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Good engineering requires that economic designs be provided at acceptable levels 

of safety. This usually means predicting the system performance for which there exists 

Little or no previous experience. The problem is often compounded by the variability of 

the raw data, on which the risk analysis is based. 

In Canada buried pipelines are used for economical m s p o n  of oil and natural 

gas. Due to circumstances such as difficult ternin. the pipelines sometimes may be 

constructed in unstable slopes. In such situation. the owner of the pipeline has an 

intrinsic interest in guaranteeing that his or her pipeline would not rupture or break due to 

unstable soil movements, 

In this research. analytical and numerical solutions have been derived to 

determine the deflection profile of a buried pipeline in a slope subjected to a longitudinal. 

transverse and deep seated fklure. 

Application of statistical analysis on the relationships between the soil movement 

and the pipe deformation strain allows one to assess the risk of pipeline rupture with a 

given soil movement. 
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Chapter 1 

Introduction 

1.1 The nature and scope of the problem 

Good engineering requires ihat economic designs be provided aat acceptable levels of 

sdety. This usually means predicting the system performance for which there exists little 

or no previous experience. The probkm is often compounded by the variability of the 

raw data on which the risk analysis is based. 

[n Canada. buried pipelines are used for economical transport of oil and natural 

gas. Due to circumstances such as difficult terrain. the pipelines sometimes may be 

constructed in unstable slopes. In such situation. the owner of the pipeline has an 

intrinsic interest in gumteeing that his or her pipeline would not rupture or break due to 

unstable soil movements. 

1.2 Contributions of this thesis 

This thesis will present new analytical and numerical solutions for the design of 

pipelines subjected to transverse, longitudinal and deep-seated landslides. 
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The model for pipeline in a deep-seated landslide is completely new and has 

never been done before. 

For the pipeline in transverse [andslide, the stretching effect has been added to the 

bending stnin to produce a new total s&n. which has not been considered in other 

works. Previous works investigated transverse landslide of infinite width only. A 

transverse Imdslide of finite width has been modeled. 

Several statistical analysis methods are also applied to a simplified pipeline strain 

model to assess the risk of probability of pipeline yielding on an unstable slope. These 

methods include First Order Second Moment method ( FOS M), Rosenblueth's Point 

Estimate Method (PEM). and the: Monte Carlo simulation method. 

1.3 Organization of Thesis 

This chapter has presented the nature of the problem. Chapter 2 will review the 

Literature pertaining to soil-pipeline interaction and statistical analysis. Chapter 3 will 

summarize the new mathematical models for the longitudinal. transverse and deep-seated 

landslides and present the find resulting stnin equations. The more detailed explanation 

of' how the new models we derived is shown in appendices A. B and C. Chapter 4 

describes the statistical methods to be used in assessing pipeline safety. Chapter 5 is a 

case study of a pipeline in an unstable slope. followed by conclusion and 

recommendations in Chapter 6. 



Chapter 2 

Literature review 

2.1 Introduction 

Buried steel pipelines have been and will continue to be damaged from permanent 

ground deformations ( PGD). Permanent ground deformation refers to nonrecoverable 

soil movement such as a landslide. An understanding of how a pipeline behaves under 

such permanent ground deformations is essential to implementing a successful tirld 

monitoring and remediation program needed to prevent pipeline fdures. The following 

literature review attempts to summarize the past work done in the pursuit of 

understanding soil-pipeline interaction subjected to permanent ground deformation. 

2.2 Different types of landslides 

A pipeline could be exposed to r planar landslide or a deep-seated landslide (see 

Figures 2.1.2.1 and 1.3). 

In n planar landslide, the sliding surface is pade l  to the surface of the slope and 

often occurs when a soil has r specific lane of weakness. A pipeline would be exposed to 

some combination of longitudinal and transverse PGD depending on the pipeline 
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orientation with respect to the direction of ground movement (see Wgures 3.1 and 3.6). 

For longitudinal landslide, the soil movement is p d l e l  to the pipeline axis. while for 

transverse landslide the soil movement is perpendicular to the pipeline axis. 

In a deep-seated landslide. the sliding surface ciosely resembles arcs of circles. 

For a pipeline laid parallel to the direction of the slope. the deep-seated soil movement 

creates both a longitudinal and transverse force on the pipeline. 

2.3 Previous studies on pipeline subjected to soil movements 

Simplified design methods for pipelines subjected to transverse and longitudinal 

landslides have been proposed and developed by several researchers (e.g.. O'Rourke cmd 

Nordberg, 1992; FIores-Brrrones and 0' Rourkr ( 1992); Rajmi a a/.. 1995: 0' Rourkr et 

al.. 1995). 

O'Rourke and Nordberg. ( 1993). and mores-Berronrs and O'Rourke ( 1992) 

studied the behavior of buried pipelines subjected to longitudinal permmmt ground 

deformations (PGD). Five idealized longitudinal PGD patterns (see figure 1.4) based on 

observed patterns from previous earthquakes were used and analytical relations for the 

axial strain in the pipe were developed. The five patterns considered were Block. Ramp. 

Ridge, Ramp-Block. and Asymmetricd Ridge. It was shown that the Block pattern 

produces the highest axid strain on the pipeline. but that the variations between different 

patterns ye negligible compared to the effect of the length of the PGD. Their 

assumptions for their model are more fully described below as 0' Rourke et a!. ( 1995) 

continued and expanded on this work. 



0' Rourke et al- ( 1995) adapted the Rmberg-Osgood ( 1943) model o f  uniaxial 

stress-strain behavior of steel (see Equation 1.1) for his study of steel pipe wrinkling due 

to longitudinal permanent ground deformation: 

where 

E = axid strain, 

G = axial stress. 

E= modulus of elasticity for steel. 

o, = cffeccive yield stress. and 

n and r = Rmberg-Osgood panmeters. 

O'Rourke used an elastoplastic model (see Figure 2.5) for his force-deformation 

behavior at the soil-pipeline interthcr. This model is detincd by two panmeters: the 

maximum axial force per unit length at the soil pipe interface. f ,  and the relative 

displacement at which slippage between pipe and soil occurs. However. the slippage 

displacement is assumed small and neglected in his model. 

The maximum axid force per unit length f, depends on the type of soil 

surrounding the pipe and the method of pipe instidlation. For the most genenl soil 

condition. when the soil sumounding the pipe has both friction and cohesive 

characteristics, F, is given by 
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The maximum axial stress in the pipe (tensile in upper part and compressive in the lower 

p m  of the landslide), 0,. developed on the pipeline in longitudinal landslides is given 

rrs follows: 

[2.3] 

where 

F,, = maximum axial force developed on the pipe. 

Ax-sealLn = cross-sectional area of the pipe. 

c = cohesive strength of soil. 

y = unit weight of soil. 

H = burial depth to pipe centerline. 

(I = friction mgle of soil. 

0.9tan($) = coefficient of Friction at the soil-pipe interhcr. 

d = pipe diameter. 

t = pipe thickness. and 

L = length of longitudinal soil displacement zone. 

O'Rourke et al. smted that steel pipe is able to deform in tension well beyond the 

effective yield strain without rupture. Therefore, wrinkling (local buckling) of the pipe 

wdl  in compression is taken as the failure mode of interest. particularIy if the pipe is 

relatively Free of corrosion and other defects. Based on laboratory tests on thin-wall 

cylinders, Hall and Newmuk ( L977) suggested that compressionaI wrinkling in a pipe 

begins at a strain calculated by equation [ly. O'Rourke used this equation as the pipe 



failure criteria in their analysis, which means a thicker or smaller radius pipe is more able 

to withstand compressiond wrinkling. 

O'Rourke era!. found that behavior and onset of wrinkling are governed by the 

length of the Permanent Ground Deformation zone in longitudinal soil movements. Their 

model also showed that the maximum pipe swain developed from the soil movement 

increases if: 

the pipe was buried deeper. 

the pipe thickness was smaller. 

the soil cohesive strength and angle of friction was higher. and 

the soil density was higher. 

Baed on information on observed lateral spreads. O'Rourke and Nordbrrg ( 1990) 

concluded that the typical buried pipe subjected to transverse Iandslide between the 

margins of the Permanent Ground Displacement zone are compliant. This means the 

pipeline will displace at the same amount as the landslide. 

Rajani et aL, (1995) presented some simplified design methods for pipelines 

subjected to transverse and longitudinal soil movements. Their model assumes a given 

pipe displacement, and does not take into account the soil-pipeline interaction in terms of 

their relative displacements and resulting force. They Jso assumed an infinite width of 

Imdslide. From their model, they showed that on initial landslide movement, the buried 
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pipeline and the soil behaves elastically. As the landslide movement increases. ultimate 

passive resistance is developed in the surrounding soil medium. but the pipe will remain 

elastic. On further landslide movement, 3 plastic hinge or wrinkle begins to develop in 

the pipeline. They also showed that using cohesive soil in the model for the soil reaction 

produces the most conservative numbers because the undrained npid response produces 

the highest soil resistance. They performed a parmetric study for a pipeline subjected to 

transverse landslide. and they found that the soil strength has the most dominant effect on 

pipeline response. They found that the soil stifmess in terms of the elastic subgrade 

modulus. Ks. has large effect at small pipeline displacements t when the soil is elastic) but 

small effect for larger pipeline displacements (when the soil is plastic). 

2.4 Previous probabilistic studies 

The objective of statistied analysis. as applied to pipelines in unstable slopes. is 

to assess the risk and probability of pipeline failure. Three main techniques are used for 

statistical analysis. md they are the Monte Carlo simulations. the First Order Second 

Moment (FOSM). and the Rosenblueth's Point Estimate Method (PEM). The Monte 

Carlo technique involves generating random numbers using the mean and standard 

deviations for each variable of the function. FOSM is obtained from the Taylor series 

expansion of the Function about the expectations of the random variables. This Taylor 

series approximation may impose excessive restrictions on the function (existence and 

continuity of the first or k t  few derivatives) and requires the computation of derivatives. 

These difficulties can be overcome with the use of point estimates (PEM) of the function, 
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which leads to expressions akin to finite differences. Of these three methods. only the 

Monte Carlo simulation method uses the whole statistical distribution of the variables. 

The FOSM and PEM both only use one standard deviation from the mean for their 

caiculntions, 

Appropriate actions could be taken for a given level of probability of pipeline 

failure. At low hilure probability. perhaps implementing a monitoring program for the 

slope and the pipeline is dl that is needed. At medium Mlure probability, some remedial 

action such s construction of a berm or improving drainage dong the slope to stop the 

slope movement could be implemented. The induced pipe strain could be reduced by 

increasing the pipe wall thickness. decrese the burial depth of the pipe or use lower 

density soil with lower angle of fictional angle. It may also be 3 good idea to install 

block valves both upstream and downstream of the potential landslide zone to 

automatically shutoff the pipe in case of pipe failure. At high failure probability. major 

action could be needed such as rerouting the pipeline to a more stable area. 

Nguyen and Chowdhury ( 1984) used Monte Carlo simulations and Rosenblueth's 

point estimate method for assessing slope stability of spoil piles in strip coal mims. 

Cdculdons for failure probability were first made using Monte Carlo simulations and 

assuming a potential two-wedge failure mechanism for the spoil piles. The Monte CuIo 

technique involves generating pseudo-random numbers based on the mean and standard 

deviations of the shear strength parameters. From 500 simulations, the kquency 

distribution of the factor of sdety was obtained. The probability of failure was calculated 
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as the ratio of area under the kquency distribution curve from the left-hand tail up the 

factor of sdety of unity, and that bound by the whole curve. 

An alternative procedure based on Rosenblueth's method of estimating moments 

was then used to compare the results with the Monte Carlo simulation method. Excellent 

agreement was found and it was recommended that for practical purposes. the relatively 

quick Rosenblueth method should be used in estimating the probability of slope failures. 

Nguyen and Chowdhury dso concluded that estimates of strength parmetes of spoil 

piles based on test results and associated geomechmics considerations must be made for 

each particular mine. Due to the variation in soil parameters at each different site. it 

would not be feasible to construct design charts that are univmally applicable to (111 spoil 

piles. 

Christian t t  d. ( 1994) described how probabiiistic descriptions of' soil parameters 

can be derived from field and labontory data and applied in stability analysis. The first- 

order. second-moment approach is explored and applied to the design of embankment 

dams. They promoted the use of reliability index (P) as defined in equation [2.5] as a 

way of normalizing the factor of safety with respect to its standard deviation: 

where 

F = factor of safety. 

Em = mean or expected value of the factor of sdkty, and 

am = standard deviation of the factor of sdety. 
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The reliability index describes safety by the number of standard deviations (i.e.. the 

amount of uncertainty in the calculated value of F) separating the best estimate of F from 

its defined failure value of 1.0. 

The uncertainty in the values of the soil properties due to scatter and systematic 

error was discussed. The former consisted of spatial variability and random measurement 

error. The latter includes both a statistical uncertainty in the expected values and the 

effects of bias - which is much more difficult to evaluate. The effect of spatial variability 

on the computed reliability index is reduced because the variability is averaged over a 

region - and only its average contribution to the uncertainty is of interest. In addition. the 

structure of the spatial vluiation can be used to estimate and then to eliminate the kvel of 

random noise in the soil property data. Since bias is often ignored in theoretical 

treatments of analytical procedures because it is difficult to quantify. the engineer must 

often rely on judgment to establish its contribution. Findly. they concluded that 

uncertainties in soil properties yield a lower bound estimate of probability of failure. An 

absolute probability of failure would require a more elaborate probabilistic risk andysis 

involving fault trees or other methods of evaluating risk due to ail contingencies. 



2.5 Critique 

Obviously missing from previous research is the study of pipeline-soil interaction 

in a deep-seated landslide. All previous studies only have been for pipelines subjected to 

planar fiiilure surfaces. 

mores-Berrones and O'Rourke ( 1992) and 0' Rourke et a[. ( 1995) ignored the 

relative displacement at which slippage between pipe and soil occurs. Their model 

ignores the elastic soil reaction by using only the maximum fictional force per unit 

length. f,,,, to calculate the forces acting on the pipeline. 

In addition. O'Rourke et ul. assumed symmetricd force development between the 

stable and unstable soil regions. This could only be true if there is no elmtic soil 

reaction. so that dl force developed on the pipeline comes only from the maximum 

frictional force per unit length (plastic soil). G If both plastic and elastic soil reaction 

were to be considered. then there should be a longer zone of plastic soil developed inside 

the landslide in order to balance the infinite length of stable soil. 

Finally. O'Rourke's model is only set up for the simple case of finding the peak 

strain for n given length of landslide (L) with an unlimited amount of PGD (8) and vice 

versa. Solving both of these variables together at the same time would have allowed one 

to predict the peak strain for a given length of landslide by monitoring the PGD. 

Rajmi et aL, ( 1995) assumed a given pipe displacement for their model of 

pipeline subjected to transverse and longitudinal soil movements instead of basing their 

model for given amount of PGD. They ignored the soil-pipeline interaction in terms of 

their relative displacements and resulting force. They also did not consider transverse 
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landslides of f ~ t e  width. Finally, Rajani et al. ignored the effect of pipeline tensile 

strain because they assumed that flexure is the dominant behavior of the pipeline for 

small transverse displacements 

This thesis will derive models for pipeline subjected to longitudinal. transverse. 

combined longitudinal and transverse. and deep-seated landslides. Transverse lmdslides 

of finite width will be studied. and tensile strain will be included as well, The models 

will allow one to predict the maximum pipeline strain for given dimensions of landslide 

by monitoring the mount of PGD. finally. srntisrical analysis using the FOSM. PEM 

and Monte Cario simulation methods will be applied to a pipeline subjected to 

longitudinal landslide in order to assess the probability of pipeline yielding. 



Fig. 1.1: Planar landslide (top view) 
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Fig. 2.3 : Deep-seated landslide (side view ) 

Fig. 2.4: Five idealized longitudinal PGD patterns 
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Fig. 1.5: Bilinear approximation of elastoplastic soil 
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Chapter 3 

Soil - Pipeline Interaction on Slopes 

3.1 Introduction 

This chapter presents new analytical solutions for the design of pipelines subject 

to longitudinal. transverse and deep-seated imdslides. The detailed derivation of 

equations presented in this chapter is shown in appendices A. B and C. 

3.2 Longitudinal Landslide 

For longitudinal landslide (where the landslide moves pamilel to the pipeline - 

see Figure 3.1). new landslide displacement function and boundary conditions were used 

to eliminate discontinuity of the stnin equation of elastic-only soil reaction. For the 

rlastic/plastic soil reaction pact. our derivation (see equations [A341 to [A6 11) is very 

similar to the one proposed by 0' Rourke and Nordberg's ( 1991). The on1 y difference is 

that O'Rourke and Nordberg used the boundary condition that the pipe stnin is zero at 

the center (U1) of the landslide. This boundary condition is not true if the length of 

landslide (L) is large and amount of PGD (6) was smdl because pipe strain could reach 

zero weil before the center of the landslide. 
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We assume elastoplastic soiVpipeline interaction using a bilinear approximation 

of soil's stress-strain curves (see Figures 2.5 and 3.2). This is like the stress-strain curves 

for steel with elastic and plastic ranges. The ultimate force developed as a Function of 

soil displacement is expressed in equation [3. la]. where the subgrade modulus (Ks) is like 

the Young's Modulus of Elasticity (E) for steel. The ultimate force can dso be expressed 

as a function of the horizontal bearing capacity and undrained strength for clay in 

equation [3. lb]. It is dso possible to represent it as a function of the cohrsive strength 

and frictional angle for a general soil type with cohesive and Mctional chmcterisacs in 

equations [3.1 c] . 

where 

Nc is the bearing capacity factor depending on the material properties. 

Su is the undrained strength. 

K, is the elastic subgnde modulus. 

Ds is the soil displacement to reach the ultimate reaction force (typically 5- 

10 mrn according to Committee on Gas and Liquid Fuel Life 

Lines, L 984). 

c is the soil cohesive strength. 

y is unit weight of soil, 

H is burial depth to pipe centerline. 



0 is friction angle of soil, and 

d is pipe diameter 

c3--ri 

where. 

The force equilibrium for a finite element piece of pipe (see Figure 3.3) is given 

in equation [3.1]. Combining this with the relationship between force and strain in 

equation [3.3], we obtain a second-order differential equilibrium equation in the stable 

and unstable regions in equation [3.4]: 

N is the axid force on the pipe. 

u is the pipe movement. and 

6 is the soil movement. 

[ 3 * 4  

We assume the longitudinal landslide movement function as indicated in Figure 

3.4 (note that it is a plot of the magnitude of soil and pipeline displacement dong the 

length of the pipe axis). This is identical to the model of pipeline subjected to rigid block 

PGD by O'Rourke and Nordberg ( 1992), but they had erroneously used the boundary 

condition of zero sfrain at the center of PGD (U2). 

- -- - - - -- -- - 
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The pipeline deflection is derived fiom solving the second-order differential 

equilibrium equation [3.4] with appropriate boundary conditions. We have a stable 

region From x = - to x = 0. and an unstable region from x = 0 to x = U1. The pipeline 

from x = - - to U2 is in tension. and from x = U2 and beyond is in compression- 

32.1 Elastic soil reaction 

For 6 c ZDs, the soil is in elastic domain. The entire pipeline deflection profile can 

be determined by applying the second-order differential equilibrium equation in the 

stable and unstable regions (Figure 3.5). The continuity of svllin at x = 0 cannot be 

satisfied using the step function indicated in Figure 3.4 for the soil displacement. Thus. 

we change the soil displacemmt profile to increase at an angle (a) at x = 0. instead of 

instantaneously as tbr the case of the step function when solving for 6 > 1D,. Also. the 

boundary condition of e = 0 at x = U2 is not used because this is not true it' the length of 

the imdslide (L) is very large. Instead. we replace the above boundary condition with the 

continuity condition of strain at the transition point between the plastic and elastic soil 

zones. 

The analysis involves determination of 8 integration constants and position A. 

The 8 integration constants are denoted by (CI and Cz in stable region; kl, kz, k3, IQ, kj, 

and k6 in unstable region). We use the Following boundary conditions and equation to 

determine the 9 constants: 

At x = -o~ u = 0 (1 constant) where u is the displacement: 

At x = 0, u and u' are continuous (2 constants); 



At x = A, u and u' are continuous where u' is the first derivative (2 

constants); 

At x = B. u and u' are continuous where u' is the f i s t  derivative (2 

cons tan ts ) ; 

At x = A. u = ur\ where u , ~  is the soil displacement at position A and equal 

to the pipeline dehction ( 1 constant): 

Force equilibrium equation in longitudinal direction ( I constant). 

The following ;ire the equations to be used to solve the maximum strain in the 

pipe at 6 < ZD, (see the derivations in Appendix A.2 from equations [A 121 to [A33]): 

and 
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322 Elasto-plastic soil reaction 

For 6 > 7Ds, the soil ultimate strength is mobilized. Four regions of soil-pipeline 

interaction are identified (see Figure 3.4): 

Region 1 in stable soil with elastic soil resistance (x = -a < x < x,); 

Region 2 in stable soil with plastic soil resistance (x = x, c x c 0); 

Region 3 in unstable soil with plastic soil resistance (x = 0 < x < xh): 

Rrgion 4 in unstable soil with elastic soil resistance (x = xh < x < U2 

where L is the width ofthe landsiide). 

The entire pipeline detlection profile can be determined by applying the second- 

order differential equilibrium equation in each region. The analysis involves 

determination of 8 integration constants and 2 elasto-plastic interface locations. x, and .uh. 

The 8 integration constants are denoted by (CI and Cl in Region 1: C3 and C in Rrgion 

1: klmd k2, in Rrgion 3: k~ and b, in Region 4). We use the following boundmy 

conditions and equation to determine the 10 constants: 

At x = a. u = 0 ( 1 constant) where u is the displacrmmt: 

At x = x,, u = D, ( I constant); 

At x = x,, u and u'are continuous where u' is the first derivative (2 

consmts); 

At x = 0, u and u'are continuous (2 constants); 

At x = xb, u and u'ae continuous where u' is the first derivative ( 2  

constants); 

At x = xb, u = 8 - Ds where 6 is the landslide movement ( I  constant); 



Force equilibrium equation in longitudinal direction ( 1 constant). 

For the case of 6 > ZDs, the maximum pipe strain occurs at intertkce between stable and 

unstable soil and is expressed in equation [3.7]. The expression is derived in Appendiv 

A.3 from equations [A341 to (A6'71. The strain is taken as the first derivative of the pipe 

deflection with respect to the pipe axis. 

[3-71 

where x, is solved by the secant or bisection method from the following equation: 



3.3 Transverse Landslide 

For transverse landslide (where the landslide is moving at 90' or perpendicular to 

the pipeline - see Figure 3.6), a new analytical solution has been developed to include 

both the bending and tensile strain on the pipe. The tensile strain is caused by the axid 

stretching of the pipe due to axial forces (see Figure 3.7). Bending strain is caused by the 

bending of the pipe such that the outer fiber of the pipe is stretched in comparison to its 

neutral rutis (where the fiber kngth remains constant). See Equations [I33 11 and [B37-1 

for the general tensile and bending strain equations. figure 3.8 shows that the tensile 

stress is much higher than the bending stress near the intertier between stable and 

unstable soil. It is therefore very important to account for the tensile stress as a pan of 

the total stress, 

Previous methods (e.g.. Hetenyi. 1946: Rajani et 01.. 1995) assumed a prior 

knowledge of the pipe displacement or the force acting on the pipeline at the edge of the 

landslide. They did not take into account the soil-pipeline interaction in terms of their 

relative displacements and resulting force. They also assumed an intinite landslide width. 

Rajmi et al. for example also employed the fourth-order differential equation of a 

beam on elastic foundation. However. they ignored relative soil-pipeline displacement. 

assumed intinite landslide width, and consequently they must also assume a double 

curvature at the interface between stable and unstable soil. They calculated the stress 

(strain) on a pipeline by Fiding the mvrimum moment developed due to an applied end 

load. The applied end Load is derived as a hnction of end displacement of the pipe - 

which is assumed known. 
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Like previous methods. we also use the bilinear approximation of the elastoplastic 

soil. We have investigated nansverse landslides with infinite and finite landslide width, 

and modeled the force acting on the pipeline as a function of relative soil-pipeline 

displacement. Equilibrium of forces between stable and unstable soil is also imposed. 

We also account for the tensile strain as a part of the total strain developed in the pipe - 

by adding the tensile strain to the tensile part of the bending strain. 

For most practical or conservative case. the relative soil movement exceeds D,. In 

such case. the ultimate soil resistance is mobilized. There are four different soil-pipeline 

interaction regions (see Figure 3.9 1: 

Region 1 in stable soil with elastic soil resistance ( x  = -- < x < A): 

Region 2 in stable soil with plastic soil resistance ( x  = A < x < 0): 

Region 3 in unstable soil with plastic soil resistance ( x  = 0 < x c B): 

Region 4 in unstable soil with elastic soil resistance ( x  = B < x c (R' - 

~m')" .~)  

The entire pipeline deflection profile can be determined by applying the fourth- 

order differential equilibrium equation in each region (see equation [BJ]). This equation 

is perfectly valid m Iong as the pipeline remains elmtic. Once the soil's elastic 

displacement limit (Ds) is exceeded. then the ultimate reaction force (RI) will be acting on 

that portion of the pipeline. while the rest of the pipeline-foundation is still elastic. 

Equation [BJ] is solved to get pipeline displacement equation [B24] by assuming that the 

soil displacement is a constant dong the width of the iandslide and combining the 

homogeneous and nonhomogeneous solutions. 
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Using equation [B24], the analysis comes down to determining the 16 integration 

constants and 2 elasto-plastic interface locations. A and B. The 16 integration constants 

are denoted by (CI, Cr, C3, and CJ. in Region I: Cj. C6. C7r and CX, in Region 1; kl, kr, kr. 

and b, in Region 3: kj, kn, k7. and t. in Region I). We use the following boundary 

conditions and equation to determine the 18 constants: 

At x = --. u = 0 (3 constants) where u is the displacement: 

At x = A. u = Ds ( 1 constant); 

At x = A, u, u*. u", and u" are continuous where u'. u" and u" are first. 

second and third derivatives (4 constants): 

At x = 0. u, u'. u". and u" are continuous (4 constants): 

At x = B. u = up - Ds are continuous ( I constant): 

At x = B. u. u'. u". and u" are continuous (4 constants): 

At x = ( R' -~m')1"~. u = 0 ( 1 constant): 

Force quiIibrium equation in transverse direction ( I constant). 

Parametric analysis shows that maximum critical strains ye likely developed in 

Region 3. For most practical range of pipeline strains. the maximum strain due to both 

bending and stretching of the pipeline is given by the following equation expressed in 

terms of constant kl. k7, and k3 and Ri, 

where the constants k,, kz, and k3 are solve as a set of 12 non-linear equations 
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3.3.1 Infinite width transverse landslide 

Assuming the detlection profile follows Euler's Elastic Curve. llnd the width of 

landslide is infinite, we can state by symmetry that there is a double curvature at the edge 

of the landslide. We also assume the landslide takes place sufficiently slow enough so as 

not to shear the pipeiine at the edge of the landslide. 

As long as the relative landslide movement has not exceeded the limiting elastic 

displacement (D,). the combined bending and stretching strain equation for n pipeline on 

elastic foundation is given in equation [3.9] and derived in equations [B 1001 to [B 1081. 

Please note that the stnin equation [3.9] is derived for the stable soil region (x  = -- to n = 

0). and the values calculated would be a mirror imaged for the region (x  = 0 to x = =). 

13-91 

As the relative landslide movement exceeds Ds, then there develops a plastic 

region and an elastic region. The combined bending and stretching strains for the plastic 

region ( E ~ ) .  and the elastic region (G). and the location of their msitions point (B) are 

given in equations [3.10], 13.1 11 and [3.12]. See the derivations in Appendix B from 

equations [B 1 091 to [B 13 1 1. 
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In equation [3.11]. B is the point of the transition between the plastic and elastic 

zones. and it may be solved using the secant or bisection method. 

Some of the results of this investigation are listed below: 

I ) At small pipe deflections. the plastic zone is small. The 

displacement. tensile suain. and bending strain profiles of the 

elastoplastic equation look like that of the pure elastic 

equation. 

2) At Iarger pipe detlections, the plastic zone increases. The 

elastoplastic soil deflects more than the pure elastic soil, but 



the pipe in the elastoplastic soil curves less and subsequently 

has lower bending and tensile strains (see Figure 3.10). 

3) Depending on the various soil and pipe chncteristics. the 

tensile stress from the stretching of the pipe has a significant 

effect to the total stnin. 

1) The plastic zone and total strain increases with the increase 

of elastic modulus of the pipe (E). and the soil subgndr 

modulus ( Ks). 

5 )  The plastic zone increases but the total swain decreases 

with increasing pipe thickness (t). and pipe diameter (dl. 

6) If the soil density was less. the cohesive strength and 

Frictional angle wm lower. and the pipe was not buried as 

deep. then the totd strain developed is less. In other words. a 

high soil resistance (Ri is high) will produce larger stress in 

the pipe for any given ground displacement. 

When the pipeline lies at an angle to the direction of Iandslide, the pipeline will be 

subjected to both longitudinal and transverse loading. Since the resulting displacement- 

strain relationships, as presented in this thesis. is modeled as elastic-plastic soil response. 

it is not possible to simply add the effects of combined transverse and longitudinal 

movements. However, it should be possible to take a combined longitudinal and 

transverse loading and divide the loading vectoridy into each component. then 
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determine the strain in the pipe due to each component of loading and sum up the effects 

on the pipe. 

Figures 3.1 1 and 3.11 are plots of the maximum pipeline stnin developed for a 

pipeline lying at 30 and 60 degrees to the landslide direction. respectively. for different 

lengths of landslide. At 60 degrees, the pipe is subjected to higher m s v e n e  loading and 

lower longitudinal loading than at 30 degrees. As the angle between the axis of' the 

pipeline and the landslide direction increases. the bending strain component increases and 

become more dominant. while the tensile strain decreases. 



3.3.2 Finite width transverse landslide 

Figures 3.6 and 3.9 show an overhead view of a transverse landslide with finite 

width. 

As long as the relative landslide movement has not exceeded the limiting elastic 

dispiacemmt (Ds), the combined bending and stretching strain equation for a pipeline on 

elastic foundation inside the landslide. where the maximum suain takes place. is 

[3.141 
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Equation [3.14] is derived by applying equations p 3  I and @32] to equations 

[B38] and [B39], and substituting in the constants fioom equations @347] to [B52]. 
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As the relative landslide movement exceeds Ds, then there develops a plastic 

region and an elastic region. For most practical cases. the maximum combined bending 

and stretching strains occurs inside the plastic region of the landslide (Region 3): 

1 

I 1 1  - 1  -, 
E J( XI-. -- - R r <  - --k - k,.r - k3 - - d- I- - k l . ~  - k 

2 E-I 6 7 
- - Z E-I Z J 

where kl. k2 and k3 are constants to be solved numerically using the Newton- 

Raphson method (Press eta!. 1986) as implemented in the Basic program shown in 

Appendix D and brir fly described at the end of Appendix B. Equation [3.15] is derived 

by applying cquations [B3 I ]  and [B32] to equations [B6 11 and [B621, and substituting in 

the constants solved from equations [B8 11 to [B96]. 

For a finite width of 20 m. the results are essmtidly identical to a transverse 

landslide of infinite width. For 6 < 5D,. the maximum strain occurs at the elastic part 

(Region 4) of the landslide. Beyond 5D,. the maximum strain occurs in the plastic pan 

(Region 3) of the landslide. Tensile strain begins to dominate at 6 > 35D,, and the total 

strain will continue to increase from the tensile strain component. even though the 

bending strain begins to level off. 

The results of a 5-m and 20-m width transverse landslide m plotted against the 

infinite width landslide in Figure 3.13. We can see that at 20-m width. the results are 

almost identical to the infinite width landslide. For the 5-m width Iandstide, both the 

bending and tensile strain is larger, and this produces a larger total strain in comparison to 

the 20-rn and infinite width landslides. This means smaller width transverse Iandstides 

are more dangerous to the pipeline because they cause the pipeline to bend more sharply 
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and stretch more than they would have for larger width landslides. They do this because 

the soil is relatively stiff, and a small width landslide will act like a concentrated load that 

tends to shear the pipeline along the interface between stable and unstable soil. The s l o p  

of the pipeline in the middle of the landslide must be zero because of symmetry. and to 

accomplish this for a small width landslide. the pipeline develops greater stretching and 

bending strain near the interface of the landslide and stable soil. U the soil was less 

dense. less cohesive and has lower internal frictional angle (lower soil resistance ). then 

this problem would be reduced. 



3.4 Deep-seated Landslide 

In a deep-seated landslide, the sliding surface closely resembles arcs of circles 

(see Figure 2.3). Figure 3.14 shows a pipeline laid parallel to a slope of angle 8 with a 

soil cover depth of h. There is a circular failure surface of radius R intersecting the 

pipeline. The distance Rm is the perpendicular distance of the center from the Failure 

circle to the pipeline. The soil mass slides and rotates along the circular fiilure surhce 

with a tangential displacement 6. The soil movement dong the soil-pipeline interface is 

detined as u(x). which varies dong the position of the pipeline. Its longitudinal ( uL) and 

perpendicular (up) components are given in equations [3.16] and [3.17]. The derivations 

are shown in equations [C3] through to [C 1 I]. 

where x is the distance along the pipeline as defined in Rgure 3.15. 

3.1.1 Behavior o f  pipeline subjected to transverse displacement component 

The transverse displacement component UL is maximum at the intersection of the 

pipeline and the circular f~ lure  (x = 0) surface, and varies Iinedy with distance along 

the pipeline within the circular landslide (see Rgure 3.15). We assume that the minimum 

soil cover (h) is sufficient to permit the development of ultimate reaction force (Rd in the 



soil on the upheave side of the circular failure surface. The derivations for the 

perpendicular component displacement component of the soil (equation [3.17]) as well as 

the equations of the pipeline displacement equations ye shown in appendix C. 

For most practical or conservative case. the relative soil movement exceeds Ds. In 

such case. the ultimate soil resistance is mobilized. There are four different soil-pipeline 

interaction regions (see figure 3.15): 

Region I in stable soil with elmtic soil resistance (x  = -m < x c A): 

Region 2 in stable soil with plastic soil resistance ( x  = A c .u < 0): 

Region 3 in unstable soil with plastic soil resistance ( x  = 0 c I c B ): 

Region 4 in unstable soil with elastic soil resistance ( x  = 0 < x < (R' - 

~m')O.j). 

The entire pipeline det'ection protile can be determined by applying the 4th-order 

differential equilibrium equation in each region. The analysis involves determination of 

16 integration constmts and ? sIastoplastic interface locations, A and B. The L6 

integration constants are denoted by (CIT C2, C3* and C.4. in Regon 1 : Cj, C,, Ct. and C8. 

in Region 2: kl, kzT k3, and b, in Region 3: ks, k6, k7. and b, in Region 4). We use the 

following boundary conditions and quation to determine the 18 constants: 

At x = - =, u = 0 (1 constants) where u is the displacement; 

At x = A, u = Ds ( I constant); 
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At x = AT u. u', u", and u" are continuous where u', u" and u" are first, 

second and third derivatives (4 constants): 

At x = 0. u. u', u", and urn are continuous (4 constants); 

At x = B. u = up - Ds are continuous ( L constant): 

At x = B. u. u', u". and u" are continuous (4 consrants): 

At x = (R' -~rn')'.'. u = 0 ( 1 constant): 

Force equilibrium equation in transverse direction ( L constant). 

Parametric analysis shows that the maximum combined bending and tensile strain 

occurs in the plastic soil region of the soil movement (Region 3) 3s represented in 

equation [3.18]. This equation is derived by applying equations [B3 I ]  and [B321 to 

equation [C 171. The constants in the equation are solved simultaneously as a set of 18 

non-linear equations [C21] to [C38]. 

d l l  + - . - . R f i - k i . " - k ,  - E-r 2 
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3.42 Behavior of pipeline subjected to longitudinal displacement component 

The longitudinal component of the soil movement from n circular deep-seated 

failure is constant dong the pipeline. The soil-pipeline interaction problem is solved 

iteratively exactly using the method proposed by Chm and Wong ( 1997). The pipeline 

detlection is derived from solving the second-order differential equilibrium equation with 

appropriate boundary conditions as described already in section 3.2. The only difference 

is that in all the equations (for example. equation [3.4]). the displacement magnitude (8) 

md landslide length (L) for the planar landslide is replaced by ( t G/R)Rrn) and (71 R' - 

~rn'f'.') for the longitudinal component of deep-seated landslide (see Figure 3.16 and 

3.17). 

We have a stable region from x = - = to x = 0. a d  an unstable region From ?r = 0 

to x = (@R)Rm. The pipeline from x = - = to tG/R)Rrn is in compression. and from x = 

(6lR)Rm to - is in tension. 

For 6 c 2 4 ,  the soil is in elastic domain. The entire pipeline de tlection pro tile 

can be determined by applying the 21h-order differential equilibrium equation in the stable 

and unstable regions (Figure 3.17). The continuity of strain at x = 0 c m o t  be satisfied 

using the step function indicated in figure 3.16 for the soil displacement. Thus. we 

change the soil displacement profile to increase at an mgie (a) at x = 0. instead of 

instantaneously as for the case of the step function when solving b r  6 > ZDs. Also. the 

boundary condition of E = 0 at x = (R' -E2m2)"' is not used because this is not true if the 

length OF the longitudinal component ( 2 ( ~ '  - R ~ ' ) O - ~ )  is very large. The analysis involves 

determination of 8 integration constants and position A. The 8 integration constants ye 
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denoted by (CI and C2 in stable region; kl, kl, k3. IQ, kj, and k6 in unstable region). We 

use the following boundary conditions and equation to determine the 9 constants: 

At x = --. u = 0 ( 1 constant) where u is the displacement; 

At x = 0, u and u' are continuous (2 constants): 

At x = A, u and u ' m  continuous where u' is the tirst derivative (2  

constants 1: 

At x = B, u and u'm continuous where u* is the first derivative ( 2  

constants): 

At x = A. u = uh where u,, is the soil displacement at position A and equal 

to the pipeline de tlection ( 1 constant): 

Force equilibrium equation in longitudinal direction ( 1 constant). 

The following are the equations are used to solve the maximum strain in the pipe 

at 6 < l D s :  

E3.191 



For 6 > 2 4 ,  the soil ultimate strength is mobilized. Similarly. four regions of 

soil-pipeline interaction are identified: 

Region 1 in stable soil with elastic soil resistance ( x  = - c x < A): 

Region 1 in stable soil with plastic soil resistance ( x  = A e x < 0): 

Region 3 in unstabk soil with plastic soil resistance tx = 0 c x < B): 

Region 4 in unstable soil with elastic soil resistance (x  = B c x < (R' - 

~m~)". ') .  

The entire pipeline deflection profile can be determined by applying the ??order 

differential equilibrium equation in each region. The analysis involves determination of 

8 integration constants and 1 elasto-plastic interthce locations. A and B. The 8 

integration constants are denoted by (C I and C2 in Region 1 : C3 and C in Region 2: 

klmd kr, in Region 3; k3 and h. in Region 4). We use the following boundary conditions 

and equation to determine the 10 constants: 



At x = --. u = 0 ( 1 constant) where u is the displacement; 

At x = A, u = Ds ( 1 constant); 

At x = A. u and u'are continuous where u' is the t-mt derivative (2 constants): 

At x = 0. u and u' are continuous (2 constants): 

At x = B. u and u' are continuous where u' is the First derivative (2 constants); 

At r = B. u = h - Ds where id is the landslide movement ( I constant): 

Force equilibrium equation in longitudinal direction ( I constant). 

The maximum pipe s a i n  is given by (6 > l D s ) :  

where A is solved iteratively from the following equation: 

E5gure 3.18 is a plot of the rnzlxirnurn pipe strain developed From the 

perpendicular and longitudinal components. The strain calculated takes into account both 

the bending and tensile stress. For small soil movement the s a i n s  induced by the 

longitudinal component ace larger than those by perpendicular component. For large soil 
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movement, the perpendicular component dominates the deformation mode. which 

indicates the most probable mode of failure is shearing near the intersection of the pipe 

and the circular failure surface, 

3.5 Summary 

Permanent Ground Displacement (PGD) refers to my type of a nonrecoverable 

soil movemenr such as a landslide. This thesis studied the soil-pipeline interaction for 3 

pipeline in longitudinal. transverse and deep-seated landslides. 

The tensile strain was added on top of the bending strain in the transverse 

landslide analysis. and it was shown to contribute significantly to the total strain 

developed in a pipeline. 

It was shown that uansversc landslides with a smaller width would produce 

greater strain on the pipeline than a landslide of larger width. Also shown was that 

pipelines in m s v e n e  landslides of greater than about 10-rn width acts as if it was in a 

transverse landslide of infinite width. Our analysis indicates that if the width of the 

landslide (W) is greater thm IO-m. the pipeline will act as a compliant pipe. that is, the 

pipeline will displace at the same amount as the landslide. This agrees with the 

conclusion made by O'Rourke and Nordberg ( L990) based on information on observed 

lateral spreads. 

Of the three different types of landslides, the deep-seated landslide is the most 

dangerous for pipeline fhiIure. It does not take very much deep-seated soil movement to 

shear the pipeline near the interface between stable and unstable soil. It is wise to 
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construct berms at the foot of slopes to prevent any such deep-seated landslides. The 

next most dangerous landslide is the transverse landslide because it can also shear the 

pipeline at the interface between stable and unstable soils. 

The maximum strain developed in a pipeline in a longitudinal landslide reaches a 

plateau after and beyond a certain soil displacement. Since most longitudinal landslides 

are less than 100-m long, it would mean most pipelines could withstand most typicd 

longitudinal landslides for my amount of soil displacement. 

The most critical parameters in the safe design of pipelines in unstable slopes are 

the soil resistance ( Rt). pipe modulus of elasticity ( E). and pipe thickness (t). Using light 

weight aggregate (LWA) as a backtill not only provides dninage. but it will reduce the 

strain induced in the pipeline in a landslide. Using a more elastic steel pipe (lower 

modulus of elasticity) and thicker pipe would reduce the strain induced in the pipeline as 

well. 



fig. 3.1 : Longitudind landslide 

Fig. 3.1: Force-displacement relationship of soil 



Fig. 3.3: Force equilibrium on a finite element of pipe 
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Fig. 3.6: Transverse Imdslide of finite width 
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fig. 3.1 1: Maximum pipe strains at 30 degrees to [andslide direction 
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Fig. 3-14: Circular deep-seated landslide 
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Chapter 4 

Statistical Analysis 

4.1 Introduction 

There is a trend in civil engineering today toward providing economical designs at 

specitied levels of satkty. Current design procedures. which ye generally learned only 

after many trail-and-error itmtions. often fall short of expectations in new situations. 

Even the raw data. on which problem solutions are based. themselves exhibit significant 

variability. The source of uncertainty in soil properties come from spatial variation of the 

soil properties. mdom testing errors. smtisticd estimation error due to a finite number of 

measurements, or bias in measurement procedures. Another source of uncertainty comes 

from the inability of man to completely model a physical system with 100% accuracy. 

The equations being used clre often derived after making simplibng assumptions that 

approximate a red physical behavior. This chapter will only demonstrate how concepts 

of statistical analysis may be used to take into account the uncertainty of soil properties 

from their spdal variation. This would supplement the geo technical engineer's 

judgment in assessing the risk of pipeline f&ilure in unstable slope. 
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Three main techniques are used and they are the Monte Carlo simulations. the 

First Order Second Moment (FOSM), and the Rosenblueth's Point Estimate Method 

(PEW- 



4.2 Fundamentals 

h engineering applications, there are two primary definitions of the probability 

concept - they are relative frequency and subjective interpretation. 

Relative Frequency is a measure of the total favorable outcomes divided by total 

possible outcomes. and this is what historically has been offered as the measurement of 

probability. However. in geotechnicd engineering, you cannot have repeated mils. A 

slope will fail or it won't. In the diverse topographic features of the earth's surface. it is 

not possible to have a large number of identical slopes with identical soil properties. 

geometry. and loading. Subjective interpretation of probability is therefore more useful 

for engineering applications. 

There are 3 basic axioms governing the theory of probability. First. the 

probability of an event "A" ranges from zero to one. inclusive. 

[4.1] I O I P ( A ) S I ~  
Second. if the probability of an outcome "B" is certain. then its probability is I .  

[4.1] I P ( B ) = I ~  
Third and find axiom states that if the events A,, A?, .... A, are mutually exclusive. or in 

other word, they can not occur simultmeously. then the probability of the occurrence of 

the sum of events A[, A?, . . ..Ao is the sum of their individual probabilities. 



The tirst moment E[x] is called the expected value, or mean of the variable x. It 

measures the central tendency and is Like the center of gravity in statics. The second 

moment V[x] is called the variance. It measures the dispersion of the distribution and is 

Like the moment of inertia in statics. Since variance gives dispersion in units of square of 

the random variable, a more meaningful measure of dispersion is the positive square root 

of its variance cdled the standard deviation. ~ [ x ] .  The coeficient of variation is used to 

measure the scatter of n random vuiable. and expresses the reliability of the central 

tendency. 

Mid ~ o i n t  

[4.4 Arithmetic Mean: 

Variability 

[4.5] Variance: 

[4.6] S tandard deviation: 

[LCJJCoefficient of 

variation: 

skewness: 

. -. 

Population parameter i Sample statistic 

Table 4.1 : Basic statistical Functions 
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According to Chow et al. ( 1988). the sample estimate of the variance is divided 

by "n- 1" rather than "n" to ensure that the sample statistic is "~nbiased". that is. not 

having a tendency. on avenge. to be higher or lower than the true value. The coefficient 

of skewness measures the symmetry of the data. For positive skewness (Cs>O). the data 

are skewed to the right. with a longer tail of data on the right of the mean. 



4.3 First Order Second Moment (FOSM) 

The "First Order" refers to the F i t  order truncation of the Taylor series 

expansion. and the "Second Moment" refers to the use of vdance. This method consists 

of expanding the system performance equation h(x1,xr, .... xJ about [E(xl). E(xr). 

...J5( xJ], the point at which each of the component variables takes on its expected values. 

by a multi-variable Taylor series expansion. We will expand it up to the 2nd order for 

illustration. 

The Taylor series expansion of multi-variable about the component means is: 

Taking the expected values of both sides of the above equation: 



Therefore Taylor expansion of multi-variable up to the second order is: 

Only the first term is used in FOSM. so that the expected value of the system is 

simply the value of the system equation with mean component vdues. We pt the 

variance by similarly expanding the Taylor series to the fiat order to get: 

To apply FOSM to computers. we nerd to find the numerical approximations of 

the tint and second order derivatives. Expanding the Taylor series about x: 

Numerical approximation of first derivative is derived by subtracting the above 1 

equations. and it has a second order magnitude of error: 



The second derivative is approximated by the following with a second order 

magnitude of error: 

The t - i t  derivative can be improved by using Richardson's Extrapolation to get 

the order of rna,htude of error down to 4. 

f-1.161 

where. 

14.171 



4.4 Rosenblueth's Point Estimate Method (PEM) 

Point Estimate Method was first presented by Rosenblueth (1975). and later 

extended by him in 198 1. It is n simple and versatile procedure to hind the distribution of 

functions of random variables. For example. for a function of 3 random variables -- say. 

y = y[xl, XI, x3] and 9, is the correlation coefficient between variable x,, and .u,. 

where y,, = ycx to . X  + +o 
1 1 2  - 3  3 

The sign r ,  is determined by the multiplication ruIe of i and j. For convenience. 

we will assume dl correlation coefficients are zero in our example. The first 3 moments 

rue as tbilows: 



4.5 Monte Carlo Simulation 

Monte Carlo Simulation is simply a repeated process of generating deterministic 

solutions to r given problem. The main element of a Monte Carlo simulation procedure 

is the generation of random numbers for a specific distribution. Previously. with slow 

computers. Monte Carlo simulations are costly in its application to complex problems. 

because it requires a large number of repetitions. With faster computers. this method can 

be readily used as a check for approximate methods of probability calculations. 

If ul and u2 are 3 pair of independent uniformly distributed random numbers, then 

a pair of independent random numbers from 3 normal distribution with mean p and 

standard deviation o. may be generated by: 
- 

[4.20] 



4.6 Other Methods 

Another statistical method often used for slope stability analysis is the reliability 

index (p) as defined in equation l4.2 I]. It is a way of normalizing the bctor of satkty 

with respect to its standard deviation: 

where 

F = factor of safety. 

E[FJ = mean or expected value of the factor of safety. m d  

a[W = standard deviation of the factor of safety. 

The reliability index describes safety by the number of standard deviations (i.r.. the 

amount of uncertainty in the calculated value of F) separating the best estimate of F from 

its detined Ulure value of 1 .O. If the statistical distribution for the factor of sclfety is 

known. then the reliability index can be related to the probability of failure. 

1.7 Summary 

The objective of statistical analysis. as applied to pipelines in unstabke slopes. is 

to assess the risk and probability of pipeline failure. Three main techniques are used for 

statistical analysis were shown. 

The Monte Carlo simulation involves generating random numbers using the mean 

and standard deviations for each variable of the function. FOSM is obtained from the 

Taylor series expansion of the function about the expectations of the random variables. It 
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may not always be possible to use the Taylor series approximation. because the function 

itself must satisfy the existence and continuity condition of the first or first few 

derivatives. and the computation of derivatives may be difficult. These difficulties can be 

overcome by using Rosenblueth's point estimates (PEM) of the function, which leads to 

expressions akin to finite differences. 

Of these three methods. only the Monte Carlo simulation method uses the whole 

statistical distribution of the variables. The FOSkI and PEM both only use one standard 

deviation from the mean for their cdculations. 

The PEM usually gives results very close to the Monte Carlo simulation. It is 

very easy to use. and the derivatives of the function need not be derived. It is 

recommended that PEM be used for analyzing soil-pipeline interaction. and the use the 

Monte Car10 simulation as a check on the results. 



Chapter 5 

Case History of a Pipeline in Unstable Slope 

5.1 Background 

Amoco Canada Resources Limited had a 6-inch ( 168.3mm) oil emulsion pipeline 

located in Willesden Green East near Rocky Mountain House. Calgary. Alberta. The 

Right of Way contains 6 pipelines. Active slope movements were &fecting only the 6- 

inch oil emulsion line dong the southern edge of the Right of Way. 

The pipeline was laid about 2-m deep in a slope that is 43-rn high and 185-m 

long. Landslide movements were occurring at depths of 2 to 2.5-m. Elastic stress 

cdculations by Bun Engineering Limited (AGRA Earth & Environmental Limited. 1995) 

indicated that the oil emulsion line had not been stressed beyond the yield point. They 

determined the stress induced on the pipeline From the soil movement by multiplying the 

soil mction per meter by the total length of the unstable soil slab and divided by the 

cross-sectional area of the pipe. They dso included the Posson effect and hoop pressure 

as a part of the longitudinal stress 

The tine was exposed in the landslide toe area. Some bending along-the-slope 

was observed in the pipeline. Approximate measurements and simple strain cdcuIations 



66 

indicated that the bending was within the tolerable limits. Excavations did not show signs 

of upwards trending shearing within the soil, and the line did not appear to be in 

immediate risk of being ruptured by landslide movements according to the 1995 repon by 

AGRA Earth and Environmental Ltd. 

A 3-D plot of the slope with a sketch of the pipeline location as well as the 

locations of the inclinometers and boreholes are shown in Figure 5.1. Figures 5.1 to 5.6 

are photographs of the pipeline in the slope. The toe of the slope was separated by a 200- 

m wide tlood plain from the North Saskatchewan River. The active hilure appears to be 

about 100-m wide (across the slope) and 70 to 80-rn long (down the slope). 

Figures 5.7 to 5.9 are boreholr logs 1 to 3. and Figures 5.12 and 5.13 are the grain 

size distributions for borehoks 2 and 3. The soil consists of 25% clay and 74% silt at 

2.59 to 2.74-m drpth, and 37% clay and 60% silt at L .68-m depth. BorehoIrs indicate 

that the soil is made up of sand and clay at depth zero to 5.1-m. 

Figures 5.14 to 5.17 are the inclinometer data from May I 1 '95 to July 16 '95. 

Detlections direction A is towards West (downslope and parallel to the pipeline) and 

direction B is towards South. The slope has shown I -rnm/day movement p d I e 1  to the 

pipeline. and from May I I" to July 25". 1995. inclinometer "SI-2" registered a 

cumulative deflection of about 68-mm downslope. The surface of the slope indicator 

"SI-3" appears to be impacted between May 1 I and May 18. 1995 resulting in the 

inclinometer showing up slope movement above 1 -9-m. Slope indicators indicate teat the 

possible slip plane is relatively shallow (less than 3m). and that there ye no deep-seated 

movement, 
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The AGRA report does not contain any soil stlength data. The soil strength 

parmeters used in this chapter are based on empirical correlation. 

5.2 Statistical Analysis Based on Simple Model (O'Rourke et 

Table 5.1 consists of data used in the statistical analysis of a steel pipeline 

subjected to longitudinal Iandslide. The values were provided by AGRA outside of the 

AGRA report. Lumb ( 1966. and 1970) studied the statistical distributions of cohesion c 

and angle of friction 4 for Hong Kong soils and found that tmQ has an approximately 

normal distribution while c conforms more to a Bern distribution. The cmtrd region of 

this Beta distribution ran be practically approximated by a normal distribution. Lumb's 

conclusions were later supported by Schulue ( 1972). and H m  ( 1977). For this rase 

study. a normal distribution is assumed for the soil cohesion and frictional angle. since in 

the practical rang of 0 (0" 5 $ 5  45"). 0 is approximately proportional to tan@. Lumb 

( 1980) and other workers have found that variability of the unit weight of soil yon the 

determinations statistical results to be insignificant. therefore the unit weight of soil is 

assumed to be a deterministic quantity for this case study. 

The statistical analysis is based on the simplified models of uniaxial stress-strain 

behavior of steel by Ramberg-Osgood ( 1943) and the longitudind strain equation from 

O'Rourke et al. ( 1995) (i-e., equations [2.1] and [2.31). 



Length of PGD, L(m) 

soil cohesion. c ( ~ / r n ~ )  

I depth to center of pipeline, H(m) 

unit weight of soil, ( ~ / r n ~ )  

I frictional angle, 0 (degrees) 

lpipe thickness, t (m) 

lpipe modulus of elasticity, E ( ~ l r n ~ )  

I pipe yield strength, o, (N/ITI~) 

I 

Table 5.1 : Input data for statisticd mdysis 01 
Imdsli 

mean lstandard deviation 1 

a steel pipeline subjected to longitudinal 



The mean. standard deviation, and skewness values of maximum s a i n  in pipeline 

subjected to longitudinal landslide - estimated by three statistic3 methods (FOSM. 

PEM, and Monte Carlo simulation) - are summarized in Table 5.2: 

Figure 5-18 is a plot of the mean values of maximum strain as a function of the 

Length of 

landslide 
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Table 

Iandslide length estimated by the three methods. The PEM provides the upper bound 

mean 
L 

FOSM 

162-78 

325.57 

488.35 

651 -14 

813.97 

977.14 

1142.23 

131 5.88 

1520.99 

1825.88 

241 2.17 

371 9.1 8 

6730.21 

1 3506.78 

281 37.06 

5-21 

standard deviation 

PEM 

163-34 

326.68 

490.02 

653.36 

81 6.79 

980.88 

1148.71 

1333.22 

1578.97 

201 9.04 

3007.05 

5398.51 

1 1 108.1 6 

241 50.37 

52485.88 

Results of 

Monte 

Carlo 

12.67 

25.47 

37.82 

50.65 

63.54 

77.OC 

92.67 

120.90 

202.58 

431.85 

1 145.64 

3126.22 

7974.48 

1841 9.67 

43274.24 

'Uiu "-")a 

FOSM 

17.86 

35.72 

53.57 

71.43 

89.35 

107.71 

128.61 

160.78 

234.35 

439.28 

101 4.64 

2538.77 

6306.09 

15030.43 

34093.46 

An;llysis "~'e: 

Monte 

Carlo 

163.08 

325.98 

489.24 

652.53 

815.31 

979.27 

1145.42 

1325.14 

1551.61 

1926.81 

271 9.35 

461 0.46 

9058.61 

19229.38 

41 050.05 

Smtisticd 

PEM 

17.89 

35.79 

53.68 

71.58 

89.55 

108.09 

129.92 

166.32 

256.44 

51 7.39 

1 260.43 

3238.23 

81 35.21 

19482.9 

44284.58 

" ~ n k  
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estimation on the mean value. whereas the FOSM gives the lower bound. The difference 

between these two bounds increases with increasing landslide length. Considering the 

coefficient of skewness. the Monte Carlo method yields a higher positive coefficient of 

skewness when L exceeds 90 m as illustrated in Figures. 5.19 and 5.20. The coefficient 

of skewness yielded by PEM is srndl -- which may be due to the clssumption of zero 

correlation coefficients. The probability density distributions as shown in Figures 5.19 

and 5.20 can be used to tind the probability of pipeline Failure. For example, if we 

consider pipeline failure to occur at the start of pipe yielding at E,,,IJ= 3458 microstrains. 

then the probability of pipeline Failure is about 1008 at L = 130-m. and 1-78 at L = 100- 

m. The strains obtained from this simple model are similar to those Found by Burt 

Engineering Limited. 

The Monte Carlo simulation method is the most accurate of' the three statistical 

methods. Lf the complex soil-pipeline interactions models. which ye solved iteratively. 

are written into a computer prognm. then the Monte Cxlo simulation method should be 

used for the statistical analysis. 

Both FOSM and PEM do not require the large number of iterations used in Monte 

Car10 simulation. PEM results are very similar those from the Monte Carlo simulation 

for landslide lengths of up to 100-m. and they are more conservative than those from 

Monte Carlo simulation. For example. PEM produced a 3.8% higher strain value for a 

100-m length ImdsIide. Further. PEM does not require deriving derivatives of the 

bnction as required by FOSM. Therefore. if the complex soil-pipeline interaction 

modeIs derived in this thesis were not implemented as a computer program, then it is 
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recommended that PEM be used for the statistical analysis. The more time comsurning 

and computationdy intensive Monte Car10 simulation can be used as a check on the 

PEM results. 

5.3 Strain analyzed from new pipeline models 

53.1 Strain from longitudinal landslide 

The strains developed for different mount of soil movement a d  length of 

landslide is calculated from equations [3.2] and L3.71 and is shown in Figure 5.11. 

For a pipeline diameter of 168.3 mm. the wrinkling strain. from equation [1.J]. is 

ew = 66 13 microstnins. The yielding of the pipeline starts at e,, , ,~ = ~ lu lJ /Ep lp  = 1930 

microstrains. or if we used the Rambeg-Osgood equation Eylrld = 3458 microstrains. The 

result of longitudinal landslide analysis indicates that the pipeline would not yield for cl 

landslide length of up to LOO-m. 

5 3 2  Strain from deep-seated landslide 

Although there are no evidence of deep-seated fidures developing in the actual 

slope itself, it is wise to calculate hypothetical deep-seated f'ailures to determine the 

mount of such soil deep-seated movements needed to yield the pipeline. 

If the slope were to have r circular deepseated landslide with radius R = 15 m 

and Rm = 25 m. The length for the longitudinal displacement component is ?*(R'- 

l t r n L ) O S 5  = 74.8 m. The maximum pipe strain developed from the transverse and 
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longitudinal components of the deep-seated landslide, as analyzed using the method 

described in section 3.3, is presented in Figure 5.22. We see that there is no imminent 

danger of the pipeline yielding from the longitudinal component of the rotational soil 

movement. However. the pipe will begin to yield from the transverse component when 

the soil movement reaches 31Ds or only about 0.256 m. This indicates hat any deep- 

seated soil movement is very dangerous for the pipeline because it would shear the 

pipeline near the intersection of the pipe and the circular failure surface. or at the very 

least . create wrinkles on the pipeline. 



Willesden Green East 

Fig. 5.1 : 3-D Landslide surface contour of Willesden Green East with pipeline location 

Fig. 5.2: Lateral edge of Iandslide at top of slope 



Fig. 5.3: Exposed 6 inch oil emulsion tine near slope crest 

Wg. 5.4: Groundwater in pipeline trench behind the slope crest 



Fig. 5.5: 6 inch oil emulsion line 

Fig. 5.6: View of oil emulsion line tkom top of slope 



Fig. 5.7: Borehole No. I 



Fig. 5.8: Borehole No. 2 



Fig. 5.9: Borehole No. 3 



EXPIANNION OF TERMS AND SYMBOLS 

The terms and symbols u8a8 on the bomhak logs to rummaria tho nrults of f i d  invmtig8tion md 
subrrquent labontory tasting am dewikd in the& pagu, 

It should be notod that materials. boundrriu and conditions haw bean #t.blishad only at Me bonhole 
locations at the time of inmtigrtion and are not n.E#urily mpraont8tiw of ru68urfaee conditions 
elsewhere across the sit.. 

TEST DATA 

Oau 0bt8tnsd dur~ng the field investigation and from labomtory tosting a n  shown I t  thr approprim d.pth 
i n l m l .  

Abbrevtations. gwhic symbols. and mlenmnt t.rt r~ th0d  drrignrtim m 88 follom: 

'C Canso~idation tmt 'Sf Sd l ing  taat 
OR RJattw denaity (formarty specific gravity) N Tomm rhur strength 
Fines Percentage by wsignl smaller than #2W sieve VS VInO shwr atrm@t (undkturkbnmolw) 
k Parmeability coattictent w NItunl w.1.r tontrnt (ASTM 0 2216) 

'MA Mschantc8l grain size mrlylis md wl bquid limit (ASTM D 423) 
hydrometer test w, Plastic limit (AStM b 424) 

N St8nd8fd p.netntion t a t  (CSA Alla.tdb) ,, Unfi anin at fdlu" 
Nd Dyn8mic cone penatmion tost r Unit weight of soil or rack 
NP Non pl88tic soil rd Dry unit Wght of roil or rock 
pp Pocket penetrometer strength p Dsnrlty of roil or rock 

'q Triural compnaslon test pa Dry density of soit or rotk 
q, Unconfined comptaasitm nrength 

'SB Shearbox test - MprgU 
SO. Concentrat~on of W ~ C O ~ - S O ~ U ~ ~ O  sulphrte I. oc~wrwd a t a r  I ~ I  

'The mum or tmso tosm u s u ~ y  m repartrd sapannty 

SOIL CLASSIFICATION AND ommmoru 
Soils are ctualfied and dwcribod according to tbtr mginaring pmpefli88 and ~ w i o u r .  
The sail of each stratum is describhd uslng the Unitiad Sorl Cluslfic+tion Syrtemr modified slightly so Hut 

an rnorgrnlc clay of "mdiurn plasticity* 1s ncognlud. 

the use ot modifying adjectives may b. employad to M i n e  the actual or antimted prcenl8ge mnge by 
welght ot rntnor components. Thrs IS s~milrr to a systm developad by D.M. Burm1ster.2 

The soil classifiation system IS shown In grsrter detril on prQe 2 

SAMPLE l7PE - The type of sample ts shown at the rgpropriate depth in1mN.l using the follawing 
8bbmv18tions: 

A a u g e r m p h  
B block runpk 
C rock can, O r  fmmn mil cafe 
D dnve umpk/SPT s8mpte 
P p ~ t w r  t u b  sample 
U tube sample (usually thln-wallwl) 
W wash or air return mrnpla 
0 otnar (sme mport tm) 
61 indicrtn no umple mcowy 

Kg. 5. LO: Explanation of terms and symbols used on borehoIe logs (put i )  



Fig. 5.1 1 : Explanation of terms and symbols used on borehole logs (part 1) 
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Fig. 5. L 3: Gnin size dismiution for borehole 3. 
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Eg. 5.14: Inclinometer S 1-2 
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Fig. 5.15: Inclinometer S 1-3 
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Fig. 5.16: Inclinometer S I4 



Fig. 5.17: Inclinometer S 1-5 
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Mean Values of Maximum Microstrain on Pipeline 

Length of Landslkfa (m) 

Fig. 5.18: Mean values of maximum microstrain on pipeline subjecteded to longitudinal 
landslide 
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Fig.5.19: Probability density distribution at ElOm 
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Fig.5.20: Probability density distribution at k130m 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

Andytical md numerical solutions have been derived to determine the detlection 

profile of a buried pipeline in r slope subjected to a longitudinal. transverse and deep- 

seated failure. Unlike previous methods, the methods presented in this thesis recognize 

that the force acting on the pipe is o function of the relative displacement between the 

pipeline and the landslide. and vice versa. 

[t was found that shear-type rupture and tlexure bending are the two possible and 

dominant deformation modes of a buried steel pipe in a deep-seated slide. It was also 

found that for transverse landslide widths greater than about 10 m the pipeline shows 

displacement and stnin as if the width of the landslide is infinite. Relationships between 

the soil movement and the pipe deformation strain for different modes have been 

established so that one can assess the risk of pipeline rupture with a given soil movement. 

This allows consulting engineers to monitor the soil movements in r slope in order to 

predict pipeline strains. 
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The most critical parameters in the safe design of pipelines in unstable slopes are 

the soil resistance (Rf), pipe modulus of elasticity (E), and pipe thickness (t). Using light 

weight aggregate (LWA) as a backfill not only provides drainage, but it will reduce the 

stnin induced in the pipeline in a landslide. Using n more elastic steel pipe (lower 

modulus of elasticity) and thicker pipe would reduce the strain induced in the pipeline as 

well. A small width transverse landslide produces higher stnin than a larger width 

landslide - the difference is s m d  at the beginning of soil movement but it becomes 

larger for larger amounts of PGD. 

A luge number of case studies clre needed to compare the results of the statistical 

analysis so that realistic conclusions can be drawn in the future about the correlation 

between observed behavior md statistical predictions. Estimates of strength panmetes 

of slopes based on test results and associated geomechmics considerations must be made 

for each particular slope - and these properties would vary from one site to another. 

Therefore. a quick method of calculation is needed to determine the probability of 

pipeline hilure - such as the Monte Carlo Simulation and PEM method. 

One must devise a remediation strategy based on the risk of pipeline hilure from 

a statistical cmadysis. For low risk. one may improve the surface and near-surface 

dninage and establish a soil movement-monitoring program. At intermediate risk one 

may try to bury the pipeline below the shdow Iandslide. but there wouId be r risk of 

inducing a higher strain on the pipeline if a deeper planar landslide or a deep-seared 

landslide were to develop. Another option is to instail valves both upstream and 

downstream of the unstable slope for automatic shut-off of the pipeline. One may also 
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try resloping and backfilling with LWA. If deep-seated landslides are possible, then 

constructing a toe berm is recommended. At high risk, one may reroute the pipeline to a 

stable slope. 

6.2 Recommendations 

It was assumed in this thesis that the soil properties such as cohesion c and 

tiictiond angle 4 were all independent mdom variables. At present there are no 

available data concerning the magnitude of such correlations. 4 new area of research is 

needed to establish that such correlations exist and then to quantify them. 

The statistical analysis. such as PmI. can be applied to the more complex 

pipeline strain equations presented in this thesis. However. it must be advised that it 

would be very cumbersome to implement FOSM. or require large computer power to 

apply Monte Cwlo simulation. 

The pipeline stnin equations can be expanded to include the thermal stnin. and 

pipline operating pressure. The effect of pore pressure on the soil-pipeline interaction 

should also be investigated. Instead of the simple elastoplastic soil behavior. the model 

could be revised to use the stress-strain behavior of overconsolidated and normally 

consolidated soil. 

The present model should be verified by using scaled physical model of a pipeline 

in a sliding mass of soil. Full scale testing requires suitable test sites and is costly. 

Centrifuge mode1 testing is cheaper. but is limited by the size of the centrifuge available. 
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For example, it would be difficult to centrifuge model a pipeline with a distinct backfill 

material unless a large size centrifuge is available. Finite element modelling (FEM) is 

great for modelling complex slope and pipeline geometries. The parameters describing 

soil-pipeline intenction could be adopted from soiVstructure interactions for foundations 

such as anchors and piles. However. E M  is limited by the assumptions used in 

modelling the soiVpipelinr interaction m well. 
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Appendix A 

Derivations for Longitudinal Landslide 

A.l General 2"d order equilibrium equation for pipeline: 

From Figure A. 1 : 

[A11 Irir .V 4 N-d~ - r-c a-d ,-dm: K ,.( u 8 -( K-J I-dx 
dx 

[A31 

From the stress-strain relationship: 

lA4l 

[AS3 

Combine equations [A31 and [AS] 

[A61 



Homogeneous solution of equation [A71 : 

[A81 

where, 

~ 9 1  

Nonhomogeneous solution of equation [A71 : 

Therefore. the general 2" order equilibrium equation is as follows: 



A 3  Pipeline equations for 6 < 2D, (see Figure A.2): 

Region 1 (-.. < x c 0,: 

[A L 21 

[A131 

Region 2 (0 < x < A): 

[A 1 51 

[A163 

[A171 

Apply the continuity condition at a s .  

[A 181 



Region 3 (A < x < B): 

I"" u ,,il - u 3 =L-- 3 wnca)-r- u 
d xd x 

.Apply the continuity condition at x = A 

Region 4 ( 6  < x < U2): 

[ a 9 1  

Apply the continuity condition at x = B. 

[A301 



Applying the force equilibrium condition on the 4 regions. 

[A311 

The maximum strain for 6 c ?D, occurs in regions 2 or 3 and is expressed as follows: 



A.3 Pipeline equations for 6 > 2 4  (see Figure A.3): 

Region 1 (-- < x < x,): 

[A341 

[A351 

[-G61 

Apply boundary conditions of zero pipe displacement at x = -. and Dr pipe displacement 

at .Y = Xa. 

dxdx 

1-1 
11 6 

Region 2 (x,c x < 0) 

u,-k2- D, 
dxdx - 

Region 3 (0 < x < xb) 



Region 4 (xb c x < U2) 

Applying the continuity condition at x = x,, we get: 

Applying the continuity condition at x equals zero. we get: 

Applying the boundary condition that ul(xb) = ( 8  - 4): 



Applying the continuity condition at x = xb, we get: 

Combining equation [A521 to equations [A541 and [A551 : 

Applying the Force equilibrium condition on the 4 different regions: 

[A58 I 

[A591 PFI -P-  n ~4 

[A601 

Combine equations [A601 and [A53]. we obtain equation [A6 I ]  which need to be solved 

for xa: 



The maximum strain br 6 > ?Ds occurs in regions 2 or 3 at x = 0, and is expressed as 

follows: 

[A621 

Fig. A. 1 : Force equilibrium on a tinite element of pipe 
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fig. A.2: Ramp landslide movement 
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Fig. A3: Step landslide movement 



Appendix B 

Derivations for Transverse Landslide 

B.l Elastic curve equation: 

The curvature ofa plane curve is as 
-- 

PI1 

For shallow curves. equation [B 1 ] is approximated as 

2 

P [I+$% )'lJZ I;. 

Within the elastic range. the curvature of the neutni surface may be expressed as 

p E - I  dx- 

The transverse load per unit length (a) is expressed as 

where 

llp is the curvature, 



u is the transverse displacement, 

M is the bending moment, 

E is Young's modulus of elasticity, and 

I is the moment of inertia. 
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B.2 General pipeline displacement equation under transverse 

loading 

From equation m4]: 

where. 

d is the pipe diameter. 

6 is the soil displacement. and 

K, is the soil elastic subgrade modulus 

Let 

~ 7 1  

62.1 The homogeneous solution 

Solving equation [B9]. we get: 



where, 

[B 121 

[B t 41 

lB  151 

Since 

CB 161 

I k =  [2p]1/41 - and 

Apply equations [B 161 and [B 171 to equation [B 157. 

[B 181 
u =ri" -[A, . (cos( l -x))+i-s in(k-x))+A,  -(oos(k- x))- i-sin(h-I))]+---  

---e-" -[A, - (cos(k-x))+i-s in(k-x))+A,  -(cos(k+ x))-i.sin(k. x))] 

findly, the homogeneous solution is: 

[B?OI IU =ei" -[(c, -cos(h- x)+C, -sin(k-x))]+e-" -[c, -cos(h-x)+C, -sin(h. XI)][ 



82.1 The nonhomogeneous solution 

d'u K;d -=-. (8 - u) p211 ldx' ~ - 1  ( 

Therefore the nonhomogenrous solution is 

[B23 1 

Combining the homogeneous and nonhomogeneous solution. we have the displacement 

equation for the pipeline under transverse loading. 

[ B X j  



B.3 Tensile strain of pipeline 

From the Pythagorean theorem. we find the differential length of pipeline as follow: 

I3251 

Binomial expansion equation is 

[I3281 

Assuming shallow curve and applying binomial expansion. equation [B27] becomes: 

'"91 '1 
Therefore. the differential length of pipeline is 

In addition. the generd equation for tensile strain is 
, 



B.4 Bending strain of pipeline 

From equation [B2] 

As tong as the stresses remain in the elastic range. the neutral axis pass through the 

centroid of the pipe section. and so the bending strain on the outer surtice of the pipeline 

(&2) is 21 
2 dx- 

[B32] 

where d is the pipe outer diameter. 



B.5 Pipeline equations for elastic loading (6 < 2D,) with finite 

landslide width 

Regon - I ( -= < x < 0): 

We can reduce equation [B?41 for the gnen l  pipe deflection profile. in the region from 

negative infinity to zero. by applying the boundary conditions at x = - (C3 and C equal 

0). 

[B361 d d d  
- - - u ( 1-cosc A-x) l-sinc b-r) 1.C I - I I-sin{ La, - cos( k-XI 1.C - -2.ek"-k3 
dxdxdx 



Applying the following boundary conditions: 

At x = 0, u, u', u", u',' are continuous; 

At x = Wf2,  u'=O: 

Force equilibrium in the transverse direction: 

We obtain the following 6 equations: 

IB41 I 

sin ' .k.W . ,,, i. w 
k sin w c o s  I-LW - k , - e  ... 

'I 7 7 'I - - - - 
+ cos '-h-w sin ' - LW .k3 - sin '-i-~ - cos I -L -w -k - 'I - - 7 - 4 

1 
' L W  

(t sin !-L.w c o s  --LW .e' - 1 - k I  --. 
7 - 7 - 

1 1 
' A+W 

+ cos --k-W sin -.k-W -e' - I -k7 ..- 
7 7 - - - 

-k* 
1 + cos ' -LW -s in --LW -e2  - I .k3  ... 

7 - 7 - 
1 I 

[ . k w  
+ sin --k-W - cos --h-W -e ' - I - k 4 - C I  -CI 

7 7 - - - - 



Solving for the 6 unknown constants, we get 

h, w *c - - 

- sin '-L.w - -  cos '-A.-W - 

cos l-k.w 

- 
sin I-L-w - c o s  '-L-w - - 



B.6 Pipeline equations for 6 > 2D, with finite landslide width 

(see Figure B1) 

Region 1 (-- < x <A) 

F531 

At x = -. therefore CX and C4 are both zero: 

[ ~ 5 5 1  

A.X - 
u COS( A-x) sin, A-x) 1-C I - ( sint kxl - cos( A-r) ) .C2 -e - A  

dx 
L 

Region 2 (A < x < 0): 

r ~ 5 8 1  L x- h' * d u [a: ( I-cost b x )  i-sin( k-11 ).C - ( I-sinc 1-x) - cost A.x) 1-C 7 -2-e - P xd xdx 



Region 3 (0 < x c B): 

Region 4 (B c x < W/1): 

~ 6 9 1  

[B6J] d d d d  k-d- u 3 6 R 
- . .- u 3  )j=-.- --.... u - 

dxd.dxdir E-I E.1 



d d Ics Ica 2 
- -  - u  1U sin( L-xI-k - COS( h-x)-k6 -e - sin( k-x).k7 - cos( Lx)-kg -e -1-I 
dxdx 

L.s cu p; ( sin( k x )  - cost A-x) 1-k - ( sin( h-r) - eosc h-n) ).k6 -2 ... -1 
dx - . i . x  + ( cos ( h-x) - sin( k r )  1-k - ( - sin( Lx) - cos( A-x) 1.k -r 

r,' X d - d - d  up: ( cosli-x)  s l n t ~ x ) ) - k ~ - ( c o s ( i . n )  s i n ( ~ - x ) ) - k ~  -e' ... -2-A' 
dxdxdx 

+ (cost La) sin( A-x))-k7 - csinck-x) - cosck-.c))-kg -e "* 

L 

Apply the displaccemmt boundary condition at x = A: 
- - 

W-Cl 

Apply the displacement boundary condition at x = B: 

Apply the strain boundary condition at x = W/7 (middle of landslide): 
1 

W W W W 
k W  

W r ~ :  sink- -cask.-- . k g -  s i n L - -  - c o s A . -  +.- - "4 ; A 
dx - 7 7 7 - - - 1 - 

W W W W + cos I -  s i n k - -  - k 7 -  s i n L  -cos t-- s k y - e 2  
1 - 7 1 - 7 - 

Apply the force equilibrium condition for the 4 regions: 



. L-kl 
( t i  ( c o s ( L A )  - sin(71-A))-C - ( cos (h-A)  - sin(k-A))-C 7 -e D,-( A - Bb2-h. ... - 

LI3 + 1- (cos( A-B) - sin(l-B) )-kg - ( cos( L B )  - sin(LB) ).kg -s ... 
! .;c-W 

1 1 I 1 ? + cos --kW - sin --k-W -kg - sin --h-W - cos - - L W  -kg -e- ..- 
7 - 3 - '7 - 7 - 

+ ( cost A-B) - sin( LB) )-k7 - sin( A-B1 cost A-B) ).kg -e "B ... 

1 I + sin --A-W - cos - - k W  -k - cos '-A-w - sin '-x-w .k -c ' 
2 - 7 7 7 - - - 

Apply the continuity condition at x = A -where ul = ul, ul'=u<. ul"=u2" and 

u 1" '=u2' * . Four unknown constants are removed: 

CB8 L 1 

Applying the other 1 continuity boundary conditions at x = zero and x = B. we obtain 11 

equations for 12. unknowns 

[B851 

k- 11. 
(cos( h - A )  sin( a - A ) ) - C  I - (sin( A.A) - cost k A ) ) - C 1  -e k... - 

1 1 
+ -.-. -.R.*J - -.k l-A2 - k , . ~  - k 3  

E-I 6 7 
- - 

b 

[B88] a: ( cos ( kA sin( L A  ) I-C - ( cos( h-A ) - sin( h-A ) 1-C -2-e ht\*);J - 1  - - R-A - k I 
E- I 

b 



I 1 4 1  3 m-- --R-B - --k [-B ... - eLB- ~ ~ ~ C O S ( L B )  - k6sinth-B) ... 
E-I 23 6 

1 7 +e  "B- k7-cost h - B )  - kg-sinth-0)  - 8  
+ - s k 3 . B - - k 3 - B - k 4  - 

3 - 

--! . 1.R.B2 - k l . ~  - k,  bR .7.h2 - sin( kB 1.k - eosc l + B j - k 6  -e ... - 
E-I 2 

+ sin( l - B ) - k 7  cost h.B)-k -e kn 

.iAw 
-1 sin - cos - k j .  sin - cos +k6 -e2 ... 

7 - 7 - 7 - 7 - 
i . k . W  

+ cos ' - A - ~  sin I - L W  -k7 - sin '-Lw - cos '-L+W -kg - e 2  
7 - 7 - 1 - 7 - 

.kw 
I 1 I + cos !-A-w - sin --kW -k - sin --hew - c o s  --LW -k -e2 ... 

3 - 3 - 7 - 1 - 6 

kB + ( cos(  bB) - sin( A-B) )-k7 - ( sin( LB) - cost LB) ) -kg  -a ... 
1 

I I I 1 
. k W  

+ - sin - t W  - cos --A-W -11, - cos --A-W - sin --LW -kg - c 2  
3 - ? - 7 - 3 - 



These 12 equations can be solved numerically by using Newton-Raphson Method for 

Nonlinear Systems of Equations with LU decomposition and back substitution. 

Richardson's extrapolation are used to obtain the f i t  derivatives of each equation: 

[B981 

where 

t 6991 

See EPPE3.BAS prognm in appendix D for the implementation of Newton-Rnphson 

method of solving system of nonlinear equations. 



B.7 Pipeline equations for 6 < 2D, with infinite landslide 

We can reduce equation [B24] for the general pipe deflection profile. in the region from 

negative infinity to zero. by applying the boundary conditions at x = - = (C3 and C4 equal 

0). 

[B 1001 

Since there would be o doubk: curvature for inf nite width imdslidrs. the bending 

moment at the interface between the stable and unstable soil ( x  = 0) would be zero. Thus 

tiom equation [B 1021 C2 = 0. 
- - 

[B 1031 

The pipe dispiacrment at x = 0 would be half of the landslide movement (6) 

[Bl 041 



From the general tensile suain and bending strain equations [B3 I] and [B32]. we obtain 

the Following strain equation for a pipeline in an infinite width transverse landslide for 6 

< 2D,: 

[B 108) 

Note that equation [B LO81 is derived from x = - to x = 0. but since intinite width 

landslide is assume. the stnin values obtained are equivalent for the region from x = 0 to 

.Y =-. 





d d d  R f x -  CS 
[B1191 I d . ~ d d $ "  ( f l i  

[BI 181 

Region 1 (B oc < -) 

[B 1201 

1 .  
- - R r i  - C j-x 
7 dd - 

d.dx 1- (E-1) 

At x = 00. pipe displacement is zero. md so CI and Cr are zero 

[B121] 

2 
~~~u 91 t sin( i - x ,  - cost L x ,  PC, - (cost ~ x )  - sin( l i - x ,  1-c  - ------7 - 
dxd.dx - ex@ Lx) 

At x = B, the continuity boundary conditions for u, u'. u". and u"' ye applied. In 

addition, the pipe displacement is equal to 4 at x = B. The remaining constants of the 

pipe equation are solved: 



1 exp h- B 1 
C sin( A-B ).B--R ... . -- - - - . 

3 + ( sin( LB) - cost A-B) 1- JE-I-L -D , -B ... ( LB - 1 I+ (  E-I)--I-IL' 

From the general tensile and bending strain equation [B3 11 and [B32]. the total stnin on 

the pipeline in the plastic and elastic soil regions are obtained: 



d B~ 2kB.2 
E e ~ -  ( sin( LB)-sin(L.x) - COS( A-B)-COS( Lx) 1-U f y  ... - .-. 

- 
3 

I ( k-B - I ) - (  E-I) 1-cL' 
+ ( sin( LB) - cos( A-B) )-sin( Lx) ... .E.I.1 -D ,-B ... 

+I cos( L-B) - sin( h-BI )-cos( X-x) 
> 

+(  sin( kx).cos( k-B) sos( Lx)-sin( h-B) )-E-I-k--D, 

( cosl A-B sin( k.6) )-sin( x.xl ... t B 2  . - ... 
+ I.( sin( 1.B) - CQS( A-B) )-COS( A-X) 4 

+ ( cost kx)-cos( LB) sin( Ln)-sinc k-B ) * ~ - E - I . ~ ' . D  ,-B ... 
7 

+ ( sin( l-B) cos( l B )  ).cost 1-n) ... +E.I-L--Ds 
1 + I . (  sin( k.B) - cos( h-B) 1-sint h-x) + . - - - - -  -- - - 

7 - c 1-c r h-B - 1 1 . t  E-1) 1.c: i t  U - t ,  . 
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Appendix C 

Derivations for the Longitudinal and 

Perpendicular Components of Soil Movement in 

Deep-seated Circular Landslide 

This appendix shows the derivations for the longitudinal (ul.) and perpendicular 

(u3 components of the soil movement dong the soil-pipeline interface 3s detined as u(x): 

[Cll 

The soil mass slides and rotates dong the circular fdure surface with a mgential 

displacement 6. Assume that the amount of soil movement varies uniformly from the 

center of the fiilure circle (see figure C I ): 



13 t 

Set the coordinate system so that the x-axis coincides with the pipeline(see Figure 

C2).  

Let p = P(x) = the direction that u(r) is acting dong the fiilure surFace with 

respect to the pipeline. (see figure C3). 

rc41 

The longitudinal and perpendicular components of the soil movements are given 

below and shown in Figure C-l. 

LC51 

EC61 

Since cos(p) and sin@) can be written as follows: 

sint Q)* 

We can re-write the longitudinal and perpendicular soil movement components 3s 

follows: 

LC91 



132 

Moving the origin of the coordinate system so that x starts at the left interface 

between the pipeline and the filure surface (see Figure CS), we change the perpendicular 

component up&) as follows: 
-- - 

LC1 11 



C.l Pipeline equations for perpendicular component of deep- 

seated landslide 

Region 1 (-- < x c A,: 

LC131 

Region 2 (A  c x < 0): 

Region 3 (0 < x < B) 

Region 4 (B < x < (R' - ~rn')".') 



The following boundary conditions are applied: 

Atx=-= ,u=O;  

At x=A,  u=DS;  

At x =A, u, u', u". md u"' are continuous; 

At x = 0, U. u*, u", and u' * *  are continuous; 

At x = B, u, u*. u". and u"' are continuous; 

Force equilibrium. 

After applying the boundary conditions, we get the following equations: 

I 
- l.sin( A-A 1.C - cos ( &-A 1-C -2-eL"-x- - -- --R f~' - C j-A - C - E-1 2 6 



1 ;c. U - ' - R ~ B J  - -k 1 - ~ '  - k9.B . k 3  ( sin( LB, . cosc LB1 I-k  ... .e ... -1 6 
E-I 6 - 7 

+( sin( LB) . cos( LB) ).kt, 
R 

isl3 + ( coscLB) sinth-BII-k ,... .e 

+( zin(LB1 - c.os(b-B))-ky 

I *  I - ~ ~ 0 : - k ~ . B - k ,  sin( h-B I - k  - eos( h-B 1.k -e hR ... 3.2 - 
E-I 2 

E; I3 + sin( k B ) . k 7  cos( l . B ~ - k ~  -e 



These 18 equations ([C21] to [C38]) can be solved numerically by using Newton- 

Raphson Method for Nonlinear Systems of Equations with LU decomposition and back 

substitution as described in appendix 6. 



Fig. C 1 : Soil movement 

Fig. C2: Coordinate system 



Fig. C3: Direction of soil movement 

Fg. C4: components of soil movement 



i 

Ag. C5: New starting position of x-axis 



Appendix D 

Numerical Solution of Multiple Nonlinear 

Equations Using Newton-Raphson Method 

'-EPPE3.BAS 
'--We use partial pivoting in LUDCMP and LUBKS8. 
'-Multiple non-linear roots sowed by Newton-Raphson method and LU decomposition 
'- and back substitution - for Pipe bending with E/P and E/P regions. 
'-(c) PETER D.S. CHAN APR. 1997 
t - 
DEFINT I-K 
I 
P- -- 
DECLARE SUB MNewton (x#(), n, df#(), f#()) 
DECLARE SUB LUDCMP (x# ( ) ,  n, df#(), f#(), index%()) 
DECLARE SUB LUBKSB (x#(), n, df#(), f#(), index!%()) 
DECLARE SUB printdf (n, df#()) 
DECLARE SUB printx (x#(), f#(), n) 
DECLARE SUB printf (n, f # ( ) )  
DECLARE SUB pause () 
DECLARE SUB UsrEqns (x#(), n, df#(), f#()) 
DECLARE FUNCTlON x l  givenW (x#()) 
DECLARE FUNCTION x2givenW (x#()) 
DECLARE FUNCTION x3givenW (x#()) 
DECLARE FUNCTION StrainEqns# (i, a(), x) 
DEClARE FUNCTION dStrain€qns# (i, j, x#(), x) 
DECLARE FUNCTION FirstDerv# (i, j, x#(), x) 
CLS 
CONST Pi# = 3.1 41 592653589793# 
CONST expon# = 2.71 8281 828459045# 
CONST No = 0, Yes = 1 

CONST Ks# = 6500000#, d# = -1 683#, t# = .00318# 
CONST Ep# = 200000000000#, sigy = 3.86€+08, Ds# = .OO8# 
CONST TINY = 1 E-20 
CONST TOL = 1 E-12 

CONST W = 20, delta = 55.901 



CONST ntrial = 1000, n = 12 
DIM x#(n), df#(n, n), f#(n) 
~#(1) = -768.709372# 
~#(2) = -1 256.94# 
x#(3) = -70 1 31.02# 
~#(4)  = -371 99.1 2# 
x#(5) = 2420488# 
x#(6) = 194801 60# 
x#(7) = .0000938643# 
x#(8) = -.000080 1 4427# 
~# (9 )  = -89.336369# 
x#(10) = 1 26.822848# 
x#( 1 1 ) = - 1 4.05369# 
x#(12) = 9.4401 85# 
CALL MNewton(x#(), n, df#(), f#()) 

END 

FUNCTION dStrainEqns# (i, j, x#(). x) 

SELECT CASE i 
CASE IS = 1 

temp#=(-C#*S#+ 1 -C#A2)  *C1#A2 
temp#=temp#+(-2*C#* S#+2*C4tA2- 1) C2#*C1# 
temp# = temp# + (C# A 2 + C# ' SU) * C2# A 2 
temp# = temp# * 2 E# 
dStrainEqnst = tempt t (-(C# + SW) ' C l t  - (S# - C#) C2#) d 

CASE IS = 2 
temp#= 1 /(Ep#* Ip#) * ( - I  / 6 *R#*xA3+ .5 *  k l#*xA2+k2#*x+k3#)  
temp#= temp#* (--5 ' R#*  x A 2 +  k l # *  x +  k2#) 
IF j = 1 THEN 

d~train~qns# = tempt + -5 * d# * (-R# * x + kl#) 
ELSEIF j = 2 THEN 

dStrainEqns# = temp# - .5 * d# * (-R# ' x + kl#) 
END IF 

CASE IS = 3 
temp#= 1 /(Ep#*Ip#)* (1 16' R # ' x A 3 + . 5 * k i # * x A 2 + ~ # * x + l r 3 # )  



ternp#=temp#* (-5' R# " x A 2 +  k l # * x +  k2#) 
IF j = 1 THEN 

dStrainEqns# = temp# + .5 * d# (R# ' x + kl#) 
ELSEIF j = 2 THEN 

dStrainEqns# = temp# - .5 d# * (R# x + kl#) 
END IF 

END SELECT 

END FUNCTION 

FUNCTION FirstDerv# (i, j, x#(), x) 
'--P(x)=1 /(Pdx)"[f(~+dx)-f (x-dx)]-0'(dxA2) 
, 

'--Using Richardson's Extrapolation: 
I-P(x)=4/3"p hi(dxl2)-113'~ hi(&) - O'(dx%) 
'-- where phi(dx) = 1/(2"dx)*[f(x+dx)-f(x-dx)] 
, 

'-df=[df 1 /dxl df 1 /dx2] = [dfiidxj ...I 
'- [df2/d~l df2/d><2] [ ...,....... I 
'->"in refers to the ith f eqn, & "j" refers to the jth partial derv. 
'-ie: df l/dx2 = df(1 )/dy = Zy, and dfUdxl = df(2)ldx = 1. 

d x = x /  1 0 A 2 / 2  
Xf=x+dx 
x t 2 = x - d ~  
phil = (dStrainEqns#(i, j, x#(), xt) - dStrainEqns#(i, j, x#(), xt2)) / (2 dx] 

phi2 = (dStrainEqns#(i, j, x#(), xt) - dStrainEqns#(i, j, x#(), xt2)) I (2 * dx) 

FirstDerv# = 4 13 ' phil - 1 / 3 phi2 

END FUNCTION 

SUB LUBKSB (x#(), n, df#(), f#() ,  indexO/oo) 
i2 = 0 

F O R i = l T O n  
k = indexo/o(i) '<--unscrambling the permutation as we go. 
sum# = f#(k) '-WIO pivoting this would simply be y(l)=f(l) and 
f#(k) = f#(i) '-y(2)=f(2)-df(2,1)"y(l) or y(i)=f(i)-sum(fromj=l to i-1 

'- of df(i,j)'y(j)}. 
'-Note we don't need the vector yo, we simply place y(i) 
'- into f(i) 

IF (i2 o 0) THEN 
FORj= i2TOi-1  



sum# = sum# - df#(i, j) ' f#(j) 
NEXT j 

ELSEIF sum# o 0 THEN 
i2 = i '-A nonzero element was encountered, so from now on we 

END IF '-will have to do the sums in the loop above. This is 
'-just some optimization because if the first sum was 0, 
'-then we don't have to do the loop for the second sum. 
'-ie: y(2) = f(2)-df(2,l)*y(l) and y(1) = 0. 

f#(i) = sum# 
NUCTi 

'-use f(i) to store the deRaX(i): 
'-for the Newton-Raphson iteration of xnew(i) = xold(i) t deltaX(i), 
'-we now have x(i) = x(i) + f(i) 
FOR i = n TO 1 STEP -1 '--Back Substitution 

sum# = f#(i) 
IF (i < n) THEN 

FORj= i+1  T o n  
sum# = sum# - df#(i, j) * f#(j) 

NEXT j 
END IF 
f#(i) = sum# / df#(i, i) 

NEXT i 

END SUB 

SUB LUDCMP (x#(), n, df#(), f#(), index%()) 
'-instead of decomposing df() into L() and U(), we will decompose df() back 
'-into itself (since we only use df() once for each iteration): 
'-ie:[l Oj and [ul 1 u121 into [ul 1 u121 
'- [L 1 2 1 ] [ 0 u22j [Lt 2 u221 - 
DIM VV#(n) 
flag = 1 '-no row interchange yet 
'--loop over rows to get the implicit scaling information 
F O R i = l T O n  

AAmax# = 0 
FORj=1 T o n  

IF ABS(df#(i, j)) > AArnax# THEN 
AAmax# = ABS(df#(i, j)) 

END IF 
N M j  
IF (AAmax# = 0) THEN 

PRINT "Singular matrix" *-no nonzero largest eiement 
AArnax# = TINY 

END IF 
W#(i) = 1 # 1 AAmax# 'c-VV(i) = 1IAAma.x of the ith row 

NEXTi 

FOR j = 1 TO n '-loop over the columns of Crout's method 
FOR i = 1 TO j - 1 '--U(ij) = df(ij) - surn(k=l to i-1 of L(ik)'U(kj)) 

sum# = df#(i, j) 
F O R k = l T O i - l  



sum# = sum# - df#(i, k) ' df#(k, j) 
NEXT k 
df#(i, j) = sum# 'c-U(i,j) 

NEXl i  

AAmaxt = 0 '--initialize AAmax for the search for largest pivot element 

'-Following are i=j of U(ij) = df(ij) - sum(k=l to i-I of L(ik)'U(kj)) 
I and i=j+l ..n of L(ij)= 1/U(jj) @f(ij) - sum(k1 to j-1 of L(ik)*U(kj)] 

FORi= jTOn 
sum# = df#(i, j) 
FORk=1 T O j - 1  

sum# = sum# - df#(i, k) ' df#(k, j) 
NEXT 
df#(i. j) = sum# '-haven't divide by U(0) yet for the "iajj" cases 

dum# = W#(i) ABS(sum#) 'c-(VV(i) = 1JAAmax). 
IF (durn# >= AAmaxt) THEN '--Check the elements below i=j for a larger 

imax = i '- AAmax, and mark this new AArnax row with 
AAmax# = dum# '- "imaxfi. 

END IF 
NEXT i 

IF j C> imax THEN '--Do we need to interchange rows? We need i=j for 
FOR k = 1 TO n '--the pivot element, 

dum# = df#(imax, k) '<--Switching the rows between (imax,.,.) 
df#(imax. k) = df#(i, k) '-and (j, ...) : remember imax is found by 
df#(j, k) = durn# '--looking for larger AAmax below i=j element. 

NUCT k -So we use "j", since "i" has been looped 
flag = -flag 
W#(imax) = W#(j) '-Also interchange the scale factor vector VV. 

END IF 

inde&(j) = imax '<-recording for each jth row, the swap between j 
'-and imax rows. 

IF df#(j, j) = 0 THEN df#(j, j) = TINY 

IF (j 0 n) THEN '--Finall, we divide by the pivot element for i=j+1 ... n 
durn# = 1 # / df#(j, j) 
FORi= j+1 T o n  

df#(i, j) = df#(i, j) durn# 
NEXTi 

END IF 

END SUB 

SUB MNewton (x#(), n, df#(), f#()) 
'--Newton-Raphson Method for 1 variable: 
*-f(x+h)= 0 = f(x)+h*f(x) + O('W2) 
I-h = -f(x)/f (x) 



'-xIn+l = xln + h 
, 

DIM index%(n), flag, W#(n), SumF# 
FOR k = 1 TO ntrial 

CALL UsrEqns(x#(), n, df#(), f#()) 
LOCATE 1 , l  
PRINT USING "after UsrEqns, W=###.##, delta = ##I.######, trial = # # # #  W; delta; k 
CALL printx(x#(), f#(), n) 
SumF# = 0 
F O R i = l T O n  

SumF# = SumF# t ABS(f#(i)) 
NEXTi 
PRINT USING "total abs(f(i))= ##.#########MM"; SumF# 
IF SumF# c TOL THEN '-SumF# is calculated in the printdf sub, 

PRINT "Convergence completed. ToI= "; TOL 
CALL pause 
EXIT SUB 

END IF 
CALL LUDCMP(x#(), n, (If#(), f#(), indexoh()) 
CALL LUBKS8(x#(), n, (If#(), f#(), indexyo()) '--the deRzX(i) is stored in f(i) 
FORi= lTOn  

x#(i) = x#(i) + f#(i) '-f(i) is the deltaX(i) returned from LUBKSB 
ErrF# = ErrF# + ASS(f#(i)) 

NEXT i 
NEXT k 

END SUB 

SUB pause 
col = CSRLlN 
row = POS(0) 
LOCATE 24, I 
PRINT "press any key..."; 
DO WHILE INKEY$ = "" 
LOOP 
LOCATE row, col 

END SUB 

SUB printdf (n, df#()) 

FORi= lTOn  
PRINT USING "##.#WVW\ ##.W ##.- ##.F ##.W ##-W 

##.#WM"; df#(i, 1); df#(i, 2); df#(i, 3); df#(i, 4); df#(i, 5); df#(i+ 6); df#(i, 7)  
N M i  

END SUB 

SUB printf (n, f#()) 
FORi= lTOn 

PRINT USlNG Y(##)= ##.P "; i; f#(i) 
NEXTi 

END SUB 



SUB printx (x#(), f#(), n) 
LOCATE 2.1 
FOR i= lTOn  

PRINT USING "x(##)= #########,###.######### f(##)= ##.######MM "; i; x#(i); 
i; f#(i) 

NEXTi 
END SUB 

FUNCTION StrainEqns# (i, x#(), x) 
'--tensite Strain = 1  /2*(dy/dx)A2 
'--Bending Strain = d/2'(dn2y/dxA2) 
t 

SELECT CASE i 
CASE IS = 1 

temp# = .5 * (((C# - S#) Ct # + (S# + C#) C2#) ' E# ' Id#) A 2 
temp#=temp#+d#/2*( ( -S#*C1#+C#*C2#)*2*E#*fd#A2) 

CASE IS = 2 
t e m p # = . 5 ' ( ( - R # " ~ ~ 3 / 6 + k l # ' x ~ 2 / 2 + k 2 # * x + k 3 # ) / ( E p # ' I p # ) ) ~ 2  
tempZ#=d#/2* ( ( - R # * x A 2 / 2 +  kl#* x +  W#)/(Ep#' Ip#)) 
temp# = temp# + ABS(temp2#) 

CASE IS = 3 
t e m p # = . 5 * ( ( R # * ~ ~ 3 / 6 + k f # * x ~ 2 / 2 + k 2 # * ~ + k 3 # ) / ( E p # * I p # ) ) ~ 2  
ternp2#=d#/2* ((R#* x A 2 / 2 +  k l#  * x +  k2#)/ (Ep#* Ip#)) 
temp# = temp# + ABS(temp2#) 

END SELECT 
StrainEqns# = temp# * 10 A 6 
END FUNCTION 

SUB UsrEqns (x#(), n, df#(), f#()) 
'-Example: 
'-f(l )= x"2tyA2-1=0 
'--f(2)= x-y=O 
, 

'-df=[dfl/dxl dflldm = [dfvdxj .,,I 
'- [df2/dxl df2/d1Q] [.......,... I 
'->"in refers to the ith f eqn, & "j" refers to the jth partial dew. 
'-ie: dflIdx2 = df(1 )/dy = 2y, and df2/dx1 = df(2)/dx = I .  



IFA#>OORA#c-WW2THEN 
A# = -W 
x#(11) = A# 

END IF 
IFB#>W/2ORB#<OTHEN 

B # = W / 2  
x#(12) = B# 

END IF 

Ip#=P I# /4 ' ( (d# /2 )A4 - (d# /2 - t# )A4 )  
Id# = (Ks# ' d# 1 (4 ' Ep# ' Ip#)) A .25 
R# = Ks# * d# * Ds# 
epsy = sigy I Ep# 
EB# = expon# A (Id# " 8#) 
CB# = COS(W# ' B#) 
SB# = SIN(Id# ' B#) 
EA# = expon# A (Id# ' A#) 
CA# = COS(ld# ' A#) 
SA# = SIN(ld# ' A#) 
EW# = expon# A (Id# ' W I 2) 
CW# = COS(ld# * W 1 2) 
SW# = SIN(ld#' W 12) 



temp#=(R#*B4kA4/24+ k l # * 8 # A 3 / 6 + k 2 # * B # A 2 / 2 + k 3 # * 8 # +  k4#) 
temp# = temp# / (Ep# * Ip#) 
temp2# = ((CB# k5# + SB# ' kW) * EB# + (CB# * k7# + SB# * k8#) / EB# + delta) 
f#(6) = temp# - temp2# 

ternp#=(R#" B # A 4 / 2 4 +  k l # ' B # A 3 / 6 + k 2 # *  8#"2/2+ k3#*B#+ k M )  
temp# = temp# / (Ep# Ip#) 
f#(lO) = temp# - (delta - Ds#) 









END SUB 

FUNCTION x l  givenW (x#()) 
'--Find the "x" for maximum values of strains. 
L- This means using Newton-Raphson to find "x" at which the "derivative 
'- of the strain equations (dStrainEqns#())" is equal to 0. 
'-Tensile Strain = 1 /2'(dyld~)~2 \ 
'--Bending Strain = d/2'(cP2y/dxA2) \-> function SlainEqns#() 
I 

'--Newton-Raphson Method for 1 variable: 
'--f(x+h)= 0 = f(x)+hWf (x) + O('W2) 
'--h = -f(x)/f (x) 
'-xln+l = xln + h 
' - - p-- 

8# = x#(7) 
x=B# 
CLS 
FOR i = 1 TO ntrial 

f# = dStrainEqns#(l '0, x#(), x) 
df# = FirstDerv#(l , 0, x#(), x) 
x = x - f# / df# 
LOCATE 1, I 
PRINT "i="; i 
PRINT "xl="; x: " Strain'1O"G = "; StrainEqns#(l , xi(), x) 
IF ABS(f# / df#) < 1 0 A -5 THEN EXIT FOR 
IF ABS(x) > 100 THEN 

x = 8# 
EXIT FOR 

END IF 
NEXTi 

x l  givenW = x 
END FUNCTION 

FUNCTION x2givenW (x#()) 
'--Find the "x" for maximum values of strains. 
'- This means using Newton-Raphson to find "x' at which the "derivative 
'-of the strain equations (dStrainEqns#())" is equal to 0. 
, - - 
'-Newton-Raphson Method for 1 variable: 
'--f(x+h)= 0 = f(~)+h'f'(x) + O('h"2) 
'-h = -f(x)/f'(x) 
'--xtn+l = xln + h 
' 

CI 

B# = x#(7) 



x = . l  *B# 
@ = . I  '8# 
CLS 
FOR i = 1 TO ntrial 

f# = dStrainEqns#(2, 1, x#(), x) 
df# = FirstDenr#(2, 1, x#(), x) 
X=X- f# l d f#  
LOCATE 1.1 
PRINT "i="; i 
PRINT "x2a="; x: " Strain'lM = ": StrainEqns#(Z, x#(), x) 
IF ABS(f# / df#) < 10 A -5 THEN EXIT FOR 

NEXTi 
CALL pause 
FOR i = 1 TO ntrial 

f# = dStrainEqns#(2, 2, x#(), x2) 
df# = FirstDew#(2,2, x#(), x2) 
&=a-f#/ df# 
LOCATE 1 , l  
PRINT "i=": i 
PRlNT "x2b1': x2: " Strain*lW = "; StrainEqns#(2, x#(), x2) 
IF ABS(f# / df#) < 10 A -5 THEN EXIT FOR 

NEXTi 
CALL pause 
IF StrainEqns#(2, x#(), x) > StrainEqns#(2, x#(), x2) THEN 

x2givenW = x 
ELSE 

x2givenW = x2 
END IF 
END FUNCTION 

FUNCTION x3givenW (x#()) - 
B# = x#(7) 
x = W / 4  
x 2 = W / 4  
CtS 
FOR i = 1 TO ntrial 

f# = dStrainEqns#(3, 1, x#(), x) 
df# = FirstDew#(3, 1 , x#(), x) 
x = x - f# 1 df# 
LOCATE 1,1 
PRlNT 'i="; i 
PRlNT "x3a="; x; " Strainel 0% = ": StrainEqns#(3, x#(), x) 
IF ABS(f# / df#) < 10 A -5 THEN EXIT FOR 

NUCTi 
CALL pause 
CLS 
FOR i = 1 TO ntrial 

f# = dStrainEqns#(3,2, x#(), x2) 
df# = FirstDen/#(3,2, x#(), IQ) 
~2=x2 - f# /d f#  
LOCATE 1.1 
PRINT "i="; i 



PRINT "x3b="; x2; " Strain'l 0% = "; StrainEqns#(3, x#(), x2) 
IF ABS(f# / df#) c 10 A -5 THEN EXIT FOR 

NEXTi 
CALL pause 
IF StrainEqns#(3, x#(), x) > StrainEqns#(3, x#(), x2) THEN 

x3givenW = x 
ELSE 

x3givenW = x2 
END IF 

END FUNCTION 



Appendix E 

Computer Implementation of the Longitudinal 

Landslide 

DEFINT A-Z 
'PROGRAM: PLANAR LANDSLIDE: 
'CREATOR: PETER D.S. CWAN 
'DATE: OCT. 18 '97 
'PURPOSE: to find max strain of pipe buried in planar landslide. 
' 

'd# = -1 683# 
't# = -0031 8# 
'E#=200 ' 10A9 
'H =2 
'coh#=2' 10A3 
'gamma#= 18' 10A3 
'phi# = 30 pi# / 180 
'Ds# = .008# 
'L# = 1 OOO# 
'deftatunit# = 2.5 Ds# 
f 

_tl 

DECLARE SUB tongslide () 
DECLARE SUB graph (delta.ds#. ernax#, deltaemin#) 
DECLARE FUNCTION next.higher.value# (given.value#) 
DECLARE FUNCTION interval.stepl (given.value, rnax.num.divisions) 
DECLARE SUB ReadlnputFite () 
'--for 2Ds c delta-min < delta c deIta.max 
DECLARE SUB BisectXa (a#, b#, fa#, fb#) 
DECLARE FUNCTION GetDelta.min# (L#, Id#, Ds#) 
DECLARE FUNCTION f.xa# (y#) '--f.xa = eq'm+comp. eqn in terms of xa 
DECLARE FUNCTION xb.xa# (y#) '-xb.xa = xb compatibility eqn in terms of xa 
DECLARE FUNCTION emanxa# (p) '--emanxa = rnax strain eqn in terms of xa 
DECLARE FUNCTION f.deltamin# (y#) *--eqn for find delta.min 
D €CLARE SUB initvalues () 
'--for delta c 20s 
DECLARE SUB BisectUo (a#, b#, fa#, fb#) 
DECLARE FUNCTION f.uo# (y#) 



DECLARE FUNCTION ernax.uo# (y#) '-emax-uo = max strain eqn in terms of uo 
'--Menu Handling-- 
DECLARE SUB Initialize () 
DECLARE SUB Menu1 () 
DECLARE SUB Checkscreen () 
DECLARE SUB DrawFrame (Topside, Bottomside, Leftside, Rightside) 
DECLARE SUB 8oxlnit () 
DECLARE SUB printmenustring (menustring$, char.posOh, num-chars. hiliteds) 
'-Values for keys on the numeric keypad and the spacebar: 
CONST UP = 72, DOWN = 80, LIT = 75, RGHT = n 
CONST UPLFT = 71, UPRGHT = 73, DOWNLFT = 79, DOWNRGHT = 81 
CONST SPACEBAR = " " 
CONST F1 = 59, F2 = 60, F3 = 61, F4 =62, F5 = 63 
CONST F6 = 64, F7 = 65, F8 = 66, F9 =67, F10 = 68 

'-Null$ is the first character of the two-character INKEY$ 
'-value returned for direction keys such as UP and DOWN: 
'NULL$ = CHR$(O): ESCAPE$ = CHR$(27): ENTER$ = CHR$(13) 
CONST ESCAPE = 27, ENTER = 13, NULL = 0 
C O N S  FALSE = 0, TRUE = NOT FALSE 

DIM SHARED InitRow, MaxRow, MaxColors, Foreground, Background, Hilite, selection 
DIM SHARED d#, tit, E#, H, coh#, gamma#, phi,deg#, phi.rad#, Ds#, L#, L.rnin# 
DIM SHARED delta.ds#, delta.unit#, delta.min#, deRa.max# 
DIM SHARED angle.rad#, angle.deg#, delta.unit.parallel#, delta.ds.parallel# 
DIM SHARED ks#, Id#, Area#, runlong3f, runlong6b 
DIM SHARED outfilename$, Deltaswitch 
CtS 

ReadlnputFile 
initvalues 

CONST mnustn'nglength = 51 
'- - 
TYPE mnuType 

mnustring AS STRING * mnuStringLength 
mnuHotKey AS IMEGER '-position of the hotkey 
rnnuHiliteWidth AS INTEGER '-number of chars displayed for the hotkey 

END TYPE 
'---main menu items: string and position of hilite--- 
CONST MainMenultems = 17 
DIM SHARED MainMenu(MainMenu1tems) AS mnuType 
DATA " 1 ) pipe diarneter(rn): ", 1 ,I 
DATA "2) pipe thickness(m) : ', 1 , 1 
DATA "3) pipe modu Ius of elasticity( Pa/m): ,1,1 
DATA "4) depth to center of pipe(m): ", 1 ,1 
DATA "5) soil cohesion(NlmA2): ", 1 ,1 
DATA "6) soil density(NlW3): ", 1 ,I 
DATA "7) soii internal frictional angle(degrees): ", 1.1 
DATA "8) limit elastic displacement of soil(Ds (m)): ", 1 ,1 
DATA '9) length of landslide (m): ", 1,1 
DATA '0) landslide rnagnitude(in multiples of Ds) : "?I 
DATA "F 1 ) landslide magnitude entry toggle : *,1,2 



DATA "a)ngle between landslide and pipe orientation(deg): ",I ,1 
DATA "s)ave input values to 'fong.dat' : ",I ,I 
DATA "f)ilename in which the output is stored : '@,I ,I 
DATA "g)raph : 11,1 ,I 
DATA "F10) Calculate : ",I ,3 
DATA "q)uit : 11,1,1 
FOR i = 1 TO MainMenultems 

READ MainMenu(i).mnuString: READ MainMenu(i).rnnuHotKey 
READ MainMenu(i).mnuHiliteWidth 

NEXTi 
'--Box for main menu- 
CONST Box.Top = 2, 6ox.Bottorn = MainMenultems + Box.Top + 1, Box.Left = 1, Box-Right = 78 

CONST PI# = 3.1 41 592653589793# 
CONST expon# = 2.71 8281 828459045# 
CONST No = 0, Yes = 1 

Initialize 
Menu1 
WIDTH 80, InitRow '-restore original number of rows 
COLOR 7,0 '-restore default color 
CtS 

END 

-- 
' GetRow, MonoTrap, and RowTrap are error-handling routines invoked by 
' the Checkscreen SUB procedure. GetRow determines whether the program 
' started with 25,43, or 50 lines. MonoTrap determines the current 
' video adapter is monochrome. RowTrap sets the maximum possible 
' number of rows (43 or 25). 

GetRow: 
IF Initflow = 50 THEN 

InitRow = 43 
RESUME 

ELSE 
Initflow = 25 
RESUME NEXT 

END IF 

MonoTrap: 
MaxColors = 2 
RESUME NEXT 

RowTrap: 
MaxRow = 25 
RESUME 

SUB BisectUo (a#, b#, fa#, fb#) 
'--for delta c 2Ds 

SHARED TOM, xa.max#, L#, Ds#, delta.ds#, angle.deg# 



runflagl = 1 

'-Do bisection once the root is bracketed.-- 
'CLS 
LOCATE 1.1 
PRINT USING "bisecting.., L = #######.##, delta/Ds = #######.###, angle = ##.##"; L#: 

delta-ds#; angle.deg# 
IF (fa# = fb#) THEN 

runflagl = 0 
END IF 
WHILE runflagl o 0 

LOCATE 2.1 
PRlNT "iteration ="; runflagl 
wide# = wide# / 2 
c#=(b#+a#) l2  
LOCATE 3.1 
PRINT USING "c =###.###############"; c# 
fc# = f .uo#(c#) 
IF fa# ' fc# (= 0 THEN 

LOCATE 4, t 
PRlNT "root exists inside interval: a and c" 
PRINT USING "a =###.############## fa =#.################ ": a#; fa# 
PRINT USING "c =###,############### fc =#.############# "; c#; fc# 
PRlNT USING "b =###.############## fb =#-############## "; b # ~  fb# 
IF (fa# = 0 OR fb# = 0) THEN 

IFfa#=O THEN 
b# = a# 

ELSE 
END IF 

ELSE 
b# = c# 
fb# = fc# 
LOCATE 8,1 
PRINT "New ...I' 
PRINT USING "b =###.############### fb =#.############### "I b#; fb# 

END IF 
ELSEIF fc# * fb# c.= 0 THEN 

LOCATE 4.1 
PRINT 'root exists inside interval: c and b" 
PRIM- USING "a =###.- fa =#.- "; a#; fa# 
PRINT USING "C =##HI,- f~ =#.- "; c#; f ~ #  
PRINT USING "b =###.- fb =#.- "5 b4k fb# 
a# = c# 
fa# = fc# 
LOCATE 8,1 
PRINT "New. .." 
PRlNT USING "a =###.- fa =#.-###### '; a#; fa# 

ELSE 



LOCATE 8,1 
PRINT "root is not bracketed ..." 
END 

END IF 
IF ABS(fb# - 0) < TOL# THEN 

runflagl = 0 
ELSE 

runflagl = runflagl + 1 
END IF 
IFwide#c loA-15THEN 

LOCATE 9'1 
PRINT USING "a=b= ###.############### = ###.#########*##''; a#; b# 
runf lag 1 = 0 

END IF 

WEND 

END SUB 

SUB BisectXa (a#, b#, fa#, fb#) 
SHARED TOL#, xa.max#, L#, Ds#, delta.ds#, angle.deg# 
'--For delta w2Ds 
'--This subroutine finds the xa for which the forcwcornp. equation(in function 
'--f.xa) is =0. 
'-To avoid imaginary numbers inside the sqrt terms of the governing equation 
'-(see function "f.xaN), xa c t/ldw(l -sqrt(l -(Y2-delta/Ds))) ->this is 
'- the "xa.maxU 
t - m_-__Ul_m_ 

'-NOTE: a c c c b 

runflag2 = 1 
runflagl = 1 

'-reset TOL#: double precision gives ones followed by 15 decimal places 
'--, tens with 14 decimal places, and hundreds with 13 decimal places ... etc 

'-check bracketing of zero by "a" and "b"- 
'CLS 
LOCATE 1,1 
PRINT USING "bracketing ... xa.max= ###.-###### "; xa.max# 
W H 1 LE runf lag2 o 0 

IF (fa# fb# <= 0 OR fa# = fb#) THEN '-zero is bracketed by "an and "b" 
runflag2 = 0 

ELSE '-zero is not bracketed 
wide# = b# - a# 
IF fa# > 0 THEN '--both fa# and W are positive 

IF fa# > fb#t THEN '--graph is sloping down to right 
'b# = b# + wide# '-try to drive fb# into negative 



WHILE b# > xa.max# 
b# = b# ' 1.01 

WEND 
ELSE '-graph is climbing up to right 

a# = a# - wide# 
END IF 

ELSE '-both fa# and fb# are negative 
IF fa# > fb# THEN -graph is sloping down to tight 

a# = a# - wide# 
ELSE 

'b# = b# + wide# 
b# = b# ' .999999999999999# 
WHILE b# > xa.max# 

b# = b# ' 1.000000000000001 # 
WEND 

END IF 
END IF 
fa# = f.xa#(a#) 
fb# = f.xa#(b#) 
runflag2# = runfhg2# + 1 
LOCATE 2.3 
PRlNT "iteration: "; runflag2# 
PRlNT "a="; a#; " fa ="; fa# 
PRlNT "El; b#; " fb =I8: fb# 

END IF 
IF wide# < 10 A -1 5 THEN 

LOCATE 9,1 
PRlNT USING "a=b= ###.############### = ###.###############": a#; b# 
'BEEP 
runflag2 = 0 
'END 

END IF 
WEND 

'-Do bisection once the root is bracketed.- 
'CLS 
LOCATE 1 ,1  
PRINT USING "bisecting ... L = #######.##, deWDs = #######.###, angle = ##.##"; L#; 

deita.ds#; angle.deg# 
IF (fa# = fb#) THEN 

runflagl = 0 
END IF 
WHILE runflagl o 0 

LOCATE 2'1 
PRIM "iteration ="; runflagl 
wide# = wide# / 2 
c#=(b#+a#)/2 
LOCATE 3.1 
PRINT USING "c =###.-; C# 
fc# = f.xa#(c#) 
IF fa# " fc# C= 0 THEN 

LOCATE 4.1 
PRlNT "root exists inside interval: a and c" 



PRlNT USING "a =###.WL##- fa = # . # #  "; a#; fa# 
PRlNT USlNG "c =###.-## fc =#-###I#- c#; fc# 
PRlNT USING "b =###.##WM#W###### fb =#.#####- "; b#: fb# 
IF (fa# = 0 OR fb# = 0) THEN 

IF fa# = 0 THEN 
b# = a# 

ELSE 
END IF 

ELSE 
b# = c# 
fb# = fc# 
LOCATE 8.1 
PRINT "New .,." 
PRINT US1 NG "b =###.############### fb =#.############### ": b#; fb# 

END IF 
ELSEIF fc# ' fb# c= 0 THEN 

LOCATE 4.1 
PRlNT "root exists inside interval: c and b" 
PRl NT USlNG "a =###.############### fa =#.#############I## "; a#; fa# 
PRINT USING "c =###.############## fc =#.############### "; c#: fc# 
PRlNT USING "b =###.############### fb =#.############### "; b#: fb# 
a# = c# 
fa# = fc# 
LOCATE 8.1 
PRINT "New ..." 
PRINT USING "a =###.############### fa =#.############### "; a#; fa# 

ELSE 
LOCATE 8,1 
PRlNT "root is not bracketed ..." 
END 

END IF 
IF A8S(fb# - 0) < TOL# THEN 

runf lag 1 = 0 
ELSE 

runflagl = runflagl + 1 
END IF 
IF wide# c 10 A -1 5 THEN 

LOCATE 9.1 
PRINT USING "a&= ###t.####t#####WW#### = ### .############## I8 ;  a#; b# 
'BEEP 
'END 
runflagl = 0 

END IF 

WEND 

END SUB 

SUB Boxlnit STATIC 
I Boxlnit 

' Calls the DrawFrame procedure to draw the frame around the sort menu, 
' then prints the different options stored in the OptionTitle array. 



Drawframe BoxTop, Sox.Bottorn, Box-Left, Box-Right 

LOCATE Box-Top - 1, BonLeft + 5: PRlNT "Pipe Strain Program (copyrighted 1996 Peter D.S. 
Chan)"; 

LOCATE Box.Top + 1 
FOR i = 1 TO MainMenultems 

LOCATE , 8ox.Left + 2 
IF i = selection THEN 
Foreground = 0: Background = 7: Hilite = 10 '-reverse video 

ELSE 
Foreground = 7: Background = 0: Hilite = 15 

END IF 
printmenustring MainMenu(i).mnuString, MainMenu(i).rnnuHotKey, 

MainMenu(i).mnuHiliteWidth 
NEXTi 
Foreground = 7: Background = 0 '-Turn off reverse video 
COLOR Foreground, Background 

' 

LOCATE Box.Top + 1, mnuStringLength + 3 
PRlNT USING "#######.######"; d# 

LOCATE Box.Top + 2, mnustringlength + 3 
PRINT USING "#######.######"; t# 

LOCATE Box.Top + 3, mnuStringLength + 3 
PRINT USING " # # # , . # Y o ;  E# 
LOCATE Box.Top + 4, mnuStringLength + 3 
PRINT USING "#######.##"; H 

LOCATE Box-Top + 5, rnnuStringLength + 3 
PRINT USING "######,.##"; coh# 
LOCATE Box-Top + 6, mnuStringLength + 3 
PRINT USING "######,.##"; gamma# 

LOCATE Box-Top + 7, mnuStringLength + 3 
PRINT USING "#######.##"; phi.deg# 

LOCATE Box-Top + 8, mnuStringLength + 3 
PRINT USING "#######.######": Ds# 
LOCATE Box.Top + 9, mnuStringLength + 3 
PRINT USING "#######.##"; L# 

LOCATE Box.Top + 10, mnustringtength t 3 
IF Deltaswitch = FALSE THEN 

PRINT USING "#######.###"; delta.ds# 
LOCATE Box-Top + t 1, mnustringlength + 3 
PRINT "{manual 1 )" 

ELSE 
PRINT USING "0.00 to ###.######"; deltaamax# I Ds# 
LOCATE 6ox.Top + 1 1, mnuStringLength + 3 
PRINT "( I auto )" 

END IF 
LOCATE BoxTop + 12, mnustringlength + 3 
PRINT USING " #.#W; angle.deg# 
LOCATE BolcTop + 14, mnustringlength + 3 



PRINT USING " &"; outfilename$ 

'-for printing input statements- 
LOCATE 23,t 
PRINT " 
LOCATE 23.1 

END SUB 

SUB CheckScreen STATIC 
' --- - Checkscreen 
-- -- - 
' Checks for type of monitor (VGA, EGA, CGA, or monochrome) and 
' starting number of screen lines (50, 43, or 25). 
* 

'SCREEN 0 
WIDTH 80'50 
-Find out what how many rows the user was using initially. 
'-Try locating to the 50th row; if that fails, try the 43rd. Finally, 
'-if that fails, the user was using 25-line mode: 
Initflow = 50 
ON ERROR GOT0 GetRow 
LOCATE InitRow, 1 

' Try a SCREEN 1 1 statement to see if the current adapter has color 
' graphics; if that causes an error, reset MaxColors to 2: 
MaxColors = 1 5 
ON ERROR GOT0 MonoTrap 
SCREEN 11 
SCREEN 0 

'-See if 43-line mode is accepted; if not, run this program in 25-line 
'-mode: 
'MaxRow = 43 
MaxRow = 25 
ON ERROR GOT0 RowTrap 
WIDTH 80, MaxRow 
ON ERROR GOT0 0 ' Turn off error trapping. 

END SUB 

SUB DrawFrame (Tapside, Bottomside, LeftSide, RightSide) 
, DrawF rame 

' Draws a rectangular frame using the high-order ASCl 1 characters E (201 ) . 
(1 87) . E (200) . %(I 88) , (1 86) . and i (205). The parameters 

Topside. Bottomside. LeftSide, and RightSide are the row and column 
' arguments for the upper-left and lower-right corners of the frame. 
' ~dditional:i (204). ' ( 1  85) 



CONST ULEFT = 201, URIGHT = 187, L L E F  = 200, LRIGHT = 188 
CONST VERTICAL = 186, HORIZONTAL = 205 
CONST BEAMLEFT = 204, BEAMRIGHT = 185 

Framewidth = Rightside - LeftSide - 1 
LOCATE Topside, LeftSide 
PRINT CHR$(ULEFT): STRING$(FrarneWidth. HORIZONTAL); CHR$(URIGHT); 
FOR Row = Topside + 1 TO BottomSide - 1 

LOCATE Row, LeftSide 
PRINT CHR$(VERTICAL); SPClFrameWidth); CHR$(VERTICAL); 

NUCT Row 
LOCATE BottomSide, Leftside 
PRINT CHR$(LLEW: STRING$(FrarneWidth, HORIZONTAL); CHRS(LR1GHT); 

END SUB 

FUNCTION emax.uo# (uo#) 
'--for delta < 2Ds 
* 

SHARED Id#, Ds# 

p l #  = (uo# - TAN(alfa#) 1 (2# ' Id#)) ' (expon# A (Id# ' xi#)) 
p2# = TAN(alfa#) 1 (2# ' Id#) expon# A (-Id# xi#) 
emax.uo# = id# (pl # - p2#) + TAN(atfa#) 
END FUNCTION 

FUNCTION emax.xa# (xa#) 
'-the max strain for delta > 2Ds 

SHARED Id#, Ds# 
emax.xa# = Ds# * (-xa# ' Id# A 2 + Id#) 

END FUNCTION 

FUNCTION f.deltamin# (delta.min#) 
'--For defta >2Ds 
'-This is the force+comp. equation with xa=O substituted in. 

-. 

SHARED L#, Id#, Ds# 
b# = (5 - 2 ' delta.min# / Ds#) A -5 
f.deltamin# = (expon# A (2 ' b# - 2 + L# * Id#) + 1) ' (1 - b#) - 2 

END FUNCTION 

FUNCTION f.uo# (uo#) 
'--for delta c 2Ds 
'--note: e = 2,718281 828459045 
9 



SHARED Id#, Ds#, delta.~nit.paralleI#~ L# 

aIfa# = 89.98999999999999# (PI# / 180#) 
'xr# = delta.unit# / TAN(alfa#) 
xr# = delta.unit.parallel# 1 TAN(alfa#) 
xi# = -LOG(1# - 2# * uo# ' Id# I TAN(alfa#)) I (2# ' Id#) 
'-note: LOG is basic is the natural logarithm "LN" 
p l #  = uo# ' expon# A (Id# ' (L# + xr#)) 
'pl# = uo# 

END FUNCTION 

FUNCTION f.xa# (xa#) 
'-For delta >2Ds 
'-this is the force+comp. equation in terms of 'xa' 
'--Idea is to balance the forces with the cornp. conditions in finding the xa 
'--for which this function 'f.xa#' = 0 
1 ----- P 

SHARED Id#, Ds#, delta.unit.parallel#, L# 

'p1 # = (2 ' xa# A 2) - (4 I Id# ' xa#) + (5 1 Id# A 2) - (2 1 (Ds# ' Id# A 2) delta.unit#) 
p l#  = (2 ' xa# A 2) - (4 I Id# ' xa#) + (5 I Id# A 2) - (2 I (Ds# ' Id# A 2) ' delta.unit.parallel#) 
'IF (pl#) < 10 A -(I 3 - LOG(L#) / LOG(10)) THEN 
IFpl#cOTHEN 

pl#=O 
END IF 
'-limitation U(P(n) has the limit of n <= 88.02969 
'-expon#(n) =2.718281828459045#(n) has the limit of n <= 709.78 
plb#= Id# ' (2 '~a#-2 / Id#+2 ' (p1#)~ .5+L#)  
IF p l  b# > 709.78 THEN 

LOCATE 23, t 
PRINT " It. 

T 

LOCATE 23'1 
P R I M  "Overflow: L is too large!" 
LOCATE 24.1 
PRINT "Press any key to continue,.."; 
DO 
LOOP WHILE INKEY$ = '" 
END 

END IF 



IF p2# c 0 THEN 
p2# = 0 

END IF 
f.xa# = eq# ' (1 - (p2#) A .5) - 2 

END FUNCTION 

FUNCTION GetDe(ta.min# (L#, Id#, Ds#) 
'-For delta >2Ds 
'--this function is to find the deka.min (at which xa=O) 
'--It finds the root of the force+comp. equation for which xa=O (equation is 
'-located in f.deltamin function. 
'--Note: the min. L for which forces will balance is 2/ld#: this is found 
'--from the force+cornp. equation with xa=O and x k U 2  -> subst and sohe for L. 

a# = 2.5 Ds# '--this is the absolute max delta for xa=O: above this you'ld get complex 
numbers 

b# = 2 * Ds# '--this is the abs min delta for xa-0 
fa# = f.deltarnin#(a#) 
fb# = f.dettamin#(b#) 
wide# = a# - b# 
T "getting deltaernin ..." 
runflagl = 1 
IF (fa# = fb#) THEN 

runflagl = 0 
END IF 
WHILE runflagl a 0 

wide# = wide# / 2 
c#=(b#+a#) /2  
fc# = f.deltamin#(c#) 
IF fa# ' fc# C= 0 THEN 

IF (fa# = 0 OR fb# = 0) THEN 
IF fa# = 0 THEN 

b# = a# 
ELSE 
END IF 

ELSE 
b# = c# 
fb# = fc# 

END IF 
ELSElF fc# fb# <= 0 THEN 

a# = c# 
fa# = fc# 

END IF 
IF ABS(fb# - 0) c TOL# THEN 

runflagl = 0 
ELSE 

runflag? = runflagl + 1 
END IF 
IF wide# c 10 A -15 THEN 

runflagl = 0 
END IF 



WEND 

IF ABS(fa#) < ABS(fb#) THEN 
GetDelta.min# = a# 

ELSE 
GetDetta.min# = b# 

END IF 

END FUNCTION 

SUB graph (delta.ds#, emax#, delta.min#) 
SHARED Ds#, outfilename$ 
Style% = &HFFOO ' Use to make dashed line. 

'--get maximum of all deta.ds# and ernax# (i-e. the last data):begin 
OPEN outfilename$ FOR INPUT AS #I 
blank$ = INPUT$(44, #I ) 
INPUT #1 , landslide# '--...reading the length of landslide. 
FORn=2TO9 

LlNE INPUT #I, blank$ 
NEXTn 
blank$ = INPUT$(Sl, #1) 
INPUT #I1 angle.deg# '-...reading the angle between landslide and pipeline. 
F O R n = l l T O 1 2  

LlNE INPUT #I, blank$ 
NUCTn 

n=O 
00 

INPUT # I ,  delta-ds#, ernax# 
LOOP UNTIL EOF(1) 
CLOSE #I 
delta.ds.max# = delta.ds# 
ernax.rnax# = emax# 
'--get maximum of all delta.ds# and ernax# (i-e. the last data):end 

SCREEN 12 
WIDTH 80,60 

' View port sized to proper scale for graph: 
'--VtEW makes: (0,O) at top left of screen 
'VIEW (60,30)-(620,400), , 16 
view.x.start = 60 
view-y-start = 50 
viewx-end = 600 
view-y-end = 390 
VIEW (view.x.start, view.y.start)-(view-x-end, view-y-end) , , 16 

'-Make window large enough for strain from 0 to emax, and delta from 0 to delta.ds.rnax 
'--WINDOW makes: (0,O) at bottom left of screen 
window.x.end = delta.ds.max# 



window,y.end = next. higher.value(lNT(emax.max#) + 1 ) 

WINDOW (0, 0)-(window.x.end, window.y.end) 

OPEN outfilename$ FOR INPUT AS #1 
FORn= lTO11 

LlNE INPUT #1, blank$ 
NExTn 
n=O 

CLS 
LlNE (0.0)-(0.0) 
DO 

INPUT #I, delta.&#, emax# 
x# = delta.ds# 
y# = emax# ' Calculate the y coordinate. 
IF ABS(deRa.ds# - delta+min# 1 Ds#) <= 10 A -4 THEN 

LINE (x#. Y#)-(x#, y#). 1 I 
ELSE 

LlNE -(x#, y#), 11 ' Draw a line from the last 
' point to the new point. 

END IF 
LOOP UNTIL EOF(1) 
CLOSE #1 

'--draw x-axis ticks 
'-height of tick is 1/100 of the height of window y-axis 
window.x.tick.height = window,y.end 
window.x.tick.stepl = intewal.step!(window.x.end, 1 5) 
window.x.tick.begin! = window.x.tick.step! 
FOR n = window.x.tick.begin! TO window.x.end STEP window.x.tick.step! 

LlNE (n, 0)-(n, window.x.tick.height), 7, , Style% 
NEXTn 

'--draw y-axis ticks - 
'-height of tick is 111 00 of the width of window y-axis 
window.y.tick.height = window.x.end '--draw dashed line across graph. 
window.y.tick.stepl = interval.stepl(window.y.end, 1 5) 
window.y.tick.begin! = window.y.tick.stepl 
FOR n = window.y.tick.begin! TO window.y.end STEP window.y.tick.step! 

LlNE (0, 0)-(window-y.tick.height, n), 7, ,Style% 
NEXTn 

'-Label x-axis data values 
'-note: in screen mode 11 or 12 
'--x-axis: 640pixels/801ext = 8pixels/txt 
'--y-axis: 480pixe td30text = 1 6pixeIdtxt or 480pixeW60text = 8pixeIdtxt 
LOCATE 51.8: PRINT "O" 
prev.col = 8 
FOR nl = window.ntickbegin! TO window-x-end STEP window.x.tickstepl 

col = (view.x.start + nl 1 window.x.end * (view-x-end - view-x-start)) I 8 
LOCATE 51, col 



IF prev-col o col THEN 
'PRINT USING "##"; nl 
PRINT n! 
prev.co1 = col 

END IF 
NEXT nl 

'-Label y-axis data values I__m__- 

prev.row = 25 
FOR nl = window.y.tick.begin! TO window.y.end STEP window.y.tickstepf 

Row = (view.y.end - (n! / window.y.end) ' (view.y.end - view.y.start)) 1 8 + 1 
LOCATE Row, 1 
IF prev.row o Row THEN 

PRINT n! 
prev.row = ROW 

END IF 
NEXT n! 

'-label x and y axis, and title, 
LOCATE 2, 1 0: PRINT "Maximum Pipe uStrain(longitudina1) vs Amount of Landslide" 
LOCATE 5.25: PRINT USING "L=#### . angle = ##.## ": landslide#: angle.deg# 
LOCATE 55, 15: PRINT USING "Amount of Landslide in Multiples of #.#### (m)"; Ds# 
LOCATE 5, 1 : PRINT "ustrain" 

DO 
LOOP WHILE INKEY$ = '"' 
SCREEN 0 
END SUB 

SUB Initialize 
selection = 1 
Checkscreen 
Boxlnit 

END SUB 

SUB initvalues 
'SHARED d#, t#, E#, H, coh#, gamma#, phi.deg#, phi.rad#, Ds#, L#, L.min# 
'SHARED delta.ds#, delta,unit#, delta.min#, delta.max# 
'SHARED angle.rad#, angle.deg#, delta.unit.parallel#, delta.ds.parallel# 
'SHARED ks#, Id#, Area#, runlong3f, runlong6b 

angle.rad# = angle.deg# PI# 1 180 
phi.rad# = phi.deg# * PI# / 180 
'deRa.unit# = in meters, delta.ds# = in multiples of Ds 
delta.unit# = (delta.ds# Ds#) 
delta.unitparallel# = delta.unit# * COS(angle.rad#) 
delta.ds.parallel# = delta.unit.parallel# I Ds# 
'[# = pi#/ 4 '  ((d#/ 2) A 4  - (d#/ 2 - t#) "4) 
Area#= PI#* ((d#/ 2) A 2  - (d#/ 2 - t#) A2) 
ks# = (coh# + gamma# ' H (.9# * TAN(phi.rad#))) 1 Ds# 
Id# = ((ks# * PI# d#) I (E# * Area#)) A -5 
Lmin# = 2 1 Id# 
IF L# c L.min# THEN L# = L.min# 



'--for a pipe lying at an angle, the delta required to achieve the 
'-same delta(for pipe lying parallel to delta) is delta/cos(angle) 
'- - which is larger. 
delta.max# = 1 / 4 (L# A 2 ' Id# A 2 + 6)  ' Ds# I COS(angle.rad#) 
delta.min# = GetDelta.min#(L#, Id#, Ds#) I CQS(angle.rad#) 

runlong3f = FALSE 
runlong6b = TRUE '-TRUE = on and FALSE = off 
IF delta.ds# ' COS(angle.rad#) - 2 <= 1 0 A -1 4 THEN 

runlong3f = TRUE 
runlong6b = FALSE 

ELSEIF delta.unit# < delta.min# THEN 
deIta.unit# = delta.min# 

ELSEIF delta.unit# > delta.max# THEN 
delta-unit# = delta.max# 

END IF 
delta.unit.parallel# = delta.unit# COS(angle.rad#) 
delta.ds.parallel# = delta.unit.parallel# / Ds# 
delta.ds# = delta.unit# / Ds# 

END SUB 

FUNCTION interva1.stepl (given.value, rnax.num.divisions) 
'-Num of divisions should be <= 15 
FORn=OTO 10 

num.divisionsl = given-value / 10 A n '- 1091 =1 '1 0.1 00 ... etc 
IF nurn.divisionsl c= max.num.divisions THEN 

interva1,stepl = 10 A n 
EXIT FOR 

END IF 
num.divisionsl = given-value / (2 ' 10 A n) '-2*109I =2,20,200 ... etc 
IF num.divisions! <= max.num.divisions THEN 

interval.step! = 2 ' 10 A n 
EXIT FOR 

END IF 
num.divisions1 = given-value 1 (5 " 10 A n) '--5"109I =5,50,50O..-etc 
IF num-divisionsi <= max.num-divisions THEN 

interval.stepl = 5 ' 10 A n 
B I T  FOR 

END IF 
NEXTn 

END FUNCTION 

SUB Longslide 

'--max. precision for double precision is 15 decimal places- 
'--so, the rnax TOL# =1W14, because the program wilt not be able to compare 
'-the 16th decimal places if you set TOL#=1 W15. 
TOL# = 10 A-13# 

IF DehaSwitch = FALSE THEN '--manual delta input 
CLS 
IF runlong6b THEN 



'----test f.xa#--- 
'-to avoid imaginary numbers inside the sqrt terms of the governing equation 
'--(see function "f.xan), xa < Illd'(1 -sqrt(l-(32-deltdDs))) 
xa.max# = (1 I Id#) ' (1 - (deta.unit.parallel# 1 Ds# - 1.5) A .5) 
xa.min# = 1 I Id# - L# / 2 
b# = xa,max# 
a# = xa,min# 
CALL BisectXa(a#, b#, fa#, W) 

IF ABS(fa#) < ABS(fb#) THEN 
xa# = a# 

ELSE 
xa# = b# 

END IF 
PRl NT "after BisectXa.. ." 
PRINT " a="; a#; " fa=": fa# 
PRINT " b="; b#; " fb="; fb# 
PRINT" xa="; xa#; " f(xa)="; f.xa#(xa#) 
PRlNT 
PRlNT "L= "; L# 
PRINT "Delta.min/Ds ="; delta.min# 1 Ds#; ", Delta.max/Ds ="; delta.max# I Ds#; 
PRlNT "Delta/Ds ="; delta.ds# 
PRINT "xa.min ="; xa.min#; ", xa.max =": xa.max# 
PRINT "xa= "; xa#; ", f(xa)= "; f.xa#(xa#) 
PRlNT "xb ="; xb.xa#(xa#) 
PRlNT "emax 1 O"6 =I*; emax.xa#(xa#) ' 10 A 6 

ELSEIF runlong3f THEN 
b# = delta.unit.parallel# 
a# = 0# 
CALL BisectUo(a#, b#, fa#, fb#) 

IF ABS(fa#) c ABS(fb#) THEN 
UO# = a# 

ELSE 
uo# = b# 

END IF 
PRf NT "after BisectUo ..." 
PRINT " a="; a#; " fa="; fa# 
PRINT " b="; b#; " fb="; fb# 
P R I M  " uo="; uo#; " f(uo)="; f.uo#(uo#) 
PRlNT 
PR1NT "L= ": L# 
PRlNT "DeWDs ="; delta.ds# 
PRlNT "uo= "; uo#; ", f(uo)= "; f.uo#(uo#) 
P R I M  "ernax * 1 0% ="; emax.uo#(uo#) * 10 A 6 
END IF 

END IF 
OPEN outfilename$ FOR OUTPUT AS #3 

PRINT #3, USING "L = #######.###"; L# 
PRINT #3, USING "delta.max/Ds = #######-#####"; delta.max# / Ds# 
PRINT #3, USING "delta/Ds = #######.#####"; delta.ds# 
PRINT #3, USING "pipe diameter(m) = ###I###.######*; d# 
PRINT #3, USING "pipe thickness(m) = -.#####ii"; t# 



PRINT #3, USING "pipe modulus of elasticity(Pa/m) = # # # k , , W a ;  E# 
PRINT #3, USING "depth to center of pipe(m) = #######.##"; H 
PRINT #3, USING "soil cohesion(NlmA2) = ######,.##"; coh# 
PRINT #3, USING "soil density(N/mA3) = #####,.##"; gamma# 
PRlNT #3, USlNG "soil internal frictional angle(degrees) = #######.##"; phi.deg# 
PRINT #3, USING "limit elastic displacement of soil(Ds (m)) = #######.######"; Ds# 
PA1 NT #3, USlNG "angle between Landslide and pipe orientation(deg) = W.##"; ang le.deg# 
PRlNT #3, *xa.rnin =": xa.min#; " xa.max ="; xa.max# 
PRlNT #3, "xa= "; xa#; ", f(xa)= "; f.xa#(b#) 
PRlNT #3, "xb ="; xb.xa#(xa#) 
PRlNT #3, "emax ' 10% ="; emax.xa#(xa#) ' 10 A 6 

CLOSE #3 
IF Deltaswitch = TRUE THEN '-auto delta input 

CLS 
OPEN outfilename$ FOR OUTPUT AS #3 '---to clear content of file for new 
CLOSE #3 '--storage. 
OPEN outfilename$ FOR APPEND AS #3 

PRINT #3, USING "L = #######.##"; t# 
PRINT #3, USING "pipe diameter(m) = #######,######I; d# 
PRINT #3, USING "pipe thickness(rn) = #######. ######" ; t# 
PRINT #3, USING "pipe modulus of elasticity(Pa/m) = ###,,#W; E# 
PRINT #3, USING "depth to center of pipe(m) = #######.##": H 
PRINT #3, USING "soil cohesion(N/mA2) = ######,.##": coh# 
PRINT #3, USING "soil density(NImA3) = ######,.##I1; gamma# 
PRlNT #3. USlNG "soil internal frictional angle(degrees) = #######.##: phi.deg# 

PRlNT #3, USING "limit elastic displacement of soil(Ds (m)) = ########.######"; Ds# 
PRlNT #3. USING "angle between landslide and pipe orientation(deg) = ##.##"; angle.deg# 
PRlNT #3, 
PRlNT #3, " delta/Ds Max pipe strain*lWM 

'-0 <delta c 2Ds=2*0.008 
FOR n# = 0 TO (2 Ds#) I COS(angle.rad#) STEP ((Ds# / 4) / COS(angle.rad#)) 

delta.ds# = n# / Ds# 
CALL initualues 
b# = delta.unit.parallel# 
a# = 0# 
CALL BisectUo(a#, b#, fa#, fb#) 
IF ABS(fa#) c ABS(fb#) THEN 

uo# = a# 
ELSE 

uo# = b# 
END fF 
LOCATE 20.1 
PRINT " deltdDs Max pipe strain'l 0%" 
PRINT USING "#####.#####I ###HI#.#####"; delta.ds#; emax.uo#(uo#) ' 10 A 6 
PRINT #3, USlNG "#####.##### #####.#####"; delta.ds#; emuuo#(uo#) ' 10 A 6 

NEXT n# 
detta.ds.min.int.md.dn% = INT(delta-min# / Ds#) 
delta.ds.max.int.rnd.dn% = INT(delta.rnax# / Ds#) 
n.end% = detta.ds.max.int.md.dn% - (delta.ds.min.int.rnd-dn%) + 2 
Speedup-Fhg = No 
'--delta.min c delta < delta.max 



FOR n = 1 TO n.end% STEP (1 / COS(angle.rad#)) 
'-speed up calculations after 20 iteratiowbegin 
IF n > 20 AND Speedup-Flag = No THEN 

SpeedUp.Flag = Yes 
Speedup-Step = interval.stepl(n.end% - n, 20) 
IF SpeedUp.Step > 20 THEN Speedup-Step = 20 

END IF 
IF (SpeedUp.Flag = Yes) AND (n.end% - n > Speedup-Step) THEN 

n = n t Speedup-Step 
END IF 
'-speed up calculations after 20 iterations:end 

SELECT CASE n 
CASE IS = t 

delta-ds# = delta,min# / Ds# 
CASE IS = n.end0/o 

delta.ds# = delta.max# 1 Ds# 
CASE ELSE 

delta.ds# = delta.ds.min.int,rnd.dnO/~ + (n - 1) 
END SELECT 
CALL initvalues 
xa.max# = (1 I Id#) ' (1 - (delta.unit.parallel# / Ds# - 1.5) A -5) 
xa.min# = 1 / Id# - L# 1 2 
b# = xa.max# 
a# = xa.min# 
CALL BisectXa(a#, b#, fa#, fb#) 

IF ABS(fa#) < ABS(fb#) THEN 
xa# = a# 

ELSE 
xa# = b# 

END IF 
LOCATE 20, t 
PRINT " delta/Ds Max pipe strainml 0%" 
emax# = emax.xa#(xa#) 1 0 A 6 
PRINTUSING "#####.##### #####,#####";delta.ds#;emax# 
PRINT#3, USING "#####.##### #####.#####";delta.ds#;emax# 

NEXT n 
'-get one more delta.ds# to show that max emax# has been reached:start 
delta.ds# = next.higher.value(lNT(delta.ds#) + I )  
emax# = ernax# 
PRlNT#3, USING"#####.##### #####.#####";delta.ds#;emax# 

'-get one more defta.ds# to show that max emax# has been reached:end 

CLOSE #3 
END IF 

LOCATE 23,1 
PRIM "Press any key to continue..."; 
130 
LOOP WHILE INKEY$ = "" 



END SUB 

SUB Menut 
'cursor.col = POS(0) 
'cursor.row = CSRLIN 

DO 
initvalues.flag = FALSE 
Boxlnit 
menuflag = Yes '-used to refresh menu display until enter key is pressed. 
DO 
KeyVal$ = INKEY$ 

LOOP UNTIL KeyVal$ o "" 
SELECT CASE LEN(KeyVal$) 
CASE 0 

keycode = 0 
CASE 1 

keycode = ASC(KeyVal$) '-single character 
CASE ELSE 

keycode = -ASC(RIG HT$(KeyVal$, 1 )) '--extended character 
END SELECT 

IF KeyVal$ = CHR$(ENTER) THEN 
KeyVal$ = MID$(MainMenu(selection).mnuString, MainMenu(selection).rnnuHotKey, 

MainMenu(selection).mnuHiliteWidth) 
SELECT CASE KeyVal$ 

CASE "Ff" 
KeyVal$ = CHR$(NULL) + CHR$(F1) 

CASE "F2" 
KeyVal$ = CHR$(NULL) + CHR${F2) 

CASE "F3" 
KeyVal$ = CHR$(NULL) + CHR$(F3) 

CASE "F4" 
KeyVal$ = CHR$(NULL) + CHR$(F4) 

CASE "F5" 
KeyVal$ = CHR$(NULL) + CHR$(FS) 

CASE "F6" 
KeyVal$ = CHR$(NULL) + CHR$(F6) 

CASE "F7" 
KeyVal$ = CHR$(NULL) + CHR$(F7) 

CASE "F8  
KeyVal$ = CHR$(NULL) + CHR$(FB) 

CASE "F9" 
KeyVal$ = CHR$(NULL) + CHR$(FS) 

CASE "Ft 0" 
KeyVal$ = CHR$(NULL) + CHR$(F10) 

CASE ELSE 
END SELECT 

END IF 
SELECT CASE UCASE$(KeyVal$) 

CASE CHR$(NULL) + CHR$(UP) 
selection = selection - 1 
IF selection = 0 THEN selection = MainMenulterns '-jump from top to bottom 



CASE CHR$(NULL) + CHR$(DOWN) 
selection = selection + 1 
IF selection > MainMenultems THEN selection = 1 '-jump from bottom to top 

CASE "Iu 
initvaluesflag = TRUE 
selection = 1 
Boxlnit 
back# = d# 
INPUT "pipe diameter(rn): "; in$ 
IF in$ = "" THEN d# = back# ELSE d# = VAL(in$) 

CASE "2" 
initvalues.flag = TRUE 
selection = 2 
Box1 nit 
back# = t# 
INPUT "pipe thickness(m): "; in$ 
IF in$ = "" THEN t# = back# ELSE t# = VAL(in$) 

CASE "3" 
initvalues-flag = TRUE 
selection = 3 
Boxfnit 
back# = E# 
INPUT "pipe modulus of elasticity(Pa/m): "; in$ 
IF in$ = "" THEN E# = back# ELSE E# = VAL(in$) 

CASE "4" 
initvalues.flag = TRUE 
selection = 4 
Boxlnit 
back# = H 
INPUT "depth to center of pipe(m): "; in$ 
IF in$ = "I' THEN H = back# ELSE H = VAL(in$) 

CASE "5" 
initvalues.flag = TRUE 
selection = 5 
Boxfnit 
back# = coh# 
INPUT "soil cohesion(N/mA2): "; in$ 
IF in$ = "" THEN coh# = back# ELSE coh# = VAL(in$) 

CASE "6" 
initvalues.flag = TRUE 
selection = 6 
Boxlnit 
back# = gamma# 
INPUT "soil density(N/mA3): "; in$ 
IF in$ = "" THEN gamma# = backlt ELSE gamma# = VAL(in$) 

CASE "7" 
initvalues.flag = TRUE 
selection = 7 
Boxlnit 
back# = phi.deg# 
INPUT "soil internal frictional angle(degrees): "; in$ 
IF in$ = "" THEN phi.deg# = back# ELSE phi.deg# = VAL(in$) 

CASE "8* 



initvalues.flag = TRUE 
selection = 8 
Box1 nit 
back# = Ds# 
INPUT "limit elastic displacement of soil(Ds (m)): "; in$ 
IF in$ = "" THEN Ds# = back# ELSE Ds# = VAL(in$) 

CASE "9" 
inih/alues.flag = TRUE 
selection = 9 
Boxlnit 
back# = L# 
INPUT "length of landslide (m): "; in$ 
IF in$ = "" THEN L# = back# ELSE L# = VAL(in$) 

CASE "0" 
initvalues.flag = TRUE 
selection = 10 
60x1 nit 
back# = delta.ds# 
INPUT "amount of landslide(in multiples of Ds (m): "; in$ 
IF in$ = "" THEN delta.ds# = back# ELSE delta.ds# = VAL(in$) 
IF DeltaSwitch = TRUE THEN '-if was at auto delta input, set it to 

Deltaswitch = FALSE '-manual input(as if pressing F1) 
END IF 

CASE (CHR$(NULL) + CHR$(Fl)) 
selection = 11 
Boxlnit 
DeltaSwitch = NOT (DeltaSwitch) '--TOGGLE THE DeltaSwitch 

CASE " A  
initvalues.flag = TRUE 
selection = 12 
Boxlnit 
back# = angle.deg# 
INPUT "angle between direction of landslide and the pipeline(degrees): "; in$ 
IF in$ = "" THEN angle.deg# = back# ELSE angle.deg# = VAL(in$) 

CASE "S" 
selection = 13 
Boxlnit 
OPEN "Iong.datu FOR OUTPUT AS #2 

PRINT #2, outfilename$ 
PRINT #2, d# 
PRINT #2, t# 
PRINT #2, E# 
PRtNT #2, H 
PRINT #2, coh# 
PRINT #2, gamma# 
PRINT #2, phi.deg# 
PRINT #2, Ds# 
PRINT #2, L# 
PRINT #2, delta.ds# 
PRINT #2, angle.deg# 
PRINT #2, DeltaSwitch 

CLOSE #2 
CASE "F" 



selection = 14 
Box1 nit 
back$ = outfilename$ 
INPUT "output filename:'; outfilename$ 
IF outfilename$ = "" THEN outfilename$ = back$ 

CASE "G" 
selection = 15 
Boxlnit 
CALL graph(delta.ds#. ernax#, detta.min#) 

CASE CHR$(NULL) + CHR$(FIO) 
selection = 16 
Boxlnit 
Longslide 

CASE "Q" 
selection = 17 
Boxlnit 
END 

CASE CHR$(ESCAPE) 
selection = 17 
Boxlnit 
END 

CASE SPACEBAR 
CASE ELSE 

END SELECT 

IF initvalues.flag = TRUE THEN 
CALL initvalues 

END IF 

LOOP WHILE menuflag = Yes 

END SUB 

FUNCTION next.hig her.value# (g iven.value#) 
'--function to get the next higher value from h e  given value in an easy 
'--interval for plotting: .5.1,1.5,...10.15.20 ,..., 100,150,200 .... etc 
FOR power = 0 TO 10 

IF 10 A power > given.value# THEN WIT FOR 
NEXT power 
power = power - 1 
FOR coef! = .5 TO 10 STEP .5 

IF coefl ' 10 A power >= given.value# THEN EXIT FOR 
NEXT coefl 
next higher-value# = coef! * 1 0 A power 
END FUNCTION 

SUB printmenustring (menustring$. char.pos%, num.chars.hilited%) 
COLOR Foreground, Background: PRINT LEFT$(menustring$, char.pos% - 1): 
COLOR Hilite, Background: P R I M  M ID$(menustring$, char.pos%. num.cha~.hilited%): 
COLOR Foreground, Background: PRINT RIGfiT$(menumng$. LEN(menustring$) )- 

char.posYo - (num.chars.hilited% - I)) 



END SUB 

SUB ReadlnputFile 
PRINT "opening file long.dat" 
OPEN "long.datb' FOR INPUT AS #1 

INPUT #I, ouffilename$ 
INPUT #1, d# 
INPUT #I, t# 
INPUT #I, E# 
INPUT #I, H 
INPUT #1, coh# 
INPUT #I, gamma# 
INPUT #I, phi.deg# 
INPUT #I, Ds# 
INPUT #1, L# 
INPUT #1, delta.ds# 
INPUT #I, angle.deg# '-angle between direction of landslide and pipeline(deg) 
INPUT #I, Deltaswitch '-used to switch between Manual calculation(-1) or Auto 

calculation(1) 

CLOSE #I 

END SUB 

FUNCTION xb.xa# (xa#) 
'-For delta >2Ds 
P - - 
SHARED Id#, Ds#, deita.unit.parallel#, L# 
p l #  = 2 ' xa# A 2 - 4 ' xa# I Id# + 1 1 Id# A 2 (5 - 2 * delta.unit.paraliel# I Ds#) 
IF p l #  COTHEN 

pl#=O 
END IF 
xb# = 1 I Id# - xa# - (pl#) A .5 
xb.xa# = xb# 

END FUNCTION 




