
Refactoring References for Library Migration—Appendix

Puneet Kapur Brad Cossette Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, AB, Canada

{pkapur, bcossett, walker}@ucalgary.ca

Technical report 2010-960-09

7 June 2010

Abstract
This report is a companion to the paper “Refactoring
References for Library Migration” published at the ACM
SIGPLAN International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity
(SPLASH) 2010. It provides the detailed results mentioned
therein.

A. Motivation: Detailed Changes
Table 1 details the full set of changes and resulting errors in
the Chartwell codebase, alluded to in the Motivation section
from our SPLASH paper.

B. API Change in the Wild: Detailed Results
Figures 2, 3, and 4 present the detailed results of the binary
incompatibility analyses over multiple version transitions for
HTMLUnit, JDOM, and log4j respectively.

C. Case Studies: Detailed Observations
C.1 Participant 1
C.1.1 Tool Treatment
The participant began the tool treatment by reviewing the list
of API changes provided with the intention of grouping to-
gether changes of the same type or same degree of difficulty
so they could be attempted together. He decided to begin by
changing all the dangling field references of the Priority
class into fields of the same name in the new Level class.
Based on the high degree of lexical similarity between the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © 2010 Puneet Kapur, Brad Cossette, and Robert J. Walker.

names, he reasoned that this would be a simple case of string
replacement and thus most likely to succeed.

Having decided on a group of API changes to tackle
together he began to iteratively apply the tool to enact
the change. He selected a Priority.ERROR field refer-
ence as his first exemplar, and used Trident to perform a
type search on the JaxMe code. Since these dangling fields
followed the Java programming-style convention of using
all upper case characters for describing constant variables
and enums1, and he had not yet examined the JavaDoc as-
sociated with the Priority class, he assumed the dan-
gling field references referred to a Java enumeration type.
As this assumption was incorrect, the Trident type search
yielded no results. His next attempt was to perform a type
search on the ERROR field name. This search retrieved all
simple names of type Priority which included the de-
sired result, but also local variable declaration statements
(e.g., org.apache.log4j.Priority p;). He tentatively
accepted the excessively broad search results and moved on
to the refactoring page. Here the participant realized that
since his search was launched using the ERROR simple name
he would only be able to change this suffix (i.e., the field
name), when in fact he wanted to change the qualifying
prefix (i.e., the type containing the field, specifically from
Priority to Level). After these false starts, the participant
performed a verbatim search on the fully qualified name of
the type and field (org.apache.log4j.Priority.ERROR)
which yielded the correct results. Since a qualified name was
his exemplar for Trident, he was able to alter the entire name
to point to a new field reference with the aid of a dialog box
in the refactoring screen. The same strategy was employed
to correct all the other dangling references pointing to fields
in the Priority class.

With the corrections to field names complete, the par-
ticipant began tackling the dangling method references.

1 See http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html,
http://incubator.apache.org/ace/java-coding-style-guide.html

O
riginal

R
eplacem

ent
Errors

Sam
ple

C
hange

E
l
e
m
e
n
t
.
g
e
t
P
a
r
e
n
t
(
)

E
l
e
m
e
n
t
.
g
e
t
P
a
r
e
n
t
E
l
e
m
e
n
t
(
)

140
–
E
l
e
m
e
n
t

h
e
a
d
e
r

=
r
s
p
.
g
e
t
P
a
r
e
n
t
(
)
.
g
e
t
C
h
i
l
d
(
"
m
s
g
"
)
;

+
E
l
e
m
e
n
t

h
e
a
d
e
r

=
r
s
p
.
g
e
t
P
a
r
e
n
t
E
l
e
m
e
n
t
(
)
.
g
e
t
C
h
i
l
d
(
"
m
s
g
"
)

n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
S
t
r
i
n
g
)

n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
S
t
r
i
n
g
,

b
o
o
l
e
a
n
)

X
M
L
O
u
t
p
u
t
t
e
r
(
F
o
r
m
a
t

f
)

86
–
n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
"
"
,

t
r
u
e
)
.
o
u
t
p
u
t
S
t
r
i
n
g
(
f
o
r
m
E
l
e
m
e
n
t
)

+
n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
F
o
r
m
a
t
.
g
e
t
P
r
e
t
t
y
F
o
r
m
a
t
(
)
)
.

o
u
t
p
u
t
S
t
r
i
n
g
(
f
o
r
m
E
l
e
m
e
n
t
)

E
l
e
m
e
n
t
.
d
e
t
a
c
h
(
)
:

E
l
e
m
e
n
t

E
l
e
m
e
n
t
.
d
e
t
a
c
h
(
)
:

C
o
n
t
e
n
t

134
–
r
e
s
p
o
n
s
e

=
n
e
w

r
e
s
p
o
n
s
e
X
M
L
F
o
r
m
a
t
(
r
.
g
e
t
R
o
o
t
E
l
e
m
e
n
t
(
)
.
d
e
t
a
c
h
(
)
)
;

+
r
e
s
p
o
n
s
e

=
n
e
w

R
e
s
p
o
n
s
e
X
M
L
F
o
r
m
a
t
(
(
E
l
e
m
e
n
t
)
r
.
g
e
t
R
o
o
t
E
l
e
m
e
n
t
(
)
.
d
e
t
a
c
h
(
)
)
;

E
l
e
m
e
n
t
.
r
e
m
o
v
e
C
h
i
l
d
r
e
n
(
)
:

b
o
o
l
e
a
n

E
l
e
m
e
n
t
.
r
e
m
o
v
e
C
o
n
t
e
n
t
(
)
:

b
o
o
l
e
a
n

11
–
c
h
i
l
d
r
e
n
.
r
e
m
o
v
e
C
h
i
l
d
r
e
n
(
)
;

+
c
h
i
l
d
r
e
n
.
r
e
m
o
v
e
C
o
n
t
e
n
t
(
)
;

E
l
e
m
e
n
t
.
h
a
s
C
h
i
l
d
r
e
n
(
)
:

b
o
o
l
e
a
n

E
l
e
m
e
n
t
.
g
e
t
C
h
i
l
d
r
e
n
(
)
:

L
i
s
t

2
–
i
f
(
m
e
s
s
a
g
e
s
.
h
a
s
C
h
i
l
d
r
e
n
(
)

=
=

t
r
u
e
)

{
+
i
f
(
m
e
s
s
a
g
e
s
.
g
e
t
C
h
i
l
d
r
e
n
(
)
.
s
i
z
e
(
)

>
0
)

{

X
M
L
O
u
t
p
u
t
t
e
r
.
s
e
t
O
m
i
t
E
n
c
o
d
i
n
g
(
t
r
u
e
)

X
M
L
O
u
t
p
u
t
t
e
r
.
g
e
t
F
o
r
m
a
t
(
)
.

s
e
t
O
m
i
t
D
e
c
l
a
r
a
t
i
o
n
(
t
r
u
e
)
;

94

–
X
M
L
O
u
t
p
u
t
t
e
r

o
u
t

=
n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
"
"
,

t
r
u
e
)

–
o
u
t
.
s
e
t
O
m
i
t
E
n
c
o
d
i
n
g
(
t
r
u
e
)

+
X
M
L
O
u
t
p
u
t
t
e
r

o
u
t

=
n
e
w

X
M
L
O
u
t
p
u
t
t
e
r
(
F
o
r
m
a
t
.
g
e
t
C
o
m
p
a
c
t
F
o
r
m
a
t
(
)
)
;

+
o
u
t
.
g
e
t
F
o
r
m
a
t
(
)
.
s
e
t
O
m
i
t
D
e
c
l
a
r
a
t
i
o
n
(
t
r
u
e
)
;

Table
1.

C
hange

cases
involved

in
the

C
hartw

elllibrary
m

igration
scenario.

Types
M

ethods
C

onstructors
Fields

Version
transitions

deleted

visibility ∆↓

+final

+abstract

class→ interface

superclass ∆↓

superinterface ∆↓

+abstract method

pull up method

push down method

deleted

visibility ∆↓

+final

+static

–static

+abstract

result type ∆

–parameter

+parameter

parameter moved

parameter type ∆

exceptions ∆

deleted

visibility ∆↓

–parameter

+parameter

parameter moved

parameter type ∆

deleted

+final

visibility ∆↓

type ∆

constant value ∆

1.0pre1–1.0pre2
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.0pre2–1.0pre3
–

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1
–

–
–

–
–

1.0pre3–1.0pre4
–

–
–

1
–

1
–

–
–

–
22

–
2

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.0pre4–1.0pre5
1

–
–

–
–

–
–

–
–

–
2

–
3

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.0pre5–1.0
–

–
–

–
–

–
–

–
–

–
10

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.0–1.1pre1
–

–
1

–
–

–
–

3
–

–
–

–
1

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.1pre1–1.1pre2
1

–
–

–
–

–
–

2
–

2
1

–
–

–
–

–
4

–
2

–
1

–
–

–
–

4
–

–
–

–
–

–
–

1.1pre2–1.1pre3
7

–
1

–
–

–
–

1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1
–

–
–

–
–

–
–

1.1pre3–1.1pre4
1

–
–

–
–

–
–

5
–

–
4

–
1

–
–

–
5

–
–

–
–

–
–

–
–

–
–

1
2

–
–

–
–

1.1pre4–1.1pre5
–

–
–

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1
–

–
–

–
–

–
–

1.1pre5–1.1rc1
–

–
–

–
–

–
–

3
–

–
2

–
–

1
–

–
1

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.1rc1–1.1rc2
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
2

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.1rc2–1.1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.1–1.2
–

–
–

1
–

–
–

3
–

–
2

–
–

–
–

–
6

–
2

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2–1.2.1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.1–1.2.2
–

–
–

–
–

–
–

–
–

1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.2–1.2.3
8

–
–

–
–

–
–

5
1

–
3

–
–

–
–

–
2

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.3–1.3pre1
1

–
2

–
–

–
–

6
2

–
27

–
–

1
1

1
8

–
2

–
–

–
–

–
1

2
–

2
–

–
–

–
–

1.3pre1–1.3pre2
1

–
–

–
–

1
–

1
3

–
6

–
–

–
–

–
2

2
–

–
2

–
–

–
–

–
–

–
1

–
–

–
–

1.3pre2–1.3
–

–
–

1
–

–
–

–
1

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.3–1.4
4

–
–

–
–

–
2

1
–

–
20

1
–

–
–

–
10

4
1

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.4–1.5
3

–
–

–
–

–
–

2
13

–
6

–
–

–
–

–
1

–
3

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.5–1.6
1

1
–

–
–

–
–

2
–

–
290

1
–

–
–

–
1

–
1

–
–

–
–

–
1

1
–

–
–

–
–

–
–

1.6–1.7
1

–
–

–
–

–
–

5
–

–
6

–
–

2
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.7–.1.8
1

–
1

–
–

–
–

2
–

–
25

3
–

–
–

–
2

4
–

–
1

–
1

–
2

–
–

–
–

–
–

–
–

1.8–1.9
–

–
–

–
1

3
–

–
–

–
–

–
–

–
–

–
1

–
2

–
–

–
–

–
1

2
–

–
–

–
–

–
–

1.9–1.10
10

–
–

–
–

–
–

–
–

–
2

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

1
–

–
–

–
–

1.10–1.11
5

–
–

–
–

–
–

1
–

–
3

–
–

–
–

–
1

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.11–1.12
3

–
–

–
–

–
–

2
3

–
17

–
–

–
–

–
28

1
2

1
21

–
–

–
–

12
–

–
1

–
–

–
2

1.12–1.13
–

–
–

–
–

–
–

–
–

–
4

–
–

–
–

–
1

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
1

1.13–1.14
3

–
–

–
–

2
–

1
–

–
7

–
–

–
–

–
4

–
–

–
3

–
–

–
–

–
–

6
–

–
–

–
–

Table
2.

B
inary

incom
patibilities

betw
een

versions
ofH

TM
LU

nit.“∆
”

denotes
a

change,and
“∆

↓ ”
denotes

m
ore

specifically
a

reduction.

Types
M

ethods
C

onstructors
Fields

Version
transitions

deleted

visibility ∆↓

+final

+abstract

class→ interface

superclass ∆↓

superinterface ∆↓

+abstract method

pull up method

push down method

deleted

visibility ∆↓

+final

+static

–static

+abstract

result type ∆

–parameter

+parameter

parameter moved

parameter type ∆

exceptions ∆

deleted

visibility ∆↓

–parameter

+parameter

parameter moved

parameter type ∆

deleted

+final

visibility ∆↓

type ∆

constant value ∆

b3–b6
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

b6–b7
1

–
–

–
–

–
–

1
–

–
2

1
–

–
–

–
–

3
–

–
9

–
–

–
–

–
–

–
3

–
1

3
–

b7–b8
–

–
–

–
–

–
–

3
–

–
28

–
–

–
–

–
–

–
–

–
1

–
1

–
–

–
–

–
4

–
1

9
–

b8–b9
1

–
–

–
–

–
–

–
–

–
16

–
–

–
–

–
3

–
–

–
1

–
1

–
–

–
–

–
2

–
–

1
–

b9–b10
2

–
–

–
–

–
–

–
1

–
15

10
–

–
–

–
17

1
–

12
29

–
2

13
5

–
–

–
2

–
16

–
–

b10–1.0
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.0–1.1
–

–
–

–
–

–
–

–
–

1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1
–

1.1–1.1.1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

Table
3.

B
inary

incom
patibilities

betw
een

versions
ofJD

O
M

.“∆
”

denotes
a

change,and
“∆

↓ ”
denotes

m
ore

specifically
a

reduction.

Types
M

ethods
C

onstructors
Fields

Version
transitions

deleted

visibility ∆↓

+final

+abstract

class→ interface

superclass ∆↓

superinterface ∆↓

+abstract method

pull up method

push down method

deleted

visibility ∆↓

+final

+static

–static

+abstract

result type ∆

–parameter

+parameter

parameter moved

parameter type ∆

exceptions ∆

deleted

visibility ∆↓

–parameter

+parameter

parameter moved

parameter type ∆

deleted

+final

visibility ∆↓

type ∆

constant value ∆

1.0.4–1.1.3
3

–
–

–
–

–
–

3
–

–
9

–
–

–
–

–
1

–
1

–
–

–
2

–
–

–
–

1
7

3
5

–
1

1.1.3–1.2.1
4

–
–

–
–

2
–

6
1

–
72

–
–

–
–

–
5

7
3

–
3

–
2

–
–

–
–

2
47

–
–

–
–

1.2.1–1.2.2
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.2.2–1.2.3
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.3–1.2.4
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.4–1.2.5
2

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
2

–
–

–
–

1.2.5–1.2.6
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
1

–
–

1.2.7–1.2.8
–

–
–

–
–

–
–

–
–

–
6

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.2.8–1.2.9
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
1

–
–

–
–

–
–

–
–

–
–

–
–

1.2.9-1.2.10
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.10–1.2.11
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.11–1.2.12
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.12–1.2.13
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.13–1.2.14
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1.2.14–1.2.15
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

Table
4.

B
inary

incom
patibilities

betw
een

versions
oflog4j.“∆

”
denotes

a
change,and

“∆
↓ ”

denotes
m

ore
specifically

a
reduction.

Referring back to the list of API changes, he settled on
Category.getRoot() to Logger.getRootLogger() as
the next change to address. He began by selecting the
method name getRoot() to initiate a search with Trident,
and then decided that other unrelated getRoot() methods
might used in different contexts in the system. Accordingly
he revised his exemplar selection to cat.getRoot(), in
which cat is an instance variable of type Category. (The
getRoot() method is static, and while the practice is dis-
couraged, JaxMe sometimes accesses such static methods
through an object of that type, as is the case here.) He
used Trident to perform a verbatim search on the method
name and a type search on the method expression. Satis-
fied with the search results, he proceeded with the refactor-
ing, and in the final preview screen he was pleased to note
that though his exemplar had been cat.getRoot() (with
the intention of transforming it to cat.getRootLogger(),
by employing a type search on the method expression
he had also captured direct class invocations of the form
Category.getRoot(), and these were also being correctly
refactored to Logger.getRootLogger().

For the next API change, he chose to
transform Category.setPriority(...) to
Level.setLevel(...). Following the previous example,
he conducted a type search on the method expression, and a
verbatim search on the method name. In this case, the par-
ticipant noticed that unlike the previous cases he dealt with,
setPriority(...) takes an argument. He decided to not
have Trident restrict the search based on parameter types and
numbers; he said that he wanted to ignore the arguments be-
cause he wanted “to use Trident to find the different kinds of
arguments being passed in, before I decide on what changes
to make.” He suspected that a fully qualified field name is
the most common argument supplied to setPriority()
based on what he had observed in the JaxMe source
code, but was not sure that this covered all of the cases
in which the method was used. The participant chose
Category.setPriority(org.apache.log4j.Level.-
DEBUG) as his exemplar input into Trident, and saw that
other cases exist where the argument is a local variable ref-
erence, or the result of a method invocation. He decided to
accept that the method arguments varied, and chose to have
Trident replace all Category.setPriority() invocations
with Level.setLevel(), without altering in any way
the arguments supplied to the original method invocation.
He reasoned that this ought to deal with the majority of
the situations, allowing him to then address the hopefully
smaller number of compilation errors that should arise due
to inconsistent parameters. After Trident performed the
refactoring, the participant found he only had a handful of
compilation errors left to deal with. After looking at the
error list, he decided that while he could use Trident to fix
the remaining cases, each case differed sufficiently that he
would not be able to use to Trident to refactor more than one

dangling reference at a time, eliminating the effort savings
of using the tool; he instead chose to manually locate and
edit the final locations.

C.1.2 Manual Treatment
The participant returned three days later to perform the man-
ual treatment of the case study. He was provided with the
Eclipse IDE again, loaded with the JaxMe software system
in the same state as it was prior to the start of the Tool Treat-
ment, but with the Trident plugin removed.

As in the tool treatment, he began by attempting to trans-
form dangling references to fields on Priority into field
references on Level. Based on the lexical similarity be-
tween each dangling reference and its replacement, he de-
cided to use Java Search in Eclipse to find and replace the
dangling Priority field references with their equivalent
Level reference. He decided to start by replacing all strings
of the form “org.apache.log4j.Priority.DEBUG”, but
discovered that Java search performs only search, there is no
provision for replacing the search matches with a new string.
Undeterred, the participant resorted to using Eclipse’s File
Search and Replace functionality, which he noted would al-
low him to write regular expression patterns to do the match-
ing with more flexibility than a standard find-and-replace
search.

The first four attempts at creating a regular expres-
sion for locating Priority references failed to return
any results, despite the fact that Eclipse File Search pro-
vides inline regular expression assistance. Two errors arose
while trying to determine if the periods in the qualified
name should be escaped2, and two more errors arose be-
cause of whitespace mismatches. He finally created a pat-
tern (“org.apache.log4j.Priority.(\w+)”) to match
the common type qualifier for the field names, while ac-
counting for the differences in the actual field names by
simply capturing the field name with \w+. He wrapped
the last part of the pattern in parentheses to designate
that portion of the pattern as a capturing group, to use in
the replacement string. He then crafted a replacement ex-
pression (“org.apache.log4j.Level.\1”) that used the
capture group defined above to append the field name
at the end of the Priority matches (e.g., DEBUG from
org.apache.log4j.Priority.DEBUG) to a new string
while replacing “Priority” with “Level”. He then had
Eclipse show him a preview of the proposed alterations, and
decided to enact the search and replace. Afterwards, he dis-
covered unexpected effects:

• In JaxMe’s Main class, the local variable declaration
org.apache.log4j.Priority p was transformed into

2 The participant was initially confused since, in this case, escaping the dot
(‘.’) operator had no discernible affect on the pattern matching. The dot
operator matches any single character, while an escaped dot operator (‘\.’)
matches only a period, yet both seemed to be (at first) equally effective in
the JaxMe system when searching against fully qualified Java type names.

a field access statement: org.apache.log4j.Level.-
p. The pattern he wrote captured the space separating the
type from the instantiation in the declaration, resulting
in the local variable’s name being appended as a field ac-
cess. Because regular expressions have no syntactic or se-
mantic awareness, the search was not aware that the lack
of a period after Priority, and its replacement instead
with a space, was significant.

• Static method calls to org.apache.log4j.-
Priority.setPriority(...) were replaced with
org.apache.log4j.Level.setPriority(...).
He noted that although this change could work as an
intermediate step in the eventual transformation of
org.apache.log4j.Priority.setPriority(...)
to org.apache.log4j.Level.setLevel(...), it was
an unintended side effect of the replacement and not his
intention.

These consequences prompted him to comment, “The
big problem with grep and regular expressions is that you
capture things that you don’t expect”.

He remarked that the compilation error count in the
project barely decreased at this point, with many of the files
displaying errors at the locations where the string replace-
ment has taken place. After investigating, he discovered that
the problem was that the Level type could not be resolved,
since the appropriate import statement was missing from the
affected classes. To fix this, the developer used Eclipse’s
Organize Imports feature to automatically resolve unknown
type declarations by importing the appropriate classes.

Next, the participant attempted to replace oc-
currences of Category.getInstance(...) with
Logger.getLogger(...) using File Search and Re-
place. Using a similar regular expression pattern as before,
he was successful in enacting the change, but again encoun-
tered the problem that Logger was an unresolved type. This
particular string replacement was widespread, affecting
44 files and causing a dramatic boost to the compilation error
count. Employing the same strategy as before, he invoked
Eclipse’s Organize Imports feature, but this time received
an error message for each file: “ambiguous references,
user interaction is required.” The problem was that two
different yet semantically similar Logger classes existed in
the project’s classpath: the org.apache.log4j.Logger
class which the participant was trying to use, and the
java.util.Logger class which is part of the standard
Java Software Development Kit. Unable to distinguish
between which of the two identically named classes should
be imported, Eclipse is unable to automatically handle this
for the participant.

The participant was not keen on manually inserting
import statements in every file, and decided to look at
a few of the errors to see if there was a workaround
he could attempt. He noticed that in the JaxMe code
base, invocations of Category.getInstance(...) re-

turn a singleton object usually assigned to a static mem-
ber variable. The format of this statement was, af-
ter his previous transformations, public static final
Category cat = Logger.getLogger(...); the partic-
ipant wondered if maybe the assignment of Logger to
type Category was confusing Eclipse’s Organize Im-
ports feature. He wrote a regular expression to change
such declarations to public static final Logger cat
= Logger.getLogger(...), but this boosted the compi-
lation error count to 240, as it created more locations in the
code where the Logger type could not be resolved. He un-
did the change, and decided that import statements had to be
added first.

To avoid manually editing every file, the participant de-
cided to write a regular expression that would recognize the
package declaration at the start of a Java file, adding an im-
port statement for the Logger class afterwards. To do this,
he created the search expression “package\s+\S+” to find
all package declarations in files, and the replacement expres-
sion “\0 import org.apache.log4j.Logger;” to ap-
pend the import statements to the end of the package dec-
laration. In doing so, the participant acknowledged that the
import statement would be added even to classes which did
not need it, but he reasoned it would be easy to clean up
afterwards using the Eclipse tooling. Enacting this change
dropped the error count from 240 to 42, fixing the unresolved
imports issue. He then ran Organize Imports to eliminate
those import statements that had been unnecessarily intro-
duced.

However, he also introduced a new problem: in the
JavaSource class, a string literal happened to match
the participant’s regular expression. The participant no-
ticed a new compilation error in the list which was a
syntax error, making it stand out from the other prob-
lems. On investigation, he recognized that the code snip-
pet result.append("package "); in the JavaSource
class was detected as a match by his original regu-
lar expression pattern. As a result, the line had been
altered to read result.append("package "); import
org.apache.log4j.Logger;, creating a syntax error that
he manually fixed.

He then transformed calls to the static method
Category.getRoot() into Logger.getRootLogger(),
again noticing JaxMe’s inconsistent treatment of static
method invocations: sometimes it invokes static methods via
a call on an instance variable (e.g., cat.getRoot()), while
in others the method is invoked directly from the class (e.g.,
Category.getRoot()). Though the two cases are seman-
tically similar, each required its own regular expression pat-
tern to resolve. The participant noted that his replacement
for getRoot() on static Category variables relied heavily
on the code convention that all such variables were named
cat. If Category variables had been declared under a bunch

of different names (e.g. ’category’, ’myCategory’, etc) this
change would have been much more difficult.

On reaching this point, the developer had only 8 errors
left, each of which were sufficiently different that he decided
to manually fix each problem.

C.2 Participant 2
C.2.1 Tool Treatment
At first, the participant had difficulty in selecting the proper
exemplar with which to initiate the Trident tool. In attempt-
ing to transform org.apache.log4j.Priority.DEBUG
into org.apache.log4j.Level.DEBUG, he selected just
the simple name DEBUG and performed a verbatim search for
other simple names with the same string pattern. When the
search returned only two matches, he was suspicious and de-
cided to broaden his scope to a verbatim search for all quali-
fied names containing org.apache.log4j.Priority. Af-
ter seeing the large number of search results returned, he re-
quested assistance from the investigator. After an impromptu
tutorial on how exemplars should be chosen, he was able to
quickly refactor all the fully qualified dangling field refer-
ences to the Level class.

He then noted in the error view that an unqualified
field reference to Priority.WARN had not been refactored.
Rather than use Trident, he decided to manually correct this
single case by overwriting Priority with Level, and using
Eclipse’s Quick Assist to resolve and import the class. This
resulted in another compile error stating that WARN could not
be resolved. The participant’s confusion was resolved when
he realized that there were multiple classes with the name
Level on the class path, and he had imported the wrong one.

The participant continued by refac-
toring Category.getInstance(...) to
Logger.getLogger(...), and noted that
getInstance() is static and is present in three differ-
ent overloaded formats. Based on this information, he
decided to do a type search on the method expression, a
verbatim search on the method name and ignore all the
arguments. Trident returned 44 matches, and upon enacting
the change from Category to Logger, the error count
dropped to 37.

Next, he looked at changing Category.getRoot() to
Logger.getRootLogger() by applying the same search
pattern as he had done for Category.getInstance(). On
examining the search results, he noted that although he in-
tended to look only at invocations of getRoot() occurring
directly on the Category class, some static instance vari-
ables (of type Category) were also captured in the search.
Consequently, the participant was uncertain about the cor-
rectness of his anticipated change, and wondered if he should
examine each search result to filter out all the cases he did
not expect to find, and handle such cases individually. He
decided to instead refactor all the search results since Tri-
dent provides global “undo” functionality, and can revert the

refactoring if it causes problems. On seeing in the final pre-
view pane that Trident introduced comments above all the
new <localvariable>.getRootLogger() statements to
make it clear that a static method was being invoked on an
instance variable, he was encouraged and thought that it was
highly likely this was the refactoring he wished to do.

Finally, the participant converted all the static vari-
able declarations of the form public static final
Category cat = ... into variable declarations of the
form public static final Logger cat = ..., by se-
lecting a Category reference as his exemplar and perform-
ing a type search in Trident to find other locations where
Category is part of a simple type reference. He asked the
investigator if it was possible to restrict the search only to
type declarations within variable declaration statements (as
opposed to catch clauses, method declarations, etc), but was
informed that context restricted searches were not yet sup-
ported. He continued with the refactoring, reducing the error
count to 5. At this point, he decided to fix the remainder
manually.

C.2.2 Manual Treatment
The participant was brought back the following day to per-
form the manual treatment of the case study. He was pro-
vided with the Eclipse IDE again, loaded with the JaxMe
software system in the same state as it was prior to the start
of the Tool Treatment, with the Trident plugin removed.

He began by reasoning that the API
change of org.apache.log4j.Priority to
org.apache.log4j.Level represented a refactoring
that moved fields from one type to another. Upon examining
the list of Eclipse refactorings for a suitable match, he
activated the “Move” to attempt to enact this refactoring
automatically, and was greeted with an error message that
stated, “Destination type does not exist.” He realized that
Move refactorings are intended to move declarations and
not references, and that none of the Eclipse refactorings can
be applied to dangling references.

With refactorings clearly unavailable, he decided to try
Eclipse’s Java Search tooling, but was confused by the lack
of a replace option. After spending a few minutes exam-
ining every Eclipse search menu he could find, he eventu-
ally located a lexical replacement option under Eclipse’s File
Search tool. He then proceeded to use case sensitive search
to find and correctly replace all of the Priority dangling
field references with the Level type.

In an attempt to quickly reduce the task
to a more manageable size, he noted that the
API change Category.getInstance(...) to
Logger.getLogger(...) was the most common source
of errors, and he decided to attempt it next. Using case
sensitive search on Category.getInstance(, he replaced
it with Logger.getLogger(. Expressing trepidation at the
size of the change, the participant conducted an exhaustive
review of every search match and change in the text preview

screen. After satisfying himself with the accuracy of the
change, he enacted the modification, and was surprised to
find that almost all the errors remained. He recognized that
the errors were now because the new Logger type could not
be resolved, and so tried to apply Eclipse’s “Quick Fix” to
the entire group of errors in the problems view, but could
not as it can only be applied to individual errors. He decided
to resort to opening each of the 37 affected files one by one,
and adding an import statement to address the problem.
The tedium of this task prompted him to say that “I am
beginning to realize what a pain this really is. Initially I had
thought Eclipse search and replace would do this for me.”
As he came close to finishing, he remembered that there
was a refactoring scripts option in Eclipse, which he hoped
could be adapted to create a macro to complete this task
for him. However, he quickly realized that for refactoring
scripts to work, the underlying Eclipse refactorings must
also work; a precondition that does not hold with dangling
references. Resignedly, he finished the manual modification.

The next problem the participant addressed
was the change of Category.getRoot() to
Logger.getRootLogger(). As previously noted, the
getRoot() method is sometimes invoked on static instance
variables, and sometimes invoked directly on the class.
Fortunately, in all of the cases involving static instance
variables, the name of the instance variable is consistently
“cat”, thus allowing for a relatively easy lexical search and
replace. He uses the same string search and replace to con-
vert Category.getRoot() style method invocations into
Logger.getRootLogger(), but makes a copy-and-paste
error in the replacement field, causing an extra, empty pair
of parentheses to be attached to the end of the new method
invocation. He attempted to undo this change, but found that
the Eclipse File Search tooling does not provide global undo
capability; the participant needed to undertake a second
round of search-and-replace to fix his previous mistake.

The last major change that remained for him was
transforming the instance variables of the form static
Category cat = ... into static Logger cat =
However, his previous refactorings had partially altered
the right hand side of these statements so that were now
they were now found as public static Category cat
= Logger.getLogger(...). The participant decides
that a regular expression is his best strategy to enact
the change in this case. Using the left hand side of the
assignment as an “anchor”, he wrote the regular expres-
sions “Category\s+cat\s*=\s*Logger.getLogger”
to search for matches, and “Logger cat =
Logger.getRootLogger()” as the pattern to replace
it with. With the change complete he sees the error
count jump from 34 to 66, and realizes he had in-
tended to use the replacement expression Logger cat =
Logger.getLogger(). Since undo functionality is not
available, he decides to try another round of search-and-

replace using “Logger.getRootLogger(” as his search
expression, but committed yet another copy-and-paste error
using “Looger.getLogger(” as his replacement. This
error might have been caught in the text preview pane, but
he accidently hit the “Update” button instead of “Preview”,
thus committing the change to the workspace, and causing
the error count to jump to 72 as both the method name and
the method expression are incorrect. At this point, he said
“This is a nightmare. Is it okay if I quit this task?”

The participant decided to continue working, but ran
into more difficulties as he tried to continue to fix his pre-
vious errors by using Looger.getLogger as the search
expression, and replacing it with Logger.getLogger(.
However, the absence of the parenthesis in the first pat-
tern, and its presence in the second, created cases like
Logger.getLogger((which further increased the error
count to 83. Gradually and carefully, the participant man-
aged to fix the consequences of this series of errors, and
returned to an error count of 23. He decided at this point
to manually correct all the remaining compiler errors, stay-
ing clear of regular expression-based tooling. Finally, he re-
duced the error count to 0, noting that “the task seemed easy
but the [manual change process] was really messy and I am
not confident in the solution”.

