
ﬁsing the ISCAS’85 and ISCAS’89 benchmark circuits obtained on a SUN SPARC 2
workstation are summarized in Tables 4.1 and 4.2. .W‘e require only the test generation .
for the éombinati'ona.l logic in the ISCAS’89 benchmark. The results obtained from
random and deterministic test generation are shown in the two columns labeled RTPG
and GATPG, respectively. Under the RTPG column, the label fault refers to the
number of faults detected by the random generation of vectors, while CPU refers to
the CPU time spent in random test generation. As a common practice, we generate
random test vectors until a simulation run of 32 véctors does not detect any additional
faﬁlt. For circuits marked with T,l'the random phase is continued until a 128 vector
simulation runs did not detect any additional faults. The random test generation and
simulation phase covers I;iore than 90% of the faults in most circuits. In some cases

like C6288, the random test generation phase covers 100% of the testable faults.

83

Table 4.2. Real execution performance of our algorithm in a two-phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS’89 benchmark combinational
logic circuits. '

Circuits RTPG DTPG Fault # Test
faults CPU | Dfault Rfault CPU | coverage | vectors

527 32 0 0 0 100% 18
5208 198 .03 17 2.3 100% 50
5298 308 0.3 0 0.1 100% 59
5344 332 04 10 1.8 | 100% 52

S349 343 0.4 5 0.8 100% 41
$382 392 0.4 7 0.8 100% 47
$386 370 0.5 14 1.2 100% 78
S400 411 0.4 7 0.6 |- 100% 63
$420 401 0.8 29 1.4 100% 100
S444 460 0.6 0 0.2 100% 46
$510 564 0.9 0 0.2 100% 66

1.0 100% 113
122 100% 120
2.9 100% 141
1.6 100% 159
2.3 100% 177
16.4 100% 181
2.8 100% 149
10.9 100% 196
24.1 100% 260
8.2 100% 151
0.6 100% 230

~ S526 530 0.7 24
5641 457 0.9 10
5713 532 1.6 11
5820 790 3.9 60
S832 812 3.2 44
5838 709 2.7 148
S953 974 4.1 105
51196 1120 4.2 122
51238 1229 4.8 47
51423 1442 4.3 59
51488 1482 4.6 5
51494 1476 4.2 | 18 2.0 100% 221
55378 | 4383 51.6 180 75.5 100% 392
59234t | 5781 1424 694 452 189.6 | 100% 790
S13207f | 8452 212.8 | 1210 151 123.0 | 100% 811
5158501 | 10321 246.6 | 1015 380 274.3 | 100% | 755
S359321 | 35077 1778.5 33 3984 81.1 100% 214
5384171 | 29198 1694.4 | 1817 165 375.4 | 100% 1817
5385841 | 34211 1516.9 | 587 1506 107.7 {. 100% 1330

ol Bocofoforofooocomoooo

ol o
(==

84

In the GATPG phasg, we have used a similar systematic a,pprc;a,ch to the one used
in random test generation. For each primary output in a circuit,.we generate the tesf
patterns until a simulation.run of 32 (128 for circuits marked with 1) test patterns
does not detect any additional fault in the output cone l}nder test. This proceduré
is repeated until all output cones are tested. For each primary output in a circuit,
we generate the test -p'a,tterns with a preset limit of two. A preset‘ limit of five is
‘used for large circuits (marked with). If any of the two fault logic values D or D
appears in the input fault pattern, both types .of stuck-at faults are considered during
simulation. If, on the other hand, one of the other four fault v.alues exists, only the

corresponding type of stuck—at fault is considered by the simulator.

Under the GATPG column, the label Dfault refers to the detected faults by the
GATPG algorithm. If a fault is not detected by RTPG or GATPG, it is considered.
. aredundant fault as the label Rfault indicates. The CPU refers to the time taken to

generate the test'patterns.

The final fault coverage is indicated under the column labeled Coverage. It repre-
sents the percentage of faults covered by the test system including both RTPG and
GATPG. Finally, the column under Vectors is the total number of vectors generated

by the test system.

As shown iﬁ the tables, the two phase test system 'covers all the testable faults in
the benchmarks: The I:a,ndém phase covers at léast 90% of the modeléd faults in any
circuit. As the circuit size increases, the random phase takes a large amount of the
CPU time in order to reacil the 90% fault coverage margin set by the test systerﬁ.
The GATPG algorithm, on the other hand, takes a very small CPU tlme, even when

cons1der1ng large size circuits.

85

4.6.2 Single Phase Implementation

In the single phase system implementation for the -GATPG algorithm, we have
considered the fact that the GATPG algorithm CPU run time is small and it can be
used as a single phase system. In 'order to achieve this purpose, we have lifted the
constraint on the number of generated patterns that when generated do not cover
any other fault in the fault list of the circuit under test. This limit was 32 for small
circuits and 128 for large circuits. Instead, we simply allowed the GATPG algorithm
to generate all possible test patterns. The results of this.implementation is shown in

Tables 4.3 and 4.4.

It can be seen from these two tables that the single phase GATPG system also
cover 100% pf the testable faults in the benchmarks. The CPU run time has incr.eased '
slightly from the results in the two phase system. The overall run time is greatly
reduced compared to the two phase system. The only noticeable difference between
the two implementations is the resuli;ant number of test- vectors. As expected, the
test length has increased and in some cases is doubled. This is due t‘b the lack of

constraint on the number of generated test patterns in the single phase system.

Table 4.5 shows a performance comparison between our algorithm and the Tran-
sitive Closure (TC) algorithm [12]. We have chosen large circuit examples in this
comparison where computational complexity is critical. In these particular exampies,
the TC algorithm uses a large number of backtracks during its execution. The data
under the GATPG and TC columns show the average time taken by the GATPG
‘ algorit'h;n and by the transitive closure algorithm, respectively, to cover a single fa,ult
in the corresponding circuit. Each entry under V‘TC is calculated by 'dividing the time

taken in the GATPG phase by the number of faults in the fault list after the RTPG

86

Table 4.3. Real execution performance of our algorithm in a s1ngle—phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS’85 benchmark combinational
logic circuits. Time units: seconds.

MCircuits BFP ‘1 Fault # Test .

Dfault Rfault CPU | coverage | vectors
C432 515 . 4 0.5 100% - 91
C499 750 § - 12 100% 89
C880 942 0 - 2.2 100% 188

C1355 1566 8 1.2 100% 192
C1908 1872 7 7.1 100% 162
C26701 | 2480 115 29.9 100% | 393
C35401 | 3297 131 © 27.8 100% 324
C5315t | 5291 59 39.1 100% 429
C6288t | 7710 34 10.4 100% 145
C75521 | 7417 131 45.3 100% 511

phase. For the single phase GATPG system, ea;cl'l entry under GATPG is caIculé,ted .
by dividing the test generation time by the total number of faults covered by the
élgorithm. The Téble also shows thé resultant speed-up (SU) factor in each example.
The Speed-up factor depends on the girquit structure but in géneral our approach is
faster than the TC algorithm. For the othér circuits in the ISCAS benchmarks, the

GATPG algorithm shows a comparable performance to the TC algorithm.

Generally, for small and medium size circuits, the GATPG algorithm shows a com-
parable performance with best known algorithms. For large and complex circuits, the
GATPG algorithm performs exceptionally ‘well and outperforms other algorithms..
This is due to the globai search approach, the early detection and' removal of incon-
sistencies, and by the use of efficient pruning techniques for the assignment tree. The
results also show that although our algofithm is single phase, the number f)f generated
pattérns is slightly larger (but comparable) to those generated by other a,lgorit.hms.

Finally, the GATPG algorithm always achieves a 100% fault coverage.

87

Table 4.4. Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstatlon with the ISCAS’89 benchmiark combinational
logic circuits.

Circuits BFP Fault # Test
Dfault Rfault CPU | coverage | vectors
S27 32 0 01 100% 13
S208. 215 0 2.9 100% 52
5298 308 0 3.1 100% 79
S344 342 0 3.2 100% 71 .
S349 348 - 2 1.8 100% . 62
5382 399 0 2.1 100% 63 -
5386 384 0 24 100% 81
5400 410 6 - 2.6 100% 77
$420 430 0 34 .100% 109
S444 460 14 3.2 100% 45
5510 564 0 4.2 100% 86
$5526 554 1 4.0 100% 127
S641 467 0 . 3.0 100% 117
S713 543 - 38 4.9 100% 177
5820 850 0 4.6 100% 181
5832 856 14 4.3 100% 169
5838 857 0 17.9 100% 202
S953 1079 0 6.8 100% 169
51196 1242 0 19.1 100% 221
51238 1276 69 26.6 100% 299
S1423 1501 14 8.9 100% 161
51488 1487 0 9.6 100% 255
51494 1494 12 6.0 100% 241
55378 4563 40 81.5 100% 444
$9234t - | 6475 452 190.0 | 100% 812
S132071 | 9662 151 1441 100% 807
5158501 | 11336 389 288.1| 100% 723
5359321 | 35110 3984 96.0 100% | 394
5384171 | 31015 165 411.0 | 100% 2501
5385841 | 34798 1506 120.5 | 100% 2110

88

Table 4.5. Performance comparison between the BFP algorithm and the Transitive
Closure (TC) algorithm on a SUN SPARC 2 workstation for large ISCAS benchmark
circuits. Time unit: seconds. °

Circuits | GATPG | TC l SU
C2670 | 0.05 0.19 | 40
C7552 | 0.09 0.47 | 47
59234 0.27 0.521 2
513207 | 0.008 0.3 |36 |
S38417 | 0.2 0.78 | 3.9
538584 | 0.17 0.29]1.6

4.7 Practicality of the GATPG Algorithm

Since 'the GATPG is presented, its space and time!comple%:ities are explored, and
experimental results were reviewed, it is useful to give some remarks about the prac- ‘
ticality of the GATPG. The -way VLSI circuits are designed today dictates that VLSI
test generation algorithms must be simple, fast, and efficient in order to keep on with
the pace of increasing design complexities. We believe that the GATPG algorithm
provides these requirements. Simplicity is manifested in the simple test procedures
employed in our algorithm. These prqcédures are not based on any decision making
processes. Thisl fact made it possible to direct our attention to the implementation
issues, rather than being worried a,i)out the test quality of the algorithm. The test

quality is always guaranteed.

The fast performance of the GATPG algorithm has been attained because of the
same factors that contributed to the simplicity of the algorithm. ’It is. known that
decision making-based algorithms suffer from time consuming procedures which, al-
though dealing with a single target fault, try different cHoi<':es (sometimes based on

preprocessing setps) and then check the validity of these choices. Qur approach, on

89

the other hand, is based on a none decision making procedures to minimize the test

generation time.

This discussion brings the efficiency issue into consideration. If 'the eﬁ’icienC); of
a test system is defined as the ability of the test system to cover all faults in a
circuit (regardless of test generation time), then all test approaches are efficient. If,
on the other hand, efﬁciency is defined as the ability of the test algorithm to cope
with different circuit complexities and generate tests in a reasonable amount of time,
the GATPG will emerge as the most efficient. This has been proved by the'ability
of the GATPG algorithm to generate tests for large circuits, without randorn'test
vectors. The space and time complexities of the GATPG algorithm show that the
test generation time is hingy dependent on ilow complex the circuit is. But, as _
we stated earlier, as long as the test procedures are simple and efficient, the circuit
complexity can ah'vays be contained in the context of the GATPG algq'rithm. ThiS'
fact renders the GATPG algorithm as one of the most practical-ATPG algorithms for

the ever increasing complexity of VLSI circuits.

4.8 Summary

- The present test generation algorithms can generate test vectors for complex com-
binational circuits and guarantee 100 percent coverage for all the testable faults in
a circuit. However, in the worst case, the test«generation time increases exponen-
tially with th;a circuit complexity. A new approach which combines simplicity and
. efficiency has been developed for the test generation of large combinational circuits.
This approach is based on tracing back a fault at a primary output node in order to

generate test patterns which sensitize all paths between the primary inputs and the

primary output node. This system is referred to as global testing or a non-target

90

fault system.

- A two phase and a single phase GATPG algorithm implémentations have l;een
iﬁlplemented for generating input fa}ilt patterns which sensitize all paths, between
primary input and output nodes. The algorithm ci‘eates a tree of logic assignments
by 'ba,ck——propa;gating a fault at a primary output node. During its execution, the
algorithm uses uniquely implied logi.c values across the input and output nodes of the
logic gates. A key feature of the GATPG alggrifhm is that conflicts are detected and
removed incrémenta.lly from the logic assignment tree :during the back—propagation
process; The reéults on large circuits suggest that our algorithm outperforrﬁs other

test generation algorithms in terms of computing time.

CHAPTER 5

THE GENERATION OF TEST PATTERNS WITH
MAXIMAL MULTIPLE FAULT COVERAGE

The new framework which is proposed in previous chapters for Solvir;g th;e problem
of test generation suégests that it would be worthwhile revisiting other related test
problems and issues in its. context. Some of these problems are extremely difficult
and have been put aside by test generation researchers. One of these.problems is the
multiple fault test generation, in which the assumptidn that only one fault exists‘ in
a circuit at the tiﬁe of t;esting does not hold any more. Instead, it is assumed that
molre than one physical failure has occurred in the circuit during fabrication, which

results in the existence of more than one stuck-at fault in a circuif.

As far as the problem of generating tests with maximal multiple fault cc;verage
for. the general class of combinat'iona,l circuits 1s concerned, no algorithm exists in
the literature which generates such tests. In this chapter, we will extenci the domain
. of the GATPG system by showing how it can generate tests with maximal multiplé
fault coverage witﬁout adding any new procedures to our test system. We will first
present o'ur analysis on the multiple faults behavior. This z;malysis will then be used
in improving the multiple fault coverage for any test set. We have taken this step to
show that this analysis can be applied to any existing ATPG system; a fact which

helps in building a better test system integration that uses different test models for

92

different applications. Then, we will show how can we apply the results of this analysis

to our GATPG system. The core.of this chapter will be presented in ASIC’95 [59].

5.1 Introduction

Multiple fault detection.has Been discussed many times [22, 8, 16, 42] The major
complexity.of the problem lies in the number of multiple faults'that may exist in
a circuit. Most Automati(; Test Pattern Generatio:'n (AT‘PG) algorithms guarantee
a 100% fault coverage for single stuck-at faults in a circuit. Single fault test sets
have been used in simulating multiple faults in .a. circuit. The multiple fault coverage
varies among the different test sets for the same circuit.‘ This is due to the different
heuristics employed in different ATPG systems. Presently researchers have avoided

the direct test generation for multiple faults because of the extremely large number

of multiple fault combinations that exist in a circuit.

In this.chapter, the multiplc-: fault testing problem is analyzed in the context of
path'.sensitiza,tion algorithms such as PODEM, FAN, andMSOCRATES. We specifically
examine the self-masking fa,ulfs because they represent most of the undetectable faults
using single fault test sets. We examine the strategies that are generally used in path
sensitization algorithms for single fault test generation. These strategies may lead to‘
incomplete cover of some multiple .faults.in a circuit. A prdcedure which can be used
during single fault test generation will then i)e presented. It implicitly gﬁara.ntees
maximum multiple fault coverage for a given set of test vectors. Tﬂis procedure first
partitions the set of primary inputs in a circuit into three subsets, namely, control,
excitation, and persistency sets of primary inputs'. Then, the problem of multiple
fault testing can be formulated as a problem of optim1izing these subsets so as to
achieve maximal multiple fault coverage for each test. Based on the analysis given in

‘this chapter, two different procedures for augmenting any single fault test set will be

93

presented. We have tested these procedures on the 74LS181 ALU circuit using twelve

test sets generated by different methods.

This chapter is organized as follows. 'In the next section, we will brieﬂy’ review
the previous work. In Section 5..3, some preliminary discussion on the multiple fault
testing probiem is presented. Thé analysis of multiple faults Be};avior in the context
of path sensitizai;ion algorithms for single fault test generation is presented in Section
'5.4. In Section 5.5, we present two models for the analysis and test set augmentation
for multiple fa,ults.. In Section 5.6, two procedures based on the analysis of Section
5.4 are-given. Experirriental results on the 74LS181 ALU is given in Section 5.7. In .
Section 5.8, we will show how can we modify the GATPG algorithm to generate t“est

patterns with implicit maximal multiple fault coverage.

5.2 Previous Work

There have been several works discussing the problem of multiple stuck-at fault
testing. Some researchers approach the fanout—free circuits [30, 19, 7, 29]. Most of
the work done so fa,r on multible fault testing émphasized on the issues of reducing the -
number of faults considered during test generation and generating test sets without
explicitly considering :;Lll combinations of multiple faults [10, 24, 45, 50]. Jone and
. Madden [29] developed an algorithm which generates tests for single stuck—@t faults.
It guarantees the d;atection of all multiple stuck-at fau.ItS iﬁ fanout-free circtits.
Their test sets were shown to be minimal in size. Instead of generating test patterns
for multiple fal}lts, the work of Agarwal and Fung [1] investigated the multiple fault
coverage of single fault tests. Results on fanout—free circuits containing gates with
fan-in of two cover all multiple faults of size two and three, at least 99% multiple faults

of sizes four and five, and at léast 98.5% multiple faults of size six. GEMINI, proposed

94

e

Figure 5.1. An example to illustrate testing terminology.

by Cox and Réjski [13], is a multiple fault test generation system for general circuits.

GEMINT allows multiple faults of all multiplicities to be considered implicitly.

The work of Kubiak and Fuchs [32] indicated that multiple faults simulation is
a time—consuming process. As the number of gates in a circuit increases, it is not -
practically accgpta,ble to fault simulate single fault test ‘sets against multiple fault
occurrences in the circuit. All present approaches handling the multiple fault tesﬁir}g

problem face a higher order of time and space complexities. -

To overcome these difficulties, procedures used during single fault test generation
which implicitly guarantee a maximum multiple fault coverage for the generated test
set must be employed. Another approach for solving the multiple fault test generation

problem is to augment the generated test sets from single fault ATPG systems.

5.3 Preliminaries

In this section, some common terminologies pertaining to multiple fault test gen-

ération are introduced with an example.

Definition 4 A convergence point (CP) is a node at which two or more faults , i.e.

{f1, fay - - -, fu}, interact. These faults may be faults in the CP or have propagated

95

from some other node to the CP.

Definition 5 When multiple faults meet at a CP, the fault or faults which can prop-

agate through CP for some test will be denoted as dominant faults for that node.

For example, consider the double faults {t/0, g/1} in Figure 5.1. The test vector
?11010¢ (for inputs a, b, ¢, d, and e, respectively) covers these two faults. The CP
point for {¢/0, g/1} is node j. The fault g/1 dominates the fault ¢/0 because the

later is masked by the ihput e.

Definition 6 A set of faults F = {fi, fa, . . ., fm} is said to be self~masking under
atest set T = {t1, ta, . . ., ta} if and only zf
1) For eacht;,t = 1, 2,. . ., n, t; detects each single foult f;,9.=1,2,. .., m. ’
2) For each t;, i =.1, 2, . . ., n, t; does not detect the multiple fault fi, fo, . .

-y Jm. Multiple faults composed of fewer than m elements of F' may or may not be

detected by the test set T

If the test set T' contains only a single test vector, the relationship will be referred
to as single vector self-masking; if T' contains more than one vector, then multiple
vector self-masking. For example, the double faults {a/1, ¢/1} in Figure 5.1, are

single vector self-masking under the test T' = ”01000“.

5.4 Multiple Faults Analysis

In order to detect a set of muléiple faul’ts, it is only necessary that, with all faults
excited properly, at least one fault from this set must propagate to the primary out-

puts. The following question can now be asked concerning multiple faults detection.

96

Given two single stuck-at faults f; and f, which are self~masking under a test ¢, is

there any way where the test vector ¢ can be modified so that it might cover the set

of multiple faults {fi, f2}?

Let us assume that ¢ sensitizes the single fault f1 through a sensitization path s;
and sensitizes f, through s;. The only condition which makes ¢ unable to cover the
multiple faults {fi, f2} 1s that the sensitization structures of s; and s, are destroyed

: du;e to the existence of f, and f; simultaneous}y. For ex'ample, in the cir'cuit shown in_
Figure 5.2, the test vector 1001 covers the single faults 5/1 and ¢/1. In the existence
of fhe double faults {b/1, ¢/1}, the sensitization paths of b/1 and ¢/1 mask each other
at the .inputs of gates G3 and G4. The problem of coveriné a set of multiple faults can
be solved if there exists a test which does not destroy the sensitization structure of
at least one fault in a fault set. To probe more on this issue, we presen.t the following

definitions:

Figure 5.2. Example for the different PI sets of a fault under test.

Definition 7 A sensitization path is referred to as persistent under a set of primary
inputs S, if it is not destroyed with the variations in the logic values of the primary

inputs in the S, set. S, is referred to as the persistency set.

The following definition further divides the set of primary inputs into an excitation

97

set :a.nd a control set.

Definition 8 The set of primary inputs which controls the excitation logic value at-
a fault location is referred to as the excitation set S.. Any primary input which does
not belong to S, or S, is referred to as a controlling primary input. The set which

comprises all controljing primary inputs is referred to as the control set S,.

In the example shown in Figure 5.2, the fault /1 is covered by the test vector
”1001%, then: S, = {a, d}, S. = {6}, and S. = {c}. The logic values for the entries
~in 5, do not affect the sensitization structure of the fault b/ 1; éntries in S, excites
the fault; while the entries in S. guides the sensitization path to its destipa’;ion at
'the primary oufput. Each fault cove;red by a test vector in a test set has unique sets -
of primary inputs. The contents of each set depends on the way test generation is
carried out. The primary input sets can be determined .during the test generation
I;rocess or during fault simulation. A simple procedure for identifying the different
sets of pfimary inputs for a fault under test usiﬁg a single fault simulator is shown in

Figure 5.3.

In the next section, we will use the above sets in analyzing and improving the

multiple fault coverage of single fault test sets..

5.5 Two Models for Test Set Augmentation

The main objective in singlg fault test generation algorithms is to generate tests
that cover all the testable faults in a circuit in a reasonable amount of time. Maﬁy
efforts are used to find a sensitization path for a single target fault with the minimum
number .of'logic assignments to the circuit’s nodes. Although this has proven to be

helpful in reducing the test generation time, tests generated using this method does

98

Input : A single fault f and its cover ?.
~ Output : The PI sets for f under ¢.

Procedure Identify(Se, Sc, Sp) {
for each primary input PI;
{
Complement(PI) ;
Simulate(PI;) against f;
if f is not excited
“PI; € Se; :
else if f is excited but not covered
PL, e S,
else PI; € S,
Complement(PI;) ;

}
}

Figure 5.3. Identify(): a procedure used to determine the different primary input
sets for fault f under .

99

not guarantee to cover 100% of ' multiple faults (especially for circuits with many
internal fanout nodes). In order to account for multiple faults during single fault test
genei‘ation, the relationship between a fault sensitization path and the other nodes in
a circuit must be taken into account. The relationship between a senéitizing path and
the different nodes in a circuit is encoded in the generated test vector. Each generated
te.st can be analyzed to determine such relation. The different sets of primary inputs

presented in the previous section can be used for this purpose.

Let T = {t1, tg, .., tn} be the set of single fault tests which was generated to cover
. the single t;n'ggt‘ faults fi, fo, .., and f,, respectively. ‘In order to obtain a maximum
multiple fault coverage from a single fault test set, it is necessary that each vector
t; covers a maximum numBer of multiple faults which represent any combiﬁ_ations of
fi and the other faults in a circuit. This can be achieved by modifying the test ¢; s0
as to minimize the number of nodes which, when chg,nging their logic values, destroy
the sensitization structure of f;. The problem of augmenting single fault test sets to
achieve maximal multiple fault coverage can be formulated as the one of maximizing
the number of primary inputs in the control set of each cover in a test set. This is
also equivalent to the problem of minimizing the number of primary inputs in the

persistency set.

The process of maximizing the control set of a test vector requires that some
elements be removed from the S, set and be added to the S, set.r These elements are
identified as primary inputs with a potential to create stronger sensitization structure
for the fault under test. Maximizing the control set in each vector increases the
sensitization path persistency against the variation of logic values at some nodes in
a circuit due to the existence of multiple faults. This is obviously.in conflict with

some of the strategies used in single fault test generation where a minimum number

100

of logic assignments during the search process is always used in order to reduce the
search time. Therefore, test augmentation must be applied after the single fault test

generation phase in order to ensure maximal multiple fault coverage.

5.6 Two Procedures for Test Set Augmentation

It has been shown that most undetected multiple faults are self—masking,faﬁlts. A
procedure for identifying the potentia,lly self—mésking faults in a circuit can be found
in [27]. Test set augmentation can be applied on the resultant self-masking faults.
In this way, test augmentation can be applied without the extensive use of multiple

fault simulation.

In’ the next subsections, we give two new procedures for augmenting si.ngle' fault
test sets for obtaining maximum multiple fault coverage. The first procedure aims at
maximizing the control set of a single fault under a test vector without considering
any multiple faults existence. This method can be directlyrimplemented during the
single fault test generation phase. A second procedure which‘ can only be applied on
a set of uncovered multiple faults is also presented. This procedufe aims at changing
the dominance relation between the different faults in a multiple fault set. Duripg
this procedure, the sensitization structures of a subset of faults in a multiple fault
set are destroyed while allowing other fault sensitization path(s) to terminate at the

primary output nodes, hence, covering the set of multiple faults.

-5.6.0.1 The Maximum Control Set Procedure

- The first procedure for augmenting a single fault test. set is based on the maxi-,
mization of the control set of each test vector in the test set. Consider the circuit

shown in Figure 5.2, The test 1001 excites both faults b/1 and ¢/1 but it fails to

101

' propagate the effect of any of these faults to the primary output. This behavior occurs
because the two faults mask each other at the inputs of gates Gs and G4. Note that
the primary 1nput cis the only element in the S, set for the fault b/1 under the test
?1001“. A procedure is needed to search the S, set of b/ 1 so that a new input might
ex1st which if combined with ¢ creates a stronger sensitization structure for b/1. In
order to achieve this, the Maz_Control() procedure, shown in Figure 5.4, is applied.
This p}ocedure can be applied on each single target fault and its cover until a 100%

multiple fault coverage is achieved or the.single fault test set is exhauste(zd.

The Maz_Control() procedure starts by identifying different sets of primary inputs
for a single stuck-at fault f under a test ¢. The circ.uit is then simulated agé,inst each
single logic variation in the primary inputs which belongs to the persistency set. If .
the logic 1mphcat10n of this variation meets some control obj jectives set by the ongmal
test vector then the corresponding primary input from the persistency set is moved
to the control set of the same test vector. The value assigned to this partlcular input
is the one which, if implied, meets the control objectives. The control objectives are
determined by simulating the primary inputs which belo'ngs to the original control |
set, i.e., simulating ¢ = 0 in the above example. In Figure 5.5, the Maz_Control()
is applied to the fault /1. The control objectives set by the test vector "1001¢ for

covering the fault b/1 are £ = j = 1 as shown in Figure 5.5.

As shown in Figure 5.5, the implication of the logic variation at node a does not
provide any additional control support to the sensitized path and does not meet any of
the objectives set by the original test. On the other hand, changing the logic value of
node d to 0 adds more control to the sensitizing path and meets the control objective
of setting the logic value of node j to'l. Hence, node d can nov;r be moved from Sp to

Se with its new logic value. The modified test vector will now be ?1000%. This test

102

Input : A single fault f and its cover .
Output : A modified cover with maximal control set.

Procedure Max_Control() {
Identify (Se, S:, Sp);
Fault_Simulate(S.);
Set the objectives;
for each PI; € S,
{
Simulate the logic variation in PI;;
if the implication meets the objectives
Move PI; from S, to Sg;
else continue;
}
Return(S,);

}

Figure 5.4. Max_Control: the procedure used to determine a maximal control set
for a single fault f under a test ¢. "

103

Input : The single fault /1 under 71001
" Output : A modified cover with maximal control set.

Procedure Max_Control() {
1) Identify (S, S., S,);
Se={b}, Se={c}, Sp={a, d};
2) Fault_Simulate(c=0);
The objectives are k=j=1;
3) Simulate the logic variations in Sp;
Input @ changes from 1 to 0: Objectives met? NO;
Input d changes from 1 to 0: Objectives met? YES (j=1);
4) Determine the maximal (S,);
Sc={c, d} and the new test is ”1000”; -

Figure 5.5. An example to illustrate the Max_Control() procédure.

104

vector has a maximal control set under the fault 5/1 and has a stronger sensitization
- structure compa,red‘ to the original test. It also covers the double faults {b/1, ¢/1}.
It must be noted that the modified test vector excites both faults but only allows
the fault b/1, under which the procedure was applied, to propagate to the primary .
output. Thﬁs, the Maz_Control(') procedure extends the dominance relation of the
single fault under test so that it dominates the maximum possible number of nodes

in case of multiple faults occurrence.

5.6.0.2 Sensitization Path Elimination Procedure

Given a set of multiple faults which are single-vector or multiple-vector self-
mé,sked; we need to modify the test v;actor(s) so that at least one fé,ult dominates the
others in- the faul’g set. As discussed earlier, any single fault test set provide covers
to single faults with minimal control requirements for the sensitized paths. It can
then be argued that changing the logic value of a non-exciting ! pumal y input might
) results in destroying one or more pa.ths ThlS process might also leads to the detectlon
of the multiple faults whlch are individually covered by the same test. This is the

idea behind the sensiti'zation path elimination procedure for multiple faults detection.

Consider the simple circuit example shown in Figure 5.6. The primary input sets
for each of the single faults /0 and /0 are also shown in this ﬁénre. The double
faults {a/0, r/0} are s;elf—masking under ”1010¢. The.logic values‘ of the primary
inputs which. belong to the exciting sets of both fa:ults, i.e., nodes a and ¢, must be
kept unchanged in order to excite both faults properly. As shown in Figure 5.6, the

. logic variation at the primary input node d, which belongs to S, of a/0, destroys

1The first requirement to cover a set of multiple faults is to excite all fault locations properly,
i.e., if a fault location is /0, then the fault site must be activated to logic 1.
8

105

Input : The double faults a/0 and /0 under ”1010¢.
_Output : A cover for the double faults.

- Procedure Sens._Path_Elemination() {

1) Identify (S., S, Sp) for each fault;
a/0: Se={a}> Se={b, C}7 sz{d};
r[0: S.={c}, Se={a, d}, Sp={b};

2) Combine the exciting set of Pls;
Seze = {a, c};)

3) Fault Simulate the logic variation for each non-exciting PI;
Input b changes from 0 to 1;
Input d changes from 0 to 1;

4) Determine the cover for the double faults;
Covers: "1110% and 1011 |

Figure 5.6. An example which illustrates the sensitization path elimination procedure.

106

the serisitiza.tion structure of /0 from the fault location to the primary output?.
Accordingly, fhe new test vector "1110% is a cover for the double faults. The same
r_esillt can be achieved if the logic value of node d is éomplemented where another
test cover *1011“ Wii]. be generated. I# the former case, a/0 dominates /0, while in

the later case r/0 dominates a/0.

' The main advantage of this method over the previous one is that test modification
is applied without monitoring the logic value;s of any internal nodes in a circuit.
The success of the above procedure lies in the fact that the logic variation in only
one primary input would lead to the detection of the multiplé fault set under test.
Fl:om our experience, this fact seems to be holding for double énd triple faults. For
larger set of faults, more than one logic variation in the primary inputs might be .
needed. Fortunately, the sensiti-za;tion pa,th'élimination procedure can’be applied
hiera,r'chicélly. In such case, i:he resultant vectors, which guarantee the detection of a
subset of faults in a larger set of faults, can be used by the same procedure to cover

the remaining subset of faults.

5.7 Experimental Results on the 74L.S181 ALU Circuit

In the previous section, two procedurfas for augmenting single fault test sets to
maximally cover mulfiple faults has been prese;ltgd. The first procedure aims at
maximizing the control set of a sinéle rfa,ult under a test vector without considering
any multiple faults existence. This method can be directly implemented during the
single faglt test generation phase. The second procedure can only be applied on
a set of uncovered multiple faults. The procedure aims at changing the dominance
relation between the different faults in a multiple fault sei;. During this procedure, thg

sensitization structures of a subset of faults in a multiple fault set are destroyed while

*This is because d € S, for /0.

107

allowing other fault sensitization paths to terminate at the primary output nodes,

hence, covering the set of .muitiple faults.

In order to evaluate the Maz_Control() procedure, a test augmentation study
lwas performed on the 74LS181 4-bit :ALU. The circuit diagram for the 74LS181 is
'shown in Figu’re 5.7. The 74LS181 wes selected because there are 16 single fault
test sets available for this particular example. Different approaches have been used
in generating these tests. The list of the sixteen test sets and the description of
the test generation approach for each set can be found in. [26]. A summary for the
simulation study ‘done by J. Hughes on the 74LS181 ALU is shown in Table 5.1. In
this Table, the length of each test and number of uncovered double faults are .liste-d.
Among the sixteen test sets available for the 74L5181; only four sets achieved a 100%
coverage for rdouble faults. The remaining twelve sets will Be examined using the
procedures presented in the pre\{'ious section in order to achieve maximum multiple

fault covefage.

Our goal is to extend all the test sets which do not achieve an 100% double fault
coverage. Therefore, this experiment aims at applying the Maw_centrol() procedure
on each cover in a test set. We select a single fault that is covered by the test vector
and generate a new test whic}; has maximal control set under the selected fault. For
simplicity, selected faults are chosen from the set of primary inputs. The experiment
is done for each test in a test set or until an 100% double fault coverage is achieved.
Table 5.2 shows the results of this experimeﬁt. Under t‘he new tests column is the
number of new tests added to the original test set. Under the column new cov. is -
the double fault coverage of the augmented test set. As shown in Table 5.2, an'100%
double fault covera,ge is always achieved. The number of new tests depends on the

original set of tests and on the order of which these tests are listed.

o N

20

22

23

24

25

26

27

] 28

29

30

k>

32

]33

10

34

35

1 {>c15

36

37

]3s

12

39

21

E)

\/

55 76

26

77=

&/

\&/

&/

&/

\&/

\/

—p

13—Dc19

14

Figure 5.7. The 74LS181 ALU circuit diagram.

108

109

Table 5.1. A sufnmary for the simulation study done by Hughes.

Test set Length | Uncov. faults
Krishnamurthy | 12 9
Bryantl 14 4
Bryant2 14 14
Bryant3 14 11
Bryant4 12 8
Bryantb 12 1
Bryant6 12 9
Bryant?7 - 12 28
Bryant8 12 13
Bryant9 12 19
Miczol 17 3
Miczo2 17 1 30
Goel 35 0
McCluskeyl 124 0
McCluskey2 - | 352 0
Hughes 135 0

. Table 5.2. Results obtained after applying the first experiment on the 74LS181 ALU.

Test set New tests | New cov.
Krishnamurthy | 5 100%
Bryantl 3 100%
Bryant?2 9 100%
Bryant3 9 100%
Bryant4 7 1 100%
Bryant5 1 100%
Bryant6 4 100%
Bryant7 11 100%
Bryant8 7. 100%
Bryant9 12 100%
Miczol 2 100%
Miczo?2 17 100%

110

If the fault under investigation propagates to multiple outputs, all sensitizing paths
from the fault site to the primary outputs are guaranteed to exist after a.ppl'ying the
Maz_control() procedure. Consider maximizing the control set of the test vector
”01101100100100“, 'from Miczo 1 and 2 t';est sets, under. the single fault 27/’ 0 (dutput
node of gate 27 is s/0). This fault propagates to the primary outp:ats 79 and 80.
The control objecti{res set by the test vector ”01le11001‘00100“ are determined by
implication. All logic implication values meet these objectives except at the circuit
portion which involves gates number 61 and 62. The original test vector implies a
logic value 1 at the output of gate 63 and hence a,:logic value of 0 at the output
of 'ga,te 69. The fact that only one node (output of gate 63) controls the objective
control logic value (output of gate 69) of the sensitizing patl; makes the fault 27/0
undetectable in the existence of the fault 63/0, i.e., the double fault {27/0, 63;/'0} is |
undetectable by the test vector. In order to maximize the control set of the original
test \;ector under 27/0, the output of -ga.,tes 61 and 62 must be set to logic one. This
can be achieved by tracing back the logic values at thé‘inputs of these gates to the
primary input lines. Changing the logic values of the primary input nodes 11, 12,
-and 14 will meet the abéve requirements. Hence, the new test 701101100101001¢ is

obtained. This new test covers the double faults {27/0, 63/0}.

As mentioned earlier, the above procedure has the disadvantage of being done by
monitoring the logic values of some internal nodes in a circuit. If the test set confainé |
a large number of tests, .the above procedure ma,yj take some time before processing
all the' tests in the set. On the other hand, this procedure can be implicitly employed
in single fault test generation systems by allowing a unique control as'signménts to
be applied during the search process. These ;:ontrol assignments allow the inp1uts éf

each gate to maximally control the logic value of the gate’s output.

111

The second experiment on the 7415181 ALU is performgd using the sensitization
path elimination procedure. In this _experiment, sets of multiple faults which are not
covered by the original test set are explicitly investigated by the test augmentation
procedure. The procedure starts by identifying the test.(s) under which a set of
multiple faults is self~-masking. The implication of logic vafiationé in each primary
input of a test vector is simulat_ed against the set of faults. For example, let us consider
the double faults {27/0, 26-1/1} which are- self-masking under ”01101100100100¢.
Our experiment has shown that any single logic variation in the primary input 1, 4,
5, 6, 9, 10, 12, 13, or 14 will result in a cover for the double faults. On the average,
the effect of these faults is observed at three different primary outputs. In all twelve

test sets, we were able of coveriné all the double faults in the 74L.S181 and achieve a

100% double fault coverage.

5.8 Multiple Fault Detection Using the GATPG Framework

The analysis and procedures presented so far dealt with the problem of extending
a test set to cover a maximal number of multiple faults. The attention will now
be directed to the generation of test sets that implicitly cover maximal number of

multiple faults in a circuit.

5.8.1 The Approach

The GATPG seems to be the natural framework for detecting multiple fauits ina
circuit because it explores the search space for many faults simultaneously. .In this
context, there are two ways by which we can a,pproéch the problem of generating
multiple fault tests in the GATPG system. The first approach can be explained using

the structure shown in Figure 5.8. As with the case of multiple path sensitization dis-

112

Figure 5.8. A general data structure for two faults in a circuit.

cussed in the previous chapter, multiple fault test generation requires the availability
of the sensitization paths for more than one fault simult.a,neously. Figure 5.8 shows
the sénsitization p.a,ths of two faults in the; data structure created by the GATPG al- -
gorithm. In order to find a test for the double faults f; and ' f2, the cube intersection
of the fault values and the control values (V; to N,-;) for the different paths as;&
ciated with éach fault must be performed. This is exactly the same method used in
generating multiple path sensitization patterns. In the matter of fact, multiple path
- sensitization is one form of multiple fault behavior because it allows more than one
stem node in a fanout structure to carry a fault logic value. However, the muitiple
path sensitization procedure is applied locally, i.e., to' a fanout structﬁre. On tﬁe
other hand, multiple faults, éuch as f1 and f, in Figure 5.8,.may occur between any
two (or more) nodes in a circuit. It would be extremely‘r difficult and time consuming
to apply the multiple path sensitization procedure to all the multiplicities of faults in

large (or even moderate) size circuits.

The second approach, on the other hand, uses the analysis and results presented
so far in this chapter to implicitly generate tests that cover any multiplicities of faults

without adding any new procedures in the GATPG system.

» XX XO

(a)

il

(b)

*® Xo0o0
o

(c)

o

o ooco

(d)

113 .

x ® KX

> MK XK b

X X

e e

Figure 5.9. Control logic assignments for implicit multiple fault covérage (a) single
fault coverage (b) double fault coverage (c) triple fault coverage (d) all multiple fault

coverage.

114

In order to achieve maximal mﬁltiple fault coverage, the GATPG applies a set of
control logic assignments during the back propagation process which will guarantee
that each generated test pattern has a maximal control set Sc. So far, we have
concentrated on how a fault sensitization path is created during the back propagation
process. We would like to direct the attention now on how the control logic valu.es
associated with each fault entry in the data structure are created. In case of single
faults, the GATPG uses control logic assignments like the one shown in Figure 5.9.a, .
where the control logic value of a gate’s output is determined with a‘minimum number
of deterrﬁinistic (0’s and 1’s) control Iogip assignments to the gate’s inputs. This
assignments results in a test pattern that has minimal control set S.. On the other
hand, the minimal number of deterministic control logic assignments makes it much

easier and more likely to find a test for a fault in the circuit.

Consider the problem of gem;,ra‘ting a test pattern with a maximal control set
against all double faults multiplicities in a circuit. In order to achieve this goal,
control logic assignments suéh as the one shown in Figure 5.9.b must be used o
guarantee that if a line that contributes to the propaga,tioq of a fault from its location
along the sensitization path fails (stuck-at opposite control logic value), another line
with the required control logic value will still support the fault propagation. Hence,
_ a cover for the fault and the failed line will always exists. Similarly, a test pattern
‘with a maximal control set against all triple multipli;:ities of faults can be achieved
using assignments similar to the one shown in Figure 5.9.c. Generally, a maximal
control set for any multiplicity of faults can be obtained using the assignments shown .
in Figure 5.9.d. The assignments shown in F igur¢' 5.9 are not unique, i.e., there can

be other enumeration of logic values which achieves the same purpose.

In this way, any multiplicities of faults can be expressed within the the GATPG

115

Implicit double fault control

Implicit singie fault control
logic assignments

logic assignments

Figure 5.10. The impact of implicit multiple fault control assignments on the data
structure.

116

system. The test system can be tailored to generate tests ;vith maximal double, triple,
or any muitiplicities of faults. This technique can be used in any other ATPG algo-
rithm during the test generation phase. The problem with these systems is that they
may guarantee the imﬁlicit maximal coverage of multiple faults for test-is generated
determipistically, but will fail to p.ro.vide such tests during the random phase. In our

approach, this problem does not exist because the GATPG system is single phase.

5.8.2 Implernenf_ation and Results

The control logic assignments described a,boxlfe will have some impact on the im-
plementation of the GATPG system with implicit maximal multiple fault coverage.
Generally, these assignmentsv will impose some constraints on the search space for .
tests and might deérade the quality of the generated test patterns. To elaborate on
thi§ point, consider the circuit example shown in Figure 5.10.. In this figure, the data
strﬁcture at the second level of assignments is shown twice, one time with the single
fault control logié assignments and the other with implicit double fault control logic
assignments. In the former case, node e (at the first level of assignment) has a logic
value of one. This logic value is enumerated at the inputs of the NAND gate with
one input carrying a 0 logic value while the other is carrying an X logic value. It it
obvious that this enumeration will enaBle us to.cover both types of faults at node b;
(because b; has an X logic va,lué in one of the enumerated inputs of the NAND gate).
In the later case, implicit double fault control logic assignments dictates that both
inputs of the NAND gate must carry the same OV logic value. It can be seen that,
in this case, only one type of fault (s/1 fault) at node b; may be covered. This will

definitely decreases the fault coverage of the generated test set.

In order to avoid the degradation of the test quality of the GATPG system, implicit

117

Table 5.3. Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC 2 workstation
with the ISCAS’85 benchmark combinational logic circuits. Time units: seconds.

Circuits BFP Fault # Test
Dfault Rfault CPU | coverage | vectors
C432 515 4 0.7 100% 91
C499 - 750 8 . 1.6 100% 89
1 C880 942 0 2.8 100% 188

C1355 1566 8 1.5 100% 192
C1908 1872 -~ 7 7.9 100% | 162
C26701 | 2480 115 36.8 100% 393
C35401 | 3297 131 31.1 100% 324
C53151 | 5291 59 46.7 100% 429
C6288t | 7710 34 14.2 100% 145
C75521 | 7417 131 55.6 100% 511

single and multiple fault control logic assignments are both allowed and enumerated
during the back pr'opagétion procedure. The GATPG system allow a maximum of
two enumeration of multiple fault control logic assignments at the ini:)uts of a gate
during the back propagation procedure. This is followed by-the full enumeration of
the original single faulf control logic assignments. Since such logic assignments will
increase the length of the number of paths associated with each fault entry in a data

. structure, we have decided to increase the preset limit from 2 — 5 in the previous
implefnentation to4-7in tiﬁs implementation. in:this way, no compromise is
made toward the test generation fér single faults. If a cover with a maximal control
set exists, at a;,ny level during back propagation, the G:ATPG syétem will find it.

* Otherwise, it will generate a pattern with implici_t single fault coverage at that level |

of assignment.

As a result of the above strategy, we would expect that the generated number of -
test patterns will be the same as in the previous implementation. The only difference

between the two sets of patterns is that in the new implementation each test pattern

118

Table 5.4. Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC 2 workstation
with the ISCAS’89 benchmark combinational logic circuits.

Circuits ‘ BFP Fault # Test

Dfault Rfault CPU | coverage | vectors
S27 32 0 0.1 100% 13
5208 215 0 3.3 100% 52
5298 . 308 0 35 |- 100% 79
5344 342 - 0 3.8 100% 71
5349 348 2 2.5 100% 62
5382 399 0 2.7 100% |. 63
5386 384 0 3.0 100% . 81
5400 410 6 3.3 100% 77
5420 430 0 4.0 100% 109
S444 460 14 39 | 100% 45
S510 564 0 5.1 100% 86
5526 554 1 4.9 100% 127
S641 467 0 4.0 100% -| 117
S713 543 38 6.1 100% | 177
S820 850 0 5.7 100% 181
5832 856 14 5.2 100% 169
5838 857 0 19.2 100% 202
5953 1079 0 8.2 100% 169
S1196 1242 0 20.8 100% 221
S51238 1276 69 27.9 100% 299
-] S§1423 1501 14 9.9 100% 161
51488 1487 0 10.7 100% 255
S1494 1494 12 7.3 100% . 241
S5378 4563 40 88.4 100% 444
S59234% 6475 452 224.1 100% 812
S132071 | 9662 151 176.5 100% 807
S158501 | 11336 380 341.6 100% 723
5359321 | 35110 3984 112.3 | 100% 394
5384171 | 31015 165 - 498.0 | 100% 2501
5385841 | 34798 1506 157.9 100% 2110

119

has a maximal control set which guarantees that the total set of tests has a maximal

multiple fault coverage.

We have applied the above implémenta,tion of the single phase GATPG system
using the implicit double fault control assignmeﬁts o.n the ISCAS’85 and ISCAS’89
benchrﬁarks. "The results are shown in Tables 5.3 and 5.4. It can be seen that all
the data are similar to those in the single phase GATPG implemenﬁatiori for single
faults, except for the running time. The run time has increased due to the increase
in the préset limit. The generated test set is guaranteed to have a maximal double

fault coverage.

5.9 Summary

In this chapter, an analysis based on the sensitization structure behavior in the
existence of multiple faults has been given. The purpose of .this anaiysis was to
identify the cc;nditions under which a set of multiple faults are self~masking. Having
done that, the ultimate goal is to use this information to guide the process of single
fault test generat.i‘on and/or in extending single fault test sets in order to achieve a

maximal multiple fault coverage. -

We have presented two different procedures for augmenting any single fault test
set. An experiment has been car‘ried out on the 74LS181 ALU ‘u’s:ing twelve single
fault test sets. It has been shown that different fault classes can be covered uéing any
of the above procedures. Although these procedures proved very efficient in achieving
a 100% double fault coverage, we believe that test augmentation and multiple fault
simulation can be totally avoided if the problem of maximizing the contn;l set of
each generated test in a single fault test generator is taken into account. The cur;'ent

approaches for single fault test generation can easily apply some unique control as-

120
signment during the search process. The fact that test generation is carried out on a

specific target fault makes it easier to apply such technique.

Finally, we have extended our GATPG algorithm to generate test pattérns.with
implicit maximal multiple fault cdveraée. We have achieved that by using unique
control logic assignments at the gate inputs during back propagation which guaran-
tees that each generated patfern will ha\}e a maximal control set, and hence, rcovers
a maximal I;umber of multiple faults. Qur system is the only known system that
generates test vectors with maximal multiple fault coverage for the general class of

combinational circuits.

CHAPTER 6

THE MODULAR TEST GENERATION éYSTEM

In previous c'}ia,pters, the framework and the implementation of a single phase
global test generation. system have been presented. It has been shown that the test
primitives generated using the GATPG system can be used as test patterns for the
module under test or for mapping information across the interfaces of a module. In
this chapter, both representations of the test primitives will be used in a modulaf test
gen:era,tion S};stem. We will first introduce the modular test generation problem, and
then present the modular test generation procedures. The different features of the
fnodular test system will be explored using an adequate circuit example. Differences
and similarities of the proposed modular test approach with other approaches will
be identified. A cost model for the modular test system will then be presented. The
purpose of the cost model is to predict the possible speedup in test generation for

modular test systems against low level testing.

6.1 Introduction .

A growiné class of integrated circuits is designed using libra,;‘ies of large subcircuit
modules, which are not readily decomposable into logic gates or whose gate-level
design is unavailable to the test engineer. These include circuits designed by silicon
.compilers, as well as standard cell systems. Most design systems also support hierar-

chical design methods employing both high (module or macro-based) and low (bit)

122

level circuit models. Experience in a variety of domains suggests that using hierarchy
can reduce design-complexity. There is increasing evidence that this is true for test

generation as well, but this particular problem is still poorly understood.

The purpose of modﬁlar test generation is to simplify 1‘;he test generation process
for large circuits. The importance of hierarchical or modular test generation has
been recognized as early as 1975 [6, 55, 35]. Some hierarchical techniques have been
proRosed for test generation and fault simulation to avoid explosive cost increases.
Krishnamurthy [31] and Calhoun et al. [11] proposed a new framework for hierar-
chical ATPG, Daseking et al. [15] developed a multilevel test generation technique
which exten§ively uses the 'circ'uit hierarchy in test generation, Murray and Hays [43]
developed module-level testing using stimulus-response pai'rs, and Sarfert et al. [47]
extended their gate-level SOCRATES to process high-level modules. Hyoung et al.
[41] incorporated dynamic hierarchical circuit reconfiguration, and heuristic mecha-
nism to directly perform propaga,tio:n, backtracing, ’and implication with high level

“functional models.

The other aspéct of hierarchical tést generation is its-cost prediction. A few at-
tempts have been made to predict the test generation cost [23, 40, 20, 17]. Goel
[23] estimates the cost of parallel and deductive fault simulation, and test generation
cost for gate-level circuits with no backtracking. Min and Rogers [40] generalize and
extend Goel’s model by incorpofating the cost of backtracking. Fisher et al. [20]
have significantly improved this‘ model, which can now be used to predict ATPG run
time, fault coverage, and test length. Hyou:ng et al. [41] developed a hierarchical cost

model that is a hierarchical extension of these previous models.

Although these techniques support different approaches to modular testing, they

“are not providing efficient solutions to the problem because they' all depend on a

123

common test generation framework that does not support all aspects of modular test
generation. For example, in [43], ‘the test generation method at the gate-level is
not analysed and it is assumed that each module retains its test primitive regardless
of the technique used in gen..erating them. ‘Although this approach seems adequate
in the context of modular test ‘geneIL'ation, it will have the effect of increasing the
complexity of the test procedures at the modular level. It is important to unify the |
way test generation techniques are used at any level of hierarchy, so that the test
enginéer can ;:oncentrate on the tests and their quality without having to switch
to diﬁerént heuristics at differenﬁ.levelé of hierarchy. In [41, 34], the modular ‘test
syst.;em's did not keep the test cost to a minimum beca,t'ise different heuristics are used

at the mc.>dula,r and gate levels of hierarchy.

6.1.1 The Modular Test Generation Approach

As mentioned in Chapter 3, a system is modular if it can be described as a collection
of modules with limited, well-defined interfaces. A test system is modular if it can
use the set of‘ test vectors which covers all the faults in the module and a description
of well-defined interfaces of modules to generate tests at the primary inputs of a
chip. Current ATPG systems uses the l;ierarchy of a circuit; in generating tests, i.e.,
the design rﬁust be completed before the test procedures are applied. This raises a
question about how truly hierarchical these systems are. We view hierarchical test
generation as'an interactive process in which tests are developed during the circuit
design development cycle. It is impera.tirve that such systems are more. likely to be
integrated in a circuit design CAD tools. Other conventional a,b-proaches may or may
not Be integrated in such tools because they deal with the test problem after designs

are completed.

124

Currently, if the design needs to be mediﬁed to improve the test quality, the test
engmeer will then have to deal with the completed des1gn as a smgle entity. This
increases the dlfﬁculty of debugging the design for testability problems Therefore,
these approaches are ineflicient not only because of their inability to apply truly
modular test techniques but also of the difﬁeulties they introduce in the test ‘quality'

improvement process.

In our modular test ‘generatiorr approach, we provide a truly modular/hierarchical
test generation framework. This framework allows the designer to examine the test
quality of the design at any level in the circuit hierarchy. Test eva,lua:tion and quality
improvement can be achieved at any level 01.° hierarchy, regardless of the details at
lower levels of hierarchy. This process is accomplished duringithe design cycle of the
product. This means tha,i; tests are generated for the designed portions qf the chip,
i.e., we do not require the completion of the chip design te apply our test procedures.
Once the top level of hierarchy is reached, then, the modular tests generated-at that ,
level will represent the chip tests. The impact of this_approachron CAD tools design
will be substantial because'it matches the currerlt practice in the desigrl cycle of VLSI
circuits. Test quality imp_rovement is also incremental, i.e., t'he designer can look at
the different aspects of his/her design (optimality, verification, testing, etc.) and

“explore different approaches to attain the design goals at one level in the hierarchy

without reference to lower or higher levels.

Current modular test gerlera,tion systems uses the circrlit hierarchy to create a
symbolic test path between a fault location and the primary outputs of the chip. A
symbolic test pa,thf can be established by putting the intermediate modules (rela,tive'
to the module under test) in a special mode, a so called transfer mode. In a transfer

mode, the data is transferred unchanged from a module’s inputs to its outputs. The

125

test paths can also be represented by functional relations that are calculated by the
circuit rules. In [43, 5, 48], these paths are found by propagation and justification
algorithms that are .mainly based on similar hegristics used at the gate—levél test
algorithms. Generally, it is a tedious job to derive the'nece:ssar,y transfer modes for
;.rbitra,ry_ modules in any of the proposed approaches. These difficulties arise because
the test interface at different levels of hierarchy are not de'ﬁned ﬁrbperly. The system
must first derive the transfer mode for each module and then use time consuming

procedures to generate chip tests from module’s tests.

In our app;'oach, at the gate-level, the GATPG' generates test primitives which.
represent not only the test patterns for a module but also represent the tfansfer mode
as well. We defined the interface between low and modular level test genération and .
used simple test pfocedures to generate the test primitives. The characterization of
the test primitives was mainly based on the type of heuristics that are commonly
used at the modular test level, i.e., information ma.ppir'lg.‘ We will reiterate hefe the
characterization of the test primitives generated at the gate-level using the GATPG

system:

o Each pattern in the test primitive represent a sensitization path that is genérated
using our GATPG algorithm. In other words, the test primitive includes the test

vectors for the module under test.

¢ Propagation and justification heuristics are symbolically represented within the
test primitive. This representation allows the modular heuristics to be applied
without reference to the internal circuitry of thg m;)dule.This representation is
complete, i.e., there is no need for any other procedures or data representation

~

during modular testing.

126

e The representation of symbolic paths is achieved using test procedures in our
GATPG system. Therefore, no additional functional heuristics are needed to

~ generate them.

This characterization shows that the test primitives retains functional informz_a,tion
for the module. Therefore, deriving the transfer modes for modules is no~t required in
the proposed modular test ‘g‘enera.tion system. Also, no gxtré, heuristics will be needed

'(sﬁph aé justification and backtracing) at the modular level. This will substantia,lly
improves the performance of our modular test generation system. Therefore, the
purpose of our modular test generation system is not the application of any new
procedures at the modular level but the assembly of test patterns from modules to

the chip’s primary inputs/outputs using the test primitive of each module.

6.1.2 System level test assembly

In order to describe the assembly of test patterns at the chip’s boundary, a system
approach must be determined first. In this approach, the modular test system will
determine Whicl;l module to select and to map (assemble) its test set to the prin.na.ry
inputs/outputs of the chip. Of course, module selection will depend on'the way

modular test generation is carried out.

Assume that the hierarchy of the circuit under test is a K-ary tree as shown in
Figure 6.1. The root of the tree is on the 0;, level and the leaves are on the K-
1 level. Iﬁ current hierarchical ATPG systems, every leaf node represents a gate-
with f; modeled faults to be covered by the test system. In the context of current
hierarchical ATPG systems, a path ffom.the fault location at one of the leaf nodes:

is created across the hierarchy of the circuit. This means that each time a cover for

127

a fault is generated, modular heuristics must be applied to hierarchically éenerate a
corresponding test at the chip’s primary inputs. As the number of faults increases,
these heuristics'will pose a serious time constraints on the system’s performance. The
major drawback of such approach is that since the gate-level abstraction is allowed
in the circu’it hierarchy, it is poséible that the system will generate tests for identical
modules whose unique description at the modular level are not exposed by the test
system during ga,te—lével test generation. Consequently, the test system will not be
able to use its full potential in reducing the test generationl time. This is artypical
consequence of dealing with the one fault at a time framework which is still adopted

in current hierarchical ATPG approaches.

Nos () ROOT/evelo

Ny, . N2 ‘ ' N1,3 N1,f1 ‘ levelt

1O 0O O 1 OO 0O [L0 O O L O 0O L level2

N1 Npo N2,16

Figure 6.1. Circuit hierarchy in modular test generation.

A final rémark can be made on the module selection technique in modular test
~ generation in current approaches. | Since the single target fault strategy is used in
these approaches, and modular heuristics are separated from gate-level heuristics,
it can be seen that such systems may perform hierarchical test gene}'ation on any

module in the circuit. The only requirement is to perform modular test generation

128

for all the modules in a circuit, i.e., to apply the modular heuristics to all the leaf
nodes in the hierarchy. Consequently, the module selection in these approaches can

be random.

In our approach, on the other hand, all ﬁc;des in the circuit hierarchy represent
modules, including the leaf nodes. All the information related to the internal circuii:ry
of the leaf modules are hidden behind their interfaces and is represented only by the
test primitives generated by the GATPG. Now, consider the problem of assembling the
test primitive“of one of the leaf node modules at the circuit’s primary inputs/outputs.
Our modular test system starts with all the leaf node modules having their test
primitives generé,ted. The system (unlike other approaches) does not retain any
other information about the functionality of modules at the upper levels of hierarchy.
Therefore,~ it is not possible for our modular test:system to create péths similar to
the one created by other test systems. Instead, the system generateés test primitives
at one hierarchy level using tﬁe test primitives of the son level in the hierarchy. Such
straﬁegy is highly desirable because it ‘matches the VLSI design practice in today’s
CAD tools. For example, consider the problem of designing an ASIC with three levels
.of hierarchy as shown in Figure 6.2. The ASIC design consists of four major modules;
each module is subsequently divided into a number of smaller modules. The designer
will develop each of the leaf modules sepa,lia,tely and assembles them intio the four
Irllajor modules, and then interconnects thé large modules- to complete the design..
Similarly, our modular test sy.stem takes the test primitives of the leaf modules and
generates test primitives for the larger modules, and then generates test primitives:

. for the ASIC chip using the test primitives of the four major modules in the chip.

Since our modular test system works totally at the modular level (no gate-level

abstraction), it is easy to identify similar modules in the hierarch.y. For example, if the

129

N1,1 . N2 ‘ Nia . N, 4 .

U 0O oogood O (] O O O

0,1

1.4

Figure 6.2. The modular decomposition of large ASICs in the design stage.

130

two shaded modules in Figure 6.2 are identical, thé modular test system will allow the
test primitive of one of these modules to be generated (using th;a GATPG algorithm)
and ther-l copies it to th;a ;)ther module. S.imilariy, if at any level in the hierarchy, two
modules are identical, the assembled tests for one module will be éopied to the other
one. This framework not only simplifies the test generation process but also saves a

significant amount of time, both in test genération at low level and test assembly at

the modular level.

There is one more issue that has to be resolved before we can present the procedu‘res
us.ed in the assembly of tests hierarchically. This issue relates to the strategy of
module selection for test assembly in oﬁr modular test generati;m system. Let us
classify; the module selection process as random and deterministic. Ra,n‘dom selection
means that the modular test system will assemble tests starting at any module in
a circuit. Deterministic selection dictates that a certain order of modules must be
followed during the test assembly process in order to completely generate chip tests
without failure. As explained earlier, current hierarchical ATPG systems performs
on the gate level of aEstraction, and create symbolic test paths using a precomputed
functional information (transfer mode) to hier‘a,rchically generaté the test for a .ta,rget
fault. The term target fault here implies that any fault can be dealt with in a siﬁilar
' fashion. Therefore, random selection of modules (gates, in this case) can be appliéd

to current hierarchical ATPG systems.

In the proposed modular test‘ system, test assembly can only be performed between

. two consecutive levels of hierarchy. Tl.ié""i‘ea,son is that it is assumed that the full chip
design is not availa,ble. at the time of test asse;'nbly. The test assembly process is
‘ incremenﬁal and only proceeds with the creation of a new hierarchy level. Therefore,

random selection of modules cannot be applied in our modular test approach. This

131

imblies that. the target fa.l;lt strategy at the modular level cannot be adopted as
well. Therefofe, the global test strategy that has been used in our low-level GATPG
system is also used in the modular test al;proach. Global test generation'was achiéved |
at the gate-level of abstraction by iteratively generating tests for each output cone
in a circuit. Similarly, global test generation at the modular level can be achieved
at the 4s, level of hierarchy by selecting a module at the iy + 1 level of hiera,rchy.
- that is attached to a primary output of the parent mociule. Then, the test asserﬁbly;
| procedure is. ap‘plied on the test ‘primiti;/es of the éelecte_d module to generate tests
for the parent module. This process continues until all tests for modules at some
level in the hierarchy are assembled. When the the hiera'rchy level reaches the root
level, the chip- tests will be generated and test assembly is completed. This strategy

is explained in more details in the next section.

6.2 = The Test Assembly Procedures

As méntioned earlier, the purpose of our modular test system is to assemble tests
ffom the leaf moduleg to the inputs/outputs of the chip. We have shown that our
modular tesi; approach supports global test generation at the modular level. The
test assembly procedures for the modular test system are shown in Figui‘es 6.3 and
6.4. In Figure 6.3, the System level assembly() procedure shows how the test system
perform at each level in the hierarchy. This procgedure‘ensures that similar modules
are not processed more than one time and allows for the tests of one module to be

copied to a similar module.

The Module.level assembly() procedure organizes the module selection process
and the assembly of tests at the boundary of a module. To illustrate this point,

consider the modular representation shown in Figure 6.5.. In this figure, the parent

Procedure System_level_assembly() {
hierarchy_level=Fk-2 (level above leaf nodes);-
while (hierarchy level != root level);
{ .
Current_module.list1 is empty;
i=0; . _
while module(j) exists at the current hierarchy_ level;

if module(j) is in the Current_module list;
copy test_primitive of similar module to module(j);
else ' '

{

Assemble_tests;

add module(j) to Current_module list1;
! |
J=3+1 : ‘
} :

hierarchy_level=hierarchy_level-1;

Figure 6.3. The system-level test assembly procedure.

132

133

Procedure Module_level_assembly() {
for each primary output' PO, in module m(j) at level s;
{
find a module m(k) at level i+1 thet is connected to PO,;
~ Current_modulelist2 = m(k) ;
Current_assembled_tests = test primitive of PO, in m(k)
while current_module_list2 is not empty;

{

for each test pattern in Current_assembled_tests;
{ |
back_propagate patterns across modules;
if back_propagation successful;
add mapped pattern to a new.test_primitive;
else continue with other pattern;
} ' -
Current_assembled_tests = new_test_primitive;
Update Current_module_list2;

}

Figure 6.4. Test assembly procedure at the module level.

134

module m(j) is at level 7 of hierarchy and has four primary outputs. At the i;,+1 level
of hierarchy, there exists five sub-modules. The Module_level _assembly() procedure
selects a primary output for the parent module m(j), for instance, PO(0). It then
searches for a module at the i;,+1 level of hierarchy which is connected to that

primary output. In this case, module m(k) will be selected.

m(j)/level i

Figure 6.5. An example showing module selection in the test assembly procedures.

The test assembly will be performed on the test primitive of the output cone PO(0)
for m(k). The test assembly starts by the back propagation of the test primitive of
output cone PO(0) across the two modules m(p) and m(q). The test primitives of
these two modules will be used as the mapping (functional) information which maps
output logic values to input logic values. For example, if node a (connected to the
output of module m(p)) in the figure carries a D fault logic value, while node b
(connected to the output of module m(q)) carries a logic one, then, the test primitive
of module m(p) will be cube-intersected with the true state primitive of node b across
module m(q). The true (false) state primitive represent all the entries in the test

primitive of a module which generates an output logic of one (zero) for the fault—

135

free response of the circuit. - True and false state primitives represent the functional

behavior of a module.

Cube in_tersection is necessary during test assembly' because different modules ma;y
share some inputs, and therefére conflict 6f assignments might occur. For e#ample,
node A in Figure 6.5 is a; co.r_nmon input to the two modules m(p) and m(q). The
result of the cube intersection of the tvx.ro primitives at node A will determine if the
mapping of some pattern is succesgful or not. Once all sucqe;sful mapping occur, the
procedure starts another cycle to map the assembled tests at the inpt“lts of modules
m(p) and m(g) to the inputs of m(5). The shaded modules and the bold lines in the

figure are the one involved in the back propagation of the test primitive of module

m(k).

6.2.1 An Example

To probe more on the back propagation of test pa.tte;né during the test assembly;
consider the circuit example shown in Figure 6.6. This figure shows a hierarchical
description of a ‘3—to—é decoder. There are three levels of hiera,fchy in Figure 6.6,
- Wit,h all the leaf nodes representing. 1-to-2 aecoders. Therefore, the GATPG can be
applied to oniy one of these modules. The test primitive for the 1—to—2..decoder is
shown in Figure 6.7. A copy of this test primitive will be loaded into each one of
the leaf node.module_s. At level one in the hierarchy, the left most node is 1-to-2 |
decoder. The System_level_a;ssembly() procedure will copy the test primitive of a
1-to-2 decoder to that node. The two other nodes represent 2-to-4 decoders, hence,
the System level_assembly() procedure will assemble tests for one of th.em and copies

‘ these tests to the-other node.

136

1-to-2 decoder 2-to-4 decoder

out0
: e O UL 1
M1 f—out2

_J - f——out3

enable 1 M3
selectO

2to-4 decoder @ 3-to-8 decoder

out4 2-to-4 decoder
——o 1))

M2 out6 1 1-to-2 decoder

out7

select1

select?2

1-to-2 decoder 1-to-2 decoder
\ out0
enable ma d | m "
select0 S ou
1-t0-2 decoder
out?2
' m2
select1 out3
1-to-2 decoder
enable outO
m
sele_ct - outt

Figure 6.6. Hierarchical description of a 3-to-8 decoder circuit.

o137

Test primitive (fault mapping)

enable select out0 outt

enable 1 D D O
out0

select ' - D 1 b 0

Cone(1)

enable select out0 outl
outt

Do— , 1 D D D

‘ : D 0 0 D

True state primitive . False state primitive

enable select out0 outi

1“

oy
[N o]

(=]
o
o
[o N e

Figﬁre 6.7. The circuit diagram and the test primitive for a 1-to-2 decoder.

138

The Module level_assembly() précedure will assemble tests at level one of hier-
archy for the 2-to—4 decoder using the test primitives of the three 1-to-2 decoders
at level two of hierarchy as shown in Figure 6.6; It start.s by back propagating the
test primitive of the output cone at out0. The test primitive of this tone includes

two input fault patterns (1, D) and (D, 1) assigned to nodes ¢ and d of module m1;

shown in Figure 6.6. The assembly of the first pattern can be achieved by the bac;k 1

propagation of the logic value ”1” across module m3. Since node c s a primary input

(selectl) of the parent module, it needs not to propagate any further. In order to

back propagate the logic value one across module m3, the Module_level assembly()

ISrocedure substitutes each D fault logic value in the test primitive with logic value
one in order to create the true state primitive of module m3 at the output cone of node
d. The true and false state primitives of module m3 (a l—t;)—2 decoder) is also shown
in Figure 6.7. They represent the.mapping of control logic values across a module.
_Since all test primitives were generated with the primary output assiéﬁed a D fault

logic value, then a true state primitive, for instance, is generated by substituting all

D values in the test primitive with ”i”, D value with ”0”, T'D value with ” 1"’, and.

FD with 0. The true state primitive for node d across the modul_e m3 has the entry
(1,, 1) which correspond to the values at the signal lines enable and select0 for the
2-to—4 decoder shown in Figure 66 The cube intersection step is not required in thisf
case because all input lines involved in the test assembly a,lle disjoint. The aséembled
pattern from this process will then be (1, 1, D), for the signal lines enable, select0,

and selectl, respectively.

In order to back propagate the other pattern in the test primitive of module ml,
" the test primitive of module m3 at the output cone of node d will map the D fault

logic value at node d. Therefore, two more patterns, (1, D, 1) and (D, 1, 1), will be

139

Cone(0)
enable select0 selectt out0 out1 out2 out3
1 1 D D D 0o 0
1 D 1 D D D 0
D 1 1 D 0 0 0
Cone(1)
1. D D D o0 o
1 D 0 0 D 0 D
D 1 0 0 D 0 0
Cone(2)
1 0 D 0o 0 D D
1 D 1 D 0 D 0
D 0 1 0 0 D 0
Cone(3)
1 0 D 0 0 D D
1 D 0 0 D o D
D 0 0 0 0 0 D

Figure 6.8. The test primitive for the 2-to-4 decoder.

140

assembled. The three assembled tests represent the test- primitive for the ﬁrst'output
cone for the parent module. This process is repeated for. all other .primary outputs
in the parent module. The total test sets will represent:the-ﬁn:gl test primitive of the
2-to-4 decoder. The test primitive for the 2-to-4 decoder is showﬁ 1n Figure‘6.8.
- This test pﬁmitive will be copied to the other 2-to-4 decoder module at hierarchy
level one. Using the test primitives for modules at level one, the Test_assembly()
procedure will assemble tests for thel 3—£o—8 decoder in a similar fashion to the one

described above.

~ 1-to-2decoder 1-to-2 decoder

a —out0
enable 3 ou

m1i

select ——y] m3 = outl

1-to0-2 decoder

out2
m2

’ _out3

select= b Nc (cube intérsec_:tion)
abe enable select

11D 1 D
1D1 1 TD
D11 D 1

Figure 6.9. A modified circuit diagram to illustrate the cube intersection process.

In ofder to illustrate the case where cube intersection of logic values on common
nodes. is applied, let us modify the structure of the 2—to—4- decoder circuit to the
one shown in Figure 6.9. In this figure, nodes b and ¢ are connected together. The
corresponding modification on the assembled tests for the first primary output PO(0)
is also shown in figure. The second and third entries in each assembled test £nust be
cube intersected before they are assigned to inpufs of the parent module. For example,

the test pattern (1, 1, D) will be modified to (1, I1ND) = (1, TD). This process is

141

similar to the compare () procedure in the GATPG algorithm.

6.2.2 Test Length

It is important to note that the.numbel;' of assembled patterns at the inputs of each
module can increase dramatically as we get closer to the root of the hierarchy tree. In
orde’r to solve this problefn (without degrading the test quality), a similar strategy to
the one applied to the GATPG system is used during the test assembly procedires.
The number of a.sse.mbl‘ed tests across a module from the back propagation of a single
test pattern at the’ output of a module is limited to a preset numbér.‘ In order to
ensure the vtest quality, this limit is applied only at high levels of hierarchy where the
circuit complexity (interconnections) is reduced and the test length is more likely to -
explode. This level of hierarchy is left for the designer to decide, but it will always be.
in the vicinity of the Register Transfer Level (RTL) where the different major design-
components are easily identified. This approach also implies that the test assembly
procedures will generate a minimal test length if the chip at High levels of hierarchy

are partitioned to large number of modules.

In general, it can be seen that the test assembly procedur;as use the exact same
heuristics in the G}‘XTPG system. Therefore, we do not need any other heuristics to
completely generate tests hieraréhically. The only difference between the mo.dular
test procedures and the lov;/ level test procedures is that they are perfofmed at a
modular level, hence, speed up is guaranteed. In order to estimate the benefits of
modular test generation as opposed to gate-level test generafion, a cost model for our

modular test procedures is presented in the next section.

wr

142

6.3 Modular Test Cost

"This section explores the cost analysis of our modular test generation system. The
total cost of test generation equals the cost of low level test generation and the cost
of test assembly in the modular test system. In thp low level test generation, the

' GATPG system does not involve backtracing, justification, or any decision making
procedures. Therefore, the cost model presented by Goel [23] for gate-level single
fa‘ult test generation can be apl;lied to our approach. Hénce, the low level cost model

(C)) for the GATPG algorithm can be simply éxpressed as:

Ci=uf

where, f is the total number of faults for which the GATPG algorithm.is applied, and
 is the average cost of teét generation for a fault in the circuit. Since the GATPG °
algorithm is single phase,. f represent all the modeled faults in a circuit. Also, it
is reasonable to consider that each fault takes an equal amount of time by the test
generation algorithm to be covered since 'the ;G'ATPG generates tests globally, i.e.,
without reference to the faults it sensitizes. In other words, an easy or difficult to

detect fault can be treated equally for the external observer.

In cg,lculating the cost of the tesf: assembly procedures, consider the circuit hier-
archy shown in Figure 6.10. Modules at the leaf nodes are in alphabetic format to
show modules that are identical. In order to calculate the modular test generation
cost, we start at first level in the hierarchy. The test assembly cost at this level Cn(1)

can be expressed as:
Ch(1)= Ch(S1,0) + C(S14) + Cu(512) + Ci(S1s)

where, Cp(S),;) represents the cost of applying the test assembly procedures to mod-

ules in the leaf nodes to generate tests for the parent modules S| ;. This cost can be

143

expressed as:

Ch(S10) = Ch(A+ B + C)
Ch(S11) = Cu(A+ D + E)
Cu(S12) = Co(C+F)

Cr(S13) = Ch(A+ B+ C)

Since identical modules are recognized by the modular test generation system, the
" cost of test assembly at the first level of hierarchy is contributed to the first three
equations while no cost will be attributed to the module Sy 3 (since Si and 33 are

identical as shown in Figure 6.10).

A B C D A E C FA B C

Figure 6.10. A circuit hierarchy for explaining the cost model.

The cost of test assembly at level 7 in the hierarchy can now be expressed as:
Ca(i) = TR Cy(Sain)

where, N;y; is the number of modules at level ¢ + 1 in the hierarchy and M;y, is
the number of modules that have identical description and are not processed by the
test assembly procedures. This equation can be expanded to cover the total cost of

modular test generation for all the levels in the hierarchy as follows:

144
Ch(t) = S0y ikt ™Mitt (8, 111)

where, k is the number of hierarchy levels. The summation starts at k-2 because it

represents the hierarchy level right above the leaf nodes.

To simplify the cost model, assume that the hierarchy of tile circuit is a complete
m-ary tree (every non leaf node has m children). Also, it is a reasonable assumption
that all modules in the circuit hié:llarchy can be evaluated for test assembly using their
true and false state primitives in constant time. The highest cost occurs when all the
modules at different levels of hierarchy are not identical. With these assumptions, the
term 320, Nit1=Mit1 i)l approach and always be less ‘th.an m*~1. Combining the

assumptions and the worst case condition will result in the foll;)wing test cost model:
Ch = mF1 x Sm

where, k is the number of levels in the hierarchy, and Sp, is the average module test
| ass_embiy evaluation cost. Let G bé the number of primitive gates in the circuit. The
number of leaf nodes in the circuit hierarchy can be expressed as mF=1/A, where
A is a constant representing the average number of logic gateé in each module!.
Therefore, G=A m*-1, Siﬁiilarly, the average cost of evaluating a module (S,,) can
be expressed in terms of the number of gates in the circuit. We étart. by recognizing
that the test assembly cost ac:ross a module depends on the number of test patterns
in the test primitive of that module. Therefore, assuminé that there is a fixed number
of generated test patterns for each gate in a module, the number of these tests will be
proportional to g (the number of gates in a module). The test assembly cost increases
at levels of hierarchy near to the root node. Thérefore, the test assembly cost will be

somewhere between the two cases:

!Consider the case where all the leaf nodes representing logic gates (A = 1). The number of leaf
nodes will then equal the number of gates G in the circuit, hence, G = m¥*-1,

145 °

Case 1: considering the case of S, being proportional to G/m which represents the
gate count per module at the highest level for test assembly in the hierarchy. In this

case, the total cost.can be expressed as:
Cr=G®*s,/m

where, sj, is the cost of assembling a gate test at the boundary of a module hierarchi-
cally. Note that the test cost is proportional to G? which represents the lower bound

on generating tests at the gate-level [23].

Case 2: the test assembly cost can be reduced if m is large. In such case, S’,,; is being

proportional to log,, G [41]. Therefore, the test assembly cost can be expressed as:
Ch = G lognm G s4.

where s, accumulate all the constants and expresses the average evaluation cost.
for any gate hierarchically, and the other term represents the effect of different hier-

archical representation and the gate count on the cost of modular test generation.

The actual performance of the modular test generation system is between the
above two cases. In order to express the speedup factor of modular test generation
over gate level test generation, the cost of gate level test generation can be expressed
"as C, = s, G?, where s, is the average cost of generating a test for a fault at gate
level of description. This model represents the lower bound (best performance) for

the test generation at the gate level [23]. The speedup factor can be expressed as:
Case 1: Speedup = C,/C), = m s4/54.
Case 2: Speedup = C,;/Ch = sy G/sp, log, G.

In Case 1, the speed up is constant and depends primarily on the way the chip is

partitioned. The advantage of not using time consuming heuristics at the modular

- 146

level as opposed to those used at the gate level appears in the ratio s;/sp. We
believe that this ratio contributes significantly to the speedup factor. For instance,
considering s, = 10 s; and m = 10, a constant speedup factor of 100 can easily be

attained.

. log , (speedup)

log (# Gates)

1 2 3 4 .. 5 6

_Figure 6.11. A graph showing the speedup factor for modular test generation over
gate level test generation. :

The speeciup factor in case 2 is similar to Hyoung’s speedup ratio [41] for hier-
archical test generation. Figure 6.11 shows the speedup ratio of thé modular test
generation procedures over gate level test procedures. It is assumed that s, = 10
si and m = 10 for the graph. The speedup is estimated as 33.3 at 10° gates, 250
at 104 gates, and 2000 at 10° gates. These speedup factors are much higher than
those reported in [41]. The graph also suggests that as the number of gates increases, -
modular test generation clearly ;shows a substantial cost reduction in test generation.
The high cost reduction is due to the efficient test generation strategies at the low
level of test generation. This strategy has lead to the elimination of the complicated _

test heuristics at the modular test generation level. Also contributed to the large

147

speedup factor is the modular test generation approach which uses the full potential

of the hierarchical representation of the circuit.

6.4 Summary

We ha,vg presenfed in this chapter the first known truly modular test generation
system.)Our system allows for the test control activities to be hierarchical. This
feature has not been presented before in the literature. We have used this feature
to assemble tests hierarchically. The test primitives at one hierarchy level are used
to genera,té. tests for the upper. level in the hierarchy. We }}ave shown that such
framework allows our system to be integrated efficiently in today’s CADA design tools. .

We have also presented a new cost model based on our test generation framework.

The speed up factors are shown to be substantial.

CHAPTER 7

TEST STRATEGIES IN MODULAR TEST GENERATION
ENVIRONMENT .

The impact of our modular test generation procedures on the integration of test

algorithms into CAD design tools has been pointed out in the Chapter 6. It has .

been shown that our modular test a,pproéch provides an efficient framework for such

- integration, where all design activities can now be performed hierarchically. In this

chapter, we will explore the impact of the modular test generation system on the test -

stra:tegy selection at the chip level. Test strategy selection is the process of identifying
the most suitable approach for the test pattern generation and their application to
the chip. Accordingly, the test application cost and the cost of adding hardware to

the chip for improving testability is determined during test strategy selection.

In this chapter, different test strategies will be explored and analyzed in the context
of the modular test generation system presented in Chapter 6. Thfa impact of each
strategy on the cost of test application and added hardware will be discussed. Finally,
we are proposing a new framework for the éutbmation of t;he test strategy selection

with the objective of minimizing the chip test cost.

7.1 High level strategy selection

It has been demonstrated that the chip functionality.plays an important role in the

test strategy selection early in the design stage. Figure 7.1 shows one classification of

¢

149

~N

test strategy selection at high level of circuit description. We classify. the test strategy

into full chip and macro testing strategies.

In full chip testing, the designer looks at the chip as a single testing Eentity. The
test activities should be carried out until the root of the hierarchy tree is reached,
as shown in Figure 7.1. This approach is very useful when applied to chips such as

multipliers, ALUs, and other designs that do not include varieties of design styles.

In macro testing, the designer faces the problem of dealing with heterogeﬁeous
styles of design where different m.a,cros of cc'>rrip1etely different functionality exist on
the éhip. For example, a heterogeneous design may include a Finite State Machine
(FSM), a Progrzﬁnmable Loéic Array (PLA) structure, a RAM, and an ALU on
the same chip as shown in Figure 7.1. Each oﬁe of these macros has its own test .
generation technique, fault models, and its unique att.ributes which guarantee efficient
test generation and application. Therefore, it is reasonable to revie\.iv the test activities
at some level of the 'chip hierarchy where the unique test repregentation of each macro
can be explored. The task of the test engineer is to find a way to deal with each of
these macros separately and to be able to do that from the accessible nodes in the
chip, i.é., the primary inputs and outputs and a small number of dedicated test pins.
We will discuss these different strategies in the context of our modular test generation
system and then present a new framework aimed at minimizing the total test cost of

the chip.

7.1.1 Full Chip Testing

In full chip testing, test activities halt at the root node of the circuit hierarchy.

The circuit design can be combinational or sequential: For combinational circuits,

Combinational

Full Chip Testing < Scan Design
Sequential < .

-
1
1
1
1
1
!
l B
1
1
i
1
)
)
1
1
1
i
: No Scan -

b oom o ot v v e me mm e e Gm Gm en e S mm am me e e

Current Approach

Macro Testing

Proposed Approach

Figure 7.1. A classification of high level test strategies.

150

131

test generation can be achieved through the direct application of single fault test
generation a,lgérithm to the chip circuitry. On the other hand, our modular test

generation procedures can be applied to save test time.

If the chip und;ar test is a synchronous sequential, e.g., contains storage elements
such as flip flops, there dre two options a..s far as the test generation process is con-
cerned. First, the designer applies a sequential test generation algorithm [36, 9, 37]
to cover faults in the circuit. Sequential test generators are not popular because they
take an excessive amount of time to generate tests for a circuit. Also, a fault in a
sequential circuit requires a sequence of test vectors to be detected as opposed to
the oné vector for eé,ch fa,ulth; in combinational circuits. This might result in a huge
number of test vectors for even a moderate size circuit. Sequential test generation

algorithms are only applied to circuits with a small number of flip flops (20 or less).

The other option which is the more likely to be taken by the des\igner in gener-
ating tests for sequential circuits is to apply a design for testa,’bility technique which
simplifies the test activities. The most well known technique is the scan path design
[57]. In écan path design, the circuit is forced into a combinational mode of operation
-during the testing procedure. fI‘hereforé; during test generation, the circuit may be
conéidered combinational and our modular test generation system can be applied to

the circuit as explained in the Chapter 6.

Scan path design can be explained using the circuits shown in Figure 7.2 and
‘Figure 73 Figure 7.2 shows the gene;'a,l model for sequential circuits with only three
flip flops in the circuit. The output from the flip flops repréesent the present state lines
while the inputs to the flip flops represent the next state lines. In order to force the
circﬁit into a combinational behavior, each flip flop is modiﬁed as shown in Figure

7.3. A flip flop can now accepts input from two different sources through the input

152

multiplexer. In the functional mode (T = 0), the flip flop inputs are connected to the

“circuit. In the scan mode (T = 1), the output of a flip flop is connected to the input

of another flip flop, creating a shift register that can be scanned in and out from an

external pin on the chip.

X1

Combinational Logic

4

D

>ck

T

A 4

]

\ 4

D

Figure 7.2. A general model for sequential circuits.

sck

P o

]

Z1
z2

Zm

In the context of scan path designs, the test pdtterns generated from our modular

test generation system can be applied to the circuit as follows: .

o Setting T' = 1 (Scan mode).

o Shifting the test pattern y; values into the flip flops.

¢ Setting the corresponding test values on the z; inputs.

o Setting T = 0 and, after a sufficient time for the combinational logic to settle,

‘checking the output Z; values.

¢ Applying a clock éignal to CK.

o Setting T = 1 and shifting out the flip flop contents via Znm.

153

d0 — b o) — do- Qt+—
d1 ——— , d1
T FF
T .
> CK —> CK
Modified Flip Flop Symbol
X1 Z1
X2 22
Combinational Logic
Xn
r A Y 3
yl Yii y2 Y2[¥3 Y3 |
> > Bl y Y
—p] > “
—-__>ck sck ?ck

Figure 7.3. A sequential circuit modified for scan path design technique.

154

The logic values on the lines y; and X; are generated by the modular test generation
system. The shifted output values from the flip flops represent the circuit response to
the input pattern. This output can be compared to the correct respoﬁse to determine

if the circuit is faulty or.not.

Scan path techniques pro‘ved to be very helpful in testing compléx sequential cir-
cuits.- The main drav‘./bgclzk of this approach is the extra hardware added to the design
of the ﬂip flops. This hardware can be as high as 65% of the original design of the
flip flop. Also, the signal going through the flip flop suffers an extra delay 'due to the
existence of the multiplexer circuii;ry. There aré other a.ppr.oaches for the modification
of the circuit design to achieve the ;can.path modes of operation. All of them suffer
from the addition of hardware into the original design. As the number of flip flops _
in thé circuit increases, the number of clock cycles required to scan in and out the
ﬂip ﬂo'pr logic values increases. This poses a serious problem on the effectiveness of
scan path design as the number of test patterns increases with the advancement in the
VLSI technoloéy. In order to ease this problem, macro testing has been proposed as a
way of partitioning large designs into smaller macros and ';est each macro separately.

Macro testing will be discussed in the next section.

7.1.2 Macro Testing

Macro testing is the process of breaking the chip design into separate macros (or
modules) and'applying test patterns to each macro independently. Unlike the full
chip testing approach, 'macro testing is applied to the chip at any hierarchy level
. except the root level.. This approach is particularly useful with heterogeneous circuit
designs such as ASICs where different design styles exist on thé chip. It is also helpful

when the test quality of the chip is degraded due to the lack of controllability and

155 -

observability of the internal nodes in a chip, which makes it very difficult to test the

internal structure of the circuit under test.

' 7.1.2.1 The Current Approach in Macro Testing

The best known approach for macro testing was presented in [18]. This approach
is considered a p-ure macro test technique because it adds hardvs;a;re to the design to
make each macro completely controllablfe and observable from the input/output pins
-of the chip'. Each macro uses its ov;/n design for testing technique, while the purpose of
the added hardware is to create paths between the chip pins and the inputs/outputs

of each macro. In this way, test generation, test application, simulation, and all other

test activities are applied to one macro rather than to the full chip.

In pure macro testing, test interface elements (TIEs) are inserted between the
outputs of one macro and the inputs of next macro. A blo;:k diagram of a TIE
" element and its typical use in macro testing is shown in Figure 7.4. Each TIE has
three modes of operation, namely, a transparent mode (Y = F), collect mode (Y =
I after one clock cycle) which allows the TIE element to collect an output value
from a macro, and a shift mode in wh‘i:ch the TIE elements are connected serially in a
- shift register fashion. It has been shown that the addition of the TIE elements would
increase the design area by about 9% over the original design. The performance of the
chip is not affected because the TIE elements do not introduce any significant delays

‘to the signals in the transparent mode. A 12.4% increase in the test application tirne

was also reported [18].

These results show that macro testing can be very helpful in testing large circuits
without excessive hardware overhead. However, the real problem which faces the IC

designer today is not only in the cost of adding theTIE;, elements to the chip but also

156

Chip Boundary
[T ——————— e e e ————
i |
1 . |
H " |
1Control { X = . Macro 2 :i
|
" Test >{Macro 1 :E 1
F Interface Y | i !
Element 1 1
o Y o
| |
1 I
| {
i |
1 |
N l I .

& = Test interface element

Figure 7.4. A test interface element and its application in macro testing.

to the design for test (DFT) techniques embedded in each macro. Therefore, the real
testing cost and performance degradation is largely contributed to the cost of DFT '
techniqu'es, such as scan‘pa,th designs, in each macro. A.s‘has been mentioned before,
the cost of building a scannable flip flop can go as high as 65% in 5rea penalty, and the
path delay introduced using such technique can sometimes be unaccepta,ble., We close
this argument with two different views on scan pa,th techniques from a discussion on

test economics published in [46):

“As the chip becomes larger, when you double the ASIC technology, you get double
the 'numbéar of flip flops and double the number of scan loads. So double-sized ASICs
need four-sized test capability. Meanw;zile, the RAM technology has only advanced by
a factor of 2. So, we are faced with a situaz&rion where the requirements for scan test
are outstripping the tester capability.”, Richard Illman, ICL.

“‘A lot of people think that area overhead is going tozcost them sovrieti;jng, so they

won’t consider it even though the benefits of using DFT are still going to save them

much more money.”, Tony Ambler, Brunel University. |

157

7.1.2.2 A New Framework for Macro Testing

In pure macro testing, all macros are treated equally, in'the sense that if one mécro
is easily controllable and observable from the chip’s boundary, it still has to be tested
independently through the TIE elements. Also, current pure macro testing techniques
cannot be applied at @ifferent Ieveis of hierarchy. This;will necessitate that the test
control activities must be hierarchical. Our modular test generation system is the :only
known system that provides such control. Therefore, the test control activities in our
modular test generation procedure can provide a suitabie macro testing fraﬁework
" using not only software procedures but also the additiorll of ha,rdwa,'re’ for improved
testability. We will refer to oﬁr macro testing approach as a mized macro testing. It
- is mixed because‘macros will be'teéted through software procedures and hardware

addition. Accordingly, the proposed approach can be divided into two steps, namely,
soft testiﬁg and hard testing. It will'be shown lg,ter in- this section that each one of
these two steps can be used as a stand alone test étrategy. Efficient test stra,teg‘y with
high test quality and minimal hardware addition can be achieved if the two strategies

are mixed together by the designer.
7.1.2.3 Soft Testing

In soft testing, the modular test generation sysi}em presented in the previous chap-
ter will be a,pplied to generate tests for the entire chip using the test primitive of each
macro. In order to achieve this goal, each macro must be forced to have a combina-
tional behavior, i.e., all flip flops in the design should be disconnected during the test
application time. This requirement willtbe provided through the hard testing step.
This process is similar to the full chip ’testing approach discussed in the previous

section.

158

It is also assumed that each macro has ii:s.test set in the same format as the
test primitives generated by our modular test generation system. Accordingly, the -
modular test generation procedures can be applied up to the chip level of hierarchy.
The assembled tests from these procedures can then be simulated to determine the
fault éoverage for the chip. If the fault coverage is satisfactory, the designer may stop

the test activities at this point. .

If the assembled tests at tl'le chip level do not provide an adequate fault coverage,
the designer should perform preprocessing analysis befor_e going on to the hard testing
step in WHich hardware additions are necessary. The purpose of this analysis is to
determine which macros have poor test quality. These macros will be the target for
hardware addition in the hard test step. This is similar to the analysis at any other
level in the circuit hierarchy during the.application of our modular test generation
procedure. It simply generates an estimate on the number of covered Ifaults in each
macro. Once a macro with poor test quality is identified, the designer should look at
alternate ways to design that macro to improve its test qua,lit}.l at the current level
in the circuit hiera,rch;y. If this is not possible, the last resort would be to apply the
hard test step on that macro by adding extra hardware to increase its test quality. It
should be noted that our test a,pp'roach can perform this process hierarchically, i.e.,
the test quality analysis and design modification are performed at one level in the

hierarchy without reference to the underlying levels in the hierarchy.

7.1.2.4 Hard Testing

Hard testing is performed if one of the following conditions arises.

‘o The soft testing step cannot be performed because of the lack of test primitives

for some of the rhodules on the chip.

159

o The soft testing step is performed but did not provide adequate test quality for
some of the macros. In order to reduce the cost of adding hardware to the design,

only these macros will be targeted by the hard test step.

In the first case, the chip test assembly through'modular test procedures will not
‘be possible because not all the macros retain test primitives. Accordingly, our test
‘ ge'netration system can be used in generating tests for some macros on the chip. Thé
~ designer can choose other test solutions for the remaining macros. Then, a pure
macro test approach such as the one reported in [18] can be used to test each macro

'independently. o

In the second case, soft testing is applied to the macros on the chip in the same
manner described in the Chgpter 6. If the fault coverage after test assembly is not
sufficient, then, the macro test approach éhould be applied to a subset of macros
on i:he chip. These macros are the one‘ that include most of the uncovered faults
on the chip. It must be noted that, at this staég, the fault coverage obtained by
applying ffhe modular test generation system will equal that of é,pplying single fault
test generation at the gate level of the chip. Also, the fault CO\'/erage is typically over
90% and only a number of faults on the order of tens need to be covered by the macro
testing approach. It would then be a waste in silicon area if we apply macro testing
at a high level of ébstra.ction to cover a number of localiged faults in a large macro.
Instead, we propose a diﬂ'e,rent test strategy in which the circuit hierarchy ié used to
determine the lowest level of hierarchy at which all the uncovered faui‘ts are exﬁlored'

and then apply the macro testing strategy at that level.

As an example, in Figure 7.5, a macro has four uncovered faults. If these faults

are traced to a lower level of hierarchy, two sub~modules will exist which carries this

160

Figure 7.5. An example showing how can we determine the lowest level in the circuit
hierarchy a.t which macro testing is applied.

161

set of faults. Again, tracing back t;he set of faults at a lower level of hierarchy reveals
that three sub-modules witéh the fault set. If v(ze furthef moved to a lower level in the
hierarchy, part or all of the fault' set may disappear because the ‘subcircuit i'n which-‘
these faults first appearéd does not exi;t any more. Therefore, th‘e level at which the
three modules were created is the lowest level of" hierarchy at which the fault sét exist.
Our strategy is to apply the macro t\esting technique for these tﬁree modules. The
bus width and the number of signals passing through these modules is much less than
that at the upper macro level. When these signals are -int.erfaced with other macros
through the TIE elements, they will not cause any routing problem and the added
ha,rdwa,rer will be minimal. Therefore, minimal routing area and hardware additions
are achieved using this technique. We have to emphasize here that such an approach
would have not been possible without our modular test assembly procedures which
cover most of the faults in the macro under test and allowed for less hardware addition

at a hierarchy level other than the macro level.

7.2 Summary

In this chapter, we have explored the different test strategies at 'thg chip level
within the context of our modular test generation algorithm. We explained the use
of our test system with each of -the presented test strategy. We have also explored
the macro testing approach which offers an elegant framework for test generation
- and application. A new test strategy for macro testing, .based on our modular test
generation syétem, has been presented as well. It is shown that this strategy would

results in minimal hardware addition during macro testing.

CHAPTER 8

CONCLUSIONS

Most of the problems in VLSI system design are very complex and sometimes
intractable. Test generation and application is one of the most challenging problems
in VLSI, not only because it is complex but also because of the cost associated with

it. With the advances in technology, testing is getting harder and more costly.

This thesis describes a modular/hierarchical test generation approach for the gen-
eral class of VLSI circuijs. We have built, from £he ground up, a framework and
an implementation of an automatic test pattern generation system which guarantees
the full automation and integration of test activities in today’s CAD tools. This

integration is possible because the test activities in our framework is hierarchical.

Th.e first task was the deﬁnitif)n of what could be a truly modular test generation
system. This had leg,d' us to the conclpsiof} that the eiisting systems fail in providing
the réquirements for truly modular test systems. The main reason was that many
heuristics are used to solve the test problem at different levels of hierarchy. Therefore, -
it was very important to define the test interfa.ce at different levels of hierarchy. The
representation of this interface is manifested in the way we characterize our test
primitives. We have defined the test primitive of a module as a set of patterns which

carries test and functional information.

163

" The next task was to implement a test generation system which can generate such
information in the test prir'nitive.‘We described a novel framework for test generation
at the gate level of description which achieves this purpose. This system is based oﬁ
a new framework, namely, global te.st generation. This framework has enabled us of
generating the rgquired test primitives. In order to extend the efficiency of our global
test pattern generation system, we have modified the test system to generate tests
with implicit multiple fauit coverage. Multiple fault testing is much more difficult than |
single fault testing. Our test genération framework is used successfully in solving this

problem.

The description of a novel approach for modular test generation is presentéd.
This system is based on test assembly procedures which use the test primitives and
- a description of modules interconnections to generate tests at higher levels in the
hierarchy. We have shown that no extra information or heuristics are ne_eded to
a.chiev;: this purpose. Consequently, truly hierarchical test system can be built with

minimal programming efforts and less memory requirements.

Finally, test strategy selection at the chip level was reviewed in the light of our new
test framework. We have discussed the different test scenarios which might face the
designers today. We have put more émphasis On macro .testingltechnique because it
has the potential of testing large varieties of complex and heterogeneous circuits. Since
this approach requires the addition of hardware to improve the system’s testability,
we have propqséd a new approach inlwhich minimal hardware can be:added to the

original design.

164

Future Work

As with most research, this thesis raises more questions than it answers. These

are some of the areas which need further study.

Efficiency: There are a number of improvements that cani be made to the test
system to make it more eﬂicignt. An area which obviously needs to be investigated
is that of minimizing the test length generated by the test procedures. Although ;)ur
test system generates tests with a 100% fault coveragé in a very small run time, it.:
still suffers from a larger test length over other approaches. The px"oblem with large
‘test lenéth is that it takes so much time to apply these fests in the test equipment
and it also consumes a large amount of the tester’s memory. We think that the test |
length may be minimized by applying interactive fault simulation program during -

test generation.

DFT Improvement: Design for testing techniques have come to the point. where
their existénce became a hurdlé for fast and efficient designs. Scén path techniques,
for example, are now attacked because of the huge cost associated with them. It takes
so much time to serially scan in and out the scan iaath structure. In fact, this is one

of the reasons that lengthy. test sets are not desirable.

Area penalty, performance degradation, and long test application time are a few
reasons for the reluctant use of: scan path techniques. We believe that the separation
of the test attributes of a design from its functional attributes will solve some of the
DFT problems. Currently, one m-ight think of DFT cifcuitry as embedded into the
design. For inst’anc.:e, during test application, the system must switch betWeen a test
mode g,nd a functional mode. Consequently, this framework puts some constraints

on the way test generation is carried out. We should search for a new technique

165

which allows the parallel appliéation of test patterns to the chip so that .tile test
application time is minimized. The separation of the test circuitry from tﬁe functional
circuitry will minimize performance degradation. It v-vill also separate the tester’s
clock from the system’s cié)ck and thus elimina.tés the need for clock synchronization

which contributes to the complexity of the test application process.

MCM Testing: Multi-Chip Module (MCM) testing is one of the most challenging
problems in VLSI design. It can be seen that our modular test generatidn system
_ combined with the macro testing approach are‘ vefy suitable to apply to this problem.
The modular test system should provide the test se£ fo'r each module, while the
macro test approach will provide access to each module in the MCM. Because of
the compiexity of the MCM circuitry, we expect that the test length and the test
application time will be the limiting factor in applying these techniques to the MCM
testing problem. So, it is the solutions of the above problem that will lead to an

efficient implementation for an MCM testing technique.

Partial Scan: We ha,vé discussed the applléatlon of 6ur test generatlon system to
the full scan technique in thch all the flip flops in the deswn are connected as a shift
register in the test mode. Partlal scan is another techmque in which a subset of flip
flops are connected in the scan chain. The flip flops for the scan chain are selecfed in
such a way that the extra DFT area is minimized while still sufficient controllability

and observability are guaranteed to test the circuit with a desired fault coverage.

The existence of unscanned flip flops poses a problem during the test application
phase. The order of applying the test bits in a single pattern will depend on the
location of the u.nscanned flip flops in the design. We need to extend the domain of
our test generation system to this type of design. This requires the addition of delay

information into the test primitives. For instance, each time an unscanned flip flop is

166

encountered, a delay unit should be added to the sensitized path.

Sequential ATPG: Our test 'genera,tion system is based o.n combinational test
generation procedures. We would like to extend our system to solve the sequential
test generation problem. We believe that this can be; achieved by intel;fa;cing the
GATPG algorithm with sequential justification and differe:ntiation p‘rocedures. These
procedures ensure that each generated pattern from the GATPG system is justified
from the reset state. The purpose of the differentiation procedure is to- ensure that
if a fault is propagated to a next state line, it will be rexzouted to one of the primary

outputs.

o REFERENCES

[1] V. K. Agarwal and A. S. F. Fung. Multiple Fault Testing of Large Circuits by'
Single Fault Test Sets. IEEE Trans. Comp., C-30:855-865, Nov. 1981.

[2] P. Agrawal and V. D. Agrawal. Probabilistic Analysis of Random Test Gen-
eration Method flOI“ Irredundant Combinational Logic Networks. IEEE Trans.
Comp., C-24(7):691-695, July 1975.

[3] V. D. Agrawal and M. R. Mercer. Testability measures - what do they tell us?
IEEFE Test Conf., Chirry Hill, Phil., pages 391-396, 1982.

[4] A. V. Aho, E. Hopcroft, and J. D.. Ullman, editors. .The Design and Analysis of
Computer Algorithms. Addison - Wisley, Mass., 1974.

[5] P. N. Anirudhan and P. R. Menon. Symboiic Test Generation for Hierarchical
Modelled Digital Systems. Proc. International Test Conference, pages 461-469,
1989.

[6] R. G. Bennetts, D. C. Brittle, A. C. Prior, and J. L. Washington." A Modu-
" lar Apprc;ach to Test Sequence Generation for Large Digital Networks. Digital
Processes, 1:3-23, 1975. .

[7] I. Berger and Z. Kohavi. Fault Detection in Fanout-Free Combinational Net-

works. IEEE Trans. Comp., C-22:908-914, Oct. 1973.

[8] D. C. Bossen and S. J. Hong. Cause-Effect analysis for Multiple Fault Detection
in Combinational Circuits. JEEE Trans. Comp., C-20:1252-1257, Nov. 1971.

‘168

[9] W. G. Bouricius, E. P. Hsieh, G. R. Putzolu, J. P. Roth, P. R. Schneider, and
C. J. Tan. Algorithms for detection of Faults in Logic Circuits. IEFEE Trans.
Comp., C-20(11):1258-1264, Nov. 1971. |

[10] W. G. Bouticius. Algorithms for Detection of Faults in Logic Circuits. IEEE
Trans. Comp., C-20:1258-1264, Nov. 1971. '

[11] J. D. Calhoun and F. Bigliz. A Framework and Method for Hierarchical Test
Generation. Proc. Int. Test Conference, pages 480-490, Atig. 1989.

[12]‘ S. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. A Transitive Closure
Algorithm for Test Generation. IEEE Trans. On CAD, 12(7):1015-1028, July
1992.

[13] H. COX and J. Rajski. A Method:of Fault Analysis for Test Generation and ‘
Fault Diagnosis. IEEE Trans. on Comp., 7(7):813-—833;, July 1988.

[14] H. Cox and J. Rajski. On Necessary and Nonconflicting Assignmeilts in algo-
rithmic Test Pattern Generation. JEEE Trans. on Comp., 13(4):515-530, April
1994. |

[15] H. W. Daseking, I. R. Gardner, and G. B. Weil. VISTA: VLSI CAD System.
IEEE Trans. on CAD, CAD-1:36-52, Jan. 1982.

[16] M. W. Du and C. D. Weiss. Multiple Fault Detection in Combinational Circuits.
IEEE Trans. Comp., C-22:235-240, March 1973.

[17] E. B. Eichelberger and T. W. williams. A Logic design Structure for VLSI
- Testing. Proc. 14th Design Automation Conference, pages 462-468, June 1977.

[18] F. P. M. Beenker ef..al. Macro Testing: Unifying IC and Board Test. IEEE
Design and Test of Computers, pages 26-32, Dec. 1986.

- 169

[19] G. Fantauzzi and A. Marsella. Multiple-fault Detection and Location in Fanout
Free Combinational Circuits. IEEE Trans. Comp., C-23:48-55, Jan. 1974.

[20] L. Fisher, W. A. Rogers, M. Abadir, and H. B. Min. A Quaﬁtitative Prediction
Model for Combinational Test Generation. The Economics of Design and Test

for Electronic Circuits and Systems, pages Chap. 5.2:, Ellis Horwood, 1992.

[21] H. Fujiwara and T. Shimono. On the Acceleration of Test GenerationAlgorithms.
" IEEE Trans. Comp., C-32:1187-1144, Dec. 1983.

[22] J. W. Gault, J. P. Robmson, and S. M. Reddy. Multiple Fault Detection in
Combinational Networks. JEEE Trans. Comyp., C-21(1):31-36, Jan. 1972.

[23] P. Goel. Test Generation Costs Analysis and Projections. Proc. 17th Design

Automation Conference, pages 77-84, June 1980.

[24] P. Goel. An Impli}:it Enumeration Algorithm to Generate Tests For Combina-
tional Logic Circuits,. IEEE Trans. Comp., C-30:2715—222, March 1981.

[25] L. H. Goldstien and E. L. Thigpen. Scoap: Sandia controllability/observability

analysis program. Des. Aut. Conf., Minneapolis, Minn., June 1980.

[26] J. A. Hughes. Multiple Stuck-at Fault Coverage of Single Stuck-at Fault Test
Sets. Tech. Rep. No. JH85-2, Palo Alto Research Associé,tes, Palo Alto, Dec.
1985. |

[27] J. A. Hughes. Multiple Fault Detection Using Single Fault Test Sets. IEEE
A
Trans. on CAD, 7(1):100-108, Jan. 1988. ’
[28] W. Jone and P. Madden. Multple-Fault Testing Using Single Fault Test Set for

Fanout-Free Circuits. IEEE Trans. on Comp., 212(1):149—157, Jan. 1993.

[29] W. Jone and P. Madden. Multple-Fault Testing Using Single Fault Test Set for
Fa,nout—Ffeercirrcuits. IEEE Trans. on Comp., 12(1):149-157, Jan. 1993.

170

[30] K. L. Kodandapani and S. C. Seth. On Combinational Networks with restricted
fanout. IEEE Trans. Comp., C-27:309-318, April 1978.

[31] B. Krishnamurthy. Hierarchical Test Generation: Can AI Help? Proc. Int. Test
Conference, pages 694-700, Sep. 1987.

[32] K. Kubiak and W. K. Fuchs. Multiple~Fault Simulation and Coverage of De-
- terministic Single-Fault Test Sets. International Test Conf., pages 956-962,
September 1991. : ‘

[33] Tracy Larrabee. Test Generation Using Boolean Satisfiability. IEEE Trans.
Computer-Aided Design, 11:4-15, Jan 1992.

[34] J. Léensj;ra and L. Spaanenburg. Hierarchical Test Assembly for Macro Based
VLSI Design. Proc. of International Test 'C’onference, pages 520-529, 1990.

[35] Y. H. Levendel and P. R. Menon. Test Generation Algorithms for Computer
Hardware Description Languages.' IEEE Trans. Comp., 31:557-588, July 1982. -

[36] Hi-Keung Tony Ma, Srinivas Devadas, A. Richard Newton, and Alberto
Sangiovanni-Vincentelli. Test generation for Sequential Finite State Machines.

Proc. of Int. Conf. on CAD, pages 288-291, Nov. 1987.

[37] S. Mallela and S. Wu. A Sequential Circuit Test Generation System. Proc. of
Int. Test Conference, pages 57-61, Oct. 1985.

[38] E. J. McCluskey and F. W. Clegg. Fault Equivalence in Combinational Logic
Networks. IEEE Trans. on Comp., C-20:1286-1293, Nov. 1971.

[39] E. J. McCluskey, S. Makar, S. Mourad, and K. D. Wagner. Probability Models
for Pseudorandom Test.Sequences. IEEE Trans. on CAD, 7(1), Jan. 1988.

[40] H-young B. Min and William A. Rogers. Search Strategy Switching : An Alter- -

native to Increased Backtracking. Int. Conf. on Testing, Sept. 1989.

171

.[41] Hyoung B. Min, Hwei tsu A. Luh, and William A. Rogers. Hierarchical Test-
Pattern Generation: A Cost Model and Implementation. IEEE Trans. On CAD
12(7):1029-1038, July 1993.

?

.[42] S. Mourad and E. J. McCluskey. Testability of Parity Checkers. IEEE Trans.
Ind. Electron, 36:254~262, May 1989.

 [43] Brian T. Murray and John P. Hayes. Hierarchical Test Generation Using Pre-

computed Tests for Modules. IEEE Trans. On C’AD, 9(6):594-603, June 1990. | _
[44] D. K. Pradhan. Fault-Tolerant Computing. Prentice Hall, 19886.

[45] J. P. Roth. Diagnosis of Automata Failures, A Calculus and A Method. IBM J.
Res. Dev., 10:278-291, July 1966.

[46] A D& T Roundtable. Test Economics. IEEE Design & Test of Computers, pages
70-77, Fall 1994.

[47] T. M. Sarfert, R. Markgraf, E. Trishler, and M. H. Schulz. Hierarchical Test
| Pattern Generation Based on High—Level Primitives.' Proc. Int. Test Conference,

pages 470-479, Aug. 1989.

[48] J. Van Sas, F. Catthoor, P. Vandeput F. Rossaert, and H. De Man. Automated
Test Pattern Generation for the CATHEDRAL-II/2nd Architectural Synthesis
Environment. Proc. of EDAC, pages 208-213, Feb. 1991. -

" [49] D. R. Schertz and G. Metze. A New Representaion for Faults in Combinational
Digital Circuits. IEEE Trans. on Comp., C-21:858-866, .August 1972. ,

[50] D. R. Schertz and G.-Metze. A New-Representaion for Faults in Combinational
Digital Circuits. IEEE Trans. on Comp., C-21:858-866, August 1972.

172

[51] Michael M. Schuiz, Erwin Trischler, and Thomas M. Sargért. SOCRATES: A
HighlyEfficient Test Pattern Generation System. IEEE Trans: On CAD, (1),
Jan. 1988. 7 ! ' '

[52] J. J. Shedletsky and E. J. McCluskey. - The Error Latency of A Fault in A
Sequential Digital Circuit. JEEE Trans. Coﬁp., C-25:655—659, June 1976.

[53] J. P. Marques Silva and Karem A. Sakallah. Dynamic Search~Space Pruning
Techniques in Path Sensitization. Proc. of the $1st Design Automation Cénfer— ‘
ence, pages 705-711, June 1994. .

[54] J. Steensma, W. Geurts, F. Catthoor, and H. De Man. Testability Analysis in
High Level Synthesis. Journal of Electronic Testing: Theory and Applications,
First issue 1993. .

[55] S. M. Thatte and J. A. Abraham. Test Generation for Microprocessors. JEEE
" Trans. Comp., 1:429-441, June 1980. '

[56] J. A. Waicukauski, E. A. Eichelberger, D. O. Forlenza, E. Lindbloom, and T. Mc-
Carthy. Fault Simulation for Structured VLSI. VLSI Systems D;asign, page 20,
Dec. 1985. |

[57] M. J. Williams and J. B. Angel. Enhancing Testability of Large Scale Integrated
Circuits via Test Points and Additional Logic. IEEE Trans. Comp., C-22(1):46-
60, Jan. 1973, .

[58] ‘Abdel-Fattah S. Yousif and Jun Gu. Concurrent Automatic Test Pattern Gener-
ation Algorithm for Combintational Circuits. International Conference on Com-

puter Design, Oct. 1995.

[59] Abdel-Fattah S. Yousif and Jun Gu. On the Augmentation of Single Fault Test
Sets for Maximal Multiple Fault Coverage. International Conference on ASIC
Design, Oct. 1995.

