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Abstract 

The goal of this thesis is to numerically construct, in its entirety, the spatial 3-

volume that arises as the initial slice of an axi-symmetric, vacuum space-time with 

an initial Brill wave present. This formulation can then be used in future work on 

the time-evolution of the Brill gravitational wave system. 

We were able to construct numerically stable solutions for all of the dynamical 

variables that are present in the general relativistic Einstein equations, and thus a 

complete description of the initial slice of the space-time was achieved. 
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Chapter 1 

The Initial Value Problem 

In this thesis, our goal is to analyse and numerically construct the Initial Value 

Problem (IVP) for an axisymmetric gravitational wave system in a vacuum space-

time. To this end, we shall devote this chapter to developing the basic framework 

necessary to study this problem, the most important of which is the 3+1 formalism 

of general relativity. Chapter 2 will concentrate on the coordinate and gauge choices 

that we make to simplify Einstein's equations in order to solve them. Chapter 3 

will present the initial conditions and boundary values that are necessary to solve 

the spacetime on the initial slice, and Chapter 4 will cover the solutions that were 

generated using this formalism. An overview of the numerical methods used in this 

thesis is presented in Appendix A. 

1.1 A Brief Introduction to General Relativity 

Einstein's equation for the relativistic gravitational field is given by: 

8ii-G 
Gaj3 Tc 

where we use the convention that Greek indices (a,,3) run across all 4 space-time 

tensor dimensions, whereas the Latin indices (a, b) are 3-dimensional spatial tensor 

indices. Due to the nature of most problems that are studied in General Relativity, 

we usually adopt the convention that G = c = 1 (where G and c re the universal 

1 
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gravitational constant and the speed of light in a vacuum, respectively). This can. 

be done without loss of generality, as we are just scaling unit lengths differently. i.e. 

this implies that 

is 299 792458m = 1.8016 x 1015 kg 

which arises, from setting: 

299 792 458m Is = 1 = 6.67259 x kg . 

Adopting this convention, our general 4-dimensional equation becomes 

m3 

Gap = R,,.p - .gc,pR = 8irTap (1.2) 

Where Gap is the Einstein Tensor - a 2nd rank, four dimensional tensor that describes 

the geometry of the spacetime; T,,,e is the energy-momentum tensor - a 2nd rank, four 

dimensional tensor that provides information about the distribution of matter and 

non-gravitational fields; Rap is the Ricci Tensor and R is the Ricci scalar (both of 

which are contractions on the general Riemann tensor' R 8); and gap is the metric, 

which defines lengths and inner products on the spacetime manifold. 

No known, general, closed-form solution exists to (1.2), and the large majority 

of the research that is done in the field of General Relativity consists of attempting 

to, find or verify particular solutions to (1.2). In general, there are two ways of 

approaching the problem that can lead to a solution. 

The first approach consists of a "trial and error" thethod, wherein the metric gap 

'The Riemann tensor is strictly a geometric tensor, and it is linear in the second derivatives of 
gap and quadratic in the first derivatives of gap , 
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is specified as a function of spacetime coordinates and the energy-momentum tensor 

is constructed from the solution, using 

To = (1.3) 

The advantage of this method lies in the the ability to choose a solution that is easy 

to analyse analytically or numerically, but the obvious (and crippling) disadvantage 

is that only a very small number of the metrics and energy-momentum tensors con-

structed in this manner have any physical relevance, In essence, this method is like 

shooting in the dark, and is about as successful. 

The physically relevant method is to specify the energy-mo,rnentum tensor, and 

then proceed to try to solve for the dynamic variables of the system (i.e. the metric 

and extrinsic curvature components). The obvious advantage of this method is that 

we can specify the (hopefully) physically relevant spacetime that we wish to study. 

The (sometimes crippling) disadvantage is that the resulting euations to be solved 

for the dynamic variables are often highly non-linear and unsolvable short of a foray 

into the numerical world. And that is where we stand presently with most relativity 

problems - the "simple" cases of Schwarzschild, Kerr, Reissner-Nordstrom, etc. have 

been solved analytically, and any other system that mimics a physically relevant 

situation requires numerical work due to the excessive complexity and the inability 

to construct closed-form analytical solutions to (1.2). - 
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1.2 Developing the 3+1 Formalism 

In order to simplify the general 4-dimensional tensor problem for numerical work, 

the "3+1" formalism was introduced by Arnowitt, Deser and Misner [2] (also called 

the Cauchy formalism), in which the spatial information about the space-time (3) is 

"split-off" from the temporal information (+1). In this form, we evolve the spacetime 

from the initial data set by foliating the spacetime along the "time" coordinate, 

where temporal level surfaces consist of instantaneous spatial 3-volumes. In principle, 

there is nothing exclusive about our choice of the time variable as our level-surface 

coordinate, but due to the desire to analyse observable results and make comparisons 

to Newtonian Gravitational problems, we are driven to choose this splitting. We 

could thusly choose; y and t as our variables to "evolve" along level surfaces of z, but 

the physical meaning becomes much more abstracted and difficult to comprehend, 

leading to the natural choice of time as our level-surface coordinate. 

Thus our goal is to reduce the 4-dimensional tensor equations to a related group 

of 3-dimensional tensor equations that evolve through time. To accomplish this, we 

can describe the 4-metric, g,,, as 

\ 
_a2+i8a13a /3a 

P.  7ab1 

(1.4) 

where a represents the lapse function, 13a represents the shift vector and 7ab is the 

three dimensional (spatial) metric tensor. Figure (1.1) gives a schematic view of how 

the 3+1 formalism describes the foliated 4-dimensional spacetime with the lapse 

function and shift vector. 
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t 

t=3 t 

t=O 

• Figure 1.1: A schematic diagram of the splitting of the space-time using the 3+1 
formalism. 13 is the normal vector to the surface at each point, a gives the distance, 
in time, between points on successive sheets and ,8 represents the spatial shift of the 
coordinates from one sheet to the next. Sr = a St, where r is the proper time 

The lapse, a, is a scalar function of time and space over the entire grid that 

represents orthogonal proper time progression ('r) at each point within the space 

time (i.e. a = a(z)). Thus a provides us with a tool to allow the evolution to 

progress at different rates at different points in the spacetime. This is desirable in 

regions of large curvature or near spacfetime singularities to provide for a longer, more 

stable evolution. The lapse function, a, can also be used to calculate the interval of 

proper time from an interval of coordinate time, due to the fact that 

dr=adt (1.5) 

The shift vector, 13a, represents the progression of the coordinate or "grid" points 
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along the spatial direction from one time slice to the next, i.e. 

= /3dT (1.6) 

It can be employed to provide optimal grid resolution in areas of numerically unstable 

curvature, while minimising grid point calculations in low-curvature areas. 

Because we are only interested in the initial value problem, and a and f3 are vari-

ables that affect the time dynamics/evolution of the code, they'will require minimal 

consideration for the remainder of this thesis (although they play a vital role in the 

evolution equations to be studied at some point in the future). 

Thus using (1.4) as our guideline, we can split (1.1) into spatial and temporal 

equations. The goal of this project is to specify the necessary information on the 

initial slice (the Initial Value Problem, or IVP), and then use the resulting evolution 

equations to evolve the spatial information from the initial slice as far into the future 

as we desire (Or as far as numerical tabi1ity will allow). Thus we can reduce the 

general 4-dimensional problem to an initial-value problem and an evolution problem 

(that is subject to differential constraints at each point during the evolution), which 

is easier to solve and analyse, numerically. 

The 3+1 formulation of the Einstein equations requires one other quantity, how-

ever, to describe the geometry on each time slice - the extrinsic curvature (K). 

The extrinsic curvature is a measure of how much the 3-dimensional spacetime on 

a t = constant slice is curved relative to a flat, Cartesian, 4 dimensional embed-

ding manifold, and is a well-defined differential geometric quantity'. By defining the 

2j is also called the "normal" curvature, and the Ricci Tensor (Rj) is the intrinsic or "geodesic" 
curvature. The metric and extrinsic curvature are also referred to as the first ('yjj) and second (K) 
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extrinsic curvature of the spacetime as 

=. —..e°7 13 = —•(5 - 
(1.7) 

where So is the Lie derivative of the metric along the "time" direction, we get 

a spatial, symmetric quantity that carries information about the curvature of the 

spacetime with respect to a flat embedding manifold. 

Because the eventual goal is to use this IVP formulation to study the subsequent 

dynamics of the system, we include the general vacuum evolution equations for K 

and 'yij3: 

c9t'fij = —2aK15 + a3; - .7 i + a1e - ij (1.8) 

OK = —9 4d [ado - rIdaCa] + a [R + KK] + [aicj - rK + de j rK] 

+ K [a1pc + rpe] - K2 {&t + P el (1.9) 

• Where we have expanded the covariant drivatives out in termg of partial derivatives 

and connection coefficients, rk (which are all defined in terms of the metric 

and standard Einstein summation notation is used (repeated indices indicate a sum-

mation over the range of the index). We direct the inerested reader to [16] or [17] 

for a more comprehensive development of these equations. 

fundamen1al forms. 
'The notation 'yij is often used to represent the spatial part of the metric, gcp 
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1.3 The Constraint Equations 

By studying various contractions of the four-dimensional Riemann tensor, we can 

arrive at a series of four equations in y, Kab and T°'3 that must be satisfied at any 

given time in the spacetime. These equations play an analogous role to V. E = 4irp 

and V . B = 0 in Maxwellian electrodynamics, and act as constraints that must be 

satisfied by the IVP and at each point during the evolution. 

In other words, the constraints are a set of spatial equations that must be satisfied 

on each spatial slice in the spacetime. They can be thought of as differential equations 

in the spatial metric 'yjj and the extrinsic curvature Kij, that can be solved for on the 

initial slice and each subsequent slice, effectively allowing us to choose an arbitrary 

slice in the spacetime as our starting point. So the idea is to specify whatever free 

data we can on the chosen slice, and then solve the constraint equations for the 

constrained data that remains4. 

The development of the constraint equations from (1.2) using the 3+1 formalism 

is covered in detail elsewhere, so we refer the reader to [15], [9], or to any of the texts 

on the subject. The end result is that we obtain four spatial equations in the extrinsic 

curvature, the spatial metric and the energy-momentum densities (all of which are 

spatial quantities). They are labeled the Hamiltonian, or scalar, constraint and the 

momentum, or vector, äonstraints, and they are 

R + (TrK)2 - KabKal = 2icp (1.10) 

'This is analogous to specifying two components of the electric and magnetic fields in Maxwellian 
electrodynamics, and then solving for the remaining components of the two fields using V . B = 4irp 
and V.B = 0 
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and 

Vb(K(th - 7abK) = ja 

respectively. Here Vb is the covariant derivative, defined with respect to the spatial 

metric, 7ab; and in this formalism r. = 8ir, p = manh3T is the energy density and 

ja = —T is the momentum density, both of which are spatial quantities (and 

the a are the unit normals). 

For this thesis we are studying a vacuum sp.acetime, and as suáh Tar, = 0, meaning 

that the right hand side of equations (1.10) and (1.11) are 0. 

1.4 The Bianchi Identities 

One of the basic properties of the R.iemann tensor is that it satisfies the Bianchi 

Identities, which are differential identities that take the form: 

VER 18 + V8R + V7R = 0 . (1.12) 

These identities arise simply from a consideration of the underlying. geometry that 

defines the Riemann tensor, and as such they are independent of any other conditions 

we put upon the spacetime. 

Equation (1.12) can also be contracted into the contracted Bianchi identities, 

which are 

VaG = 0 (1.13) 
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which is equivalent to saying, using (1.2), that 

VaT = 0 (1.14) 

These identities show that if the constraints are satisfied on the initial slice, then 

they are consistent with the evolution equations at all future times. So we can use 

the constraints to construct our initial value formulation, and then evolve the data 

off of the initial slice via the evolution equations. 

1.5 General Degrees of Freedom 

In general, G,,,3 has 10 degrees of freedom associated with it because it is a symmetric, 

2nd rank, 4 dimensional tensor; 

= 

@02 @12 @22 @23 

@03 G13 @23 033 J 

(1.15) 

Four of those degrees of freedom are specified by the constraint equations (1.10) and 

(1.11); 4 are specified by the coordinate, or gauge choices that we are free to make, 

leaving us with 2 real degrees of freedom for our system that are manifested in our 

initial choices for the spacetirne geometry. 

Just as in Maxwellian electrodynamics, these two degrees of freedom are asso-

ciated with the two polarisation states of the gravitational field (i.e. gravitational 



radiation/waves). 



Chapter 2 

Coordinate Systems and Gauge Determination 

2.1 Coordinate Choice and the Form of the Metric 

Once we have derived the general form of the 3+1 equations, it is ndcesary td start 

imposing simplifying conditions on the spacetinie in order to solve it. The first 

simplification to make is that we specify an am'-symmetric spacetime, i.e. one in 

which there is rotational symmetry about the z-axis and reflective symmetry about 

the equatorial plane (0 = )1. We use the convention that the angle 9 is measured 

from the positive z-axis, the radial coordinate is measured from the origin and the 

angle q becomes irrelevant due to the symmetry of the coordinate system. 

The general line element for an axi-symmetric system is 

d12 = A(, r, 9)dr2 + B(t, r, 9)d92 + C(i) r, 0)drd8 + D(t,r, 0) Sin 2 0 dq!2 (2.1) 

'See figure (2.1) 

Figure 2.1: Our axi-symmetric coordinate system 

12 
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as all of the cross-terms involving 0 vanish due to the symmetries of the spacetime. 

Following the work of York ([16],[17]), we re-write the metric in terms of a conformally 

related metric (jab) with a conformal factor, b, such that 

__ 4... 
11.b -  P "lab 

in order to create a formulaticn that is easier to solve analytically and more numer-

ically stable. It can be shown [11] that the Ricci scalar is related to the donformal 

Ricci scalar (R) by 

R - (2.2) 

and if ab is a flat metric,, then h = 0, simplifying the analysis of the spacetime 

substantially. We do not, however, choose a conformally flat metric for this analysis, 

but a conformal decomposition is useful nonetheless as a method of determining 

various aspects of the spacetime, including the mass in Section (4.3.1). This par-

ticular choice of ib also ensures that the Hamiltonian constraint on the initial slice 

is a second order linear differential equation in &, as opposed to most other choices 

which yield difficult-to-solve, non-linear PDEs [3]. 

We define the radial coordinate 77 in terms of r by 

= 

where 

f(0) = 0 
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to set the origin of our coordinate system at 77 = 0. This rescaling of the radial 

coordinate allows us to experiment with various radial grid spacings when we start 

working with the physical problem, and allows for easy manipulation of the equa-

tions'. By defining and deriving all of our equations in terms of this general radial 

coordinate function, f, the analjtics are vastly simplified if we wish to try a dif-

ferent radial function. In the case of a gravitational wave close to the origin, it is 

preferable to have a large number of grid points closer to the origin to allow for 

better resolution of the wave and its dynamics, whereas further out along the radial 

direction where the spacetime approximates flat space and the dynamics are mostly 

linear we should need less grid points for proper resolution of the physical features of 

the spacetime. Thus we can designate various radial functions and experiment with 

these radial functions to provide better stability with fewer grid points (and thus 

less computation time and storage space). 

Using these two definitions, we can re-write the line element in terms of the 

conformal factor (&) and the radial coordinate function (f), giving us 

d12 = b4(Afdii2 + f2d92 + Cf f,drid9 + b f2sin29 dq 2) 

Thus we can define our metric using the above conditions, and it becomes 

/ \ 
af cff, 0 

171 

9ab = 1?b4 cff,,7 bf2 0 

0 0. df2sin281 

(2.3) 

(2.4) 

'The general coordinate invariance of General Relativity ensures that this is a valid coordinate 
choice 
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where a= A, b = E, c = O and d = 13 

2,2 The Extrinsic Curvature Tensor 

In formulating the extrinsic curvature (3)-tensor, we first use the axi-symmetric 

conditions to eliminate all bf the q cross-terms, i.e. K13 = 0 and K23 = 0. The 

symmetric nature of the tensor means that there are only 4 components left to 

specify, giving the general form for the extrinsic curvature tensor as3: 

/ \ 
HH0 

Ka&b4 H. if1, 0 

0 

(2.5) 

Where we have used a similar conformal decomposition of the extrinsic curvature to 

that used for the metric, i.e. 

Kab = /)kab 

2.3 Temporal Gauge Conditions 

(2.6) 

Since we are free to choose our temporal coordinates as we wish, we will investigate 

some particular choices of the temporal gauge that allow us to .explore the portions 

of the spacetime that we are interested in. 

'The actual form used in deriving the equations was slightly different and more complex, because 
the eventual goal is to use this formalism to perform the evolution of the space time. In that 
formalism the mixed curvature quantities are used (i.e. K) which necessitates a different projection 
formalism, but results in an equivalent covariant curvature tensor, K0b 
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2.3.1 Maximal Slicing 

As the name of this particular gauge indicates, we can specify that 

Tr(K)=K=K=O, (2.7) 

which equates to maximising the volume of each time slice. One advantage of this 

gauge is that it will avoid areas of high curvature in order to maximise these volumes 

(high curvature means larger surface area of a slice). Another advantage is that the 

time-evolution equations simplify quite nicely with the use of this gauge, and using 

(1.9) we can obtain an equation for the lapse that becomes: 

VaVa=c[R+.(S_3p)] (2.8) 

Because we are dealing with a vacuum spacetime, we can drop the source terms to 

obtain 

VaVaa - aR (2.9) 

It can be noted that as R -4 oo, a -+ 0, giving the required large curvature-avoiding 

property. 

Furthermore, we can re-write our Hamiltonian constraint (1.10) as 

R T K'jKij = 0 (2.10) 

where we have substituted (2.7) into (1.10). 
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2.3.2 Other Slicing Methods 

Our choice of Maximal Slicing is not exclusive, and we can choose other methods of 

slicing our spacetime. 

Geodesic slicing is defined by choosing a = 1, and if we choose fda 0, then the 

coordinates of our spacetime will follow geodesics (i.e. the coordinates are in freefall). 

This method of slicing is not veiy useful for studying the dynamical properties of 

the spacetime, but it can be used as a check on the code given some easily calculable 

analytic properties that it possesses. 

Polar slicing imposes the condition that 

TrK = K 11 (2.11) 

i.e. 

(2.12) 

and it gives a parabolic equation for a instead of the elliptic equation in (2.8), thus 

making it a faster method to solve for a. It does not slice inside the event horizon 

however, which is arguably a small flaw due to the fact that the spacetime inside an 

event horizon is causally disconnected from the universe outside the event horizon. 

Maximal slicing, however, will slice inside the event horizon and can therefore be 

used to study the dynamics of the interior of a black hole. It can be shown that 

maximal slicing is also singularity-avoiding in nature, and will stop the evolution 

within a fixed "distance" of the singularity. Therefore a different slicing method 

must be used if the entire interior of the black hole is to be studied, and an analysis 
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of various slicing methods and their properties can be found in [10]. 

2.4 Spatial Gauge Conditions 

After we have chosen our temporal gauge/slicing condition, we have 3 spatial gauge 

choices. that are left froni the general coordinate equivalence of General Relativity. 

In choosing our metric function, we can specify that a = b in (2.4), and this 

is called the Isothermal gauge. It is useful in decreasing the number of dynamical 

metric quantities that must be solved for on each time slice, and it also allows us to 

develop the Robin boundary condition on the outer boundary of our spacetime. It 

also happens that an Isothermal gauge is consistent with our definition of an initial 

Brill wave (see Section (3.3)), and is our first spatial gauge choice. 

We also impose the diagonal metric condition so that c = 0, which once again 

will, simplify the resulting evolution equations and has been used successfully in other 

codes [3] [15], and is also consistent with the Brill wave formalism. Its numerical 

success is partially due to the fact that it decreases the coordinate shear in the 

spacetime by making the metric diagonal in nature. 

Our last gauge choice is to set d = 1, such that dynamical information is carried 

in '& and as such i,b must be solved for on each time slice of the evolution. This choice 

is also consistent with the Brill formalism and completes our gauge choices. 

Thus the final form of our 3-metric is: 

1af 2 0 '0 
07 

-tab ib4 .0 af2 0 (2.13) 

0 0 f2sin2 



Other temporal/spatial gauge choices are discussed in [14]. 



Chapter 3 

Setting Up the Initial Value Problem 

3.1 Time-Symmetric Initial Data 

Now that we have the proper forms of the metric and extrinsic curvature tensors 

((2.13) and (2.5)) for the problem at hand, we can go about solving for the ne-

cessaxy variables to complete our picture of the initial spacetime slice (using our 

constraint equations, 1.10 and 1.11). We will choose to study a time-symmetric ini-

tial slice, meaning that our initial slice is a local isometry surface and has as a at 

local Killing vector. This also means that the time derivatives of our metric and 

extrinsic curvature quantities momentarily vanish. 

3.1.1 The Lapse and Shift Functions (a and 3a) on the Initial Slice 

Due to the freedom in General Relativity to choose coordinates however we wish, we 

are allowed to specify the lapse and shift functions freely on the initial and subsequent 

slices. They can be used as controls on the evolution rate and grid stretching at each 

point in the spacetime during the evolution to help ensure numerical stability and 

regularity. But because we are only interested in the Initial Value Problem here, and 

because these two functions are completely arbitrary', we can specify them as we 

wish on the initial slice. Our first simplifying choice is to set a = 1, meaning that 

each point in the spacetime is progressing at the same rate, and that the coordinate 

'In this formulation they must satisfy certain differential relationships (due to the metric evol-
ution equations and gauge choices) on future time slices 

20 
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time progression is momentarily that of proper time at each point on the manifold. 

We then choose 13a = 0, making the coordinate "velocity" disappear on the initial 

time slice. These are the easiest choices we can make for these variables on the initial 

slice to simplify the solution of the IVP. 

It is important to note that this choice of variables provides us with only one 

specific initial slice, and other values of a and /3a are permitted. These values, 

however, provide the simplest framework for future work on the time-evolution. 

3.1.2 The Extrinsic Curvature Variables (Ha, Jib, H and Ed) on the Initial 

Slice. 

In this analysis, because we are restricting our investigation to time-symmetric data, 

our initial slice is a local isometry surface (with A as the local Killing vector). Due at 

to the fact that the metric time derivatives momentarily vanish, and because the 

shift vector's components are all defined to be zero on the initial slice, the evolution 

equations for the metric change from: 

to 

Dtfij = —2aKj + ajol - F 1 +0j/j  - (3.1) 

Kjj = 0 (3.2) 

Thus all of our extrinsic curvature components vanish on the initial slice (i.e. Ha = 

Hb = H = 11d = 0 ). Because Equation (1.11) is trivially satisfied by these condi-

tions in a vacuum spacetime (i.e. the momentum constraints), the only remaining 

constraint equation that needs to be satisfied on the initial slice is the Hamiltonian 
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constraint. 

3.2 Calculating t' from the Hamiltonian Constraint 

Using the definition for the metric that arises from (2.13) and the extrinsic curvature 

definition from (2.5), we can calculate the Hamiltonian Constraint from (1.10). Be-

cause we are using a time-symmetric set of initial data, 

K 5 0 

Therefore we can rewrite Equation (1.10) as 

R=0 (3.3) 

using the fact that p = 0 in a vacuum. 

Using the definition of R as a contraction on Rbc d, we can calculate the form of 

the Hamiltonian constraint that is a differential' equation in terms of only metric 

quantities, giving us the following: 

8  cos 9 8 ' 8 16 
0 = - 92  + '7 f'7777 

af2b5 sin 9 af2'çb5  af1,72'çb +   aff'b5 a2f,,73 b4 

8a 32a e9a\ 2 t92 a (a\ 2 

877 877 2 877 8- 02 

- a2ff,'çb4 a2f, 2b4 + a 3f"72V)4 a2f2ib4 + a3f2b4 (3.4) 

Assuming that we choose a and f as our freely specified data on the initial slice 2, 

2 T set up a Drill wave (see Section 3.3) and for coordinate optimisation. The function 0 thusly 
becomes our constrained data 
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we can simplify this equation into a second order, linear differential equation in b: 

8 I 
L2  

'1' + + f,17 + -i--) + (f,2) cot 
,1717 + 1f, f,,1l + (2 - a f'2 + (a!O) 2 f,77 1 = 
a a Lf - fj a ) a f2 a f 2] 0 (3.5) 

So once we have the functions f and a specified, as well as their derivatives, we 

can proceed to solve (3.5) for 0. The stability of the method used to solve 0 is highly 

dependent on the boundary conditions, the function h(r) (the initial radial Brill wave 

profile)' and the accuracy of the derivatives of f and a. Due to the importance of an 

accurate and precise solution for the evolution of the spacetime (the eventual aim of 

this work), we will devote an entire chapter io a study of these solutions, after first 

developing the form of a. 

3.3 Brill Wave Construction 

In order to determine our remaining metric variable, a, we shall construct our ini-

tial spacetime with a gravitational wave that follows the formulation of Brill. Brill 

showed [4] that in an asymptotically flat, axi-symmetric spacetime where the metric 

is specified in spherical polar coordinates the following are equivalent: 

. The mass of the hyper-surface is non-negative (i.e. well-defined and physical) 

• The line element describing the space time has the form 

d12 = 04 [e2(dr2 + r2d92) + r 2 sin  9 d02  (3.6) 

3See Section (3.3) 
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where q = q(r, 8) and 

1. q(r,O)=O 

2. q(r, 9) = 0(r2) 

Therefore the goal is to choose a coordinate system and initial conditions to fulfill 

these criteria. Because of our desire to scale the radial coordinate for more optimal 

grid resolution, we introduce once again the radial coordinate function, f, giving our 

line element the form of 

d12 = lk4 [e2(f2d2 + f2d92) + sin2 8 f2d2] 
77 

(3.7) 

In order to 'ensure that the two properties of q(r, 0) are satisfied, we choose a 

form  for q such that 

q(m9) = g(9)h(rj) (3.8) 

where is the "amplitude" of the Brill wave, and the functions g and h carry the 

angular and radial information respectively. Thus we can easily satisfy Brill's first 

condition by setting 

g(9) = 5jfl9 (3.9) 

where n is some even integer to preserve the equatorial reflection symmetry prop-

erties that we required earlier'. The second condition can be satisfied by using any 

number of radial functions, and as we will show in Chapter 4 some choices are more 

numerically stable than others. The choice of our function for h(r1) is not trivial, but 

'This choice is in no way exclusive 
'For the remainder of this thesis, n = 2 is used 
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an investigation into its form shall be left until later. 

So comparing (2.3) and (3.7), we can make the identification that A = E = 

C = 0, and D = 1, and our metric (2.13) becomes: 

" 2f2 0 0 
177 

'7ab = 'P4 0 e2f2 0 

0 0 f2 sin 28 
I 

which is consistent with our gauge choices from Section (2.4). 

3.4 Determining the Metric Variables a and b 

(3.10) 

As was discussed we will be using the time-symmetric Brill formalism to define our 

metric variables on the initial slice. The final form of the metric comes from (3.10) 

where 

q _— sin' Oh(r) (3.11) 

and requires at least 3 input parameters, but usually more. 

Firstly, we must specify , the "amplitude" of the Brill wave, which determines 

the relative scaling of the wave for a given choice of h. Secondly, we must specify 

the integer power, n, of the sine function to be some even number to preserve the 

reflective symmetry of the spacetime. And the last variables are inputs for the 

function h(i), that usually determine the "starting position" of the wave (i.e. the 

global maximum of the metric function) and its spatial extent (although this is easily 

deconvolvable only in the case of a Gaussian wave). It is also possible to require a 

wavenumber, a frequency, and various other parameters that determine the initial 
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shape and radial dependence of the wave. 

And once we have used these parameters to completely specify a, we can solve 

for our last metric variable, b uing equation (3.5). 

3.5 Boundary Values and Numerical Methods 

In solving the IVP, we really only have to specify the input parameters for the 

conformal metric function a to determine the shape of the wave, and then solve for 

the conformal factor, z/', in order to have the complete description of the spcetime 

on the initial slice. The next chapter will deal with various input parameters for the 

function li(ij) and the solutions they produce, but a note about solving (3.5) should 

be made first. Due to the fact that it is a linear, second-order differential equation 

(with non-constant coefficients), we have many numerical methods available to iolve 

this particular equation. As an analytic solution to the equations is not, in general, 

available, the only way to determine the conformal factor is via some numerical' 

method. Appendix 1 gives some more details of the numerical methods that are 

used, but the two main schemas that were tried were a Relaxation' scheme and a 

BiConjugate Gradient (BiCG) scheme. The Relaxation scheme tends, in general, to 

be slower and computationally more expensive, but is more stable and reliable than 

the BiCG scheme. In this case, however, the results for ib that were produced by 

both schemes turned out to be the same to within the numerical accuracy of the 

machines, leaving us with the obvious choice of the BiCG method for its speed'. 

In order to properly solve the elliptic differential equation in (3.5), we must 

'Although some regularity problems occur near the origin 
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specify boundary conditions that are consistent with our symmetries, thus we set 

the metric function and the conformal factor to be symmetric along the axis (9 = 0) 

to preserve the rotational symmetry, symmetric along the equator (9 = to preserve 

the reflective symmetry and symmetric at the origin (r = 0) to preserve r'egularity. 

i.e. 

and 

5g11 

59 

58 

0 911 

e=0_ 5,6 

9=0 - 9= 

0911 
577 

Ehb 

=0 

=0 

Furthermore, we require asymptotic flatness at the outer edge of the grid (so that 

the wave has. "died away" sufficiently) giving 

911 I71'7maz 1 

by equating our metric to the Minkowski flat-space metric there. 

Our outer boundary condition for 'ç& is not quite as easy, but we require that the 

solution be Schwarzschuld - like at the outer boundary, and we impose the Robin 

boundary condition: - 

(3.12) 

3.5.1 The Robin Boundary Condition 

The Robin boundary condition arises from requiring the spacetime to be Schwarz-

schild-like at the outer boundary, and the condition can be found by writing the 
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spatial part of the Schwarzschild metric in conformally flat, isotropic coordinates: 

7ab = ( 
/ 
10 0 

0 p2 0 

0 0 p2 sin 29 

(3.13) 

Because we require our solution to be asymptotically flat, we can match Equation 

(2.13) to Equation (3.13) at the outer boundary. Making the identification that 

p f(i), we find that 

(3.14) 

along the outer boundary. We can then take the i derivatives of (3.14) and eliminate 

the mass term m (which is otherwise arbitrary), to obtain the Robin boundary 

condition, (3.12). 

We twill discuss the solutions that were generated using this formulation in the 

next chapter, and a further discussion of the numerical methods that were employed 

in this thesis are presented in Appendix A. 



Chapter 4 

Solutions to the IVP 

4.1 Choosing h(ri) to determine 

Initially, a symmetric Gaussian wave was used for the function h(ri)', making 

('i — 'io) 2 

° +e o (4.1) 

And it is seen that the wave has its peaks at b70, and has a Gaussian width of 

o. The problem with this type of wave is not in the Initial Value Problem, as it is 

quite possible to solve for the conformal factor using this type of formulation, but 

problems crop up in the subsequent evolution because of its properties. Due to the 

fact that 

limh()O (4.2) 

the Gaussian wave does not die off fast enough at the origin to ensure numerical 

regularity. Because the Taylor expansions of various metric and curvature quantities 

have a 8 dependence at the origin', and our metric is not going to zero, this can 

cause numerical shears in the spacetime as the evolution progresses. 

So in order to ensure that we are eliminating any angular dependence at the 

'origin, we should choose a different function that identically goes to zero at the 

'In the original code from which this code was developed, 'a Gaussian Brill wave was used, 
making this a somewhat historical choice 

2See [15] 

29 
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origin. To this end we choose a Lorentzian-type function, where 

h(c7) - 

— (i+LIl ' 
170) 

(4.3) 

and k, 1 and 1O are shape parameters of the wave that we are free to specify. It 

is important to note that this choice of h(i7) is identically = 0 at the origin, so it 

can be made to die off fast enough to cancel the angular problems. The effect of 

each of the three parameters on the shae of the wave is not simple to qualify, but 

increasing k generally moves the "inside" of the wave (closest to q = 0) further from 

the origin, increasing 1 moves the "outside" of the wave (furthest from 77 = 0) further 

from the origin, and increasing 77o moves the peak of the wave away from the origin. 

Furthermore, we must impose the condition that k + 2 ≤ 1, in order that the wave 

has asymptotic ;',--type behaviour. Thus our goal is to choose jc and 1 in such a 

manner that the wave dies rapidly near the origin (larger k), dies rapidly at the edge 

of the grid to ensure asymptotic flatness (larger 1), but is still wide enough that we 

can resolve the wave properly with a reasonable grid resolution. 

4.2 Choosing the Shape Parameters k, 1 and no 

Figures (4.1) and (4.2) contain some graphs of various combinations of k, 1) that 

were experimented with to produce a numerically stable Brill Wave. Theoretically, 

any values of these three shape parameters are allowed, but some will produce more 

numerically stable codes than others. 

From figure (4.1) we can see that using values of k and 1 that are too small 
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Figure 4.1: All data sets have 77o = 3, amplitude e = 1 and q(r, 9) 
On the top left is k = 1, 1 = 3; the top right is k = 3 and 1 = 5; the 
k = 5, 1 = 7 and the bottom right is k = 5, 1 = 9. Radial distances 
(arbitrary). Note the difference in vertical scales. 

on the z-axis. 
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are in 1 units 
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axis 00 
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equator 

axis 00 
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equator axis 00 equator 

5 

5 

Figure 4.2: All data sets have amplitude = 1, Ic = 5, 1 = 9 and q(r, 9) on the z-axis. 
On the top left is 77o = 1; the top right is i0 = 2; the bottom left is ijo = 3 and the 
bottom right is qo = 4. Note the difference in vertical scales. 



33 - 

result in a steep wave near the origin (especially around 6 = ), negating our goal of 

minimising the angular dependence close to 77 = 0. Choosing larger values for k (while 

still keeping k + 2 < 1) pushes the wave outwards from the origin somewhat, while 

adding large amounts of energy to it'. Furthermore, it can be seen that increasing k 

such that k+2 = 1 increases the maximum value of the peak of the wave substantially 

(bottom left), so we increase 1 further to push the outside of the wave back towards 

the origin (bottom right), leading to the choices of k = 5 and 1 = 9. 

Figure (4.2) shows the effects of increasing io, and we can see that around 770 = 

3 that we have a wave that dies sufficiently at the origin without having a large 

amplitude. It is important to remember that we are actually using 09 when doing 

our computations, so keeping 2 qmaD3 1 is desirable to prevent the wave from getting 

too distorted. This leads to the choice of 77o = 3 for our future calculations. 

4.3 Comparing IVP Solutions 

Now that the shape parameters have been determined, we are ready to solve the 

Initial Value Problem for b, (3.5). As was mentioned in Section (3.5) and is discussed 

in Appendix A, two separate numerical algorithms were used to solve the IVP for 

0;' a BiConjugate Gradient method (BICG) and a relaxation method. A comparison 

of the CPU processing times for the two methods, with variable grid sizes, is given 

in Table (4.1). It is interesting to note that the maximum value of the Hamiltonian 

constraint (which theoretically should be zero) actually increases as you add more 

grid points. The reason for this is that when more grid points are added, A77 becomes 

3A wave with the same amplitude that starts further from the origin occupies a larger proper 
volume and thus has more energy 
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BlOC Relaxation 
Number of 
grid points 

CPU time max Ham 
constraint 

CPU time max Ham 
constraint 

100x13 .12 s 1.09e-8 2.3 s 3.98e-9 
150x18 .30 s 1.22e-7 9.7 s 1.69e-8 
200x24 .60 s 5.93e-7 30.6 s 4.32e-9 
250x30 1.1 s 1.91e-7 82.0 s " 1.07e-7 
300x35 1.6 s 5.34e-6 146.2 s 2.27e-7 

Table 4.1: CPU processing time required to solve Equation (3.5) and the maximum 
value of the Hamiltonian constraint as a function of grid resolution for the BICG 
and Relaxation schemes, using 770 = 3, e = 1.5, k = 5, 1 = 9 

smaller and our first grid point is closer to the singularity at 77 = 0. 

And as can be seen in Figure (4.3), the Hamiltonian constraint is small over 

most of the grid, with the !-type errors dominating near the origin of the coordinate 

system. When we remove that area of the grid, as in Figure (4.4), we see that the 

errors are "random" errors that appear on the scale of the specified accuracy. So an 

increase in the maximum value of the Hamiltonian constraint is expected as Eui - 0. 

Thus .re can see from Table (4.1) that the BlOC method gives larger error values 

in the Hamiltonian constraint4, but it converges on a much quicker time scale (> 10 

times faster). In solving the evolution equations, each time step will require solving 

equation (3.5) 2 to 10 times, meaning that the BlOC method is certainly preferable, 

if numerical stability can be achieved'. 

'Both methods were pushed to the limit of their accuracy for these tests 
'Furthermore, elliptic equations for a, 3,,, /3g, Ha and Hb must be solved for on each time slice - 

meaning that at least 12 calls to the elliptic equation solver are required per time slice.., definitely 
indicating that the BICG method is preferable 
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Figure 4.3: The Hamiltonian constraint as calculated using the BICO method. The 
spike near the origin-is due to -type errors. 
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Figure 4.4: The Hamiltonian constraint as calculated using the BIOG method, cut-
ting out the area near the origin. Errors are "random" and on the order of the 
specified accuracy. 
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4.3.1 Comparative Calculations of the ADM Mass, Mass Aspect and 

Apparent Horizon Masses 

We can define the mass Of the spacetime in various ways, but we adopt the usage of 

two separate mass measurements here, the ADM' mass and the mass aspect1. The 

ADM mass is defined as 

mADM = —2f I   
Jo ' (2 

•1i 

0,17 f 

(4.4) 

for our axi-symmetric system, and it is a quasi-local approximation (taken at the 

outer edge of the grid) to the true ADM mass which should be measured at r = 00. 

It is a measure of the Hamiltonian "energy" of the system 8, provided that our metric 

falls off faster than 1 (which is guaranteed by the Brill criterion), and can be seen to 

converge to a consistent value as the outer edge of the grid is moved further away. 

Our second measure of the "energy" of the system is the mass aspect, which is 

defined as 

çb2f (20,f a,., 2,0,17  + !T+2  
m bf \ ( 2á 

(4.5) 

in our axi-symmetric system, and arises from equating g11 of our metric to that 

of the Schwarzsdaild metric. The mass aspect is measured at the outer edge of 

the grid, and as we are comparing it to the spherically-symmetric Schwarzschild 

solution, we require that our angular deviation has died away sufficiently by that 

point. Theoretically, the ADM mass and the mass aspect should be the same, and 

'Named after the original formulaters: Arnowitt, Deser and Misner 
,7 See [15] for more details 
'Energy is not a well-defined quantity in general relativity 
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we can check to make sure that our spacetime is sufficiently "flat" at the outer edge 

by measuring these quantities to see if they agree. 

Another physical quantity of interest when studying these spacetimes is* apparent 

horizons. The presence of an apparent horizon' in our spacetime means that an event 

horizon (i.e. a black hole) is also present in the spacetime, and the event horizon 

either coincides with or appears outside of the apparent horizon. Event horizons 

cannot be specifically located with numerical simulations due to the fact that they 

cannot be locally defined (i.e. they cannot be tested for at any one point during the 

evolution - the whole spacetime is needed to test for event horizons), but we can use 

apparent horizons to test for their presence as the presence of an apparent horizon 

necessitates the presence of an event horizon. Thus if our spacetime has sufficient 

energy initially, it will have an apparent horizon in it and we can test to see if the 

apparent horizon solver (from the original code) is working properly. 

Table (4.2) shows the measured apparent horizon mass (mAH), ADM mass and 

mass aspect as a function of the outer radial distance, We can see that an outer 

distance of = 14 gives very close agreement between the ADM mass and mass 

aspect, and the apparent horizon mass seems to be converging as well'°. If we move 

the inner boundary in too far, we do not have an asymptotically flat spacetime at 

the outer, edge of the grid, and as such we still have "energy" in the spacetime that 

is not accounted for. If we move the outer boundary out too far, we would have to 

introduce more grid points into the spacetime to cover the inner regions properly", 

9The condition to test for an apparent horizon at a point in the spacetime is that outgoing 
orthogonal null geodesics have zero convergence - a local condition. An event horizon is a global 
condition arising from the inside of the event horizon being causally disconnected from the outside. 

'°Using r = sinh(i), when i = 14, r 6e5 
11As is indicated by the horizon solver's inability to find an apparent horizon at a larger 77max 
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Maximum 
Outer Radial 

Distance (71ma,) 

mAE ADM mass mass aspect max Ham 
constraint 

5.0 - 52.92 22.70 8.59e-2 

6.0 - 40.38 25,09 4.29e-4 

7.0 - 30.34 25.21 4.30e-5 

8.0 24.27 27.03 25.24 5.68e-5 

9.0 24.21' 25.88 25.23 8.56e-6 

10.0 24.12 25.47 25.24 1.49e-6 

11.0 24.02 25.31 25.24 3.38e-6 

12.0 23.90 25.25 25.23 2.97e-6 

13.0 23.81 25.22 25.22 1.69e-5 

14.0 23.63 25.20 25.21 6.24e-7 

15.0 23.62 25.19 25.20 7.97e-7 

16.0 -r 25.17 25.18 1.26e-7 

17.0 - 25.14 25.16 1.84e-7 

Table 4.2: apparent horizon mass (mAE), ADM mass, mass aspect and the maximum 
value of the Hamiltonian constraint as a, function of outer radial grid distance (using 
200 grid points, 14.5, BICG method, and otherwise the same parameters as 
Table (4. 1).) 
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E max Ham 
constraint 

CPU time 

le-10 1.72e-2 .53s 
le-11 2.60e-5 .56s 
le-12 1.59e-5 .58s 
le-13 2.05e-6 .59s 
le-14 1.62e-6 .57s 
le-15 6.45e-7 .53s 
le-16 5.87e-7 .56s 
le-17 5.93e-7 .59s 
le-18 5.94e-7 .61s 
le-19 5.94e-7 .57s 
le-20 5.94e-7 .58s 
le-21 5.94e-7 .62s 
le-22 5.94e-7 .62s 

Table 4.3: Maximum Hamiltonian constraint and processing time as a function of 
the BICG routine error tolerance, 6. 

and we would be introducing superfluous grid points/ calculation time in a region 

that is almost fiat. 

It should be noted that the apparent horizon mass is required to be smaller than 

the mass of the entire space-time (for obvious reasons), and this can be used: as a 

simple check on the solver. 

4.3.2 Determining the BICG Solver Tolerance, € 

Another variable that affects computational time and numerical stability is the pre-

cision to which we require the BICG solver to solve the matrix equation, (3.5). Table 

(4.3) gives the computational time required for the BICG solver to reach the spe-

cified precision in the solution, . As we are using real numbers that are defined to 16 
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decimal places in the code '2, we would expect that a tolerance of 10-16 should be 

the limit of the capability of the solver to solve the problem, and Table (4.3) verifies 

our prediction. * 

4.3.3 Calculating Derivatives of g,, 

Throughout most of this thesis, a second-order finite differencing schema was suf-

ficient to solve the matrix problems that were presented. There is one problem, 

however, that is most likely linked to the boundary value problem for ib, that ne-

cessitates more accurate methods. As is outlined in Section (3.5), we use Neumann 

boundary conditions at r = 0, 0 = 0 and 9 = . On the outer boundary, however, 

we use the Robin boundary condition (3.12), which is a mixture of a Dirichiet and 

a Neumann boundary condition. There are theorems stating the uniqueness of the 

solution to a general second-order linear differential equation when using strictly Di-

richlet boundary conditions, strictly Neumann boundary conditions or strictly Robin 

boundary conditions. There are not", however, any theorems stating the uniqueness 

of the solution when mixed boundary conditions are applied as we have here, leading 

to a potential uniqueness problem. 

This led to the discovery of different (non-physical) solutions 14 when second-order 

derivative terms were used to calculate 15 gii,e, g,,,, and g11,00. This, in turn, 

necessitated the use of exact derivatives for these quantities, which are (using a 

'2A 64-bit real number 
'3As far as the author is aware 
141.e. ones with negative ADM masses 
154th-order correct terms were also tried with similar effects 
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Lorentzian wave): 

911,7177 

aid 

where. 

and, 

1kf, lf'17 
911,77 = e2 - 

- k'k2f, 2yklf,. yl2f. kf,,, if,,,, 
xe I f2  fA 0 + A22 + f. j'' 
k2f2 k 2kif(-')' 2 12t2 lF2 

+ - . + Vt+  
f2 f2 A770 A(i 0)2 A2(i70) 

(4.6) 

(4.7) 

gll,9 = e2¼ cot O (4.8) 

.gn,00 = g 2,1 [cot2 O(m2 +n 2  - n) - 

nj 

?7o 

2efk sin n 
= Al 

(4.9) 

Figures (4.5), (4.6) and (4.7) show the difference between the analytic derivatives 

and the second order-ones which, in the case of and gii,eo were quite large. 

Using these analytically correct derivatives, it was possible to get a physically 

meaningful solution for &, and an example solution for 0 is shown in Figure (4.8). It is 
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Figure 4.5: Graphs of gi, and its derivatives. Top left is g1l over the entire grid; top 
right is g11 ,, calculated using the analytic derivative; bottom left is g111 calculated 
using a second-order correct method; bottom right is the difference between the two 
methods of calculating (which is quite large). 
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Figure 4.6: Top left is 9u,eo calculated using the analytic derivatives; top right is 
calculated using a second-order correct method; bottom is the difference between the 
two top graphs (which is also quite large). 
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Figure 4.7: Top left is gjj,,7 calculated using the analytic derivatives; top right is the 
difference between the analytic and second-order derivatives for gii,,1 (which is not too 
large); bottom left is the analytic derivative for 911,0; bottom right is the difference 
between the analytic and second order-methods for gliB (also not too large). 
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uncertain if the non-physical solutions were a result of the incorrect derivative terms 

or the boundary conditions, but it is an issue that warrants future investigation. 
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Figure 4.8: An IVP solution for &, with (710 = 3, Ic = 5,1 = 9, = 1.5). 
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4.4 Conclusion 

In the course of this research, we have successfully constructed and implemented a 

framework for solving the Initial Value Problem in an axi-symmetric, vacuum Brill 

wave spacetime. Also, a computer code has been created that can be used for future 

work on the time evolution of the spacetime to look for apparent horizon formation 

and to study critical phenomenon [8] in axi-symmetric gravitational wave collapse. 

Some numerical difficulties were encountered during the formulation of the IVP, 

and the methods outlined in this thesis seem to have been sufficient to solve them; 

however future work on the evolution equations is the only way to tell if they will 

stand up under more continuous usage with varying conditions. Due to the highly 

non-linear, self-interacting and amplifying nature of the evolution equations, it may 

be necessary to use the more time-consuming Relaxation method to solve (3.5), but 

the faster BIOG method seems sufficient for the time being. 

Furthermore, optimal values for the various input parameters for the grid res-

olution, outer grid location, solver tolerance, wave shape and wave function were 

determined to provide minimal error , balanced with minimal computational time. 

Future work on this problem could involve investigation of the uniqueness problem 

given our mixed boundary conditions, development of a faster relaxation scheme, and 

further conditioning of (3.5) to help remove the .-type errors that appear near the 

origin, all of which could yield profitable results and insights into the IVP. 



Appendix A 

Numerical Methods 

In solving the Initial Value Problem for 0, a number of different numerical techniques 

had to be employed in order to stabilise the solution to the point of solvability. This 

appendix willcover the major techniques that were used to ensure numerical accuracy 

and stability. 

A.1 Coordinate Choice 

Due to the presence of coordinate singularities along 6 = 0 (the axis) and 77 = 0, we 

must pay particular attention to those regions of the grid. Our choice of coordinate 

discretisation can help us to avoid this problem, as we can define our coordinate grid 

in such a way so as to "straddle" the singularities (and, in fact, this seems sufficient 

to avoid most numerical problems). This straddling is accomplished by defining our 

first radial grid point at a 1/2 step away from the origin, and all subsequent points 

at integral steps away from each other. Similarly, we define the first 6 grid point 

at a 1/2 step away from the axis of our system, and continue iii. integral steps from 

there. So in the radial direction, if we define our radial grid spacing to be An, then 

our grid has radial nodes located at 

&7 An 3Ii 5/X 

2 ' 2 ' 2 ' .2 

49 
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Figure A.1: A schematic of the 2-dimensional discretised grid. Grid points are 
located at (( -  )AO), where 1 ≤ i ≤ imam + 3 and 1 ≤ j:5 imam + 1 

and defining L9 as our angular grid spacing, our grid has angular nodes located at 

L.8 M 3L9 5z.9 

2'2' 2'2" 

in the 9 direction. We include the - step as well in order to keep track of our 

derivative information at i, j = , as the second order finite differencing about those 

points requires the - grid point. Figure (A.1) gives a schematic of what our dis-

cretised grid looks like. 

Furthermore, f('q) is another coordinate option that must be chosen, and we 

choose 

= sinh(i7) (A.1) 
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throughout this thesis to achieve exponential scaling over the entire grid. This will 

give a better coordinate resolution near the wave (which is what we are interested 

in) and the origin (which is numerically problematic), while using fewer grid points 

in the asymptotically flat region near the outer edge of the grid. 

A.2 Discretisation 

Throughout this research, we have used a discretisation of the t = 0 spatial slice in 

order to solve for the conformal factor, b, numerically. However, in order to take 

derivatives of the functions that are defined on a discrete (non-continuous) grid, we 

must make approximations to within some defined tolerance level. For all of the work 

here, we used methods that are accurate up to second order in' whatever quantity 

we wish to differentiate, so the errors are always on the order of (&)2 in the radial 

direction or (0)2 in the angular direction. In order to derive the formulae for these 

derivatives, we shall start with a second order Taylor series approximation about 77 

for ,a general function, f(): 

giving also 

f(i + &) f(i) + f71 (?7)17 + firn(7i) A77 2 .j 

f('q - Li?]) f(i) - f)Li7 + 

(A.2) 

(A.3) 

Assuming that we are finite differencing about the point (i,j), and noting that 

f('7) = f(i,j) (A.4) 
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f(7+t) =f(i--1,j) 

f(j—zi)=f(i-1,j) 

(A.5) 

(A.6) 

we can subtract (A.2) and (A.3) and solve for the first derivative of f, yielding 

- f+i,a - fi—i,j + Q[(iii) 2] 
f1(j) -. 2/.i 

while adding (A.2) and (A.3) and solving for the second derivative of f yields 

=  - 2f + f—j  ( )2 + Q[(zii)2] 

(A.7) 

(A.8) 

which are the second order finite differencing approximations for f,7 and fern. We can 

apply these equations, without loss of generality, to derivatives in the 8 direction. 

A.3 Setting up the Second-Order Differential Equations to 

Solve Them Numerically 

In order to solvéthe second order equationfor 0 (3.5), we must discretise the equation 

from its continuous form. To do this, we write out the general form of (3.5) as 

P(i7, 8) + Q(j, 9) O,00 + R(i, 9) + S(i7, 9) O,o + T(, 9) & = Z(, 9). (A.9) 

We then use (A.7) and (A.8) to discretis all of our derivative terms and reduce the 

differential equation to an algebraic equation for the b's. After rearrangement, we 
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Figure A.2: A schematic of the 2-dimensional stencil from :Equation (A.11). 

find that 

IF R\ Ip 
+ +    R ) ,il,i_+ 

(  2P 2Q T) b73+(  '  + S 
(2 (M)2 +  ) + 

(Q  
(AO)2  

11 which can be written schematically as 

zi,j. (A.1O) 

+ LD,j&_,j + Ai,j Oij + + (A.11) 

and is shown 'in Figure (A.2). 

This gives us a cross-shaped stencil around each point on the grid, which can then 

be converted into a matrix equation to be solved for at each grid point. Because the 

matrix created by this algorithm is very large' and it is very sparse 2, we can adapt 

'The matrix is mm x mm where nand m are the number of radial and angular grid divisions, 
usually around 200 and 25 respectively, giving a 5,000 x 5,000 matrix to be solved 

'Usually only 5 of the mm entries on each row are occupied by non-zero entries, i.e. about 5 out 
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our numerical algorithm to solve this sort of problem efficiently. 

Ideally, we would even like to take advantage of the sparseness of the matrix, 

which we do by specifying a multiplication routine that requires the least amount of 

operations possible for the specific form of the matrix in Figure (A.3). Furthermore, 

because the matrix is so large, direct inversion methods are impractical as the nu-

merical noise would quickly flood out any real information in the matrix. Also, as is 

mentioned in Chapter 4, similar elliptic equations must be solved at each time step 

during the evolution, making direct inversion techniques also impractical for future 

work due to their prohibitive computational time. So our preferred method to solve 

the matrix in Figure (A.3) is via matrix multiplication and addition only, with no 

row or column operations necessary. To this cud, we used two different algorithms: 

a "stabilised" Bi-Conjugate Gradient (BiCGStab) routine and a relaxation scheme, 

both of which provided similar answers to within the specified numerical precision. 

The major advantage of one method over the other was processing time, as the 

relaxation method slowly "smooths" out the data over the entire grid in an easy-

to-program but inefficient manner, whereas the BiOGStab routine uses information 

about the derivatives of the matrix quantities to converge more quickly. 

Both methods were used as checks on each other, and Figure (A.4) shows the 

conformal factor, b, calculated using the two different methods on equation (3.5) 

with a Lorentzian Brill wave. 

of 5,000. See figure (A.3) for an idea of what the matrix looks like - empty spaces are 0 entries. 
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where 

all b11 rd11 
c12 a12 b12 

C13 a13 b13 
rd12 

1d21 c21 a21 

ldm_i,n 

ldin,n_i 

021 
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Im,a-1 

- 1/)m,n 

b21 rd21 

cm_ am-1,n bm _i,n 

ldm,n 

and Z= 

Clfl,fl_l d,n_1 

Cm,n 

z21 

z7Th-1,n 

Zmn i 

Zm,n - 

bm,n_i 

am,n - 

Figure A.3: A schematic of the matrix equation that needs to be solved for çb(i, ) 
in Equation (A.11) 
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Figure A.4: A comparison of the BICG and Relaxation methods. The top left 
is Equation (3.5) solved for L' - 1 using the BICG method, and the top right 
uses the relaxation method. Both were solved using a Lorentzian data set of 
(17o = 3, k = 5, 1 = 9, = 1.5). The bottom left shows the absolute difference 
between the two solutions from the top, and the bottom right shows the relative 
difference between the two solutions. b - 1 was solved for instead of çb, due to the 
fact that the solution lies very close to 1, and solving for b - 1 instead helps to 
remove subtraction errors. 
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A.4 Boundary Conditions 

When defining the boundary conditions for içb at 77 = 0, we know that' 

5'çb 
=0 

meaning that in our discretised model that we set 

b (_L?1,9)  

to make the function symmetric about 77 = ü. Similarly, 

meaning that• 

and 

gives 

ao 
88 

=0 
8=0 

i,b _\9) 'ç& =1 i,2 ) 
ao 
88 

=0 

(777 irV) (17, - = bid2 2 max+1 /'+ T 

(A.12) 

(A.13) 

(A.14) 

Thus we have three of our four boundary conditions defined, and our outer bound-

ary condition (77 = comes from the Robin boundary condition (3.12). By 

3See Section 3.5 
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discretising (3.12) for ' = - 1 4, we get 

  (f'  

2Lij +'1'2,3 - 

(A.15) 

which means that on the outer boundary (assuming imax + 3 is the very outer grid 

point) that 

- 

  bimax.,j + bjmax+i,j. (A.16) 

So using the boundary conditions in (A.12), (A.13), (A.14) and (A.16) to set up 

the matrix in Figure (A.3), and using equations (A.9) and (A.11), we have a fully 

defined matrix problem to be solved. 

A.5 The Form of Equation (3.5) 

Due to the fact that we are trying to minimise numerical errors in the code, it is 

to our advantage to re-write any equations we solve so that we are not dividing by 

small numbers. Recalling (3.5), 

8 

/ L + 2f,\ ,77+ () cot   'çb + + (. f T) 
1_Jf (•• 1a\221 

- 77 

a a - 7]  a) a f2 a f 2 
- O(A.17) 

In equation (A.17), we have a cot 0 term, and we are dividing by f and f, so 

- 'This was done for numerical reasons; because the solution to '' is close to 1, we transform to 
to avoid subtraction errors in the code 
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we should analyse their behaviour on the grid. By choosing 

f = sinh(ij) (A.18) 

we find that 

=cosh(i) (A.19) 

And using Taylor series expansions around 77 = 0, we find that 

f(6) 6 (A.20) 

and 

(A.21) 

meaning that f() will be small near the origin - indicating that we should numeric-

ally condition our system to get rid of behaviour. The derivative, f,, will be close 

to 1 near the origin, so it is not problematic. As we proceed to the outer edge of the 

grid, both terms go as 21 and as such are well-conditioned. 

Furthermore, 

meaning that near 8 = 0 

cos 9  
cot 9 (A.22) 

sin 9 

1 2 

cot 2!  

6 
(A.23) 

and we should numerically condition the equations to remove any type behavior 
sin 0 

near the axis. 

Near 0 = , cot 0 0 and numerical stability can be retained as long as we don't 
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divide by cot  or COS 0. 

This suggests the equivalent, but the more numerically stable form of (A.17); 

(f2) + sin 8 + 1f, 7777f2 + 2f \ 
3 —) sin 8 + cos 0'0,0 

f•17 f1 f,J \  

10 sin's a, 7771f2 a,,7 (f,,,, f2 (a nf) a21 fl+ 2 a (a)] — — af, + — ( f3 a - + 
\ I?, 

= 0(A.24) 

This method of solving the IVP gives a noticeable improvement over (3.5), giving 

a maximum error in the Hamiltonian constraint of 3.4e-7 instead of 5.9e-7 for the 

Lorentzian data set (ijo = 3,k = 5,1 = 9, = 1.5). 
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