
Handprinted Digit Recognition By
Stroke Tracing

J.R. Parker
Laboratory for Computer Vision
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Abstract:
A structural method of recognizing handprinted digits is described, in which the
strokes comprising the digits are decomposed into line segments. The lines are
matched against stroke templates, beginning at a ‘pen down’ point and traced as far
as possible. Both direction and length are important to the template match. Error
rates of 3.3% are reported.

The basic idea behindstructural pattern recognition is that objects are constructed from smaller
components (features) using a set of rules[3, 4]. Characterizing an object in an image is a matter of lo-
cating the components, which at the lowest level are features, and constructing some representation for
storing the relationships between them. This representation is then checked against known patterns to
see if a match can be identified. Structural pattern recognition is, in fact, a sophisticated variation on
template matching, one which must match relationships between objects as well as the objects them-
selves. The problems involved in structural pattern recognition are two: locating the components, and
finding a good representation for storing the relationships between the components.

1. Shape Tracing
The vector template approach [5] essentially attempts to compare a set of standard line drawings

of characters against the incoming data. A related method, which will be referred to asshape tracing, at-
tempts to draw a character over top of the incoming data to see how well the drawing matches the data.
This was suggested to me by my six year old daughter, who is already an expert at digit recognition. I
noticed that when I asked her how she knew a particular digit was a six she traced over it with a pencil
or her finger. It is possible that the pattern implicit in a six was stored by her as a pen motion.

With this in mind, an effort was made to characterize the motions involved in drawing all ten dig-
its. Each motion begins at a start point, which is a point at which the pen would first touch the paper in
making a stroke. Motion is specified by giving a direction only, or a series of directions for continuing
the stroke. Directions are crudely specified as being one of eight possible: right-up (0-45 degrees), up-
right (45-90), up-left (90-135), left-up (135-180), left-down (180-225), down-left (225-270), down-right
(270-315) or right-down (315-0). Motion is approximated by straight lines; of course, curves exist in
handprinted characters, but most computer software would plot a curve as a sequence of straight lines.

An example of how to draw a digit appears in Figure 1. The digit, in this case a ‘6’, begins in the
upper right of the canvas, where the pen is put to paper. Drawing the digit proceeds as follows: left-
down, down-left, down-right, right-down, up-right, up-left, left-up, and left-down. Not all sixes follow
exactly this path, so the tracing of the path must have a certain flexibility. For example, the light grey
line represents an alternate path that could just as easily occur, and should also be allowed in a six. The
line lengths are not all crucial, but if all of the lines were the same length, the result would have been a
zero instead of a six. It is clear that some effort must be made to characterize the key lines and their rel-
ative lengths.



Thus, the templates in this particular matching scheme consist of sets of pen motions, and the rec-
ognizer must attempt to measure how well each set of motions matches what is actually seen in the in-
put image. The matching step turns out to be hard to do in software, and seven versions of the program
were tested before coming up with a strategy that worked.

The first step is to identify the points where the pen first touched the paper. A badstart point can
result in a very poor match with a perfectly good input glyph. From there, straight lines are traced from
each begin point, then from the ends of those lines, and so on until all possible lines (linear features)
have been located. Then the recognizer attempts to trace each possible digit over the extracted linear
features, starting at each of the identified start points. Each of the three steps above is sufficiently com-
plex to warrant a more detailed explanation.

2 Locating Start Points
When trying to identify stroke starting points it may be best to ask what the properties of such a

region are in terms of local pixel measurements, since pixels are the primitives most easily accessed.
When looked at this way, two solutions come to mind: the first uses the endpoints of the skeleton of the
image[1, 2, 8], and the second uses a small window and looks for the characteristic ‘bump’ seen at a
start point.

Using the skeleton endpoints is likely to produce spurious results. Consider, for example, the ras-
ter glyphs seen in Figure 2. The first set (a-c) have rather good skeletons, and the start points can be
found quite simply by looking for 1-connected pixels in the skeleton. However, the second set (d-f) pos-
sess artifacts created by the thinning process that have resulted in an extra 1-connected pixel at the end
of a short line segment. Some of these can be detected and removed simply by noting that an end pixel
should not appear within a small distance of a point where two lines join - a join point is identified by
the fact that it has 3 or more neighbors. This works for Figures 2d and 2e, but not for 2f. In addition to
artifacts, the method can be fooled by join points having extensions from both ends.

The second method for identifying start points is to use a small square window into the raster in-
put image. The window is moved to all possible locations and the number of black to white transitions
seen on the boundary of the window are counted. If a stroke endpoint is within the window then the
number of such transitions should be one, since the stroke ends within the window. To make sure that
the window covers enough of the stroke to be significant the center pixel in the window must also be
black. This will be called themoving boxes algorithm for obvious reasons. A single transition implies a

Start pointleft-down

down-left

down-right

right-down
up-right

up-left

left-upleft-down

up-right

left-down

down-left

down-right

right-down
up-right

up-left

left-up

Figure 1- Drawing a six by specifying the start point and pen motions. A zero can
be described by identical pen motions, but some of the lines are different lengths.



possible start point at or near the selected pixel. After all pixels are tested the largest clusters of possible
start pixels are selected as actual starts; the centre or mass of each select cluster is used as the actual
start point.

It is interesting to note that if only the starts detected byboth algorithms are used the number of
false starts is reduced from 6 to 2, in the case of the thinning method, and from 3 to 2 in the case of the
moving boxes method. It was therefore decided to use both methods to detect start points.

3 Tracing Linear Features
Tracing lines in a thinned glyph is relatively easy[3,7], but the result is not good enough for recog-

nition due to irregularities in the skeleton introduced mainly by defects in the outline. A tracing scheme
that avoids thinning was devised, and is based on knowing the start points in advance. From each start
point, thelongest line that consists of only black pixels is located[4]. Its start point is marked as now be-
ing used, and the pixels near the line are also marked. Pixels on the boundary of the glyph are not al-
lowed to be end points, and so the tracing of the next line resumes from an interior black pixel
connected to the previous line.

Continuing from a line endpoint is done as before, by drawing the longest line on black pixels
starting at that endpoint. However, pixels that are marked are countedagainstthe length of the line be-
ing traced. This means that a line on black pixels is to be preferred over one containing marked ones. In
addition, line endpoints will be connected to each other when possible; that is, when the connection is
on black pixels. This is done even if the connection is not the longest possible black line.

The detailed method for tracing linear features from a raster digit image is as follows:
1. Determine the bounding box for the image, and get a width estimate for the strokes.

2. Locate the stroke start points, as described in section 2

3.Dilate the image by 2 pixels, and erode by 1 pixel. Now mark boundary pixels so that they can
be easily identified.

4. From each start point, determine the longest line that consists of black pixels only, and save it
as a stroke.

5. For each line found in step 4, mark the pixels near the extracted line as used. Also mark the
start points as used.

6. For each unmarked stroke endpoint, determine whether a black line can be drawn to another
unused endpoint. If so, save the resulting linear feature, mark the pixels near the extracted
line as used, and mark all relevant endpoints as used.

7. For each unmarked stroke endpoint, determine the longest line that consists of black pixels
that starts at that endpoint. Save the resulting linear feature, mark the near the extracted line
as used, and mark all relevant endpoints as used.

8. Repeat from step 6 until either no unused endpoints remain or no black pixels remain.

(f)(e)(a) (c) (d)

Figure 2 - Locating start points by finding 1-connected pixels in the skeleton. The
cases in (a)-(c) work fine. (d) shows a ‘necking’ effect, creating a start in the lower left.
(e) shows thinning artifacts caused by a rough outline. (f) suffers from line extension
on the two left-most starts.

(b)



The difficult part of the algorithm above is actually the marking of the used pixels. The linear fea-
ture is a thin line, consisting of relatively few pixels. However, if the pixels neighboring the line are not
properly marked then the longest line from an end pixel may very well be another line back to a pixel
very near the original start. The answer was to create a rectangle oriented along the direction of the lin-
ear feature and having the same length. The width was varied until the rectangle covered the boundary
of the digit in that local region as well as possible. Then all pixels that were within that polygon (the
rectangle) were marked, as were any pixels around the start points, and any small, isolated black regions
caught between the rectangle and the boundary. One example of the feature tracing process can be seen
in Figure 4, and it can be seen from this that the pixel marking process seems to be successful.

The procedure followed for zeros and eights is only slightly different, due to the fact that neither
digit generally has a start point. If no start point is found then one is created by slicing through the glyph
vertically along its own axis and using the black pixel in the centre of the first stroke encountered.

4 Drawing The Digits
At the point where the recognizer attempts to draw digits, the data has been distilled down to a

few line segments and start points. The templates are stored as code, at least in the initial version of the
program; that is, the procedure that attempts to recognize a six has the template represented as a se-
quence of procedure calls, each designed to trace a part of the digit over the linear features. Training this
recognizer is therefore a bit difficult. Strokes are traced from a specific start point, and each digit has a
different collection of legal starts. This fact can be used in the classification; a character having four
start points is unlikely to be a zero, for example. The number of features can also be used in this way.
The only digit allowed to have a single feature is a ‘1’.

The tracing sequence is fixed as a C-code description for each of the digits. One way to describe
the templates is to display the lines allowed by each template, and label each line d0, d1, d2 ... dn as seen
in Figure 4. The lines associated with each label are now clearly seen, as are the reasons for the con-
straints placed on the various values of di.

Eights presented unique difficulties in tracing. There was a larger than expected variety in the
shape of the eights seen in the sample data set, and that combined with the fact that an eight has a larger
number of linear features than any other digit made them impossible to trace both unambiguously and
reliably. The solution was, arguably, a ‘hack’, but nonetheless a reliable one. An eight will be a charac-
ter that more or less agrees with a zero, but has a black region in the middle. This simple process cor-
rectly classifies 95% of the ‘8’ digits.

(a) (b) (c) (d) (e) (f)

(g)

Figure 3 - (a) The original raster glyph. (b) After tracing
the longest black line from the upper left start point. (c) After
tracing a line from the middle start point. (d) After tracing a
line from the lower start point. (e) After connecting the end
points of the lines found in b and c. (f) After growing a line
from the end of the middle line. (g) The extracted linear
features, including a small connection between the lower and
middle portions of the glyph which contained no black pixels.



The classifier described above was used to classify a set of 1000 digit images and gave the follow-
ing results:

This gives an overall error rate of 3.3%. The low recognition rate for seven digits might be im-
proved on in a number of ways, the simplest of which is to use a ratio R of the height of a character to its
width. From the confusion matrix in Figure 5 it can be seen that seven digits are mistaken for ones in a
large number of test cases. By using R>2.5 to further classify a digit as a one, the recognition rate for
seven can be increased to 94%, and using holes increases the rate to 97%.

5 Conclusions
A method for recognizing digits by tracing their shapes has been described. The algorithm yields

near human recognition rates on isolated handprinted digits, and is an integral component of a multiple/

Table 1: Shape Tracing - Digit Recognition Rates

0 1 2 3 4 5 6 7 8 9

Correct 100% 94% 92% 99% 90% 94% 100% 88% 99% 98%

Reject 0 0 5% 1% 4% 3% 0 0 0 0

d0

d2

d0>d2
2 or 3 starts
1 feature =>

d0

d0 d1

d2

d4
No upper right start
d0,d1 not both 0
d4 not 0

d1
d2

d3

d4
d4

d5

d6

> 1 start
1 of d1,d2,d3 not 0
1 of d4,d5 not 0

d4

d2
d1

At least 3 starts
At least 3 features
d1 not the entire object
(d2+d4)/(d1+d2+d4) between
0.2 and 0.95

d1

d7

d2
d3

d4

d5

d6

One of d1 or d7 > 0
One of d1,d2,d3 > 0
d1,d7 not only features
At least 2 starts, 3 features

d0

d0

d1

d2

d3

d4

d2

1 start
d1,d2,d3,d4 not all 0

d1

d2

d3

2 starts, (d1+d2)/(d1+d2+d3)
> 0.333

d1

d2
d3

d4
d5

d1 biggest.
d1 not only one

d1

d2

d3
d4 d5

d6

d7
d8

NO starts.

Figure 4 - Tracing patterns for digit recognition.



parallel handprinted digit recognition system having an overall measured error rate of 0.1% [6]. The
technique is now in the process of being applied to the classification of symbols in engineering drawings
and in printed music documents.

6 References
1. Holt, C.M. et al, An Improved Parallel Thinning Algorithm, CACM Vol 30 No. 2, 1987. pp

156-160.
2. Kwok, P.C.K., A Thinning Algorithm by Contour Generation, Communications of the ACM,

Vol. 31 No. 11, November, 1988. Pp 1314-1324.
3. Lam, L. and Suen, C.Y., Structural Classification and Relaxation Matching of Totally Uncon-

strained Handwritten Zip-Code Numbers, Pattern Recognition, Vol. 21 No. 1. pp. 19-31, 1988.
4. Mori, S., Yamamoto, K., and Yasuda, M., Research on Machine Recognition of Handprinted

Characters, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6 No. 4, July
1984. pp 386-405.

5. Parker, J.R., Vector Templates and Handprinted Character Recognition, Proc. 12th IAPR Con-
ference on Pattern Recognition, Jerusalem, Israel. Oct 9-13, 1994.

6. Parker, J.R., Recognition of Hand Printed Digits Using Multiple/Parallel Methods, Third Gold-
en West International Conference on Intelligent Systems, Las Vegas, June 6-9/94.

7. Suen, C.Y., et. al, Computer Recognition of Unconstrained Handwritten Numerals, Proc. IEEE,
Vol. 80 No. 7, July 1992.

8. Zhang, Y.Y. and Suen, C.Y., A Fast Parallel Algorithm for Thinning Digital Patterns, CACM
Vol. 27 No. 3, 1984. pp 236-239.

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.94 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.05
0.00 0.02 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.01 0.00 0.90 0.02 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.01 0.01 0.94 0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.04
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00
0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98

Figure 5 - Confusion matrix for the stroke tracing algorithm


