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Abstract 

Visual word recognition is a cognitive process that remains relatively stable throughout 

adulthood. Despite this stability, recent research suggests that the system involved is malleable, 

by showing evidence of behavioural change after lexical decision task (LDT) practice, and of 

neural differences between-subjects during LDT performance. However, these studies leave the 

question unanswered as to whether neural change can occur within the visual word recognition 

system, which would suggest plasticity. We therefore investigated whether neural change 

accompanies the behavioural change previously found with LDT practice. If found, these neural 

changes could be due to processes associated with learning, where performance that is initially 

unskilled and effortful becomes skilled and efficient, and supported by a more specific, honed, 

and optimized task network. We replicated the British Lexicon Project (BLP), in which 

participants completed several days of LDT learning. We additionally recorded EEG at three 

time points to track neural change during LDT learning, and assessed event-related potentials 

and brain signal complexity. We found response time decreased during LDT learning, replicating 

the BLP. We also found neural change occurred through N170, P200, N400, and LPC amplitude 

effects, suggesting alterations to both the general cognitive and specific lexical processes 

involved in LDT performance. There was also widespread complexity decreases alongside 

localized increases, suggesting that with learning, LDT processing became more automatic with 

specific increases in processing flexibility. These findings suggest that the visual word 

recognition system is dynamic, flexible, and capable of undergoing plastic changes to support 

more efficient and automatic task performance. 

 Keywords: visual word recognition, plasticity, learning, lexical decision task (LDT), 

brain signal complexity, event-related potential (ERP) 
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Neuroplasticity in Visual Word Recognition: An Exploration of Learning-Related 

Behavioural and Neural Changes

Decoding a visual representation of a word and accessing its meaning, a process known 

as visual word recognition, is a human skill that is crucial to our ability to read and gain 

information from the world. Once we become literate, visual word recognition can be carried out 

with relative ease, automaticity, and incredible speed (e.g. Laszlo & Federmeier, 2014), often 

thousands of times each day. Despite the ease with which we carry out the task, from a 

neurocognitive perspective this skill is quite complex, as it depends on the coordination of many 

cognitive and perceptual processes. These include basic visual perception and eye movement 

control, orthographic, phonological and semantic processing, and the involvement of higher-

level linguistic systems and aspects of memory that enable the derivation of meaning (Bentin et 

al., 1999; Norris, 2013). 

 The system involved in visual word recognition is considered to reach full development 

by early adulthood (e.g., Schröter & Schroeder, 2017; Sowell et al., 2003, 2004; Turkeltaub et 

al., 2003) and changes very little thereafter (Cohen-Shikora & Balota, 2016). Interestingly, 

despite this apparent stability, the visual word recognition system has shown signs of 

malleability. Recently, several studies known as Lexicon Projects have examined visual word 

recognition by testing healthy adult participants with large portions of the lexicon (between 

14,000 and 40,000 words), and have assessed the effects of a number of variables on lexical 

decisions, providing insight into some of the most important factors in visual word recognition 

(Balota et al., 2007; Ferrand et al., 2010; Keuleers et al., 2010, 2012). The results of two of these 

studies, The Dutch Lexicon Project (DLP; Keuleers et al., 2010) and the British Lexicon Project 

(BLP; Keuleers et al., 2012), suggest that extensive practice with the lexical decision task (LDT) 
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can alter visual word recognition processes. Each study measured LDT response time as 

participants completed thousands of LDT trials across several days, and response time decreased 

over the course of practice, although more so in the BLP than the DLP. In a follow-up analysis of 

the BLP dataset, decreased effects of word frequency and imageability were among the practice-

driven changes that resulted from making repeated lexical decisions (Hargreaves & Pexman, 

2012). There is also evidence of visual word recognition system malleability from studies on 

expertise, specifically those involving Scrabble experts, as they have been found to respond 

faster than age-matched controls on LDT trials (Hargreaves et al., 2012; Protzner et al., 2016). 

An additional study found that higher levels of Scrabble expertise were associated with faster 

LDT reaction times, when controlling for age (Halpern & Wai, 2007). Together, these findings 

suggest that although the visual word recognition system is relatively stable in adulthood, it has 

the potential to be altered behaviourally in the context of learning through domain-specific 

practice. 

 What is less clear is whether the behavioural changes observed with LDT practice or 

extensive lexical experience are simply enhancements in performance, or if they extend to 

alterations of the neural substrates supporting visual word recognition. Previous between-

subjects research has found some evidence in support of neural alterations with behavioural 

performance differences. For example, participants with high versus low levels of semantic 

reliance while reading showed variation in anterior temporal lobe and premotor region activity 

(Hoffman et al., 2015). Research involving Scrabble experts also provides some evidence: during 

LDT, Scrabble experts showed activation of bilateral regions involved in working memory and 

visual perception, while age-matched controls showed activation within more typical language 

regions (Protzner et al., 2016). For LDT with vertically oriented stimuli, Scrabble experts 
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showed an increased amplitude late positive component (LPC) compared to controls, which may 

signify improved stimulus evaluation and categorization afforded by experience (van Hees et al., 

2017).  

These findings provide some evidence of neural differences accompanying behavioural 

differences on word recognition tasks, but as this evidence comes from between-subjects 

comparisons, the conclusions that can be drawn about the nature of these changes are limited. To 

examine whether the behavioural changes associated with LDT or lexical practice, such as those 

observed in the BLP (Keuleers et al., 2012) or among Scrabble experts (Hargreaves et al., 2012; 

Protzner et al., 2016), are accompanied by neural changes, in the present study we utilized a 

within-subjects design and tracked behavioural and neural changes, using 

electroencephalography (EEG), across several days of LDT learning. If there are experience-

related neural changes accompanying the behavioural changes previously found with LDT 

practice, this could occur through processes associated with learning. In general, when starting to 

learn to perform a completely new skill or task, performance is unskilled and effortful. In terms 

of learning associated with LDT or a similar visual word recognition task, literate adults already 

have expertise at identifying words, but as the LDT is not a typical, everyday task, performance 

at the beginning of learning will be less than optimal. As learning progresses, LDT performance 

becomes skilled and more efficient. Relating this to the neural underpinnings, sub-optimal 

performance early in learning tends to be supported by a neural network that has the ability to 

respond to novel task demands, but with continued practice and learning on the task, the network 

supporting task performance changes and becomes more specific, honed, and optimized 

(Petersen et al., 1998). In this sense, learning in the current study refers to the unconscious 

change in neural processes that come about due to experience gained in visual word recognition 
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through repeated performance of the LDT, rather than the more common use of the term 

referring to conscious acquisition of new knowledge or skills. In our study, we explored this 

possibility by looking at the changes that occur with LDT learning using event-related potentials 

(ERPs), and a newer metric, brain signal complexity, which reflects processing capacity in 

biological systems (McIntosh et al., 2008; Wang et al., 2016). 

In terms of the ERP components of interest, if neural changes do occur with learning, we 

expected the changes would be evident in components related to processes involved in visual 

word recognition and LDT performance, namely orthographic and semantic processing, and 

stimulus evaluation and categorization (Balota et al., 1999; Bentin et al., 1999; Coltheart et al., 

2001; Harm & Seidenberg, 2004; Norris, 2013). These are reflected in the N170, N400, and 

LPC. The N170, an early negative component peaking around 170 ms post-stimulus in occipito-

temporal electrodes, has been associated with visual orthographic processing, with greater 

amplitudes observed in the left hemisphere for orthographic compared to nonorthographic 

stimuli (Bentin et al., 1999; Maurer et al., 2005; Simon et al., 2004).  

Semantic processing has been associated with the N400, which is a negative component 

that peaks around 400 ms post-stimulus, typically in centro-parietal electrodes when examining 

effects of semantic ambiguity or improbability for written words in sentences (Kutas & 

Federmeier, 2011; Kutas & Hillyard, 1980). The N400 has also been related to the processing of 

meaning in general, with variable topography depending on the task and stimuli used (see Kutas 

& Federmeier, 2011 for review). Several studies have shown N400 effects in frontal scalp sites 

with lexical stimuli with, for example, concreteness and lexical manipulations (Barber et al., 

2013; Kounios & Holcomb, 1994), ambiguity (Haro et al., 2017), repetition (Simon et al., 2004), 

and attention and semantic priming (Bentin, 1987; Bentin et al., 1985; McCarthy & Nobre, 
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1993). Due to the range of contexts in which N400 effects exist, researchers suggest this 

component could reflect processes related to lexical access, where reduced amplitudes are 

associated with easier lexical access (Bentin, 1987; Peeters, 2016), or more generally, ease of 

processing with regards to stimulus meaning, with reduced amplitudes representative of 

facilitated semantic processing (Kutas & Federmeier, 2011).   

Lastly, stimulus evaluation and categorization have been associated with a late positive 

component (LPC) that peaks around 600 ms post-stimulus in central-posterior electrodes (Ito & 

Cacioppo, 2000; Polich & Donchin, 1988; Rugg, 1983; Yao & Wang, 2014), with decreased 

amplitudes found for task conditions requiring fewer attentional or cognitive resources, such as 

for congruent word pairs in priming studies (Herring et al., 2011; Hinojosa et al., 2009), 

categorically and evaluatively consistent stimuli (Ito & Cacioppo, 2000), and processing of 

concrete versus abstract words (Holcomb et al., 1999; Kounios & Holcomb, 1994; West & 

Holcomb, 2000). Overall, with learning on the LDT, we might expect to see changes in 

activation for some or all of these components, or possibly the additional activation of 

components not named here (Kelly et al., 2006). 

As a second measure of brain function associated with learning, we examined brain 

signal complexity. The temporal fluctuations in brain signal have both stochastic and 

deterministic properties and thus are neither completely predictable nor entirely random. This 

structural richness should be thought of as complex rather than simply variable (Costa et al., 

2002, 2005). We evaluated signal complexity using multiscale entropy (MSE), which measures 

the way signals behave over a range of temporal scales from fine (e.g., over 2 ms intervals) to 

coarse (e.g., over 40 ms intervals; Costa et al., 2002, 2005; McIntosh et al., 2008). If neural 

changes accompany behavioural changes with LDT learning, we expected the changes to be 
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evident through increases and/or decreases in MSE. In the literature on brain signal complexity 

and task performance, both higher and lower complexity have been linked with better or 

improved task performance. 

Higher brain signal complexity has been associated with greater task accuracy (McIntosh 

et al., 2008; Mišić et al., 2010; Protzner et al., 2010, 2013; Wang et al., 2016), and more stable 

response times (McIntosh et al., 2008; Mišić et al., 2010). In addition, higher brain signal 

complexity has been associated with increases in the amount of information available for 

responding to a stimulus (Burles et al., 2019; Heisz et al., 2012, 2014; Mišić et al., 2010), 

because with increased information available about a stimulus, there may be engagement of a 

broader network of regions that presents as increased signal complexity. As the brain is a 

nonlinear and complex system, noise or signal complexity allows for the formation of and 

transition between different network configurations. With complexity present, the brain can 

quickly jump between different states or networks, meaning that the possible network 

configurations and repertoire available to the brain when responding to stimuli increase (Deco et 

al., 2011; McIntosh et al., 2010). In other words, increased complexity represents a greater 

repertoire available for responding to a stimulus, and in turn, this increased repertoire can be 

thought of as an enrichment of the processing involved in stimulus response or task performance. 

Better task performance has also been associated with lower (i.e., more regular) brain 

signal complexity. Burles et al. (2019) found that participants responded faster and more 

accurately during a mental rotation task when stereoscopic disparity was present (vs. absent), and 

complexity was lower in frontal electrodes in this condition. The authors suggested that the 

lower complexity represented a decrease in cognitive load in frontal brain regions, which 

facilitated responding (Burles et al., 2019). Heisz et al. (2012) reported a decrease in signal 
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complexity and faster response times when stimulus presentation was immediately repeated. This 

decrease in neural response with stimulus repetition, often referred to as repetition suppression, 

can be explained in several ways (Heisz et al., 2012; for review, see Grill-Spector et al., 2006). 

For example, it could be due to a decreased firing rate of neurons in the task network (i.e., the 

fatigue model; Grill-Spector & Malach, 2001; Miller & Desimone, 1994); the extinction of 

response from neurons less essential in identifying the stimulus, with overall fewer neurons 

firing in the task network (i.e., the sharpening model; Desimone, 1996; Wiggs & Martin, 1998); 

or, faster processing of a stimulus, through shorter latencies or durations of neural firing within 

the task network (i.e., the facilitation model; Henson & Rugg, 2003). Therefore, decreases in 

signal complexity for a task may indicate that processing is becoming more automatic. Taking 

the sharpening model for example, with fewer, more essential neurons responding to the repeated 

stimulus, the decreased neural response could facilitate faster, more efficient, and more 

automatic processing (Grill-Spector et al., 2006) as the task network itself has been made 

simpler, thus becoming more specific and optimized.  

In the context of the current study and visual word recognition, although behavioural 

performance may improve with LDT learning through reductions in response time, different 

parts of the task network may undergo changes related to enrichment or automatization of 

processing with learning, shown through increases and decreases in brain signal complexity. 

Although stimuli in the LDT are not repeated, the same types of stimuli appear throughout the 

task, and word and nonword responses are repetitive. Because the stimuli require processing 

from the same task network, effects similar to those occurring with repetition suppression could 

be observed, where, if a decrease in signal complexity is observed with LDT learning, neural 

response could become more simplified, with processing becoming more honed, optimized, and 
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automatic (Burles et al., 2019). At the same time, increases in brain signal complexity or 

enrichment of stimulus processing could be occurring in other areas of the brain, such that 

processing from certain areas increases as those areas become more important to making lexical 

decisions. Enrichment could also occur if there is an increase in the flexibility of the neural 

configurations that can be used when responding to a stimulus, such as when more information 

about a stimulus is available (Burles et al., 2019). 

 Therefore, to further understand neural change in LDT learning, in the current study we 

used an exploratory approach to investigate what the nature of neural changes might be if they 

are found to accompany the behavioural changes previously cited to occur after LDT learning. 

To do so, we replicated the BLP (Keuleers et al., 2012), in which participants completed 16 

hours of LDT learning over an average period of one week. In order to track any potential neural 

changes to visual word recognition, we employed EEG to measure neural response at several 

time points throughout the LDT learning period: first, at the very beginning of learning to gain a 

baseline measure of neural response; second, just prior to midway through learning, as this was 

when the original BLP showed response time decreases began to stabilize; and third, at the end 

of the learning period to gain a final measure of neural response. 

 When analyzing our measures of neural response, we chose to analyze word and nonword 

trials together, as we were interested in the overall learning-related changes in LDT learning, 

rather than the changes that may occur for words or nonwords separately. We also expected that 

the cognitive processes learned would be similar for words and nonwords, as the diffusion model 

(Ratcliff, 1978; Ratcliff et al., 2004) suggests that both types of stimuli are evaluated according 

to the same processes during lexical decisions. For each lexical decision there is proposed to be a 

word and a nonword boundary, and during the decision process “wordness” evidence 
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accumulates towards the boundaries until there is enough evidence to reach one of the 

boundaries and the lexical decision can be made (Ratcliff et al., 2004). 

 We investigated two main questions regarding the behavioural and neural changes 

associated with LDT learning and malleability of the visual word recognition system. First, we 

examined whether or not we could replicate the behavioural findings of the BLP. That is, as LDT 

learning progresses, will response time decrease? Based on the BLP (Keuleers et al., 2012), we 

expected response times to decrease between the first and second EEG measurement points, and 

then level off from the second to third EEG measurement points. Second, we examined whether 

or not these experience-driven behavioural changes were accompanied by neural changes. To 

explore the potential neural effects of LDT learning, we performed exploratory analyses of ERPs 

and MSE to see if neural response changed throughout the learning period. As discussed above, 

in the ERPs, we expected learning-related changes (increases and/or decreases in activation) to 

be associated with visual orthographic processing (N170), semantic processing (N400), and 

stimulus evaluation and cognitive resource allocation (LPC), possibly in addition to other 

components. For the measure of brain signal complexity, we expected MSE to show changes 

related to an enrichment of processing, where MSE would increase with learning, and/or to 

change in such a way that processing would become more automatic, where MSE would 

decrease with learning. 

Method 

Participants 

 Twenty-one healthy adults (10 females) participated as part of a larger study. Participants 

ranged in age from 20 to 28 years (M = 23.90, SD = 2.86), and had 13 to 24 years of education 

(M = 17.48, SD = 2.75). Participants were recruited through word of mouth by the researchers. 
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This was done to ensure quality of task completion as well as to reduce the likelihood of 

participant attrition. Criteria for inclusion were right-handedness, having normal or corrected-to-

normal vision, and speaking English as a first language; seven participants additionally reported 

having a second language. Exclusion criteria included having a history of neurological disease or 

disorder, mental illness, head trauma, alcohol or drug abuse, or use of psychotropic medications 

within the last two years. Ethics approval was obtained from the Conjoint Faculties Research 

Ethics Board of the University of Calgary, and the study was conducted in accordance with all 

relevant guidelines and regulations. All participants provided written informed consent before 

taking part in the study and were provided with monetary compensation for their participation. 

 In the current study, we used a sample size of 20 participants, as this size is typically used 

to ensure sufficient power for EEG studies (Luck, 2014a). Admittedly, larger samples have been 

used for behavioural studies, but our within-subjects design and the extremely large number of 

trials completed per participant (1,500 per EEG session) should mitigate any potential sample 

size issues in the behavioural realm.  

Stimuli 

 Word stimuli were obtained from the BLP (Keuleers et al., 2012). From the total list of 

14,365 word stimuli, words were selected for the present study if they were 3-8 letters in length 

and elicited response accuracy greater than 10% in the BLP study. Word stimuli meeting these 

criteria were divided into 40 blocks of 250 items (10,000 words total), and were matched across 

blocks for frequency (British National Corpus, http://www.natcorp.ox.ac.uk), orthographic 

neighbourhood density (Coltheart et al., 1977), orthographic Levenshtein distance (Yarkoni et 

al., 2008), number of letters, and number of syllables. The 10,000 word stimuli were then used to 

generate the same number of nonwords using Wuggy, a pseudoword generator (Keuleers & 
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Brysbaert, 2010). The nonwords were matched to the words in each block on length, 

morphological structure, syllabic and sub-syllabic structure, and transition frequencies of the 

sub-syllabic segments. Monosyllabic nonwords differed from the target words on one sub-

syllabic segment (onset, nucleus, or coda), whereas disyllabic nonwords differed on two sub-

syllabic segments. As with the words, the nonwords were divided into 40 blocks of 250 items, 

with one nonword block assigned to each of the word blocks, creating 40 blocks of 500 items 

(250 words, 250 nonwords). Nine blocks were assigned to the EEG sessions, and the remaining 

31 blocks were assigned to the online sessions. 

LDT Learning Procedure 

The learning period consisted of 40 blocks (500 trials per block) of a visual LDT, with 

the order of blocks randomized for each participant. Learning was spread over 16 hours within a 

one-week period. Throughout the learning period, participants were asked to maintain at least 

80% accuracy on the LDT blocks. Each trial began with the presentation of a central fixation 

cross on a computer screen for a jittered duration of 250-750 ms (M = 500 ms), followed by the 

stimulus. Stimuli were presented one at a time in uppercase white typeface on a plain black 

background. Participants were asked to respond as quickly and accurately as possible by pressing 

the ‘D’ key with their left index finger for a nonword response, or the ‘K’ key with their right 

index finger for a word response. The stimulus remained on screen until a response was made. 

Following the response, a 1,000 ms blank screen appeared, followed by the start of the next trial. 

Self-paced break screens appeared every 100 trials, and participants were instructed to indicate 

by key press when they were ready to continue. At the end of each block of 500 trials 

participants were provided with accuracy feedback. Figure 1 shows an outline of the LDT 

learning procedure. 
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Figure 1 

Lexical Decision Task (LDT) Stimulus Presentation 

 

Note. Example stimuli and outline of stimulus presentation in the lexical decision task (LDT). 

Participants made decisions as to whether letter strings were words or nonwords, with a central 

fixation cross presented before each trial and a blank screen presented after each trial. A self-

paced break screen also appeared every 100 trials. 

 

Learning Blocks with Simultaneous EEG Recording 

At three time points, participants completed LDT learning with simultaneous EEG 

recording in the lab: at the beginning of the learning period (Blocks 1 to 3), prior to midway 

through learning (Blocks 16 to 18), and at the end of learning (Blocks 38 to 40). EEG session 

timing was chosen based on the response time changes reported in the BLP, with a decrease in 

response time expected between the first and second EEG sessions, and a leveling off of 

response time between the second and third EEG sessions (Keuleers et al., 2012). The LDT 

learning program was presented to participants, following the procedure described above, on a 

+

BLOOMS

+

PUTTLE

250-750 ms

250-750 ms

Until response

Until response

1,000 ms
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24-inch monitor using Presentation software (Version 16.1, Neurobehavioural Systems, Inc.). 

Participants were seated approximately 80 cm from the computer screen and the visual angle of 

the LDT stimuli ranged from 2.4 ´ 0.6° for three-letter strings to 6.4 x 0.6° for eight-letter 

strings. In addition to EEG recording, response time and accuracy were recorded.  

Online Learning Blocks 

The remainder of LDT learning was completed outside of the lab. As the order of blocks 

was randomized for each participant, links to each LDT learning block were emailed to 

participants in the specific order in which they were to be completed. The learning program was 

presented to participants online via Qualtrics following the LDT learning procedure outlined 

above. All participants completed 12 learning blocks between the first and second EEG sessions, 

and 19 learning blocks between the second and third EEG sessions. Only accuracy was recorded 

during these blocks, as differences in internet connection speeds may have influenced response 

times.  

EEG Recording and Pre-Processing 

 EEG data were acquired in a dimly lit, radio frequency shielded and sound attenuated 

chamber. Continuous EEG was recorded from 64 electrodes (Cz as reference) at a 500 Hz 

sampling rate with a band-pass of 0.05-100 Hz. An EasyCap (10/20 positioning system) and 

Brain Vision actiCHamp system with active electrodes (Brain Products GmbH) was used, and all 

electrode impedances were below 17 kW at the start of recording. Raw data were then band-pass 

filtered at 0.1-55 Hz and re-referenced to an average reference. Artefact removal was completed 

in EEGLAB (Version 14.1.2; Delorme & Makeig, 2004) using independent component analysis 

(ICA). ICA decomposition was performed, and components carrying muscle artefacts or ocular 

artefacts (i.e. eye blinks, saccades, horizontal eye movements) were removed. Data were 
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segmented into epochs from 200 ms pre-stimulus onset to 1,000 ms post-stimulus onset, and 

baseline corrected to the 200 ms pre-stimulus interval. Correct trials from both task conditions 

(i.e., words and nonwords) were then averaged for each participant for each EEG session. 

Behavioural Analyses 

We analyzed behavioral data to assess whether our results replicated the learning effects 

for word and nonword responses in the original BLP (Keuleers et al., 2012, illustrated in their 

Figure 1). In these analyses only, we analyzed word and nonword trials separately to allow for a 

direct comparison with the BLP analyses. To do so we analyzed response time and accuracy with 

2 (lexicality: word, nonword) by 3 (EEG session: Session 1, Session 2, Session 3) repeated 

measures ANOVAs. For any resulting significant interactions, follow-up analyses of simple 

main effects were conducted.  

Electrophysiological Analyses 

Correct trials for all stimuli (i.e., words and nonwords) were combined and analyzed in 

two ways. Word and nonword trials were combined in these analyses as we were interested in 

the learning-related changes that occurred during LDT as a whole, rather than in those that 

occurred for a specific type of stimuli. First, to facilitate analysis of ERP and MSE changes 

across the three EEG sessions (i.e., Session 1 vs. 2 vs. 3), correct trials for each participant for 

each of the three EEG sessions were averaged within participant. This provided ERP and MSE 

measures of the average neural response for each EEG session.  

Second, to facilitate analysis of ERP and MSE changes within the EEG sessions, for each 

participant the correct trials from an EEG session were examined across each of 10 segments in a 

session. That is, each segment contained a consecutive 10% of the trials from the respective 

session for each participant, and the trials for each segment were averaged within participant. For 
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example, if a participant had 950 correct trials in EEG Session 1, Segment 1 would contain trials 

1-95, Segment 2 would contain trials 96-190, … Segment 10 would contain trials 856-950. If the 

total number of correct trials was not evenly divisible by 10, the remainder was added by 1 to the 

first x segments equivalent to the value of the remainder (e.g., if the remainder was 3, Segments 

1-3 would contain one extra trial each, compared to Segments 4-10). This provided ERP and 

MSE measures of the average neural response for each segment within an EEG session, and 

enabled the examination of changes within an EEG session. 

Event-Related Potentials (ERPs) 

ERPs were computed to obtain a measure of the average electrical activity of the brain in 

response to the stimuli (i.e., the brain response during the process of making lexical decisions). 

To obtain ERPs, we used the ERPLAB toolbox (Version 7.0.0; Lopez-Calderon & Luck, 2014) 

within the EEGLAB software (Version 14.1.2; Delorme & Makeig, 2004) available for 

MATLAB (R2014a). ERPs were computed for each participant at each electrode, and then were 

analyzed according to the two methods described above using partial least squares analysis 

(described below). 

Multiscale Entropy (MSE) 

Multiscale entropy (MSE) was used to estimate brain signal complexity, and was 

calculated in MATLAB (R2014a) using the algorithm available at 

https://www.physionet.org/content/mse/ (Costa et al., 2002, 2005; McIntosh et al., 2008). A 

detailed description of MSE and its applicability in analyzing signal complexity is available in 

Costa et al. (2002, 2005). To summarize, the MSE algorithm calculates sample entropy as a 

measure of the predictability (or regularity) of the signal at different timescales. This happens in 

two steps.  
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The first step involves resampling the data to create 22 discrete timescales. For each 

scale, data points within non-overlapping windows were averaged together. For example, the 

original time series was Scale 1 (i.e., 2 ms windows in the context of our 500 Hz sampling rate), 

Scale 2 averaged over 2 non-overlapping time points (i.e., 4 ms windows), up until Scale 22 (i.e. 

44 ms windows).  

The second step involves calculating sample entropy for each timescale. This is done by 

measuring the regularity of corresponding time series by evaluating the probability of repetitive 

patterns based on two parameters: the pattern length m and the tolerance level or similarity 

criterion r. In the current study, the pattern length (m = 2; McIntosh et al., 2008) means two 

consecutive data points were used for pattern matching. Sample entropy therefore reflects the 

probability that two sequences that match on the first two data points also matched on the next 

data point. The tolerance level (r = .50; McIntosh et al., 2008) means that for two data points to 

be considered matching, the absolute amplitude difference between the two data points should be 

less than or equal to 50% of the original time series standard deviation. 

For the current study, electrode-specific MSE was calculated for each participant on 

single trials and then averaged across all trials within a given condition (i.e., either averaged 

across all trials for an EEG session, or averaged across trials within a segment of an EEG 

session). 

Partial Least Squares (PLS) Analysis 

To analyze the ERP and MSE data, partial least squares (PLS) analysis was used in 

MATLAB (R2014a; http://www.rotman-baycrest.on.ca/index.php?section=345; McIntosh et al., 

1996). PLS is a data-driven multivariate analysis technique that operates on the entire data 

structure at once, identifying patterns of maximal covariance between ERPs/MSE and conditions 
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across all electrodes and timescales simultaneously. This is an optimal method to analyze the 

ERP and MSE data since the goal of this study is to examine changes in ERP amplitudes and 

MSE across the scalp, without any a priori electrodes of interest. Further details of PLS can be 

found in prior literature (Krishnan et al., 2011; Lobaugh et al., 2001; McIntosh et al., 2008; 

McIntosh & Lobaugh, 2004). 

 The current study used a task PLS analysis. In task PLS, latent variables (LVs) showing 

similarities or differences between experimental conditions are identified. Task PLS is similar to 

principal components analysis, as a priori contrasts across conditions are not specified. Instead, 

the algorithm extracts orthogonal LVs based on the amount of covariance explained between 

conditions and neural activity, with LVs extracted in order of highest to lowest amount of 

covariance explained. Each extracted LV contains three vectors that represent design saliences, 

electrode saliences, and the singular value. Design saliences identify a contrast of the similarities 

and differences between conditions. Electrode saliences identify a particular pattern of electrodes 

and timescales that are most related to the condition difference expressed in the LV. The singular 

value represents the strength of the effect expressed by the LV, i.e., the proportion of covariance 

accounted for. 

 To assess the statistical significance and reliability of the LVs identified with PLS, 

permutation tests and bootstrapping were performed. The permutation test assesses whether the 

effect represented in a given LV is strong enough to be considered different from random noise. 

This test involves reassigning the order of conditions for each subject (with the order of subjects 

remaining fixed) and recomputing PLS on the permuted data. We ran 500 permutations, so that a 

probability value would be derived from the number of times out of 500 that the singular value 
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from each permuted data set is greater than or equal to that of the original data. If this probability 

is very low (p < .05) the LV is considered significant.  

 Bootstrapping assesses the reliability of the electrode-timepoint contributions by 

reassigning subjects to the conditions (with the order of conditions remaining fixed). This 

assesses the reliability of non-zero electrode saliences within significant LVs. The electrode 

salience is considered to be reliable if the salience value is not dependent on which combination 

of subjects are included in each sample. Using this method, corrections for multiple comparisons 

are not necessary because the electrode saliences are calculated in a single mathematical step. 

The bootstrap ratio is proportional to a z score, but should be interpreted as a confidence interval. 

We used 500 bootstrap samples and a minimum threshold of 2.0, which corresponds to a 95% 

confidence interval, or a p value < .05. In some analyses, we used a higher bootstrap threshold as 

necessary to best illustrate the effects, which corresponds to an even lower p value. 

Results 

All participants completed the LDT learning blocks in 6 to 10 days (M = 6.75, SD = 

1.07). One participant was excluded from analyses for failing to maintain the minimum 80% 

accuracy during the LDT learning blocks, leaving N = 20 (age = 20-28 years, M = 23.70, SD = 

2.77; education = 13-23 years, M = 17.15, SD = 2.37). For the accuracy analyses, trials with 

response times ±2.5 standard deviations from the mean of each condition for each participant 

were excluded (2.5% of all data). For the response time and neural analyses, trials with response 

times ±2.5 standard deviations from the mean of each condition for each participant were 

excluded (2.5% of all data), as well as trials with incorrect responses (12.3% of all trials). 
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Behavioural Results 

 Analyses for response time and accuracy were conducted in R software (Version 1.1.456) 

using the packages “ez” (Lawrence, 2016) and “rstatix” (Kassambara, 2020). Behavioural 

analyses were two-tailed with an alpha level of .05, unless otherwise indicated. Assumption of 

normality was tested with the Shapiro-Wilk test, and the assumption was met (p > .05) unless 

otherwise stated. Sphericity was tested with Mauchly’s test, and the assumption was met (p > 

.05) unless otherwise stated, in which case the Greenhouse-Geisser correction was applied. Table 

1 provides the means and standard deviations for response time and accuracy measures for the 

three EEG sessions. 

 

Table 1 
 
LDT Learning Response Time and Accuracy for Word and Nonword Trials  

  Response Time (ms)  Accuracy (proportion correct) 

  M SD  M SD 

Words       

Session 1  811.16 123.41  .87 0.04 
Session 2  763.96 120.24  .86 0.04 
Session 3  727.24 103.49  .86 0.04 

       
Nonwords       

Session 1  924.97 185.92  .92 0.07 
Session 2  824.87 136.99  .94 0.03 
Session 3  778.75 115.08  .93 0.04 

Note: N = 20.  
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Response Time  

Figure 2a shows mean response time by EEG session and lexicality. There was a 

significant main effect of lexicality, F(1, 19) = 25.33, p < .001, h2G = .08, a significant main 

effect of EEG session, F(2, 38) = 10.90, p < .001, h2G = .12, and a significant interaction 

between lexicality and EEG session, F(1.19, 22.65) = 6.27, p =.016, h2G = .01 (Greenhouse-

Geisser correction applied). 

To parse this interaction, response times for the three EEG sessions were analyzed 

separately for words and nonwords (see Figure 2a). For words, there was a significant main 

effect of EEG session, F(2, 38) = 7.00, p = .003, h2G = .08. Follow-up paired samples t-tests (a = 

.017) indicated a significant decrease in response time from Session 1 to Session 3, t(19) = 3.58, 

SE = 23.43, p = .002, d = 0.80, with nonsignificant differences between Sessions 1 and 2, t(19) = 

1.80, SE = 26.22, p = .088, d = 0.40, and between Sessions 2 and 3, t(19) = 2.19, SE = 16.77, p = 

.041, d = 0.49. For nonwords, there was a significant main effect of EEG session, F(1.46, 27.79) 

= 12.14, p < .001, h2G = .15 (Greenhouse-Geisser correction applied). Follow-up paired samples 

t-tests (a = .017) indicated a significant decrease in response time from Session 1 to Session 2, 

t(19) = 2.84 SE = 35.30, p = .011, d = 0.63, and between Sessions 1 and 3, t(19) = 4.31, SE = 

33.91, p < .001, d = 0.96, but not between Sessions 2 and 3, t(19) = 2.41, SE = 19.11, p = .026, d 

= 0.54. 

Accuracy 

Figure 2b shows mean accuracy by EEG session and lexicality. Normality was violated in 

three data subsets: Session 1 nonwords, W(19) = 0.82, p = .002; Session 2 nonwords, W(19) = 

0.85, p = .005; Session 2 words, W(19) = 0.88, p = .015. However, due to the lack of an 

appropriate nonparametric alternative for factorial repeated measures ANOVA, and in order to 
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more directly compare these results with those of the BLP, we maintained use of the parametric 

factorial repeated measures ANOVA. There was a significant main effect of lexicality, F(1, 19) 

= 34.06, p < .001, h2G = .41, where responses to nonwords were more accurate than to words (M 

= .93, SE = .01 vs. M = .86, SE = .01; see Figure 2b). The main effect of EEG session (F(2, 38) = 

0.74, p = .484, h2G = .003) and the interaction between lexicality and EEG session (F(1.39, 

26.35) = 2.26, p = .138, h2G = .02; Greenhouse-Geisser correction applied) were both 

nonsignificant. 

 

Figure 2 

Behavioural Effects of LDT Learning 

 

Note. (a) Response time decreased significantly for both words and nonwords from Session 1 to 

Session 3, and from Session 1 to Session 2 for nonwords. (b) Responses to nonwords were 

significantly more accurate than to words across learning. Error bars represent 1 standard error. 

* p < .05, ** p < .01, *** p < .001.	

**
* ******
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EEG Results  

Event-Related Potentials  

Across Session ERPs. A task PLS analysis was performed on ERPs for correct word and 

nonword trials combined, and resulted in one significant LV (p < .001; Figure 3). This LV 

revealed a difference between Session 1 versus Sessions 2 and 3, with no difference between 

Sessions 2 and 3. The analysis highlighted four ERP components, the N170, P200, N400, and 

LPC. As LDT learning progressed, the N170 amplitude became more negative from Session 1 to 

Sessions 2 and 3. This difference was stable between 175-205 ms in bilateral occipito-parietal 

electrodes. The P200 and N400 amplitudes became more positive from Session 1 to Sessions 2 

and 3. For the P200, this difference was stable between 175-205 ms in bilateral frontal and 

fronto-central electrodes. For the N400, this difference was stable between 370-405 ms in 

bilateral frontal and fronto-central electrodes. The LPC showed a similar pattern as the N170, 

where the amplitude became more negative from Session 1 to Sessions 2 and 3. This difference 

was stable between 550-1,000 ms in bilateral centro-parietal and parietal electrodes. 
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Figure 3 

Across Session ERP Results 
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Note. Electrodes shown are representative of each effect. Highlighted areas in the ERP 

waveforms indicate the time points when the difference was reliable. (a) Task PLS analysis 

differentiated between Session 1 versus Sessions 2 and 3. Error bars represent 95% confidence 

intervals. (b) N170 showing more negative amplitude later in learning. (c) P200 (first highlighted 

area) and N400 (second highlighted area) showing more positive amplitude later in learning.  

(d) LPC showing less positive amplitude later in learning. Head plots in (b), (c), and (d) indicate 

locations of electrodes shown. 

 

Within Session ERPs. As the across session results showed that the ERP changes 

occurred from Session 1 to Session 2, suggesting that most of the learning-related changes 

happened within the first session, we examined the changes that occurred over time during 

Session 1 in more detail. Results from Sessions 2 and 3 are only described as supplemental 

information to the Session 1 results. A task PLS was performed on ERPs for correct trials, 

divided into 10 segments of approximately 100 trials each, for each participant, from Session 1. 

This analysis resulted in two significant LVs. The first LV (p < .001; Figure 4) identified a 

difference between the beginning of the session (Segments 1, 2) and the end of the session 

(Segments 8, 9, 10). Four ERP components were highlighted by the analyses; the N170, P200, 

N400, and LPC. The N170 amplitude became more negative from the beginning to the end of the 

EEG session. This difference was stable between 170-215 ms in bilateral occipito-parietal 

electrodes. The P200 amplitude became more positive later in the session compared to the 

beginning, with the difference being stable between 180-210 ms in bilateral frontal, fronto-

central, and central electrodes. Similarly, the N400 amplitude increased from the beginning to 

the end of the session. This difference was stable between 390-410 ms in left frontal and fronto-
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central electrodes and bilateral central electrodes. The LPC amplitude also became more positive 

later in the session compared to the beginning of the session, and this difference was stable 

between 600-800 ms in bilateral centro-parietal and parietal electrodes.  
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Figure 4 

Within Session ERP Results for Session 1 (LV 1) 
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Note. Electrodes shown are representative of each effect. Highlighted areas in the ERP 

waveforms indicate the time points when the difference was reliable. (a) Task PLS analysis 

differentiated between the beginning and end of Session 1. Error bars represent 95% confidence 

intervals. (b) N170 showing more negative amplitude later in the session. (c) P200 shown in left 

and right panels, with more positive amplitude later in the session; N400 shown in left panel 

only, which had left-lateralized effects, with more positive amplitude later in the session.  

(d) LPC showing more positive amplitude later in the session. Head plots in (b), (c), and (d) 

indicate locations of electrodes shown. 

 

The second LV (p = .004; Figure 5) differentiated between the beginning and end of the 

session (Segments 2, 3, 9) and the middle of the session (Segments 6, 7). The analysis revealed 

that LPC amplitude decreased (became less positive) in the middle of the session, compared to 

the beginning and end. This difference was stable between 615-700 ms at mainly left central and 

centro-parietal electrodes.  
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Figure 5 

Within Session ERP Results for Session 1 (LV 2) 

 
Note. Highlighted areas in the ERP waveforms indicate the time points when the difference was 

reliable. (a) Task PLS analysis differentiated between the beginning and end compared to the 

middle of Session 1. Error bars represent 95% confidence intervals. (b) LPC showing more 

negative amplitude in the middle of the session. Electrodes shown are representative of the 

effect, which was left-lateralized. Head plot indicates locations of electrodes shown. 

 

Because the patterns of change for the LPC were different within Session 1, we examined 

Session 2 and Session 3 to see if an LPC effect was present and if it compared with what 

occurred during Session 1. An effect was not found; however, this is in line with the across 

session results showing that the majority of learning-related changes occurred during the first 
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session. Although the second LV in Session 1 showed decreased LPC amplitude in the middle of 

the session, overall the results showed that the LPC amplitude increased during learning within 

Session 1, due to the increase observed in the first LV (Figure 6a), and the increase from the 

middle to end of the session in the second LV (Figure 6b). 

 

Figure 6 

Comparison of LPC Waveforms Within Session 1  

 

Note. LPC waveforms for LV 1 (a) and LV 2 (b) within Session 1, with across session 

waveforms included to depict amplitude change within Session 1 compared to the average 

amplitudes across the three EEG sessions. (a) LPC amplitude is lower at the beginning of the 

session (dashed line), but still more increased compared to Sessions 2 and 3, and then is 

increased at the end of Session 1 (dotted line). (b) Within Session 1, initially LPC amplitude is 

increased (dashed line) and then decreases in the middle of the session (dotted line), although the 

amplitude remains greater than the average amplitude in Sessions 2 and 3, and then increases 

again at the end of Session 1 (dashed line). 
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Brain Signal Complexity  

Across Session MSE. A task PLS analysis was performed on MSE calculated for correct 

trials, and resulted in one significant LV (p < .01; Figure 7). Similar to the ERP analysis, this LV 

also identified a difference between Session 1 versus Sessions 2 and 3. Later in learning (i.e., 

Sessions 2 and 3) there were decreases in fine to medium scale MSE (2-30 ms windows) in right 

fronto-central and left posterior electrodes, as well as fine to coarse scale MSE decreases (10-44 

ms windows) in a few bilateral frontal electrodes. In addition, there were localized increases in 

coarse scale MSE (30-44 ms windows) in Sessions 2 and 3 compared to Session 1, in right 

parietal electrodes. 
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Figure 7 

Across Session MSE Results 

 

Note. Bar colour indicates direction of effect, with red indicating decreases in MSE, green 

indicating increases in MSE, and grey indicating no reliable effect. Plot in the top right indicates 
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the differences in MSE were found between Session 1 versus Sessions 2 and 3. Error bars 

represent 95% confidence intervals. 

 

Within Session MSE. As with the ERPs, we chose to examine the changes that occurred 

over time during Session 1 in more detail, since the across session results showed that the MSE 

changes occurred from Session 1 to Session 2. A task PLS analysis was performed on MSE 

calculated for correct trials, for the 10 segments of trials in the first EEG session, and resulted in 

two significant LVs (Figure 8). The first LV (p < .001) identified a difference between the 

beginning of the EEG session (Segments 1, 2) and the middle/end of the EEG session (Segments 

6, 7, 8). This pattern revealed that MSE decreased across the scalp towards the middle/end of the 

session in fine to medium scales (2-24 ms windows) throughout the brain, and there were also a 

few localized decreases in coarse scale MSE (10-44 ms windows) in mainly central and right 

frontal, parietal, and occipital electrodes. In addition, there were a few localized increases in 

coarse scale MSE (36-40 ms windows) towards the middle/end of the session in central, centro-

parietal, and temporo-parietal electrodes. 

The second LV (p = .034) identified a difference between the beginning (Segments 2, 3, 

4) and the end of the session (Segments 9, 10). This pattern revealed fine-scale MSE (2-6 ms 

windows) increased towards the end of the session in right temporo-parietal, parietal, and 

occipito-parietal electrodes, and coarse scale MSE (30-40 ms windows) increased towards the 

end of the session in left central and temporal electrodes, and right fronto-central and centro-

parietal electrodes. There were a few very localized decreases in fine to medium scale MSE (16-

20 ms windows) in centro-parietal electrodes. 
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Figure 8 

Within Session MSE Results for Session 1 
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Note. Top bar at each site represents LV 1, bottom bar represents LV 2. Bar colour indicates 

direction of effect, with red indicating decreases in MSE, green indicating increases in MSE, and 

grey indicating no reliable effect. Plot in the bottom left indicates the differences in MSE in LV 1 

were found between the beginning versus middle/end of the session. Plot in the bottom right 

indicates the differences in MSE in LV 2 were found between the beginning versus end of the 

session. Error bars represent 95% confidence intervals. 

 

Discussion 

The purpose of the present study was to investigate neural alterations associated with 

behavioural changes (Keuleers et al., 2010, 2012) that have been reported with learning on a 

visual word recognition task, the LDT. As such, we explored neuroplasticity involved in LDT 

learning, through a replication of the BLP (Keuleers et al., 2012), in which participants 

completed 16 hours of LDT learning. We measured EEG on three occasions (at the beginning of 

learning, just prior to midway through learning, and at the end of learning) and obtained two 

measures of neural response: ERPs and signal complexity. In line with our expectations, we 

found evidence of behavioural change through decreases in LDT response time across learning. 

We also found evidence of neural change across learning, through alterations in ERPs (N170, 

P200, N400, LPC), as well as alterations in MSE. 

In the behavioural analyses, we examined changes in response time for words and 

nonwords separately, in order to make direct comparisons to the response time changes found in 

the BLP. We found that response time decreased across the three EEG sessions, suggesting that 

LDT learning improved the efficiency of visual word recognition. While our findings are 

generally consistent with those of the BLP (Keuleers et al., 2012), we did observe a slightly 
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different pattern of response time changes with learning. In our results, for the nonword trials we 

found a significant decrease from the first to second session, as well as from the first to third 

session, with response time plateauing between the second and third sessions. This is in line with 

the response time changes found in the BLP. For the word trials, we found a significant decrease 

in response time from the first to third EEG sessions, but not between the first and second EEG 

sessions, perhaps suggesting that, as assessed on word trials, changes to visual word recognition 

happened slightly later in our study than in the BLP. For the analysis of response accuracy, we 

found very similar results to those of the BLP, such that response accuracy was higher for 

nonwords than for words throughout the experiment, and for each stimulus type, response 

accuracy remained relatively constant throughout the experiment. The only difference was that in 

our experiment, response accuracy to words was slightly higher than for words in the BLP. This 

may partly be due to our restricted inclusion of stimuli that had response accuracy of 10% or 

higher in the BLP, thus removing more difficult stimuli that would have reduced overall 

response accuracy. 

Our results suggest that neural alterations also occurred during learning on the LDT. The 

task PLS analyses on the ERPs revealed that neural changes occurred early in learning during the 

first EEG session and stabilized thereafter. This analysis highlighted changes in four ERP 

components: the N170, N400, and LPC, which aligned with our expectations, and additionally 

the P200. A more detailed view of early learning effects within the first EEG session revealed 

two patterns of change in the ERPs: the first indicated a change in activity from the beginning to 

the end of the session, which highlighted effects in the N170, P200, N400, and LPC, and the 

second indicated a change in LPC activity in the middle of the session compared to the beginning 

and end. The learning-related effects for each component will be described in more detail below. 
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Taken together, these patterns of change within and across sessions suggest that neural activity, 

as measured by ERPs, changed during the first part of learning on the LDT (i.e., during the first 

session), and these changes remained relatively stable for the remainder of learning. 

 The N170 increased with LDT learning, becoming more negative over time in bilateral 

occipito-parietal electrodes. This increase occurred early in learning within the first session, but 

remained stable between the second and third sessions. Previous research has associated the 

N170 with visual orthographic processing, based on findings that greater N170 amplitudes are 

produced for orthographic compared to nonorthographic stimuli (Bentin et al., 1999; Maurer et 

al., 2005; Simon et al., 2004). However, one study found that N170 amplitude was increased in a 

task condition focused on identifying words (the LDT) compared to a task condition focused on 

identifying a specific letter in a presented word, which suggests the N170 may also show 

sensitivity for lexical word properties, rather than just visual orthographic processing (Proverbio 

& Adorni, 2009). In addition, from a behavioural perspective, Hargreaves et al. (2012) found a 

smaller semantic (concreteness) effect in LDT for Scrabble experts compared to nonexperts, and 

inferred that orthographic processing may be more primary to making lexical decisions for 

Scrabble experts. Similarly, our finding that N170 amplitude increased early in learning may 

reflect a learning-related change to greater reliance on visual orthographic processing when 

making lexical decisions, or perhaps greater reliance on lexical properties of words in general. 

 The task PLS analysis also revealed alterations to the P200 with LDT learning. In 

bilateral fronto-central electrodes, the P200 increased within the first session, as well as across 

the three sessions, becoming more positive later in learning. Originally, we did not expect this 

component to show learning-related change with LDT learning, as the P200 is generally not 

examined in this context. Rather, it is typically considered in the context of attentional 
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processing, where increases in attention are associated with decreased P200 amplitudes in 

various task conditions (Crowley & Colrain, 2004; Lee et al., 2019; Yuan et al., 2007, 2011). In 

relation to language, the P200 is related to sublexical processing, such as syllable parsing. 

Several studies found that frontal P200 amplitude was inversely related to the degree of supposed 

lexical activation that stems from early sublexical/syllable processing (Barber et al., 2004; 

Carreiras et al., 2005; Chetail et al., 2012; Comesaña et al., 2012; Lee et al., 2019). For example, 

words with higher frequency initial syllables, which are associated with weaker P200 amplitudes 

than low frequency initial syllables, are assumed to activate more items in the lexicon during 

word recognition, suggesting that reduced P200 amplitude is associated with facilitated syllable 

parsing and thus lexical activation (Barber et al., 2004; Chetail et al., 2012). In a study where the 

colour boundary of a multicoloured word was mismatched from the syllable boundary, greater 

P200 amplitude was found, which the authors suggested hindered syllable parsing and lexical 

activation (Carreiras et al., 2005). Based on previous attentional research showing that decreased 

P200 amplitudes are associated with increased attention (Crowley & Colrain, 2004; Lee et al., 

2019; Yuan et al., 2007, 2011), the increased P200 amplitudes observed in the current study, 

both within the first session and across all three sessions, are consistent with an interpretation 

where the requirement for attentional processing decreases over time as learning occurs on the 

LDT. Alternatively, drawing from evidence of associated sublexical processing P200 effects 

(Barber et al., 2004; Carreiras et al., 2005; Chetail et al., 2012), our results may indicate a change 

in reliance on sublexical processing during visual word recognition. However, due to the 

uncertainty surrounding interpretation of this effect, more work needs to be done to understand 

the P200 effect observed in our study with regard to LDT learning. 
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The analyses also revealed decreased N400 effects with learning. N400 amplitude 

became less negative with learning, both within the first session and from the first to second 

session in bilateral frontal and fronto-central electrodes. Although the N400 has traditionally 

been related to semantic incongruity, with effects found in centro-parietal electrodes (e.g., Kutas 

& Hillyard, 1980), N400 effects also have been found in frontal electrodes with single word 

presentations and relating to a variety of conditions (e.g., Barber et al., 2013; Haro et al., 2017; 

McCarthy & Nobre, 1993; Simon et al., 2004). In fact, N400 effects occur with various types of 

stimuli and in various topographical distributions, so there is still uncertainty surrounding 

interpretation of the N400. As it seems that the processing of meaning is central to N400 effects 

across contexts, one hypothesis is that N400 effects reflect the ease of processing stimulus 

meaning, with a decrease in amplitude reflecting facilitated semantic processing (Kutas & 

Federmeier, 2011). This possibility is in line with previous findings examining altered semantic 

processing with LDT practice and lexical expertise. For example, in a reanalysis of the BLP 

dataset, previous work found that effects of certain semantic richness variables (e.g., 

imageability) decreased across LDT blocks (Hargreaves & Pexman, 2012), and, as mentioned, 

reduced effects of semantics on lexical decision times were found in Scrabble experts compared 

to controls (Hargreaves et al., 2012). One study also found reduced N400 amplitudes for 

processing of onomatopoeic words compared to control words, which was interpreted to reflect 

increased ease of lexical access (Peeters, 2016). Based on these previous findings, the N400 

effects in our study may suggest that LDT learning is associated with reduced semantic 

processing or facilitated lexical access.  

The LPC showed a less consistent pattern of change in the different analyses conducted. 

Across the three sessions in bilateral centro-parietal and parietal electrodes, LPC amplitude 
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decreased from the first to the second session, and stayed consistent thereafter. Within the first 

session, however, two different patterns of change emerged. In the electrodes highlighted in the 

across session analysis, LPC amplitude increased over time within Session 1 (LV 1; see Figure 

6a). In left central and centro-parietal electrodes, the LPC amplitude initially decreased, and then 

increased toward the end of the session (LV 2; see Figure 6b). Thus, overall the results suggest 

that LPC amplitude increased during the first learning session, but this increase was more 

pronounced in bilateral centro-parietal and parietal electrodes than in left central electrodes. 

Previous research has linked the LPC to cognitive resource allocation and stimulus evaluation 

(Ito & Cacioppo, 2000; Yao & Wang, 2014), with reduced amplitudes observed in task 

conditions that require fewer attentional or cognitive resources, whereas increased amplitudes are 

observed in conditions that require greater attentional or cognitive resources (Herring et al., 

2011; Ito & Cacioppo, 2000; West & Holcomb, 2000). Because the LPC amplitude increased 

within the first session, the previous inferences regarding LPC effects suggest that greater 

reliance on attentional and/or cognitive resources was needed during initial learning, when the 

LDT task was novel and performance was less skilled and effortful. However, as LPC amplitude 

decreased for the second and third sessions, our results are consistent with the interpretation that 

fewer attentional and/or cognitive resources were required later on, as learning had occurred, and 

performance became more skilled and efficient. 

Overall, our ERP findings highlight that neural changes accompany the shift from novel 

task performance that is less skilled and effortful, to learned performance that is more skilled and 

efficient. Regarding the cognitive processes related to LDT performance, our findings suggest a 

shift towards decreased reliance on attentional processing and cognitive resource allocation. In 

terms of the lexical processing involved in visual word recognition, and borrowing from the 
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inference made by Hargreaves et al. (2012), the increased N170 amplitude found later in learning 

could indicate a learning-related shift to greater reliance on orthographic processing while 

making lexical decisions and less reliance on semantic processing, supported by our finding of 

reduced N400 amplitude later in learning. 

 In addition to finding ERP changes with LDT learning, our task PLS analyses also 

revealed learning-related changes with our measure of complexity, MSE. Over the three sessions 

MSE mainly decreased across the scalp from the first session to the latter two sessions, except 

for a few localized MSE increases, suggesting that MSE began to change during the first session. 

Across the three sessions, fine and coarse scale decreases occurred in bilateral frontal and central 

electrodes, as well as left posterior electrodes, while coarse scale increases occurred in right 

posterior electrodes. Within the first session we identified two patterns of change for MSE, 

which, when taken together, indicate mostly decreases in MSE over time, with a few localized 

increases. More specifically, the first pattern of change (LV 1) indicated widespread decreases in 

MSE across the scalp within the first session, with specific coarse scale increases in mainly right 

centro- and temporo-parietal electrodes. The second pattern of change (LV 2) indicated fewer 

changes in MSE overall compared to LV 1, but among these changes were more MSE increases 

than decreases within the first session, such that specific decreases were located in centro-

parietal and parietal electrodes, whereas fine scale increases were found in right posterior 

electrodes, and coarse scale increases were found bilaterally in central electrodes.  

Given the widespread MSE decrease observed from the first to second and third sessions, 

as well as the decreases within the first session, it appears that while performance was initially 

less skilled and effortful, a change occurred such that processing became more honed and 

optimized, and performance more automatic. Once this learning-related change occurred, this 
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level of performance was maintained. As suggested by Heisz et al. (2012), although the 

processes involved may not be exactly the same as repetition suppression, these MSE decreases 

could be explained similarly to theories of repetition suppression (Desimone, 1996; Grill-Spector 

& Malach, 2001; Henson & Rugg, 2003; Miller & Desimone, 1994; Wiggs & Martin, 1998), 

such that neural response became simplified in some way (Burles et al., 2019), thereby 

optimizing processing and making visual word recognition processes more automatic. Along 

with these decreases, there were also specific, localized increases mainly in right posterior 

electrodes, which suggests an enrichment of processing was occurring to a small degree. Using 

the interpretation that MSE increases may reflect greater flexibility with regard to processing or 

response options available (e.g., Burles et al., 2019; Heisz et al., 2012), the specific increases 

observed in our results may indicate that in addition to the widespread streamlining of 

processing, with LDT learning there appears to also be an enrichment of processing through 

greater processing flexibility. 

Limitations 

 Taken together, our results indicate evidence of both behavioural and neural change with 

learning on a visual word recognition task. Of course, the study is not without limitations. In our 

experiment, response time was not collected during the LDT blocks completed out of the lab as 

we judged that differences in internet connection speeds would have affected the accuracy of 

response time measurements. Though the response time measurements taken during the in-lab 

EEG sessions provided evidence of an increase in efficiency through the decreased LDT 

response time observed across the sessions, more could be learned from examining the pattern of 

response time change across all blocks in the experiment. In addition, we had a fairly small 

sample size in comparison to many behavioural studies, such as the BLP (Keuleers et al., 2012), 
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but we were able to replicate the behavioural results of the BLP with our sample. If the 

behavioural effects are to become a main focus in future studies, a bigger sample size may be 

beneficial, and may be able to confirm whether the effects found in this study are similar to those 

obtained with a larger sample. However, our sample size is consistent with other ERP studies 

(Luck, 2014a), and due to the large number of trials in our analyses (approximately 1,000 trials 

per participant, per EEG session), and in addition to the within-subjects design of our 

experiment, this helps to ensure adequate statistical power of our design (Luck, 2014b) and adds 

to the robustness of the effects found in the current study.  

Conclusion 

Despite evidence of stability for the visual word recognition system throughout adulthood 

(e.g., Cohen-Shikora & Balota, 2016), the current study replicated previous findings of 

performance alterations (Keuleers et al., 2010, 2012) and extended these by showing that neural 

change also occurs with learning on a visual word recognition task. Specifically, our findings 

suggest there is considerable flexibility involved in the visual word recognition system, with 

changes in orthographic and semantic processing, attention, and cognitive resource allocation 

associated with more efficient visual word recognition. In addition, the finding of decreased 

brain signal complexity suggests that with learning, processing becomes more automatic, honed, 

and optimized. As the neural changes occurred rapidly after task onset, this suggests a flexible 

and dynamic visual word recognition system, with a capacity to increase the efficiency of task 

performance. 
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