
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2014-01-14

Applications of the Hypergeometric Method

Sorvisto, Dayne

Sorvisto, D. (2014). Applications of the Hypergeometric Method (Master's thesis, University of

Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/24973

http://hdl.handle.net/11023/1256

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Applications of the Hypergeometric Method

by

Dayne Sorvisto

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTERS OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

January, 2014

c© Dayne Sorvisto 2014



Abstract

Abstract: We define an irrationality measure and show how irrationality measures can be

used to bound the size of solutions to Thue equations. We give a review of some of the major

results about binary Thue equations.

We study the Hypergeometric Method. We prove an important theorem which shows how

irrationality measures can be constructed from sequences of rational numbers. We explicitly

construct irrationality measures for some degree 3 algebraic irrationalities.

We look at the application of irrationality measures to binary Thue equations. Through-

out this chapter we illustrate each theorem with an example equation using the irrationality

measures we constructed.

We look at applications of restricted irrationality measures to continued fractions and

exponential Diophantine equations. We prove a theorem about the size of solutions to the

generalized Ramanujan-Nagell equation.
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Chapter 1

Liouville’s Approximation Theorem and its

Generalizations

1.1 Introduction

In number theory, Diophantine approxmation is concerned with the approximation of real

numbers by rational numbers. The basic problem in Diophantine approximation is to know

how well a real number α can be approximated by a rational number a
b
. The approximation

is good if
∣∣α− a

b

∣∣ does not decrease if a
b

is replaced by another rational number with a smaller

denominator. The theory of simple continued fractions was used to find good approximations

of a real number in the 18th century. With this in mind, it was natural to ask whether or

not it is possible to find sharp upper or lower bounds on the above absolute value in terms

of the denominator. This turned out to be a very profound question and is the subject of

this thesis.

It is the goal of this thesis to develop the idea of an irrationality measure, which in some

sense quantifies how well an irrational number can be approximated by rational numbers. We

start by giving sufficient background information including very simple definitions and the-

orems on irrationality and culminating with the Hypergeometric Method. This background

will be used to explicitly construct irrationality measures and the explicit computation of

some nontrivial examples. The secondary goal of this thesis is to show some applications of

irrationality measures to Diophantine equations; this is done by considering both a particular

family of Thue equations as well as some exponential Diophantine equations. Throughout

the thesis simple continued fractions will play an important role when we compute specific

examples of irrationality measures. As such, a supplementary goal of this thesis is to show
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how simple continued fractions are related to irrationality measures.

We begin by discussing irrationality and some of its basic properties. An irrational

number is a real number that is not rational. In general deciding whether or not a real

number is irrational is an extremely difficult problem (for example, the irrationality of e+ π

is not known). However, there exist many equivalent ways to describe what it means for a

real number to be irrational. A good introduction to the mathematics of irrational numbers

is Irrational Numbers by Ivan Niven (see [19]).

1.2 Criterion for Irrationality

The following theorem gives an equivalent characterization for the irrationality of a real

number. The theorem follows from a basic fact of Diophantine approximation, namely that

any nonzero integer has absolue value at least one. A simple corollary of this is if a real

number is rational then it cannot be well approximated by any rational number other than

itself. We state this formally below.

Theorem 1. Let α be a real number, then the following are equivalent:

(1) α is irrational.

(2) For any ε > 0 there exists p
q
∈ Q such that

0 <

∣∣∣∣α− p

q

∣∣∣∣ < ε

q
.

(3) For any real number Q > 1, there exists an integer q in the range 1 ≤ q ≤ Q and a

rational integer p such that

0 <

∣∣∣∣α− p

q

∣∣∣∣ < 1

qQ
.

Proof. We begin by proving that (1) =⇒ (3)

Let Q > 1 and define N to be the ceiling of Q. This implies that N is an integer such

that N − 1 < Q ≤ N . Also since Q > 1 this implies N ≥ 2. For x ∈ R write x = bxc+ {x},
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where bxc is the integer part of x and {x} is the fractional part. Let α ∈ R−Q.

Consider the subset E of the unit interval which consist of the N − 1 elements {qα}, q =

1, ...N − 1 as well as the endpoints of the interval 0 and 1. Since α is irrational, these

N + 1 elements are pairwise distinct. We can also split the unit interval into N subintervals

Ij = [ j
N
, j+1
N

], 0 ≤ j ≤ N − 1. By the pidgeonhole principle it follows that at least one of

these intervals contains at least 2 of the elements of our set E, call this interval Ij0 .

If j0 = N − 1 then Ij0 = [1 − 1/N, 1] contains 1 as well as one other element {qα}, 1 ≤

q ≤ N − 1. Set p = bqαc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and p− qα = 1−{qα} and

hence 0 < p− qα < 1
N
≤ 1

Q
. The case where j0 = 0 is similar.

Apart from 0 and 1, our N + 1 elements of E are irrational and hence are contained in

the union of the open intervals ( j
N
, j+1
N

), 1 ≤ j ≤ N − 2. In this case we have 1 ≤ j0 ≤ N − 2

and Ij0 contains 2 elements of the form {q1α}, {q2α} with 0 ≤ q1 < q2 ≤ N − 1. We then set

q to be the difference q2 − q1 and p to be the difference bq2αc − bq1αc. Thus the conditons

of (3) are satisfied since we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qα− p| = |q2α− q1α− (bq2αc − bq1αc)| = |{q2α} − {q1α}| < 1/N ≤ 1

Q
.

We see (2) =⇒ (1) by noting if α = a
b

then we can choose c = 1
b

so that for any rational

number p
q
6= α,

∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q
.

The above inequality holds since aq − bp is a nonzero integer with absolute value at least 1.

Finally, (3) =⇒ (2) follows immediately by fixing ε > 0 and invoking the Archimedian

property of the reals to choose a natural number Q > 1 with 1
Q
< ε.

The following is a sharper version of Theorem 1 due to Adolf Hurwitz and is known in

the literature as “Hurwitz’s Theorem”.
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Theorem 2 (Hurwitz’s Theorem). A real number α is irrational iff there are infinitely many

rational numbers p/q that satisfy the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

Classical proofs of Hurwitz’s Theorem use Farey series or continued fractions. A proof

can be found in Adolf Hurwitz’s paper [15].

In 1844, Liouville gave the first examples of transcendental numbers (later to be called

Liouiville numbers). His results were based on his observation that algebraic numbers cannot

be approximated by rationals “too well” and at the same time, “too frequently”. What

later became known as Liouville’s approximation theorem that Liouville used to construct

these transcendental numbers has since become a major object of study in diophantine

approximation. An inequality of the type given in Liouville’s Approximation Theorem is

called a Liouiville inequality. A natural way to construct a class of transcendental numbers

is by using Liouville inequalities as in the definition of a Liouville number. We will now

explicitly define both algebraic numbers and Liouville numbers.

Definition 1 (Algebraic number). A real algebraic number is a real number that is a root of

a non-zero polynomial in one variable with rational coefficients. The degree of an algebraic

number is the degree of its minimal polynomial over Q. A real number that is not algebraic

is called transcendental.

Definition 2 (Liouville Number). A Liouville number is a real number α such that for any

positive integer n, there exists integers a and b > 1 such that
∣∣α− a

b

∣∣ < 1
bn

It turns out that there is a close relationship between Liouville inequalities and algebraic

numbers. This relationship is stated formally in Liouville’s Approximation Theorem.

Theorem 3 (Liouville’s Approximation Theorem). Let α be a real algebraic number of degree

n ≥ 2 and p and q be integers, then ∣∣∣∣α− p

q

∣∣∣∣ > A

qn
(1.1)
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where A is a positive constant that only depends on α.

Proof. Since α is algebraic, it is the root of some degree n polynomial f(x) with integer

coefficients. Let M be the max of |f ′(x)| over the compact set [α− 1, α+ 1] and α1, α2, .., αm

be the distinct roots of f not equal to α with m < n.

Choose a value A > 0 that satisfies the inequality

A < min

{
1,

1

M
, |α− αi|

}
.

Suppose that there exists integers p and q that contradict the theorem, that is,

∣∣∣∣α− p

q

∣∣∣∣ ≤ A

qn
≤ A < min

{
1,

1

M
, |α− αi|

}
.

It follows that p
q

is in the interval [α − 1, α + 1] and is not equal to any of the αi since∣∣∣α− p
q

∣∣∣ < |α− αi|. Hence, p
q

is not a root of f and there is no root of f between α and p/q.

By the mean value theorem, there exists an x0 between p
q

and α such that

f(α)− f
(
p

q

)
=

(
α− p

q

)
f ′(x0).

Since α is a root of f but p/q is not, it follows that |f ′(x0)| > 0 and hence,

∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣f(α)− f(p
q
)
∣∣∣

|f ′(x0)|
=

∣∣∣∣∣∣
f
(
p
q

)
f ′(x0)

∣∣∣∣∣∣ .
Now f can be written in the form

f(x) =
n∑
i=0

cix
i

where the coefficients are integers. Hence,

∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣∣
n∑
i=0

ci

(
p

q

)i∣∣∣∣∣ =
|
∑n

i=0 cip
iqn−i|

qn
≥ 1

qn
.
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The final inequality is true since p
q

is not a root of f and |
∑n

i=0 cip
iqn−i| is a nonzero

integer. From the above we get the inequality |f(p
q
)| ≥ 1

qn
. Also, since |f ′(x0)| ≤ M (by

construction) and 1
M
> A (by the definition of A), we have that

∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣∣∣∣
f
(
p
q

)
f ′(x0)

∣∣∣∣∣∣ ≥ 1

Mqn
>
A

qn
.

We remark that Liouville numbers are clearly transcendental by Liouvilles Approximation

Theorem. One might wonder how typical Liouville numbers are amongst all real numbers,

that is, how many reals do we expect to be Liouville numbers? The following theorem shows

that almost no real numbers are Liouville numbers in the sense of Lebesgue measure.

Theorem 4. The set of Liouville numbers in [0, 1] has Lebesgue measue 0.

Proof. Fix ε > 0, we want to show that the Lebesgue measure of the Liouville numbers in

the interval [0,1] is less than ε. Note that for any positive integer n,

∞∑
b=2

4

bn−1
<

4

2n−3

∞∑
b=2

1

b2

and since the rightmost sum converges we can choose a positive integer n such that

∞∑
b=2

4

bn−1
< ε.

By definition if α is a Liouville number in [0,1] then there exist integers a and b with b > 1

such that ∣∣∣α− a

b

∣∣∣ < 1

bn
.

Since

1

bn
<

1

2

and α ∈ [0, 1] we must have that

−1

2
<
a

b
<

3

2

6



or equivalently − b
2
< a < 3b

2
. Hence, a is in an open interval of length 2b. This implies that

for any integer b > 1, there are at most 2b possible values of a for which our inequality can

hold. Hence we conclude that α can be in at most 2b intervals of length 2
bn

and therefore the

Lebesgue measure of all such α is at most

∞∑
i=2

2i

in
< ε

by how n was chosen.

One might wonder if it is possible to improve the inequality in Theorem 3 further and

reduce n to arrive at a sharper one of the form (1.1). In fact sharpenings of Liouville’s

inequality to be of the form ∣∣∣∣α− p

q

∣∣∣∣ > λ(q)

qn
(1.2)

(where λ(q) is some monotonically increasing function that tends to infinity as q → ∞)

are of immense importance because, as we will see, they can be used to bound solutions to

Diophantine equations.

1.3 The Existence of a Computable Bound for Thue Equation

Diophantine approximation is concerned with the approximation of real numbers by rational

numbers. One reason that Liouville inequalities are important in Diophantine approximation

is because they can often be applied to Diophantine equations to show that they only have

certain solutions.

Definition 3. A binary form f(x, y) of degree n ∈ Z with n ≥ 1 is a homogeneous bivariate

polynomial f(x, y) = a0x
n + a1x

n−1y+ a2x
n−2y2 + ...+ an−1xy

n + any
n where ai ∈ Z for each

i

Let f(x, y) be an integral binary form of degree n ≥ 3 and N 6= 0 a nonzero integer.

We consider solutions to the equation f(x, y) = N . This equation is often called Thue’s

equation after Axel Thue who proved in 1909 that this equation has only finitely many

7



solutions in integers (see [24]). The study of this equation in the early 20th century ultimately

led Mordell to the theorem on the finite rank of the group of rational points on an elliptic

curve as well as Siegel’s theorem that there are only finitely many integral points on an

algebraic curve with genus greater than zero. Although an elliptic curve is homogeneous in

three variables with an affine model inhomogeneous in two variables whereas a Thue equation

is homogeneous in two variables; the method of showing the finiteness of Thue equations lead

to the study of homogeneous forms in 3 or more variables. Hence, Thue equations played a

central part in the development of Diophantine analysis in the early 20th century.

It was not until long after Thue published his work on this equation that an explicit

bound on the number of solutions (in terms of just parameters of the equation such as |N |

or the height or degree of the form) was known. Therefore, the proof we will present in this

thesis is different from the one due to Thue.

In this thesis we will use improvements of Liouville inequalities to find explicit bounds

on solutions to particular Thue equations in terms of its parameters. However, we will not

go into theory of linear forms in logs which give general improvements of Liouville’s theorem

for algebraic numbers. A good introduction to the theory of linear forms in logarithms is

Linear Forms in Logarithms of Rational Numbers by Yuri Nesterenko (see [18] ).

Instead, we will use the Hypergeometric method to derive improvements of Liouville’s

theorem for particular algebraic numbers. These improvements are often significantly sharper

than the improvements we would get by using the more general theory of linear forms in logs

and so the bounds that we will derive will be very sharp. In fact, later we will show how the

Hypergeometric method can be used to bound the number of solutions for an infinite family

of Thue equations by deriving very sharp effective improvements of Liouville’s approximation

theorem for a particular class of algebraic numbers (called irrationality measures).

Towards this goal we will prove that the Thue equation has only finitely many integral

solutions, but we will assume without proof that we have an improvement of Liouville’s

8



inequality for the algebraic numbers we consider in the proof. We note that this assumption

is actually true but invokes the extremely deep theory of linear forms in logarithms to show

there is an improvement of Liouville’s inequality for any algebraic irrationality. The following

is a fortaste for some of the main ideas of the thesis.

First we will give some motivation for why we should expect these effective inequalities

to be useful in proving there are finitely many integral solutions to the Thue equation. Let

f(x, y) be an irreducible binary form of degree n ≥ 3 and suppose that N 6= 0 is an integer. If

inequality 3.5 admits a sharpening of the form 1.2 for some λ(q)→∞ then the Diophantine

equation f(x, y) = N has only finitely many solutions. We note that f(x, y) irreducible

implies f(x, 1) is irreducibe (see section 4.1 for a proof). We remark that if f(x, y) is not

irreducible then the equation f(x, y) = N can be reduced to finitely many equations of this

type where the binary form is irreducible.

Now if f(x, 1) is a polynomial without real roots then the equation f(x, y) = N has only

a finite number of solutions. We see this by noting if there are infinitely many solutions

(xk, yk) in integers then ynkf(xk
yk
, 1) = A and hence f(xk

yk
, 1) = N

ynk
. Taking the limit as k →∞

it follows that f(x, 1) has a real root.

Suppose instead that α is a real root of f(x, 1) and α(i) (i = 1, 2,..., n) are its conjugates.

It follows from the equation and y 6= 0 that

n∏
i=1

∣∣∣∣α(i) − x

y

∣∣∣∣ =
N

|a||y|n

where a is the leading coefficient of the polynomial f(x, 1). Assuming the equation has

solutions (x, y) for infinitely many y, we see the product on the left takes arbitrarily small

values for solutions x and y. Since α(i) are all distinct, there are infinitely many x
y

close to

one of the real roots, say α(j).

From the above (after some nontrivial manipulations that we will show in the next

theorem) we obtain an inequality
∣∣∣α− x

y

∣∣∣ < c2
|y|n where c2 depends on α. If λ(q) → ∞ this

contradicts the Liouiville inequality 1.2 and hence there are not infinitely many solutions.

9



These ideas illustrate how we can take a Diophantine equation and associate a set of

algebraic irrationalities to it and if we can find sharp Liouville inequalities for each algebraic

irrationality, we can bound the solutions to the equation in such a way that the constants

are explicit and depend on the constants given in the inequalities. We will now explicitly

show this in the next theorem.

Theorem 5. Let f(x, y) be an irreducible binary form of degree n ≥ 3 and N a nonzero inte-

ger. Consider the Diophantine equation f(x, y) = N . If α(1), ..., α(n) are the n distinct roots

of the polynomial f(x, 1) and for each root we have an effective improvement of Liouville’s

Approximation Theorem of the form |α(i) − p/q| > C/qω for some effective constant C > 0

depending on α(i), it follows that there is an effective bound on |y| of the form

|y|n−ω < 2(n−1) |N |
c3 |f ′(α(1))|

Proof. Let α(1), ..., α(n) be the n distinct roots of the polynomial f(x, 1). If integers X and

Y satisfy (1.1) and Y 6= 0 (if Y=0 then the inequality in the theorem follows trivially) then

define α(1) as the root with ∣∣∣∣α(1) − X

Y

∣∣∣∣ = min
i

∣∣∣∣α(i) − X

Y

∣∣∣∣ .
From the equation

n∏
i=1

|α(i) − X

Y
| = N

|a0||Y |n

we have that

∣∣∣∣α(1) − X

Y

∣∣∣∣ ≤ c

Y

where

c =

(
|N |
|a0|

)1/n

and a0 is the leading coefficient of f(x, 1).

10



Then for i 6= 1 we have that

2

∣∣∣∣α(i) − X

Y

∣∣∣∣ ≥ ∣∣∣∣α(i) − X

Y

∣∣∣∣+

∣∣∣∣α(1) − X

Y

∣∣∣∣ ≥ ∣∣α(i) − α(1)
∣∣ .

by the triangle inequality.

Since the above inequality holds for i 6= 1 and

|Y | ≤ 2

(
|N |
|a0|

) 1
n

|α(1) − α(i)|−1

we obtain

|N |
|a0|

= |Y |n
n∏
i=1

∣∣∣∣α(i) − X

Y

∣∣∣∣ ≥ |Y |n2−n+1

∣∣∣∣α(1) − X

Y

∣∣∣∣ n∏
i=2

|α(1) − α(i)|. (1.3)

Hence we arrive at the following

∣∣∣∣α(1) − X

Y

∣∣∣∣ ≤ c2
|Y |n

(1.4)

where

c2 = 2(n−1) |N |
|f ′(α(1))|

.

It is at this stage of the proof that we will use our assumption that we have an improve-

ment on Liouiville’s approximation theorem for α(1) (note that this uses assumption that

α(1) is real). From this assumption and ( 1.4) we have that

c3
|Y |ω

<

∣∣∣∣α(1) − X

Y

∣∣∣∣ < c2
|Y |n

for some effectively computable constant c3 from which it follows that

|Y |n−ω < 2(n−1) |N |
c3f ′(α(1))

(1.5)

We remark that Roths’ theorem implies we can take ω = 2+ε for any ε > 0 but c3 (which

depends on α(1), ε) is then ineffective. However this is sufficient to prove the finiteness of the
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number of solutions. If an effective improvement exists as in the statement of the theorem

then (1.5 ) gives a bound on |y| and consequently on |x|.

In particular the kind of Thue equation that we will study in this thesis is the case where

n = 3 and there is no xy term, sometimes called a binary Thue equation in the literature.

We discuss its history as well as some recent results which give very tight upper bounds on

the number of solutions to this equation in positive integers.

1.4 A History of the Binary Thue Equation

A special case of the equation Axel Thue originally considered in his paper [24] is the equation

axn − byn = N for a,b and n and N fixed nonzero integers, n ≥ 3. This equation is also

referred to as a binary Thue equation and in the special case N = 1 there is an abundance of

literature on the subject. Both Delone and Nagell [17] showed independently that if n = 3

this equation has at most one positive integer solution in x and y and furthermore if this

solution exists it must correspond to the fundamental unit in the number field Q
((

a
b

)1/3)
(when all embeddings are complex). This result was extended by Ljunggren in his paper [16]

where the the equation ∣∣ax4 − by4∣∣ = 1

was shown to have at most one positive integer solution in x and y.

A recent improvement is due to Michael Bennett and Benjamin M.M. De Weger in their

paper “On the Diophantine Equation |axn−byn| = 1” (see [8]). The main theorem of Bennett

and De Weger’s paper shows the equation under consideration has at most one solution in

positive integers except possibly in two cases. The theorem is given as follows.

Theorem 6. If a,b and n are integers with b > a ≥ 1 and n ≥ 3 , then the equation

|axn − byn| = 1 has at most one solution in positive integers (x, y), except possibly the cases

where b = 1 and 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347.
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The proof of this result depends on techniques discussed in this thesis such as the Hyper-

geometric Method as well as techniques beyond the scope of this thesis (such as the theory

of linear forms in logarithms and lattice-basis reduction methods).

Bennett and De Weger first prove a version of the above theorem for n ’small’ relative

to max{a, b} using arguments related to the Hypergeometric Method. The next stage of the

proof is considering some special cases for “small” n between 5 and 13 where the Hyperge-

ometric Method is insufficient. In order to handle these cases, the more general theory of

linear forms in logarithms is invoked as well as some computational methods in lattice-basis

reduction. The major computational difficulty is finding fundamental units of corresponding

algebraic number fields. Finally, a lower bound on some linear forms in logarithms for pairs

of algebraic numbers is invoked to prove the main theorem of the paper.

For values other than N = 1, the binary Thue equation axn − byn = N (which we

consider from the Diophantine approximation perspective in this thesis) was first studied in

1937 by Siegel who extended the work of Thue (what later would be known as the Thue-

Siegel method). Siegel [23] was able to prove that the Thue inequality |axn − byn| ≤ c has

at most one solution in positive integers (x, y) provided that

|ab|n/2−1 ≥ 4n

∏
p|n

p
1

pp−1

n

e2n−2.

This result was further sharpened by Jan-Hendrik Evertse in his PhD thesis titled “Upper

Bounds for the Numbers of Solutions of Diophantine Equations” [12]. The main result of

his thesis is the following.

Theorem 7. The Thue inequality |axn − byn| ≤ c has at most one solution in positive

integers (x,y) for n ≥ 3 and c a positive real number given that max{|axn|, |byn|} > βnc
αn

where βn, αn are effectively computable positive constants satisfying β3 = 1152.2, β4 = 98.53

and βn < n2 for n ≥ 5.

The techniques used in the proof of Evertse’s theorem include the Hypergeometric Method
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but also more advanced techniques such as the iterated gap principle which are beyond the

scope of this thesis but can be found in [12]. The part of this proof that we will focus on

in this thesis is the the existence of effective improvements of Liouville inequalities. The

Liouville inequality given in Theorem 3 of the form∣∣∣∣α− p

q

∣∣∣∣ > A

qn

is called effective because the constant A can be explicitly computed.

The first improvements to Liouville inequalities were given by Thue in 1909 [1] who

reduced n to n
2

+ 1 + ε for any ε > 0 and the constant A depends only on ε and α. Later in

1921 Siegel [22] improved Thue’s bound considerably giving rise to the Thue-Siegel theorem

which states ∣∣∣∣α− p

q

∣∣∣∣ > c|q|−λ−ε

where c(α, ε) > 0 and

λ = min{ n

s+ 1
, s}, s = 1, 2, ..., n− 1.

The technique used in the proof of this theorem involves constructing a multivariate polyno-

mial that vanishes to high order at the algebraic point (α, α). We note that Theorem 5 and

Thue-Siege theorem imply that a Thue equation has ony finitey many integral solutions.

In fact as mentioned previously, it was proven by Roth that λ can be reduced to 2 + ε in

the above bound (it is not known whether the ε is necessary or not). However, the constant c

is not effective in any of the above inequalities; that is the proofs of the resulting inequalities

do not provide any insights into how to compute c and thus cannot be applied to explicitly

solve Diophnatine equations.

Definition 4. For a real number α we define its irrationality measure to be infω∈S{ω}

where S is the set of positive real numbers ω such that there are only finitely many integers

p, q that satisfy

0 <

∣∣∣∣α− p

q

∣∣∣∣ < 1

qω

14



For instance, it is known that for any irrational algebraic number and any ε > 0 there

is a constant c depending only on α and ε such that
∣∣∣α− p

q

∣∣∣ > c
q2+ε

. This is known as

Roth’s theorem or the Thue-Siegel-Roth theorem. The exponent 2 + ε is referrred to as an

irrationality exponent and 2 is an irrationality measure (in the literature these terms are

sometimes interchanged depending on the context). However, as in the theorem of Thue

and Siegel, the inequality in Roth’s theorem is not effective. We remark that if the set S is

nonempty then it is infinite since if it contains a positive real number ω then it also must

contain all positive reals larger than ω. However, S can be empty for example in the case of

Liouville numbers. It is also worth noting that Theorem 1 implies the irrationality measure

of any irrational number is at least 2.

Roth’s theorem is a statement about the irrationality measure of irrational algebraic

numbers, but one might wonder what the irrationality measure of a typical real number is, a

problem that Aleksandr Khinchin provided the answer to in 1926. This famous result known

as Khinchin’s Theorem was first of many results in Diophantine approxmiation which are

valid for almost all real numbers except outside of a set of Lebesgue measure 0. Results

of this kind form the metric theory of Diophantine approximiation. Although Khinchin’s

Theorem is not relavent to this thesis, we include it as an interesting related result.

Theorem 8 ( Khinchin’s Theorem). If
∑

q φ(q) < ∞ for φ(q) ≥ 0 then
∣∣∣x− p

q

∣∣∣ < φ(q)
|q| has

finitely many solutions p and q for almost all real numbers (on a set of Lebesgue measure

zero).

Khinchin’s Theorem will not be proved here, but Theorem 4 can be viewed as a much

weaker version of this result. We remark that Khinchin’s Theorem shows that almost all

real numbers behave like algebraic irrationalities from the perspective of Diophantine ap-

proximiation, meaning that real numbers have irrationality measure 2 except outside of a

set of Lebesgue measure 0. However, this does not say anything about how to compute

irrationality measures for fixed real numbers and in general, finding effective sharpenings of
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Liouville inequalities for algebraic irrationalities is a very difficult problem. Thue and Siegel

were the first mathematicians to develop this idea and we briefly summarize their methods

below.

1.5 Thue and Siegel Methods

Suppose that β is an irrational algebraic number. The Thue and Siegel method is used

to construct sequeneces of rational numbers with desirable properties (to be defined later)

that converge to β. The main idea is to define analytic functions called Pade approximants

to approximate algebraic functions. The properties of these Pade approximants are used

to show that the corresponding sequences of rational numbers have the desired properties

that lead to improvements of Liouville’s approximation theorem. Finally, these effective

improvements can then be used to solve certain Diophantine equations.

The Thue-Siegel method requires one “good” initial approximation to β. In particular,

the algebraic function z
1
n is used to analyze the class of numbers β = (a

b
)

1
n where a,b and n

are rational integers by evauating the Pade approximants at this initial approximation.

The motivation behind this idea is as follows: Let p0
q0

be a good initial approximation to

β so that ζ =
pn0
qn0

b
a

is close to 1.

Using diagonal Pade approximants (these will be defined formally later) it can be shown

that there are meromorphic functions Pr(z), Qr(z) and Er(z) such that

Pr(z)

Qr(z)
= z

1
n + E(rz)

where Er(z) is some function that can be viewed as an error term that is small for z close

to 1 (it has a zero of order 2r + 1 at z=1).

Since ζ is a rational number and Pr(z), Qr(z) are rational functions of z, Pr(ζ)
Qr(ζ)

is a rational

number say Ar
Br

. Since Er(ζ) is small, a rational approximation to β is immediate (β ∼ Brp0
Arq0

). This process is used to generate a sequence of rational approximants to β.
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This “good” sequence of approximations can sometimes immediately be transferred into

a lower bound on the irrationality of β. Depending on how good the initial approximation

was, this may be better than Liouville’s Theorem. The proof of this fact relies on determining

asymptotics for |Pr(z)|, |Qr(z)| and |βQr(z)− Pr(z)| These ideas of Thue and Segel came to

be known as the Hypergeometric Method.
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Chapter 2

The Hypergeometric Method

In this chapter we discuss the Hypergeometric Method and use the method to explicitly

construct irrationality measures for some degree 3 algebraic numbers that will see later have

many applications to Thue equations. Since we previously defined an irrationality measure as

a real number, it is worth nothing that ’constructing an irrationality measure’ in this context

really means finding an upperbound on the irrationality measure of an irrational number.

We start by stating and proving a theorem which says if we have a “good” sequence of

rational approximants to an irrational number then we can construct an upperbound on the

irrationality measure of that number. This theorem is the backbone of the Hypergeometric

Method and a version of it is used in all constructions of irrationality measures which use

the Hypergeometric Method.

This chapter can be outlined as follows. We first prove an improved version of the

aforementioned theorem. We then show how this theorem has been applied to construct

irrationality measures, relying heavily on Pade approximants and a paper by Michael Bennett

in order to construct arithmetic and analytic bounds. Finally, we compute some irrationality

measures which will involve a considerable analysis of continued fractions. We conclude this

chapter with a discussion of restricted irrationality measures.

2.1 Constructing an Upperbound on Irrationality Measure

In this section we show in detail how a sequence of rational approximants to an irrational

number can be used to construct an irrationality measure. We define 3 bounds such a

sequence must satisfy, concentrating first on the so called arithmetic and analytic bounds.

We conclude the section by showing how a third bound, called the arithmetic bound, gives
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a twofold improvement of the irrationality exponent. We assume that α is an irrational

number and Pk
Qk

is a sequence of distinct rational numbers (without loss of generality assume

Qk > 0) indexed by N that satisfies these properties.

|Pk − αQk| ≤ aβk, β < 1 (2.1)

|Qk| ≤ cQk, Q > 1 (2.2)

G′k ≥ Gk,where G′k| gcd(Pk, Qk), and G > 1 (2.3)

We will concentrate on the first 2 conditions (called the analytic bounds) and then see

how the third condition, called the arithmetic bound leads to further improvements on the

irrationality measure of α. First we will prove the following theorem.

Theorem 9. Given an irrational number α and a sequence satisfying conditions (2.1) and

(2.2) above, there exists a constant C depending on only on a, c, Q and β such that

∣∣∣∣α− p

q

∣∣∣∣ > 1

Cq1+
logQ
log β

for all p
q

with q > 0.

Proof. We first fix p
q

with q > 0.

From (2.1), we have the inequality∣∣∣∣PkQk

− α
∣∣∣∣ ≤ a

β−k

Qk

. (2.4)

Now, we use the triangle inequality to get∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣PkQk

− α
∣∣∣∣ ≥ ∣∣∣∣pq − Pk

Qk

∣∣∣∣ .
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The idea is that the quantity on the right will be large because there are large gaps

between distinct rational numbers as was shown in Theorem 1.

More formally,

∣∣∣∣pq − Pk
Qk

∣∣∣∣ =

∣∣∣∣Qkp− Pkq
qQk

∣∣∣∣ ≥ 1

qQk

.

Here we are assuming that p
q
6= Pk

Qk
, otherwise just replace Pk

Qk
with Pk+1

Qk+1
since the sequence

was assumed to be distinct. The last inequality follows from the fact that an integer has

modulus at least 1, a version of the pigeonhole principle that is often humorously referred

to as the ’fundamental theorem of diophantine approximation’.

It follows that ∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣PkQk

− α
∣∣∣∣ ≥ 1

qQk

. (2.5)

We now ask how large does k have to be so that
∣∣∣ PkQk − α∣∣∣ is small, that is∣∣∣∣PkQk

− α
∣∣∣∣ ≤ 1

2

1

qQk

By (2.4) it suffices to choose k such that

aβ−k

Qk

≤ 1

2

1

qQk

.

The Q′ks cancel out in this inequality and we are left with β−k ≤ 1
2aq
. Taking the log of both

sides implies that k ≥ log 2aq
log β

.

This is a lowerbound on k. In general, choosing a small value of k will result in a smaller

irrationality exponent. An additional requirement is that k needs to be an integer so we

should choose k to be d log 2aq
log β
e. We note that an upperbound on k is

1 +
log 2aq

log β
.

Hence, if k is larger than this upperbound, it follows from equation (2.5) that∣∣∣∣pq − α
∣∣∣∣ ≥ 1

2qQk

.
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Since we know that logQk ≤ log (cQk) = log c + k logQ we substitute the upperbound

on k and get

logQk ≤ log c+
log 2aq

log β
logQ+ logQ.

Dividing both sides of the above inequality through by log q implies that logQk
log q

is less than

or equal to

log c

log q
+

log 2a

log β log q
logQ+

logQ

log β
+

logQ

log q
.

Now we use the fact that Qk = q
logQk
log q which gives

Qk ≤ q
log q
log β q

log (2a)
log β log q

logQ+ logQ
log q

+ log c
log q = q

log q
log β cQe

log 2a logQ
log β .

Thus we have ∣∣∣∣pq − α
∣∣∣∣ ≥ 1

Cqλ

where in this case

λ = 1 +
logQ

log β

and

C = 2cQe
log 2a logQ

log β .

Next we will see how an arithmetic upperbound can be used to improve the irrational-

ity exponent further. We will discuss how the arithmetic upperbound on the quantity G′k

is derived in a later section but the purpose here is to show if we have an arithmetic up-

perbound then we get an improvement of the irrationaliy exponent given in the previous

theorem. The improvement will be twofold by reducing the numerator and increasing the

denominator of the irrationality exponenent. In applications of the Hypergeometric Method,
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any improvement of the irrationality exponent is valuable and so the following theorem is

useful.

Theorem 10. Given an irrational number α, and a sequence of integers satisfying conditions

(2.1), (2.2) and (2.3) , there exists a constant C depending only on a, c, Q and β such that

∣∣∣∣α− p

q

∣∣∣∣ > 1

Cqλ

for all p
q

with q > 0. Futhermore,

λ = 1 +
logQ− logG

log β + logG

and

C = 2cQe
log 2a logQ

log β .

Proof. Let G′k| gcd(Pk, Qk), hence we can write P ′kG
′
k = Pk and Q′kG

′
k = Qk.

Note that condition (2.2) implies that

|Q′k| ≤ c
Qk

G′k
. (2.6)

Next, we proceed as before using our reduced fraction.

∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣PkQk

− α
∣∣∣∣ =

∣∣∣∣pq − α
∣∣∣∣+

∣∣∣∣P ′kQ′k − α
∣∣∣∣ ≥ 1

qQ′k
. (2.7)

As above ,we may still assume that p
q
6= Pk

Qk
, otherwise we replace Pk

Qk
with Pk+1

Qk+1
.

From condition (2.2)

|Qkα− Pk| ≤ aβ−k

implies that

|Q′kα− P ′k| ≤
aβ−k

G′k
≤ aβ−k

Gk
.

Hence, ∣∣∣∣α− P ′k
Q′k

∣∣∣∣ ≤ aβ−k

GkQ′k
.
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It now suffices to choose k such that

aβ−k

GkQ′k
≤ 1

2qQ′k

in order to guarantee that,

∣∣∣∣α− P ′k
Q′k

∣∣∣∣ ≤ 1

2qQ′k
.

It is sufficient to require that

aβ−k

Gk
≤ 1

2q

which is satisfied iff

k ≥ log (2aq)

logG+ log β
.

As we stated before, it is this sharper lowerbound on k that will lead to further improve-

ments in the irrationality exponent. Formally,∣∣∣∣α− P ′k
Q′k

∣∣∣∣ ≤ 1

2qQ′k
=⇒

∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

2qQ′k

by inequality (2.7). But,

1

2qQ′k
=

1

2qλ̂

where

λ̂ = 1 +
logQ′k
log q

Therefore, it suffices to bound this quantity λ̂. We can achieve this by using our lower-

bound on k as follows. We know from (2.6) and condition (2.3) that

logQ′k ≤ log c+ k logQ− k logG.

Choosing k to be ⌈
log (2aq)

logG+ log β

⌉

23



we get

k ≤ log (2aq)

logG+ log β
+ 1.

Since Q > G,

logQ′k ≤ log c+
log (2aq)

log β + logG
(logQ− logG) + (logQ− logG).

From this inequality it follows that

logQ′k
log q

≤ logQ− logG

log β + logG
+

log c

log q
+

log (2a)

log q(log β + logG)
(logQ− logG) +

logQ− logG

log q
.

The last three terms tend to 0 as q →∞. As we saw in the previous proof by exponentiating,

these terms only affect the constant, not the irrationality exponent.

Finally, we take

λ = 1 +
logQ− logG

log β + logG

and

C = ce
log (2a)(logQ−logG)

log β+logG
+(logQ−logG).

We conclude that ∣∣∣∣α− p

q

∣∣∣∣ > 1

Cqλ

for all p
q

with q > 0.

2.2 Pade Approximants

An inequality of the shape given in Theorem 10 is called a lower bound on irrationality

measure of α. The λ is an upperbound on the irrationality measure but is also sometimes

referred to as an irrationality exponent or an irrationality measure in the literature. We will

use these terms interchangeably throughout the remaining sections since it should be clear

from the context what we mean.
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The challenge now in deriving the above inequality is actually constructing such a se-

quence. If we restrict α to irrational numbers of the form (p
q
)1/n for some integers p and q,

then one way to do this is via Pade approximants to the binomial function (1 + x)1/n. First

we define big-O notation since it is used throughout the remaining sections.

Definition 5. Given functions f(z), g(z)R→ R, g(z) is said to be O(f(z)) if there exists a

constant M > 0 such that |g(z)| < M |f(z)| holds for all sufficiently large z.

Given a formal power series f(z) and positive integers r and s, we will use linear algebra

to deduce polynomials Pr(z), Qs(z) with rational coefficients of degrees r and s, respectively,

such that

Pr(z)− f(z)Qs(z) = zr+s+1Er,s(z).

Here, Er,s(z) is a power series in the variable z. If we let r = s then the polynomials

Pr(z) and Qr(z) are called diagonal pade approximants and we have for each natural number

n, polynomials Pn(z) and Qn(z) of degree n with rational integer coefficients such that

Pn(z)− f(z)Qn(z) = z2n+1En(z).

We remark that the word “hypergeometric” in the Hypergeometric Method is a reference

to hypergeometric functions. A Hypergeometric function is any function F (α, β, γ, z) that

satisfies the second order differential equation

z(1− z)F ′′ + (γ − (1 + α + β)z)F ′ − αβF = 0.

We remark that Pn(z) and Qn(z) can be shown to satisfy this differential equation and

in general, most families of Pade approximants are hypergeometric functions. This is where

the method gets its name.

It is also worth noting that the Pade approximants (considered as functions of a complex

variable) may be analytically continued to include algebaic numbers such which could be
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used to extend the Hypergeometric Method to other algebraic numbers like the Gaussian

integers (where a version of Liouville’s Approximation theorem also holds). However, we are

not concerned with generalizations of the Hypergeometric Method in this thesis.

The existence of these Pade approximants will now be demonstrated. Let f(z) be a function

with a power series representation. That is,

f(z) = c0 + c1z + c2z
2 + c3z

3 + · · ·

be a given formal power series. Given a pair of integers (m,n), we want to find polynomials

p(z) = a0 + a1z + a2z
2 + · · ·+ amz

m

and

q(z) = b0 + b1z + b2z
2 + · · ·+ bnz

n

such that

f(z) =
a0 + a1z + ...+ aLz

L

b0 + b1z + ...+ bMzM
+O(zL+M+1)

or equivalently,

f(z)q(z)− p(z) = βm+n+1z
m+n+1 + βm+n+2z

m+n+2 + · · · (∗).

Condition (*) is equivalent to the following linear system

(1)



c0b0 = a0

c1b0 + c0b1 = a1

c2b0 + c1b1 + c0b2 = a2

· · ·

cmb0 + cm−1b1 + cm−2b2 + · · ·+ c0bm = am
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(2)



cm+1b0 + cmb1 + cm−1b2 + · · ·+ c0bm+1 = 0

cm+2b0 + cm+1b1 + cmb2 + · · ·+ c0bm+2 = 0

· · ·

cm+nb0 + cm+n−1b1 + cm+n−2b2 + · · ·+ c0bm+n = 0

in which bk = 0 for k > n. When system (2) has a nontrivial solution, the coefficients a0,

a1, · · ·, am are determined from (1). This is solution is unique in the sense that if

f(z)q∗(z)− p∗(z) = β∗m+n+1z
m+n+1 + β∗m+n+2z

m+n+2 + · · ·

then

p(z)q∗(z) = p∗(z)q(z).

We can see this as follows. Since

fqq∗ − pq∗ = ∗zm+n+1 + · · ·

and

fq∗q − p∗q = ∗zm+n+1 + · · ·.

Hence,

p∗q − pq∗ = ∗zm+n+1 + · · ·

where there asterisk ∗ is used as a stand-alone to represent the coefficients. Since deg(p∗q−

pq∗) ≤ m + n and the coefficients of zk on the right-hand side is zero for k ≤ n + n, we

conclude that p∗q − pq∗ = 0.

Together, these two sets of relations determine all the coefficients and are termed Pade

equations. Thus, we have constructed a rational function called the Pade approximant with

2 parameters m and n (sometimes written [m/n] ) which agrees with the formal power

series up to zm+n. It should be noted that this construction says nothing about whether the

sequence of Pade approximants converges to the function f(z) and a formal power series is

sufficient to construct the Pade approximant.
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Although, it often happens that if a power series converges to a function g on some disk

of radius R , the sequence of Pade approximants may converge on a larger domain and thus

Pade approximants have practical applications to analytic continuation. However, this is

beyond the scope of this section. A good reference for Pade approximants is given in the

book “Pade Approximants” by George A. Baker Jr. and Peter Graves-Morris [4].

The binomial function (1 + x
N

)1/n evaluated at particular integers is important for con-

structing irrationality measures because the diagonal Pade approximants to this function can

be given explicitly. Although one can show that Pade approximants always exist for more

general functions by using linear algebra, the Pade approximants to the binomial function

are constructed by considering a contour integral and applying Cauchy’s integral formula.

One considers two contour integrals,

I0(z) =
1

2πi

∫
γ

(1 + zx)k+1/3

z2(z − a)
dz

and

I1(z) =
1

2πi

∫
γ

(1 + zx)k+1/3

(z − a)2z
dz

where |x| < 1/a and γ is a closed positively oriented countour enclosing both 0 and a.

Applying Cauchy’s Integral Formula implies that,

I1(x) = p10(x) + (1 + ax)1/3p11(x)

and

I0(x) = p00(x) + (1 + ax)1/3p01(x).

where
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p11(x) = a−2k
k11∑
r=0

(−1)r+k11
(
k + 1/3

r

)(
2k − r − 1

k11 − r

)
(ax)r (1 + ax)k−r ,

p00(x) = a−2k
k00∑
r=0

(−1)klm
(
k + 1/3

r

)(
2k − r − 1

k00 − r

)
(ax)r ,

and

p01(x) = a−2k
k01∑
r=0

(−1)r+k01
(
k + 1/3

r

)(
2k − r − 1

k01 − r

)
(ax)r (1 + ax)k−r .

Here klm = k − 1 + δlm and 0 ≤ l,m ≤ 1.

In order to show how the above formulas were derived, we consider the case where l = 0

and

I0(z) =
1

2πi

∫
γ

(1 + zx)k+1/3

z2(z − a)
dz

where (1 + xz)k+1/3 represents the function whose value at z = 0 is 1 (the principal branch).

Using the binomial series (1 + t)v =
∑∞

k=0

(
t
k

)
tk for |t| < 1, we have the following series

representations . In powers of z,

(1 + xz)k+1/3 =
∞∑
ν=0

(
k + 1/3

ν

)
(xz)ν

and in powers of z − a,

(1 + xz)k+1/3 = (ax+ 1)k+1/3 +
∞∑
n=0

(
k + 1/3

n

)
xn(z − a)n.

Also using the geometric series we have in powers of z,

z−2(z − a)−1 =
∞∑
n=0

z−3−nan = − 1

az2
− 1

a2z
− 1

a3
− z

a4
+ . . .

and in powers of z − a,
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z−2(z − a)−1 =
1

a2(z − a)
− 2

a3
+ 3 +

z − a
a4
− 4

(z − a)2

a5
+ . . . .

Since our integrand is

(1 + zx)k+1/3

z

−2

(z − a)−1,

we can expand this as a series in powrs of z − a by taking the Cauchy product(
(ax+ 1)k+1/3 +

∞∑
n=0

(
k + 1/3

n

)
xn(z − a)n

)(
1

a2(z − a)
− 2

a3
+ 3 +

z − a
a4
− 4

(z − a)2

a5
+ . . .

)
.

From this it follows that the coefficient of 1
z−a is p00(x), which is the residue of our integrand

at the pole z = a. Similiarly, by taking the Cauchy product(
∞∑
ν=0

(
k + 1/3

ν

)
(xz)ν

)(
∞∑
n=0

z−3−nan = − 1

az2
− 1

a2z
− 1

a3
− z

a4
+ . . .

)
we find that the residue of the integrand at the pole z = 0 is P01(x) .The case where l = 1

follows similarly. An in depth computation of these formulas can be found in Lemma 3.3 of

[20].

In order to generate the good sequence of rational approximations, one needs to choose

an initial approximation, usually a convergent of the irrational being approximated. If we

take x = 1/N then it will be shown that this method gives a good measure of irrationality

for numbers of the form (1+ a
N

)1/3. The sequence of rational approximations is generated by

evaluating the pade approximants at particular integers corresponding to our initial approx-

imation. The Hypergeometric Method is based on the idea that if the pade approximants

are “good” approximations of the binomial function, then the rational numbers we get by

evaluating them at these integer values will be good approximations to the binomial function

evaluated at x = a. In order to show this in detail we present the following four lemmas

from Bennett’s paper [6].

Lemma 1. Suppose that α is real and there exist postive integers c,d, C and D with D > 1

such that for each positive integer k, we can find integers plmk for 0 ≤ l,m ≤ 1 with nonzero

determinant such that:
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|plmk| ≤ cCk for (0 ≤ l,m ≤ 1)

|pl0k + plkα| ≤ dD−k for (0 ≤ l ≤ 1)

Then for all positive integers p and q,

∣∣∣∣α− p

q

∣∣∣∣ > (3Ccmax{1, 1.5d}
logC
logD )−1q−1−

logC
logD

Proof. This lemma is just a slight modification of Theorem 10 of the last section.

We choose x = 1/N to be our initial approximation to (1 + a
N

)1/3. Although we have

not yet shown that this approximation is “good” enough, it is a reasonable approximation

as it depends on N. The next step in the Hypergeometric Method is to derive bounds for the

contour integral |Il(1/N)|.

Lemma 2. If 0 ≤ l ≤ 1 and N ≥ 4a then

|Il(1/N)| ≤
(
N(
√
N +

√
N + a)2

)−k
.

Proof. From a detailed analysis of the contour integrals Il(z) given in Lemma 3.2 of the

paper “Simultaneous Rational Approximation of Binomial Functions” by Michael Bennett

[9], we have the integral representation of Il(1/N):

|Il(1/N)| ≤
√

3

2π
N−2k

∫ ∞
0

xk+1/3

(x+ 1 + al/N) ((x+ 1)(x+ 1 + a/N))k
. (2.8)

For 1 ≤ k ≤ 10 using the fact that N ≥ 4a,

|Il(1/N)| ≤
(
N(
√
N +

√
N + a)2

)−k
.
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We verify this by explicitly evaluating∫ ∞
0

xk+1/3

(x+ 1 + al/N) ((x+ 1)(x+ 1 + a/N))k
.

For 1 ≤ k ≤ 10 we have that

∫ ∞
0

xk+1/3

(x+ 1 + al/N) ((x+ 1)(x+ 1 + a/N))k
dx ≤

∫ ∞
0

xk+1/3

(x+ 1)k+2
dx ≤

∫ ∞
0

xk+1/3

(x+ 1)k+2
dx =

4π

9
√

3
.

Plugging this into inequality 2.8 we have

|Il(1/N)| ≤
√

3

2π
N−2k

∫ ∞
0

xk+1/3

(x+ 1 + al/N) ((x+ 1)(x+ 1 + a/N))k
≤ 2π

9
N−2k ≤ N−2k.

Now using the fact that a ≤ 1
4
N we have(
N(
√
N +

√
N + a)2

)−k
≤ N2

from which the inequality follows.

If k > 10 then |x1/3/(x+ 1)| ≤ 41/3

3
for x ≥ 0 (2.8) implies that

|Il(1/N)| ≤ 41/3
√

3

6π
N−2k

∫ ∞
0

(
x

(x+ 1)(x+ 1 + a
N

)

)k
dx.

We split the above integral as∫ 4

0

(
x

(x+ 1)(x+ 1 + a/N)

)k
dx+

∫ ∞
4

(
x

(x+ 1)(x+ 1 + a
N

)

)k
dx

so we can apply estimates on both integrals.

We note that∫ 4

0

(
x

(x+ 1)(x+ 1 + a/N)

)k
dx ≤ 4

(
N√

N +
√
N + a)2

)k
since the derivative of

x

(x+ 1)(x+ 1 + a
N

)

is

N(a−Nx2 +N)

(x+ 1)2(a+Nx+N)2
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which has a root at
√
a+N
N

corresponding to the maximum of this function on the set 0 ≤

x ≤ 4. Plugging this into our integrand we have

√
a+N

(
√
a+N +

√
N)( a

N
+
√
a+N√
N

+ 1)
≤ N√

N +
√
N + a)2

since N ≥ 4a.

We also have∫ ∞
4

(
x

(x+ 1)(x+ 1 + a/N)

)k
dx ≤

∫ ∞
4

(
x

(x+ 1)2)

)k
dx <

∫ ∞
4

(
1

x+ 1

)k
dx =

∫ ∞
5

(
1

x

)k
dx =

51−k

k − 1
.

But for k > 10 this estimate is very small. In fact, it is strictly less than 5−k.

Now we apply the fact that N ≥ 4a and we get

N√
N +

√
N + a)2

≥ 4

9 + 4
√

5
> 1/5.

Therefore, substituting constants back in we have

|Il(1/N)| ≤ 5

√
341/3

6π

(√
N(
√
N +

√
N + a)2

)−k
for k > 10 and hence, Lemma 2 follows.

Lemma 3. If 0 ≤ l,m ≤ 1 and N ≥ 4a then |plm(1/N)| ≤ 1.16
(√

N+
√
N+a)2

a2N

)k
.

Proof. The functon plm(x) (1 + amx)1/3 is given by integrals Il(z) for 0 ≤ l ≤ 1 with the

contour in each case modified such that it encloses the integer am and excludes a(1 −m).

Hence we can write

plm(1/N)
(

1 +
am

N

)1/3
=

1

2πi

∫
γm

(
1 + z

N

)k+1/3

(z − la) (z(z − a))k
dz

for 0 ≤ l,m ≤ 1 where γ0, γ1 are defined by the equations

|z| =
√
N2 + aN −N
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and

|z − a| = N + a−
√
N2 + aN

respectively. We set c0 =
√
N2 + aN −N and c1 = N + a−

√
N2 + aN .

It follows that

pl0(1/N) =
1

2π

∫ π

−π

(
c0e

iα

c0eiα − la

) (
1 + c0eiα

N

)1/3
(c0eiα (c0eiα − a))k

dα.

Also since

|c0eiα − a| ≥ c1 > c0

we have that

pl1(1/N)| ≤
(

1 +
c0
N

)1/3(1 + c0
N

c0c1

)k
.

Similiarly,

|c1eiθ + a|2 = (a+ c1 cos(θ))2 + c21 sin(θ)2

so that

c0 ≤ |c1eiα + a| ≤ c1 + a.

Therefore,

|pl1(1/N)| ≤ c1
c0

(
1 +

c1
N + a

)1/3
(

max
−π≤α≤π

∣∣∣∣∣ 1 + c1eiα+a
N

c1(c1eiα + a)

∣∣∣∣∣
)k

.

However,

max
−π≤α≤π

∣∣∣∣∣ 1 + c1eiα+a
N

c1(c1eiα + a)

∣∣∣∣∣ ≤ max
−π≤α≤π

{
1

|c1(c1eiα + a)|

}
+

1

c1N
≤ 1

c0c1
+

c0
N

c0c1
=

1 + c0
N

c0c1
.

We conclude that

|pl1(1/N)| ≤ c1
c0

(
1 +

c1
N + a

)1/3(1 + c0
N

c0c1

)k
.

But

1 + c0
N

c0c1
=

(
√
N +

√
N + a)2

a2N

and assuming we have N ≥ 4a we have

max

{(
1 +

c0
N

)1/3
,
c1
c0

(
1 +

c1
N + a

)1/3
}

=
c1
c0

(
1 +

c1
N + a

)1/3

< 1.16
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and the result follows.

As we saw in a previous section, arithmetic information about our rational approxima-

tions give significant improvements in the irrationality exponent. In this section we study

the bionomial coefficients occuring in Plm(1/N) by first defining an integer quantitiy G(s)

in terms of these coefficients and then using some analytic number theory to derive a lower

bound on a second quantity Gk. Here Gk is defined to be the greatest common divisor

between G(k) and G(k − 1) for integers k. This lower bound is the arithmetic information

which gives us the improvement.

2.3 The Arithmethic Bound

For positive integers j and k, define the intervals Ijk by Ijk = [k+1
j
, 3k−4
3j−1 ]. Also, for 0 ≤ s ≤ k

we define

G(s) = gcd

{
3b

3s
2
c
(
k + 1

3

r

)(
2k − r − 1

s− r

)
: 0 ≤ r ≤ s

}
.

This expression comes from the binomial coefficients in our expressions for Plm(1/N) for

example,

p11(1/N) = a−2k
k11∑
r=0

(−1)r+k11
(
k + 1/3

r

)(
2k − r − 1

k11 − r

)( a
N

)r (
1 +

a

N

)k−r
.

G(s) is well defined since

3b
3s
2
c
(
k + 1

3

r

)
∈ Z

for any 0 ≤ r ≤ s and k ∈ N by Lemma 4.2 of [10]. Now we define Gk = gcd{G(k), G(k−1)}.

The significance of the above intervals is apparent in the following lemma which gives a lower

bound on this quantity Gk.

Lemma 4. Gk >
1

5563
2k for k ≥ 1.

35



Proof. Suppose that k ≥ 220000 then from Schoenfeld [21], it follows that α(x) =
∑

p≤x log p <

1.000081x for x > 0 where the sum ranges over prime p. What we require is lowerbounds

on Chebyshev’s function α(x) and in order to do this we use Colorllary 2∗ of [21].

We define

Ll,k =
∑
p∈Ilk

log p.

It follows that,

L1,k > 0.49584k − 1.99458,

L2,k > 0.09728k − 0.79643

and

L3,k > 0.03943k − 0.49706.

We derive similar inequalities for Ll,k for 4 ≤ k ≤ 18. The connection with Gk is given

by the fact that if p is a prime in Ijk for some positive integers j, k with 1 ≤ j ≤
√
k/3 then

p divides Gk. This is proved in Lemma 3.1 [6] and provides the connection between Gk and

L1,k, L2,k, L3,k. Applying this we can see that logGk > L1,k +L2,k +L3,k. Hence, we conclude

that

logGk > 0.69493k − 5.58728 > (log 2)k

so that

Gk > 2k

for k ≥ 220000. The remaining cases are handled in Michael Bennett’s paper [6] and involve

directly computing Gk from the definition.

We will now present the following theorem due to Michael Bennett [6].

Theorem 11. Suppose that a and N are positive integers satisfying

8(
√
N +

√
N + a)2 > a4κ(a)3
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κ(a) =


3
√

3 if ord3(a) = 0
√

3 if ord3(a) = 1

1 if ord3(a) > 1

and p an q are any positive integers, then∣∣∣∣(1 +
a

N

)1/3
− p

q

∣∣∣∣ > (4κ(a)N)−1(104q)−λ

where λ is equal to

1 +
log (κ(a)

2

(√
N +

√
N + a

)2
)

log ( 2
a2κ(a)

(√
N +

√
N + a

)2
)
.

Proof. Let

M = max {b3k/2c − kord3(a), 0} .

Seting

plk = 3Ma2kNkplG
−1
k ,

it follows that we have plmk ∈ Z for 0 ≤ l,m ≤ 1. We want to multiply by the above

quantities to scale plm so it is an integer. The a2kNk are used to eliminate the denominator

in α to ensure it is larger than 1 as required in the lemma at the beginning. Lemma 3 and

Lemma 4 then imply that

|plmk| ≤ 6454

(
κ(a)

2

(√
N +

√
N + a

)2)k
.

Also, Lemma 3 and Lemma 4 yield

∣∣∣pl0k + pl1k(1 +
a

N
)1/3
∣∣∣ ≤ 5563

(
2

a2κ(a)
(
√
N +

√
N + a)2

)−k
.

We now apply Lemma 1 to conclude that∣∣∣∣(1 +
a

N

)1/3
− p

q

∣∣∣∣ > cq−λ

37



where the above inequality holds for all positive integers p and q.Here λ is the statement in

Lemma 1 and

c−1 = 9681 (8344.5)λ−1 κ(a)
(√

N +
√
N + a

)2
.

Now, using the fact that N ≥ 4a we get

c−1 < 4κ(a)N104λ

which completes the proof.

The above theorem can be used to compute irrationality measures for many degree 3 algebraic

irrationalities as can be seen in the table that follows. In the next section we will show how

some of these irrationality measures are computed in detail.

α λ(α) c(α)

21/3 2.47 0.25

31/3 2.76 0.39

51/3 2.80 0.29

61/3 2.35 0.01

71/3 2.70 0.08

101/3 2.45 0.15

Table 1. Parameters from 11 computed for explicit values of α

2.4 Some Computations of Irrationality Measures

We will now use Theorem 11 to compute an explicit example for 3
√

19. Choosing a = 1, N = 83

we have

3
√

1 + 1/83 =
3

8
3
√

19
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and ord3(a) = 1 so that

κ(a) = 3
√

3

we compute the exponent

λ = 2.2863.

Now using λ to compute c as in Theorem 11 to be 2.9036e10−12. Hence we conclude that for

any p, q > 0 ∣∣∣∣38 3
√

19− 3p

8q

∣∣∣∣ > cq−λ.

Writing qλ = q2.30−2.2836q−2.30 we see that for q > 10574

∣∣∣ 3
√

19− p/q
∣∣∣ > 1

50
q−2.30. (2.9)

It remains to verify 1 ≤ q ≤ 10574. We first note that if p and q fail to satisfy (2.9) then

p
q

is a convergent to 3
√

19 by Theorem 15 of the next section since for positive integers q,

1
50

−2.30
< 1

2
q−2.

We need only consider convergents with denominators bounded above by 10574. Using

Theorem 15 we see that we only need to check the first 3814 convergents, since for k > 3814,

qk ≥ 2
k−1
2 > 10574 that is p

q
= pi

qi
for some 1 ≤ i ≤ 3814. Using a python program in

Appendix 1 to compute continued fractions modified to deal with arbitrary precision, we

see that q100 > 1049. We verified this inequality for the first 100 convergents. Now we may

assume that i ≥ 100 However, using fact that∣∣∣∣ 3
√

19− p

q

∣∣∣∣ > 1

(ai+1 + 2)q2i

we see that if p
q

does not satisfy (2) then

ai+1 > 50q0.30i − 2.

But qi > 1049 and we conclude that

ai+1 ≥ 1016.
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Using our program we verified that

max
101≤i≤3419

ai = 5085

, which is a contradiction. Hence, we conclude that (2.9) is true for all p, q > 0.

A more difficult example is applying Theorem 11 to the cubed root of 57. As noted in [6]

this requires a more detailed analysis of the continued fraction expansion than the previous

example. Theorem 11 gives ∣∣∣∣ 3
√

57− p

q

∣∣∣∣ > (2.2 ∗ 1025)−1q−2.99738

for any positive integers p and q.

The goal now is to reduce the constant to a more manageable constant between 0 and 1.

First we note that for q ≤ 1039770,∣∣∣∣ 3
√

57− p

q

∣∣∣∣ > 0.45q−2.998.

Now, we need to know how many convergents are less than this number. Since it is com-

putationally expensive to compute convergents and explicitly check if each one satisfies our

inequality we instead use the following fact about continued fractions which we prove as

Theorem 11 in the next section

qk ≥ 2
k−1
2 , for k ≥ 2.

From this we conclude that in the worst case the first 264234 convergents are less than

1039770. Computation using our python program given in Appendix 1 gives the first 10

convergents as:

1, 3/1, 8/3, 507/190, 515/193, 1537/576, 3589/1345, 8715/2366, 12304/4611, 11777595/441311.

We substitute each of these convergents for p/q into our initial inequality and find that

the inequality is satisfied by all except 3/1. We compute that the largest constant (to the
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nearest hundreth) between 0 and 1 for which the initial inequality remains true is 0.33 and

hence to show that ∣∣∣∣ 3
√

57− p

q

∣∣∣∣ > 0.33q−2.998

it suffices to verify this inequality is true for each convergent pi/qi for 11 ≤ i ≤ 264234.

We note that qi ≥ 106 for i ≥ 11 and arguing as in the previous example we conclude

that ai + 1 ≥ 294771 in this range. However, using our Python program in Appendix 1

we get that the maximum partial quotient in this range is 33629, a contradiction. Thus we

conclude that ∣∣∣∣ 3
√

57− p

q

∣∣∣∣ > 0.33q−2.998

is true for all positive integers p, q. We have finished our discussion of irrationality measures

(also called general irrationality measures) however, there is also a concept of a restricted

irrationality measure and so we end this chapter with a section about this.

2.5 Constructing a Restricted Irrationality Measure

We will first define a restricted irrationality measure and explain how the Hypergeometric

Method can be used to construct a restricted irrationality measure through the use of off-

diagonal pade approximants.

Definition 6. A restricted irrationality measure for an irrational number α is an inequality

of the form ∣∣∣∣pq − α
∣∣∣∣ ≥ c

1

qλ

where c is some positive constant and q is restricted to some form.

Usually restricted irrationality measures involve α being an algebraic number (for example

a quadratic irrational) and powers of some fixed number in the denominator and if α has

degree n then the goal is to find an exponent λ < n in an inequality of the above form.

Suppose we want to construct a restricted irrationality measure for a quadratic irrational
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√
D. As in the construction of general irrationality measures, we use of Pade approximants

to a bionomial function. In this particular case, the binomial function (1−z)1/2 is of interest

and the Pade approximants are derived through the use of contour integals. Bauer and

Bennett [5] define

In1,n2(x) =
1

2π

∫
γ

(1− zx)n2(1− zx)1/2

zn1+1(1− z)n2+1
dz

where n1, n2 are positive integers, γ is a closed curve oriented counter clockwise and enclosing

z = 0 and z = 1 and |x| < 1.

Cauchy’s Theorem is then applied to this contour to write

In1,n2(x) = Pn1,n2(x)− (1− x)1/2Qn1,n2

where Pn1,n2(x), Qn1,n2(x) are both polynomials with rational coefficients of degree n1 and

n2 respectively. This involves a residue computation. The integrand

(1− zx)n2(1− zx)1/2

zn1+1(1− z)n2+1

has a pole of order n1 +1 at z = 0. Therefore, we need to compute the n1 term in the Taylor

series of (1− zx)n2+1/2 (1− z)−n2−1 to find the residue.

Using the Binomial Theorem we get

(1− zx)n+1/2 =
∞∑
k=0

(−1)k
(
n2 + 1/2

k

)
xkzk

and

(1− z)−n−1 =
∞∑
k=0

(−1)k
(
−n2 − 1

k

)
zk.

Now multiplying these series together and using Cauchy’s formula for the product of two

series we have

Pn1,n2(x) =

n1∑
n=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
(−x)k.

The computation for the residue at the pole z = 1 is similar. Explicitly we have

Pn1,n2(x) =

n2∑
n=0

(
n2 − 1/2

k

)(
n1 + n2 − k

n2

)
(−x)k.
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These are called off-diagonal pade approximants. The next step is to bound |Pn1,n2(x)|

and |In1,n2(x)| and consider arithmetic information about the polynomials Pn1,n2(x) and

Qn1,n2(x). The techniques used to find these bounds are very similar to the techniques used

in deriving general irrationality measures and can be found in [5]. An explicit example of

the above construction is the following theorem due to F. Beuekers [7].

Theorem 12. If p and q are integers with q = 2k where k is a nonnegative integer then∣∣∣∣√2− p

q

∣∣∣∣ > 2−43.9q−1.8.

We will use this theorem in a later chatper to show its application to the polynomial-

exponential Diophantine equations.
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Chapter 3

Continued Fractions

3.1 Introduction

In this chapter we define and prove some basic objects and theorems about continued frac-

tions that we will use throughout the remainder of this document, concluding with Worley’s

Theorem in Diophantine Approximation. A more complete development of the theory of

continued fractions can be found in Hardy [14].

3.2 Definitions and Basic Properties

We begin by giving the definition of a finite continued fraction. We also introduce some new

notation which will simplify the representation of a finite continued fraction.

Definition 7 (Finite Continued Fraction). Let a1 ∈ R be any real number and a2, a3, . . . , an

be any positive real numbers.

Then the expression:

a1 +
1

a2 +
1

a3 +
1

. . .

an−1 +
1

an
is a finite continued fraction and is denoted [a1, a2, ..., an] . The ai are called partial quo-

tients.

Now that we have defined finite continued fractions, we are ready to introduce finite sim-
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ple continued fractions. We also define infinite simple continued fractions which are usedl

throughout the thesis.

Definition 8 (Simple Finite Continued Fraction). A finite continued fraction [a1, a2, ..., an]

is said to be simple if the ai are positive integers. An infinite simple continued fraction is

the limit of a sequence of finite simple continued fractions and is denoted by [a1, a2, . . .]

Given a continued fraction with n ≥ k partial quotients, it seems natural to consider the

continued fraction formed from the first k partial quotients. The resulting quantitiy is called

the kth convergent. It is important to note that in the case of a simple continued fraction,

the kth convergent is a rational number. This will be particularly important when we are

interested in finding rational approximations to an irrational number.

Definition 9 (Convergent). Let [a1, a2, a3, . . . , an] or [a1, a2, a3, . . .] be a continued fraction

(i.e. either finite or infinite). Then the “kth convergent” Ck of the given continued fraction

is the continued fraction given by

Ck = [a1, a2, . . . , ak] .

We also have recurrence relations which can be used to calculate the numerators and

denominators of the convergents recursively. These recurrence relations are useful in some

of our induction proofs so we will state and prove them.

Theorem 13. The value of [a1, a2, a3, . . . , an] is
pn
qn

where p1 = a1, q1 = 1, p2 = a1a2+1, q2 =

a2 and for any n ≥ 3,

pn = anpn−1 + pn−2

and

qn = anqn−1 + qn−2.

Proof. We will use induction on the number n of partial quotients in the continued fraction

expansion. That is, for any n ∈ N,

[a1, a2, a3, . . . , an] =
pn
qn
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where pn, qn are defined as in the theorem.

Clearly this is true for n = 1 as the result holds for any continued fraction expansion

[a1] =
a1
1

=
p1
q1
. Likewise, for n = 2,

[a1.a2] = a1 +
1

a2
=
a1a2 + 1

a2
=
p2
q2

Suppose that [a1, a2, a3, . . . , ak] =
pk
qk

. We need to show [a1, a2, a3, . . . , ak, ak+1] =
pk+1

qk+1

.

We note that the continued fraction [a1, a2, a3, . . . , ak, ak+1] can be written with one less

term. That is

[a1, a2, a3, . . . , ak, ak+1] =

[
a1, a2, a3, . . . , ak−1, ak +

1

ak+1

]
.

In order to simplify our notation we write b0 = a0, b1 = a1, . . . , bk−1 = an−1 and bk =

ak+ 1
ak+1

. We denote the convergents of [b1, b2, b3, . . . , bk] by Pn
Qn

. By our induction hypothesis

we have that Pn = bnPn−1 + Pn−2 and Qn = bnQn−1 +Qn−2 for 2 ≤ n ≤ k and therefore

[b1, b2, b3, . . . , bk] =
Pk
Qk

=
nPn−1 + Pn−2
bnQn−1 +Qn−2

. (3.1)

Now we need to relate the convergents of [a1, a2, a3, . . . , ak, ak+1] and [b1, b2, b3, . . . , bk].

We know that bn = an for all 0 ≤ n ≤ k− 1 and hence the nth convergents are the same for

all 0 ≤ n ≤ k− 1. Thus, we can make the following substitutions into Equation 3.1. Pk−1 =

pk−1, Pk−2 = pk−2 and Qk−1 = qk−1, Qk−2 = qk−2. Also since [a1, a2, a3, . . . , ak, ak+1] =

[b1, b2, b3, . . . , bk] and bk = ak + 1
ak−1

we conclude that

[a1, a2, a3, . . . , ak, ak+1] =
bkPk−1 + Pk−2
bkQk−1 +Qk−2

=

(
ak + 1

ak+1

)
pk−1 + pk−2(

ak + 1
ak−1

)
qk−1 + qk−2

=
ak+1(akpk−1 + pk−2) + pk−2
ak+1(akqk−1 + qk−2) + qk−2

.

(3.2)

Now our induction hypothesis applied to the continued fraction [a1, a2, a3, . . . , ak] tell us

that the following recursion formulas hold. pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2 and

thus equation 3.2 simplifies to
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[a1, a2, a3, . . . , ak, ak+1] =
ak+1pk + pk−2
ak+1qk + qk−2

.

By definition, the k + 1st convergent is [a1, a2, a3, . . . , ak, ak+1] = pk+1

qk+1
. Comparing these

two equations we see that pk+1 = ak+1pk + pk−1 and qk+1 = ak+1qk + qk−1 (using the fact

that both fractions are already written in lowest terms) which completes the induction.

We now develop some useful facts about convergents, one being an identity that comes in

handy surprisingly often. We also prove that even convergents form an increasing sequence

while odd convergents form a decreasing sequence. In particular, the even convergents are

always less than or equal to the number that they converge to while the odd convergents are

always greater than or equal to this number. The recursive formulas we just proved come in

handy in this proof.

Theorem 14. Let pk
qk

= [a0, a1, a2, a3, . . . , ak] then for k ≥ 0 pk+1qk − pkqk+1 = (−1)k.

Furthermore,

{
p2k
q2k

}
is increasing and

{
p2k+1

q2k+1

}
is decreasing.

Proof. From Theorem 13 p1q0 − p0q1 = 1 and

pk+1qk − pkqk+1 = (akpk + pk−1)qk − pk(akqk + qk−1) = −(pkqk−1 − pk−1qk). (3.3)

Equation 3.3 gives

pk+1qk − pkqk+1 = (−1)k

so

pk+1

qk+1

− pk
qk

=
(−1)k

qkqk+1

and

pk
qk
− pk−1
qk−1

=
(−1)k−1

qk−1qk
.
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Adding the above two equations together gives

pk+1

qk+1

− pk−1
qk−1

= (−1)k−1
qk+1 − qk−1
qk−1qkqk+1

.

Since {qk} is an increasing sequence, the quantity on the right is positive for odd k (even

convergents) and negative for even k (odd convergents). Therefore,

{
p2k
q2k

}
is increasing and{

p2k+1

q2k+1

}
is decreasing.

We note that from formula pk+1qk−pkqk+1 = (−1)k it is clear that pk and qk are coprime

for k ≥ 0. We now present a lower bound on qk which says that the denominators of the

convergents in a simple continued fraction grow exponentially. This result is particularly

useful if we combine it with the fact that {qk} is a strictly increasing sequence since we can

use these results to estimate how many convergents there are with denominator bounded by

a fixed number.

Theorem 15. Let [a1, a2, a3, . . .] be a continued fraction expansion and q1, q2, q3, . . . denote

the denominators in the convergents. Then qk ≥ 2
k−1
2 and furthermore, qk+1 > qk for k ≥ 2.

Proof. From the recurrence relations we see that

qk = akqk−1 + qk−2 ≥ qk−1 + qk−2 ≥ qk−1 (3.4)

since qk−2 > 0 and hence qk ≥ qk−1. In fact,

qk > qk−1 + qk−2 ≥ 2qk−2 ≥ 22qk−4 . . . .

It follows by induction that if k is odd,

qk ≥ 2
k−1
2 q1

and if k is even

qk ≥ 2
k
2 q0.
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However in both cases qk ≥ 2
k−1
2 which completes the proof of the first proposition. We also

note that q1 = 1, q2 = a2 and q3 = a3a2 + 1 all satisfy 1 = q1 ≤ q2 < q3.

Suppose that qk > qk−1 ≥ 1 for some k ≥ 3 Then by (3.4) can be rewritten as

qk = akqk−1 + qk−2 ≥ qk−1 + qk−2 ≥ qk−1 + 1 > qk−1.

Hence by induction {qk} is a striclty increasing sequence, with the only possible exceptions

at q1 = q2 = 1.

A natural question would be given an irrational number how does one compute the

partial quotients associated to this number. The Continued Fraction Algorithm is just such

a method for finding the continued fraction expansion for any irrational number to as many

partial quotients as required. We desribe the algorithm below.

Let x1 be an irrational number then:

1. Set k := 1.

2. Set ak := bxkc.

3. Set xk+1 :=
1

xk − ak
.

4. Set k := k + 1.

5. Go to step 2.

6. Output x1 = [a1, a2, a3, . . .].

We will prove that the algorithm is correct.
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Let x1 be an irrational number.

We seek a1, a2, . . . ∈ Z such that x1 = [a1, a2, . . .]. We know from Hardy Theorem 154

[14] that x1 lies strictly between any successive pair of its continued fraction convergents.

So, for a start, it has to be between C1 = a1 and C2 = a1 +
1

a2
. In particular, as a2 ≥ 1,

we know that a1 < x1 < a1 + 1. So a1 = bx1c where bx1c is the floor of x1. We note, in

particular, that a1 is therefore completely determined by x1.

Now we write

x1 = bx1c+ {x1}

where {x1} is the fractional part of x1. Then

x1 = a1 +
1

a2 +
1

a3 +
1

. . .

= bx1c+
1

a2 +
1

a3 +
1

. . .

= bx1c+
1

[a2, a3, a4, . . .]
.

Note that, 0 ≤ {x1} < 1. But because x1 is an irrational number, {x1} 6= 0. So

0 < {x1} < 1. Hence [a2, a3, a4, . . .] =
1

x1 − bx1c
=

1

{x1}
.

Now we write x2 =
1

{x1}
. Then x2 = [a2, a3, a4, . . .]. As {x1} < 1 we have that x2 =

1

{x1}
> 1. Therefore x2 is an irrational number greater than a2 which is positive.

Repeating the argument gives a2 = bx2c and so a2 is determined uniquely from x2

and hence from x1. Similarly, x3 =
1

{x2}
and hence x3 = [a3, a4, a5, . . .]. Therefore, the

uniqueness follows by induction.

It remains to show existence, that is, x1 = [a1, a2, . . . , ]. We use the fact that

x1 = [a1, a2, . . . , ak, xk+1] =
xk+1pk + pk−1
xk+1qk + qk−1

.

Hence,∣∣∣∣x1 − pk
qk

∣∣∣∣ =

∣∣∣∣xk+1pk + pk−1
xk+1qk + qk−1

− pk
qk

∣∣∣∣ =

∣∣∣∣xk+1pkqk + pk−1qk − xk+1pkqk − pkqk−1
(xk+1qk + qk−1)qk

∣∣∣∣ .
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The quantity on the right simplifies to∣∣∣∣ pk−1qk − pkqk−1(xk+1qk + qk−1)qk

∣∣∣∣ =

∣∣∣∣ 1

(xk+1qk + qk−1)qk

∣∣∣∣ .
Since xk+1 > ak+1 we have xk+1qk + qk−1 > ak+1qk + qk−1 = qk+1 and hence,∣∣∣∣ 1

(xk+1qk + qk−1)qk

∣∣∣∣ ≤ 1

qk+1qk
.

But also qk ≥ k and qk+1 ≥ k + 1 and so,∣∣∣∣x1 − pk
qk

∣∣∣∣ ≤ 1

(k + 1)k
.

Therefore by the Squeeze Theorem,

lim
k→∞

∣∣∣∣x1 − pk
qk

∣∣∣∣ ≤ lim
k→∞

1

(k + 1)k
= 0

and we conclude that

[a1, a2, . . . , ] = lim
k→∞

pk
qk

= x1

as required.

3.3 Some Approximation Results

In this section we state and prove some inequalities about the convergents of a simple contin-

ued fraction which are particularly useful in Diophantine approximation.We start with some

basic inequalities which are useful for approximating irrational numbers by convergents. We

then prove Legendre’s Theorem which gives a criterion to decide if a rational approximation

is a convergent or not. We then generalize Legendre’s Theorem and consider some of its

implications.

Theorem 16. Let x be an irrational number and Cn be the nth convergent of x. Let

p1, p2, p3, . . . and q1, q2, q3, . . . be the respective numerators and denominators.Then ∀k ≥ 1,∣∣∣∣x− pk+1

qk+1

∣∣∣∣ ≤ 1

qk+1qk+2

≤ 1

2qkqk+1

<

∣∣∣∣x− pk
qk

∣∣∣∣ .
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Proof. Let x have a simple infinite continued fraction of

[a1, a2, a3, . . .] .

The continued fraction algorithm gives the following system of equations:

x = [a1x2] = [a1, a2, x3] = [a1, a2, a3, x4] = . . . = [a1, a2, ..., an, xn+1]

and

∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣[a1, a2, . . . , an, xn+1]−
pn
qn

∣∣∣∣ =

∣∣∣∣xn+1pn + pn−1
xn+1qn + qn−1

− pn
qn

∣∣∣∣ =

∣∣∣∣ pn−1qn − pnqn−1qn(xn+1qn + qn−1)

∣∣∣∣ .
This later quantity simplifies to

1

qn(xn+1qn + qn+1)
.

by properties of convergents.

Now

xn+1 = [an+1, an+2, an+3, . . .]

from the continued fraction algorithm. So an+1 < xn+1 < an+1 + 1 and therefore

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qn (an+1qn + qn−1)
=

1

qnqn+1

.

We also have the inequality

∣∣∣∣x− pn
qn

∣∣∣∣ > 1

qn ((an+1 + 1) qn + qn−1)
.

Hence for k ≥ 1, ∣∣∣∣x− pk+1

qk+1

∣∣∣∣ ≤ 1

qk+1qk+2

<

∣∣∣∣x− pk
qk

∣∣∣∣ .
For the middle inequality, note that

qk+2 = ak+2qk+1 + qk > qk + qk = 2qk
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so

1

qk+1qk+2

≤ 1

2qkqk+1

.

From the above theorem we immediately get the following corollary.

Corollary 1. ∀k ≥ 1,

1

qkqk+1

>

∣∣∣∣x− pk
qk

∣∣∣∣ > 1

2qkqk+1

and

1

(an+1 + 2)q2n
< |x− pn

qn
| < 1

an+1q2n

Before we prove Legendre’s Theorem which tells us good rational approximations of irrational

numbers are convergents, we first need a lemma.

Lemma 5. If x = Pζ+R
Qζ+S

where ζ > 1 and P,Q,R, S are integers such that Q > S > 0 and

PS − QR = ±1 then R/S and P/Q are consecutive convergents to the simple continued

fraction whose value is x.

Proof. See Theorem 172 of [14].

With this in hand, we can now prove the following.

Theorem 17 (Legendre’s Theorem). If∣∣∣∣pq − x
∣∣∣∣ < 1

2q2

then p
q

is a convegent to x.
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Proof. If the conditions of the theorem are satisfied then

p

q
− x =

εα

q2
,

where ε = ±1 and 0 < α < 1
2
. We write p

q
as a finite contnued fraction say [a0, a1, ..., an]; and

since by Theorem 158 of [14] we can choose n even or odd, we may assume that ε = (−1)n−1.

We write

x =
ωpn + pn−1
ωqn + qn−1

,

where pn
qn
, pn−1

qn−1
are the ultimate and penultimate convergents to p

q
and ω = 1

α
− qn−1

qn
.

In order to see this we solve the equation x = ωpn+pn−1

ωqn+qn−1
for ω and find

ω =
qn−1x− pn−1
−qnx+ pn

.

Now substitute

x =
p

q
− εα

q2

and note that p = pn, q = qn as well as qn−1pn − pn−1qn = ε. This gives immediately the

value for ω.

It follows that

ε

αq2n
=
pn
qn
− x =

pnqn−1 − pn−1qn
qn(ωqn + qn−1)

=
(−1)n−1

qn(ωqn + qn−1)
.

Hence qn
ωqn+qn−1

= α and therefore, ω > 1 since 0 < α < 1
2
. We conclude by Lemma 5 that

pn−1

qn−1
and pn

qn
are consecutive convergents to x. But pn

qn
= p

q
which completes the proof.

Finally, we discuss a generalization of Legendre’s Theorem known as Worley’s Theorem

in Diophantine approximation. Theorems like Worley’s theorem are one of the main reasons

for studying continued fractions since they tell us that good approxmations of irrational

numbers by rational numbers are either convergents or mediants. The proof we present here

is due to A. Dujella but we also give a reference to the original paper by Worley at the end

of the proof.
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Theorem 18. Let α be a real number and let a and b be coprime nonzero integers, satis-

fying the inequality |α − a
b
| < k

b2
where k is a positibe real number, then (a, b) = (rpm+1 +

spm, rqm+1 + sqm) or (a, b) = (rpm+1 − spm, rqm+1 − sqm) for some m ≥ 1 and nonnegative

integers r and s such that rs < 2k We call a
b

a mediant of α with parameter k.

Proof. The ideas in this proof are due to A. Dujella (see [2]). We assume that α < a
b
, since

the other case is similar. If a
b
> p1

q1
then we take m = −1 given that p−1 = 1 and q−1 = 0

otherwise, let m be the largest odd integer satisfying the inequality

α <
a

b
≤ pm
qm
.

Since

|pm+1qm − pmqm+1| = 1,

the numbers r and s defined by

a = rpm+1 + spm

b = rqm+1 + sqm

are indeed integers ([a, b]T is related to [r, s]T by an invertible matrix transformation). And

also

pm+1

qm+1

<
a

b
≤ pm
qm

by Theorem 14 and hence we have that r ≥ 0 and s > 0.

Now using the maximality of m and the fact that∣∣∣∣ab − pm+2

qm+2

∣∣∣∣ =
(am+2qm+1 + qm)(rpm+1 + spm)− (am+2pm+1 + pm)(rqm+1 + sqm)

bqm+2

we get, ∣∣∣∣sam+2 − r
bqm+2

∣∣∣∣ =

∣∣∣∣pm+2

qm+2

− a

b

∣∣∣∣ < ∣∣∣α− a

b

∣∣∣ < k

b2
,

where the notation am+2 denotes the the m + 2 partial quotient in the simple continued

fraction of α.
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Furthermore,

b(sam+2 − r) < kqm+2 =
k

s
((sam+2 − r)qm+1 + b).

And this implies that

(sam+2 − r)(b−
k

s
qm+1) <

k

s
b.

We also have that

1

sam+2 − r
>
b− k

s
qm+1

k
s
b

=
s

k
− 1

r + sqm
qm+1

≥ s

k
− 1

r
.

From this we obtain the inequality

r2 − sram+2 + kam+2 > 0

which is quadratic in r.

In order to derive the condition rs < 2k in the theorem, we examinine different cases.

Assume first that s2am+2 ≥ 4k then, s4a2m+2 − 4ks2am+2 ≥ (s2am+2 − 4c)2 and thus,

r <
1

2s
(s2am+2 −

√
s4a2m+2 − 4ks2am+2 ≤

2k

s

or

r >
1

2s
(s2am+2 −

√
s4a2m+2 − 4ks2am+2 ≥

1

s
(s2am+2 − 2k).

The first case gives the condition that rs < 2k. In the second case,

rs > s2am+2 − 2k (3.5)

then we define t = sam+2 − r. We have that t is a positive integer since pm+2

qm+2
< a

b
then

a = rpm+1 + spm = spm+2 − tpm+1

b = rqm+1 + sqm = sqm+2 − tqm+1

and hence rt < 2k by (3.5). This corresponds to the negative sign in the statement of the

theorem.
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Finally, we consider the case where s2am+2 < 4c . Since r < sam+2 we have two possibili-

ties. If r < 1
2
sam+2 then rs < 1

2
s2am+2 < 2k and if r ≥ 1

2
sam+2 then t = sam+2− r ≤ 1

2
sam+2

and thus st ≤ 1
2
s2am+2 < 2k

The original proof can be read in R.T. Worley’s paper [25].

We remark that the mediants in Worley’s Theorem have applications is to the Hypergeo-

metric Method. The initial approximations used to generate the good sequences of rational

approximants are usually mediants or convergents to the irrationality being approximated

because all the “best rational approximations” (in the sense that any other rational approxi-

mation that is closer to x must have a larger denominator) are mediants or convergents. We

will conclude this section with an example of Worley’s theorem for the case k = 3. Hence,

we consider the inequality ∣∣∣α− a

b

∣∣∣ < 3

b2
.

Using Theorem 18 we have that

(a, b) = (rpm+1 + spm, rqm+1 + sqm)

or

(spm+2 − tpm+1, sqm+2 − tqm+1),

where rs < 6, st < 6, gcd(r, s) = 1 and gcd(s, t) = 1 (given the fraction a
b

is taken in reduced

form). However, the quadratic inequalities given in the proof of Worley’s Theorem show that

the pairs (r, s) = (1, 4), (1, 5) and (s, t) = (4, 1), (5, 1) can be omitted. Therefore, following

the notation given in the proof of Theorem 18 we have that either

(r, s) ∈ {(0, 1), (1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (4, 1), (5, 1)}

or

(s, t) ∈ {(1, 1), (2, 1), (3, 1), (1, 2), (1, 3), (1, 4), (1, 5)}.
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.

This inequality can sometimes be used to compute particular solutions. Consider the

binary Thue equation 3x3 − 2y3 = 321. We compute the first 5 convergents to
(
3
2

)1/3
:

1/1, 7/6, 8/7, 87/76, 617/539. We quickly check that none of these convergents are solutions

to our equation. However, if we use Worley’s Theorem and the first 5 convergents to compute

all the mediants to (3/2)1/3 with parameter k = 3 we find that 5/3 is a mediant corresponding

to (r, s) = (9, 2) and convergents 7/6 and 1/1 and (5, 3) is a solution to our equation. In the

next section, we see that k = 3 is a good choice of parameter since either by Theorem 19,

all postive integer pairs (x, y) that satisfy this equation will correspond to a mediant with

parameter k = 3 or will have x ≤ 53. By enumerating all such values of x, we quickly check

that every solution is a mediant of
(
3
2

)1/3
with parameter k = 3.
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Chapter 4

Applications of the Hypergeometric Method to Some

Thue Equations

In this chapter we demonstrate how irrationality measures computed using the Hypergeo-

metric Method can be applied to solve some Thue equations, in particular the binary Thue

equation. In the first section we apply theorems about simple continued fractions to the

binary Thue equation. We then explicitly show how we can use irrationality measures to

bound the size of the solutions to the binary Thue equation. Our analysis leads us natu-

rally to an algorithm that can compute all solutions in positive integers (dependent on the

existence of an irrationality measure). We use this algorithm to compute an upperbound on

the number of solutions to the binary Thue equation. We conclude the chapter by explicitly

computing upperbounds as well as all solutions in positive integers for some particular binary

Thue equations.

4.1 Simple Continued Fractions and the Binary Thue Equation

In this section we consider when a solution (x, y) to the Diophantine equation axn−byn = N

correspond to a convergent in the simple continued fraction of
(
a
b

) 1
n . In order to be consistent

with the papers on the binary Thue equation that were discussed in Chapter 1, where the

equation |axn − byn| = N is considered over the positive integers, we restrict x and y to

positive intergers in this chapter. We have also chosen to drop the absolute value so that

this equation agrees with the definition of a Thue equation, but we remark that to find

all solutions to |axn − byn| = N , we can solve both of the equations axn − byn = N and

bxn − ayn = N over the positive integers.
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Theorem 19. If (x, y) ∈ N2 satisfies axn − byn = N where n ≥ 3 and x > (2N
b

)
1

n−2 then y
x

is an even convergent of (a
b
)1/n. More generally, if x > (N

kb
)

1
n−2 then y

x
is a mediant of (a

b
)1/n

with parameter k.

Proof. Suppose that the above equation has a solution so that axn − byn = N for some

positive integers x, y where a, b,N ∈ N and n ≥ 3. It follows that

a

b
−
(y
x

)n
=

N

bxn
.

But we also have the following identity,

xn − yn = (x− y)(xn−1 + xn−2y + ...+ yn−2x+ yn−1).

Hence

|x− y| ≤ |xn − yn|,

and it follows that

N

bxn
=
∣∣∣a
b
−
(y
x

)n∣∣∣ ≥ ∣∣∣∣(ab)1/n − y

x

∣∣∣∣ .
Thus, if we require

N

bxn
<

1

2x2

then we have the inequality ∣∣∣∣(ab)1/n − y

x

∣∣∣∣ < 1

2x2

and in this case y
x

is a convergent to (a
b
)1/n. Futhermore, by rearranging the inequality

N

bxn
<

1

2x2

we conclude that a sufficient condition for y/x to be a convergent to (a
b
)1/n is

2N < bxn−2
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or equivalently, (
2N

b

) 1
n−2

< x.

Similarly, if we fix a positive real number k, it follows that if x > (N
kb

)
1

n−2 and (x, y) is a

solution to the equation then y
x

is a mediant with parameter k.

Finally, if y
x

is a convergent to (a
b
)1/n then since

axn − byn = N ≥ 0

we have (a
b

) 1
n ≥ y

x
.

Hence if y
x

is a convergent, it is an even convergent. A similar argument yields an analogous

statement for y. In particular, if (x, y) ∈ N2 satisfies axn − byn = N where n ≥ 3 and

y > (2N
a

)
1

n−2 then x
y

is an odd convergent of ( b
a
)1/n. More generally, if y > (N

ka
)

1
n−2 then x

y
is

a mediant of ( b
a
)1/n with parameter k.

We remark that these computations depend only on finding the convergents of the simple

continued fraction of (a
b
)1/n. If (x, y) is any other solution (where y

x
is not a mediant with

parameter k) then we have an upperbound on x, namely x ≤ (N
kb

)
1

n−2 . As we will see in a

later section, this is a very good upperbound on x. We note that the larger the k that is

chosen, the smaller this upperbound is. However, this is not always advantageous.

Finally, we note that solutions do not always correspond to convergents. Consider the

equation 3x3 − 2y3 = 321 where (5, 3) is a solution but 5/3 is not a convergent to (3
2
)1/3.

In this situation, y
x

is “close” to (a
b
)1/n but not “close” enough to be a convergent. This

happens because of the inequality

N

bxn
≥
∣∣∣∣(ab)1/n − y

x

∣∣∣∣ .
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Here N
bxn

might be larger than the 1
2x2

required to be a convergent. However, since∣∣∣∣(ab)1/n − y

x

∣∣∣∣ < N

bxn

it follows that

∣∣∣∣(ab)1/n − y

x

∣∣∣∣ < k

x2
,

where

k =
N

bxn−2
.

In this case the y
x

are not convergents but are mediants given by Worley’s theorem in Dio-

phantine approximation (see Theorem 18).

We remark that Worley’s theorem depends on the size of k (a smaller value of k means

fewer computations). In fact, if 1 ≤ k ≤ 12 then tables of corresponding (r, s) given in

Theorem 18 are known explicitly. As an example, consider the equation

7x5 − 3y5 = 96.

Since x = 1 does not correspond to a solution to this equation and 96
3∗23 = 3 we can choose

k = 4 and compute convergents of 5

√
7
3
. Using values of (r, s) corresponding to k = 4 to

compute mediants we will eventually find a solution (if it exists). However, since there are

infinitely many convergents, we will not know for certain if all of the solutions have been

found. One way to solve this problem is to find an apriori upperbound on x. Once we

have established such an upper bound on x, then we would know when to stop checking

convergents and mediants. The Hypergeometric Method which can be applied to compute

irrationality measures for specific values of a and b, which enables us to derive an upper

bound and fully solve these equations.

In particular the Hypergeometric Method may be used to derive an irrationality measure

on
(
b
a

) 1
n . If one can be found at all and it is an improvement on Liouville’s approximation
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theorem, then we can construct a bound that will be of the form O
(
n

1
n−ω

)
where 2 ≤ ω < n.

We will prove this in the next section.

We conclude this section by considering the equation x3−2y3 = 2. Applying Theorem 19

with n = 3, a = 1, b = 2, N = 2 we have that x ≤ (2N
b

)
1

n−2 =
(
2∗2
2

)
= 2 or y

x
is a convergent

of (a
b
)1/n =

(
1
2

)1/3
. We observe that x = 0, 1, 2 do not correspond to solutions. Therefore

if a solution (x, y) ∈ N2 exists, then y
x

must be an even convergent of
(
1
2

)1/3
. The first 7

even convergents are 3/4, 15/19, 23/29, 27/34, 127/160, 227/286, 504/635, none of which

correspond to solutions to our equation. We will use this fact later.

4.2 Bounding Variables in the Binary Thue Equation

We now attempt to show explicitly that if we have an upperbound on the irrationality

measure of a certain irrational number that is associated with our Thue equation then we

get tight upperbounds on the size of the solutions. This observation is summarized in the

following theorem.

Theorem 20. If (x, y) ∈ N2 satisfies axn − byn = N and there exists a lower bound on the

irrationality of ( b
a
)1/n, that is there exists a positive constant C such that∣∣∣∣∣

(
b

a

) 1
n

− p

q

∣∣∣∣∣ > Cq−ω

for all integers p,q with q > 0 with ω < n then x < C1N
1

n−ω and y < C2N
1

n−ω . Furthermore,

C1, C2 are effectively computable if C is.

Proof. If axn − byn = N divide both sides by a so

xn − b

a
yn =

N

a
= m.

Letting

α =

(
b

a

) 1
n

,
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then

xn − αnyn = m.

The left-hand side has factorization

|y|
∣∣∣∣α− x

y

∣∣∣∣ ∣∣xn−1 − αyxn−2 + α2y2xn−3 + ...+ αn−1yn−1
∣∣ .

This leads us to consider the binary form of degree n− 1,

F (X, Y ) = Xn−1 + Y Xn−2 + ...+ Y n−2X + Y n−1.

An elementary analysis yields

|F (X, Y )| = |Y n−1F (
X

Y
, 1)| ≥ |Y |n−1 (4.1)

for X
Y
> 0.

Now assume we have a lower bound on the irrationality of α, say∣∣∣∣α− x

y

∣∣∣∣ ≥ C0

|y|ω
.

Rewriting the factorization of the left-hand side in terms of our binary form, applying (4.1)

and the above lower bound we conclude that

m = |y|
∣∣∣∣(α− x

y

)∣∣∣∣ |F (x, αy)| ≥ C0α
n−1|y|n|y|−ω = C0α

n−1|y|n−ω.

Hence,

y < C2N
1

n−ω

where

C2 =
(
Na−1c−10 αn−1

) 1
n−ω .

We get an analogous bound on x as follows. Our bound on y gives yn < C2N
n

n−ω . From

axn = byn +N we can bound N by N
n

n−ω since n
n−ω > 1 and hence,

a|xn| ≤ b|yn|+N < C2bN
n

n−ω +N
n

n−ω = (C2b+ 1)N
n

n−ω .
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Therefore, x <
(
C2b+1
a

)1/n
N

1
n−ω which gives C1 =

(
C2b+1
a

)1/n
in the statement of the theorem.

This theorem agrees with Theorem 5 but our proof makes the constants in the theorem

explicit. We also get the following corollary.

Corollary 2. If x and y positive integers that satisfy the equation |aXn − bY n| = N and we

have an inequality of the form ∣∣∣∣(ab)1/n − y

x

∣∣∣∣ > C0

xω

where C0 is some effectively computable constant, then

x < CN
1

n−ω

where C is effectively computable.

We remark that the requirement that (a
b
)

1
n be irrational can be replaced by requiring

axn− byn be irreducible over Q[x, y] which is a usual restriction on Thue equations. We can

see this as follows.

Suppose that P (x, y) is a binary form of degree d ≥ 3 over Q. If P (x, 1) is reducible then

there exist polynomials Q,R ∈ Q[x] such that P (x, 1) = Q(x)R(x). It follows that

P (x, y) = Y dP (
x

y
, 1) = Y dQ(

x

y
)R(

x

y
)

in Q(x, y). But d = deg(P ) = deg(R) + deg(Q) and so there exists n,m ∈ N such that

n + m = d and Y nQ(x
y
) ∈ Q[x, y] and Y mR(x

y
) ∈ Q[x, y]. We conclude that P (x, y) is

reducible and we have shown that if P (x, y) is irreducible over Q then P (x, 1) is irreducible.

In particular, if P (x, y) = axn − byn then P (x, 1) can not have a root in Q so ( b
a
)

1
n is

irrational.

Furthermore, if we can compute an irrationality exponent ω for the irrational number

( b
a
)

1
n , it is only useful if it is an improvement of Liouville’s approximation theorem, that is

2 ≤ ω < n. Such bounds are very good and sometimes are sufficient to force at most 1
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solution to the Thue equation. Since the constants in the above theorems are now explicit

we can make this formal.

Corollary 3. For fixed positive integers a and b and n with n ≥ 3 the equation axn−byn = 1

has at most one solution in positive integers x, y if there exists an effective inequality∣∣∣∣∣
(
b

a

) 1
n

− x

y

∣∣∣∣∣ > c0
1

yω

for all positive x and y with

c0 > 2n−ωα1−na.

Proof. From Theorem 20 we have that

y <
(
a−1c−10 αn−1

) 1
n−ω .

Now, for each positive integer y0 there is at most one positive integer x0 such that axn0−yn0 =

1, so clearly the number of solutions (x, y) to the equation axn− byn = 1 in positive integers

x,y is bounded above by the number of positive integer values of y. Hence by our bound on

y it suffices to require (
a−1c−10 αn−1

) 1
n−ω < 2

from which the corollary follows.

Of course as we have already mentioned, Michael Bennett and Benjamin M.M. De

Weger[8] proved that there is indeed at most 1 solution to this equation with only a few

exceptions. We conclude this section by applying Theorem 20 to our example equation

x3−2y3 = 2. We have already computed an irrationality measure for 21/3 where ω = 2.47 and

c = 0.25. We know that y < CN
1

n−ω = C ∗ 2
1

3−2.47 where C is equal to
(
Na−1c−10 αn−1

) 1
n−ω =

(2 ∗ 0.25−1 ∗
(
2
1

)2
)

1
3−2.47 < 692. It follows that y ≤ 2558. However, from our previous exam-

ple, we know that y
x

must be an even convergent to
(
1
2

)1/3
and the even convergents with

y ≤ 2258 are 3/4, 15/19, 23/29, 27/34, 127/160, 227/286, 504/635, none of which correspond

to a solution. Therefore, the equation x3 − 2y3 = 2 has no solutions in positive integers. In
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the next section we will consider the related problem of bounding the number of solutions

to the general equation axn − byn = N .

4.3 Procedure for Computing Solutions to the Binary Thue Equation

We describe an algorithm that computes all solutions to the Binary Thue equation axn −

byn = N in positive integers, conditional on there being an effective irrationality measure

2 ≤ ω < n for
(
a
b

)1/n
. We will show that this algorithm is an improvement on the “naive”

algorithm we get from the bounds on x and y (checking all possible pairs of solutions).

The improvement comes from some of our previous observations about this equation. This

algorithm requires a bound (dependent on the irrationality exponent) on x and y and has

worst case time complexity O
(
e

1
n−2

logN logN2
)

. This is better than brute force which has

worst case time complexity O
(
e

2
n−ω logN2

)
. Here brute force means generating all pairs of

positive integers (x, y) that satisfy these bounds and checking if each pair is a solution to the

equation. In fact assuming Roth’s theorem we would expect the worst case time complexity

of brute force on pairs of solutions is O
(
e

2
n−2−ε logN2

)
for any ε > 0, so our algorithm has

better complexity than this as well. Our analysis of this algorithm will also lead us to a

theorem about the number of solutions to the above equation.

Suppose that we have an effective irrationality measure ω < n for ( b
a
)1/n for fixed pa-

rameters a, b and n positive integers, n ≥ 3 which gives a positive constant C such that if

(x0, y0) ∈ N2 satisfies the equation axn − byn = N then x0, y0 < CN
1

n−ω then we have

the following algorithm for computing all solutions in positive integers to the equation

axn − byn = N .

1. Compute the convergents Pk
Qk

of (a
b
)1/n and ( b

a
)1/n, checking to make sure that the de-

nominator does not exceed the bound CN
1

n−ω . Output a list of convergents as pairs of

integers.
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2. For each pair of convergents in the above list, compute m = a (Pk)
n + b (Qk)

n (if its a

convergent of ( b
a
)1/n) or m = a (Q2k)

n + b (P2k)
n (if it a convergent of (a

b
)1/n) and check if

N
m

= dn for some positive integer d. This can be done via Newton’s Method to some fixed

precision.

3. For each 1 ≤ x0 < (2N
b

)
1

n−2 compute y0 =
(
axn0−N

b

)1/n
and check if axn0 − byn0 = N .

We now give a proof of correctness for the above algorithm.

Theorem 21. The above algorithm is correct. Furthermore, Steps 1 and 2 of this algorithm

terminate in time polynomial in logN and step 3 terminates in exponential time in logN .

The worst case time complexity is O
(
e

1
n−2

logN logN2
)

and computes all solutions in positive

integers.

Proof. We will assume that a,b and n are fixed positive integers with n ≥ 3 and an effective

irrationality measure 2 ≤ ω < n for
(
b
a

)1/n
has been computed. If (x0, y0) satisfies our

equation then by Theorem 20 there exists C > 0 such that x0, y0 < CN
1

n−ω . In step 1

we compute the convergents of (a
b
)1/n and ( b

a
)1/n. Consider the convergents of (a

b
)1/n. We

need to figure out how many of these convergents we need to compute. If a convergent

Pk
Qk

corresponds to a solution to our equation then Qk < CN
1

n−ω and hence by Theorem

15 it suffices to consider the inequality 2(k−1)/2 > CN
1

n−ω for k ≥ 2. Taking logarithms

of both sides we find that if k > 2(n − ω) logN + 1 + 2 logC and k ≥ 2 then Qk exceeds

the bound CN
1

n−ω . It follows that k ≤ min {2(n− ω) logN + 1 + 2 logC}. We note that

the convergents of ( b
a
)1/n = 1

(a
b
)1/n

are simply the reciprocals of the convergents of (a
b
)1/n

since if α = [a1, a2, a3, . . .] then 1
α

= [0, a1, a2, a3, . . .]. Thus we have to compute at most

d2(n− ω) logN + 1 + 2 logCe convergents of (a
b
)1/n in Step 1.

There is a fast algorithm due to Egecioglu that is used to compute the lth convergent

of a continued fraction in time O(l) [11]. Here l is d2(n − ω) logN + 1 + 2 logCe. Hence,
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Step 1 has worst case time comlexity O(logN). We also note that Step 1 gives at most 2 ∗

min {2(n− ω) logN + 1 + 2 logC} convergents to check as possible solutions to our equation

(corresponding to the convergents of (a
b
)1/n and ( b

a
)1/n).

Step 1 terminates because the denominators of convergents form an increasing sequence.

Steps 1 and 2 then give all solutions (x0, y0) ∈ N2 to axn − byn = N where x0 > (2N
b

)
1

n−2

or y0 > (2N
a

)
1

n−2 by Theorem 19 and the fact that if (x0, y0) satisfies our equation then

(x0, y0) = d(P2k, Q2k) for some positive integer d because gcd(P2k, Q2k) = 1 and P2k

Q2k
= y0

x0
.

Hence, dn(aP n
2k − bQn

2k) = N and therefore N
m

= dn where m = a (P2k)
n + b (Q2k)

n. We note

that d can be extracted via Newton’s method (by taking the nth root of N
m

) which converges

quadratically and will not affect the resulting complexity at the end of our analysis. Since we

are computing d to some fixed finite precision we should check that N
m

= dn for the integer

d that was computed.

Computing m for each convergent in Step 2 requires computing 2 nth powers, namely,

(P2k)
n and (Q2k)

n where the numbers P2k and Q2k are less than or equal to our bound CN
1

n−ω

and hence at most size O (logN). We conclude that computing m for each convergent has

worst case time complexity O (logN2) using schoolbook multiplication. Furthermore, we

know that there are at most 2 ∗ min {2(n− ω) logN + 1 + 2 logC} convergents to check

as possible solutions in Step 1. We conclude that Step 2 has worst case time complexity

polynomial in logN .

Step 4 of the algorithm is correct since by Theorem 19 the remaining solutions (x0, y0)

satisfy x0 < (2N
b

)
1

n−2 and y0 < (2N
a

)
1

n−2 and for each positive integer x0 there is at most

one positive integer y0 such that axn0 − byn0 = N . In order to see this supppse there exists

positive integers x1, y1, y2 such that (x1, y1) and (x1, y2) satisfy the equation then axn1−byn1 =

axn1 − byn2 . Hence byn2 − byn1 = b(yn2 − yn1 ) = 0. But then yn2 − yn1 = (y2 − y1)
∑n

i=1 y
n−i
2 yi1 = 0

and so y2 = y1.

Now for each 1 ≤ x0 < (2N
b

)
1

n−2 , we compute y0 =
(
axn0−N

b

)1/n
to some fixed precision
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using Newton’s Method. We need to compute xn0 to compute y0. Using x0 < (2N
b

)
1

n−2 ,

the cost of computing each y0 is O (log n logN2). Since we are computing an nth root to

some fixed precision, we should check that our solutions satisfy the equation once they are

computed. For this we need to compute xn0 and yn0 where x0 < (2N
b

)
1

n−2 and y0 < (2N
a

)
1

n−2 .

Thus for each 1 ≤ x0 < (2N
b

)
1

n−2 we perform a computation that is O (log n logN2) and hence

Step 4 and the entire algorithm has worst case time complexity O
(
e

1
n−2

logN log n logN2
)

..

Since n was fixed this is O
(
e

1
n−2

logN logN2
)

.

We will now apply this analysis in the next section to bound the number of positive integer

solutions for our equation.

4.4 Bounding the Number of Solutions

We use this algorithm to compute effective upperbounds on the number of solutions to the

general equation axn − byn = N for fixed a, b, n in terms of N, given an effective irrational-

ity measure 2 ≤ ω < n for
(
b
a

)1/n
. We first state and prove this upperbound explicitly

for the number of solutions to the general equation; we will then consider some examples

using effective irrationality measures that we computed explicitly using the Hypergeometric

Method.

Theorem 22. Denote the number of pairs (x, y) ∈ N2 satisfying axn − byn = N for certain

fixed parameters a, b, n ∈ N, n ≥ 3 by S(N) and suppose we have computed an effective

irrationality measure |( b
a
)1/n− p

q
| > c

qω
. Then S(N) ≤ max{2(n−ω) logN+1+2 logC, 2}+

(2N
b

)
1

n−2 for some constant C.

Proof. Note that if (x, y) is a solution then either x >
(
2N
b

) 1
n−2 or x ≤

(
2N
b

) 1
n−2 . In the first

case, we know that y
x

is a convergent in the simple continued fraction of
(
a
b

)1/n
by Theorem

19. Our irrationality measure gives a bound of the form x < CN
1

n−ω for some constant
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C > 0. Hence from Theorem 21 there are at most max{2(n − ω) logN + 1 + 2 logC, 2}

convergents with denominator less than this bound and therefore at most this many values

of x. In the second case there are at most
(
2N
b

) 1
n−2 values of x. Therefore, since for each

positive integer x, there can be at most one positive integer y such that the pair (x, y) is a

solution to the above equation, the theorem follows.

We remark that n = 3, this upperbound is O (logN +N) compared to O
(
(2N
b

)v
)

where

v = 1
3−ω > 1 that we would expect if we had only used the bounds on x and y without the

algorithm. Since ω can be any positive real number less than 3, v could be a very large

number, so this is a significant improvement. We will now using the irrationality measure we

computed in Chapter 2 for cubic irrationals to find explicit upperbounds for some particular

binary Thue equations.

4.5 Some Explicit Examples

We illustrate the use of this theorem by computing some upperbounds on the number of

positive integer solutions to our equation for varying values of N given in the following two

tables.

α λ(α)

21/3 2.47

31/3 2.76

51/3 2.80

Table 2. A table of restricted irrationality measures
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Equation Upperbound

x3 − 2y3 = 2 4

x3 − 3y3 = 3 4

x3 − 5y3 = 5 4

Table 3. A table of equations and the corresponding upperbounds on S(N)

Using our previous example x3 − 2y3 = 2 and N = 2, n = 3, ω = 2.47, c = 0.25, a =

1, b = 2 we have by Theorem 19 that C = 20.53. Plugging these values into the inequality

S(N) ≤ max{2(n−ω) logN + 1 + 2 logC, 2}+ (2N
b

)
1

n−2 from Theorem 22, we get S(N) ≤ 4.

However, we know from previous examples that this equation has no solutions.

Until this point we have been using irrationality measures to say something about Dio-

phantine equations. In the next section we will take a different point of view and look at

how Diophantine equations can be used to say something about irrationality measures.

4.6 Diophantine Equations to Irrationality Measures

We end the chapter by looking at a connection between Diophantine equations and Dio-

phantine approximation. In 1909 Alan Thue proved the following theorem which shows the

equivalence between certain Diophantine inequalities and refinements of Liouville’s approx-

imation theorem. We present the theorem now to illustrate this interesting connection.

Theorem 23. Let ω > 1 be a positive real number, and n a fixed positive integer and

α =
(
a
b

)1/n
an irrational number for positive integers a,b then the following are equivalent.

(1) There exists a constant c1 > 0 such that, for any p
q
∈ Q with q > 0, |α− p

q
| > c1

qω
.

(2) There exists a constant c2 > 0 such that for any (x, y) ∈ Z2, |xn − αnyn| ≥ c2|x|n−ω.

Proof. (1) =⇒ (2) follows immediately from Theorem 20. It remains to show that (2) =⇒

(1). Assume (2) holds and let p
q

be a rational number with q > 0. If p is not the nearest

integer to αq then |αq − p| > 1
2

and (1) follows trivially. So assume that |αq − p| ≤ 1
2
. Since
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α, q > 0 it follows that p is nonzero. Suppose that p ≥ 1 then 1
2
p ≤ p− 1

2
≤ αq ≤ p+ 1

2
≤ 3

2
p

and 1
2α
p ≤ q ≤ 3

2α
p. Therefore, c3p ≤ q ≤ c4p for some positive constants c3, c4 that are

independent of p and q.

Consider the factorization

|pn − αnqn| = |p− αq|
∣∣pn−1 + (αq)pn−2 + . . .+ (αq)n−1

∣∣ .
Using the inequality q ≤ c4p in the above and applying the triangle inequality we conclude

that

|pn − αnqn| ≤ c5|p|n−1 |p− αq|

for some positive constant c5.

Applying (2) we get

c2|p|n−ω ≤ |pn − αnqn| ≤ c5|p|n−1 |p− αq| .

It follows that

|p|−ω ≤ c5|p|−1 |p− αq| .

Finally we use the inequality c3p ≤ q in the above to get

|p|−ω ≤ c6

∣∣∣∣α− p

q

∣∣∣∣
for some positive constant c6 and we conclude (1). In the case that p = 0, (1) follows since

α > 0 and we can choose c1 to be any positive number less than α.

In the next chapter we consider a different perspective, turning our attention away from

Thue equations by studying how irrationality measures can be applied to solve some expo-

nential Diophantine equations. We will also discuss how irrationality measures are related

to simple continued fractions.
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Chapter 5

Further Applications

In this chapter we look at two different applications of irrationality measures. The first

is to badly approximable numbers which relate simple continued fractions to irrationality

measures. Since simple continued fractions were used extensively throughout this thesis

and the previous chapter, this relationship is of relavence to this thesis. The second is

the application of restricted irrationality measures to polynomial-exponential Diophantine

equations, in particular the Ramanujan-Nagell equation. This is of interest thesis because

it will demonstrate how the Hypergeometric Method can be applied to solve Diophantine

equations other than Thue equations.

5.1 Badly Approximable Numbers

It is currently not known whether any algebraic irrationality α has bounded partial quotients

in its simple continued fraction. However, it has been conjectured (for example, by Richard

Guy [13]) that for all real algebraic irrationalities of degree 3 or greater, the sequence of

partial quotients in their simple continued fractions is unbounded. In this section we will

show how the Hypegeometric Method can provide some justification for this conjecture. We

first define what it means for a number to be “badly approximable”.

Definition 10. A real number α is said to be badly approximable if there exists a positive

constant C > 0 such that for any positive integers p, q∣∣∣∣α− p

q

∣∣∣∣ > C

q2

Theorem 24. An irrational number α is badly approximable if, and only if, the sequence of

its partial quotients in its simple continued fraction is bounded.
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Proof. Assume that α is badly approximable, that is there exists a positive constant C such

that for any positive integers p, q, ∣∣∣∣α− p

q

∣∣∣∣ > C

q2
.

Let n ≥ 2 be a positive integer, then from Corollary 1 of Chapter 3 qn ≤ qn−1

C
. From

Theorem 13 qn ≥ anqn−1. It follows that an ≤ 1
C

and hence the sequence of partial quotients

is bounded. Conversely, if the sequence of partial quotients is bounded by a constant M

then for any positive integer n, an+1 ≤ M . Now by Legendre’s Theorem p
q

is a convergent

to α, that is, there exists a positive integer n such that p
q

= pn
qn

and by 1 of Chapter 3,∣∣∣∣α− pn
qn

∣∣∣∣ > 1

an+1q2n
>

1

Mq2n
.

We conclude that α is badly approximable.

We know from Roth’s theorem that every algebraic irrationality has an irratonality ex-

ponent arbitrarily close to 2. However, even this theorem is not sufficient to answer the

conjecture.

Still, one might wonder if the Hypergeometric Method could be used to compute a coun-

terexample to the conjecture that every algebraic irrationality of degree at least 3 has un-

bouned partial quotients. In the language of irrationality measures this means finding an

algebraic irrationality of degree at least 3 that has an irrationality exponent equal to 2. The

numerical evidence in this thesis suggests this is unlikely. In particular, for the irrationality

exponents that we have computed for degree 3 algebraic irrationalities via the Hypergeo-

metric Method, the smallest irrationality exponent was 2.2863, corresponding to the number

191/3.

We have seen the close relationship the Hypergeometric Method has with simple contin-

ued fractions. We conclude this chapter by considering a further application of the Hyper-

geometric method to Diophantine equations.
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5.2 Appplications of Restricted Irrationality Measures

We have already seen applications of the Hypergeometric Method to equations of Thue type.

In order to complete the thesis we will study some applications of the Hypergeometric Method

to polynomial exponential Diophantine equations. A polynomial exponential Diophantine

equation is a Diophantine equation written in terms of exponential polynomials. In this

section we restrict our attention to the polynomial exponential equaton x2 − D = pn for a

prime p and positive squarefree integer D ≥ 2. This is famously known as the generalized

Ramanujan-Nagell type equation.

We will first explain the relationship that exists between restricted irrationality measures

and this particular polynomial exponential Diophantine equation. That is, if a restricted

irrationality measure for
√
D, involving powers of the prime p, can be computed using the

Hypergeometric Method as in Chapter 1, then we will show that this immediately leads to

an upper bound on the exponent n in this equation. We state this in the following theorem.

Theorem 25. ∣∣∣∣ xpk −√p
∣∣∣∣ ≥ c

1

(pk)λ

for some positive constant c > 0 then the exponent n in the equation x2 −D = pn (for fixed

prime p and square free D) is bounded above.

Proof. Suppose that our equation has a solution in positive integers (x, n). There are two

cases to consider: If n is even then we can rewrite the equation as x2 − p(2n′) = D for some

integer n′. This is a difference of squares and hence (x + pn
′
)(x− pn′) = D and clearly n is

bounded (since n = logp (D)/2).

If n is odd then we write n = 2k + 1 and hence x2 −D = p2k+1. Dividing both sides of

the equation by p2k yields

x2

p2k
− D

p2k
= p
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and therefore, ∣∣∣∣ x2p2k − p
∣∣∣∣ =

∣∣∣∣ Dp2k
∣∣∣∣ .

But ∣∣∣∣∣
(
x

pk

)2

− p

∣∣∣∣∣ =

∣∣∣∣ Dp2k
∣∣∣∣

is another difference of squares and so

∣∣∣∣ xpk −√p
∣∣∣∣ ∣∣∣∣ xpk +

√
p

∣∣∣∣ =

∣∣∣∣ Dp2k
∣∣∣∣ .

The above equation implies that ∣∣∣∣ xpk −√p
∣∣∣∣

must necessarily be “small”. That is,∣∣∣∣ xpk −√p
∣∣∣∣ =

| D
p2k
|∣∣∣ xpk +
√
p
∣∣∣ .

Therefore, ∣∣∣∣ xpk −√p
∣∣∣∣ << 1

pk
.

However, for 0 < λ < 2 this contradicts the inequality∣∣∣∣ xpk −√p
∣∣∣∣ >> 1

(pk)λ
,

for sufficiently large k.

Explicitly,

D

p2k
>

| D
p2k
|∣∣∣ xpk +
√
p
∣∣∣ > c

1

pkλ
.

Rearranging this inequality gives

D

c
> p(2−λ)k.

Taking logarithms of both sides we conclude that

log D
c

2− λ
> k.
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Hence in both cases, n is bounded.

Using Theorem 12 this theorem we have c = 2−43.9 and λ = 1.8. From the above proof,

we have for n odd, n = 2k+ 1 ≤ 2
(
logD+43.9

2−1.8

)
+ 1 ≤ 20 logD+ 879. And in the case where n

is even an upperbound is logD
2

. Hence, we conclude that n < 20 logD+ 879 for the equation

x2 +D = 2n.
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Chapter 6

Conclusion

We have discussed the Hypergeometric Method from many different angles. We began with

some basic ideas about irrational numbers which were required throughout this thesis. We

went on to discuss the Hypergeometric Method in great detail by constructing general irra-

tionality measures for some degree 3 algebraic irrationalities and then used these construc-

tions to explicitly compute irrationality measures for some specific numbers, which involved

a detailed analysis of the continued fractions of these numbers.

We ended our discussion of the Hypergeometric Method by mentioning its application

to the construction of restricted irrationality measures. We then developed sufficient back-

ground about continued fractions to introduce Worley’s Theorem in Diophantine Approxi-

mation and apply this theorem to the binary Thue equation.

This binary Thue equation was the focus of the next chapter in which we showed how

the irrationality measures we had constructed previously could be applied to equations of

this form. We concluded this section by showing that the binary Thue equation x3−2y3 = 2

has no solutions in positive integers.

The remaining chapter looked at the Hypergeometric Method through a different lens,

linking irrationality measues to an open conjecture about badly approximable numbers and

also tying up some loose ends by showing the application of restricted irrationality mea-

sures to polynomial-exponential Diophantine equations. This section was also important

to show the versatility of the Hypergeometric Method to Diophantine equations other than

Thue equations and we accomplished this by considering the generalized Ramanujan-Nagell

equation. We feel that this thesis will be of value to anyone interested in learning about

Diophantine Approximation and the Hypergeometric Method.
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.1 Appendix

from decimal import *

from random import randrange

def contfrac_float(x):

cf = []

temp = [(Decimal(0),Decimal(1)), (Decimal(1),Decimal(0))]

i= x

while True:

y = int(x)

cf.append(y)

n = len(cf)-1

pn = cf[n]*temp[n+1][0] + temp[n][0]

qn = cf[n]*temp[n+1][1] + temp[n][1]

temp.append((pn, qn))

x -= y

if abs(Decimal(i) - Decimal(pn)/Decimal(qn)) == 0:

del temp[0]; del temp[0]

return cf, temp

x = 1/x

def contfrac(x):

count=0

cf = []
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while True:

y = int(x)

cf.append(y)

n = len(cf)-1

x -= y

count=count+1

if count > 3419:

return max(cf)

x = 1/x

getcontext().prec = 10

print contfrac_float(19**(Decimal("1.0")/3))

print contfrac(19**(Decimal("1.0")/3))
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