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Absfract

The goal of this thesis is to numerically construct, in its entirety, the spatial 3-
volume that arises as the initial slice of an axi-symmetric, vacuum space-time with
an initial Brill wave present. This formulation can then be used in future work on
the time-evolution of the Brill gravitational wave system. |

We were able to construct numerically stabie solutions for all of the dynamical
| variables i;hat are present in the general relativistic Einstein equations, and thus a

complete description of the initial slice of the space-time was achieved.
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Chapter 1

The Initial Valﬁe Problem

In this thesis, our goal is to analyse and numerically construct the Initial Value
Problem (IVP) for an axisymmetric gravitational wave system in a vacuum space-
time. To this end, we shall devote this chapter to developing the basic framework
necessary to study this problem, the most important of which is the 3+1 formalism
of general relativity. Chapter 2 will concentrate on the coordinate and gauge choices

that we make to simplify Einstein’s equations in order to solve them. Chapter 3
will present the initial conditions and boundary values that are necessary to solve
the spacetime on the initial slice, and Chapter 4 will cover the solutions that were
generated using this formalism. An overview of the numerical methods used in this

thesis is presented in Appendix A.

1.1 A Brief Introduction to General Relativity

Einstein’s equation for the relativistic gravitational field is given by:
Gop = —Tap (1.1)

where we use the convention that Greek indices (a,8) run across all 4 space-time
tensor dimensions, whereas the Latin indices (a,b) are 3-dimensional spatial tensor
indices. Due to the nature of most problems that are studied in General Relativity,

we usually adopt the convention that G = ¢ = 1 (where G and c are the universal

1



gravitational constant and the speed of light in a vacuum, respectively). This can.
be done without loss of generality, as we are just scaling unit lengths differently. i.e.
- this implies that

ls = 299-792 458m = 1.8016 x 10'° kg

which arises from setting:

3

209792458m/s = 1 = 6.67259 x 107! 5
kg-s

Adopting this convention, our general 4-dimensional equation becomes

Gag = Raﬂ — %gagR = 87I‘Taﬂ | (1.2)

Where G is the Einstein Tensor - a 2nd rank, four dimensional tensor that describes
the geometry of the spacetime; Ty is the energy-momentum tensor - a 2nd rank, four
dimensional tensor that provides information about the distribution of matter and
non-gravitational fields; R.g is the Ricci Tensor and R is the Ricci scalar (both of

1

. which are contractions on the general Riemann tensor' R, ;); and gap is the metric,

which defines lengths and inner products on the spacetime manifold.

' No known, general, closed-form solution exists to (1.2), and the large majority
of the research that is done in the field of General Relativity consists of attempting
to find or verify particular solutions to (1.2). In general, there are two ways of

approaching the problem that can lead to a solution.

The first approach consists of a “trial and error” method, wherein the metric gag

YThe Riemann tensor is strictly a geometric tensor, and it is linear in the second derivatives of
gap and quadratic in the first derivatives of gog -



.

is specified as a function of spacetime coordinates and the energy-momentium tensor

8“ : )

The advantage of this method lies in the the ability to choose a solution that is easy
t.o analyse analytically or numerically, but the obvious (and crippling) disadvantage
is that only a very small numBer of the metrics and ‘energy—mbmentum tensors con-
structed in this manner have any physical relevance, In essence, this method is like
shooting in the dark, and is about as successful.

The physically relevant method is to specify the energy-‘mo_mentum tensor, and
. then proceed to try to solve for the dynamic varia.blés of the system (i.e. the metric
and extrinsic cul;va.ture components). The obvious advantage of this method is that |
we can specify the (hopefully) physically relevant spacetime that we wish to study.
The ksometimes cripi)ﬁng) disadvantag'e is that the resulting equations to be solved

for the dynamic variables are often highly non-linear and unsolvable short of a foray

into the numerical world. And that is where we stand presently with most relativity -

problems - the “simple” cases of Schwarzschild, Kerr, Reissner-Nordstrgm, etc. have
been solved analytically, and any other system that mimics a physically relevant -
situation requires numerical work due to the excessive complexity and the inability .

to construct closed-form analytical solutions to (1.2).



1.2 Developing the 3+1 Formalism

In order to simplify the general 4-dimensional tensor problem for numerical work,
the “3+1” forﬁmlism was introduced by Arnowitt, Deser and Misner [2] (also called
the Cauchy formalism), in which the spatial information about the space-time (3) is
“split-off” from the temporal information (+1). In this form, we evolve the sI;acetime
from the initial data set by foliating the spacetime along the. “time” coordinate,
where temporal level surfaces consist of instantaneous spatial 3-volumes. In principle,
" there is nothing exclusive about our choice of the time variable as our level-surface
coordinate, but due to the desire to analyse observable resu:lts and make comparisons
to NeWtonian QGravitational problems, we are driven to choose this splitting. We
could thusly choose z, y and ¢ as our variables i.:o “evolve” along level surfaces of z, but
the physical meaning bécomes much more abstracted and difficult to comprehend,
leading to the natural choice of time as our level-surface coordinate.

Thus our goal is to reduce the 4-dimensional tensor equations to a related group
of 3-dimensional tensor equations that evolve through time. To accomplish this, we

can describe the 4-metric, g,,, as

~a? + %P, Ba
180. Yab

Guv (1.4)

where o represents the lapse function, (3, represents the shift vector and Yab 18 the
three dimensional (spatial) metric tensor. Figure (1.1) gives a schematic view of how

the 3+1 formalism describes the foliated 4-dimensional spacetime with the lapse

function and shift vector.
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Figure 1.1: A schematic diagram of the splitting of the space-time using the 341
formalism. # is the normal vector to the surface at each point, a gives the distance,
in time, between points on successive sheets and (3 represents the spatial shift of the
coordinates from one sheet to the next. §7 = a dt, where 7 is the proper time

The lapse, a, is a scalar function of time and space over the entire grid that
represents orthogonal proper time progression (r) at each point within the space
time (i.e. @ = a(z?)). Thus a provides us with a tool to allow the evolution to
progress at different rates at different points in the spacetime. This is desirable in
regions of large ;:urvatﬁre or near spacetime singulé.rities to provide for a lo-nger, more

stable evolution. The lapse function, @, can also be used to calculate the interval of

proper time from an interval of coordinate time, due to the fact that
dr = adt . (1.5)

The shift vector, B,, represents the progression of the coordinate or “grid” points



_ along the spatial direction from one time slice to the next, i.e.
de’ = Bidr - (1.6)

It can be employed to provide optimal grid resolution m areas of numerically unstable
éurvature, while minimising grid point calculations in low-curvature areas.

Because we are only interested in the initial value problem, and o and 3 are vari-
ables that affect the time dynamics/evolution of the code, they will require minimal
consideration for the remainder of this thesis (although they play a vital role in the
evolution equations to be studied at some point in the future).

Thus using (1.4) as our guideline, we can split (1.1) into spatial and temporal
equations. The goal of this project is to specify the necessary information on the
initial slice (the Initial Value Problem, or IVP), and then use the resulting evolution
equations to evolve the spatial information from the initial slice as far into the future
as we desire (or as far as numerical $tability will allow). Thus we can reduce the
general 4-dimensional problem to an initial-value problem and an evolution problem
(that is subject to differential cons.traints at each point during the evolutlion)', ‘which
is easier to solve and analyse, numericé]ly. ‘

The 3+1 formulation of the Einstein equations requires one other qué,ntity, how-
ever, to describe the geometry on each time slice - the extrinsic curvature (Kj;).
The extrinsic curvature is a measure of how much the 3-dimensional spacetime on
a t = constant slice is curved relative to a flat, Cé.rtesian,’ 4 dimensional embed-

ding manifold, and is a well-defined differential geometric quantity®. By defining the

2Tt is also called the “normal” curvature, and the Ricci Tensor (R;;) is the intrinsic or “geodesic”
curvature. The metric and extrinsic curvature are also referred to as the first (v;;) and second (Kj;



extrinsic curvature of the spacetime as

- 1 1 - -

Kag = =5 £0Yep = =5(0 = B Vi) 70 (1.7)

where £y is the Lie derivative of the metric along the “time” direction, we get

a spatial, symmetric quantity that carries information about the curvature of the
spacetime with respect to a flat embedding manifold.

Because the eventual goal is to use this IVP formulation to study the subsequént

dynamics of the system, we include the general vacuum evolution equations for K;

and ;%
Oryi; = —2aKy; + 8:0; — I‘i-,-ﬂz + 0;8; ~ Féjﬁl (1.8)
0K = —g[0ubjo — T,0ea] + o [RE + KiK| + B¢ [0.K} — T8 K} + Ti K|
+ K2 [0;° +T28°] — K5 [0.8° + TL.0° (1.9)

-

- Where we have expanded the covariant deérivatives out in terms of partial derivatives
and connection coefficients, I', (which are all defined in terms of the metric ),
and standard Einstein summation notation is used (repéated indices indicate a sum-
mation over the range of the index). We direct the interested reader to [16] or [17]

for a more comprehensive development of these equations.

fundamental forms. . .
3The notation -;; is often used to represent the spatial part of the metric, gag



1.3 The Counstraint Equations

By studying various contractions of the four-dimensional Riemann tensor, we can
arrive at a series of four equations in 4%, K “’f and T°° that must be satisfied at any
given time in the spacetime. These equations play an analogous role to V- E = 4mp
and V-B=0in Méxwelh'an electrodynamics, and act as constraints that must be
satisfied by the IVP and at each point during the evolution.

In other words, the constraints are a set of spatial equations that must be satisfied
on each spatial slice in the spacetime. They can be thought of as differential equations

in the spatial metric y;; and the extrinsic curvature Kj;, that can be solved for on the

initial slice and each subsequent slice, effectively allowing us to choose an arbitrary
slice in the spacetime as our starting point. So thé idea is to specify whatever free
data we can on the chosen slice, and then solve the constraint equations for the
ckonstra,ined data that remains®.

The development of the constraint equations from (1.2) using the 341 formalism
is covered in detail elsewhere, so we refer the reader to [15], [9]‘, or to any of the texts
on the subject. The end result is that we obtain four spatial equations in the extrinsic
curvature, the spatial metric and the energy-momentum densities (all of which are

spatial quantities). Tiley are labeled the Hamiltonian, or scalar, constraint and the

momentum, or vector, constraints, and they are

R+ (TeK)? — K K® = 2xp ) (1.10)

4This is analogous to specifying two components of the electric and magnetic fields in Maxwellian
electrodynamics, and then solving for the remaining components of the two fields using V. E = 4wp
and V-B=10



and

Vo(K® —4K) = k® (1.11)

respectively. Here V; is the covariant derivative, defined with respect to the spatial
. metric, Yab; and in this formalism & = 87, p = n®nPT,4 is the energy density and
Jje = —navT"‘“ is the moméntum density, both of which are spatial quantities (apd
the n* are the unit normals). |

For this thesis we are studying a vacuum spacetime, and as suc¢h T = 0, meaning

that the right hand side of equations (1.10) and (1.11) are 0.

1.4 The Bianchi Identities

One of the basic properties of the Riemann tensor is that it satisfies the Bianchi

Identities, which are differential identities that take the form:
VERE'YS + VJRES'Y + V.y EJG - 0 ' . (1.12)

These ideni;ities arise simply from a consideration of the underlying geometry that
defines the Riemann tensor, and as such they are independent of any other conditions
we put upon the spacetime.

Equation (1.12) can also: be contracted into tl}e contracted Bianchi identities,

which are

VoGS =0 : (1.13)
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which is equivalent to saying, using (1.2), that
VoIg =0 (1.14)

These identities show that if the constraints are satisfied on the initial slice, then
they are consistent with the evolution equations at all future times. So we can use
the constraints to construct our initial value formulation, and then evolve the data

off of the initial slice via the evolution equations.

1.5 General Degrees of Freedom

In general, Gop has 10 degrees of freedom associated with it because it is a symmetric,

2nd rank, 4 dimensional tensor;

- Goo Goi Goz \Goa
G = Goo Gu Giz Giz | (1.15)
Goz Gz G2 Gas : :

GOS G13 G23 G!33

Four of those degrees of freedom are specified by the constraint equations (1.10) and
(1.11); 4 are specified by the éoordinate, or gauge choices that we are free to make,
leaving us with 2 real degrees of freedom for our system that are manifested in our
initial choices for the spacetime geometry.

Just as in Maxwellian electrodynamics, these two degrees Aof freedom are asso-

ciated with the two polarisation states of the gravitational field (i.e. gravitational



radiation/waves).

11



Chapter 2

Coordinate Systems and Gauge Determination

2.1 Coordinate Choice and the Form of the Metric

Once we have aefived the general form of the 341 equations, it is neceSsary to start
imposing simplifying conditions on the spacetime in order to solve it. The first
simplification to make is that ‘We specify an a:d—syfnmetric spacetime, i.e. one in
Whicﬂ there is rotational symmetry about the z-axis and reflective symmetry about
the equatorial plane (6 = Z)'. We use the convention that the angle 8 is measured
from the positive z-axis, the radial coordinate is measuréd from the origin and the
angle ¢ becomes irrek'avant due to the symmetry of the coordinate system.

The general line element for an axi-symmetric system is

di? = A(t,r, §)dr® + B(t,r,0)dd> + C(t,r,6)drdd + D(¢,r,6) sin? § dg® (2.1)

1See figure (2.1)

Figure 2.1: Our axi-symmetric coordinate system

12
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as all of the cross-terms involving ¢ vanish due to the symmetries of the spacetime.
Following the work of York ([16],{17]), we re-write the metric in terms of a conformally

related metric (Ja5) with a conformal factor, 9, such that
Yab = ¢4'3’ab '

in order to create a formulation that is easier to splve ana.lyticaﬂy and more numer-
ically stable. It can be shown [11] that the Ricci scalar is related to the conformal
Ricci scalar (R) by | |
| R= Ry~ — 84559V | (2.2)

and if 9, is a flat metric, then R = 0, simplifying the analysis of the spacetime
substantially. We do not, however, choose a conformally flat metric fo;' this analysis,
but a conformal decomposition is useful‘ nonetheless as a method of determining
various aspects of the spacetime, including the mass in‘ Section (431) This par-
ticular choice of ¢ also ensures that the Hamiltonian constraint on the initial slice

1s a second order linear differential equation in 9, as Qpposed to most othef chgices
which yield difficult-to-solve, non-linear PDEs [3].

We define the radial coordinate 7 in terms of » By

where
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to set the origin of our coordinate system at 7 = 0. This rescaling of the radial
coordinate allows us to experiment with various radial grid spacings when we start
working with the physical problem, and allows for easy manipulation of the equa-
tlons By defining and deriving all of our equations in terms of this general radial
coordmate function, f, the analytics are vastly simplified if we wish to try a dif-
ferent radial function. In the case of a gravitational wave close to fhe origin, it is
preferable to have a large number of grid points closer to the origin to allow for
better resolution of the wave and its dynamics, whereas further out along the radial
direction where the spacetime approximates flat space and the dynémics are mostly
linear we should need less grid points for proper résolution of the physical features of
" the spacetime. Thus we can de31gnate various radla.l functions and experiment with
these radial functlons to prov1de better stability with fewer grid points (and thus
less computation time and storage space).
Using these two definitions, we can re-write the line element in term; of the

- conformal factor (¢) and the radial coordinate function (f), giving us
= P Af2dn® + Bf2d6® + Offndnd + D f2sin®0dp?) (2:3)
Thus we can define our metric using the above conditions, and it becomes

af’% : Cff,n 0
gab =V* | cffn bf? 0 ' C(24)
0 0 df?sin?4

?The general coordmate invariance of General Relativity ensures that thls is a valid coordinate
choice
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Wherea=A,b=B,c=C’andd=D

2.2 The Extrinsic Curvature Tensor

In formulating the extrinsic curvature (3)-tensor, we first use the axi-symmetric
conditions to eliminate all of the ¢‘crosé—terms, ie. Ki3 = 0 and K3 = 0. The
symmetric nature of the tensor means that there are only 4 components left to

specify, giving the general form for the extrinsic curvature tensor as®:

, H, H 0
Ka=v*| H H, 0 . (2.5)
0 0 Hy

-

Where we have used a similar conformal decomposition of the extrinsic curvature to

that used for the metric, i.e.

Koy = K ' (2.6)

2.3 Temporal Gauge Conditions

Since we are free to choose our temporal coordinates as we wish, we will investigate
some particular choices of the témporal gauge that allow us to explore the portions

of the spacetime that we are interested in.

3The actual form used in deriving the equations was slightly different and more complex, because
the eventual goal is to use this formalism to perform the evolution of the space time. In that
formalism the mixed curvature quantities are used (i.e. KZ) which necessitates a different projection
formalism, but results in an equivalent covariant curvature tensor, Kgp

-
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2.3.1 Maximal Slicing

As the name of this parf.icular gauge indicates, we can specify that
Te(K) = K = K* =0, : @

which equates to maximising the volume of each time slice. One advantage of this
gauge is that it will avoid areas of high curvature in order to maximise these volumes
(high culjvature'means larger surface area of a slice). Another advantage is that the
‘time-evolution equations simplify quite nicely with the use of this gauge, and using
(1.9) we can obtain an equation for the lapse that becomes:
a 1

VeVaa=a R+ (5 - 3,0)] (2.8)

Because we are dealing with a vacuum spacetime, we can drop the source terms to

.obtain

VeV = aR (2.9)

It can be noted that as R — oo, @ — 0, giving the required large curvature-avoiding

property.

Furthermore, we can re-write our Hamiltonian constraint (1.10) as

R—K9K;=0 | (2.10)

- where we have substituted (2.7) into (1.10).



7

2.3.2 Other Slicing Methods

Our choice of Maximal Slicing is not exclusive, and we can choose other methods of
slicing our spacetimé.‘ '

Geodesic slicing is definied by choosing a = 1, and if we choose B, = 0, then the
coordinates of our spacetime will follow geodesics (i.e. the coordinates are in freefa]l).
This method of slicing is not very useful for studying the dynamical properties of
the spacetime, bﬁt it can be used as a check on the code given some easily calculable
analytic properties that it possesses. |

Polar slicing imposes the condition that
TrK =K' (2.11) -

i.e.

K2+K:=0 (2.12)

and it gives a parabolic equation for « instead of the elliptic equation in (28) , thus
making it a faster method to solve for . It does not slice inside the event horizon
however, which is arguably a small flaw due to the fact that the spacetime inside an
event horizon is causally disconnected from the uﬁiverse outside the event horizon.
Maximal slicing, however, will slice inside the event horizon and can therefore be
used to study the dynamics of the interior of a black hole. Tt can be shown that
maximal slicing is also singularity-avoiding in nature, and Wﬂi stop the evolution
within a fixed “distance” of the singularity. Therefore a different slicing method

must be used if the entire interior of the black hole is to be studied, and an analysis
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of various slicing methods and their properties can be found in [10].
B

2.4 Spatial Gauge Conditions

After we have chosen our temporal gauge/slicing condition, we have 3 épatia.l gauge
choices. that are left from the general coordinate equivalence of General Relativity.

In choosing our metric function, we can specify that a = b in (2.4), and this
is called the Isothermal gauge. It is useful in decreasing the number of dynamic:a.l
metric quantities that must be solved for on each time slice, and it also allows us to
develop the Robin boundary condition on the outer boundary of our spacetime. It
also happens that an Isothermal gauge is consistent With. oﬁr definition of an initial
Brill wave (see Section (3.3)), and is our first spatial gauge choice.

We also impose the diagonal metric condition so that ¢ = 0, which once again
will. simplify the resulting evolution equations and has been used successfully in c.>ther
codes [3] [15], and is also consistent with the Brill wave formalism. Its numerical
success is partially due to the fact that it decreases the coordinate shear in the
spacetime by making the metric ;iiagonal in nature.

Our last gauge choice is to set d = 1, such i;hat dynamical infor'ma.tion is carried
in 9 and as such 9 must be solved for on each time slice of the evolution. This choice
is also consistent with the Brill formalism and completes our gauge choices.

Thus the final form of our 3-metric is:

af? 0 0
to=%*| 0 aff 0 (2.13)

0 0 f?sin®4



Other temporal/spatial gauge choices are discussed in [14].
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Chapter 3

Setting Up the Initial Value Problem

3.1 Time-Symmetric Initial Data

Now that we have the proper forms of the metric and extrinsic curvature tensors
- ((2.18) and (2.5)) for the problem at hand, we can go about solving for the ne-
cessary variables to complete our picture of the initial spacetime slice (using our
constraint equations, 1.10 and 1.11). We will choose to study a time-symmetric ini-
tial slice,’meaning that our initial slice is a local isometry surface and has % as a

local Killing vector. This also means that the time derivatives of our metric and

extrinsic curvature quantities momentarily vanish.

3.1.1 The Lapse and Shift Functions (a and %) on the Initial Slice

Due to the freedom in General Relativity to choose coordinates however we wish, we
are allowed to specify the lapse and shift functions freely on the initial and subsequent
slices. They can be used as coﬁtrols on the evolution rate and grid stretching at-each
point in the-spacetime du1:ing the evolution to help ensure numerical stability and
regularity. But because we are only interested in the Initial Value Problem here, and
because these two functions are completely arbitrary!, we can specify them as we
wish on the initial slice. Our first simplifying choice is to set o = 1, meaning that

each point in the spacetime is progressing at the same rate, and that the coordinate

n this formulation they must satisfy certain differential relationships (due to the metric evol-
ution equations and gauge choices) on future time slices

-

20
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time progression is momentarily that of proper time at each point on the manifold.
We then choose B, = 0, making the coordinate “velocity” disappear on the initial
time slice. These are the easiest choices we can make for these variables on the initial
slice to simplify the solution of the IVP.

It is important to mote that this choice of variables provides us with only onel
specific initial slice, and other values of o and 3, are permitted. These rva.lues,

however, provide the simplest framework for future work on the time-evolution.

3.1.2 The Extrinsic Curvature Variables (Ha, Hy, H. and Hy) on the Initial

Slice .

In this analysis, because we are restricting our investigation to time-symmetric data,
our initial slice is a local isometry surface (with ‘% as the local Killing vector). Due
to the fact that the metric time derivatives momentarily vanish, and because the
slﬁft vector’s components are all defined to be zero on the initial slice, the evolution

equations for the metric change from:
Oryi; = —2aKy; + 0:B; — %01 + 8;8: — T8 (3L

to

Ki; =0 (3.2)
Thus all of our extrinsic curvature components vanish on the initial slice (i.e. H, =
H, = H, = H; = 0 ). Because Equation (1.11) is trivially satisfied by these condi-
tions in a vacuum spacetime (i.e. the momentum constraints); the only remaining

constraint equation that needs to be satisfied on the initial slice is the Hamiltonian

-
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constraint.

3.2 Calculating ¢ from the Hamiltonian Constraint

Using the definition for the metric that arises from (2.13) and the extrinsic curvature

definition from (2.5), we can calculate the Hamiltonian Constramt from (1. 10) Be-

cause we are using a t1me-'symmetr1c set of initial data,
Ki;j=0
Therefore we can rewrite Equation (1.10) as
R= 0 . | (3.3)

using the fact that p = 0 in a vacuum.
Using the definition of R as a contraction on R, we can calculate the form of
the Hamiltonian constraint that is a differential’ equation in terms of only metric

quantities, giving us the following:

82 - a
0 = 8%15&0059 - 83—9? 879}}%' Sf,nnan 165% g,, M

Caf'Ssind  af*¥® af, 05 of, ¥ affadS | @F, 0
a 2q a 2 a a 2
8 _ o &) 2 (%)

At af, Mt aBf, gt alft T aft

(3.4)

Assuming that we choose a and f as our freely specified data on the initial slice?,

2o set up a Brill wave (see Section 3.3) and for coordinate optimisation. The function ¢ thusly
becomes our constrained data :
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we can simplify this equation into a second order, linear differential equation in 7: .

,3; ~ fam | 2fa ,31 |
Yo + F@b,ee + (—‘f:',‘ + ‘f_) Y+ ('f_{) cot 0 1e |
'¢' V aﬂm as") f:ﬂn f:ﬂ a’yﬂ 2 a,99 fg] G,g 2 137 _
“§[—7+7[f—,,,‘7] +(%) -2 () ’F] = 039

So once we have the functions f and a speciﬁéd, as well as their derivatives, we
can proceed to solve (3.5) for 9. The stability of the method used to solve 1 is highly
dependent on the boundary conditions, the function h(n) (the initial radiél Brill wave
profile)® and the accuracy of the derivatives of f and a. Due to the importance of an.

raccurate and precis;a solution for the evolution of the spacetime (the eventual aim of
this work), we will devote an entire chapter to a study of these solutions, after first

developing the form of a.

3.3 Brill Wave Construction

In order to determine our remaining metric variable, a, we shall construct our ini-
tial spacetime with a gravitational wave that follows the formulation of Brill. Brill
showed [4] that in an asymptdtically flat, axi-symmetric spacetime where the metric

is specified in spherical polar coordinates the following are equivalent:
e The mass of the hyper—surfé.ce is non-negative (i.e. well-defined and physical)

o The line element describing the space time has the form

dI? = 3% [e®(dr? + r?d6?) + 7* sin” § dg? (3.6)

3See Section (3.3)
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where g = g(r, ) and

1. g(r,0)=0

2. lim, e q(r, ) = O(r?)

Therefore the goal is to choose a coordinate system and initial conditions to fulfill
these criteria. Because of our desire to scale the radial coordinate for more optimalr
grid resolution, we introduce once again the radial coordinate function, f, giving our

line element the form of
di? = 3* [e¥(f2dn? + f7d6%) + sin® 0 f2dg’] (3.7)

‘In order to ‘ensure that the two properties of g(r,6) are satisfied, we choose a

form* for ¢ such that

q(n,8) = € g(6) h(n) (3.8)

where £ is the “amplitude” of the Brill wave, and the functions g and h carry the
angular and radial information respectively. Thus we can easily satisfy Brill's first

condition by setting
g(0) =sin™ 6 ‘ (3.9)

where n is some even integer to preserve the eciuatorial reflection symmetry prop-
erties that we required earlier®. The second condition can be satisfied by using any
number of radial functions, and as we will show in Chapter 4 some choices are more

numerically stable than others. The choice of our function for k(7) is not trivial, but

4This choice is in no way exclusive
SFor the remainder of this thesis, n = 2 is used
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an investigation into its form shall be left until later.
So comparing (2.3) and (3.7), we can make the identification that A = B = €%,

¢ =0, and D =1, and our metric (2.13) becomes:

‘ezq ,f, 0 0

T =9%*| 0 eMfz 0 ' (3.10)

0 0 f%sin?4

which is consistent with our gauge choices from Section (2.4).

3.4 Determining the Metric Variables a and ¢

As was discussed we will be using the timé—sjmmetric Brill formalism to define our
metric variables on the initial slice. The final form of the metric comes from (3.10)

where

= Esin” 0 () - (3.11)

and requires af, least 3 iﬁput parameters, but usually more.

Firstly, we must specify £, the “amplitude” of the Brill wave, which determines
t‘he relative‘sca]ing of the wave for a éiven choice of h. Secondly, we must specify
_the integer bower, n, of the sine function to be some even number to preserve the
reflective syrﬁmetry of the spacetime. And the last variables are inputs for the
function h(n), that usually determine the “starting position” of the wave (i.e. the
global maximum of the metric function) and its spatial extent (altho:ugh this is easily
" deconvolvable only in the case of a Gaussian wave). It is aiso possible to require a

wavenumber, a frequency, and various other parameters that determine the initial
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shape and radial dependence of the wave.
And once we have used these parameters to completely specify a, we can solve
for our last metric variable, 1 using equation (3.5).

2

3.5 Boundary Values and Numerical Methods

In solving the IVP, we really only have to specify the input parameters for the
conformal metric function a to determine the shape of the wave, and then solve for
the conformal factor, 9, in order to have the complete description of the spacetime
on the initial slice. The next chapter will deal with various input parameters for the
function h(n) and the solutions they produce, but a note about solving (3.5) should
-be made first. Due to the fact that it is a linear, second-order differential equation
(with non-constant coefficients), we have many numerical methods available to solve
this particular equation. As an analytic solution to the equations is not, in general,
available, the only way to determine the conformal factor is via some numerical
method. Appendix 1 gives some more details of the numerical methods that are
used, but the two main schemas that were tried were a Relaxation schelﬁe and a
BiConjugate Gradient (BiCG) scheme. The Relaxation scheme tends, in general, o
be slower and computationally more expensive, but is more stable and reliable than
the BiCG scheme. In this case, however, the results for 9 that were produced by
both schemes turned out to be the same to within the rllumell'ical accuracy of the
ﬁachines, leaving us with the obvious choice of the BiCG method for its speed®.

In order to properly solve the elliptic differential equation in (3.5), we must

6 Although some regularity problems occur near the origin
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specify boundary conditions that are consistent with our symmetries, thus we set
" the metric function and the conformal factor to be symmetric along the axis (§ = 0)
to preserve the rotational symmetry, symmetric along the equator (§ = %) to preserve

the reflective symmetry and symmetric at the oﬁgin (r = 0) to preserve regularity.

1.e.
dgu1 - ?_g1_1_ _ % -0
99 6=0 89 o=% On n=0
and
oyl _ol _o
00|,., 09 6= On =0

Furthermore, we require asymptotic flatness at the outer edge of the grid (so that

the wave has. “died away” sufficiently) giving

gn |7I=’7maz =
by equating our metric to the Minkowski flat-space metric there.
Our outer boundary condition for 7/ is not quite as easy, but we require that the _
solution be Schwarzschild: - like at the outer boundary, and we impose the Robin

boundary condition:

¢Wi+¢—1=0 - (3.12)
. W : . 7

3.5.1 ‘The Robin Boundary Condition

The Robin boundaiy condition arises from requiring the spacetime to be Schwarz-

+ schild-like at the outer boundary, and the condition can ‘be found by writing the
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spatial part of the Schwarzschild metric in conformally flat, isotropic coordinates:

, 10 0
m
= mw 2 -
Yab (1,+ 2,0) 0 0  (313)
0 0 p*sin?d

Because we require our solution to be asymptotically flat, we can match Equation
(2.13) to Equation (3.13) at the outer boundary. Making the identification that
p = f(n), we find that

¢=,1+§? » : (3.14)

along the outer boundary. We:can then take the  derivatives of (3.14) and eliminate
the mass term m twhich is ‘_c;therwise arbitra:ry), to obtain the Robin boundary
~ condition, (3.12).

We will discuss the solutions that were generated using this formulation in the
next chapter, and a further discussion of the numerical methods that were employed

in this thesis are presented in Appendix A.



Chapter 4

Solutions to the IVP

4.1 Chbosing h(n) to determine gy

Initially, a symmetric Gaussian wave was used for the function h(n)', making

n—10)? 24110)2 ' )
h(ﬂ) _ e__( ”no) n e__( -*;ng) (4.1)

And it is seen that the wave has its peaks at &7y, and has a Gaussian width of
o. The problem with this type of wave is not in the Initial Value Problem, as it is
qgite possible to solve for the conformal factor using this type of formulation, but
problems crop up in the subsequent evolution bgcause of its properties. Due to the
fact that |

lim h(n) # 0 | (4.2)

n—0

'ther Gaussian wave does not die off fast enough at the 6rigin .to ensure numerical
regularity. Because the Taylor expansions of various metric and curvature quantities
have a 6 dependence at the origin®, and our metric is not going to zero, thi.s can
cause numerical shears in the spacetime as the evolution progresses. |

So in order to ensure that we are eliminating any angular dependence' at the

origin, we should choose a different function that identically goes to zero at the

In the original code from which this code was developed, a Gaussian Brill wave was used,
making this a somewhat historical choice
2See [15]

29
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origin. To this end we choose a Lorentzian-type function, where

k - :
() = ﬁ (43)
0
and k, [ and 7 are shape parameters of the wave that we are free to specify. It
is important to note that this choice of h(n) is identically = 0 at the origin, so it
can be made to die off fast enough to cancel the angular problems. The effect of
each of the three\parameters on the shaﬁe'of the wave is not simple to qualify, but
increasing k generally moves the “insidé” of the wave (closest to = 0) further from
the origin, increasing [ moves the “outside” of the wave (furthest from n = 0) further
from the origin, and increasing 7 moves the peak of the wave away from the origin.
Furthermore, we must impose the vcondition that £ +2 < [, in order that the wave
has asymptotic %-type behaviour. Thus our goal is to choose k and [ in such a
manner that the wave dies rapidly near the origin (larger k), dies rapidly at the edge
of the grid to ensure asymptotic fiatness (larger 1), but is still wide enough that we

can resolve the wave properly with a reasonable grid resolution.

4.2 Choosing the Shape Parameters k, [ and 7

Figures (4.1) and (4.2) contain some graphs of various combinations of (o, k, [) that
were experimented with to produce a numerically stable Brill Wave. Theoretically,
any values of these three shape parameters are allowed, but some will produce more

numerically stable codes than others.

From figure (4.1) we can see that using values of k and ! that are too small
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04 1 u, o8l

axis 00 equator axis 0o equator

axis 00 equator axis 00 equator

Figure 4.1: All data sets have o = 3, amplitude £ = 1 and ¢(r,6) on the z-axis.
On the top left is & = 1, | = 3; the top right is k = 3 and ! = 5; the bottom left is
k = 5,1 =T and the bottom right is £ = 5, [ = 9. Radial distances are in 7 units
(arbitrary). Note the difference in vertical scales.
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axis

1,k =5,1=9 and g(r, ) on the z-axis.
1; the top right is o = 2; the bottom left is no = 3 and the

4. Note the difference in vertical scales.

Figure 4.2: All data sets have amplitude ¢

On the top left is 7o
bottom right is 7o
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result in a steep wave near the origin (especially around 6 = ), negating our goal of
minimising the angular dependence close to 7 = 0. Choosing larger values for k& (while
still keeping k +2 < 1) pushes the wave outwards from the origin somewhat, while
adding large amounts of energy to it®. Furthermore, it can be seen that increasing &
such that k+2 = [ increases the {naximum value of the peak of the wave substantially
(bottom left), so we increase ! further to push the outside of the wave back towards
the origin (bottom right), leading to the choices of k =5 and [ = 9.

Figure (4.2) shows the effects of increasing 7o, and we can s.ee that around 7o =
3 that we have a wave that dies sufficiently at the origin without having a large
amplitude. It is important to remember that we are actually using e*® when doing
our computations, so keeping 2¢mq. = 1 is desirable to prevent the wave from getting

too distorted. This leads to the choice of 19 = 3 for our future calculations.

4.3 Cofnparing IVP Solutions

Now that the shape parameters have been determined, we are ready to solve the
Initial Value Problem for 7, (3.5). As was mentioned in Section (3.5) and is discussed:
"in Appendix A, two separate numerical algorithms were used to solve the IVP for
9; a BiConjugate Gradieqt method (BICG) and a relaxation method. A comparison

of the CPU processing times for the two methods, with variable grid sizes, is given |
in Table (4.1). It is interesting to note that the maximum value of the Hamiltonian
constraint (which theoretically should be zero) actually increases as you add more

grid points. The reason for this is that when more grid points are added, An becomes

3A wave with the same amplitude that starts further from the origin occupies a larger proper
volume and thus has more energy
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BICG Relaxation
Number of | CPU time | max Ham | CPU time | max Ham
grid points constraint constraint
100x13 A2s 1.09e-8 2.3s 3.98e-9
150x18 .30s 1.22e-7 9.7 s 1.69e-8
20024 .60 s 5.93e-7 30.6 s 4.32e-9
250% 30 1.1ls 1.91e-7 82.0s | 1.07e-7
300x35 1.6 s 5.34e-6 146.2 s 2.27e-7

Table 4.1: CPU processing time required to solve Equation (3.5) and the maximum
value of the Hamiltonian constraint as a function of grid resolution for the BICG
and Relaxation schemes, using 7o =3, { =15,k =5,1=9

smaller and our first grid point is closer to the singularityrat n=0.

And as can be seen in Figure (4.3), the Hamiltonian constraint is smaJ’l over
ﬁlost of the grid, with the L-type errors dominating near the origin of t_he coordinate
system. When we remove that area of the grid, as in Figure ({-1.4), we see that the
€rrors are “ran&om” errors that appear on the scé.le of the speciﬁed accuracy. So an
increase in the maximum value of the Hamiltonian constraint is expected as An — 0.

Thus we can see from Table (4.1) that the BICG method giw.res larger error values
in the Hamiltonian constraint*, but it converges on a much quicker time scale (> 10
times faster). In solving the evolution equations, each time step will réquire sol’ving
equation (3.5) 2 to 10 times, meaning that the BICG method is certainly preferable,

if numerical stability can be achieved®.

“Both methods were pushed to the limit of their accuracy for these tests ‘

5Furthermore, elliptic equations for ¢, By, Bo, Ha and Hy must be solved for on each time slice -
meaning that at least 12 calls to the elliptic equation solver are required per time slice... definitely
indicating that the BICG method is preferable :
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axis 0 o

equator

Figure 4.3: The Hamiltonian constraint as calculated usingr the BICG method. The
spike near the origin-is due to %—type €rrors.
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4.3.1 Comparative Calculations of the ADM Mass, Mass Aspect and

Apparent Horizon Masses

We can define the mass of the spacetime in various ways, but we a'dopt the usage of
two separate mass measurements here, the ADM® mass and the mass aspect”. The

ADM mass is defined as

maou = _oF / (2 o ) sin 8 df | (4.4)

for our axi-symmetric system, and it is a quasi-local a.p:proximation, (taken at the
outer edge of the grid) to the true ADM mass which should be measured at r = oo
It is a measure of :the Haﬁlﬂtonian “energy” of the system®, provided that our metric
falls off faste\r than % (which is guaranteed by the Brill criterion), and can be seen to
converge to a consistent value as the outer edge of the grid is moved further away.

Our second measure of the “energy” of the system is the mass aspect, which is

_ VS (%S 29af '
) (¢f,n * )(m +2) (43

in our axi-symmetric system, and arises from equating g;; of our metric to that

defined as -

of the Schwarzschild metric. The mass aspect is measured at the outer edge of
the grid, and as we are comparing it- to the spherically-symmetric Schwarzschild
solution, we require that our angular deviation has died away sufficiently by that

point. Theoretically, the ADM mass and the mass aspect should be the same, and

6Named after the original formulaters: Arnow1tt Deser and Misner
" "See [15] for more details '
8Energy is not a well-defined quantity in general relativity
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we can check to make sure that our spacetime is sufficiently “flat” r;tt the outer edge
by measuring thgse quantities to see if they agree.

Another physical quantity of interest when studying these spacetimes is’ apparent
horizons.r ‘i‘he presence of an apparent horizon® in our spacetime' means that an event
ﬁorizon (i.e. a black hole) is also ‘present in the spacetime, and the évént horizon
either coincides with or appears outside of the apparent horizon. Event horizons
cannot be speciﬁcally‘ located with numerical simulations due to the faci: that they
cannot be locally defined (i.e. they cannot be i?ested for at any one point during the
evolution - the whole spacetime is needed to test for event horizons), but we can use
apparent horizons to test for their presence as the presence of an apparent horizon
necessitates the presence of an event horizon. Thus if our spacetime has sufficient
energy initially, it will have an apparent horizon in it and we can test to ‘see if the
apparent horizon solver (from the original code) is working properly. 7

Table (4.2) shows the measured apparent hoyizon mass (mag), ADM mass and
mass aspect' as a function of the outer radial distance,‘nmw. ‘We can see that an outer
distance of Nmaz = 14 gives very close agreemeﬁt beﬁveen the ADM mass 'and mass
aspe;:t, and ‘the apparent horizon mass seems to be converging as well'®. If we move
th¢ inner boundary in too far, we do not have an asymptotically flat spacetime at
the outer edge of the grid, and as such we still have “energy” in the spacetime that
is not accounte& for. If we move the outer boundary out too far, we would hé.ve to

introduce more grid points into the spacetime to cover the inner regions properly!?,

9The condition to test for an apparent horizon at a point in the spacetime is that outgoing
. orthogonal null geodesics have zero convergence - a local condition. An event horizon is a global
condition arising from the inside of the event horizon being causally disconnected from the outside.
10Using » = sinh(n), when 7 = 14, r =~ 6eb
11 As is indicated by the horizon solver’s inability to find an apparent horizon at a larger 7maz
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Maximum mag | ADM mass | mass aspect | max Ham
Outer Radial . | constraint
Distance (fmaz)
5.0 — 52.92 22.70 ~ 8.59e-2
6.0 o = 40.38 - 25.09 4.29e-4
7.0 — -30.34 25.21 4.30e-5
8.0 24.27 27.03 25.24 5.68e-b
9.0 24.21 25.88 25.23 8.56e-6
10.0 24.12 25.47 25.24 1.49¢-6
11.0 24.02 25.31 25.24 3.38e-6
12.0 23.90 25.25 25.23 2.97e-6
13.0 23.81 25.22 25.22 1.69e-5
14.0 23.63 25.20 25.21 6.24e-7
15.0 23.62 25.19 ©25.20 7.97e-7
16.0 — 25.17 25.18 1.26e-7
17.0 — 25.14 25.16 1.84e-7

" Table 4.2: apparent horizon mass (m 4g), ADM mass, mass aspect and the maximum
value of the Hamiltonian constraint as a function of outer radial grid distance (using
200 grid points, ¢ = 14.5, BICG method, and otherwise the same parameters as
Table (4.1).) .
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€ max Ham | CPU time

constraint
le-10 | 1.72e-2 .53s
le-11 | 2.60e-5 .56s
le-12 1.59%e-5 .58s
le-13 | 2.05e-6 .59s
le-14 | 1.62e-6 RYE
le-15 | 6.45e-7 .53s
le-16 | 5.87e-7 .56s
le-17 | 5.93e-7 .99s
le-18 | 5.94e-7 .B1s
le-19 | 5.94e-7 .57s
1e-20 | 5.94e-7 .b8s
1le-21 | 5.94e-7 .62s
1e-22 | 5.94e-7 .62s

Table 4.3: Maximum Hamiltonian constraint and processing time as a function of
the BICG routine error tolerance, e.

and we would be introducing superfluous grid points/calculation time in a region
that is almost flat.

' It should be noted that the apparent horizon mass is require.d to be smaller than
the mass of the’entzire 'space-time (for obvious reasons), and this can be used as a

simple check on the solver.

4.3.2 rDetermining the BICG Solver Tolerance, ¢

Another variable that affects computational time and numerical stability is the pre-
cision to which we require the BICG solver to solve the matrix equation, (3.5). Table
(4.3) gives the computational time required for the BICG solver to reach the spe-

cified precision in the solution, €. As we are using real numbers that are defined to 16
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decimal places in the code'?, we would expect that a tolerance of ~ 107¢ should be

the limit of the capability of the solver to solve the problem, and Table (4.3) verifies

our prediction.

4.3.3 Calculating Derivatives of gi;

Throughout most of this thesis, a second-order finite differencing schema was suf-
ficient to solve the matrix problems that were presented. There is one problem,
however, that is most likely linked to the boundary value problem!for ¥, that ne-
cessitates more accurate methods. As is outlined in Section (3.5), we use Neumann
boundary conditions at » = 0, § = 0 and § = §. On the outer boundary, however,
we use the Robin boundary conaition (3.12), which is a mixtu;re of a Diriéhlet and
a Neumann boundary condition. ‘There are theorems stating the uniqueness of the
solution to a.. general seconci—order linear differential equation when using strictly Di-
richlet boundary conditions, strictly Neumann boundary conditions or strictly Robin
boundary conditions. There are not'®, however, any theorems stating the uniqueness
of the solution when mixed boundary conditions are applied as we have here, leading
to a potential uniqueness problem.

This led to the discovery of different (non-physical) solutions'* when second-order
‘deriva.tive terms were used to calculate!$ g1‘1,7,, 911,68, J11,mn and gi1ge. This, in turn,

necessitated the use of exact derivatives for these quantities, which are (using a

12 A 64-bit real number

13As far as the author is aware

4 e. ones with negative ADM masses

154th-order correct terms were also tried with similar effects
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Lorentzian wave):

— 2q %_._ljﬂ - 7
gun = X€ [f AT]J “ ’(4.6)

PN b i i N i - . WL e
e f2 fAnoe  A*(mo)*  f  Ano

LR 2k1f1 2 L 12 } wn
VR Ano - A%(mo)®  A%(mo)?
gus = xe*nootd | (4.8)
and -
gue = xe* [Cot2 O(xn® +n®—n)— n] L (49)
v;fhere.
i)
7o
and.

2¢ fk sin™0
X="Tar

Figures (4.5), (4.6) and (4.7) show the difference between the analytic derivatives ‘
and the second order-ones which, in the case of g11 4, and g1 69 Were quite large.
Using these analytically correct derivatives, it was possible to get a physically

meaningful solution for ¥, and an:example solution for 9 is shown in Figure (4.8). Itis
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Figure 4.5: Graphs of g;; and its derivatives. Top left is g;; over the entire grid; top
right is g11 4, calculated using the analytic derivative; bottom left is g1; 5, calculated
using a second-order correct method; bottom right is the difference between the two
methods of calculating gi1,,, (Which is quite large).
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axis 00 equator axis 00 equator

axis 0o equator

Figure 4.6: Top left is g, ¢¢ calculated using the analytic derivatives; top right is g11 66
calculated using a second-order correct method; bottom is the difference between the
two top graphs (which is also quite large).
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004 ...

equator

00 equator

axis

Figure 4.7: Top left is g1, calculated using the analytic derivatives; top right is the
difference between the analytic and second-order derivatives for g1, (Which is not too
large); bottom left is the analytic derivative for gy ; bottom right is the difference
between the analytic and second order-methods for g11,4 (also not too large).
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uncertain if the non-physical solutions were a result of the incorrect derivative terms

or the boundary conditions, but it is an issue that warrants future investigation.
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3,k=51=09¢=15).

Figure 4.8: An IVP solution for 9, with (7o
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4.4 Conclusion

In the course of this research, we have successfully constructed and implemented a
‘frameworkv for solving the Initial Value Problem in an axi-symmetric, vacuﬁm Brill
wave spacetime. Also, a computer code has been created that can be used for fu'ture.-
work on the time evolution of the spacetime to look for apparent horizon formation
and to study critical phenomenon [8] in axi-symmetric gravitational wave co]laprse.
Some numerical difficulties were encountered during the formulation of the IVP,
and the methods outlined in this thesis seem to have been sufficient to solw}e thém;
however future work on the evolution equations is the only way to tell if they will
stand up under more continuous usage with varying conditions. Due to the i}ighly
non-linear, self-interacting and amplifying nature of the evolutign equations, it may
be necessary to use the more time-consuming Relaxation method to solve (3.5), but
the faster BICG method seems sufficient for the time being.

Furthermore, optimal values for the various input pé.rameters for the grid res-
" olution, outer grid location, solver tolerance, wave rshape and wave function were
determined to provide minimal .error‘- balanced with minimal computa‘.tional; time.

Future work on this probleﬁ could involve investigation of the uﬁiqﬁeness problem
given our mixed boundary conditions, development of a faster relaxation scheme, and
furtiler conditioning of (3.5) to help re;ﬁove the L-type errors that appear near the.

origin, all of which could yield profitable results and insights into the IVP.



‘Appendix A \
Numerical Methods

In solving the Initial Value Problem for 1, a number of different numerical techniques
had to be emploired in order to stabilise the solution to the point of solvability. This
appendix will.cover the major techniques that were used to ensure numerical accuracy

and stability.

A.1 Coordinate Choice

Due to the presence of coordinate singularities along § = 0 (the axis) and 7 =0, we
must pay particular attention to those regions of the gri.d. Our choice of coordinate
discretisation. can help us to avoid this problem, as we can define our coordinate grid
in such a way so as to “straddle” the singularities (and, in fact, this seems sufficient
to avoid most numerical problems). This straddling is accomplished by defining our
first radial grid point at a 1/2 step away from the origin, and all subsequent points
at integral steps away from each other. Similarly, we define fhe first 4 gﬁd point
at a 1/2 step away from the axis of our system, and continue in integral steps from
there. So in the radial direction, if we define our radial grid spacing to be A, then
our grid has radial nodes located at

_An An 347 5A7
27272727

49
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Figure A.l: A schematic of the 2-dimensional discretised grid. Grid points are
located at ((z —3)An, (7 - %)AB), where 1 <i<imaz+3and 1 <j< jmaz+1

and defining A§ as our angular grid spacing, our grid has angular nodes located at

A0 A8 3A0 5A0
272727 2

in the 6 direction.r We include the —% step as well in order to keep track of our
derivative informafion at 4,7 = £, as the second order ﬁzﬁfe differencing about those
points requires the —% grid point. Figure (A.1) gives a schematic of what our dis-
cretised grid looks like.

Furthermore, f(n) is another coordinate option that must -be chosen, and we

choose

- N o #(n) = sinh(n) (A1)
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throughout this thesis to achieve exponential scaling over the entire grid. This will
give a better coordinate resolution near the wave (which is what we are interested
in) and the origin (which is numerically problematic), while using fewer grid points

in the asymptotically flat region near the outer edge of the grid.

A.2 Discretisation

Throughout tl;is research, we have used a discretisation of the ¢ = 0 spatial slice in
order to solve for the conformal factor, 1), numerically. However, in order to take
derivatives of the functions that are defined on a discrete (non—continuoﬁs) grid, we
must make approximations to within some defined tolerance level. For all of the work
here, we used methods that are accurate up to second order in whatever quantity
we wish to differentiate, so the errors are alwa:ys on the order of (An)? in the radial
direction or (A)? in the angular direction. In order to derive the formulae for these
derivatives, we shall start with a second order Taylor series z;,pproximatioh about 7

for a general function, f(n):

Fr-+ )= £) + Fulm + F) (a2
giving also ;
£l — An) = £(n) = Fo(n)An + Fln) - (A3)

Assuming that we are finite differencing about the point (7, ), and noting that

o~

Fn) = £i,3) N (4.4)
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Fln+Am) = F+1,3) (A5)

f(n— An) = £(i - 1,5) ) (A.6)

we can subtract (A.2) and (A.3) and solve for the first derivative of f, yielding

Faiq) = f+—1’2A_nL’- + O[(An)?] (A7)

while adding (A.2) and (A.3) and solving for the second derivative of f yields

i+1,§ — 2fi5 + fi-1j
e = L8 = Tt 4 ol (A8

which are the second order finite differencing approximations for f, and fan- We can

apply these equations, without loss of generality, to detivatives in the ¢ direction.

A.3 Setting up the Second-Order Differential Equations to

Solve Them Numerically

In order to solve the second order equation for 4 (3.5), we must discretise the equation

from its continuous form. To do this, we write out the general form of (3.5) as

P(17, 9) '¢,nn + Q(% 9) ¢,99 + R(U» 0) d’,ﬂ + S(Th 0) 7:&,9 + T(n: 0) ¢ = Z(T]’ 9) (Ag)

We then use (A.7) and (A.8) to discretise all of our derivative terms and reduce the

differential equation to an algebraic equation for the 1;’s. After rearrangement, we
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Figure A.2: A schematic of the 2-dimensional stencil from Equation (A.11).

find that

P R\ P R) o
(W+E) Virta T\ ()~ 2Aq) Vot

2P 2Q) Q S
(-~ i+ ) (s + k) oot

<(A¢9)2 - %) b= Zig  (A10)

. which can be written schematically as
RD; 413 + LDsjios + Asjthig + Bigigps + Cigbigr = Zej (A1)

and is shown in Figure (A.2).
This gives us a cross-shaped stencil around each point on the grid, which can then
be converted into a matrix equation to be solved for at each grid point. Because the:

matrix created by this algorithm is very large' and it is very sparse?, we can adapt

1The matrix is nm x nm where n and m are the number of radial and angular grid divisions,
usually around 200 and 25 respectively, giving a 5,000 x 5,000 matrix to be solved
2Usually only 5 of the mn entries on each row are occupied by non-zero entries, i.e. about 5 out
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our numerical algorithm to solve this sort of problem efficiently. .

Ideally, we would even like to take advantage of the sparseness of the matrix,
which we do by specifying a multiplication routine that requifes the least amount of
operation; possible for the specific form of the matrix in Figure (A.3). Furthermore,
because the matrix is so large, direct inversion methods é.re impractical as the nu-
merical noise would quickly flood out any real information in the matrix. Also, as is
mentioned in Chaptel: 4, similar elliptic equations must be solved at each time step
during the evolution, making direct inversion techniques also impractical for future
work du.e to their prohibitive computational time. So our preferred method to solve
the matrix in Figure (A.3) is via matrix multiplication and addition only, with no
row or column operationsr necessary. To this end, we used tw,o different algorithms:
a “stabilised” Bi-Conjugate Gradient (BiCGStab) routine and a relaxation scheme,
both of which provided similar answers to within the specified numerical precision.r
The major advantage of one method over the other was processing time, as the
;'elaxation method slowly “smooths” out the data over the entire grid in an easy-
to-program but inefficient manner, whereas the BiCGStab routine uses information
about the derivatives of the matrix quantities to converge more quickly.

Both methods were used as checks on each other, and Figure (A.4) shows the
conformal factor, 1, calculated using the two different methods on equation (3.5)

with a Lorentzian Brill wave.

_ of 5,000. See figure (A.3) for an idea of what the matrix looks like - empty spaces are 0 entries.
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XU =7
where
[ a;}]_ bll ’I‘d]_l T
Ciz Q12 bi2 rdya
Ci13 Q13 bis rdy3
ldy; Ca1 Q21 ba1  rdy
3= :
ldm—l,n Cn—1n Qm-1n bm—l,n Tdm-—l,n
ldm,n—l Cm,n—1 dm,n—-l bm,-n.--l
L ldm,n Cm,n Cmpn
'Sbll Z11 .
¢12 Z12
P13 Z13
oy Zy
U= : and Z = :
¢m—1,n Zm—l,n
¢m,n—1 Z-m.,n—l
R 'Sbm,n i L Zm,n

Figure A.3: A schematic of the matrix equation that needs to be solved for ¥(n,9)
in Equation (A.11)
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Figure A.4: A comparison of the BICG and Relaxation methods. The top left
is Equation (3.5) solved for % — 1 using the BICG method, and the top right
uses the relaxation method. Both were solved using a Lorentzian data set of
(no = 3,k = 5,1 = 9,6 = 1.5). The bottom left shows the absolute difference
between the two solutions from the top, and the bottom right shows the relative
difference between the two solutions. 3 — 1 was solved for instead of 9, due to the
fact that the solution lies very close to 1, and solving for 3 — 1 instead helps to
remove subtraction errors.
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A.4 Boundary Conditions

When defining the boundary conditions for 9 at 7 = 0, we know that®

ki
on

=0

n=0

meaning that in our discretised model that we set

-A A
(2 (—277‘7 9) ==V =Y (-571, 9) (A.12)
to make the function symmetric about = 0. Similarly,
O
% 8=0 °
meaning that -
—-Af _ Af
4 (77: T) = Pin =iz =7 (17, —2—-> (A.13)
and
- 0
a6 f=T
gives : _ |
VAY.) w Af )
'Sb <77: '5' - 7) = "pi,jmam = ’l/)i,jma:n+1 = ’l,b (77, 5 + T) . (A14)

Thus we have three of our four boundary conditions defined, and our outer bound-

ary condition (7 = %mes) comes from the Robin boundaryr condition (3.12). By

38ee Section 3.5
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discretising (3.12) for =19 —11% weget

Pipr; — Pi-r; [ f .
Bengbd (L 1 gy, =0 (a15)

which means that on the outer boundary (assuming imaxz + 3 is the very outer grid

point) that

= 2A ~ -
¢ima:c+3,j = - ;f'n¢imam+2,j + ¢imam+1,j- (A16)

So using the boundary conditions in (A.12), (A.13), (A.14) and (A.16) to set up
the matrix in Figure (A.3), and using equations (A.9) and (A.11), we have a fully

defined matrix problem to be solved.

A.5 The Form of Equation (3.5)

Due to the fact that we are trying to minimise numerical errors in the code, it is
to our advantage to re-write any equations we solve so that we are not dividing by

small numbers. Recalling (3.5),

’sb,nn-l-—f%%b,ee-l- (—];:7" -l-?—;ﬂ) Y+ (fz) cot 8 1,

bt B ()2 (2 F] - o

In equation (A.17), we have a cot § term, and we are dividing by f and f,, so

“This was done for numerical reasons; because the solutlon to P is close to 1, we transform to
¥ to avoid subtraction errors in the code



we should analyse their behaviour on the grid. By choosing
f = sinh(z)

we find that
fn= cosh(n)

And using Taylor series expansions around n = 0, we finid that

fle) <e

" and

. 2

Fa) =145
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(A.18)

(A.19)

(A.20)

(A.21)

meaning that f (n) will be small near the origin - indicating that we should numeric-

ally condition our system to get rid of % behaviour. The derivative, f, will be close

to 1 near the origin, so it is not problematic. As we proceed to the outer edge of the .

grid, both terms go as %, and as such are well-conditioned. |

Furthermore,
0
cot B = —
sin 4
meaning that near § =0
1-—&
cot & ~~ 2

o

(A22)

I3

(A.23)

and we should numerically condition the equations to remove any = 5 type behavior

near the axis.

Near § = 7, cot § ~ 0-and numerical stability can be retained as long as we don’t
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divide by cot 8 or cos §.

This suggests the equivalent, but the more numerically stable form of (A.17);

(f—:> sin 09 ., + sin 61 gg + (;-‘]E’"';fz + ﬁ) sin @1, + cos G

)77 7 f,n

P . amf? | aq (fnf f Gnf ’ a,66 )’
e o (1) (2] e (2]

a fﬁ, a ff’;' fa afnq a a

= 0(A.24)

This method of solving the IVP gives a noticeable improvement over (3.5), giving

a2 maximum erfor in the Hamiltonian constraint of 3.4e-7 instead of 5.9e-7 for the -

Lorentzian data set (7o = 3,k=5,1=9¢=15).
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