
THE UNIVERSITY OF CALGARY

A New Approach For Modular Test Generation

by

Abdel-Fattah Yousif

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

AUGUST, 1995

© Abdel-Fattah Yousif 1995

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "A New Approach For Modular

Test Generation" submitted by Abdel—Fattah Yousif in partial fulfillment of the re-

quirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Jun Gu
Dept. of Electrical and Computer Engineering

Dr. D. Irvine—Halliday
Dept. of Electrical and Computer Engineering

Dr. N. Bshodty
Dept. of Computer Science

Dr. E. P. Nowicki
Dept. of Electrical and Computer Engineering

Dr. G. Gopalakrishnan, External Reader
Dept. of Computer Science, University of Utah

Date August 15, 1995

11

ABSTRACT

Advances in VLSI technology have now made it possible to integrate increasing

number of devices on a single chip. The reliability of a chip is of foremost imprtance

to a VLSI design engineer. Due to the limitations on the number of pins and the

increasing circuit complexity, it is very difficult to test a chip within a reasonable

cost.

Most design systems support hierarchical design methods in order to contain and

reduce the design complexity. Although testing is considered one of the most complex

problems in VLSI design, it has not been yet incorporated in the hierarchical design

cycle of VLSI circuits. This thesis presents a novel 'approach for modular test gener-

ation of VLSI circuits. The test activities in our modular test generation system are

hierarchical. This implies that the modular test system presented in this thesis can be

integrated in most of the existing CAD design tools. The benefits of this integration

are enormous, such as reduced design cycles for improved testability, better control

over the test quality, and better test strategy planning for the product at a higher

level of abstraction.

In order to accomplish this task, we present a new and powerful gate-level frame-

work for test generation. This framework is referred to as the Global Automatic Test

Pattern Generation (GATPG). Experimental results on our GATPG system shows

that it is fast, efficient, and guarantees a high test quality. We have extended the do-

main of the GATPG system by generating tests that implicitly cover multiple faults

in a circuit. Finally, we present test assembly procedures which hierarchically gener-
111

ate chip tests from module's tests. These procedures implement a novel framework

which guarantees the hierarchical control of test activities in circuit design. Unlike

current approaches, tests are generated incrementally at different levels in the circuit

hierarchy. In order to show the benefits of modular test generation over gate—level test

generation, a cost model for our test system is presented. The cost model shows that

the speedup factor of the modular test generation system outperforms other existing

systems.

The impact of the modular test generation framework on the design cycle are

discussed at the end of this thesis. We also propose a framework for test strategy

selection at the chip level aiming at reducing the test application time and minimizing

the hardware that might be needed to improve the chip iestability.

iv

Acknowledgement

This work would not have been possible without the help of many other people.

I am extremely grateful to my supervisor Jun Gu, who has been an invaluable source

of guidance and friendship throughout my graduate research work. Jun helped me

in improving my research quality and in developing a writing style for effectively

communicating my research results. Jun was a constant inspiration and confidence

builder for everything I did throughout my research work. I cannot thank hith enough

for his efforts in supporting my work right from the start.

I am indebted to Prof. Graham Birtwistle for his constant encouragement and

technical advice on many occasions. I would like to thank Prof. Jim Hasslett for

his support as a member of my supervisory committee. I also thank Prof. Nader

Bshouty, Prof. Ed Novicki, Prof. Irvine Halliday and Prof. Ganesh Gopalkrishnan

for serving on my thesis examination committee.

I am also grateful to my colleagues R. Pun, H. Kenawi, A. Handa, L. Ying and

Bin Du whom I had lengthy discussions which helped me develop new directions

in my work. A crucial step in the evolution of this work came during the review

of a report with H. Kenawi who pointed out to the modular aspects of the back

propagation algorithm. R. Puri gave me valuable comments on the completeness of

my test generation algorithm. I owe my education to my parents and my wife who

gave me the strength to overcome the difficulties encountered during the long road

to this Ph.D.

Finally, I would like to acknowledge the financial support provided by the Electrical
V

• and Computer Engineering Department at the Universitr of Calgary and the NSERC

Strategic Grant MEF0045793 and the NSERC Research Grant 0GP0046423.

vi

To

my family.

vii

CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGEMENT v

DEDICATION vii

TABLE OF CONTENTS viii

LIST OF TABLES' xii

LIST OF FIGURES xiii

CHAPTERS

1. INTRODUCTION 1

1.1 Overview of VLSI Testing 1

1.2 Testing Cost and Testability Analysis .

1.3 Faults in VLSI Systems 5

1.3.1 Fault Models 6

1.3.1.1 Transistor-level Fault Models 6

1.3.1.2 Gate-level Fault Models . 7

1.4 Fault Equivalence and Dominance 8

1.5 Scope of the Thesis 9

1.6 Motivations and Goals 10

1.7 Contributions ofthe Thesis 13

1.8 Structure of the Thesis 14

1.9 Summary 16

2. BACKGROUND AND PREVIOUS WORK 17

2.1 Preliminaries and Notations 17

viii

2.2. The Test Generation Problem 19

2.2.1 Problem Formulation 19

2.2.2 NP-Completeness of Test Generation 21

2.3 Test generation strategies 21

2.3.1 Path Sensitization 22

2.3.2 Consistency 23

2.3.3 Redundancy and undetectability 24

2.4 Current Test Generation Approaches 25

2.4.1 Random Test Generators 25

2.4.2 Deterministic Test Pattern Generators 26

2.5 Modular Test Generation 28

2.6 Summary 31

3. GLOBAL TEST—BASED MODEL FOR TEST GENERATION ... 33

3.1 Global Testing and Backtracking 33

3.2 Global Automatic Test Pattern Generation (GATPG) 35

3.3 Important Issues in the GATPG Framework 37

3.4 Modular Aspects in the GATPG Framework 39

3.5 Characterization of Test Primitives 41

3.6 Test Quality 44

37 Summary 46

4. AN EFFICIENT GATPG ALGORITHM FOR COMBINATIONAL
CIRCUITS 47

4.1 The Test Generation Model 47

4.1.1 Global Testing Issues 48

4.1.2 Test Generation Framework 50

4.2 Problem Formulation 52

4.2.1 Problem representation 52

4.2.2 Logic Representation in the GATPG Algorithm 53

4.2.3 Extensions and Simplification of the Test Problem 55

4.3 The GATPG Algorithm 57

4.3.1 Back—Fault—Propagation for Logic Gates 57

4.3.2 The Back—Fault—Propagation Procedure 60

ix

4.3.3 Multiple Path Sensitization 65

4.4 Data Structure and Tree Pruning . 70

4.4.1 Data Structure 70

4.4.2 Pruning the Assignment Tree 72

4.5 Constructing the Test Primitives 73

4.5.1 Algorithm Complexity 79

4.6 Experimental Results 81

46.1 TwO Phase Implementation' 82

4.62 Single Phase Implementation 85

4.7 Practicality of the GATPG Algorithm ' 88

4.8 Summary 89

5. THE GENERATION OF TEST PATTERNS WITH MAXIMAL
MULTIPLE FAULT COVERAGE 91

5.1 Introduction 92

5.2 Previous Work 93

5.3 Preliminaries 94

5.4 Multiple Faults Analysis 95

5.5 Two Models for Test Set Augmentation 97

5.6 Two Procedures for Test Set Augmentation 100

5.6.0.1 The Maximum Control Set Procedure 100

5.6.0.2 Sensitization Path Elimination Procedure 104

5.7 Experimental Results on the 74LS181 ALU Circuit 106

5.8 Multiple Fault Detection Using the CATPG Framework 111

5.8.1 The Approach 111

'5.8.2 Implementation and Results 116

5.9 Summary. 119

6. THE MODULAR TEST GENERATION SYSTEM 121

6.1 Introduction 121

6.1.1 The Modular Test Generation Approach 123

6.1.2 System level test assembly 126

6.2 , The Test Assembly Procedures 131

6.2.1 An Example 135

x

6.2.2 Test Length 141

6.3 Modular Test Cost 142

6.4, Summary 147

7. TEST STRATEGIES IN MODULAR TEST GENERATION ENVI-
RONMENT 148

7.1 High level strategy selection 148

7.1.1 Full Chip Testing 149

7.1.2 Macro Testing 154

7.1.2.1 The Current Approach in Macro Testing 155

7.1.2.2 A New Framework for Macro Testing 157

7.1.2.3 Soft Testing 157

7.1.2.4 Hard Testing 158

7.2 Summary , 161

8. CONCLUSIONS 162.

REFERENCES. 167

xi

LIST OF TABLES

1.1 Tests for 3-input NAND gate. 9

4.1 Real execution performance of our algorithm in a two-phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS'85 benchmark
combinational logic circuits. Time units: seconds.

4.2 Real execution performance of our algorithm in a two-phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS'89 benchmark
combinational logic circuits.

4.3 Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS'SS benchmark
combinational logic circuits. Time units: seconds.

4.4 Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS'89 benchmark
combinational logic circuits.

81

83

86

87

4.5 Performance comparison between the BFP algorithm and the Transitive
Closure (TC) algorithm on a SUN SPARC 2 workstation for large
ISCAS benchmark circuits. Time unit: seconds. 88

5.1 A summary for the simulation study done by Hughes. 109

5.2 Results obtained after applying the first experiment on the 74LS181 ALU. 109

5.3 Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC
2 workstation with the ISCAS'85 benchmark combinational logic cir-
cuits. Time units: seconds 117

5.4 Real execution performance of our algorithm in a single-phase imp1emen
tation with implicit double fault maximal coverage on a SUN SPARC 2
workstation with the ISCAS'89 benchmark combinational logic circuits. 118

XII

LIST OF FIGURES

1.1 A three-input NAND gate example 8

1.2 Two faults which are functionally equivalent. 10

2.1 Example to illustrate test generation terminology 18

2.2 A Combinational circuit used in formulating test generation as an n-
dimensional 0-istate space search problem 20

2.3 A simple circuit to describe sensitization. 23

2.4 Example of redundancy. 25

3.1 An example of a set of faults'. 34

3.2 A combinational circuit block example 37

3.3 An example to illustrate modular heuristics 42

3.4 An example of a transistor level fault that cannot be described usilig the
stuck—at model 45

4.1 An example showing the propagation and justification procedures at the
modular test level. 49

4.2 A combinational circuit block 52

4.3 The back fault assignments for a NAND gate. 58

4.4 Single and multiple path sensitization of faults. 59

4.5 BFP: a back—fault—propagation algorithm that globally sensitizes output
cones. 62

4.6 A circuit example for marking nodes associated with fanout structures and
the sub—tree of logic assignments at node m 63

xl"

4.7 Comparison outcomes for logic assignments at fanout stems 64

4.8 A MPS example. 66

4.9 Search space representation for a 3-stem fanout structure. 68

4.10 The multiple path sensitization procedure 69

4.11 A circuit example. 71

4.12 The data structure for the circuit example. 72

4.13 A combinational circuit example. 74

4.14 Test generation for the first output. cone 75

4.15 Test generation for the second output cone. 77

4.16 The generated test primitive. 78

4.17 A circuit example for explaining the space complexity of the GATPG
algorithm 79

5.1 An example to illustrate testing terminology. 94

5.2 Example for the different PT sets of a fault under test. 96

5.3 Identify(): a procedure used to determine the different primary input
sets for fault f under t 98

5.4 Max-Control: the procedure used to determine a maximal control set
for a single fault f under a test t 102

5.5 An example to illustrate the MaxControl() procedure 103

5.6 An example which illustrates the sensitization pith elimination procedure. 105

5.7 The 74LS181 ALU circuit diagram 108

5.8 A general data structure for two faults in a circuit. 112

xiv

5.9 Control logic assignments for implicit multiple fault coverage (a) single
fault coverage (b) double fault coverage (c) triple fault coverage (d) all
multiple fault coverage 113

5.10 The impact of implicit multiple fault control assignments on the data
structure. 115

6.1 Circuit hierarchy in modular test generation. 127

6.2 The modular decomposition of large ASICs in the design stage. 129

6.3 The system—level iest assembly procedure 132

6.4 Test assembly procedure at the module level. 133

6.5 An example showing module selection in the test assembly procedures. 134

6.6 Hierarchical description of a 3—to-8 decoder circuit 136

6.7 The circuit diagram and the test primitive for a 1—to--2 decoder 137

6.8 The test primitive for the 2—to--4 decoder. 139

6.9 A modified circuit diagram to illustrate the cube intersection process. . 140

6.10 A circuit hierarchy for explaining the cost model. 143

6.11 A graph showing the speedup factor for modular test generation over gate
leyel test generation. 146

7.1 A classification of high level test strategies. 150

7.2 A general model for sequential circuits 152

7.3 A sequential circuit modified for scan path design technique 153

7.4 A test interface element and its application in macro testing 156

7.5 An example showing how can we determine the lowest level in the circuit
hierarchy at which macro testing is applied 160

xv

CHAPTER 1

INTRODUCTION

The advances in VLSI technology during the last decade have had a great impact

on testing. Due to the increase in circuit size and the limited accessibility to the

internal nodes of a circuit, the costs of testing a chip have become a substantial 'part

of the overall chip costs. The testing cost is justifiable because it is much less than

the cost of having the chip fails in the field.

1.1 Overview of VLSI Testing

Test techniques are introduced into the process of VLSI design in order to dis-

cover defects in digital systems. Test activities are interwoven with the VLSI design.

Architectural design consists of partitioning a VLSI chip into realizable functional

blocks. The logic design of these blocks should be synthesized in a testable form or

the synthesized logic should be analyzed and improved for testability.

Faulty VLSI chips could be produced during manufacture because of photolithog-

raphy errors, deficiencies in process quality, or improper design. Even if the chip is

manufactured perfectly, it could subsequently wear-out in the field due to electromi-

gration, hot-electron-injection, or other reasons. Environmental effects, such as alpha

particles and cosmic radiation can also cause a circuit to produce erroneous data.

Testing is experienced at various stages in the production of a system: the dies are

tested di.iring fabrication, the packaged chips before insertion in the boards, the boards

2

after assembly, and the entire system when complete. As far as the level of VLSI chip

testing is concerned, a test generation algorithm is used to* provide the necessary test

vectors which, if applied to the chip, will expose most of the faults occurring at this

level of manufacturing. The test cost at this level is primarily determined by the

cost of generating these test vectors. Consequently, a new discipline has emerged

to probe the testability problem of a circuit more thoroughly in order to give the

designer feedback without taking the risk of submitting a circuit design which is not

testable. Indeed, design, for testability has been very well recognized and served by

many researchers and integrated into commercial design methodologies.

• When considering which test patterns to generate for testing a complex circuit,

one should first consider how good the patterns are for detecting the possible physical

failures in the circuit. It may be impossible to consider all possible physical failures.

Hence, test patterns are generated to detect some set of modeled faults in the circuit.

For example, any line in the gate-level representation of the circuit permanently stuck

at logic 0 or 1. The measure of test quality in this case could be the percentage of

the stuck-at faults detected by the patterns, and is called fault coverage for the fault

class. A typical goal might be to achieve a fault coverage for single stuck faults of

99% for the chip.

Fault coverage is determined by a fault simulation program. Simulation of all

faults in a large circuit with many tens of thousands of gates may take a prohibitive

amount of computer time. Statistical sampling pr*èedures for simulating a fraction of

the total faults are commonly used for measuring the effectiveness of the test patterns.

3

1.2 Testing Cost and Testability Analysis

For decades, designers have regarded testability as a troublesome activity,neces-

sary to support the manufacturing process. Extra hardware for testability has been

considered as an area overhead and test pattern generation effort has been considered.

as limiting the time for creative design. However, the continuous growth of circuit

complexity made testing difficult and time consuming. On the other hand, quality

assurance and reliability have gained much in importance. Better quality testing is

required, which complicates the test process even further and by several orders of

magnitude. Therefore, the cost of testing has become a critical part of the total chip

production cost. It can be as high as 70%. Needless to day, testability has become an

irrefutably important part of the design trajectory.

Attempts to understand circuit attributes that influence testability have produced

the two. concepts of observability and controllability. Observability refers to the'ease

with which the state of internal signals can be determined at the 'circuit output

leads. Controllability refers to the ease of producing a specific internal signal value

by applying signals to the circuit input leads. Many of the Design For Testability

(J)FT) techniques are attempts to increase the observability or controllability of a

circuit design. A straight forward approach to do this is, to introduce test points, that

is, additional circuit inputs and outputs to be used during testing. There is always a

cost associated with adding test points. For circuit boards adding test points is often

well justified. On the other. hand, for ICs, the cost of test points can be prohibitive

because of IC pin limitations.

A straightforward method for determining the testability of a circuit is to use an

Automatic Test Pattern Generation (ATPG) program to generate the tests and de-

termines the fault coverage. The running time of the program, the number of test

4

patterns generated, and the fault coverage then provide a measure of the testability

of the circuit. The difficulty with this approach is mainly the large expense involved

in running the ATPG program. Also, the ATPG program may not provide sufficient

information about how to improve the testability of a circuit with poor testability.

To overcome these difficulties, a number of programs have been written to calculate

estimates of the testability of a design without actually running an ATPG program

such as TEMAS (Testability Measure Program) and SCOAP (Sandia Controllabil-

ity/Observability Analyis Program) [25].

These Testability Measure (TM) programs implement algorithms that attempt to

predict for a specific circuit the cost (running time) of.generating test patterns. In

the process of calculating the testability measure, information is developed identifying

those portions of the circuit which are difficult to test. This information can be used

as a guide to circuit modifications that improve testability.

• No accurate relationship between circuit characteristics and testability has yet

been demonstrated. Thus the circuit parameters calculated by the TM programs

are heuristic' and have been chosen on the basis of experience and study of existing

ATPG programs. It is not surprising that the various authors of TM programs have

chosen different circuit characteristics for their estimates of testability. The technique

used to demonstrate that a given TM program does indeed give an indication of

circuit testability is to run both the TM program and also an ATPG program on a

number of different circuits. A monotonic relation between the TM and the ATPG

run time is offered as a proof that the TM program produces a good estimate of circuit

testability. The difficulty with this validation technique is the high cost of running

enough examples to be reliable. Some interesting results obtained by using statistical

methods to evaluate the testability measure program approach are presented in [3].

5

1.3 Faults in VLSI Systems

• As systems increase in complexity, it is useful to be able to describe faults at

various levels of abstraction in the system. A fault which is described at a very low

level, for example the level of transistors, may very accurately describe the physical

phenomena causing the fault but, because of the extremely large number of transistors

in a VLSI chip, the model may be intractable for the purpose of deriving tests for the

fault. The two requirements for fault models are accuracy and tractability. Accuracy

means realistic faults should be modeled, while tractability implies that very complex

systems should be handled. These requirements are in some sense contradictory.

Recent research, therefore, deals with deriving realistic models at higher levels which

can accurately capture the faults at lower levels.

As an example, consider a contact between two conducting lines in a VLSI circuit.

If the contact is faulty, then the fault can be described at this level of abstraction as

a break between two lines. It may also turn out that the break is equivalent to the

input of a gate being permanently set to logic 0. The fault can then be described at

the gate level of abstraction as a stuck-at 0 fault. It would be simpler for the purpose

of analysis to consider the fault at the highest possible level of abstraction.

A physical failure can also lead to the output of a module being at a nonlogical

value (for example, indeterminate level between logic 0 and 1). Such faults are difficult

to describe and detect, but the errors due to these faults may also be detected by

error detection techniques.

6

1.3.1 Fault Models

Fault models are descriptions of the effect of a defect or failure in a circuit. As

discussed earlier, fault models are driven by the requirement to derive high quality

tests for complex circuits. Thus a useful fault model will 'naturally lead to a test

generation' procedure for the fault.

1.3.1.1 Transistor-level Fault Models

Defects in present day integrated circuits can be abstracted to shorts and opens

in the interconnects and degradation of devices. Fault models at the transistor level,

therefore, can characterize physical failures quite accurately. Unfortunately, as the

complexity of VLSI increases, the number of potential faults at the device and in-

terconnect level also increase drastically. Nevertheless, it is necessary to study the

effects of failures at the transistor level and to develop accurate fault models at this

level. Better understanding of the effects of failures can be used to develop accurate

fault models at higher levels which can be applied to complex systems. This approach

is analogous to that used in the hierarchical design of VLSI systems where complex

circuits are built from smaller cells.

Fault models proposed at the transistor level incorporate one or more of the fol-

lowing classes of faults:

• shorts and opens of transistors or interconnections.

• delay effects of iailures.

• coupling or crosstalk between nodes of a circuit.

• degradation of elements.

7

Shorts and opens are included in most fault models while the more accurate and

more complex models include delays. Fault models where activity on one node affects

the logic values on another node in the circuit are primarily applied to memories.

Fault models which incorporate degradations of elements (for example, transistor

parameter changes, or changes in the value of a resistor) are usually used in analog

circuits.

1.3.1.2 Gate-level Fault Models

Early fault models were developed at the logic gate level. The popularity of this

approach can be attributed to several reasons.

Such models are simple to design and use.

• Many faults in discrete technologies can be represented by faults at the logic

gate level.

• Use of such fault models allows many of the powerful results in mathematics

relating to Boolean algebra to be applied to deriving tests for complex systems.

• A fault model at he logic gate level can be used to represent faults in many

different technologies if, hi fact, defects and faults in these technologies can be

mapped to gate faults.

One of the earliest and still widely used fault models at the gate level of abstraction

is the stuck-at model. In this model, it is assumed that physical defects and faults

will result in the lines at the logic gate level of the circuit being permanently stuck-at

logic 0 or 1. This model has been the source of a great deal of research. It is still

very popular since it has been shown that many defects at the transistor and circuit

8

A

B

C

a
0-
El

 D

Figiire 1.1. A three-input NAND gate examj1e

level can be modeled by the stuck-at fault model at the logic level. In practice, only

single stuck faults are considered in a circuit.

A subset of the stuck fault model is the pin fault model, where only input/output

pins of a module are assumed to be stuck-at 0 or 1 under failure. This has been used

sometimes when testing printed circuit boards with many VLSI devices. Unfortu-

nately, this fault model does not even include a high percentage of gate level stuck

faults within the module in most cases and is, therefore, inappropriate for VLSI.

1.4 Fault Equivalence and Dominance

Consider the three input NAND gate shown .in Figure 1.1. This gate has four

lines (three inputs and one output) and would, therefore, have eight stuck-at faults,

each line stuck at 0 or 1. However, the faults A, B, or C stuck-at 0 would result

in the output D being permanently 1 and, therefore, it is impossible to distinguish

between an input stuck at 0 from the output stuck at 1. These faults are said to

be equivalent. Now consider the fault A-stuck-at-1. In order to detect this fault, a

0 has to be applied on A, and is at B and C so that the effect of the fault can be

propagated to D. The correct value of D will be a 1 and it will be a 0 under fault.

This test for A-stuck-at-1 will, therefore, also detect the fault D-stuck-at-0.. Hence,

A-stuck-at-1 is said to dominate D-stuck-at-0.

Using the relations of equivalence and dominance allows many-faults to be corn-

9

Table 1.1. Tests for 3-input NAND gate.

A •B C D Fault Class
1 1 1 0 A/0,B/0,C/0,D/1
0 1 1 1 A/1,D/O
1 0 1 1 B/1,D/0
1 1 0 1 C/1,D/O

bined into a single class, reducing the number of faults to be considered in a complex

system. A three-input NAND gate, therefore, will have four different fault classes

and the tests for these faults are shown in Table 1.1. In the table, the fault consisting

of one line 'l stuck-at-0 is shown as 1/0.

The notion of equivalence and dominance can be applied to more complex circuits.

Thus two faults which are in different parts of a larger circuit could possibly be

equivalent. Figure 1.2 shows a simple circuit with four inputs and one output. Stuck-

at-1 faults on the two lines marked a and b are equivalent; that is, the function under

either faults is the same. However, equivalences such as these are more difficult to

detect and, in practice, only equivalences and dominances around a gate are normally

considered. More information on the concepts of the fault equivalence and dominance,

as well as the idea of reducing the number of fault classes by fault collapsing, are found

in [38, 49].

1.5 Scope of the Thesis

The thesis develops and implements a number of test generation frameworks at

the gate and modular levels of abstraction. The procedures associated with this

implementation aim at integrating the test generation process within the hierarchical

framework of designing VLSI circuits. This requires developing an understanding for

10

Figure 1.2. Two faults which are functionally equivalent.

the interface between gate level and modular level test generation approaches.

The test problem is well understood in combinational and synchronous sequential

circuits. Thus, we limit the discussion in this thesis to combinational and synchronous

sequential circuits. Asynchronous circuits are beyond the scope of this thesis. Another

restriction is that the thesis is primarily concerned with the stuck—at fault model

during test generation. Other fault models can be used at low level of abstraction.

The resultant tests can then be ised by the modular test system to create chip tests.

This approach is not part of the thesis work.

The thesis also deals with single faults (except in Chapter 5). This means that

only one fault might exist in the chip during the test application. The purpose of the

test generation system is to find test vectors for the modeled single faults in a circuit.

Multiple fault existence is dealt with only in Chapter 5.

1.6 Motivations and Goals

There is much effort that has been spent on research for powerful Computer Aided

Design (CAD) tools to support the design of VLSI and ASICs with a fast turnaround

time. Unfortunately, most of these tools regard the test pattern generation problem as

11

a back-end process, that is looking at the testability issues after the circuit is designed.

This is the classical way of solving the testability problem: as an afterthought. Not

surprisingly, users have had poor experiences with such tools.

This explains the need for more powerful test tools that support the test develop-

ment during the design stage. This is especially true for the development of complex

ASICs. These chips are tailored towards their application and require dedicated test

generation.. This is time consuming and therefore costly. Since they are often pro-

duced in limited quantities, the relative cost of test program development becomes

excessive. Even worse, these test development times place a serious burden on the

development of competitive ASICs that require a short time-to-market.

The need for efficient techniques for testing VLSI circuits arises due to the fact

that companies are continuously faced with decisions to change and modify their

designs. Each chip in the new design must be tested properly in order to eliminate

chips with physical failures. A small changes in any of the circuit modules might

invalidate the efforts spent on generating tests for the original design. More test

efforts will then be needed to level up the test quality of the chip. With the current

approaches in test generation, this effort, although automated, is enormous in terms

of computer resources and the man-hour involved in it. In order to keep pace of

the short design cycle, efficient ATPG tools must be readily available for the test

engineer. Accordingly, the decisions made in choosing the test strategy will be highly

influenced by these tools.

This thesis aims at providing the test engineer with powerful ATPG algorithms

which will provide a range of test strategies at any level of abstraction. Our goal is

to build powerful tools for testing VLSI circuits hierarchically. Cost and test quality

will always be considered in' any of these tools. In short, this thesis describes an

12

ATPG system for combinational circuits, an implicit maximal multiple fault coverage'

- single phase ATPG system, and modular (hierarchical) test procedures.

The ATPG system for combinational circuits has two major features which are

highly desirable by test engineers. Unlike other ATPG systems, it is single phase

which implies that the random test generation phase is not included in the test system.

All test patterns generated by the test' system are deterministic. The other feature

which is unprecedented in other test systems is the global test approach in which

tests are generated. Global test generation implies that more than one target fault

are considered by the test algorithm, as opposed to the single target fault strategy that

is currently adopted by other test algorithms. These two features not only generated

quality test vectors with large fault coverage but also enabled us to produce test

primitives for modules under test. The term test primiIive is used to describe test

sets for different modules. The efficiency of the test generation system was enhanced

by including a powerful procedure which will allow the generated test sets to have

maximal multiple fault coverage. As far as we know, no existing test system was able

to provide such test sets.

The final step in this thesis is the use of the above test system to hierarchically

generate test patterns for a modular design using the test primitive of each module.

In order to achieve this objective, symbolic paths between modules must be cre-

ated in order to move freely from one module's inputs/outputs to another module's

inputs/outputs. Current hierarchical ATPG systems use the transfer (functional)

mode of modules to create these paths. In our approach, we did not separate the

test set from the symbolic paths of a module. This is one of the most important

achievements of this work because it hows that our test system is truly modular and

inherently efficient. We start by generating test primitives which serves both as test

13

patterns and symbolic paths for faults across a module. Then, we describe a new

procedure for modular testing using the generated test sets.

If full scan is chosen as the strategy for testing a chip, then, the circuit in its mod-

ular form will be dealt with as combinational circuit. Therefore, the combinational

test generator will be applied at each module separately. Each test primitive will be

attached to a module. A modular test procedure will then be applied in order to

assemble the chip tests at the primary inputs.

1.7 Contributions of the Thesis

A major contribution of this thesis is a novel and efficient modular test generation

methodology that significantly reduces the complxity in testing large VLSI circuits.

The most significant elements of this thesis are as follows:

• The identification of the requirements for a truly modular test generation system.

The test interface between one level of abstraction and a higher level is-clarified.

The performance failure of current hierarchical test systems is explained. We

have formally characterized the test primitives and stated the conditions under

which test primitives can provide a omp1ete test and functional description for

a module (Chapter 3).

• An efficient global automatic test pattern generation algorithm (GATPG) to

generate the test primitives with the required specifications is presented. The

algorithm is capable of generating tests with a 100% fault coverage in a very

short time compared to other approaches. The GATPG approach provides 1.6

to 47 speed—up factors over current approaches. This performance is achieved

because of the application of the novel global search strategy where faults are

searched collectively using shared search spaces for faults. Also, an efficient tree

14

pruning techniqhe is applied to the algorithm in order to limit the memory size

during its execution (Chapter 4).

• A direct relationship between the global test generation framework and multiple

fault testing is established. A new view point in the analysis of multiple faults

behavior is presented. This analysis is later adopted in our GATPG system to

generate tests that implicitly cover multiple faults in a circuit (Chapter 5)..

• An efficient modular test generation methodology is presented. The test ac-

tivities in this methodology is hierarchical making it the first known approach

with the potential of being integrated into the hierarchical framework for de-

signing VLSI circuits. This methodology requires no extra heuristics for modu-

lar/hierarchical test generation. Thus, it can be integrated into VLSI CAD tools

with minimal programming efforts (Chaptei 6).

• A cost model for hierarchical test generation is presented. The speed up factor

using our modular test generation system over low level test systenis is shown

to be increasing with the increase in the circuit size (Chapter 6)..

• A revision of the test strategies at the chip 'level in the context of the modular

test generation system is presented. We propose different strategies to optimize

the test quality of the chip. A novel approach for minimizing the hardware

addition to the chip design through macro testing is presented. The purpose of

this approach is to improve the test quality of chips without loosing large silicon

area. .

1.8 Structure of the' Thesis

The thesis is organized as follows:

Chapter 1 is an intioduction to this work. In Chapter.. 2, some background about

15

the test problem and the related issues are presented. In Chapter 3, the new model

for global Automatic Test Pattern Generation (ATPG) system will be presented. In

Chapter 4, a combinational test generation algorithm based on the global ATPG

model is presented. The GATPG algorithm will be presented with two implementa-

tions, namely, two phase Sand single phase test generation systems. In the two phase

implementation, a random test generator is used as a front end during test gener-

ation. Random testing will cover most of the esy to detect faults in the circuit.

In thie single phase implementation, the random phase is not considered in the test

generation process. The two implementations will enable us to compare our results

adequately with other existing algorithms.

In order to enhance the efficiency of the combinational test generation algorithm,

we have modified our algorithm to generate test sets with maximal multiple fault

coverage. In order to ensure that the whole test set achieves a maximal multiple fault

coverage, all test vectors must be generated deterministically, i.e., the single phase

implementation is used in this part of the thesis. The single phase test system with

implicit maximal multiple fault coverage is presented in Chapter 5. Also in Chapter

5, the necessary analysis for generating tests with maximal multiple fault coverage is

presented. -

Chapter 6 discuses the modular test generation procedures that we propose in this

thesis. The modular test procedures and the hierarchical test control are presented

in this chapter. In Chapter 7, we present the framework for test strategy selection

at the chip level, in the context of the modular test generation system. We propoe

some new techniques to minimize the tèst application time and control the hardware

addition as well. Chapter 8 concludes the thesis.

16

1.9 Summary

In this chapter, motivations that initiated the interest in the testing problem have

been introduced. The cost of manufacturing a VLSI chip is shown to be very much

affected by the testability figure of the chip. Design for testability, testability analysis

programs, and new test generation algorithms are a normal consequence for the test

process requirements.

The large number and complex nature of physical failures dictates that a practical

approach to testing should avoid working directly with the physical, failures. In most

cases, in fact, one is not. usually concerned with discovering the exact physical failure;

what is desired is merely to determine the existence of (or absence of) any physical

failure. One approach for solving this problem is to describe the effects of physical

failures at some higher levels of abstraction. This description is called a fault model.

The stuck—at fault model will be used throughout this thesis to generate test patterns

which cover the physical failures in VLSI circuits.

CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, the test generation problem for combinational circuits is presented.

Section 1 presents the test generation terminologies used throughout this thesis. The

test problem complexity is identified and formulated in Section 2. The test strategies

for current test pattern generation algorithms will be presented in Section 3. Although

numerous approaches to test generation have been reported, only a few of these

approaches are used in test systems. Section 4 presents some of these approaches

such as the D-Algorithm, PODEM (Path Oriented DEcision Making), and FAN.

The test strategies for these algorithms will be explored. The relationship between

combinational test generation and the modular testing approach will then be discussed

in Section 5.

2.1 Preliminaries and Notations

Common terminology pertaining to test generation for logic circuits is readily

introduèed with an example. Figure 2.1 shows a combinational logic circuit and a

test for a single stuck fault that causes node h to permanently assume a 0 state. A

stuck-at-1 (s/i) fault on a signal node causes that node to permanently assume the

1 state. A stuck-at-0 (s/0) fault causes a permanent 0 on the faulted node. The five

valued logic (0, 1, X, D,) is used to describe the behavior of a eircuit with failures.

The logic value D designates a logic value 1 for a node in the error free circuit and a 0

18

for the same node in the failing circuit, is the compliment of D, and X designates a

DON'T CARE value. A behavior difference between the good circuit and the failing

circuit propagates along a sensitized path. In Figure 2.1, the signal path h, j (th'e bold

line) is referred to as a sensitized path. Externally controllable nodes are referred to

as primary inputs. Externally observable nodes are referred to as primary outputs.

In Figure 2.1 assignment of the values 1, 1, X, X, 0 to the primary inputs a, b, c, d,

e, respectively, constitutes a test for the fault h. s/U,

3

Figure 2.1. Example to illustrate test generation terminology.

Definition 1 Two faults are said to be compatible if there exists at least one test

vector which detects both faults.

Definition 2 Two faults are said to be collapsed if the detection of one fault

implies the detection of the other fault. The two faults can also be referred to as

indistinguishable faults.

Definition 3 The D-drive refers to the node with a logic value D or and is

used by the test generation algorithm to bring it closer to the primary outputs. In

Figure 2.1, node h represents a D-drive to the test generation process. If at any time

in the test generation procedure, more than one node carries the logic values D or

then we refer to these nodes as the D-frontier. The test generation algorithm picks

up one of these nodes to drive the test process, i.e., selecting the D-drive node.

19

Definition 4 : The implication procedure refers to' the process of using the im-

plication rules of logic gates to propagate signal values at gate input nodes to their

output nodes. This procedure is used to check the implication of logic assignments

made during the test generation procedure. The result is used as a guide to the next

step in the test procedure.

Definition 5: Consistency check is a procedure used by test generation algorithms

to check if the previously made decisions meet some objectives set by the algorithm.

The decisions made by the test generation algorithm are referred to as inconsistent

if they don't meet the objectives set by the algorithm. It must be noted that these

objectives vary during the test procedure.

2.2 The Test Generation Problem

With the progress of VLSI technology, the problem of fault detection for logic

circuits is becoming more and more difficult. In developing tests for digital circuits,

the faults that will actually occur are unknown. Instead, test sets are developed to

detect a specific set of faults.

2.2.1 Problem Formulation

As Goel [24] stated inhis paper, the test'generation problem can be 16rmulated as

a search of the n-dimensional 0-1 stá.te space of primary input patterns of an n-input

combinational logic circuit. For example, in Figure 2.2, 'g is an internal node and the

objective is to generate a test for the stuck fault g s/0. The logic value at g can be

• expressed as a Boolean function of the primary inputs X1, X2, ..., X. Similarly, each

primary output (yj, j = 1, 2, ..., m) can be expressed as a Boolean function of the

state on node g as well as the primary inputs X1, X2, ..., X,.

20

Let g = G(X1, X2, ..., X)

and yj = 1'(g, X1, X2, ... X)

where ljm and X=Oori for 1<i<n.

The problem of test generation for g s/O can be stated as one of solving the

following set of Boolean equations:

G(X1,.X2, ..., X,) = 1

}(i, X1, X2, ..., X) e 1(O, X1, X2, ..., X) =.1

for at least one j, i ≤j ≤m and X=Oori for 1≤i ≤n.

The first equation implies that a s/O fault is first excited to logic 1 (opposite to the

stuck-at level), while the second equation implies that. the change of the logic value.

at the fault location can be observed at the jrimary outputs. The set of equations

for g s/i rnare the same as aboveexcept that G is set equal to 0.

X
x2

xn

-

Figure 2.2. A Combinational circuit used in formulating test generation as an
n-dimensional 0-1 state pace search problem.

In short, test generation can be viewed as a search of an n-dimensional 0-1 space

defined by the variables X1 (1 ≤ i ≤ n) for points that satisfy the above set of

equations. More generally, the search will result in finding a k-dimensional subspace

(k ≤ n) such that all points in the subspace will satisfy the above set of equations.

21

2.'2.2 NP-Completeness of Test Generation

The concept of NP-Completeness is used to prove that the amount of time required

to solve a specific problem is beyond a certain practical limit [4]. The problem of test

generation, which is known to belong to the class of NP-complete problems, can be

viewed as a finite space search problem [24]. For a circuit with N primary inputs, there

exists 2N combinations of input assignments. Automatic Test Generation (ATG)'

algorithms basically search for a point in the primary input space that corresponds

to a test pattern and consequently, to a solution of the search problem.

Ttie NP-completeness property of the test generation problem necessitates that

various heuristics be developed to create practical solutions for it. The PODEM [24]

and FAN [21] algorithms are elegant examples in this regard. Many other fault anal-

ysis problems, such as the determination of the size of minimal test sets, coverage

of multiple faults by single-fault test sets, and coverage of faults by randomly gener-

ated test sets are similarly besieged by their inherent complexity, and their solutions

require thoughtful insights.

2.3 Test generation strategies

The goal of any Automatic Test Pattern Generation (ATPG) system is to to be able

to detect the existence of faults in a circuit. It might be helpful t6 be able to pinpoint

the exact nature and location of a fault within a circuit, but this is not necessary for

most purposes. A common strategy for ATPG systems has been established through

the last two decades. Within the context of this strategy, the test generation task is

divided into two phases. In the first phase, random test vectors are generated and

simulated to cover as many faults in a circuit as possible. In the second phase, a

deterministic algorithm is applied to the rest of the undetected faults in the circuit.

22

The deterministic algorithm applies its search strategy on a single target fault and

the resultant vector (if any) is simulated to cover any other fault that can be detected

using the same vector. The single target fault strategy 'implies that there is at most

one fault in a circuit.

2.3.1 Path Sensitization

Most ATPG algorithms apply a path sensitization technique as the basis for many

detailed procedures during the deterministic test generation phase. Sensitization is

a technique where 'a path consisting of many node is created to help propagate a

stuck-at fault in a circuit. Searching the input space fo a. test pattern is equivalent

to searching for a single (or multiple) sensitizing path.

Consider the circuit of Figure 2.3 and the fault 7 s/O. In order to detect this fault

by a procedure that allows access only to the primary input lines (1, 2, 3, 4, 5, and

6) and the primary output line (15), it is essential that a test vector must somehow

create a change on line 7 and ensure that the change can be seen on line 15. That

is, the .test vector must produce a 1 on line 7, and line 15 should be sensitized to line

7 in the sense that the output created on line 15 clearly shows whether the signal on

line 7 is 0 or 1. If the path from line 7 to line 15 is traced in Figure 2.3, the first

condition for sensitization is that line 10 be a 0. Indeed, if line 10 is a 1, then line 13

would be 1 irrespective of the value on line 7. In other words, a 1 on line 10 would

desensitize line 7 to line 13. Moreover, since there is no other path to transmit the

value on line 7 to line 15, line 10 being a 1 will also desensitize line 7 to line 15. Thus

assuming that line 10 is a 0, the next condition for the sensitization is that line 14

be a 1. If both of these conditions exist in the circuit, then when a 0(1) is applied to

line 7, the circuit output is going to be a 0(1). In other words, any input vector that

23

can create a 1 on line 7, a 0 on line 10, and a 1 on line 14 will in the fault free circuit

produce a 1 on the output line, and in the faulty circuit a 0 on. the output line, and

will, therefore, be a test vector for 7 s/0.

xl 1

x2

x3

2

3

x4

x5

6

7

D

8

10

12 D

13

14
15

Figure 2.3. A simple circuit to describe sensitization.

The concept of sensitization needs to be explained further in the situations involv-

ing more than one path from the faulty line to a primary output line, and in the case

of multiple stuck-at faults. In summary, the concept of sensitization is fundamental to

understanding how a fault is detected from the input and output lines only. However,

the process of determining a sensitized path(or paths) in a general situation is not a

simple procedure.

2.3.2 Consistency

As shown above, some logic assignments and conditions are needed to carry out

the sensitization process. However, just formulating such conditions does not always

guarantee that an input vector satisfying such conditions also exists. Thus, formulat-

ing conditions to create a change and to propagate the change along a sensitized path

24

is just one step. The second equally important step is to determine which, if any,

vector(s) satisfies such conditions. When this process is carried out by exploring the

circuit structure, it is often referred to as the line justification or consistency process.

An ideal line justification algorithm will, at each step, make a decision that will

not have to be changed. In general, however, this is not possible since making an

irreversible decision requires knowledge which is not available at the time of decision

and can be obtained only by reversing the decision and starting again. The most one

can do in this situation is to use some insighth or heuristics so that as few decisions

as possible are changed. Actually, it is due to this decision process that the test

generation problem is NP-complete [21].

2.3.3 Redundancy and undetectability

A -fault is said to be undetectable if there is no vector to detect this fault, and the

line associated with the fault is called a redundant line. For instance, in the trivial

circuit of Figure 2.4, the fault 5 s/i is undetectable, since sensitizing it would require

that each of lines 3, 4, and 6 be a 1, implying in turn that x1 = 1, x2 = i, and x1.x2

= 1. These being contradictory requirements, one can conclude that if 5 s/i existed

in the circuit, then as far as the input/output behavior is concerned, the circuit is

going to behave as if there is no fault in it. Such an undetectable fault would seem to

be harmless when not probed further. However, as previQus research in the area has

shown, in order to be able to carry out an effective detection for the detectable faults,

one must know where the redundant lines in the circuit are. For example, in the

circuit of Figure 2.4, the input vector (1, 1, 0) is a test vector for a 1 s/0. However,

(1, 1, 0) cannot test 1 s/0 in the presence of the undetectable fault .5 s/i. Thus,

an undetectable fault can invalidate the testing of some detectable faults if both are

2

present simultaneously.

xl
x2

x3

6

5

8.

Figure 2.4. Example of redundancy.

Another effect of an undetectable fault is its impact on the test generating efforts

for a given circuit and a fault set. If a fault set is undetectable, any resources spent

in trying to obtain a test iiector are wasted. It is thus useful to remove all the

undetectable faults from the fault set before the test generation step. As it turns out,

even the process of determining whether a fault is detectable or not is as complex

as the test generation process which is NP-complete. The best hope, therefore, is to

avoid the appearance of redundant lines during the design phase of the circuit under

consideration.

2.4 Current Test Generation Approaches

2.4.1 Random Test Generators

The concept of generating test vectors for a digital circuit by some random process

probably provides the simplest approach to the test generation problem [2, 52]. The

major current issues for random test pattern generation are: selecting the test length,

• determining the fault coverage, and identifying random-pattern resistant faults (faults

that are hard to detect with random patterns). These could, in principle, all be ac-

26

complished by a full single-stuck fault simulation of the network to be tested [56]. The

development of special-purpose equipment is decreasing the cost of fault simulation.

Despite this cost reduction, full fault simulation remains expensive for large circuits

that require long random test sequences for adequate fault coverage.

The only viable alternative to full fault simulation appears to be the use of a

probabilistic model of random test generation [39]. Probabilistic methods do not

give exact fault coverage values, but they do provide more insight into the relations

between circuit characteristics and test parameter.

2.4.2 Deterministic Test Pattern Generators

The problem of deterministically generating a test pattern for a given fault is to

find a combination of assignments of logic values (0 or 1) to the primary inputs which:

• excite the target fault,

• monitor the target fault at, at least one of the primary outputs.

Since the properties of deterministic test generation fulfill the requirements for

a systematic search problem, automatic test generation algorithms usually build a

decision tree and apply a backtracking search procedure [21, 24], in order to find a

solution for problem.

The D-algorithm [44, 45] is probably the most known test generation algorithm. It

develops a five-valued {0, 1, X, D, } calculus to be able to carry out the sensitization

and the line justification procedures in a very formal manner. In this, calculus, each•

line can be either a 0, 1, X (unknown), D, or . The faulty line is assigned a D

or TL depending on the fault on the line. The next step is to use the calculus and

27

the circuit structure information to determine values on the other lines so that the

D or D can be sensitized to the primary output line. A line justification step is then

carried out to justify the values assigned in the preceding step. Both the sensitization

and line justification steps may have to be carried out many times before a test vector

is obtained.

The PODEM (Path-Oriented Decision Making) algorithm was introduced in par-

ticular to perform better than the D algorithm for circuits containing, mostly XOR

gates. It was, however, demonstrated to have a better performance than the D- '

algorithm for various other types of circuits as well. The approach taken by PODEM

appears to be the first to treat the test generation problem as a classic branch-and-

bound problem. More fundamentally, the algorithm starts by assigning a value of

o or 1 to a selected primary iliput (P1) line, and then determines its implication on

the propagation of D or to a primary output line. If no inconsistency is found, it

again somehow selects another Pi line and, assigns a 0 or 1 to it, and then repeats the

process, which is referred to as branching. Since DALG (D-Algorithm) and PODEM

are complete algorithms, given enough time, both will generate tests for each testable

fault.

It is obvious that to accelerate an algorithm for test generation, it is necessary to

reduce the number of occurrences of backtracks (branching-bounding cycles) in the

algorithm 'and to shorten the processing time between backtracks. Based on that,

the FAN [21] algorithm started with the basic conjecture that the PODEM does not

fully exploit its framework. FAN has employed a better heuristic in the bounding-

and-branching steps to speedup the test generation process. Results show that FAN

is more efficient and faster than PODEM. The average number of backtracks in FAN

is lower compared to that of PODEM.

28

Schulz et al. further improved the performance of FAN by improving the impli-

cation procedure and built a test generation system called SOCRATES [51]. They

described a unique sensitization procedure and an improved multiple backtr'ace pro-

cedure. Marques and Sakallah [53] have presented several new techniques to prune

the search space in path sensitization problems. These techniques explore dynamic

information provided by the search process, both before and after inconsistencies are

detected. In other approaches, a forward propagation procedure has been used in

providing the necessary information 'to guide the test generation process. Jone and

Madden [28] have applied this technique to generate a minimal single fault tests for

fanout—free combinational circuits. They have also proved that this minimal test set

covers all the multiple faults in the circuit. This technique is proved to be much more

difficult for the general class of combinational circuits [13]. In general, using different

strategies for test generation lowers the testing time [40].

There are other algorithms which have used formal methods for 'test generation.

Larrabee [33] applied a satisfiability (SAT) algorithm to Boolean• formulae which

express the Boolean difference between the correct and faulty circuits. Chakradhar

et al. gave a transitive closure algorithm for test generation [12].

It is expected that the trend for new approaches and improvements over current

approaches will continue.

2.5 Modular Test Generation

Modular testing has been proposed as an alternative to the brute testing of VLSI

chips. The goal of modular testing is to simplify the chip test by partitioning the

chip into modules and test each module separately. This technique is compatible with

the hierarchical approach in designing VLSI circuits which is available on most CAD

29

tools today.

The typical VLSI circuit or ASIC (Application Specific Integrated Circuit) con-

tains not only random logic but also RAMs, ROMs, PLAs, and complex macros such

as microprocessor cores, data paths, and multipliers. Designers create some of these

blocks with logic synthesis or module generator; others are predesigned macros. Be-

cause of this variety of structures and functions, such ICs are called heterogeneous

circuits. A test engineering system must cover 'a large variety of highly complex, het-

erogeneous circuits, but rrost available tools handle random logic only. Applying a

modular test strategy is one of the most efficient ways to tackle these heterogeneous

circuits. Within the module concept, each block is made controllable and observable

independently. Then, the testing of the chip is reduced to testing the modules sepa-

rately, where each of the modules is best tested with its own dedicated test technique.

This approach is also referred to as Macro Testing. Maci'o testing completely solves

the chip level test problem and ensures high fault coverage.

The success of modular testing depends entirely on the technique used in achieving

full controllability and observability for the primary inputs and outputs of each mod-

ule in a chip. In this context; module testing does pose some challenging problems:

partitioning, selecting a test technique suited to the separate module, assembling'

niodule tests up to.a chip test, and executing a module test independently of its en-

vironment. Solving these problems may lead to a chip with a. significant test quality,

not only at the chip level but also at the board level. Nevertheless, resolving these

issues will always come at undesirable cost. We have seen many examples where

the chip manufacturer comprdmise the chip quality, by not adding DFT (Design For

Testability) measures such as modular testing, in order to reduce the cost of produc-

tion.

30

Researchers have tried to solve these problems with brilliant ideas but with little

success due to the costs associated with their techniques. The most notable work in

this direction was presented in [18] where each module is made fully controllable and

observable independently through busse's and extra hardware. This hardware is added

at the modular level so that the accessibility of each module is guaranteed. Although

this technique is practically sound, the drawback in most cases, is the extra cost (not

only in terms in area but also in terms of delay) associated with this technique;

Other researchers [43, 41] used algorithmic approaches to generate tests for each

module and use the functionality of other modules to create chip tests from a module's

tests. In [54], instead of using functional heuristics to generate chip tests, symbolic

paths which represent the onto mapping between the PIs and POs of a module and

the PIs and POs of a chip are created. These symbolic paths, representing the

controllability and observability of a module with respect to the chip's PIs and POs,

are used to generate the chip tests from the module tests. This avoids the drawbacks

of adding extra hardware to the chip, but it adds the extra cost of running the

modular test assembly algorithm. In the matter of fact, the major drawback of

• algorithmic techniques for modular testing is that the test quality of the chip is lower

than the test quality using extra hardware techniques. The reason being that the

extra hardware technique improves the controllability and observability of modules

while the algorithmic approach does not. This fact, although extremely important

seems to be gone unnoticed by the researchers in this field.

Another fact which we believe favors adding extra hardware for better testability

over the algorithmic approach is the resultant test length for the chip; a crucial figure

in determining the test cost. The test length of the chip under test using extra

hardware techniques equals to the total number of tests for all the modules in the

31

chip. On the other hand, in the algorithmic approach, the test assembly will map the

module tests into chip tests. Some of the test vectors of a module may not be. mapped

due to unjustifiable logic assignments (controllability or observability problem). In

this case, the designer will either, compromise the test quality by ignoring this vector

or decide to run ATPG system to cover the faults originally detected by the module

test vector. Normally, the ATPG algorithm will be low level (not modular) and may

results in more than one test, vectors. It is safe to say that such approaches do not

realize truly modular or hierarchical test systems.

2.6' Summary

In this chapter, the test generation problem has been-presented and formulated.

It has been shown that the test generation problem is a complex problem and is con-'

sidered to be NP-complete. Different approaches have been used to tackle the test

problem, either by randomly generating test vectors or by using other deterministic'

test generation methods. Test generation, as a space' search problem, has evolved

in designing efficient algorithms as the case in PODEM and FAN. Most of the test

systems reported for this decade are based on these two algorithms. SOCRATES [51]

algorithm, for instance, is an improved version of FAN. Based upon the sophisticated

strategies of the FAN algorithm, an improved implication procedure, an improved

unique sensitization procedure, and an improved multiple backtrack procedure are

described. In general, however, most of the work in the testing area is useful under

very specific circumstances. Despite the steady growth in the area 'of digital system

'testing, it has yet to witness the development of a consistent framework which can

provide efficient testing algorithms for large and complex systems. Modular. (hierar-

chical) testing is shown to be one of the most promising approaches for solving the

test problem for large and complex circuits.

32

After researching the above problems, we have came to some conclusions concern-

ing modular or hierarchical test generation. The most important conclusion is that

any modular testing system can survive only if the cost issues are considered within

its test strategy. Secondly, test quality shohid not be compromised, otherwise, the

test efforts cannot be justified. In order to achieve' that, we have proposed in this

thesis new powerful techniques for the test generation of test vectors for VLSI circuits.

The framework on which these tools are built is global test generation. 'It is a new

and powerful framework which creates new directions in defining the -test generation

problem. This tools have been designed so that their benefits go beyond the chip level

testing to the modular (hierarchical) level of testing. We propose different strategies

for modular testing to suite different applications and DFT techniques. These tools

and procedures will be presented in Chapters 3, 47'5, 6, and 7. -

CHAPTER 3

GLOBAL TEST—BASED MODEL FOR TEST
GENERATION

In this chapter, we present a new model for test generation. We developed a test

model that is based on a non—target fault strategy. We refer to such strategy as

global test generation. We have also established the first formal characterization of

the test primitives generated within the proposed test model. This characterization

will ensure that each test primitive can be dealt with as a test entity. The test entity

should be an integral part in any module design. First, we define the term Global

ATPG (GATPG) within the context of the test problem. Then, we identify the

necessary requirements to build such a system. This must be done in the light of our

goal, namely, how to build a test generation system that can be integrated efficiently

in a hierarchical' test system?

3.1 Global Testing and Backtracking

Our model for test generation aims at eliminating backtracking during test gen-

eration. Backtracking is the most time consuming procedure in current ATPGal-

gorithms. In order to solve this problem, we have developed a new technique called

global test generation. Global testing means that tests are generated collectively for

'The terms modular and hierarchical will be used interchangeabl throughout this thesis. Mod-
ular test generation will be used whenever test generation for modules at some level in the design
hierarch' is considered. Hierarchical test generation will be used when referring to the hierarchical
control of the test activities at different levels in the circuit hierarchy.

34

all the testable faults in a circuit, i.e., the only input to the test algorithm is the circuit

structure (there is no input set of modeled faults). We may also refer to this system

as' a non-target fault test generation system because, unlike other approaches, it does

not start execution with a target fault. We believe that this is the first approach that

models with the test problem in this way.

Figure 3.1. An example of a set of faults.

Global testing also offers an alternative to search strategy -switching which is based

on target fault testing. Consider the set of faults shown in Figure 3.1. A line between

fj and fj means that fault fi is compatible with fault f. There are three compatible

set of faults in Figure 3.1: (f2, f4), (f3, 15), and (fl, f., f6). Let us assume that each

set of compatible faults requires a distinct search strategy to cover the faults that be-

longs to this set. Then, three search strategies must be employed in a test generation

system to achieve the minimum number of backtrackings. On the other hand, in the

context of global testing, all faults are considered collectively for testing. Tests will be

generated for all testable faults while redundant faults will be automatically singled

out during the test process. The difference between our approach and conventional

test generation is that we require the generation of all unique sensitization paths,

35

without reference to the faults which they sensitize.

3.2 Global Automatic Test Pattern Generation (GATPG)

Although we claim that GATPG has not been. presented before, global ATPG

is a term that is used by test engineers to describe the test generation process for

heterogeneous circuits. The term global refers to the ability to generate tests for

different design applications, such as memories, combinational circuits, and finite

state machines, that exists on the same chip. Therefore, as far as the test generation

process, at the gate level is concerned, global test generation is not considered before,

and hence, our claim still holds. In order to explain what we mean by global ATPG,

it is better to look at current test strategies in more detail and then evolve with a

clear idea about the concept of global testing in test generation algorithms.

There are some distinct features that are cothmon to most ATPG systems. Among

these features is that the ATPG system resources are directed to searching the space

of a circuit to find a test cover for one particular fault, referred to as the target

fault. As explained in the previous chapter, the search process is complex and time

consuming. Therefore, it is much easier to consider only one target fault during the

search process. .There has been so much dedication to solve the test problem within

this framework. Such framework succeeded because of its simplicity in relating to the

complex test problem. Another feature that is common in current ATPG systems

is the two phase approach. The first phase in. any of the existing ATPG systems is

the random test generation phase. Over 90% of the modeled faults in a circuit are

covered during this phase. The second phase, which normally takes most of the test

generation time, is the deterministic pattern generation phase. In this phase, faults

that are not covered by the random vectors are searched. As a result, a cover for a

36

• fault is generated or the fault is proved to be redundant, that is, a test which covers

this fault does not exist.

As the circuit size and complexity increases, less number of faults are detected by

the random phase. More faults in complex circuits happen to be random vectors resis-

tant. In order to control the time-to-market issue, the efficiency of the deterministic

test generator must be increased to contain the increase in the number of uncovered

faults in random phase. Judging by the published results for current ATPG systems,

it is easy to see that these systems take large amounts of time to generate tests and

to prove redundancy for a limited number of faults. This does not mean that current

ATPG systems do not solve the test problem, but it simply means that they cannot

be used efficiently, i.e., cost-wise, with complex circuits.

We propose a completely different framework for solving the test problem. Our

approach is based on what we call global ATPG. The approach is global because it

considers the problem of generating tests for more than one fault simultaneously. We

do not use the term target fault because the GATPG does not use any explicit set of

faults as target faults. In the context of GATPG, tests are generated without referring

to the faults they cover. At any time during the GATPG process, many faults may

evolve as candidates to be covered simultaneously. The concept of having more than

one fault explored at any time in the search space makes the computations in the

search space universal and cover the sub-search space of thany faults simultaneously.

This does not necessarily means that such framework will target multiple-faults,

but it rather aims at utilizing common search spaces for different faults to generate

common sub-solutions.

Consider the circuit shown in Figure 3.2 and the single faults a/i and b/i (a and b

are stuck-at 1). These two faults are not compatible because they have different logic

'37

PIS

Combinational
Module

OUT

Figure 3.2. A combinational circuit block example.

assignment requirements at the inputs of the AND gate. As depicted from the figure,

if a test cover exists for one fault, a test for the other fault will also exist. The logical

search space for both faults is the same in the combinational module but different

only at the AND gate. A typical ATPG system will search the combinational module

space twic before a test for each fault is generated, as long as the generated cover

for one fault does not cover the other fault. Global search, on the other hand, would

allow the search of the combinational module only once. This will create a common

sub—solution for both faults by assigning logic values to all primary inputs except at

nodes a and b. It is clear that to implement such methodology, the search space for

both faults must be explicitly exposed to the search algorithm. This requirement will

be provided in Chapter 4.

3.3 Important Issues in the GATPG Framework

Now that the concept of global ATPG is defined, it is worthwhile investigating the

possibility of modifying current ATPG approaches so that they might incorporate

the global test concept within their framework. We believe that this is an important

point, otherwise we will not be able to justify the need for a new test algorithm.

Global testing can be applied to the test generation problem for current ATPG

algorithms in many ways. One way is to search the circuit for test covers for more

38

than one fault simultaneously. Another way is to apply different search strategies, in

a multiple search strategy system, globally. These approaches will decrease either the

number of search cycles or the average time needed to cover a single fault. Eventually,

the overall test generation time will decrease as well.

Current test generation systems use only single target fault strategy. The idea is

that they generate a cover for a target fault and then fault simulate this cover to

reduce the number of faults in the list of target faults. Let us assume that an ATPG

system has been modified to search for covers for more than one fault simultaneously.

In order to apply global testing techniques' in such systems, one should make sure that

the starting set of target faults, which will be searched simultaneously contains incom-

patible faults. Otherwise, faults which can be covered with a single test vector might

be searched by exposing their combined search space. This definitely will cause waste

in computer resources. However, the problem of searching a circuit for incompatible

sets of faults is itself NP—hard which makes it even difficult to apply GATPG to the

test problem , with the current approaches. The multiple search strategy approach

can be applied to current ATPG systems using multiprocessor environment in which

each processor uses a separate search strategy for the fault under test. Large speed

up factors may be achieved on the expense of more complicated hardware systems.

Therefore, none of the GATPG' approaches can be implemented efficiently within the

-context of current ATPG systems.

Since we have justified the need for a new global test framework, it is helpful to

look at the expectations and challenges that lie ahead in implementing GATPG sys-

tems. Two facts can be extracted from the discussion of Figure 3.2. It is expected

that the test generation time will depend entirely on the algorithm's implementation

because the search space of each part in a circuit will be explored only one time in the

39

context of global search for tests. Therefore, the efficiency of the test procedures that

are applied to the different parts of a circuit will determine the overall efficiency of

the test system. Of course, the circuit complexity will have a great impact on the sys-

tem's performance but it is better to think of an implementation which simplifies the

test process rather than being concerned about how complex a circuit is. An imple-

mentation which incorporates test procedures that put different circuit complexities

on equal footage will be highly desired.

The other fact which appears to be very challenging in the implementation of

global ATPG systems is. the memory requirements. The very thought that the search

space of many faults will be explored simultaneously by the test algorithm makes it

appear very difficult to manage large size circuits. But again, one thing we larn from

other ATPG systems, there will always be some, constraints imposed on the search

space. For instance, the limit on the number of backtracks used by most ATPG

algorithms aims at reducing the search space for the test problem. Our challenge is

to devise a way to contain the space explosion during the test process in such a way

that optimal performance is achieved without degradation in test quality.

3.4 Modular Aspects in the GATPG Framework

The ultimate goal of our GATPG algorithm is to generate tests that can be used

efficiently in a modular test generation system. The GATPG algorithm will be re-

ferred to as 'a low level test system since it generates tests at the gate level,' while

modular testing will be referred to as a high level test,system.

A system is modular when it can be described as a collection of modules with

limited, well-defined interfaces. A test system is modular if it can use the set of test

vectors which covers all the faults in the module and a description of well-defined

40

interfaces of modules to'generate tests at the primary inputs of a chip. The test set of

a module is referred to as the test primitive of the module. The well—defined interfaces

are accessible through high level description (netlist) of the system's modules.

The most important aspect in the design of modular test generation systems is

how well defined is the interface between the test generation algorithm for the internal

circuitry of the modules (low level testing) and the modular test procedures which

translate the test primitive to the chip's primary inputs (modular testing level). This

particular point, although ignored by reserchers, has a great impact on how truly

modular the test system is.. The description of the interface between the two levels

of testing should be sufficient to assure that the modular test procedure will function

completely at the system level, without reference to internal circuitry of modules.

Any.referral to the internal circuitry of modules will cause the system to flip back

to low level testing. It should be noted that the test interface at the two levels of

testing is represented merely by the test primitives of modules, i.e., the output from

low level testing will be the only input to high level testing.

It must be emphasized here that current hierarchical test systems fail to deliver

the above mentioned requirements for modular test systems. Although the term test

primitives is used regularly in these approaches, it has newer been formally defined or

looked at in more depth to determine-the conditions and constraints that if imposed on

the test primitive would render the test system fully hierarchical. Instead, researchers

have looked at the two levels of testing (low and modular testing levels) differently

and devised ways to solve each testing level separately. The results from these efforts

showed a gap between what the system is specified to do and what it can deliver.

This fact manifests itself in different ways. For example, in' [54], test primitives are

not the only data that define the interface between modules. A procedure which

41

calculate the observability and controllability at the modular level is incorporated

in order to completely define-the modules test interfaces. The time to run such

procedure and the memory space occupied by data will definitely increases the cost

of test generation. Another manifestation of the problm can be seen in [43] where

the heuristics used for modular testing is based on the functionality of modules. At

any time during modular testing, the system functional heuristics may fail due to

the limitations imposed on these'heuristics. In that case, the test system flattens

the circuit to the. low level of abstraction and then applies low level test generation

heuristics to cover the fault under test. Such behavior, if reptitive, makes us question

the efficiency of such systems. We must keep in mind that the purpose of modular

testing is to control the test complexity of VLSI chips. In considering any module in

the circuit, irrelevant details about the other modules can be suppressed by hiding

them behind the interfaces. Eventually, a truly hierarchical test' system will use the

test primitives of a low level test system as descriptions of input data at the next

level..

3.5 Characterization of Test Primitives

It is imperative that for a modular test system to be successful, its underlying

low level test generator must inherently support modular testing. Since our GATPG

system represents the low level test algorithm which will generate the test primitives,

it is reasonable to characterize the required information in a test primitive and develop

a strategy to generate this information during test generation.

In order to characterize the test primitives, we need to determine first what kind

of heuristics are necessary at the modular test system. Then, we will try to match

these heuristics with corresponding requirements from the test primitives. Once all

42

heuristics at the modular level are matched with corresponding information in the test

primitives from the low level of testing, only then will the proper interface between

the two levels of testing be achieved.

r,

Module
A

Module

B

Module
C

Module
D

Chip boundary

Figure 3.3. An example to illustrate modular heuristics.

Consider the circuit shown in Figure 3.3. If the test primitive of module B is to be

mapped into the primary inputs/outputs at the chip boundary, we expect a number

of heuristics to be applied. These heuristics involve the propagation and justification

of the logic values in the test primitive of module B across the inputs/outputs of

other modules. The number of successfully mapped test vectors will determine how

many faults in module B will be covered by the chip test vectors. Some test vectors

in the test primitive may not be mapped to the chip boundary due to the lack of

controllability from the chip's primary inputs, which is responsible for setting the

logic values at the inputs of module B to the values specified in the test primitive.

In order to match these complex heuristics at the modular test level, I the test

primitive should include information on the one to one onto mapping across the

43

module's inputs/outputs. This information is usually referred to as symbolic paths.

Generally, the problem of generating symbolic paths is dealt with as a separate issue

from the problem of generating test primitives. In our approach, on the other hand,

we did not, separate these two problems but rather dealt with them as a single entity.

Therefore, our GATPG framework aims at generating test primitives according to

the following criteria:

• Each pattern in the'test primitive represents a sensitization path that is gener-

ated using our GATPG algorithm. In other words, the test primitive includes

the test vectors for the module under test.

• Propagation and justification heuristics are represented symbolically within the

test primitive. This representation allows the modular heuristics to be applied

without referène to the internal circuitry of the module. This representation is

complete, i.e.j there is no need for any other procedures or data representation'

during modular testing.

• The representation of symbolic paths 'is achieved using test procedures in our

GATPG system. Therefore, no additional functional heuristics are needed to

generate them.

The first" criterion is the only one that we share with other existing hierarchical

test systems. The other criteria are two further improvements in the direction of

fully modular test generation system. The se'cond criterion states that the interface

between the low and modular levels of testing is well—defined, which guarantees suc-

cessful modular heuristics without exception. The third criterion states that in order

to generate symbolic paths, we really do not need any extra procedures. This is

because the heuristics used to generate these paths is the same one used in our test

44

generation system. Since test vectors and symbolic paths use the same heuristics,

they are generated globally as well. This fact adds another level of simplicity in our

test generation system. The impact of these representations in the test primitives is

substantial as will be seen in the coming chapters.

3.6 Test Quality

Since we have developed a general idea about our test strategy, it is equally im-

portant to look at the impact of GATPG on the test quality. Test quality will be

affected by the efficiency of the test algorithm and the fault model used in the test

procedure. The efficiency of the GATPG algorithm will be judged by the fault cov-

erage and the time it takes to generate the test vectors. These issues will be dealt

with after the implementation of the GATPG algorithm. The fault, model, on the

other hand, is a priori condition and should be considered before the implementation

of the GATPG. However, we have decided to take a challenging step in the design of

our ATPG system in order to ensure the test quality, that is eliminating the random

test generation phase as a front end in our system. Our GATPG is single phase,

which means that the GATPG is responsible for generating all the tests required to

cover all the modeled faults in a circuit. In this way, we ensure that the test quality

of our system is always maintained regardless of the circuit complexity and however

resistant its behavior , is to random testing.

/ The accuracy of the fault model is defined as the number of physical defects that

are captured by the modeled faults in respect to the total number of possible manu-

facturing defects. The tuck-at fault model is the mostpopularmodel among others

and can represents most of the physical defects in VLSI systems. However, it has

been shown that the classical gate level stuck-at model is inaccurate for some faults

45

eq
A

Z1_1 T2

stuck
Xopen

C

T3

4

Figure 3.4. An example of a transistor level fault that cannot be described using the
stuck—at model.

in today's CMOS process.. Consider, for example, the NAND gate shown in Figure

3.4. If transistor T1 is permanently open, then this fault can only be detected by a

two—pattern test. The initial pattern sets the output C to a low value (A=1, B=I).

Then, the evaluation pattern tries to turn T1 on (A=O, B=l). In case T1 fails, the

output remains low, otherwise, the output becomes high. This type of faults cannot

be captured using the stuck—at model.

As far as our modular test system is concerned, any fault model used at lower

test level should not alter the way the test primitives are generated. As a matter of

fact, any low level test system may use any suitable test procedures with any fault

model as long as it generates the test primitives as specified before. Since we are

dealing with circuits at the gate level, the stuck—at fault model has been chosen for

implementation in our GATPG algorithm.

46

3.7 Summary

In this chapter; we have presented a new framework and a test model for solving the

problem of test pattern generation. Our model for test generation aims at eliminating

backtracking. In order to solve this problem, we have developed a new technique called

global test generation. Global testing means that tests are generated collectively for

all the testable faults in a circuit.

Since our objective is to build a modular test generation system, we have analyzed

the different modular aspects in the context of our proposed global test generation

framework. We have identified the required features in our GATPG system that will

lead us to a successful implementation of a single fault and a modular test generation

system. Accordingly, the test primitives have been characterized in the light of our

objective. The impact of our test strategy on the test quality has been discussed as

well.

CHAPTER 4

AN EFFICIENT GATPG ALGORITHM FOR
COMBINATIONAL CIRCUITS

The global test—based model described in the previous chapter will be used as a

guideline for the design of an efficient global automatic test pattern generation algo-

rithm for combinational circuits. The GATPG is a single phase global test generation

system. In this chapter, we will describe the necessary design steps needed to imple-

ment the global framework in the test problem. Again, it is emphasized that decisions

at this stage will be highly dependent on the final goal of this algorithm. The interface

between procedures needed at the modular test level and those needed at the GATPG

level will always be in mind in order to achieve a complete and sufficient description

for the test primitiv6 generated by the GATPG algorithm. Experimental results will

be given at the end of this chapter. The core of this chapter will be presented in the

ICCD'95 [58].

4.1 The Test Generation Model

The test generation model is a detailed description of how the global test framework

is going to be applied to the test problem. We will first discuss some global testing

issues, the test generation problem, and then presents an outline of how to approach

and implement the test generation algorithm.

48

4.1.1 Global Testing Issues

By looking back into the desired description of a test primitive which will guarantee

the creation of a fully modular test level, it is imperative that the justification and

propagation procedures at the modular level must be represented in the GATPG

algorithm. The question which can .be asked is what exactly is meant by propagation

and justification? At the modular level, the propagation procedure can be defined

as a procedure which propagates some logic values at the inputs of a module to its

output nodes (probably using a simulator). The justification procedure does the same

thing, but, the other way around, that is generating input logic assignments that will

justify some known output logic values. Both procedures represent mapping logic

values between the inputs and outputs of modules. Therefore, the keyword here is

mapping.

Let us now consider the test problem and see how can we incorporate this key

issue in the test generation procedures. First, such a mapping as explained above

has never been thought of in any of the existing ATPG systems. The reason is that

the purpose of such systems is to generate tests for the whole chip without support

for any higher test levels. Even when some of these systems are used to generate

tests for modules, they usually use another procedure to achieve higher test levels, as

explained in Chapter 3.

In order to elaborate on the mapping issue, consider the module shown in Figure

4.1. In order to propagate a set of logic values from the primary inputs to the primary

output, an implication procedure should be applied where the output of -a module

is determined by the input logic values. The implication, procedure is simple and

straightforward. The justification procedure, on the other hand, requires the back

49

PIS
High-level -

Module

Justification

POs

Figure 4.1. An example showing the propagation and.justification procedures at the
modular test level.

propagation of the logic values at the primary outputs to the primary inputs. This

step is very complicated and time consuming when applied to large circuits. The

outcome from the justification step depends on the circuit structure, i.e., given some

logic assignments at the primary outputs, there may be one or more vectors that can

be mapped to the primary inputs while there might be a case where no vectors can be

mapped to the module's primary inputs. We conclude from the above discussion that

mapping can be achieved at the gate level using implication and back propagation

procedures. Throughout the rest of the thesis, the. term mapping information will

be used to express the data generated by the GTPG algorithm which represent the

data needed to perform the propagation and justification procedures at the high level

of test, without reference to the module's internals. This te1m must not be confused

with the term fault mapping which is used to express the translation of a fault value

at a primary output of a module to a number of fault patterns at the prifnary inputs

of the same module.

Although our aim is to create a test system, there is no discussion so far on how

the test vectors are generated. As mentioned earlier, high level test interface issues

50

are resolved first and then the test strategy will be adapted accordingly; Now, it is

important to decide which strategy we are going to use to generate the test vectors:

The first thought is to use any known strategy for test generation, but then we will

end up with a system that has many of the disadvantages of other hierarchical ATPG

systems. The cost issue comes to the picture if we try to incorporate one strategy for

test generation and another strategy for creating the mapping information because

we will be loosing time in running two different algorithms, one for generating the

mapping information and the other for test generation. Instead, we have adapted and

embedded the concept of global test generation within the framework of the mapping

procedures. In this way, all the necessary information (test vectors and mapping) in

the test primitive are derived from a single algorithm. As a matter of fact, we will

generate a single set of patterns within a test primitive which represents both the test

and mapping information.

4.1.2 Test Generation Framework

Since the mapping procedures deal primarily with inputs and outputs of modules,

it is better to direct our attention to a test framework which put more emphasis on

the fault behavior across the inputs/outputs of modules. In order to adapt the test

generation strategy within this framework, we have to explain the difference between

the problem of generating a test for a fault inside a circuit and a fault at the boundary

of a module. A fault internal to the circuit needs to be excited (its logic value set to

the opposite of its fault value, i.e., a s/i fault is excited to 0) and be observed at one

of the primary outputs of the chip. The fault excitation step is achieved through the

forward propagation of logic values at the primary inputs to the fault location. The

fault observation step requires not only the propagation of fault from its location to a

51

primary output node, but also requires justification of logic values so that no conflict

in logic assignments is created. On the other hand, a fault at the primary output

.of a circuit needs only to be excited for the fault to be detected. Accordingly, it is

much easier to deal with faults at the primary outputs rather than those internal to

the circuit.

The question that now arises is that if we start with a fault at a primary output,

is it possible to generate tests for all the faults inside a circuit? The answer is

definitely yes, because any path that sensitize a fau1' internal to the circuit must

eventually end up at one primary output. Put in test generation terms, any tstable

fault in a circuit must be compatible with one or more primary output faults. The

next question is how can we achieve thd creation of such tests? Given a fault at a

primary output, it is possible to trace back the different paths between -the primary

output and the internal nodes in a circuit. The procedure which can achieve this'

purpose is the back propagation algorithm described above in the mapping procedure.

When applied to the test generation problem, the back propagation algorithm will

create many sensitization paths evolving from a primary output node and extend

through the circuit internals and terminate at the primary inputs. Each sensitization

path represents a series of faults that are detected by the resultant test vector. The

existence of many paths simultaneously makes the test system global. This test

strategy can also be described as the problem of mapping a fault logic value to its

equivalent set of fault and control logic values at the primary inputs. Therefore, the

back propagation procedure is used to generate test vectors and as a part in generating

mapping information. The forvVard propagation procedure is used only in generating

mapping information. In this way, a complete test primitive qan be generated within

a single procedure and without any software overhead. The challenge is to develop

52

an efficient implementation for the GATPG algorithm.

4.2 Problem Formulation.

The problem of mapping a fault logic value at a primary output of a circuit to a

set of test vectors at the primary inputs is formulated. The test procedures on the

basic logic gates will then be defined.

4.2.1 Problem representation

Consider the combinational module shown in Figure 4.2. The black box represents

a circuit structure with only one primary output. From the basic definition of testing,

for any internal fault (D or TD) inside the black box, this fault must popagate to and

be observed at the primary output to be covered. The fault may be observed at the

primary output as a D or a D logic vlaue.

xl

X2

Xn

Combinational
circuit

F

Figure 4.2. A combinational circuit block.

The logic value at the primary output can be expressed as a Boolean function of

the primaryinputs XI, X2,.., Xn. Global testing can b.e ahieved by tracing back

the different sensitization paths between the primary inputs and outputs starting at'

a primary output node. The problem of global test generation can be stated as one

of solving each of the following two equations:

F(x1,x2;...,x) = D (4.1)

53

= (4.2)

where X1, X2, ..., X. may assume any combination of the logic values 0, 1, X, D,

or D, where X is the don't care logic value. We will refer to the logic values 0, 1,

and X as the control logic values, while D and as the fault logic values. The test

vector X1, X2,..., X, will be referred to as a fault pattern because it might include a

fault logic value. In each fault pattern, the control logic values allow the fault logic

value to propagate to the primary output. This creates a sensitization path between

the primary inputs and the primary output with all the cothpatible faults on that

path covered by the same fault pattern. This definition of global testing reduces the

test generation problem to that of searching a circuit for all the sensitization paths

between the primary inputs and outputs.

4.2.2 Logic Representation in the GATPG Algorithm

The five-valued logic representation has been used in the above discussion to ex-

plain some basic issues in our GATPG algorithm. However, the need for the gener-

ation of a complete test primitive has lead us to the conclusion that the five-valued

logic representation will not be adequate: In current ATPG systems, the fault logic

values D and are used to represent a node stuck-at--0 and stuck-at-.1, respectively.

For example, in the fault-free circuit, the logic value of a node with a D fault value

is 0, and in the faulty circuit the logic value of the node is 1.

Since we are dealing with the problem of mapping faults across modules, we are

not really interested in the absolute type of faults, but rather interested in the relative

fault values between two nodes during the mapping process. Therefore, in our ap-

proach, a D or a V fault value will be used to express both stuck-at-0 and stuck-at-4

54

faults. A node which carries a D or a logic value will have the potential of both

types of faults being covered for this particular node. Let us assume that the GATPG

algorithm starts the back propagation process with a D fault value at the primary

output. Any internal node that carries a similar D value is compatible with the fault

at the primary output. In other words, the sensitization path which passes through

the two nodes will cover faults with the same polarity at the two nodes (both s/O or

both s/i). On the other hand, if their polarities are different, i.e., the internal node

has a TEl fault value, then, the sensitization path covers two compatible faults with

diffrent polarities (one .s/1 and the other s/O). Since the algorithm always knows

what value the primary output" started with, it is easy to determine ihe fault-free

and faulty response of any node by looking at the fault value it holds. Accordingly,

the generated test vector not only carries information about the test path but also

specifies its forward implication on the output logic value. This explains why at the

low level test generation using our GATPG algorithm, the forward propagation step

is not needed.

We have considered the situation where both types of faults can be covered by the

test system. There are other situations where only one type of fault (s/i or s/O) can

be detected while the other type is redundant. It seems that adding two more fault

values to the logic representation would include this situation in our test system. For

instance, one fault value describes a s/O redundant case, while the other describes the /

s/i fault, redundancy case. However, the algorithm has the extra task of determining

the fault response at the primary output as well. For instance, the' algorithm should

determine which type of fault is covered and what is the output value in the faulty

and fault-free circuit. Therefore, four fault values has been included with the five-

valued logic representation. The resultant 9-valued logic rèprsentation is used in our

55

GATPG to express the logic values at different nodes in a circuit. The logic values

0, 1, and X are referred to as control logic valued, while the logic values D, V, FD,

F, TD, and T are referred to as fault logic values. The fault logic values are used

to express the relative fault values on a sensitization pat11 between an internal node

in the circuit and a primary output. They are also used to determine the response

at the primary output (faulty and fault-free values). The fault logic values FD, FTC,

TD, and IT express ,a node with the potential of having only one type of stuck-

at fault (s/0 or s/i) being detected. For instance, FD and F-DU represent a node

carrying a s/i fault logic value with the primary output having a logic value of 0 and

1, respectively, for the fault-free response.

4.2.3 Extensions and Simplification of the Test Problem

It is interesting to know that with the above representation of logic values, it is

possible to further simplify the test problem. Since we interpreted a D or a as fault

values that represent both types of stuck-at faults, then, starting with either value

at a primary output means that we propagate both types of faults simultaneously

(globally). As a result, we need to solve only one of the above two equations. There-'

fore, in the GATPG algorithm, a D fault logic value will be assigned to the primary

output and mapped into a number of input fault patterns at the primary inputs. To

probe more on this concept, the following definition and proposition will give more

insight into the above discussion.

Definition 1. The partial complement of an input fault pattern which retains a D or

a 7Y fault value is another fault pattern with its only fault logic value complemented

and each control logic' value kept unchanged. For instance., the partial complement' of

the fault pattern (0, 1, D) is (0, 1,).

56

Proposition 1 If the input fault pattern (X1, X2, ..., X) which retains a D or a

fault value is a test cover for the fault s/O (or s/i) at any node on a sensitization

path, then, the partial complement of this fault pattern is a test cover for the fault s/i

(or s/U) at the same node.

A partial complement of the fault pattern at the primary inputs causes only the

fault logic values to be complemented at all nodes residing on the path and retaining

one of the fault logic values D or R The intuition of this proposition is that all faults

on the sensitized path can be covered for both s-a-O and s-a-1 faults, using the fault

pattern and its partial complement, provided that the input fault pattern retains one

of the fault values D or D. The partial complement is equivalent to the problem of

back propagating a _D at the primary output (instead of the D logic value) to map it

into primary input fault patterns.

If, on the other hand, there exist some input fault patterns where none of the

primary inputs has a D or a fault logic value, then, the input fault pattern will

retain one of the other four fault values. In such case, the input fault pattern will

support only one type of stuck—at fault to be detected and the partial complement

step will not be applied.

For multiple output circuits, we need to extend the definition of the global testing.

problem. A sufficient condition for testing an internal fault in a circuit is to observe

the fault at one (or more) node of the primary outputs. Accordingly, test generation

can be achieved by iteratively generating tests for each output cone. This can be

achieved by assigning a fault logic value (a D or a) to one primary output and

don't care values to the other outputs.

57

We can then formulate the test generation problem for the general class of combi-

national circuits as one of solving the following set of equations:

F(X1,X2,...,X)=D

Fr(Xi,X2,...,Xn)=X

(4.3)

(4.4)

for all r, 1 ≤ r < m and r 54 i; where m is the number of primary outputs in a circuit.

4.3 The GATPG Algorithm

The purpose of the GATPG algorithm is to generate, all possible fault patterns

at the primary inputs of a circuit. To achieve this goal, a Back-Fault-Propagation

procedure has been developed and is presented in this section.

4.3.1 Back-Fault-Propagation for Logic Gates

Back-propagation of logic values is a well known technique that has been used both

by combinational and sequential ATPG algorithms. In the context of current ATPG

algorithms, back-propagation and backtracing are used to create nodes in a decision

tree and to justify some previously assigned logic values in a branch-and-bound search

environment. In our approach, back-propagation is used to enumerate the possible

logic assignments at some nodes in a circuit. No decision tree or justification steps

are required.

The basic operation of the test algorithm is to back-propagate a fault or a control

logic value at the output of a logic gate to its inputs. Unique fault and control

logic assignments are used during the back-propagation process across the gate's

input/output nodes. Figure 4.3 shows a NAND gate with its output being assigned

different logic values. The algorithm uses all the possible combinations of fault and

58

control logic values at the gate's inputs which uniquely imply the logic value at the

gate's output. As shown in Figure 4.3, for instance, the possible fault patterns at

the NAND gate inputs (a and b, respectively) are (1,) and (D, 1) with the gate's

output being assigned a D fault value. Back fault assignments with a similar form

can be defined for OR, XOR, and other types of gates (or modules)..

13 0

DFD

Figure 4.3. The back fault assignments for a NAND gate.

From Figure 4.3, it can be seen that single path sensitization (SPS) is supported

by the test algorithm. This implies that faults are covered using only one path, even

though multiple paths for a fault might exist which will simultaneously cover the fault.

To elaborate on this point, consider the circuit structure shown in Figure 4.4. Let us

assume that there is a fault residing at the source node of the fanout structure, as

shown in figure. If this fault propagates in the forward direction, more than one fault

path will be created. As the circuit structure converges at the output NAND gate,

many possibilities exist which allow for any combination of faults (or no faults at all)

to appear at the inputs of the NAND gate. If the fault is successfully proagated to

• the output of the NAND gate with more than one fault value assigned to the inputs

of the NAND gate, the fault is said to be sensitized through multiple paths. Multiple

59

• paths may also cause the faults at the inputs of the NAND gate to mask each other

and thus destroying the sensitization structure. .For instance, if one input carries a

D fault logic value and the other input carries a TLY fault logic 'a1ue, the output of

the NAND gate will always be one, even though the effect of the fault is propagated

from the fault location to the inputs of the gate.

forward

fault

iocatio

fault

• locatio

+

pathi

pathi

backward

Figure 4.4. Single and multiple path sensitization of faults.

In the GATPG algorithm, only the back propagation is allowed. Therefore, looking

at the same example in the backward direction, the GATPG enforces the inputs of the

NAND gate to carry one and only one fault at a time. For this particular example,

three choices will be allowed for the 3—input NAND gate. Each one of these choices

represents a path with one fault value at one of the inputs and control logic values for

the other two inputs. When the fault at one of the inputs propagates to the fanout

structure; only one stem node will carry the fault logic value, hence, multiple path

sensitization is not possible in the back propagation procedure.

In some cases, however, multiple path sensitization (MPS) must be applied to

60

cover a fault. One way of achieving MPS, for instance, is to add the assignment

()) to the inputs of the NAND gate shown in Figure 4.3 (when the output is

M. . Such assignment will have the effect of increasing the size of the assignment tree

in the GATPG algorithm. Hence, multiple fault assignments at the inputs of logic

gates are not considered in the GATPG algorithm. However, an efficient procedure

which supports MPS and uses only the SPS assignments will be presented later in

the discussion.

4.3.2 The Back—Fault--Propagation Procedure

The key to fast performance .is the use of necessary assignments during test gen-

eration [14]. The Back—Fault—Propagation procedure guarantees that only consistent •

logic assignments at the different nodes be progressively propagated toward the pri-

mary inputs. Redundant faults cause conflict assignments to appear in the node

assignment tree. In this procedure, the detection and removal of conflict assignments

occurs at the fanout stems. Therefore, the back—propagation process stops at fanout

stems to resolve conflicts in the logic assignment tree.

The back—fault—propagation procedure starts at a primary output node and ends

by collecting the fault patterns at the primary inputs. During this procedure, a tree

of logic assignments is created. Each node in a'circuit will be assigned one or more

logic values. We refer to the string of logic values assigned to a circuit node as the

logic queue of that node.

Definition 2 The logic queue is an ordered set of logic values issigned to a circuit

node. The first logic value in the set is at the head of the queue while the last element

in the set is at the tail of the queue.

61

For instance, the logic queue of input a of the NAND gate shown in Figure 4.3

(with its output tied to D) is denoted by qa and has a length of two with logic Ti at

the head of the queue and logic 1 at the tail of the queue. This can be written as q

A general outline for the Back-Fault--Propagation (BFP) procedure is shown in

Figure 4.5. As discussed earlier, test generation is achieved by generating tests for

each output cone in a circuit. This is indicated by the first for statement in Figure

4.5. An arbitrarily selected primary output is assigned an arbitrary fault logic value

(D or). The remaining primary outputs are assigned X logic values.

During its execution, the algorithm allows some logic queues to bck-propagate

their logic contents while, delaying the propagation. of some other logic queues until

certain .requirements are met; a marking procedure is used by the algorithm to achieve

this purpose.

Definition 3 A node is said to be' marked if the logic value, at the head of its logic

queue, is enabled for back-propagation.

The back-fault-propagation procedure continues the back-propagation of faults as

long as there exists at least one marked node in the output cone (the while statement).

The back-propagate function in Figure 4.5 assigns uniquely implied logic values to

the inputs of a logic gate according to the gate's output logic value. After each back-

propagation step, the BFP procedure checks if any of the newly assigned nodes is

a stem of a fanout structure (the first if statement). The back-propagation process

stops at fanout stem nodes. This occurs by unmarking all the newly assigned fanout

stem nodes from the preceding back-propagation step.

Consider the circuit example and its associated assignment tree shown in Figure

62

Input : A circuit's netlist.

Output : A set of test patterns.

Procedure Back-Fault-propagation() {
for each primary output;

{
assign a D logic value to a selected primary output;

assign don't care to other primary outputs;

while there is a marked node i in the output cone;

{
back_propagate(qf, gate-type);

if any of the assigned nodes is a stem node;

if all the stems in a fanout point are assigned;

{
compare(g31, q32 ,..., q);

mark nodes associated with the fanout structure;

}
else unmark the stem nodes;

}
partial-complement (fault patterns);

fault-simulate(;

}
}

Figure 4.5. BFP: a back—fault--propagation algorithm that globally sensitizes output
cones.

63

level i

level i+l

Figure 4.6. A circuit example for marking nodes associated with fanout structures
and the sub—tree of logic assignments at node in.

4.6. Each node in the tree represents the marking status of a circuit node after it

is assigned a logic value. An "X" sign inside a node represents An unmarked node;

otherwise it is marked. A line drawn between two nodes in a tree represents the logic

assignment of the circuit node associated with that edge. An asterisk besides a tree

node indicates that this node is a fanout stem. Each node in a tree has a level of

assignment. For instance, node in is at the ith level of assignment, while nodes h and

k are at the ith ± 1 level of assignment.

Suppose that node mhas been 6ssigned a fault logic value D. Then, after applying

the back-propagate function to this node, nodes h and Ic will be assigned as shown

in the figure. The algorithm unmarks node Ic. The reason is that it is not known

which logic assignment will be consistent with the logic assignments at the other stem

node. Hence, the algorithm delays the back propagation of this logic assignment until

conflicts are resolved between the fanout stems.

Only when all the fanout stems are assigned logic values, the algorithm uses the

compare() procedure, as shown in Figure 4.5, to compare the logic values assigned to

the fanoüt stems. The consistent logic values will be extracted and assigned to the

source node of the fanout structure. In the above circuit example, if the compare()

procedure results in a conflict assignments between the fanout stems, then, the subtree

64

1 1

Conflict

Partially-conflict

Conflict-free

0

D

TD

1

D

D

X

0

FD

D

D

0

1

0

1

1

X

Figure 4.7. Comparison outcomes for logic assignments at fanout stems.

of logic assignments at node h will be discarded. A comparison example between some

logic assignments in fanout structures is shown in Figure 4.7. As shown in this figure,

three outcomes may result:

• Conflict assignments: In this case, there exists no current assignment to the

source node that sets the logic value at each stem node to the desired value.

Hence, no logic value is assigned to the source node. The logic values at the stem

nodes and their accompanying gate inputs will be removed from the assignment

tree. For example, if the logic values assigned to node r in Figure 4.6 are in

conflict with those at node Ic, then, the logic assignments of nodes h, Ic, and r

will be discarded.

• Partial conflict: In this case, a sensitization path with only one type of stuck—at

fault can be supported by the current stem nodes assignments. Consequently, a

D or a fault value at a stem node will disappear and be replaced by a single

fault logic value that is compatible with the control 1ogic value assigned to the

65

other stem. For instance, the fault logic value FD in Figure 4.7 is assigned to

the source node of the fanout structure after comparing the fault logic value D

with the control logic value 0. -Hence, FD represents a s/i fault with a fault-free

logic value of 0 at the primary output.

• Conflict-free: in this case, either a complete match occurs between the logic'

values at the stem nodes or one of the stems has an X logic value. The source

node can then be assigned logic values as shown in the bottom of Figure 4.7.

It can be concluded that there exists only one fault value associated with each

sensitized path. Therefore, although different sensitization paths may share some

control logic values, each one retains its fault logic value.

The marking of nodes is always revisited after the execution of each compare pro-

cedure as shown in Figure 4.5. For instance, if a successful comparison, i.e., either

partial conflict or conflict-free, occurs, the source node of the fanout structure is

marked. On the other hand, if the comparison results in inconsistent logic assign-

ments, this node will be unmarked.

4.3.3 Multiple Path Sensitization

Multiple Path sensitization occurs clue to the existence of fanout structures in a

circuit. In the GATPG algorithm, MPS is approached by the local search of fanout

structures to find a set of consistent logic assignments which allow more than one

stem node to carry a fault logic value. This fault logic value will be assigned to the

source node of the fanout structure.

The back-fault-propagation procedure accounts for faults which can only be cov-

ered by MPS using the cube intersection of the logic assignments associated with each

66

Figure 4.8. A MPS example.

g=D (Initialization Value)

level 1

level 2

level 3

stem node in a fanout structure. In order to achieve MPS using cube intersection,

all stem nodes must carry consistent fault .logic values in order to generate a new

sensitization structure which allowsmore than one stem node to carry fault values

simultaneously. Consider the circuit shown in Figure 4.8. The single faults b1/O and

b2/O can be covered through SPS, however, the fault b/O can only be covered using

MPS. The logic assignment tree, shown in Figure 4.4, behaves as a multiple—valued

tree. Each bundle of nodes proceed together and forth a subtree of logic assignments.

The two bolded paths in the logic assignment tree represent the paths where the stem

nodes b1 and b2 carry fault logic values. The logic assignments associated with these

nodes are (a=1, b1=D, c_—i) and (a=i, b2=D, c=i). The cube intersection of these

two patterns results in the assignments (a=1, b—D, c=i). The resultant test vector

(1, D, 1) and its partial complement cover the faults b/O and b/i. These faults can

only be covered through MPS. In this way, MPS can be achieved using SPS logic

assignment and without fuither increasing the size of the assignment tree.

67

The procedure which implements multiple path sensitization is shown in Figure

4.10. The MPS procedure terminates if a multiple path(s) which sensitize both type of

nodes (s/U and .s/1) at the source point of the fanout structure is created, otherwise,

the jrocedure continues. If cube intersection results in conflict of assignments between

two stem node paths, the process continues with other stem nodes until a multiple

path sensitization with maximal number of stem nodes is created. This process can

be illustrated using the example shown in Figure 4.9. The search space for a three-

stem fanout structure is shown in the figure. If the multiple path procedure starts

with stem 1 in the multiple path sensitization list, the path associated with stem 1

is compared with that of stem 2. The conflict may occur if the two fault entries of

the stem nodes are not consistent or any control logic assignment in the region of

intersection between the stem nodes is in conflict. If such conflict exists, it means

that it is not possible to support a sensitization structure which allows stem 1 and

stem 2 to carry fault logic values simultaneously. Accordingly, the search space for

stem 2 will not be considered any further, as shown in Figure 4.9. The procedure will

then try the cube intersection between the sensitization paths of stem 1 and stem 3.

In order to determine which fault entries for stem nodes are consistent with each

other, faults are compared at different entries. For example, a DF fault logic value

on a stem node will result in a conflict if compared with another stem node carrying

any of, the fault values FD, TD, or TT. An interesting case may occur when one

stem node carries, for instane, an FD fault value while the other item carries a 71

Since TJY represents both type of faults while FD represents only a s/i type of fault,

it is expected that comparing these two fault values would results in the sensitization

of a s/i fault. However, although both fault values support a s/i sensitization path,

they produce different logic values at the primary output of the circuit. An FD fault

68

search space for
stem 1

stem 1

stem 2

stem 3

Search space of stem 2
is removed

Figure 4.9. Search space representation for a 3—stem fanout structure.

value covers a s/i fault with a fault—free output logic value of 0, while a T fault value

would support a s/i fault with a fault—free output logic of 1. This simply show that

although faults at the fanout stems can be excited properly, the faults propagated

from the stem nodes will mask each other before they successfully propagate to the

primary output. This process is called path sensitization failure or destruction. In

short, the following list of fault pairs represent the fault comparison, for each pair,

which results in a conflict—free fault assignments at two stem nodes. These pairs

are: (D, t), (,), (D, FD); (D, TD), (, Fr), (TD, TD, (FD, FD), (TD,

TD), (Fr, Fr), and (Tfl, TTD). Any other pair of faults will result in conflict fault

assignment.

For a fanout structure with n number of stems, the MPS procedure takes a max-

imum of (n-i) + (n-2) + ... + 1 cube intersection steps to terminate. Hence, the

procedure is linear with the number of stems and does not cause any degradation in

the GATPG algorithm's performance.

69

Input Stem nodes sensitization paths.

Output : MPS-list A set of stems with MPS.

Procedure Mult-Path-Sens.() {
for each stem node i;

{
Let j=i+1;

Let MPS-list=i;

while j is less than the number of stems;
{
cube-intersect(SPS-path[i], SPS-pathlj]);

if conflict free cube intersection;

MPS-list=j;

if MPS-list covers the source node for both type of faults;

exit;

else continue search;

else j=j+l;

}
}

Figure 4.10. The multiple path sensitization procedure.

70

4.4 Data Structure and Tree Pruning

The BFP procedure allows all possibilities of path sensitization to be considered.

Consequently, the queue sizes of some nodes in a circuit, might explode exponentially.

Since the test generation approach used in the BFP procedure is different from current

ATPG systems where backtrack limit is used to impose space constraint in the search

process, a new methodology should be employed to contain the space complexity

and to prune the assignment tree during back propagation. The efficiency of a test

generation algorithm greatly depends on its implementation, hence, a description of

the data structure used in implementing the BFP procedure is presented, then, tree

pruning will be discussed.

4.4.1 Data Structure

Consider the circuit shown in Figure 4.11. The dynamic change of the data struc-

ture during the back—propagation process for the circuit example is also shown in

Figure 4.12. Each segment in Figure 4.12 corresponds to a different level of assign-

ment. As shown in this figure, the data structure of the BFP procedure is a two

dimensional array of circuit nodes. The first column in the array represent current

nodes which carry fault logic values (fault entries). All other nodes retain control

logic values (control entries). Starting with a node carrying a fault logic value, a

horizontal move represents a sensitization path logic assignment for a node on the

path. A vertical move in the control entries, if it 'exists, represents another set of logic

values which sensitizes different path for the same entry node which carries the fault

value.

Figure 4.12 shows that the circuit requires three levels of assignment before all

71

the stem nodes are completely assigned. After applying the Compare(.) procedure, it

is apparent that MPS from node b is not possible because of the conflict fault logic

entries at nodes b1 and b2 (cube intersection will result in conflict of assignment). On

the other hand, SPS of faults at each entry in the first column in the data structure

can be extracted. For instance, at level 3 of assignments, in the first fault entry

(a=D), the test pattern (a=D, b=O) is generatd due to the conflict—free assignments

at the stem nodes b1 and b2. This fault pattern along with its partial complement

cover the two faults a/O and a/i. For the second entry (b1=D), only the fault b1/1

can be covered because of the partial conflict with the logic value at node b2. After

comparing the logic values at the stem nodes, node b will be assigned the fault value

FD (not shown in figure).

Figure 4.11. A circuit example.

It is clear that some node assignments are shared by sensitization paths for different

faults. For instance, the first and second fault entries share the node assignment

b2=O. This is different from current ATPG approaches where test generation efforts

are dedicated to single target faults. On the other hand, the GATPG algorithm allows

for global test pattern generation in a shared search space environment.

72

Control entries

'N

I-I I
I I

-

II
ji
I I

,
/

/

Fault entries

Figure 4.12. The data structure for the circuit example.

4.4.2 Pruning the Assignment Tree

The horizontal length (number of nodes in the horizontal direction) of the data

structure used in the BFP procedure is limited by the number of nodes assigned at

some level during back—propagation. The vertical dimension-of the data structure,

however, will explode exponentially if enumeration of logic values is allowed at all

levels of assignment. For instance, consider the fault entry b2=-D in Figure 4.12. At

level 3 of assignment, two sensitization paths are created which support the fault

entry at node b2. Eventually, as the number of levels of assignments increases, the

number of paths associated with each fault entry will, in the worst case, increase

exponentially.

A key factor in controlling the space complexity of the GATPG algorithm would

be to limit the number of sensitization paths associated 'ith each fault entry in the

data structure. Therefore, the BFP procedure keeps track of the possible number

of sensitization paths for each fault entry and compares it to a preset limit. If the

73

number of possible paths exceeds that limit, then only one pattern is allowed for

each consequent back—propagation step. Otherwise, full enumeration of logic values

is allowed.

The preset limit for the maximum number of sensitization paths associated with

each fault in our implementation ranges from 2 to 5 depnding on the circuit com-

plexity. This limit is generally smaller than the backtrack limit used in current ATPG

algorithms. The reason is that at some level of assignment, only a small portion of the

search space is exposed and a small number of alternatives might be needed. If at any

level, some of these alternatives are in conflict, the algorithm creates more options for

the next levels of assignment by allowing full enumeration of logic values across the

logic gates until the number of alternatives reaches the preset limit. In this way, the

.GATPG algorithm can deterministically generates tests globally without using large

memory spade. This approach also ensures that every testable fault will be covered

while redundant faults will be singled out. A redundant fault will result in a complete

conflict of assignments for all the control entries associated with it. Consequently,

redundant faults nearest to the primary outputs are not processed any further by the

algorithm. All paths between the primary inputs and the visited redundant faults will

not be processed as well. This technique enhances the performance of our algorithm

and saves test generation time.

4.5 Constructing the Test Primitives

Since the GATPG algorithm is described in details, an example which illustrates

the procedures for test generation and the construction of the test primitives is pre-

sented. The example circuit is shown in Figure 4.13. The GATPG algorithm will be

applied to the circuit example in order to generate the test primitive.

74

Figure 4.13. A combinational circuit example.

Figure 4.14 shows a highlight for the first output cone for the circuit and the

corresponding data structure used by the GATPG algorithm. The GATPG algorithm

takes three levels of assignments to completely map the fault value at the primary

output to the circuit's primary inputs. For each fault entry, one sensitization path will

be selected as an input vector which covers the fault entry location. A careful choice

should be made to decide which values (path) to keep and which to ignore bçcause we

might be faced with different choices, as shown in Figure 4.14. The first fault entry

will have only one sensitization path which is represented by the logic entries: a=D,

c1=1, b=O, and c2=X. After the compare procedure is applied, the test pattern which

represents this fault entry will be: D, 0, 1, X for a, b, c, and d, respectively. The first

fault entry cannot propagate through the other path which carries the assignments

c2=0 and b=X, because, in this case, c1 and c2 are in conflict.

The second fault entry, on the other hand, may have two valid paths. The first is

represented by the assignment a=1, b=0, and c2=X. This path created the test pattern

1, 0, D, and X for a, b, c, and d, respectively. The other path has the assignments:

a1, c2 0, and b=X. There is a partial conflicts between the assignments of the two

stem nodes of the fanout point. This will result in the test pattern: 1, X, DF, and

75

a b c d

sps—D 01 X
10 D, X
0 D' 1 X
01 DX
11DX

MPS

Figure 4.14. Test generation for the first output cone.

76

X, which implies that this test will cover only one type of stuck—at fault (c s/i, for

instance). The better choke is to chose the first path because it represents a cover for

both type of stuck—at faults for all the nodes on that path. The bold lines in Figure

4.14 represent the different paths that are chosen by the GATPG algorithm to cover

all the faults in the circuit example.

The test patterns shown in Figure 4.14 are generated by considering all the fault

entries in the data structure. The first four entries in the test patterns table are the

one extracted from each entry through SPS. The last entry is extracted by apply-

ing the MPS procedure. In this procedure, the sensitization paths associated with

the fault entries for the two stem nodes are cube intersected. Since each entry has

two possible paths, four cube intersections may be performed before a MPS pattern

is generated. Currently, the ATPG algorithm halts if one MPS path is generated,

otherwise continue with the cube intersection procedure.

Similar procedures are applied to the second cone of the circuit example as shown in

Figure 4.15. Figure 4.16 shows the final test primitive for the module under test which

corresponds to the circuit example. The first entry in the test primitive is the output

cone number. This is followed by the list of generated test patterns. FoIlowingeach

test pattern is the logic values of the output nodes when the corresponding pattern

is applied at the inputs of the circuit under test. This information is produced after

the generation of each test pattern, where the test pattern is simulated (forward

propagation) and evaluated at the primary outputs. In this particular' example, with

each output cone, one of the two primary outputs always carries an X logic value.

In this way, the test primitive totally characterizes the test behavior'of the circuit.

It can be seen that the test primitive can also be used to evaluate the functionality

of the circuit. If the test primitive is to be used at the gate—level of testing, the test

77

a b c d

spszX D 1 0
1 D 0

X 0 D 1
X 0 1 D
X 1 D 1

7
MPS

r

Figure 4.15. Test generation for the second output cone.

78

a
PO (0)

b

The., circuit example PO (1)

Test primitive for the circuit example.

Output Cone (0)
* * * * * * * * * * * ** *

abcd P0(0) P0(l)
DO1X D X
1ODX D X
OD1x .D X
OlDx D X
11DX D X

Output Cone (1)

abcd P0(0) 20(1)
XD1O X D
X1DO X D
XOD1 X D
XO1D X D
X1Dl X D

Figure 4.16. The generated test prithitive.

79

fanout struct2 Me Ifanoijt structi

Figure 4.17. A circuit example for explaining the space complexity of the GATPG
algorithm.

primitive will represent the test patterns for the circuit. If it is to be used at the

modular level of testing, the test primitive will also serve as the mapping informatioh

across the module's terminals.

4.5.1 Algorithm Complexity

As shown in the above discussion, the GATPG algorithm minimizes the size of the

logic assignment tree by allowing only the consistent logic assignments to occur at

any node during the back—propagation process. It also applies pruning criteria which

effectively reduces the space complexity of the test generation process. The space

complexity of the GATPG algorithm is determined by the size of the data structure

during the back propagation process. As discussed before, the horizontal length of

the data structure is always limited by the number of nodes assigned during the back

propagation process. At any time, during this process, the number of valid paths

associated with each fault entry is less than a fixed number, i.e., the preset limit.

Therefore, the number of fault entries in the data structure are the only nodes which

are left unconstrained in order to ensure the coverage of all testable faults in ,a circuit.

It is interesting to notice that the number of fault entries in a data structure,

80

depends mainly on the circuit complexity, not on the number of nodes in a circuit.

This fact can be explained using the circuit ecample shown in .Figure 4.17. In this

example, during the back propagation process, any sensitization path from fanout

structure 1 (structl in figure) must pass through the stem nodes of struct2. For

instance, the bolded path at stem i will be back propagated through two single

path sensitizations; one time through node m while the other one through node

n. Of course, it is assumed that there are no more fanout structures in the path

between structl and struct2 in the figure. Accordingly, the three paths at the first

fanout structure will be translated into six single path sensitizations coming out of

the second fanout structure. In general, a circuit with a maximum of N consecutive

fanout structures in a path, with each structure i on the path having an m(i) stem

nodes, the expected maximum number of fault entries will be:

m(0) *m(1) **rn(N —1).

This number can be huge for large circuits. Fortunately, in our algorithm, we only

deal with output cones instead of the whole circuit. This technique drastically de-

creases the number of fault entries in the data structure and inherently partitions the

circuit under test. The above space complexity figure explains why the experimental

results in the next section show a performance which does not reflect the size of the

circuit under test, for instance, large circuits may take less test generation time than

smaller ones.

The time complexity of the BFP algorithm is mainly determined by the time taken

during the Corn pare() procedure. If a fanout structure has an rn number of stems,

the compare procedure time complexity is 0(m). As mentioned before, the multiple

path sensitization procedure has a linear time complexity with the number of stems

81

in a fanout structure, i.e., 0(m). Also, in the worst case, if the algorithm has to

perform the compare procedure for each sensitized path in the circuit, then the time

complexity will be:

0(m) * Number of fault entries.

Therefore, the time complexity, once more, reflects the circuit complexity; not the

circuit size. All the operations involved in building the data structure and the com-

pare procedure are very simple and do not include any decision making procedures.

Therefore, they are fast and efficient, which resulted in the superior time performance

of our algorithm.

4.6 Experimental Results

Table 4.1. Eeal execution performance of our algorithm in a two—phase implementa-
tion on a SUN SPARC 2 workstation with the ISCAS'85 benchmark combinational
logic circuits.'Time units: seconds.

Circuits RTPG DTPG Fault
coverage

Test
vectors faults CPU Dfault Rfault CPU

C432
0499
C880

495
741
911

0.7
1.5
2.1

20
9
31

4
8
0

0.4
1.1
2.1

100%
100%
100%

77
69
141

01355 1542 5.2 24 8 1.1 100% 102
C1908 1851 7.8 21 7 7.0, 100% 98
C2670t 2120 11.5 360 115 19.9 100% 344
C354Ot 3271 12.8 26 131 21.8 100% 266
C5315f 5271 25.6 20 59 33.1 100% 322
C6288t 7710 41.1 0 34 0.4 100% 75
C7552f 7011 52.0 406 131 36.8 100% 209

The GATPG test generator and a fault. simulator were implemented in C on a

SUN SPARC 2 workstation. The ISCAS'85 and '89 benchmarks were used to evaluate

the performance of the test generation algorithm. We generate test vectors for the

82

combinational circuitry for the ISCAS'89 benchmark by breaking the loops connecting

to the flip flops into primary inputs and outputs. The GATPG algorithm is used to

generate tests for each circuit, then, the generated patterns in the test primitives

are used to fault simulate the modeled faults reported in the benchmarks. We are

reporting results for two system implementations of the GATPG algorithm. In the

first implementation, we have purposely included a random test generation phase as

a front end to the GATPG algorithm. In the 'second implementation, the GATPG is

used as a single phase test algorithm without the random phase. In this way, we can

fully evaluate the potential of the GATPG algorithm.

4.6.1 Two Phase Implementation

In' the first implementation, the random test generation is first applied and is

followed by a deterministic test generation based on the GATPG. algorithm. Results

using the ISCAS'85 and ISCAS'89 benchmark circuits obtained on a SUN SPARC 2

workstation are summarized in Tables 4.1 and 4.2. We require only the test generation

for the combinational logic in the ISCAS'89 benchmark. The results obtained from

random and deterministic test generation are shown in the two columns labeled RTPG

and GATPG, respectively. Under the RTPG column, the label fault refers to the

number of faults detected by the random generation of vectors, while CPU refers to

the CPU time spent in random test generation. As a common practice, we generate

random test vectors until a simulation run of 32 vectors does not detect any additional

fault. For circuits marked with f, the random phase is continued until a 128 vector

simulation runs did not detect any additional faults. The random test generation and

simulation phase covers more than 90% of the faults in most circuits. In some cases

like C6288, the random test generation phase covers 100% of the testable faults.

83

Table 4.2. Real execution performance of our algorithm in a two-phase implementa-

tion on a SUN SPARC 2 workstation with the ISCAS'89 benchmark combinational

logic circuits.

Circuits RTPG DTPG Fault
coverage

Test
vectors faults CPU Dfault itfault CPU

S27 32 0 0 0 0 100% 18
S208 198 0.3 17 0 2.3 100% 50
S298 308 0.3 0 0 0.1 100% 59
S344 332 0.4 10 0 1.8 100% 52
S349 343 0.4 5 2 0.8 100% 41
S382 392 0.4 7 0 0.8 100% 47
S386 370 0.5 14 0 1.2 100% 78
S400 411 0.4 7 6 0.6 100% 63
S420 401 0.8 29 0 1.4 100% 100
S444 460 0.6 0 14 0.2 100% 46
S510 564 0.9 0 0 0.2 100% 66
S526 530 0.7 24 1 1.0 100% 113
S641 457 0.9 10 0 2.2 100% 120
S713 532 1.6 11 38 2.9 100% 141
S820 790 3.9 60 0 1.6 100% 159
S832 812 3.2 44 14 2.3 100% 177
S838 709 2.7 148 0 16.4 100% 181
S953 974 4.1 105 0 2.8 100% 149
S1196 1120 4.2 122 0 10.9 100% 196
S1238 1229 4.8 47 69 24.1 100% 260
S1423 1442 4.3 59 14 8.2 100% 151
S1488 1482 4.6 5 0 0.6 100% 230
S1494 1476 4.2 18 12 2.0 100% 221
S5378 4383 51.6 180 40 75.5 100% 392
S9234f 5781 142.4 694 452 189.6 100% 790
S13207f 8452 212.8 1210 151 123.0 100% 811
S15850f 10321 246.6 1015 389 274.3 100% 755
S35932f 35077 1778.5 33 3984 81.1 100% 214
S38417t 29198 1694.4 1817 165 375.4 100% 1817
S38584t 34211 1516.9 587 1506 107.7 . 100% 1330

84

In the GATPG phase, we have used a similar systematic approach to the one used

in random test generation. For each primary output in a circuit, we generate the test

patterns until a simulationrun of 32 (128 for circuits marked with f) test patterns

does not detect any additional fault in the output cone under test. This procedure

is repeated until all output cones are tested. For each primary output in .a circuit,

we generate the test patterns with a preset limit of two. A preset limit of five is

used for large circuits (marked with f). If any of the two fault logic values .D or

appears in the input fault pattern, both types of stuck—at faults are considered during

simulation. If, on the other hand, one-of the other four fault values exists, only the

corresponding type of stuck—at fault is considered by the simulator.

Under the GATPG column, the label Dfault refers to the detected faults by the

GATPG algorithm. If a fault is not detected by RTPG or GATPG, it is considered

a redundant fault as the label Rfault indicates. The CPU refers to the time taken to

generate the test patterns.

The final fault coverage is indicated under the column labeled Coverage. It repre-

sents the percentage of faults covered by the test• system including both RTPC and

GATPG. Finally, the column under Vectors is the total number of vectors generated

by the test system.

As shown in the tables, the two phase test system covers all the testable faults in

the benchmarks. The random phase covers at least 90% of the modeled faults in any

circuit. As the circuit size increases, the random phase takes a large amount of the

CPU time in order to reach the 90% fault coverage margin set by the test system.

The GATPG algorithm, on the other hand, takes a very small CPU time, even when

considering large size circuits.

85

4.6.2 Single Phase Implementation

In the single phase system implementation for the GATPG algorithm, we have

considered the fact that the GATPG algorithth CPU run time is small and it can be

used as a single phase system. In order to achieve this purpose, we have lifted the

constraint on the number of generated patterns that when generated do not cover

any other fault in the fault list of the circuit under test. This limit was 32 for small

circuits and 128 for large circuits. Instead, we simply allowed the GATPG algorithm

to generate all possible test patterns. The results of this implementation is shown in

Tables 4.3 and 4.4.

It can be seen from these two tables that the single phase GATPG system also

cover 100% of the testable faults in the benchmarks. The'CPU run time has increased •

slightly from the results in the two phase system. The overall run time is greatly

reduced compared to the two phase system. The only noticeable difference between

the two implementations is the resultant number of test. vectors. As expected, the

test length has increased and ui some cases is doubled. This is due to .the lack of

constraint on the number of generated test patterns in the single phase system.

Thble 4.5 shows a performance comparison between our algorithm and the Tran-

sitive Closure (TC) algorithm [12]. We have chosen large circuit examples in this

comparison where computational complexity is critical. In these particular examples,

the TC algorithm uses a large number of backtracks during its execution. The data

under the GATPG and TC columns show the average time taken by the GATPG

algorithm and by the transitive closure algorithm, respectively, to cover a single fault

in the corresponding circuit. Each entry under TC is calculated by dividing the time

taken in the GATPG phase by the number of faults in the fault list after the RTPG

86

Table 4.3. Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstation with the ISCAS'85 benchmark combinational
logic circuits. Time units: seconds.

Circuits BFP Fault # Test
Dfault Rfault CPU coverage vectors

C432 515 . 4 0.5 100% . 91
C499 750 8 1.2 100% 89
C88O 942 0 2.2 100% 188
61355 1566 8 1.2 100% 192
C1908 1872 7 7.1 100% 162
C2670t 2480 115 29.9 100% 393
C3540f 3297 131 27.8 100% 324
C5315f 5291 59 39.1 100% 429
C6288t 7710 34 10.4 100% 145
C7552f 7417 131 45.3 100% 511

phase. For the single phase GATPG system, each entry inder GATPG is calculated.

by dividing the test generation time by the total number of faults covered by the

algorithm. The Table also shows the resultant speed—up (SU) factor in each example.

The Speed—up factor depends on the circuit structure but in general our approach is

faster than the TC algorithm. For the other circuits in the ISCAS benchmarks, the

GATPG algorithm shows a comparable performance to the TO algorithm.

Generally, for small and medium size circuits, the GATPG algorithm shows a com-

parable performance with best known algorithms. For large and complex circuits, the

GATPG algorithm performs exceptionally we11 and outperforms other algorithms.

This is due to the global search approach, the early detection and' removal of incon-

sistencies, and by the use of efficient pruning techniques for the assignment tree. The

results also show that although our algorithm is single phase, the number of generated

patterns is slightly larger (but comparable) to those generated by other algorithms.

Finally, the GATPG algorithm always achieves a 100% fault coverage.

87

Table 4.4. Real execution performance of our algorithm in a single-phase implemen-
tation on a SUN SPARC 2 workstatin with the ISCAS'89 benchmark combinational
logic circuits.

Circuits BFP Fault # Test
Dfault Rfault CPU coverage vectors

S27
S208
S298
S344
S349
S382
S386

32
215
308
342
348
399
384

0
0
0
0
2
0
0

0.1
2.9
3.1
3.2
1.8
2.1
2.4

100%
100%
100%
100%
100% .

100%
100%

13
52
79
71
62
63
81

S400 410 6 2.6 100% 77
S420 430 0 3.4 100% 109
S444 460 14 3.2 100% 45
S510 564 0 4.2 100% 86
S526 554 1 4.0 100% 127
S641 467 0 . 3.0 100% 117
S713 543 . 38 4.9 100% 177
S820 850 0 4.6 100% 181
S832 856 14 4.3 100% 169
S838 857 0 17.9 100% 202
S953 1079 0 6.8 100% 169
S1196 1242 0 19.1 100% 221
S1238 1276 69 26.6 100% 299
S1423 1501 14 8.9 100% 161
S1488 1487 .0 9.6 100% 255
S1494 1494 12 6.0 100% 241
S5378 4563 40 81.5 100% 444
S9234t 6475 452 190.0 100% 812
S13207f 9662 151 144.1 100% 807
S15850f 11336 389 288.1. 100% 723
S35932f 35110 3984 96.0 100% 394
S38417f 31015 165 411.0 100% 2501
S38584f 34798 1506 120.5 100% 21.10

88

Table 4.5. Performance comparison between the BFP algorithm and the Transitive
Closure (TC) algorithm on a SUN SPARC 2 workstation for large ISCAS benchmark
circuits. Time unit: seconds.

Circuits GATPG TC SU

C2670 0.05 0.19 40
C7552 0.09 0.47 47
S9234 0.27 0.52 2
S13207 0.008 0.3 36
S38417 0.2 0.78 3.9
S38584 0.17 0.29 1.6

4.7 Practicality of the GATPG Algorithm

Since the GATPG is presented, its space and time complexities are explored, and

experimental results were reviewed, it is useful to give some remarks about the prac-

ticality of the GATPG. The-way VLSI circuits are designed today dictates that VLSI

test generation algorithms must be simple, fast, and efficient in order to keep on with

the pace of increasing design complexities. We believe that the GATPG algorithm

provides these requirement. Simplicity is manifested in the simple test procedures

employed in our algorithm. These procedures are not based on any decision making'

processes. This fact made it possible to direct our attention to the implementation

issues, rather than being worried about the test quality of the algorithm. The test

quality is always guaranteed.

The fast performance of the GATPG algorithm has been attained because of the

same factors that contributed to the simplicity of the algorithm. It is. known that

decision making—based algorithms suffer from time consuming procedures which, al-

though dealing with a single target fault, try different choices (sometimes based on

preprocessing setps) and then check the validity of these choices. Our approach, on

89

the other hand, is based on a none decision making procedures to minimize the test

generation time.

This discussion brings the efficiency issue into consideration. If the efficiency of

a test system is defined as the ability of the test system to cover all faults in a

circuit (regardless of test generation time), then all test approaches are efficient. If,

on the other hand, efficiency is defined as the ability of .the test algorithm to cope

with different circuit tomplexities and generate tests in a reasonable amount of time,

the GATPG will emerge as the most efficient. This, has been proved by the ability

of the GATPG algorithm to generate tests for large circuits, without random test

vectors. The sjace and time complexities of the GATPG algorithm show that the

test generation time is highly dependent on how complex the circuii is. But, as

we stated earlier, as long as the test procedures are simple and efficient, the circuit

complexity can always be contained in the context of the GATPG algorithm. This•

fact renders the GATPG algorithm as one of the most practical ATPG algorithms for

the ever increasing complexity of VLSI circuits.

48 Summary

The present test generation algorithms can generate test vectors for complex com-

binational circuits and guarantee 100 percent coverage for all the testable faults in

a circuit. However, in the worst case, the test generation time increases exponen-

tially with the circuit complexity. A new approach which combines simplicity and

efficiency has been developed for the test generation of large combinational circuits.

This approach is based on tracing back a fault at a primary output node in order to

generate test patterns which sensitize all paths between the primary inputs and the

primary output node. This system is referred to as global testing or a non—target

90

fault system.

A two phase and a single phase GATPG algorithm implementations have been

implemented for generating input fault patterns which sensitize all paths, between

primary input and output nodes. The algorithm creates a tree of logic assignments

by back—propagating a fault at a primary output node. During its execution, the

algorithm uses uniquely implied logic values across the input and output nodes of the

logic gates. A key feature of the GATPG algorithm is that conflicts are detected and

removed incrementally from the logic assignment tree during the back—propagation

process. The results on large circuits suggest that our algorithm outperforms other

test generation algorithms in terms of computing time.

CHAPTER 5

THE GENERATION OF TEST PATTERNS WITH
MAXIMAL MULTIPLE FAULT COVERAGE

The new framework which is proposed in previous chapters for solving the problem

of test generation suggests that it would be worthwhile revisiting other related test

problems and issues in its context. Some of these problems are extremely difficult

and have been put aside by test generation researchers. One of these problems is the

multiple fault test generation, in which the assumption that only one fault exists in

a circuit at the time of testing does not hold any more. Instead, it is assumed that

more than one physical failure has occurred in the circuit during fabrication, which

results in the existence of more than one stuck—at fault in a circuit.

As far as the problem of generating tests with maximal multiple fault coverage

for. the general class of combinational circuits. is concerned, no algorithm exists in

the literature which generates such tests. In this chapter, we will extend the domain

of the GATPG system by showing how it can generate tests with maximal multiple

fault coverage without adding any new procedures to our test system. We will first

present our analysis on the multiple faults behavior. This analysis will then be used

in improving the multiple fault coverage for any test set. We have taken this step to

show that this analysis can be applied to any existing ATPG system; a fact which

helps in building a better test system integration that uses different test models for

92

different applications. Then, we will show how can we apply the results of this analysis

to our GATPG system. The core.of this chapter will be presented in ASIC'95 [59].

5.1 Introduction

Multiple fault detection has been discussed many times [22, 8, 16, 42]. The major

complexity of the problem lies in the number of multiple faults that may exist in

a circuit. Most Automatic Test Pattern Generation (ATPG) algorithms guarantee

a 100% fault coverage for single stuck—at faults in a circuit. ,Single fault test sets

have been used in simulating multiple faults in a circuit. The multiple fault coverage

varies among the different test sets for the same circuit. This is due to the different

heuristics employed in different ATPG systems. Presently researchers have avoided

the direct test generation for multiple faults because of the extremely large number

of multiple fault combinations that exist in a circuit.

In this, chapter, the multiple fault testing problem is analyzed in the context of

path'sensitization algorithms such as PODEM, FAN, and SOCRATES. We specifically

examine the self—masking faults because they represent most of the undetectable faults

using single fault* test sets. We examine the strategies thai are generally used in path

sensitization algorithms for single fault test generation. These strategies may lead to

incomplete cover of some multiple faults in a circuit. A procedure which can be used

during single fault, test generation will then be presented. It implicitly guarantees

maximum multiple fault coverage for' a given set of test vectors. This procedure first

partitions the set of primary inputs in a circuit into three subsets, namely, control,

excitation, and persistency sets of primary inputs. Then, the problem of multiple

fault testing can be formulated as a problem of optimizing these subsets so as to

achieve maximal multiple fault coverage for each test. Based on the analysis given in

this chapter, two different procedures for augmenting any single fault test set will be

93

presented. We have tested these procedures on the 74LS181 ALTJ circuit using twelve

test sets generated by different methods.

This chapter is organized as follows. 'In the next section, we will briefly review

the previous work. In Section 5.3, some preliminary discussion on the multiple fault

testing problem is presented. The analysis of multiple faults behavior in the context

of path sensitization algorithms for single fault test generation is presented in Section

'5.4. In Section 5.5, we present two models for the analysis and test set augmentation

for multiple faults. In Section 5.6, two procedures based on the analysis of Section

5.4 are given. Experimental results on the 74LS183. ALU is given in Section 5.7. In

Section 5.8, we will show how can we modify the GATPG algorithm to generate test

patterns with implicit maximal multiple fault coverage.

5.2 Previous Work

There have been several works discussing the problem of multiple stuck—at fault

testing. Some researchers approach the fanout—free circuits [30, 19, 7, 29]. Most of

the work done so far on multiple fault testing emphasized on the issues of reducing the

number of faults considered during test generation and generating test sets without

explicitly considering all combinations of multiple faults [10, 24, 45, 50]. Jone and

Madden [29] developed an algorithm which generates tests for single stuck—at faults.

It guarantees the detection of all multiple stuck—at faults in fanout—free circuits.

Their test sets were shown to be minimal in size. Instead of generating test patterns

for multiple faults, the work of Agarwal and Fung [1] investigated the multiple fault

coverage of single fault tests. Results on fanout—free circuits containing gates with

fan—in of two cover all multiple faults of size two and three, at least 99% multiple faults

of sizes four and five, and at least 98.5% multiple faults of size six. GEMINI, proposed

94

e

Figure 5. 1. An example to illustrate testing terminology.

by Cox and Rajski [13], is a multiple fault test generation system for general circuits.

GEMINI allows multiple faults of all multiplicities to be considered implicitly.

The work of Kubiak and Fuchs [32] indicated that multiple faults simulation is

a time—consuming process. As the number of gates in a circuit increases, it is not

practically acceptable to fault simulate single fault test sets against multiple fault

occurrences in the circuit. All present approaches handling the multiple fault testing

problem face a higher order of time and space complexities.

To overcome these difficulties, procedures used during single fault test generation

which implicitly guarantee a maximum multiple fault coverage for the generated test

set must be employed. Another approach for solving the multiple fault test generation

problem is to augment the generated test sets from single fault ATPG systems.

5.3 Preliminaries

In this section, some common terminologies pertaining to multiple fault test gen-

ëration are introduced with an example.

Definition 4 A convergence point (CP) is a node at which two or more faults, i.e.

{fi, f2, . . ., fm}, interact. These faults may be faults in the CF or have propagated

95

from some other node to the CF.

Definition 5 When multiple faults meet at a CP, the fault or faults which can prop-

agate through CF for some test will be denoted as dominant faults for that node.

For example, consider the double faults {t/0, g/1} in Figure 5.1. The test vector

"11010" (for inputs a, b, c) d, and e, respectively) covers these two faults. The CF

point for {t/0, g/1} is node j. The fault g/1 dominates the fault t/0 because the

later is masked by the input c.

Definition 6 A set of faults F = {fi, f, . . ., fm} is said to be self-masking under

a test set T = {t1, t2 , ., t,} if and only if:

.1) For each t, i = .1, 2, . ., n, tj detects each single fault f, j= 1, 2, . . ., rn

2) For each t, i =. .1, 2, . . ., n, tj does not detect the multiple fault fl, f2,

fm. Multiple faults composed of fewer than in elements of F may or may not be

detected by the test set T.

If the test set T contains only a single test vector, the relationship will be referred

to as single vector self-masking;, if T contains more than one vector, then multiple

vector self-masking. For example, the double faults {a/1, e/1} in Figure 5.1, are

single vector self-masking under the test T = "01000".

5.4 Multiple Faults Analysis

In order to detect a set of multiple faults, it is only necessary that, with all faults

excited properly, at least one fault from this set must propagate to the primary .out-

puts. The following question can now be asked concerning multiple faults detection.

96

Given two single stuck—at faults f, and 12 which are self—masking under a test t, is

there any way where the test vector t can be modified so that it might cover the set

of multiple faults {f, 12}?

Let us assume that t sensitizes the single fault f through a sensitization path s

and sensitizes f2 through S2. The only condition which makes t unable to cover the

multiple faults {fi, 12} is that the sensitization structures of s, and S2 are destroyed

due to the existence of 12 and f, simultaneously. For example, in the circuit shown in

Figure 5.2, the test vector "1001" covers the single faults' b/i and c/ 1. In the existence

of the double faults {b/l, c/i]., the sensitization paths of b/i and c/i mask each other

at the inputs of gates G3 and G4. The problem of covering a set of multiple faults can

be solved if there exists a test which does not destroy the sensitization structure of

at least one fault in a fault set. To probe more on this issue, we present the following

definitions:

a

b

C

Figure 5.2. Example for the different PT sets of a fault under test.

Definition 7 A sensitization path is referred to as persistent under a set of primary

inputs S if it is not destroyed with the variations in the logic values of the primary

inputs in the S set. S is referred to as the persistency set.

The following definition further divides the set of primary inputs into an excitation

97

set and a control set.

Definition 8 The set of primary inputs which controls the excitation logic value at'

a fault location is referred to as the excitation set Se. Any primary input which does

not belong to S, or Se is referred to as a controlling primary input. The set which

comprises all controlling primary inputs is referred to as the control set S.

In the example shown in Figure 5.2, the fault b/i' is covered by the test vector

1001", then: S, = {a, d}, Se. = {b}, and S = {c}. The logic values for the entries

in S, do not affect the sensitization structure of the fault b/i; entries in Se excites

the fault; while the entries in Sc guides the sensitization path to its destination at

the primary output. Each fault covered by a test vector in a test set has unique sets.

of primary inputs. The contents of each set depends on the way test generation is

carried out. The primary input sets can be determined during the test generation

process or during fault simulation. A simple procedure for identifying the different

sets of primary inputs for a fault under test using a single fault simulator is shown in

Figure 5.3.

In the next section, we will use the above sets in analyzing and improving the

multiple fault coverage of single fault test sets..

5.5 Two Models for Test Set Augmentation

The main objective in single fault test generation algorithms is to generate tests

that cover all the testable faults in a circuit in a reasonable amount of time. Many

efforts are used to find a sensitization path for a single target fault with the minimum

number .of logic assignments to the circuit's nodes. Although this has proven to be

helpful in reducing the test generation time, tests generated using this method does

98

Input : A single fault f and its cover t.
Output The PT sets for f under t.

Procedure Identify(S, S, S) {
for each primary input PI

{
Complement(P11)
Simulate(PI) against f;
if f is not excited

'Pli E Se;
else if f is excited but not covered
PIES;

else PI E S,
Complement(PI)

}
}

Figure 5.3. . Identify(): a procedure used to determine the different primary input
sets for fault f under t.

99

not guarantee to cover 100% of multiple faults (especially for circuits with many

internal fanout nodes). In order to account for multiple faults during single fault test

generation, the relationship between a fault sensitization path and the other nodes in

a circuit must be taken into account. The relationship between a sensitizing path and

the different nodes in a circuit is encoded in the generated test vector. Each generated

test can be analyzed to determine such relation. The different sets of primary inputs

presented in the previous section can be used for this purpose.

Let T = {i1, t2, .., t,} be the set of single fault tests which was generated to cover

the single target faults f, f, .., and f, respectively. In order to obtain a maximum

multiple fault coverage from a single fault test set, it is necessary that each vector

ti covers a maximum number .of multiple faults which represent any combinations of

fi and the other faults in a circuit. This can be achieved by modifying the test tj so

as to minimize the number of nodes which, vhen changing their logic values, destroy

the sensitization structure of f. The problem of augmenting single fault test sets to

achieve maximal multiple fault coverage can be formulated as the one of maximizing

the number of primary inputs in the control set of each cover in a test set. This is

also 6quivalent to the problem of minimizing the number of primary inputs in the

persistency set. -

The process of maximizing the control set of a test vector requires that some

elements be removed from the S, set and be added to the S set. These elements are

identified as primary inputs with a potential to create stronger sensitization structure

for the fault under test. Maximizing the control set in each vector increases the

sensitization path persistency against the variation of logic values at some nodes in

a circuit due to the existence of multiple faults. This is obviously, in conflict with

some of the strategies used in single fault test generation where a minimum number

100

of logic assignments during the search process is always used in order to reduce the

search time. Therefore, test augmentation must be applied after the single fault test

generation phase in order to ehsure maximal multiple fault coverage.

5.6 Two Procedures for Test Set Augmentation

It has been shown that most undetected multiple faults are self—masking, faults. A

procedure for identifying the potentially self—masking faults in a circuit can be fouhd

in [27]. Test set augmentation can be applied on the resultant self—masking faults.

In this way, test augmentation can be applied without the extensive use of multiple

fault simulation.

In the next subsections, we give two new procedures for augmenting single fault

test sets for obtaining maximum multiple fault coverage. The first procedure aims at

maximizing the control set of a single fault under a test vector without considering

any multiple faults existence. This method can be directly implemented during the

single fault test generation phase. A second procedure which an only be applied on

a set of uncovered multiple faults is also presented. This procedure aims at changing

the dominance relation between the different faults in a multiple fault set. During

this procedure, the sensitization structures of a subset of faults in a multiple fault

set are destroyed while allowing other fault sensitization path(s) to terminate at the

primary output nodes, hence, covering the set of multiple faults.

5.6.0.1 The Maximum Control Set Procedure

The first procedure for augmenting a single fault test. set is based on the maxi-,

mization of the control set of each test vector in the test set. Consider the circuit

shown in Figure'5.2, The test "1001" excites both faults b/i and c/i. but it fails to

101

propagate the effect of any of these faults to the primary output. This behavior occurs

because the two faults mask each other at the inputs of gates G3 and G4. Note that

the primary input c is the only element in the S set for the fault b/i under the test

A procedure is needed to search the S, set of b/i so that a new input might

exist which if combined with c creates a stronger sensitization structure for b/i. In

order to achieve this, the Max..Control() procedure, shown in Figure 5.4, is applied.

This procedure can be applied on each single target fault and its cover until a 100%

multiple fault coverage is achieved or the single fault test set is exhausted.

The Max- Control() procedure starts by identifying different sets of primary inputs

for a single stuck-at fault f under a test t. The circuit is then simulated against each

single logic variation in the primary inputs which belongs to the persistency set. If

the logic implication of this variation meets some control objectives set by the original

test vector, then the corresponding primary input from the persistency set is moved

to the control set of the same test vector. The value assigned to this particular input

is the one which, if implied, meets the control objectives. The control objectives are

determined by simulating the primary inputs which belongs to the original control

set, i.e., simulating c = 0 in the above example. In Figure 5.5, the Max-Control()

is applied to the fault b/i. The control objectives set by the test vector "1001" for

covering the fault b/i are k = j = 1 as shown in Figure 5.5.

As shown in Figure 5.5, the implication of the logic variation at node a does not

provide any additional control support to the sensitized path and does not meet any of

the objectives set by the original test. On the other hand, changing the logic value of

node d to 0 adds more control to the sensitizing path and meets the control objective

of setting the logic value of node j to-1. Hence, node d can now be moved from S, to

S with its new logic value. The modified test vector will now be "1000". This test

4

102

Input : A single fault f and its cover t.
Output': A modified cover with, maximal control set.

Procedure Max-Control() {
Identify (Se, S, Si,);
Fault_SimuIate(S);
Set the objectives;

for each PI E S,

{
Simulate the logic variation in PI;

if the implication meets the objectives
Move Pli from S, to S;

else continue;

}
Return(s);

}

Figure 5.4. Max-Control: the procedure used to determine a maximal control set
for a single fault f under a test i.

103

Input : The single fault b/i under "1001".
Output: A modified cover with maximal control set.

Procedure Max-Control() {
1) Identify (Se, S, Sr);
Se {b}, S—{ c}, S—{a, d};

2) Fault ...Simulate(e=0);
The objectives are k=j=i;

3) Simulate the logic variations in S;
Input a changes from 1 to 0: Objectives met? NO;
Input d changes from 1 to 0: Objectives met? YES (j=i);

4) Determine the maximal (Se);
S={ c, d} and the new test is "1000";

Figure 5.5. An example to illustrate-the Max_Cntrol() procedure.

104

vector has a maximal control set under the fault b/l and has a stronger sensitization

structure compared to the original test. It also covers the double faults {b/l, c/l}.

It must be noted that the modified test vectorexcites both faults but only allows

the fault b/l, under which the procedure was applied, to propagate to the primay

output. Thus, the Max_Control() procedure extends the dominance relation of the

single fault under test so that it dominates the maximum possible number of nodes

in case of multiple faults occurrence.

5.6.0.2 Sensitization Path Elimination Procedure

Given a set of multiple faults which are single-vector, or multiple-vector self-

masked, we need to modify the test vector(s) so that at least one fault dominates the

others in the fault set. As discussed earlier, any single fault test set provide covers

to single faults with minimal control requirements for the sensitized paths. It can

then be argued .hat changing the logic value of a non-exciting 1 primary input might

results in destroying one or more paths. This process might also leads to the detection

of the multiple faults which are individually covered by the same test. This is the

idea behind the sensitiation path elimination procedure for multiple faults detection.

Consider the simple circuit example shown in Figure 5.6. The primary input sets

for each of the single faults a/0 and r/O are also shown in this figure. The double

faults {a/0, r/0} are self-masking under "1010". The logic values of the primary

inputs Which. belong to the exciting sets of both faults, i.e., nodes a and c, must be,

kept unchanged in order to excite both faults properly. As shown in Figure 5.6, the

logic variation at the primary input node d, which belongs to S of a/0, destroys

'The first requirement to cover a set of multiple faults is to excite all fault locations properly,
i.e., if a fault location is s/O, then the fault site must be activated to logic I.

105

Input : The double faults a/0 and r/0 under "1010".
Output : A cover for the double faults.

Procedure Sens._Path_Elemination() {
1) Identify (Se, S, Si,) for each fault;

a/0: S={a}, Sc {b, c}, S={d};
r/0: Se={c}, S={a, d}, Sp {b};

2) Combine the exciting set of PIs;
SIXC = {a, c};

3) Fault Simulate the logic variation for each non-exciting PT;
Input b changes from 0 to 1;
Input d changes from 0 to 1;

4) Determine the cover for the double faults;
Covers: "1110". and "1011";

}

a/O

Figure 5.6. An example which illustrates the sensitization path elimination procedure.

106

the sensitization structure of r/0 from the fault location to the primary output2.

Accordingly, the new test vector "1110" is a cover for the double faults. The same

result can be achieved if the logic value of node d is complemented where another

test cover "1011" will be generated. In the former case, a/U dominates r/0, while in

the later case r/0 dominates 'a/O.

The main advantage of this method over the previous one is that test modification

is applied without' monitoring the logic values of any internal nodes in a circuit.

The success of the above procedure lies in the fact that the logic variation in only

one primary input would lead to the detection of the multiple fault set under test.

From our experience, this fact seems to be holding for double and triple faults. For

larger set of faults, more than one logic variation in the primary inputs might be

needed. Fortunately, the sensitization path elimination procedure can' be applied

hierarchically. In such case, the resultant vectors, which guarantee the detection of a

ubset of faults in a larger set of faults, can be used by the same procedure to cover

the remaining subset of faults.

5.,7 Experimental Results on the 74LS181 ALU Circuit

In the previous section, two procedures for augmenting single fault test sets to

maximally cover multiple faults has been presented. The first procedure aims at

maximizing the control set of a single fault under a test vector without considering

any multiple faults existence. This method can be directly implemented during the

single fault test generation phase. The second 'procedure can only be applied on

a set of uncovered multiple faults: The procedure aims at changing the dominance

relation between the different faults in a multiple fault set. During this procedure, the

sensitization structures of a subset of faults in a multiple fault set are destroyed while

'This is because d E S for rIO.

107

allowing other fault sensitization paths to terminate at the primary output nodes,

hence, covering the set of multiple faults.

In order to evaluate the Max_Control() procedure, a test augmentation study

was performed on the 74LS181 4-bit ALU. The circuit diagram for the 74LS181 is

shown in Figure 5.7. The 74LS181 was selected because there are 16 single fault

test sets available for this particular example. Differentapproaches' pproache have been used

in generating these tests. The list of the sixteen test sets and the description of

the test generation approach for each set can be found in [26]. A summary for the

simulation study 'done by J. Hughes on the 74LS181 ALU is shown in Table 5.1. In

this Table, the length of each test and number of uncovered double faults are listed.

Among the sixteen test sets available for the 74LS181, only four sets achieved a 100%

coverage for double faults: The remaining twelve sets will be exámned using the

procedures presented in the previous section in order to achieve maximum multiple

fault coverage.

Our goal is to extend, all the test sets which do not achieve an 100% double fault'

coverage. Therefore, this experiment aims' at applying the Max-control() procedure

on each cover in a test set. We select a single fault that is covered by the test vector

and generate a new test which has maximal control set under the selected fault. For

simplicity, selected faults are chosen from the set of primary inputs. The experiment

is done for each test in a test set or until an 100% double fault coverage is achieved.

Table 5.2 shows the results of this experiment. Under the new tests column is the

number of new tests added to the original test set. Under the column new c0z'. is

the double fault coverage of the augmented test set. As shown in Table 5.2, an 100%

double fault coverage is always achieved. The number of new tests depends on the

original set of tests and on the order of which these tests are listed.

108

1
2
3

5

.7

76

.7

.7

17

60

 12

14

Figure 5.7. The 74LS181 ALU circuit diagram.

a

79,

61

82

109

Table 5.1. A summary for the simulation study done by Hughes.

-Test set Length Uncov. faults
Krishnámurthy 12 9
Bryantl 14 4
Bryant2 14 14
Bryant3 14 11
Bryant4 12 8
Bryant5 12 1
Bryant6 12 9
Bryant7 12 28
Bryant8 12 13
Bryant9 12 19
Miczol 17 3
Miczo2 17 30
Goel 35 0
McCluslceyl 124 0
McCluskey2 . 352 0
Hughes 135 0

Table 5.2. Results obtained after applying the first experiment on the 74LS181 ALU.

Test set New'tests New coy.
Krishnamurthy 5 100%
Bryanti 3 100%
Bryant2 9 100%
Bryant3 9 100%
Bryant4 7 100%
Bryant5 1 100%
Bryant6 4 100%
Bryant7 11 100%
Bryant8 7. 100%
Bryant9 12 100%
Miczol 2 100%
Miczo2 17 100%

110

If the fault under investigation propagates to multiple outputs, all sensitizing paths

from the fault sile to the primary outputs are guaranteed to exist after applying the

Maxi-control() procedure. Consider maximizing the control set - of the test vector

"01101100100100", from Miczo 1 and 2 test sets, under. the single fault 27/0 (output

node of gate 27 is s/0). This fault propagates to the primary outputs 79 and 80.

The control objectives set by the test vector "011011001:00100" are determined by

implication. All logic implication values meet these objectives except at the circuit

portion which involves gates number 61 and 62. The original test vector implies a

logic value 1 at the output of gate 63 and hence a logic value of 0 at the output

of gate 69. The fact that only one node (output of gate 63) controls the objective

control logic value (output of gate 69) of the sensitizing path makes the fault 27/0

undetectable in the existence of the fault 63/0, i.e., the double fault {27/0, 63/0} is

undetectable Ly the test .vector. In order to maximize the control set of the original

test vector under 27/0, the output of-gates 61 and 62 must be set to logic one.' This

can be achieved by tracing back the logic value at the-inputs of these gates to the

primary input lines. Changing the logic values of the primary input nodes 11, 12,

and 14 will meet the above requirements. Hence, the new test "01101100101001" is

obtained. This new test covers th double faults {27/0, 63/0}. -

As mentioned earlier, the above procedure has the disadvantage of being done by

monitoring the logic values of some internal nodes in a circuit. If the test set contains

a large number of tests, the above procedure may take some time before processing

all the tests in the set. On the other hand, this procedure can be implicitly employed

in single fault test generation systems by allowing a unique control assignments to

be applied during the search process. These control assignments allow the inputs of

each gate to maximally control the logic value of the gate's output.

111

The second experiment on the 74LS181 ALU is performed using the sensitization

path elimination procedure. In this experiment, sets of multiple faults which are not

covered by the original test set are explicitly investigated by the test augmentation

procedure. The procedure starts by identifying the test(s) under which a set of

multiple faults is self—masking. The implication of logic variations in each primary

input of a test vector is simulated against the set of faults. For example, let us consider

the double faults {27/0, 26-1/1} which are-self—masking under "01101100100100".

Our experiment has shown that any single logic variation in the primary input 1, 4,

5, 6, 9, 10, 12, 13, or 14 will result in a cover for the double faults. On the average,

the effect of these faults is observed at three different primary outputs. In all twelve

test sets, we were able of covering all the double faults in the 74LS181 and achieve a

100% double fault coverage.

5.8 Multiple Fault Detection Using the GATPG Framework

The analysis and procedures presented so far dealt with the problem of extending

a test set to cover a maximal number of multiple faults. The attention will now

be directed to the generation of test sets that implicitly cover maximal number of

multiple faults in a circuit.

5.8.1 The Approach

The GATPG seems to be the natural framework for detecting multiple faults in a

circuit because it explores the search space for many faults simultaneously. In this

context, there are two ways by which we, can approach the problem of generating

multiple fault tests in the GATPG system. The first approach can be explained using

the structure shown in Figure 5.8. As with the case of multiple path sensitization dis-

112

Figure 5:8. A general data structure for two faults in a circuit.

cussed in the previous chapter, multiple fault test generation requires the availability

of the sensitization paths for more than one fault simultaneously. Figure 5.8 shows

the sensitization paths of two faults in the data structure created by the GATPG al-

gorithm. In order to find a test for the double faults f, and f2, the cube intersection

of the fault values and the control values (Ni to N_1) for the different paths asso-

ciated with each fault must be peiformed. This is exactly the same method used in

generating multiple path sensitization patterns. In the matter of fact, multiple path

sensitization is one form of multiple fault behavior because it allows more than one

stem node in a fanout structure to carry a fault logic value. However, the multiple

path sensitization procedure is applied locally, i.e., to' a fanout structure. On the

other hand, multiple faults, such as fi and f2 in Figure 5.8, may occur between any

two (or more) nodes in a circuit. It would be extremely difficult and time consuming

to apply the multiple path sensitization procedure to all the multiplicities of faults in

large (or even moderate) size circuits.

The second approach, on the other hand, uses the analysis and results presented

so far in this chapter to implicitly generate tests that cover any multiplicities of faults

without adding any new procedures in the GATPG system.

113

(b)

(c)

(d)

Figure 5.9. Control logic assignments for implicit multiple fault coverage (a) single
fault coverage (b) double fault coverage (c) triple fault co'erage (d) all multiple fault
coverage.

114

In order to achieve maximal multiple fault coverage, the GATPG applies a set of

control logic assignments during the baék propagation process which will guarantee

that each generated test pattern has a maximal control set S. So far, we have

concentrated on how a fault sensitization path is created during the back propagation

process. We would like to direct the attention now on how the control logic values

associated with each fault entry in the data structure are created. In case of single

faults, the GATPG uses control logic assignments like the one shown in Figure 5.9.a,.

where the control logic value of a gate's output is determined with a minimum number

of deterministic (0's and l's) control logic assignments to the gate's inputs. This

assignments results in a test pattern that has minimal control set S. On the other

hand, the minimal number of deterministic control logic assignments makes it much

easier and more likely to find a test for a fault in the circuit.

Coiasider the problem of generating a test pattern with a maximal control set

against all double faults multiplicities in 'a circuit. In order to achieve this goal,

control logic assignments such as the one shown in Figure 5.9.b must be used to

guarantee that if a line that contributes to the propagation of a fault from its location

along the sensitization path fails (stuck—at opposite control logic value), another line

with the required control logic value will still support the fault propagation. Hence,

a cover for the fault and the failed line will always exists. Similarly, a test pattern

with a maximal control set against all triple multiplicities of faults can be achieved

using assignments similar to the one shown in Figure 5.9.c. Generally, a maximal

control set for any multiplicity of faults can be obtained using the assignments shown

in Figure 5.9.d. The assignments shown in Figure 5.9 are not unique, i.e., there can

be other enumeration of logic values which achieves the same purpose.

In this way, any multiplicities of faults can be expressed within the the GATPG

115

Implicit single fault control
logic assignments

Implicit double fault control
logic assignments

Figure 5.10. The impact of implicit multiple fault control assignments on the data
structure.

116

system. The test system can be tailored to generate tests with maximal double, triple,

or any multiplicities of faults. This technique can be used in any other ATPG algo-

rithm 4uring the test genertion phase. The problem-with these systems is that they

may guarantee the implicit maximal coverage of multiple faults for tests generated

deterministically, but will fail to provide such tests during the random phase. In our

approach, this problem does not exist because the GATPG system is single phase.

5.8.2 Implementation and Results

The control logic assignments described above will have some impact on the im-

lementation of the GATPG system with implicit maximal multiple fault coverage.

Generally, these assignments will impose some constraints on the search space for

tests and might degrade the quality of the generated test patterns. TO elaborate on

this point, consider the circuit example shown in Figure 5.10. In this figure, the data

structure at the second level of assignments is shown twice, one time with the, single

fault control logic assignments and the other with implicit double fault control logic

assignments. In the former case, node e (at the first level of assignment) has a logic

value of one. This logic value is enumerated at the inputs of the NAND gat'e with

one input carrying a 0 logic value while the other is carrying an X logic value. It it

obvious that this enumeration will enable us to cover both types of faults at node b1

(because b2 has an X logic value in one of the enumerated inputs of the NAND gate).

In the later case, implicit double fault control logic assignments dictates that both

inputs of ,the NAND gate must carry the same 0 logic value. It can be seen that,

in this case, only one type of fault (s/i fault) at node b1 may be covered. This will

definitely decreases the fault coverage of the generated test set.

In order to avoid the degradation of the test quality of the GATPG system, implicit

117

Table 5.3. Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC 2 workstation
with the ISCAS'85 benchmark combinational logic circuits. Time units: seconds.

Circuits BFP Fault # Test
Dfault Rfault CPU coverage vectors

C432 515 4 0.7 100% 91
C499 750 8 1.6 100% 89
C880 942 0 2.8 100% 188
C1355 1566 8 1.5 100% 192
C1908 1872 7 7.9 100% 162
C2670t 2480 115 36.8 100% 393
C3540f 3297 131 31.1 100% 324
C5315f 5291 59 46.7 100% 429
C6288t 7710 34 14.2 100% 145
C7552t 7417 131 55.6 100% 511

single and multiple fault control logic assignments are both allowed and enumerated

during the back prpagation procedure. The GATPG system allow a maximum of

two enumeration of multiple fault control logic assignments at the inputs of a gate

during the back propagation procedure. This is followed by the full enumeration of

the original single fault control logic assignments. Since such logic assignments will

increase the length of the number of paths associated with each faiIt entry in a data

structure, we have decided to increase the preset limit from 2 - 5 in the previous

implementation to 4 - 7 in this implementation. In. this way, no compromise is

made toward the test generation for single faults. If a cover with a maximal control

et exists, at any level during back propagation, the GATPG system will find it.

Otherwise, it will generate a pattern with implicit single fault coverage at that level

of assignment.

As a result of the above strategy, we would expect that the generated number of

test patterns will be the same as in the previous implementation. The only difference

between the two sets of patterns is that in the new implementation each test pattern

118

Table 5.4. Real execution performance of our algorithm in a single-phase implemen-
tation with implicit double fault maximal coverage on a SUN SPARC 2 workstation
with the ISCAS'89 benchmark combinational logic circuits.

Circuits BFP Fault # Test
Dfault Rfault CPU coverage vectors

S27 32 0 0.1 100% 13
S208 215 0 3.3 100% 52
S29& . 308 0 3.5 100% 79
S344 342 0 3.8 100% 71
S349 348 2 2.5 100% 62
S382 399 0 2.7 100% . 63
S386 384 0 3.0 100% 81
S400 410 6 3.3 100% 77
S420 430 0 4.0 100% 109
S444 460 14 3.9 100% 45
S510 564 0 5.1 100% 86
S526 554 1 4.9 100% 127
S641 467 0 4.0 100% 117
S713 543 38 6.1 100% 177
S820 850 0 5.7 100% 181
S832 856 14 5.2 100% 169
S838 857 0 19.2 100% 202
S953 1079 0 8.2 100% 169
S1196 1242 0 20.8 100% 221
S1238 1276 69 27.9 100% 299
S1423 1501 14 9.9 100% 161
S1488 1487 0 10.7 100% 255
S1494 1494 12 7.3 100% 241
S5378 4563 40 88.4 100% 444
S9234f 6475 452 224.1 100% 812
S13207f 9662 151 176.5 100% 807
S15850t 11336 389 341.6 100% 723
S35932t 35110 3984 112.3 100%, 394
S38417f 31015 165 498.0 100% 2501
S38584f 34798 1506 157.9 100% 2110

119

has a maximal control set which guarantees that the total set of tests has a maximal

multiple fault coverage.

We have applied the above implementation of the single phase GATPG system

using the implicit double fault control assignments on the ISCAS'85 and ISCAS'89

benchmarks. The results are shown in Tables 5.3 and 5.4. It can be seen that all

the data are similar to those in the single phase GATPG implementation' for single

faults, except for the running time. The run time has increased due to the increase

in the preset limit. The generated test set is guaranteed to have a maximal double

fault coverage.
I.

5.9 Summary

In this chapter, an analysis based on the sensitization structure behavior in the

existence of multiple faults has been given. The purpose of this analysis was to

identify the conditions under which a set of multiple faults are self-masking. Having

done that, the ultimate goal is to use this information to guide the process of single

fault test generation and/or in extending single fault test sets in order to achieve a

maximal multiple fault coverage.

We have presented two different procedures for augmenting any single fault test

set. An experiment has been carried out on the 74LS181 ALU using twelve single

fault test sets. It has been shown that different fault classes can be covered using any

of the above procedures. Although these procedures proved very efficient in achieving

a 100% double fault coverage, we believe that test augmentation and multiple fault

simulation can be totally avoided if the problem of maximizing the control set of

each generated test in a single fault test generator is taken into account. The current

approaches for single fault test generation can easily apply some unique control as-

120

signment during the search process. The fact that test generation is carried out on a

specific target fault makes it easier to apply such technique.

Finally, we have extended our GATPG algorithm to generate test patterns with

implicit maximal multiple fault coverage. We have achieved that by using unique

control logic assignments at the gate inputs during back propagation which guaran-

tees that each generated pattern will have a maximal control set, and hence, covers

a maximal number of multiple faults. Our system is the only known system that

generates test vectors with maximal multiple fault coverage for the general class of

combinational circuits.

CHAPTER 6

THE MODULAR TEST GENERATION SYSTEM

In previous chapters, the framework and the implementation of a single phase

global test generation system have been presented. It has been shown that the tet

primitives generated using the GATPG sytem can be used as test patterns for the

module under test or for mapping information across the interfaces of a module. In

this chapter, both representations of the test primitives will be used in a modular test

generation system. We will first introduce the modular test generation problem, and

then present the modular test generation proèedures. The different features of the

modular test system will be explored using an adequate circuit example. Differences

and similarities of the proposed modular test approach with other approaches will

be identified. A cost model for the modular test system will then be presented. The

purpose of the cost model is to predict the possible speedup in test generation for

modular test systems against low level testing.

6.1 Introduction.

A glowing class of integrated circuits is designed using libraries of large subcircuit

modules, which are not readily decomposable into logic gates or whose gate-level

design is unavailable to the test engineer. These include circuits designed by silicon

compilers, as well as standard cell systems. Most design systems also support hierar-

chical design methods employing both high (module or macro-based) and low (bit)

122

level circuit models. Experience in a variety of domains suggests that using hierarchy

can reduce design. complexity. There is increasing evidence that this is true for test

generation as well, but this particular problem is still poorly understood.

The purpose of modular test generation is to simplify the test generation process

for large circuits. The importance of hierarchical or modular test generation has

been recognized as early as 1975 [6, 55, 35]. Some hierarhica1 techniques have been

proposed for test generation and fault simulation to avoid explosive cost increases.

Krishnamurthy [31] and Calhoun et al. [11] proposed a new framework for hierar-

chical ATPG, Daseking et cii. [15] developed a multilevel test generation technique

which extensively uses the circuit hierarchy in test generation, Murray and Hays [43]

developed module-level testing using stimulus-response pairs, and Sarfert et cii. [47]

extended their gate-level SOCRATES to process high-level modules. Hyoung et al.

[41] incorporated dynamic hierarchical circuit reconfiguration, and heuristic mecha-

nism to directly perform propagation, backtracing, and implication with high level

functional models.

The other aspect of hierarchical test generation is its .cost prediction. A few at-

tempts have been made to predict the test generation cost [23, 40, 20, 17]. Goel

[23] estimates the cost of parallel and deductive fault simulation, and test generation

cost for gate-level circuits with no backtracking. Min and Rogers [40] generalize and

extend Goel's model by incorporating the cost of backtracking. Fisher et cii. [20]

have significantly improved this model, which can now be used to predict ATPG run

time; fault coverage, and test length. Hyoung et al. [41] developed a hierarchical cost

model that is a hierarchical extension of these previous models.

Although these techniques support different approaches to modular testing, they

are not providing efficient solutions to the problem because they all depend on a

123

common test generation framework that does not support all aspects of modular test

generation. For example, in [43], the test generation method at the gate-level is

not analysed and it is assumed that each module retains its test primitive regardless

of the technique used in generating them. Although this approach seems adequate

in the context of modular test 'generation, it will have the effect of increasing the

complexity of the test procedures at' the modular level. It is important to unify the

way test generation techniques are used at any level of hierarchy, so that the test

engineer can concentrate on the tests and their quality without having to switch

to different heuristics at different, levels of hierarchy. In [41, 34], the modular test

systems did not keep the test cost to a minimum because different heuristics are used

at the modular and gate levels of hierarchy.

6.1.1 The Modular Test Generation Approach

As mentioned in Chapter 3, a system is modular if it can be described as a collection

of modules with limited, well-defined interfaces. A test system is modular if it can

use the set of test vectors which covers all the faults in the module and a description

of well-defined interfaces of modules 'to generate tests at the primary inputs of a

chip. Current ATPG systems uses the hierarchy of a circuit in generating tests, i.e.,

the design must be completed before the test procedures are applied. This raises a

question about how truly hierarchical these systems are. We view hierarchical test

generation as' an interactive process in which tests are developed during the circuit

design development cycle. It is imperative that such systems are more. likely to be

integrated in a circuit design CAD tools. Other conventional approaches may or may

not be integrated in such tools because they deal with the test problem after designs

are completed.

124

Currently, if the design needs to be modified to improve the test quality, the test

engineer will then have to deal with the completed design as a single entity. This

increases the difficulty of debugging the design for testability problems. Therefore,

these approaches are inefficient not only because of their inability to apply truly

modular test techniques but also of the difficulties they introduce in the test quality

improvement process.

In our modular test generation approach, we provide a truly modular/hierarchical

test generation framework., This framework allows the designer to examine the test

quality of the design at any level in the circuit hierarchy. Test evaluation and quality

improvement can be achieved at any level of hierarchy, regardless of the details at

lower levels of hierarchy. This process is accomplished during the design cycle of the

product. This means that tests are generated for the designed portions of the chip,

i.e., we do not require the completion of the chip design to apply our test procedures.

Once the top level of hierarchy is reached, then, the modular tests generated' at that

level will represent the chip tests. The impact of this approach on CAD tools design

will be substantial because it matches the current practice in the design cycle of VLSI

circuits. Test quality improvement is also incremental, i.e., the designer can look at

the different aspects of his/her design (optimality, verification, testing, etc.) and

explore different approaches to attain the design goals at one level in the hierarchy

without reference to lower or higher levels.

Current modular test generation systems uses the circuit hierarchy to create a

symbolic test path btween a fault location and the primary outputs of the chip. A

symbolic test path can be established by putting the intermediate modules (relative

to the module under test) in a special mode, a so called transfer mode. In a transfer

mode, the data is transferred unchanged from a module's inputs to its outputs. The

125

test paths can also be represented by functional relations that are calculated by the

circuit rules. In [43, 5, 48], these paths are found by propagation and justification

algorithms that are mainly based on similar heuristics used at the gate—level test

algorithms. Generally, it is a tedious job to derive the necessary tranfer modes for

arbitrary modules in any of the proposed approaches. These difficulties arise because

the test interface at different levels of hierarchy are not defined prper1y. The system

must first derive the transfer mode for each module and then use time consuming

procedures to generate chip tests from modu1's tests.

In our approach, at the gate—level, the GATPG generates test primitives which

represent not only the test patterns for a module but also represent the transfer mode

as well. We defined the interface between low and modular level test generation and

used simple test procedures to generate the test primitives. The characterization of

the test primitives was mainly based on the type of heuristics that are commonly

used at the modular test level, i.e., information mapping. We will reiterate here the

characterization of the test primitives generated at the gate—level using the GATPG

system:

• Each pattern in the test primitive represent a sensitization path that is generated

using our GATPG algorithm. In other words, the test primitive includes the test

vectors for the module under test.

• Propagation and justification heuristics are symbolically represented within the

test primitive. This representation allows the modular heuristics to be applied

without reference to the internal circuitry of the module.This representation is

complete, i.e., there is no need for any other procedures or data representation

during modular testing.

126

• The representation of symbolic paths is achieved using test procedures in our

GATP.G system. Therefore, no additional functional heuristics are needed to

generate them.

This characterization shows that the test primitives retains functional information

for the module. Therefore, deriving the transfer modes for modules is not required in

the proposed modular test generation system. Also, no extra heuristics will be needed

• (such as justification and backtracing) at the modular level. This will substantially

improves the performance of our modular test generation system. Therefore, the

purpose of our modular test generation system is not the application of any new

procedures at the modular level but the assembly of test patterns from modules to

the chip's primary inputs/outputs using the test primitive of each module.

6.1.2 System level test assembly

In o1der to describe the assembly of test patterns at the chips boundary, a system

approach must be determined first. In this approach, the modular test system will

determine which module to select and to map (assemble) its test set to the primary

inputs/outputs of the chip. Of course, module selection will depend on the way

modular test generation is carried out.

Assume that the hierarchy of the circuit under test is a K-ary tree as shown in

Figure 6.1. The root of the tree is on the Oth level and the leaves are on the K-

1 level. In current hierarchical ATPG systems, every leaf node represents a gate

with f9 modeled faults to be covered by the .test system. In the context of current

hierarchical ATPG systems, a path from the fault location at one of the leaf nodes

is created across the hierarchy of the circuit. This means that each time a cover for

127

a fault is generated, modular heuristics must be applied lo hierarchically generate a

corresponding test at the chip's primary inputs. As the number of faults increases,

these heuristics-will pose a serious time constraints on the system's performance. The

major drawback of such approach is that since the gate—level abstraction is allowed

in the circuit hierarchy, it is possible that the system will generate tests for identical

modules whose unique description at the modular level are not exposed by the test

system during gate—level test generation. Consequently, the test system will not be

able to use its full potential in reducing the test generation time. This is a typical

consequence of dealing with the one fault at a time framework which is still adopted

in current hierarchical ATPG approaches.

N1,

2,1

N01

N24

ROOT/levelO

1,2 qW ''1,3W

N216

Figure 6.1. Circuit hierarchy in modular test generation.

levell

IeveI2

A final remark can be made on the module selection technique in modular test

generation in current approaches. Since the single target fault strategy is used in

these approaches, and modular heuristics are separated from gate—level heuristics,

it can be seen that such systems may perform hierarchical test generation on any

module in the circuit. The only requirement is to perform modular test generation

128

for all the modules in a circuit, i.e., to apply the modular heuristics to all the leaf

nodes in the hierarchy. Consequently, the module selection in these approaches can

be random.

In our approach, on the other hand, all nodes in the 'circuit hierarchy represent

modules, including the leaf nodes. All the information related to the internal circuitry

of the leaf modules are hidden behind their interfces and is represented only by the

test primitives generated by the GATPG. Now, consider the problem of assembling the

test primitive of one of the leaf node modules at the circuit's primary inputs/outputs.

Our modular test system starts with all the leaf node modules having their test

primitives generated. The system (unlike other approaches) does not retain any

other information about the functionality of modules at the upper levels of hierarchy.

Therefore, it is not possible for our modular test system to create paths similar to

the one created by other test systems. Instead, the system generates test primitives

at one hierarchy level using the test primitives of the son level in the hierarchy. Such

strategy is highly desirable because it matches the 'VLSI design practice in today's

CAD tools. For example, consider the problem of designing an ASIC with three levels

of hierarchy as shown in Figure 6.2. The ASIC design consists of four major modules;

each module is subsequently divided into a number of smaller modules. The designer

will develop each of the leaf modules separately and assembles them into the four

major modules, and' then interconnects the large modules' to complete the design..

Similarly, our modular test system takes the test primitives of the leaf modules and

generates test primitives for the larger modules, and then generates test primitives'

for the ASIC chip using the test primitives of the four major modules in the chip.

Since our modular test system works totally at the modular level (no gate—level

abstraction), it is easy to identify similar modules in the hierarchy. For example, if the

129

N01

Figure 6.2. The modular decomposition of large ASICs in the design stage.

130

two shaded modules in Figure 6.2 are identical, the modular test system will allow the

test primitive of one of these modules to be generated (using the GATPG algorithm)

and then copies it to the other module. Similarly, if at any level in the hierarchy, two

modules are identical, the assembled tests for one module will be copied to the other

one. This framework not only simplifies the test generation process but also saves a

significant amount of time, both in test generation at low level and test assembly at

the modular level.

There is one more issue that has to be resolved before we can present the procedures

used in the assembly of tests hierarchically. This issue relates to the strategy of

module selection for test assembly in our modular test generation system. Let us

classify the module selection process as random and deterministic. Random selection

means that the modular test system will assemble tests starting at any module in

a circuit. Deterministic selection dictates that a certain order of modules must be

followed during the test assembly process in order to completely generate chip tests

without failure. As explained earlier, current hierarchical ATPG systems performs

on the gate level of abstraction, and create symbolic test paths using a precomputed

functional information (transfer mode) to hierarchically generate the test for a target

fault. The term target fault here implies that any fault can be dealt with in a similar

fashion. Therefore, random selection of modules (gates, in this case) can be applied

to current hierarchical ATPG systems.

In the proposed modular test system, test assembly can only be performed between

two consecutive levels of hierarchy. Theason is that it is assumed that the full chip

design is not available at the time of test assembly. The test assembly process is

incremental and only proceeds with the creation of a new hierarchy level. Therefore,

random selection of modules cannot be applied in our modular test approach. This

131

implies that the target fault strategy at the modular level cannot be adopted as

well. Therefore, the global test strategy that has been used in our low—levl GATPG

system is also used in the modular test approach. Global test generation'was achieved

at the gate—level of abstraction by iteratively generating tests for each output cone

in a circuit. Similarly, global test generation at the modular level can be achieved

at the ith level of hierarchy by selecting a module at the it.h + 1 level of hierarchy

that is attached to a primary output of the parent module. Then, the test assembly

procedure is. applied on the test primitives of the selected module to generate tests

for the parent module. This process continues until all tests for modules at some

level in the hierarchy are assembled. When the the hierarchy level reaches the root

level, the chip tests will be generated and test assembly is completed. This strategy

is explained in more details in the next section.

6.2 . The Test Assembly Procedures

As mentioned earlier, the purpose of our modular test system is to assemble tests

from the leaf modules to the inputs/outputs of the chip. We have shown that our

modular test approach supports global test generation at the modular level. The

test assembly procedures for the modular test system are shown in Figures 6.3 and

6.4. In Figure 6.3, the System-level-assembly() procedure shows how the test system

perform at each level in the hierarchy. This procedure ensures that similar modules

are not processed more than one time and allows for the tests of one module to be

copied to a similar module.

The ModuleieveLassembly()' procedure organizes the module selection process

and the assembly of tests at the boundary of a module. To illustrate this point,

consider the modular representation shown in Figure 6.5.. In this figure, the parent

132

Procedure System_level_assembly() {
hierarchy_level=k-2 (level above leaf nodes);
while (hierarchy-level != root level);

{
Current_module_listi is empty;
j=0;

while module(j) exists at the current hierarchy-level;

{
if module(j) is in the Current-module-list;

copy test-primitive of similar module to module(j);
else

{
Assemble-tests;
add module(j) to Current_module_Iist1;

}
ii+1;

hierarchy_level=hierarchyievel-1;

}
}

Figure 6.3. The system—level test assembly procedure.

133

Procedure Mo dule_level_assembly() {
for each primary output 'PO, in module m(j) at level i;

{
find a module m(k) at level i+1 thet is connected to POq;
Current_module_1ist2 = m(k)
Current-assembled-tests = test primitive of POq in m(k);

while current_module_list2 is not empty;

{
for each test pattern in Current-assembled-tests;

{
back-propagate patterns across modules;
if back-propagation successful;

add mapped pattern to a new-test-primitive;
else continue with other pattern; *

}
Current-assembled-tests = new-test-primitive;
Update Current_module_11st2;

}
}

}
Figure 6.4. Test assembly procedure at the module level.

134

module m(j) is at level i of hierarchy and has four primary outputs. At the Zth+l level

of hierarchy, there exists five sub—modules. The Mod uleieveLassembly() procedure

selects a primary output for the parent module m(j), for instance, P0(0). It then

searches for a module at the th+1 level of hierarchy which is connected to that

primary output. In this case, module m(k) will be selected.

m(j)/Ievet I

q;

--0 PO(0)

•PO(2)

FOPO(3)

Figure 6.5. An example showing module selection in the test assembly procedures.

The test assembly will be performed on the test primitive of the output cone P0(0)

for m(k). The test assembly starts by the back propagation of the test primitive of

output cone P0(0) across the two modules in(p) and m(q). The test primitives of

these two modules will be used as the mapping (functional) information which maps

output logic values to input logic values. For example, if node a (connected to the

output of module m(p)) in the figure carries a D fault logic value, while node b

(connected to the output of module m(q)) carries a logic one, then, the test primitive

of module m(p) will be cube-intersected with the true state primitive of node b across

module m(q). The true (false) state primitive represent all the entries in the test

primitive of a module which generates an output logic of one (zero) for the fault—

135

free response of the circuit. True and false state primitives represent the functional

behavior of a module.

Cube intersection is necessary during test assembly because different modules may

share some inputs, and therefore conflict Of assignments might occur. For example,

node h in Figure 6.5 is a common input to the two modules m(p) and rn(q). The

result of the cube intersection of the two primitives at node h will determine if the

mapping of some pattern is successful or not. Once all successful mapping occur, the

procedure starts another cycle to map the assembled tests at the inputs of modules

m(p) and rn(cj) to the inputs of m(j). The shaded modules and the bold lines in the

figure are the one involved in .the back propagation of the test primitive of module

m(k).

6.2.1 An Example

To probe more on the back propagation of test patterns during the test assembly;

consider the circuit example shown in Figure 6.6. This figure shows a hierarchical

description of a 3-to-8 decoder. There are three levels of hierarchy in Figure 6.6,

with all the leaf nodes representing 1-to--2 decoders. Therefore, the GATPG can be

applied to only one of these modules. The test primitive for the i-to-2 decoder is

shown in Figure 6.7. A copy of this test primitive will be loaded into each one of

the leaf node modules. At level one in the hierarchy, the left most node is 1-to-2

decoder. The System-level-assembly() procedure will copy the test primitive of a

1-to-2 decoder to that node. The two other nodes represent 2-to-4 decoders, hence,

the Systemievel_assembly() procedure will assemble tests for 'one of them and copies

these tests to theother node.

136

enable
selectO

selecti

se1ect2

1 -to-2 decoder

3

2-to-4 decoder

outO
outi

Ml 0ut2

0ut3

2-to-4 decoder

1 -to-2 decoder

enable m3
selectO

selecti

M2

1 -to-2 decoder.

d

140-2_decoder

enable

select

m2

1 -to-2 decoder

m
outO

outi

0ut4
0ut5
0ut6

0ut7

outO

outi

0ut2

0ut3

• 3-to-8 decoder

2-to-4 decoder

O 1 -to-2 decoder

Figure 6.6. Hierarchical description of a 3-to-8 decoder circuit.

137

Test primitive (fault mapping)

enable
outO

select

outi

True state primitive

Cone(0)

enable select outO outi

1 1. 1 0

Cone(i)

enable select outO outi

1 0 01

Cone(0)

enable select outO outi

1 D D Iff
1 DO

Cone(1)

enable select outO butl

1 DD
D 0 0. D

False state primitive

Cone(0)

enable select outO outi

1 .0 0 1
0 1 00

Cone(1)

enable select outO outl

1 1 10
0 0 0 0

Figure 6.7. The circuit diagram and the test primitive for a 1-to-2 decoder.

138

The Module-level-assembly() procedure will assemble tests at level one of hier-

archy for the '2—to-4 decoder using the test primitives of the three 1—to-2 decoders

at level two of hierarchy as shown in Figure 6.6. It starts by back propagating the

test primitive of the output cone at outO. The test primitive of this cone includes

two input fault, patterns (1, D) and (D, 1) assigned to nodes c and d of module ml;

shown in Figure 6.6. The assembly of the first pattern can be achieved by the back

propagation of the logic value "1" across module m3. Since noae c is a primary input

(selecti) of the parent module, it needs not to propagate any further. In order to

back propagate the logic value one across module m3, the Module-level-assembly()

procedure substitutes each D fault logic value in the test primitive with logic value

one in order to create the true state primitive of module m3 at the output cone of node

d. The true and false state primitives of module m3 (a 1—to-2 decoder) is also shown

in Figure 6.7. They represent the mapping of control logic values across a module.

Since all test primitives were generated with the primary output assigned a D fault

logic value, then a true state primitive, for instance, is generated by substituting all

D values in the test primitive with "j", value with "0,", TD value with "1", and,

P-D with 0. The true state primitive for node d across the module m3 has the entry

(1, 1) which correspond to the values at the signal lines 'enable and selectO for the

2—to--4 decoder shown in Figure 6.6. The cube intersection step is not required in this

case because all input lines involved in the test assembly are disjoint. The assembled

pattern from this process will then be (1, 1, D), for the signal lines enable, selectO,

and select 1, respectively.

In order to back propagate the other pattern in the test primitive of module ml,

the test primitive of module m3 at the output cone of node d will map the D fault

logic value at node d. Therefore, two more patterns, (1, D, 1) and (D, 1, 1), will be

139

Cone(0)

enable selectO selecti autO outi out2 0ut3

1 1 D D D 0,0
1 D 1. D D D 0
D 1 1 D 0 0 0

Cone(1)

1 1. B D D 0 0
1 D 0 0 D 0 D
D 1 0 0 D 0 0

Cone(2)

1 0 D 0 0 D D
1 D 1 D 0 D 0
D 0 1 0 0 D 0

Cone(3)

1 0 D 0 0 D D
1 D 0 0 DO D
D 0 0 0 0 0 D

Figure 6.8. The test primitive for the 2-to-4 decoder.

140

assembled. The three assembled tests represent the test primitive for the first output

cone for the parent module. This process is repeated for all other primary outputs

in the parent module. The total test sets will represent the final test primitive of the

2—to-4 decoder. The test primitive for the 2—to--4 decoder is shown in Figure 6.8.

This test primitive will be copied to the other 2—to-4 decoder module at hierarchy

level one. Using the test primitives for modules at level one, the Test-assembly()

procedure will assemble tests for the 3—to--8 decoder in a similar fashion to the one

described above.

enable
select

1 -to-2 decoder
a

b m

l-to-2 decoder

d MI
C

l-to-2 decoder

m2

outO

outl

0ut2

out3

select = b fl c (cube intersection)

a b c enable select
liD 1 TD
1D1 .1 TD
Dli D 1

Figure 6.9. A modified circuit diagram to illustrate the cube intersection process.

In order to illustrate the case where cube intersection of logic values on common

nodes. is applied, let us modify the structure of the 2—to--4 decoder circuit to the

one shown in Figure 6.9. In this figure, nodes b and c are connected together. The

corresponding modification on the assembled tests for the first primary output P0(0)

is also shown in figure. The second and third entries in each assembled test must be

cube intersected before they are assigned to inputs of the parent module. For example,

the test pattern (1, 1, D) will be modifiedto (1, mD) = (1, TD). This process is

141

similar to the compare () procedure in the GATPG algorithm.

6.2.2 Test Length

It is important to note that the.number of assembled patterns at the inputs of each

module can increase dramatically as we get closer to the root of the hierarchy tree. In

order to solve this problem (without degrading the test quality), a similar strategy to

the one applied to the GATPG system is used during the test assembly procedures.

The number of assembled tests across a module from the back propagation of a single

test pattern at the output of a module is limited to a preset number. In order to

ensure the test quality, this limit is applied only at high levels of hierarchy where the

circuit complexity (interconnections) is reduced and the test length is more likely to

explode. This level of hierarchy is left for the designer to decide, but it will always be

in the vicinity of the Register Transfer Level (RTL) where the different major design

components are easily identified. This approach also implies that the test assembly

procedures will generate a minimal test length if the chip at high levels of hierarchy

are partitioned to large number of modules.

In general, it can be seen that the test assembly procedures use the exact same

heuristics in the GATPG system. Therefore, we do not need any other heuristics to

completely generate tests hierarchically. The only difference between the modular

test procedures and the low level test procedures is that they are performed at a

modular level, hence, speed up is guaranteed. In order to estimate the benefits of

modular test generation as opposed to gate-level test generation, a cost model for our

modular test proèedures is presented in the next section.

142

6.3 Modular. Test Cost

This section explores the cost analysis of our modular test generation system. The

total cost of test generation equals the .cost of low level test generation and the cost

of test assembly in the modular test system. In the low level test generation, the

GATPG system doe not involve backtracing, justification, or any decision making

procedures. Therefore, the cost model presented by Goel [23] for gate—level single

fault test generation can be applied to our approach. Hence, the low level cost model

(C1) for the GATPG algorithm can be simply expressed as:

Ci — pf

where, f is the total number of faults for which the GATPG algorithm is applied, and

p is the average cost of test generation for a fault in the circuit. Since the GATPG

algorithm is single phase, f represent all the modeled faults in a circuit. Also., it

is reasonable to consider that each fault takes an equal amount of time by the test

generation algorithm to be covered since the GATPG generates tests globally, i.e.,

without reference to the faults it sensitizes. In other words, an easy or difficult to

detect fault can be treated equally for the external observer.

In calculating the cost of the test assembly procedures, consider the circuit hier-

archy shown in Figure 6.10. Modules at the leaf nodes 4re in alphabetic format to

show modules that are identical. In order to calculate the modular test generation

cost, we start at first level in the hierarchy. The test assembly cost at this level Ch(1)

can be expressed as:

Ch(1)= Ch(Sl,o) + Ch(Sl,l) + Ch(Sl,2) + Ch(Sl,3)

where, Ch(Sl,) represents the cost of applying the test assembly procedures to mod-

ules in the leaf nodes to generate tests for the parent modules SIj. This cost can be

143

expressed as:

Ch(Sl,o) = Ch(A+ B-pC)

Ch(Sl,l) = Ch(A + D + E)

Ch(Sl,2) = Ch(C + F)

Ch(Sl,3)= Ch(A+B+C)

Since identical modules are recognized by the modular test generation system, the

• cost of test assembly at the first level of. hierarchy is contributed to the first three

equations while no cost will be attributed to the module S1,3 (since S1,0 and S1,3 are

identical as shown in Figure 6.10).

si,o •si,i •S1,2 •S1,3

A B CD A E C FA BC

Figure 6.10. A circuit hierarchy for explaining the cost model.

The cost of test assembly at level i in the hierarchy can now be expressed as:

fv f\ 1 g'C' -

L'hi) = L.,a0

where, N+1 is the number of modules at level i + 1 in the hierarchy and M+1 is

the number of modules that have identical description and are not processed by the

test assembly procedures. This equation can be expanded to cover the total cost of

modular test generation for all the levels in the hierarchy as follows:

144

ChM = >i=k-2 -N+,-M+i L.a=O Ch(Sa,i+l)

where, k is the number of hierarchy levels. The summation starts at k-2 because it

represents the hierarchy level right above the leaf nodes.

To simplify the cost model, assume that the hierarhy of the circuit is a complete

rn-ary tree (every non leaf node has m children). Also, it is a reasonable assumption

that all modules in the circuit hierarchy can be evaluated for test assembly using their

true and false state primitives in constant time. The highest cost occurs when all the

modules at different levels of hierarchy are not identical. With these assumptions, the

term i=k-2 E IV*+01_MI+ 1 w ill approach and always be less than m11. Combining the

assumptions and the worst case condition will result in the following test cost model:

Ch=m''*Sm

where, k is the number of levels in the hierarchy, and Sm is the average module test

assmbly evaluation cost.' Let G be the number of primitive gates in the circuit. The

number of leaf nodes in the circuit hierarchy can be expressed as rnc_h/A, where

A is a constant representing the average number of logic gates in each module'.

Therefore, G = A rn/c_i. Similarly, the average cost of evaluating a module (Sm) can

be expressed in terms of the number of gates in the circuit. We start by recognizing

that the test assembly cost across a module depends on the number of test patterns

in the test primitive of that module. Therefore, assuming that there is a fixed number

of generated test patterns for each gate in a module, the number of these tests will be

proportibnal to g (the number of gates in a module). The test assembly cost increases

at levels of hierarchy near to the root node. Therefore, the test assembly cost will be

somewhere between the two cases:

'Consider the case where all the leaf nodes representing logic gates (A = 1). The number of leaf
c_1. nodes will then equal the number of gates G in the circuit, hence, G = m

145

Case 1: considering the case of 8m being proportional to G/m which represents the

gate count per module at the highest level for test assembly in the hierarchy. In this

case, the total cost. can be expressed as:

Ch= G2 * shim

where, Sh is the cost of assembling a gate test at the boundary of a module hierarchi-

cally. Note that the test cost is proportional to G2 which represents the lower bound

on generating tests at the gate—level [23].

Case 2: the test assembly cost can be reduced if m is large. In such case, Sm is being

proportional to log G [41]. Therefore, the test assembly cost can be expressed as:

Ch = G lOYm G Sh.

where sh accumulate all the constants and expresses the average evaluation cost.

for any gate hierarchically, and the other term represents the effect of different hier-

archical representation and the gate count on the cost of modular test generation.

The actual performance of the modular test generation system is between the

above two cases. In order to express the speedup factor of modular test generation

over gate level test generation, the cost of gate level test generation can be expressed

as C9 = s G, where 89 is the average cost of generating a test for a fault at gate

level of description. This model represents the lower bound (best performance) for

the test generation at the gate level [23]. The speedup factor can be expressed as:

Case .1: Speedup = C9/Ch = Tn 89 /.sh.

Case 2: Speedup = C9/Ch = S9 G/sh logm G.

In Case 1, the speed up is constant and depends primarily on the way the chip is

partitioned. The advantage of not using time consuming heuristics at the modular

146

level as opposed to those used at the gate level appears in the ratio .Sg/sh. We

believe that this ratio contributes significantly to the speedup factor. For instance,

considering s = 10 8h and m = 10, a constant speedup factor of 100 can easily be

attained.

log 0 (speedup)

3

2

log 10 (# Gates)

6

Figure 6.11. A graph showing the speedup factor for' modular test generation over
gate level test generation.

The speedup factor in case 2 is similar to Hyoung's speedup ratio [41] for hier-

archical test generation. Figure 6.11 shows the speedup ratio of the modular test

generation procedures over gate level test procedures. It is assumed that s = 10

8h and m = 10 for the graph. The speedup is estimated as 33.3 at iO gates, 250

at 104 gates, and 2000 at iO gates. These speedup factors are much higher than

those reported in [41]. The graph also suggests that as the number of gates increases,'

modular test generation clearly shows a substantial cost reduction in test generation.

The high cost reduction is due to the efficient test generation strategies at the low

level of test generation. This strategy has lead to the elimination of the complicated

test heuristics at the modular test generation level. Also contributed to the large

147

speedup factor is the modular test generation approach which uses the full potential

of the hierarchical representation of the circuit.

6.4 Summary

We have presented in this chapter the first known truly modular test generation

system. Our system allows for the test control activities to be hierarchical. This

feature has not been presented before in the literature. We have used this feature

to assemble tests hierarchically. The test primitives at one hierarchy level are used

to generate. tests for the upper level in the hierarchy. We have shown that such

framework allows our system to be integrated efficiently in today's CAD design tools.

We have also presented a new cost model based on our test generation framework.

The speed up factors are shown to be substantial.

CHAPTER 7

TEST STRATEGIES IN MODULAR TEST GENERATION
ENVIRONMENT

The impact of our modular test generation procedures on the integration of test

algorithms into CAD design tools has been pointed out in the Chapter 6. It has

been shown that our modular test approach provides an efficient framework for such

integration, where all design activities can now be performed hierarchically. In this

chapter, we will explore the impact of the modular test generation system on the test

strategy selection at the chip level. Test strategy selection is the process of identifying

the most suitable approach for the test pattern generation and their application to

the chip. Accordingly, the test application cost and the cost of adding hardware to

the chip for improving testability is determined during test strategy selection.

In this chapter, different test strategies will be explored and analyzed in the context

of the modular test generation system presented in Chapter 6. The impact of each

trategy on the cost of test application and added hardware will be discussed. Finally,

we are proposing a new framework for the autbmatioh of the test strategy selection

with the objective of minimizing the chip test cost.

7.1 High level strategy seleètion

It has been demonstrated that the chip functionality. plays an important role in the

test strategy selection early in the design stage. Figure 7.1 shows one classification of

149

test strategy selection at high level of circuit description. We classify, the test strategy

into full chip and macro testing strategies.

In full chip testing, the designer looks at the chip as a single testing 'entity. The

test activities should be carried out until the root of the hierarchy tree is reached,

as shown in Figure 7.1. This approach is very useful when applied to chips such as

multipliers, ALUs, and other designs that do not include varieties of design styles.

In macro testing, the designer faces the problem of dealing with heterogeneous

styles of design where different macros of completely different functionality exist on

the chip. For example, a heterogeneous design may include a Finite State Machine

(FSM), a Programmable Logic Array (PLA) structure, a RAM, and an ALU on

the same chip as shown in Figure 7.1. Each one of these macros has its own test;

generation technique, fault models, and its unique attributes which guarantee efficient

test generation and application. Therefore, it is reasonable to review the test activities

at some level of the chip hierarchy where the unique test representation of each macro

can be explored. The task of the, test engineer is to find a way to deal with each of

these macros separately and to be able to do that from the accessible nodes in the

chip, i.e., the primary inputs and outputs and a small number of dedicated test pins.

We will discuss these different strategies in the context of our modular test generation

system and then present a new framework aimed at minimizing the total test cost of

the chip.

7.1.1 Full Chip Testing

In full chip testing, test activities halt at the root node of the circuit hierarchy.

The circuit design can be combinational or sequential. For combinational circuits,

150

r

Full Chip Testing

Combinational

Sequential

Scan Design

No Scan

4

FSM

Macro Testing

RAM

PLA ALU

Current Approach

Proposed Approach

Figure 7.1. A classification of high level test strategies.

151

test generation can be achieved through the direct application of single fault test

generation algorithm to the chip circuitry. On the other hand, our modular test

generation procedures can be applied to save test time.

If the chip under test is a synchronous sequential, e.g., contains storage elements

such as flip flops, there are two options as far as the test generation process is con-

cerned. First, the designer applies a sequential test generation algorithm [36, 9, 37]

to cover faults in the circuit. Sequential test generators are not popular because they

take an excessive amount of time to generate tests for a circuit. Also, a fault in a

sequential circuit requires a sequence of test vectors to be detected s opposed to

the one vector for each fault in combinational circuits. This might result in a huge

number of test vectors for even .a moderate size circuit. Sequential test generation

algorithms are only applied to circuits With a small number of flip flops (20 or less).

The other option which is the more likely to be taken by the designer in gener-

ating tests for sequential circuits is to apply a design for testability technique which

simplifies the test activities. The most well known technique is the scan path design

[57]. In scan path design, the circuit is forced into a combinational mode of operation

-during the testing procedure. Therefore; during test generation, the circuit may be

considered combinational and our modular test generation system can be applied to

the circuit as explained in the Chapter 6.

Scan path design can be explained using the circuits shown in Figure 7.2 and

Figure 7.3. Figure 7.2 shows the general model for sequential circuits with only three

flip flops in the circuit. The output from the flip flops represent the present state lines

while the inputs to the flip flops represent the next state lines. In order to force the

circuit into a combinational behavior, each flip flop is modified as shown in Figure

7.3. A flip flop can now accepts input from two different sources through the input

152

multiplexer. In the funitional mode (T = 0), the flip flop inputs are connected to the

circuit. In the scan mode (T = 1), the output of a flip flop is connected to the input

of another flip flop, creating a shift register that can be scanned in and out from an

external pin on the chip.

xl

X2

Combinational Logic

C

D

Figure 7.2. A general model for sequential circuits.

zi
Z2

In the context of scan path designs, the test patterns generated from our modular

test generation system can be applied to the circuit as follows:

Setting T = 1 (Scan mode).

• Shifting the test pattern yj values into the flip flops.

• Setting the corresponding test values on the xi inputs.

• Setting T = 0 and, after a sufficient time for the combinational logic to settle,

checking the output Zk values.

• Applying a clock signal to CK.

• Setting T = 1 and shifting out the flip flop contents via Zm.

153

dO

dl

xi

X2

Xn

MUX

FF

-

CK

Modified Flip Flop Symbol

Combinational Logic

yl

 P.

A

Yl y2 .Y2 y3
A

Y3

zi

Z2

Figure 7.3. A sequential circuit modified for scan path design technique.

Zm

154

The logic values on the lines yj and Xi are generated by the modular test generation

system. The shifted output values from theflip flops represent the circuit response to

the input pattern. This output can be compared to the correct response to determine

if the circuit is faulty or. not.

Scan path techniques proved to be very helpful in testing complex sequential cir-

cuits.. The main drawback of this approach is the extra hardware added to the design

of the flip flops. This hardware can be as high as 65% of the original design of the

flip flop. Also, the signal going throu'gh the flip flop suffers an extra delay due to the

existence of the multiplexer circuitry. There are other approaches for the modification

of the circuit design to achieve the scan.path modes of operation. All of them suffer

from the addition of hardware into the original deign. As the number of flip flops

in the circuit increases, the number of clock cycles required to scan in and out the

flip flop logic values increases. This poses a serious problem on the effectiveness of

scan path design as the number of test patterns increases with the advancement in the

VLSI technology. In order to ease this problem, macro testing has been proposed as a

way of partitioning large designs into smaller macros and test each macro separately.

Macro testing will be discussed in the next section.

7.1.2 Macro Testing

Macro testing is the process of breaking the chip design into separate macros (or

modules) and applying test patterns to each macro independently. Unlike the full

chip testing approaèh, macro testing is applied to the chip at any hierarchy level

except the root level. -This approach is particularly useful with heterogeneous circuit

designs such as ASICs where different design styles exist on the chip. It is also helpful

when the test quality of the chip is degraded due to the lack of controllability and

155

observability of the internal nodes in a chip, which makes it very difficult to test the

internal structure of the circuit under test.

7.1.2.1 The Current Approach in Macro Testing

The best known approach for. macro testing was presented in [18]. This approach

is considered a pure macro test technique because it adds hardware to the design to

make each macro completely controllable and observable from the input/output pins

of the chip. Each macro uses its own design for testing technique, while the purpose of

the added hardware is to create paths between the chip pins and the inputs/outputs

of each macro. In this way, test generation, test application, simulation, and all othef

test activities are applied to one macro rather than to the full chip.

In pure macro testing, test interface elements (TIEs) are inserted between the

outputs of one macrd and the inputs of next macro. A block diagram of a TIE

element and its typical use in macro testing is shown in Figure 7.4. Each TIE has

three modes of operation, namely, a transparent mode (Y = F), collect mode (Y =

F after one clock cycle) which allows the TIE element to collect an output value

from a macro, and a shift mode in which the TIE elements are connected serially in a

shift register fashion. It has .been shown that the addition of the TIE elements would

increase the design area by about 9% over the original design. The performance of the

chip is not affected because the TIE elements do not introduce any significant delays

to the signals in the transparent mode. A 12.4% increase in the test, application time

was also reported [18].

These results show that macro testing can be very helpful in testing large circuits

without excessive hardware overhead. However, the real problem which faces the IC

designer today is not only in the cost of adding the TIE elements to the chip but alèo

156

Chip Boundary

Control

Test
Interface
Element

Y

= Test interface element LdN

Figure 7.4. A test interface element and its application in macro testing.

to the design for test (DFT) techniques embedded in each macro. Therefore, the real

testing cost and performance degradation is largely contributed to the cost of DFT

techniques, such as scan path designs, in each macro. As has been mentioned bfore,

the cost of building a scannable flip flop can go as high as 65% in area penalty, and the

path delay introduced using such technique can sometimes be unacceptable. We close

this argument with two different views on scan path techniques from a discussion on

test economics published in [46]:

"As the chip becomes larger, when you double the ASIC technology, you get double

the number of flip flops and double the number of scan loads. So double—sized ASICs

need four—sized test capability. Meanwhile, the RAM technology has only advanced by

a factor of 2. So, we are faced with a situation where the requirements for scan test

are outstripping the tester capability. " , Richard Ilimari, ICL.

"A lot of people think that area overhead is going to cost them something, so they

won't consider it even though the benefits of using DFT are still going to save them

much more money. " , Tony Ambler, Brunel University.

157

7.1.2.2 A New Framework for Macro Testing

In pure macro testing, all macros are'treated equally, in the sense that if one macro

is easily controllable and observable from the chip's boundary, it ,still has to be tested

independently through the TIE elements. Also, current pure macro testing techniques

cannot be applied at different levels of hierarchy. This' will necessitate that the test

control activities must be hierarchical. Our modular test generation system is the only

known system that provides such control. Therefore, the test control activities in our

modular test generation procedure can provide a suitable macro testing framework

using not only software procedures but also the addition of hardware' for improved

testability. We will refer to our macro testing approach as a mixed macro testing. It

is mixed because macros will be' tested through software procedures and hardware

addition. Accordingly, the proposed approach can be divided into two steps, namely,

soft testing and hard testing. It will be shown later in-this section that each one of

these two steps can be used as a stand alone test strategy. Efficient test strategy with

high test quality and minimal hardware addition can be achieved if the two strategies

are mixed together by the designer.

7.1.2.3 Soft Testing

In soft testing, the modular test generation system presented in the previous chap-

ter will be applied to generate tests for the entire chip using the test primitive of each

macro. In order to achieve this goal, each macro must be forced to have a combina-

tional behavior, i.e., all flip flops in the design should be disconnected during the test

application time. This requirement will be provided through the hard testing step.

This process is similar to the full chip testing approach discusseä in the previous

section.

158

It is also assumed that each macro has its test set in the same format as the

test primitives generated by our modular test generation system. Accordingly, the

modular test generation procedures can be applied up to the chip level of hierarchy.

The assembled tests from these procedures can then be simulated to determine the

fault coverage for the chip. If the fault coverage is satisfactory, the designer may stop

the test activities at this point.

If the assembled tests at the chip level do not provide an adequate fault coverage,

the designer should perform preprocessing analysis before going on to the hard testing

step in which hardware additions are necessary; The purpose of this analysis is to

determine which macros have .poor test quality. These macros will be the target for

hardware addition in the hard test step. This is similar to the analysis at any other

level in the circuit hierarchy during the application of our modular test generation

procedure. It simply generates an estimate on the number of covered faults in each

macro. Once a macro with poor test quality is identified, the designer should look at

alternate ways to design that macro to improve its test quality at the current level

in the circuit hierarchy. If this is not possible, the last resort would be to apply the

hard test step on that macro by adding extra hardware to increase its test quality. It

should be noted that our test approach can perform this process hierarchically, i.e.,

the test quality analysis and design modification are performed at one level in the

hierarchy without reference to the underlying levels in the hierarchy.

7.1.2.4 Hard Testing

Hard testing is performed if one of the following conditions arises.

• The soft testing step cannot be performed because of the lack of test primitives

for some of the modules on the chip.

159

• The soft testing step is performed but did not provide adequate test quality for

some of the macros. In order to reduce the cost of adding hardware to the design,

only these macros will be targeted by the hard test step.

In the first case, the chip test assembly through-modular test procedures will not

be possible bcause not all the macros retain test primitives. Accordingly, our test

generation system can be used in generating tests for some macros on the chip. The

designer can choose other test solutions for the remaining macros. Then, a pure

macro test approach such as the one reported in [18] can be used to test each macro

independently.

In the second case, soft testing is applied to the macros on the chip in the same

manner described in the Chapter 6. If the fault coverage after test assembly is not

sufficient, then, the macro test approach should be applied to a subset of macros

on the chip. These macros are the one that include mast of the uncovered faults

on the chip. It must be noted that, at this stage, the fault coverage obtained by

applying the modular test generation system will equal that of applying single fault

test generation at the gate level of the chip. Also, the fault coverage is typically over

90% and only a number of faults on the order of tens need to be covered by the macro

testing approach. It would then be a waste in silicon area if we apply macro testing

at a high level of abstraction to cover a number of localized faults in a large macro.

Instead, we propose a different test strategy in which the circuit* hierarchy is used to

determine the lowest level of hierarchy at which all the uncovered faults are explored

and then apply the macro testing strategy at that level.

As an examples in Figure 7.5, a macro has .four uncovered faults. If these faults

are traced to a lower level of hierarchy, two sub—modules will exist which carries this

160

'cx

El

El

N

Figure 7.5. An example showing how can we determine the lowest level in the circuit
hierarchy at which macro testing is applied.

161

set of faults. Again, tracing back the set of faults at a lower level of hierarchy reveals

that three sub—modules with the fault set. If we further moved to a lower level in the

hierarchy, part or all of the fault set may disappear because the 'subcircuit in which

these faults first appeared does not exist any more. Therefore, the level at which the

three modules were created is the lowest level of hierarchy at which the fault set exist.

Our strategy is to apply the macro testing technique for these three modules. The

bus width and the number of signals passing through these modules is much less than

that at the upper macro level. When these signals are .interfaced with other macros

through the TIE elements, they will not cause any routing problem and the added

hardware will be minimal. Therefore, minimal routing area and hardware additions

are achieved using this technique. We have to emphasize here that such an approach

would have not been possible without our modular test assembly procedures which

cover most of the faults in the macro under test and allowed for less hardware addition

at a hierarchy level other than the macro level.

7.2 Summary

In this chapter, we have explored the different test strategies at the chip level

within the context of our modular test generation algorithm. We explained the use

of our test system with each of the presented test strategy. We have also explored

the macro testing approach which offers an elegant framework for test generation

and application. A new test strategy for macro testing, based on our modular test

generation system, has been presented as well. It is shown that this strategy would

results in minimal hardware addition during macro testing.

CHAPTER 8

CONCLUSIONS

Most of the problems in VLSI system design are very complex and sometimes

intractable. Test generation and application is one of the most challenging problems

in VLSI, not only because it is complex but also because of the cost associated with

it. With the advances in technology, testing is getting harder and more costly.

This thesis describes a modular/hierarchical test generation approach for the gen-

eral class of VLSI circuits. We have built, from the gr6und up, a framework and

an implementation of an automatic test pattern generation system which guarantees

the full automation and integration of test activities in today's CAD tools. This

integration is possible because the test activities in 'our framework is hierarchical.

The first task was the definition of what could be a truly modular test generation

system. This had lead' us to the conclusion that the existing systems fail in providing

the requirements for truly modular test systems. The main reason was that many

heuristics are used to solve the test problem at different levels of hierarchy. Therefore,

it was very important to define the test interface at different levels of hierarchy. The

representation of this interface is manifested in the way we characterize our test

primitives. We have defined the test primitive of a module as a set of'patterns which

carries test and functional information.

163

The next task was to implement a test generation system which can generate such

information in the test primitive. We described a novel framework for test generation

at the gate level of description which achieves this purpose. This system is based on

a new framework, namely, global test generation. This framework has enabled us of

generating the required test primitives. In order to extend the efficiency of our global

test pattern generation system, we have modified the test system to generate tests

with implicit multiple fault coverage. Multiple fault testing is much more difficult than

single fault testing. Our test generation framework is used successfully in solving this

problem.

The description of a novel approach for modular test generation is presented.

This system is based on test assembly procedures which use the test primitives and

a description of modules interconnections to generate tests at higher levels in the

hierarchy. We have shown that no extra information or heuristics are needed to

achieve this purpose. Consequently, truly hierarchical test system can be built with

minimal programming efforts and less memory requirements.

Finally, test strategy selection at the chip level was reviewed in the light of our new

test framework. We have discussed the different test scenarios which might face the

designers today. We have put more emphasis on macro testing technique because it

has the potential of testing large varieties of complex and heterogeneous circuits. Since

this approach requires the addition of hardware to improve the system's testability,

we have proposed a new approach in which mihimal hardware can be added to the

original design.

164

Future Work

As with most research, this thesis raises more questions than it answers. These

are some of the areas which need further study.

Efficiency: There are a number of improvements that can be made to the test

system to make it more efficient. An area which obviously needs to be investigated

is that of minimizing the test length generated by the test procedures. Although our

test system generates tests with a 100% fault coverage in a very small run time, it

still suffers from a larger test length over other .pproaches. The problem with large

test length is that it takes so much time to apply these tests in the test equipment

and it also consumes a large amount of the tester's memory. We think that the test

length may be minimized by applying interactive fault simulation program during

test generation.

DFT Improvement: Design for testing techniques have come to the point where

their existence became a hurdle for fast and efficient designs. Scan path techniques,

for example, are now attacked because of the huge cost associated with them. It takes

so much time to serially scan in and out the scan path structure. In fact, this is one

of the reasons that lengthy test sets are not desirable.

Area penalty, performance degradation, and long test application time are a few

reasons for the reluctant use of scan path techniques. We believe that the separation

of tJie test attributes of a design from its functional attributes will solve some of the

DFT problems. Currently, one might think of DFT circuitry as embedded into the

design. For instance, during test application, the system must switch between a test

mode and a functional mode. Consequently, this framework puts some constraints

on the way test generation is carried out. We should search for a new technique

165

which allows the parallel application of test patterns to the chip so that the test

application time is minimized. The separation of the test circuitry from the functional

circuitry will minimize performance degradation. It will also separate the tester's

clock from the system's clock and thus eliminates the need for clock synchronization

which contributes to the complexity of the test application process.

MCM Testing: Multi—Chip Module (MCM) testing is one of the most challenging

problems in VLSI design. It can be seen that our modular test generation system

combined with the macro testing approach are very suitable to apply to this problem.

The modular test system should provide the test set for each module, while the

macro test 4proach will provide access to each module in the MCM. Because of

the complexity of the MCM circuitry, we expect that the test length and the test

application time will be the limiting factor in applying these techniques to the MCM

testing problem. So, it is the solutions of the above problem that will lead to an

efficient implementation for an MCM testing technique.

Partial Scan: We have discussed the application of our test generation system to

the full scan technique in which all the flip flops in the design are connected as a shift

register in the test mode. Partial scan is another technique in which a subset of flip

flops are connected in the scan chain. The flip flops for the scan chain are selected in

such a way that the extra DFT area is minimized while still sufficient controllability

and observability are guaranteed to test the circuit with a desii'ed fault coverage.

The existence of unscanned flip flops poses a problem during the test application

phase. The order of applying the test bits in a single pattern will depend on the

location of the unscanned flip flops in the design. We need to extend the domain of

our test generation system to this type of design. This requires the addition of delay

information into the test primitives. For Instance, each time an unscanned flip flop is

'166

encountered, a delay unit should be added to the sensitized path.

Sequential ATPG: Our test generation system is based on combinational test

generation procedures. We would like to extend our system to solve the sequential

test generation problem. We believe that this can be achieved by interfacing the

GATPG algorithm with sequential justification and differentiation procedures. These

procedures ensure that each generated pattern from the GATPG system is justified

from .the reset state. The purpose of the differentiation procedure is to ensure that

if a fault is propagated to a next state line, it will be rerouted to one of the primary

outputs.

a REFERENCES

[1] V. K. Agarwal and A. S. F. Fung. Multiple Fault Testing of Large Circuits by

Single Fault Test Sets. IEEE •Trins. Comp., C-30:855-865, Nov. 1981.

[2] P. Agrawal and V. D. Agrawal. Probabilistic Analysis, of Random Test Gen-

eration Method for Irredundant Combinational Logic Networks. IEEE Trans.

Comp., C-24(7):691-695, July 1975.

[3] V. D. Agrawal and M. R. Mercer. Testability measures - what do they tell us?

IEEE Test Conf., Chirry Hill, Phil., pages 391-396, 1982.

[4] A. V. Aho, E. Hoperoft, and J. D. Ullman, editors. . The Design and Analysis of

Computer Algorithms. Addison - Wisley, Mass., 1974.

[5] P. N. Anirudhan and P: R. Menon. Symbolic Test Generation for Hierarchical

Modelled Digital Systems. Proc. International Test Conference, pages 461-469,

1989.

[6] R. G. Bennetts, 'D. C. Brittle, A. C. Prior, and J. L. Washingtorr: A Modu-

lar Approach to Test Sequence Generation for Large Digital NetwOrks. Digital

Processes, 1:3-23, 1975.

[7] I. Berger and Z. Kohavi. Fault Detection in Fanout-Free Combinational Net-

works. IEEE Trans. Comp., C-22:908-914, Oct. 1973.

[8] D. C. Bossen and S. J. Hong. Cause-Effect analysis for Multiple Fault Detection

in Combinational Circuits. IEEE Trans. Comp., C-20:1252-1257, Nov. 1971.

168

[9] W. G. Bouricius, E. P. Hsieh, G. R. Putzolu, J. P. Roth, P. R. Schneider, and

C. J. Tan. Algorithms for detection of Faults in Ldgic Circuits. IEEE Trans.

Comp., C-20(11):1258--1264, Nov. 1971.

[10] W. G. Bouticius. Algorithms for Detection of Faults in Logic Circuits. IEEE

Trans. Comp., C-20:1258-1264, Nov. 1971.

[1 1] J. D. Calhoun and F. Bigliz. A Framework and Method for Hierarchical Test

Generation. PrOc. Int. Test Conferthwe, pages 480-490, Aug. 1989.

[12] S. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. A Transitive Closure

Algorithm for Test Generation. IEEE Trans. On CAD, 12(7):1015-1028, July

1992.

[13] H. COX and J. Rajski. A Method of Fault Analysis for Test Generation and

Fault Diagnosis. IEEE Trans. on Comp., 7(7):813-833, July 1988.

[14] H. Cox and J. Rajski. On Necessary and Nonconflicting Assignments in algo-

rithmic Test Pattern Generation. IEEE Trans. on Comp., 13(4):515-530, April

1994.

[15] H. W. Daseking, I. R. Gardner, and G. B. Weil. VISTA: VLSI CAD System.

IEEE Trans. on CAD, CAD-1:36-52, Jan. 1982.

[16] M. W. Du and C. D. Weiss. Multiple Fault Detection in Combinational Circuits.

IEEE Trans. Comp., C-22:235-240, March 1973.

'[17] E. B. Eichelberger and T. W. williams. A Logic design Structure for VLSI

Testing. Proc. .14th Design Automation Conference, jages 462-468, June 1977.

118] F. P. M. Beenker et. al. Macro Testing: Unifying IC and Board Test. IEEE

Design and Test of Computers, pages 26-32, Dec. 1986.

169

[19] G. Fantauzzi and A. Marsella. Multiple-fault Detection and Location in Fanout

Free Combinational Circuits. IEEE Trans. Comp., C-23:48--55, Jan. 1974.

[20] L. Fisher, W. A. Rogers, M. Abadir, and H. B. Mm. A Quantitative Prediction

Model for Combinational Test Generation. The Economics of Design and Test

for Electronic Circuits and Systems, pages Chap. 5.2:, Ellis Horwood, 1992.

[21] H. Fujiwara and T. $himono. On the Acceleration of Test GenerationAlgorithms.

IEFJE Trans. Comp., C-32:1137-1144, Dec. 1983.

[22] J. W. Gault, J. P. Robinson, and S. M. Reddy. Multiple Fault Detection in

Combinational Networks. IEEE Trans. Comp., C-21(1):31-36, Jan. 1972.

[23] P. Goel. Test Generation Costs Analysis and Projections. Proc. .17th Design

Automation Conference, pages 77-84, .June 1980.

[24] P. Goel. An Implicit Enumeration Algorithm to Generate Tests For Combina-

tional Logic Circuits,. IEEE Trans. Comp., C-30:215-222, March 1981.

[25] L. H. Goldstieri and E. L. Thigpen. Scoap: Sandia controllability/observability

aniysis program. Des. Aut. Conf., Minneapolis, Minn., June 1980.

[26] J. A. Hughes. Multiple Stuck-at Fault Coverage of Single Stuck-at Fault Test

Sets. Tech. Rep. No. JH85-2, Palo Alto Research Associates, Palo Alto, Dec.

1985.

[27] J. A. Hughes. Multiple Fault Detection Using Single Fault Test Sets. IEEE

Trans. on CAD, 7(1):100-108, Jan. 1988.

[28] W. Jone and P. Madden. Multple-Fault Testing Using Single* Fault Test Set for

Fanout-Free Circuits. IEEE Trans. on Comp., 12(1):149-157, Jan. 1993.

[29] W. Jone and P. Madden. Multple-Fault Testing Using Single Fault Test Set for

Fanout-Free circuits. IEEE Trans. on Comp., 12(1):}49-157, Jan. 1993.

170

[30] K. L. Kodandapani and S. C. Seth. On Combinational Networks with restricted

fanout. IEEE Trans. Comp., C-27:309-318, April 1978.

[31] B. Krishnamurthy. Hierarchical Test Generation: Can AT Help? Proc. Int. Test

Conference, pages 694-700, Sep. 1987.

[32] K. Kubiak and W. K. Fuchs. Multiple-Fault Simulation. and Coverage of De-

terministic Single-Fault Test Sets. International Test Conf., pages 956-962,

September 1991.

[33] Tracy ,Làa'rabee. Test Generation Using Boolean Satisfiability. IE.JE Trans.

Computer-Aided Deàign, 11:4-15, Jan 1992.

[34] J. Leenstra and L. Spaanenburg. Hierarchical Test Assembly for Macro Based

VLSI Design. Proc. of International Test Conference, pages 52.0-529, 1990.

[35] Y. H. Levendel and P. R. Menon. Test Generation Algorithms for Computer

Hardware Description Languages.' IEEE Trans. Comp., 31:557-588, July 1982.

[36] Hi-Keung Tony Ma, Srinivas Devadas, A. Richard Newton, and Alberto

Sangiovanni.Vincentelli. Test generation for Sequential Finite State Machines.

Proc. of mt. Conf. on CAD, pages 288-291, Nov. 1987.

[37] S. Mallela and S., Wu. A Sequential Circuit Test Generation System. Proc. of

Int. Test Conference, pages 57-61, Oct. 1985.

[38] E. J. McCluskey and F. W. Clegg. Fault Equivalence in Combinational Logic'

Networks. IEEE Trans. on Comp., C-20:1286-1293, Nov. 1971.

[39] E. J. McCluskey, S. Makar, S. Mourad, and K. D. Wagner. Probability Models

for Pseudorandom TestSequences. IEEE Trans. on CAD, 7(1), Jan. 1988.

[40] Hyoung B. Min and William A. Rogers. Search Strategy Switching: An Alter-

native to Increased Backtracking. Int. Conf. on Testing, Sept. 1989.

171

[41] Hyoung B. Min,Hwei tsu A. Luh, and William A.. Rogers. Hierarchical Test

Pattern Generation: A Cost Model and Implementation. IEEE Trans. On CAD,

12(7):1029-1038, July 1993.

• [42] S. Mourad and E. J. McCluskey. Testability of Parity Checkers. IEEE Trans.

Ind. Electron, 36:254-262, May 1989.

[43] Brian T. Murray and John P. Hayes. Hierarchical Test Generation Using Pre-

computed Tests for Modules. IEEE Trans. On CAD, 9(6):594-603, June' 1990.

[44] D. K. Pradhan. Fault-Tolerant Computing. Prentice Hall, 1986.

[45] J. P. Roth. Diagnosis of Automata Failures, A Cafculus and A Method. IBM J.

Res. Dcv., 10:278-291, July 1966.

[46] A D& T Roundtable. Test Economics. IEEE Design & Test of computers, pages

70-77, Fall 1994.

[47] T. M. Sarfert, R. Markgraf, E. Trishler, and M. H. Schulz. Hierarchical 'Test

Pattern Generation Based on High-Level Primitives.' Proc. Int. Test Conference,
pages 470-479, Aug. 1989.

[48] J. Van Sas, F Catthoor, P. Vandeput F. Rossaert, and H. De Man. Automated

Test Pattern Generation for the CATHEDRAL-II/2nd Architectural Synthesis

Environment. Proc. of EDAC, pages 208-213, Feb. 1991.'

• [49] D. R. Schertz and G. Metze. A New Representaion for Faults in Combinational

Digit1 Circuits. IEEE Trans. on Comp., C-21:858-86, August 1972.

[50] D. R. Schertz and G. 'Metze. A New'Representaion for Faults in Combinational

Digital Circuits. IEEE Trans'. on Comp., C-21:858-866, August 1972.

172

[51] Michael M. Schulz, Erwin Trischler, and Thomas M. Sarert. SOCRATES: A

Highly- Efficient Test Pattern Generation System. IEEE Trans. On CAD, 7(1),

Jan. 1988. 1

[52] J. J. Shedletsky and E. J. McCluskey. The Error Latency of A Fault in A

Sequential Digital Circuit. IEEE Trans. Comp., C-25:655-659, June 1976.

[53] J. P. Marques Silva and Karem A. Sakallah. Dynamic Search-Space Pruning

Techniques in Path Sensitization. Proc. of the 31st Design Automation Confer-

ence, pages 705-711, June 1994.

[54] J. Steensma, W. Geurts, F. Catthoor, and H. De Man. Testability Analysis in

High Level Synthesis. Journal of Electronic Testing: Theory and Applications,

First issue 1993.

[55] S. M. Thatte and J. A. Abraham. Test Generation for Microprocessors. IEEE

Trans. Comp., 1:429-441, June .1980.

[56] J. A. Waicukauski, E. A. Eichelberger, D. 0. Forlenza, E. Lindbloom, and T. Mc-

Carthy. Fault Simulation for Structured VLSI. VLSI Systems Design, page 20,

Dec. 1985.

[57] M. J. Williams and J. B. Angel. Enhancing Testabilit5, of Large Scale Integrated

Circuits via Test Points and Additional Logic. IEEE Trans. Comp., C-22(1):46-

60, Jan. 1973.

[58] Abdel-Fattah S. Yousif and Jun Gu. Concurrent Automatic Test Pattern Gener-

ation Algorithm for Combintational Circuits. International Conference on Com-

puter Design, Oct. 1995.

[59] Abdel-Fattah S. Yousif and Jun Gu. On the Augmentation of Single Fault Test

Sets for Maximal Multiple Fault Coverage. International Conference on ASIC

Design, Oct. 1995.

