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Abstract

We exhibit a motivic parameterization of conjugacy classes of equivalued regular

semisimple elements in the Lie algebra of the exceptional group G(2) over local fields

with residual characteristic at least 5.
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Anything is possible if one wants it with unbending intent...

Carlos Castaneda, The Second Ring of Power [Cas77, p. 123]
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Introduction

The major step in the theory of conjugacy classes of semisimple algebraic groups was

taken by Steinberg in 1965 [Ste65, §6] when he introduced a parameterization of the

conjugacy classes by a variety commonly called the adjoint quotient but which we will

refer to as the Steinberg quotient. This was done over an algebraically closed field,

though, and this is a limitation for our purposes.

Langlands [Lan79] then parameterized the rational conjugacy classes within a

stable conjugacy class and, over local and non-Archimedean fields, showed how to

calculate the parameterizing object. His motivation was the desire to calculate the

Arthur-Selberg trace formula, in particular “...an analysis of local orbital integrals to

which the sum over a global stable conjugacy class is not directly amenable.”([Lan79,

p. 701]) As the name suggests, orbital integrals are integrals over the (semisimple)

conjugacy classes – orbits – of elements in a connected semisimple group.

His method of resolving this problem was to look at calculating the error terms

left over when the orbital inegrals are calculated over stable conjugacy classes. How-

ever, another solution appeared when T.C. Hales showed that p-adic rational orbital

integrals are motivic [Hal04] and may be computed using the technique of motivic

integration introduced by M. Kontsevich in 1995.
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Orbital integrals were clarified in classical groups in 2004 by C. Cunningham

and T.C. Hales [CH04], and in 2011 by Cluckers, Cunningham, Gordon and Spice

[CCGS11]. One of their last contributions was to outline some steps towards writing

a computer program to produce their results, one of the benefits of the motivic ap-

proach. Building on results from [CH04] on good (read equivalued) orbital integrals,

Step 1 in this plan is a motivic parameterization of thickened good adjoint orbits in

the Lie algebra of the p-adic group. However, that paper was limited to symplec-

tic and special orthogonal groups because it relied on the classification of regular

semisimple adjoint orbits given in [Wal01], which, while eminently motivic in nature,

only treats classical groups.

Here we have given a recipe which could also be automated, but may be used for

any linear algebraic group – we have only used the information given in the Dynkin

diagram. As a demonstration we perform the calculations for the Chevalley group

scheme G of type G2: a motivic parameterization of thickened good adjoint orbits in

the Lie algebra of G. This result should be viewed as a basic part of the infrastructure

needed to compute regular semisimple orbital integrals on this Lie algebra over local

fields K.

In broad strokes, our approach to this problem is familiar: we use the Steinberg

quotient S over K to parameterize stable orbit varieties Os, with s ∈ S(K), of regular

semisimple elements; we find a stable conjugacy class of maximal tori Ts ⊂ G attached

to s ∈ S(K); we compute H1(K,Ts) to detect how many adjoint orbits appear in the

stable orbit Os(K); and we use the Kostant section for g = LieG over K to put a

group structure on the torsor Os(K)/G(K) of adjoint orbits in stable orbits.

A novelty of the approach in this thesis, however, is that all this is done in a way
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which is independent of the local field K, except that its residual characteristic must

be at least 5, and without making use of any representation of the group G, relying

instead only on the root datum for G. In particular, in this thesis we make no use of

arcane knowledge of the exceptional group G(2), no use of the representation of G(2)

in SO(8), and no use of Bruhat-Tits theory; everything in this thesis is derived directly

from the root datum of type G2. This is all made possible by the use of r-reduction, as

developed in [CH04], which in turn rests on Krasner’s lemma, to show that H1(K,Ts)

does not change under p-adically small perturbations of s ∈ S(K) and show further

that what ‘p-adically small’ means here can be expressed in the language of Pas.

Making this precise leads to thickened orbits, a notion appearing first in [CH04] and

then clarified in [CCGS11]. Putting all these pieces together proves the main result

of the thesis, Theorem 1.1, giving the motivic parameterization of thickened good

regular semisimple adjoint orbits in g(K).

The result is a simple motivic gadget – a map of definable subassignments – which

is built directly from the Chevalley group scheme G as determined by its root datum

and a Chevalley basis, which is independent of any representation of G and any local

field but which, after the choice of a local fieldK with residual characteristic of at least

5, parameterizes all thickened good regular semisimple adjoint orbits in g(K). The

promised map of definable subassignments is exhibited in Theorem 1.1 and described

informally here, where g is a Chevalley Lie algebra scheme of type G2: We find a

family of maps of definable subassignments

∀r ∈ Q, νr : g(r)→ Br

xx



such that if K is a local field and 6 is invertible in its residue field k then each νr

specializes to a surjective function νr/K : g(r,K) → Br(k) for which the fibres are

thickened orbits of good elements in g(K) and all such orbits arise in this way. The

point of this thesis is not just to promise the existence of νr : g(r) → Br but to

actually exhibit it.

While this thesis only considers the Chevalley group scheme G of type G2, the

strategy used here adapts to any Chevalley group scheme. It is hoped that this

strategy will be implemented in the near future.
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Chapter 1

Statement of the main result

We begin with a brief review of basic facts about the Chevalley group scheme G of

type G2 and its Lie algebra. We then state the main result of the thesis, the proof of

which will occupy Chapters 2 and 6.

Throughout the thesis we write K for a non-Archimedean local field, k for its

residue field, and π for a uniformizer of K, when we need to introduce one. Let ordK

be a valuation on K so that ordK(K
×) = Z.

1.1 Root datum of type G2

Consider the lattices

Λ = {x1ǫ1 + x2ǫ2 + x3ǫ3 | x1, x2, x3 ∈ Z}

and

Λ̌ = {y1f1 + y2f2 + y3f3 | y1, y2, y3 ∈ Z}

with pairing Λ̌ × Λ → Z given by <fi, ǫj> = δi,j. Now, set ǫ = ǫ1 + ǫ2 + ǫ3 ∈ Λ

and consider the quotient lattice X = Λ/{xǫ | x ∈ Z} and the sub-lattice X̌ = {y ∈
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Λ̌ | <y, ǫ> = 0} with pairing X̌ ×X → Z given by

<y1f1 + y2f2 + y3f3, x1ǫ1 + x2ǫ2 + x3ǫ3> 7→ y1x1 + y2x2 + y3x3.

Consider the root system R ⊂ X given by

R = {±α1,±α2,±(α1 + α2),±(2α1 + α2),±(3α1 + α2),±(3α1 + 2α2)}

where, writing ei for the image of ǫi in Λ,

α1 := − e1 α2 := e1 − e2

α3 :=α1 + α2 = −e2 α4 := 3α1 + α2 = −e1 + e3

α5 := 2α1 + α2 = e3 α̃ = α6 := 3α1 + 2α2 = −e2 + e3.

This is a root system of type G2. Note that the short roots satisfy the identities

α1 =
1

3
(−2e1 + e2 + e3)

α1 + α2 =
1

3
(e1 − 2e2 + e3)

2α1 + α2 =
1

3
(−e1 − e2 + 2e3)

in X ⊗ Z[3−1].

The ‘longest’ root with respect to the basis ∆ = {α1, α2} is α̃ = 3α1 + 2α2 and

the fundamental weights are ̟1 = 2α1 + α2 and ̟2 = α̃. The short roots and long

roots in R,

Rshort = {±α1,±α3,±α5} Rlong = {±α2,±α4,±α6},
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Figure 1.1: Root system and fundamental weights of type G2, from [Bou68, p. 276].

each form root systems of type A2.

The dual root system Ř ⊂ X̌ is given by

Ř = {±α̌1,±α̌2,±(α̌1 + α̌2),±(α̌1 + 2α̌2),±(α̌1 + 3α̌2),±(2α̌1 + 3α̌2)}

with

α̌1 := − 2f1 + f2 + f3 α̌2 := f1 − f2

α̌1 + 3α̌2 = f1 − 2f2 + f3 α̌1 + α̌2 = −f1 + f3

2α̌1 + 3α̌2 = −f1 − f2 + 2f3 α̌1 + 2α̌2 = −f2 + f3.

The Cartan matrix for (R, Ř) with reference to the pair of bases ∆ = {α1, α2} and

∆̌ = {α̌1, α̌2} is the matrix



<α̌1, α1> <α̌1, α2>

<α̌2, α1> <α̌2, α2>


 =




2 −3

−1 2


 .

The quartuple (X,R, X̌, Ř) is a semisimple root datum of type G2; compare with
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[Bou68, p. 220].

The character lattice X coincides with the root lattice Q(R) (the lattice generated

by R) and the cocharacter lattice X̌ coincides with the coroot lattice Q(Ř) (the

lattice generated by Ř). In this way we see that the root datum (X,R, X̌, Ř) is

simultaneously of adjoint type and simply connected.

1.2 Weyl group

TheWeyl groupW forRmay be apprehended through the action ofW = 〈sα | α ∈ R〉

on X given by sα(x) = x − <α̌, x>α. Using the Cartan matrix above, we see that

sα1(α1) = −α1 and sα1(α2) = 3α1 + α2 while sα2(α1) = α1 + α2 and sα2(α2) = −α2.

Henceforth we will adopt the notation w1 := sα1 and w2 := sα2 .

Figure 1.2: Subgroup lattice of the Weyl group

We remark that W = 〈w1, w2〉 is the dihedral group D6 of order 12, generated

by w2 and w2w1, for example. The element w2w1 is Coxeter, and only all non-trivial
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powers of w2w1 are regular and regular elliptic elements of W . Thus, the regular and

regular elliptic numbers for W are 2, 3 and 6, the latter being the Coxeter number of

W .

With reference to Figure 1.2, The normal proper subgroups of W are:

1. 〈w1w2〉∼=C6, 〈w1, (w1w2)
2)〉∼=S3, 〈w2, (w1w2)

2)〉∼=S3;

2. 〈(w1w2)
2〉∼=C3; and

3. 〈(w1w2)
3〉∼=C2.

Of the three normal subgroups of index 2, no two are conjugate.

Table 1.1: Action of Weyl group W on X̌ ⊂ Λ̌

w ∈ W w(y1, y2, y3)

w2w1 (−y3,−y1,−y2)

(w2w1)5 = w1w2 (−y2,−y3,−y1)

(w2w1)2 (y2, y3, y1)

(w2w1)4 = (w1w2)2 (y3, y1, y2)

(w2w1)3 = (w1w2)3 (−y1,−y2,−y3)

w2 = sα2
(y2, y1, y3)

w1w2w1 = sα4
(y3, y2, y1)

w2w1w2w1w2 = sα6
(y1, y3, y2)

w1 = sα1
(−y1,−y3,−y2)

w2w1w2 = sα3
(−y3,−y2,−y1)

w1w2w1w2w1 = sα5
(−y2,−y1,−y3)

1 (y1, y2, y3)
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The Weyl group may also be apprehended through the action of 〈sα̌ | α̌ ∈ ∆̌〉 on X̌

given by sα̌(y) = y−<y, α>α̌. Using the description above of X̌ as a sub-lattice of Λ̌,

we have sα̌1 : y1f1 + y2f2 + y3f3 7→ −y1f1− y3f2− y2f3 and sα̌2 : y1f1 + y2f2 + y3f3 7→

y2f1 + y1f2 + y3f3. For use below, we record the action of W on X̌ in Table 1.1,

in which elements of W are separated by conjugacy classes and where we use the

notation w1 := sα̌1 and w2 := sα̌2 ; context makes this notation unambiguous.

1.3 Chevalley group scheme

LetG be a Chevalley group scheme over Z determined by the root datum (X,R, X̌, Ř);

see [Che61] and [Gro96]. We remark that G ×Spec(Z) Spec(Qp) is a split, connected

reductive algebraic group with root datum (X,R, X̌, Ř) for every prime p. Let g be

the Lie algebra scheme of G [CR10].

1.4 Chevalley bases and Structure Coefficients

A Chevalley basis [Che55] for g is a function R → g, α 7→ Xα, with the following

properties: for every α ∈ R, the triple (Xα, [Xα, X−α], X−α) is an sl2-triple over Z;

the union {Xα | α ∈ R} ∪ {[Xα, X−α] | α ∈ ∆} is a basis for g; [Xα, Xβ] = 0 unless

α + β = 0 or α + β ∈ R; if α + β ∈ R then [Xα, Xβ] = Nα,βXα+β for integers Nα,β

called the structure coefficients of the Chevalley basis.

The structure coefficients satisfy the following relations:

(i) Nα,β = −Nβ,α α, β ∈ R.

(ii)
Nα,β

(γ,γ)
=

Nβ,γ

(α,α)
= Nγ,α

(β,β)

if α, β, γ ∈ R satisfy α + β + γ = 0.
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(iii) Nα,βN−α,−β = −(p+ 1)2, α, β ∈ R

(iv)
Nα.βNγ,δ

(α+β,α+β)
+

Nβ,γNα,δ

(β+γ,β+γ)
+

Nγ,αNβ,δ

(γ+α,γ+α)
= 0

if α, β, γ, δ ∈ R satisfy α + β + γ + δ and if no pair are opposite.

Here p is the greatest integer such that β − pα ∈ R, and ( , ) is the standard inner

product on R. Moreover Nα,β = ±(p+1) so finding the structure coefficients amounts

to determining the sign.

To calculate a Chevalley basis for g, we follow [Car72, §§4.1-4.2], from which we

recall the following notions:

(s) a special (s) ordered pair of roots {α, β} ∈ R × R is one in which α + β ∈ R

and 0 ≺ α ≺ β, where α ≺ β ⇔ β − α ∈ R+ = {xα1 + yα2 ∈ R | x > 0 or x =

0⇒ y > 0};1 and

(es) an extraspecial (es) pair of roots {α, β} ∈ R×R is a special pair such that, for

all special pairs {γ, δ} with α + β = γ + δ, α � γ.

Choosing the sign of the structure coefficients for the extraspecial pairs of roots {α, β}

uniquely determines the structure coefficients Nα,β for all pairs [Car72, Prop. 4.2.2];

we set sign(Nα,β) = +1 for all extraspecial pairs {α, β}.

Then the calculation of the Chevalley basis is algorithmic:

(1) Calculate the special ordered pairs of roots; in our case the pairs {α1, α1 + α2},

{α1, 2α1 + α2}, {α1 + α2, 2α1 + α2}.

(2) Determine which special pairs are extraspecial; in our case all of the pairs

{α1, α1 + α2}, {α1, 2α1 + α2}, {α1 + α2, 2α1 + α2}.

(3) Set sign(Nα,β) = +1 for all extraspecial pairs {α, β}.

1In fact, any total ordering on R will give an order relation ≺ that will work. The relation we
have chosen is convenient as we already have the basis ∆ of R.
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Table 1.2: Structure Coefficients for g
−3α1 − 2α2 −3α1 − α2 −2α1 − α2 −α1 − α2 −α2 −α1

−3α1 − 2α2

−3α1 − α2 +1
−2α1 − α2 +3 +3
−α1 − α2 -3 +2
−α2 -1 -1
−α1 -3 -2 +1
α1 -1 -2 +3
α2 -1 -1
α1 + α2 -1 +2 -1 +3
2α1 + α2 +1 +1 +2 -2
3α1 + α2 +1 +1 -1
3α1 + 2α2 +1 +1 -1 -1

α1 α2 α1 + α2 2α1 + α2 3α1 + α2 3α1 + 2α2

−3α1 − 2α2 +1 +1 -1 -1
−3α1 − α2 +1 -1 -1
−2α1 − α2 +2 -2 -1 -1
−α1 − α2 -3 +1 -2 +1
−α2 +1 +1
−α1 -3 +2 +1
α1 -1 +2 +3
α2 +1 +1
α1 + α2 -2 +3
2α1 + α2 -3 -3
3α1 + α2 -1
3α1 + 2α2
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(4) Apply condition (i) to the extraspecial pairs.

(5) Apply condition (iii) to the extraspecial pairs.

(6) Apply condition (iii) to the pairs produced in (4).

(7) Apply condition (ii) to the pairs {α, β} produced in (4), (5) and (6) with γ =

−α− β.

(8) Apply condition (iv) to calculate the sign of a pair {α, β} outside of those

produced in (4), (5), (6) and (7).

(9) Apply conditions (i), (ii) and (iii) to any new pairs produced by (8).

(10) Repeat steps (8) and (9) until signs are calculated for all pairs.

Using this algorithm, and making the choice indicated above, the complete list of

structure coefficients in our case is given in Table 1.2.

1.5 Equivalued/Good elements

Let greg →֒ g be the open subscheme of regular semisimple elements obtained by

localizing g at the discriminant D ∈ Z[g] (the coordinate ring of g) which will be

computed in Sections 2.1 and 2.2.

Let K be a local field. An element X ∈ greg(K) is called good of slope r if it is

equivalued in the following sense: ordK(α(X)) = r for each root of g(K) relative to

tX(K), the Cartan subalgebra containing X. In this case, the depth of X is r; see

[CCGS11, Def 2.1] for more detail. As they amount to the same thing, we will only use

the term ‘depth’ henceforth. Because we are only interested in good elements which

are also regular semisimple, we henceforth shorten ‘good and regular semisimple’ to

‘good’. We write g(r,K) for the set of good elements in greg(K) of depth r.
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1.6 Thickened orbits

Suppose X ∈ greg(K) and let r = depth(X). The thickened orbit of X ∈ greg(K) is

the set

Or(X) :=
⋃

Y ∈tX(K)r+

O(X + Y ),

where O(X + Y ) is the G(K)-adjoint-orbit of X + Y in g(K) [CCGS11, Def. 2.5].

1.7 Definable Subassignments

There is one more definition we must make – that of a definable subassignment ; we

refer to [GY09, §§5.2.1-4]. Given the categories Fieldf of fields containing a field f

and Set of sets, define a functor h[m,n, r] = hAf ((t))m×An
f×Zr : Fieldf → Set by

h[m,n, r](F ) = hAf ((t))m×An
f×Zr(F ) := F ((t))× F n × Zr

for some field F containing f , and where An
f is affine n-space over f .

In general, a subassignment h of the functor F : C→ Set between any category C

and Set is a collection of subsets h(C) ⊂ F(C) for each C ∈ C. To define a definable

subassignment, we need the following.

A formal language L is a set of strings made up of certain symbols. The formal

languages we are interested in here are the Language of Rings, Presburger’s Language,

and the Language of Denef-Pas.

The Language of Rings is made up from the following symbols: countably many

symbols for variables x1, x2, . . . , xn, . . ., ‘0’, ‘1’, ‘×’, ‘+’, ‘=’, and parentheses ‘(’ and

‘)’, the existential quantifier ‘∃’, and the logical operations ‘∧’, ‘ 6=’, and ‘∨’.
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Presburger’s Language is made up from the following symbols: countably many

symbols for variables over Z x1, x2, . . . , xn, . . ., ‘0’, ‘1’, ‘+’, ‘≤’, and for each d =

2, 3, . . . a symbol ‘≡d’ denoting x ≡ y mod d, and the same symbols for quantifiers,

logical operations and parentheses as in the Language of Rings.

The Language of Denef-Pas is an extension of the first two languages for valued

fields. It has three sorts of variables: variables over the residue field whose accom-

panying symbols are those of the Language of Rings with symbols for every rational

number (so formulas can have coefficients in Q), variables over the value group whose

accompanying symbols are those of Presburger’s language along with the symbol ‘∞’,

and finally variables over the valued field itself whose accompanying symbols are those

of the Language of Rings plus the symbols ord and ac, defined below.

Denote the ring of integers of K by OK and a fixed uniformizer by π. Let res :

OK → k be the residue map, and let Kint = {x ∈ K | ordK(x) ∈ Z}. The angular

component is a function ac : Kint → k̄× given by ac(0) = 0 and ac(x) = res(x/πordx).

Finally, since we are concerned here only with elements of Fieldf , we also add a

symbol for each element of f((t)), a case which we note with the phrase “formulas

with coefficients on f((t))”.

A subassignment h of h[m,n, r] is a definable subassignment if there is a formula φ

in the Language of Denef-Pas with coefficients in f((t)) wherem, n, r are the numbers

of free variables of the valued field, the residue field, and the value sort, respectively,

such that for every F ∈ Fieldf , h(F ) is the set of all points in F ((t))m × F n × Zr

satisfying φ. Then a morphism of definable subassignments from h1 to h2 to be a

definable subassignment d such that d(C) is the graph of a function from h1(C) to

h2(C) for each object C in C. The category of definable subassignments is denoted
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by Deff .

Following [CH04, Lemma 5.1] we see that, for every r ∈ Q, there is a formula φr

in the language of Denef-Pas such that for every F ∈ Fieldf , g(r, F ) is the set of all

points in F ((t))m × F n × Zr satisfying φr. Let g(r) be the definable subassignment

of equivalued regular semisimple elements of g of depth r.

1.8 Statement of the main result

Theorem 1.1. Let G be a Chevalley group scheme of type G2 and let g be its Lie

algebra. Every Chevalley basis for g determines a family of maps of definable sub-

assignments

∀r ∈ Q, νr : g(r)→ Br

such that if K is a local field and 6 is invertible in the residue field k of K then

ν−1
r/K(νr/K(X)) is a thickened orbit in g(r,K), where νr/K is the specialization deter-

mined by K, and every thickened orbit of regular equivalued elements in g(r,K) arises

in this way.
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Chapter 2

Motivic classification of thickened

stable good orbits

As a step toward proving Theorem 1.1, in this chapter we classify thickened stable

good orbits in g(K). Suppose X ∈ greg(K) and let r = depth(X). We are now able

to state the main result of this chapter.

Proposition 2.1. Let G be a Chevalley group scheme of type G2 and let g be its Lie

algebra. For every r ∈ Q there is a map of definable subassignments

µr : g(r)→ Sr

with the following property: if K is a local field and 6 is invertible in its residue field

k, then the specialization µr/K : g(r,K)→ Sr(k) is surjective; and

∀X ∈ g(r,K), Ost
r (X) = µ−1

r/K(µr/K(X));

moreover, every thickened stable orbit in g(r,K) arises in this way.

Note that Proposition 2.1 does not require the choice of a Chevalley basis for g,

in contrast to Theorem 1.1.
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2.1 Polynomials from R

Consider t := Spec(Z[X̌]). Since we have introduced a pair of lattices (X, X̌) through

the pair of lattices (Λ, Λ̌), it is natural to use the basis for Λ̌ introduced above to

determine a set of generators for the coordinate ring of t:

Z[t]∼=Z[y1, y2, y2]/(y1 + y2 + y3).

With reference to the action of the Weyl group W on X̌ in Section 1.2, invariant

theory gives

Z[t]W|W |
∼=Z[s1, s2]6,

where s1 = y21y
2
2y

3
3 and s2 = y1y2 + y2y2 + y3y1.

However, because X̌ = Q(Ř), (since G(2) is adjoint), it is more natural to use the

basis {α̌1, α̌2} for Ř, as introduced above, to determine generators for the coordinate

ring: Z[t]∼=Z[z1, z2], where Z[y1, y2, y2]/(y1 + y2 + y3)∼=Z[z1, z2] is determined by

z1α̌1 + z2α̌2 = y1f1 + y2f2 + y3f3.

Consider the polynomial Q(λ) over Z[t] defined by

Q(λ) :=
∏

α∈R
(λ− α) .

Here we view each α ∈ R as an element of Z[t] = Z[z1, z2] according to the identifica-

tion α = α(z1α̌1 + z2α̌2) = z1<α̌1, α> + z2<α̌2, α>. Note that, with this notation,

Z[t]2 = Z[R]2.

Since W stabilizes R, we see that the coefficients of Q(λ) lie in Z[t]W so, in fact,

Q(λ) lies in Z[t]W [λ]. We will find the coefficients of Q(λ). Since W stabilizes Rshort,
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it follows that the polynomial over Z[t] defined by

P (λ) :=
∏

α∈Rshort

(λ− α)

also lies in Z[t]W [λ]. A simple calculation shows

P (λ) = λ6 + 2s2λ
4 + s22λ

2 − s1

where

s2 :=
∑

α 6=β∈{−α1,−α3,α5}⊂Rshort

αβ = α1α3 − α3α5 − α5α1 = e1e2 + e2e3 + e3e1

and

s1 :=
∏

α∈{−α1,−α3,α5}⊂Rshort

α2 =
∏

α∈Rshort

α = e21e
2
2e

3
3.

We will sometimes use the notation Ps1,s2(λ) :=λ6 + 2s2λ
4 + s22λ

2 − s1.

Likewise, since W stabilizes Rlong, it follows that the polynomial over Z[t] defined

by

P ′(λ) :=
∏

α∈Rlong

(λ− α)

also lies in Z[t]W [λ]. A simple calculation shows that

P ′(λ) :=λ6 + 2s′2λ
4 + (s′2)

2λ2 − s′1,
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so P ′
s1,s2

(λ) = Ps′1,s
′

2
(λ), where

s′2 =
∑

α 6=β∈{α2,α4,−α6}⊂Rlong

αβ = α2α4 − α4α6 − α6α2 = 3(e1e2 + e2e3 + e3e1) = 3s2

and

s′1 :=
∏

α∈{α2,α4,−α6}⊂Rlong

α2 =
∏

α∈Rlong

α = (e1− e2)
2(e2− e3)

2(e3− e1)
2 = −(27s1+4s32).

Returning to Q(λ) ∈ Z[t]W [λ], note that the constant term of Q(λ) is

s1s
′
1 =

∏

α∈Rshort

α2
∏

α∈Rlong

α2 =
∏

α∈R
α2 = e21e

2
2e

2
3(e1 − e2)

2(e2 − e3)
2(e3 − e1)

2,

which is precisely the discriminant of P (λ) and thus of t; we set d := s1s
′
1 = −27s21 −

4s1s
3
2 ∈ Z[t]W . We now see that Z[treg]W → Z[treg] is given by

Z[t]Wd → Z[t]Wd [λ]/(Q(λ))∼=Z[t]Wd [λ]/(P (λ))⊕ Z[t]Wd [λ]/(P ′(λ)).

This defines the map treg → treg/W , denoted by µ : treg → S henceforth.

If we pick a K-rational point X on t and replace (s1, s2) with s = µ(X) then we

may write PX(λ) :=Ps(λ) and P ′
X(λ) :=P ′

s(λ). We remark that, in this context,

λ2PX(λ) = det(λ− adg(X)),

is the characteristic polynomial of X ∈ g(K).
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2.2 Steinberg quotient

Let g→ g/G∼= t/W be the Steinberg quotient for g [CR10]. Let D ∈ Z[g] be any pre-

image of d ∈ Z[t] under the quotient Z[g]→ Z[t]. Then greg := Spec(Z[g]D), which is

independent of the choice for D, is the open subscheme of regular semisimple elements

in g. We write µ : greg → S for the restriction of g→ t/W to greg.

2.3 Parameterization of stable good orbits

One begins by working over a separable closure K̄ and recalling the classical result

[Ste65] that adjoint orbits in greg over K̄ are classified by the regular part S of the

Steinberg quotient over K̄. The fibres of the Steinberg map µ : greg → S define

subvarieties Os ⊂ g, for s ∈ S. Then one observes that S is in fact defined over

K and if s ∈ S(K) then Os is also defined over K. The K-variety Os may be

apprehended as the quotient of G by the maximal torus TX ⊆ G containing X, for

any X ∈ greg(K) with µ(X) = s. The set Os(K) is commonly called a stable orbit in

g(K).

2.4 Steinberg by depth

One of the key tools in this thesis is r-reduction, as introduced in [CH04, §3.1].

Originally, r-reduction took a polynomial P = λN +α1λ
N−1+ . . .+αng over K, whose

roots λi ∈ K̄ all satisfied ordK(λi) = r, to a polynomial R = λg + a1λ
g−1 + . . . + ag

over k in a combinatorial manner: r ∈ Q, g, ℓ, n, L,N ∈ Z; N ≥ 1; g ≥ 1; r ≥

0; r = L/N ; g = gcd(L,N); ℓ = L/g; n = N/g. It was then shown that the splitting

field of P depended only R. Here we use it schematically: r-reducing the polynomial
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Q(λ) = P (λ)P ′(λ) introduced in Section 2.1 field independently, and then specializing

to a field as required.

From the form of the polynomial QX(λ) it follows that g(r,K) is empty unless

r ∈ 1
6
Z. Henceforth, we suppose r ∈ 1

6
Z and write ⌊r⌋ to be the integer part of r

and {r} to be the fractional part, or fractional depth, of r, so r = {r} + ⌊r⌋ and

{r} ∈ {0, 1
6
, 1
3
, 1
2
, 2
3
, 5
6
}. Since QX(λ) = PX(λ)P

′
X(λ) in K[λ], we may calculate the

r-reduction of PX(λ) and P ′
X(λ) separately.

The process of r-reduction produces, for each r ∈ 1
6
Z, a quotient tregr → Sr of

affine schemes which recovers the quotient treg → S when r ∈ Z, as we now explain.

Table 2.1: The process of r-reduction produces Pr(λ) and P ′
r(λ) from P (λ) and P ′(λ)

over Z[t].

{r} Pr(λ), P ′
r(λ)

0 λ6 + 2s2λ
4 + s22λ

2 − s1 =
∏

α∈Rshort

(λ− α) λ6 + 2s′2λ
4 + (s′2)

2λ2 − s′1 =
∏

α∈Rlong

(λ− α)

1
6
, 5

6
λ− s1 = λ− α2

1α
2
3α

2
5 λ− s′1 = λ− α2

2α
2
4α

2
6

1
3
, 2

3
λ2 − s1 = (λ− α1α3α5)(λ+ α1α3α5) λ2 − s′1 = (λ− α2α4α6)(λ+ α2α4α6)

1
2

λ3 + 2s2λ
2 + s22λ− s1 = (λ− α2

1)(λ− α2
3)(λ− α2

5) λ3 + 2s′2λ
2 + (s′2)

2λ− s′1 = (λ− α2
2)(λ− α2

4)(λ− α2
6)

From Table 2.1 we see how r-reduction produces from Q(λ) = P (λ)P ′(λ) a poly-

nomial Qr(λ) = Pr(λ)P
′
r(λ) over Z[t], for each r ∈ 1

6
Z. Let Φr ⊂ Z[t] be the set of

‘roots’ of Qr(λ) for each r ∈ 1
6
Z; see Table 2.2 for a list of the sets Φr for each r ∈ 1

6
Z.
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Define t→ tr over Z |W | by

Z[tr] |W | = Z[Φr] |W | ⊆ Z[R] |W | = Z[t] |W |

and treg → tregr by Z[tregr ] |W | = Z[Φr]dr ⊆ Z[R] |W | d = Z[treg] |W | where dr is the

restriction of d from Z[t] to Z[tr] with the factor |W | for convenience. See Chapter

3 for more detail and explicit examples. Note that the action of W on Z[t] descends

to Z[Φr].

The covering group of treg → tregr is a quotient Wr of W for which Z[Φr]
W =

Z[Φr]
Wr ; the kernel of W → Wr is W r := {w ∈ W | w(f) = f, ∀f ∈ Φr}. In fact,

in each case there is a natural section of 1 → W r → W → Wr → 1, as indicated in

Table 2.2. Define the affine scheme

Sr = tregr /Wr

by Z[Sr] :=Z[tregr ]Wr = Z[tr]
Wr
dr

.

LetK be a local field and suppose 6 is invertible in its residue field k. By construc-

tion, Sr(k) classifies r-reductions of characteristic polynomials of regular equivalued

elements X ∈ g(K) of depth r, for each r ∈ 1
6
Z. Define

µr/K : g(r,K)→ Sr(k)

as follows: for X ∈ g(r,K), let µr/K(X) be the element of Sr(k) corresponding to the

r-reduction of PX(λ).
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Table 2.2: The coordinate ring Z[tr] = Z[Φr] and the sets Φr, the groupsWr indicating
a section of 1→ W r → W → Wr → 1, and the discriminant dr ∈ Z[tr] using notation
from Table 2.1.

{r} W r Wr Z[Φr] dr = |W | s1s′1

0 1 W Z[α1, α3, α5]⊗ Z[α2, α4, α6] |W | s1s′1 = −324s21 − 48s1s32
(Φr = R)

1
6
, 5

6
W 1 Z[α2

1α
2
3α

2
5]⊗ Z[α2

2α
2
4α

2
6] |W | s1s′1 = −324s21

(Φr = {α2
1α

2
3α

2
5, α

2
2α

2
4α

2
6})

1
3
, 2

3
〈w2, (w2w1)2〉∼=S3 〈(w2w1)3〉∼=C2 Z[α1α3α5]⊗ Z[α2α4α6] |W | s1s′1 = −324s21

(Φr = {α1α3α5, α2α4α6})

1
2

〈(w2w1)3〉∼=C2 〈w2, (w2w1)2〉∼=S3 Z[α2
1, α

2
3, α

2
5]⊗ Z[α2

2, α
2
4, α

2
6] |W | s1s′1 = −324s21 − 48s1s32

(Φr = {α2
1, α

2
3, α

2
5,

α2
2, α

2
4, α

2
6})

2.5 Maximal tori

Recall that isomorphism classes of tori overK that embed into G overK as a maximal

torus are classified by H1(K,W ) and thus determined, up to isomorphism, by indexed

root data of the form (X, ∅, X̌, ∅, ∅, ρ) where ρ ∈ Z1(K,W ) = Hom(Gal(K̄/K),W );

see [Spr09, §16.2].

In this thesis we are concerned only with tamely ramified maximal tori, so we

will restrict our attention to H1
tr(K,W ) = Hom(Gal(Ktr/K),W )/W -conj. Here we

see how all such data arise from elements of greg(K) under the hypothesis that 6 is

invertible in the residue field of K.

Suppose X ∈ greg(K). Since all Cartans are conjugate over K̄ to t, and since

conjugation preserves depth, X ′ ∈ treg(K̄) for some conjugate X ′. Let s = µ(X ′) and

consider

Qs(λ) =
∏

α∈R
(λ− α(X ′)) ∈ K[λ];
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this is a specialization of Q(λ) ∈ Z[t][λ], introduced in Section 2.1. Then

Ks :=K(α(X ′) | α ∈ R)

is the splitting extension of Qs(λ) = Ps(λ)P
′
s(λ). Since α(X

′) ∈ K̄, there is a natural

action of Gal(K̄/K) on the root values {α(X ′) | α ∈ R} and since the symmetry

group of Qs(λ) is W , there is a homomorphism ρs : Gal(K̄/K) → W , unique up

to W -conjugacy, so that σ(α(X ′)) = ρs(σ)(α)(X
′) for each α ∈ R. Note that, up

to W -conjugation, the roots α(X ′) are determined by s through the splitting of the

polynomial Qs(λ). In this way we see that every element X ∈ greg(K) determines

s ∈ S(K) and thence [ρs] ∈ H1(K,W ) by way of Qs(λ) ∈ K[λ]. In this way we define

a function S(K) → H1(K,W ), from stable conjugacy classes of elements in greg(K)

to stable conjugacy class of Cartans in g, by s 7→ [ρs]. However, in order to compute

the splitting extension Ks, for each s ∈ Sr(k), we must determine the irreducible

factors of Rs(λ), the r-reduction of Ps(λ). The next few sections explain how to do

that.

2.6 Algebras attached to regular equivalued elements

In this section we prepare for a study of the function S(K)→ H1(K,W ) .

The coordinate ring of the fibre of µ : treg → S above a K-rational point s ∈

S(K) is the K-algebra K[λ]/(Qs(λ)). Now suppose X ∈ g(r,K) and s = µ(X) ∈

S(K). By [CH04, §3.2], K[λ]/(Qs(λ)) is completely determined by µr/K(X) ∈ Sr(k).

Now [CH04, §3.2] also shows that the irreducible factors of Qs(λ) correspond to the

irreducible factors of its r-reduction in the following way. Let Rs(λ) be the r-reduction
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Table 2.3: Factorizations of Pr(λ) over Z[Sr] for r ∈ Z.

w ∈ W Pr(λ) ∈ Z[Sr][λ]

w2w1 λ6 + 2s2λ4 + s22λ
2 − s1

(w2w1)5 λ6 + 2s2λ4 + s22λ
2 − s1

(w2w1)2
(
λ3 + s2λ+ α1α3α5

) (
λ3 + s2λ− α1α3α5

)

(w2w1)4
(
λ3 + s2λ+ α1α3α5

) (
λ3 + s2λ− α1α3α5

)

(w2w1)3
(
λ2 − α2

1

) (
λ2 − α2

3

) (
λ2 − α2

5

)

sα2
= w2

(
λ2 − (α1 + α3)λ+ α1α3

) (
λ2 + (α1 + α3)λ+ α1α3

)
(λ− α5) (λ+ α5)

sα4
= w1w2w1

(
λ2 − (α1 − α5)λ− α1α5

)
(λ− α3) (λ+ α3)

(
λ2 + (α1 − α5)λ− α1α5

)

sα6
= w2w1w2w1w2 (λ− α1) (λ+ α1)

(
λ2 − (α3 − α5)λ− α3α5

) (
λ2 + (α3 − α5)λ− α3α5

)

sα1
= w1

(
λ2 − α2

1

) (
λ2 − (α3 + α5)λ+ α3α5

) (
λ2 + (α3 + α5)λ+ α3α5

)

sα3
= w2w1w2

(
λ2 − (α1 + α5)λ− α1α5

) (
λ2 − α2

3

) (
λ2 + (α1 + α5)λ− α1α5

)

sα5
= w1w2w1w2w1

(
λ2 − (α1 + α3)λ− α1α3

) (
λ2 + (α1 + α3)λ− α1α3

) (
λ2 − α2

5

)

1 (λ− α1) (λ+ α1) (λ− α3) (λ+ α3) (λ− α5) (λ+ α5)
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of Ps(λ) and let R′
s(λ) be the r-reduction of P ′

s(λ). Set g = deg(Rs) = deg(R′
s). In the

numerology r 7→ (g, ℓ, n) of [CH04, §3.1], we have ng = deg(P ) and 2ng = deg(Q) =

|W | . Now let Rs(λ) =
∏

i∈Is Rs,i(λ) be the decomposition of Rs(λ) into irreducible

factors in k[λ]; likewise, R′
s(λ) =

∏
i∈I′s R

′
s,i(λ). We will study the index sets Is and

I ′s, below. Let Ṙs,i(λ) (resp. Ṙ′
s,i(λ)) be any lift of Rs,i(λ) (resp. R′

s,i(λ)). Then

[CH04, §3.2] gives

K[λ]/(Qs(λ)) = ⊕
i∈Is

K[λ]

(Ṙs,i(λ))

⊕
⊕
i∈I′s

K[λ]

(Ṙ′
s,i(λ))

.

For each i ∈ Is, let gi = degRs,i and let K(gi) be the unramified extension of K of

degree gi in K̄; likewise define g′i = degR′
s,i and K(g′i). Then

K[λ]/(Qs(λ)) = ⊕
i∈Is

K(gi)(
n

√
πℓζ̇i)

⊕
⊕
i∈I′s

K(g′i)(
n

√
πℓζ̇ ′i),

where π is any uniformizer for K, independent of the choice of root ζi of Rs,i(λ) (resp.

ζ ′i of R
′
s,i(λ)) and of the lift ζ̇i ∈ K(gi) (resp. ζ̇ ′i ∈ K(g′i)).

In order to pin down K[λ]/(Qs(λ)) more precisely, we must get information about

the decompositions Rs(λ) =
∏

i∈Is Rs,i(λ) and R′
s(λ) =

∏
i∈I′s R

′
s,i(λ) into irreducible

polynomials and their dependence on s ∈ Sr(k). That is the topic of the next section.

2.7 Factorizations

As a sort of warm-up to the problem of finding all decompositions of the r-reduction

of Qs(λ) ∈ K[λ], thus determining the index set Is appearing above, in this section

we find all decompositions of Q(λ) ∈ Z[S][λ]. It is enough to find all decompositions
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of P (λ) ∈ Z[S][λ].

Each element w ∈ W determines a partition of R =
∐

i∈Iw Ri into 〈w〉-orbits.

The factorizations of P are listed in Table 2.3, taking {r} = 0. The composition

treg → Sw → S is a factorization of µ : treg → S and all factorizations of µ arise in

this manner. Each w ∈ W thus determines a factorization treg → Sw → S of treg → S

corresponding to factorizations of P . We note that Sw
∼=Sw′ over S if and only if if

w′ is W -conjugate to w.

Table 2.4: Factorizations of Pr(λ) and P ′
r(λ) over Z[Sr] for r 6∈ Z.

{r} w ∈ Wr Pr(λ) ∈ Z[Sr][λ] P ′

r(λ) ∈ Z[Sr][λ]

1
2

(w2w1)2 λ3 + 2s2λ2 + s22λ− s1 λ3 + 2s′2λ
2 + (s′2)

2λ− s′1

1
2

(w2w1)4 λ3 + 2s2λ2 + s22λ− s1 λ3 + 2s′2λ
2 + (s′2)

2λ− s′1

1
2

sα2
= w2 (λ2 − (α2

1 + α2
3)λ+ α2

1α
2
3)(λ− α2

5) (λ− α2
2)(λ

2 − (α2
4 + α2

6)λ+ α2
4α

2
6)

1
2

sα4
= w1w2w1 (λ2 − (α2

1 + α2
5)λ+ α2

1α
2
5)(λ− α2

3) (λ− α2
4)(λ

2 − (α2
2 + α2

6)λ+ α2
2α

2
6)

1
2

sα6
= w2w1w2w1w2 (λ2 − (α2

5 + α2
3)λ+ α2

3α
2
5)(λ− α2

1) (λ− α2
6)(λ

2 − (α2
2 + α2

4)λ+ α2
2α

2
4)

1
2

1 (λ− α2
1)(λ− α2

3)(λ− α2
5) (λ− α2

2)(λ− α2
4)(λ− α2

6)

1
3
, 2

3
(w2w1)3 λ2 − α2

1α
2
3α

2
5 λ2 − α2

2α
2
4α

2
6

1
3
, 2

3
1 (λ− α1α3α5)(λ+ α1α3α5) (λ− α2α4α6)(λ+ α2α4α6)

1
6
, 5

6
1 λ− α2

1α
2
3α

2
5 λ− α2

2α
2
4α

2
6

The method used above to determine all factorizations of the polynomial P (λ) over

Z[t] may be applied to the polynomials Pr(λ) over Z[tr], for each r ∈ 1
6
Z. Chapter 3
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lists the morphisms

µr : t
reg
r → Sr

and the factors

µr,w : Sr,w → Sr,

for every r ∈ 1
6
Z and every w ∈ Wr. The results are summarized in Table 2.4

where the case {r} = 0 is omitted because that case corresponds to Table 2.3. Again

arguing as above, we see that the factorizations in Tables 2.3 and 2.4 correspond to

factorizations tregr → Sr,w → Sr of t
reg
r → Sr, for w ∈ Wr.

treg tregr

Sw Sr,w

S Sr

µ W µr Wr

µw µr,w

Now fix r ∈ 1
6
Z and consider the family of scheme morphisms {µr,w : Sr,w →

Sr | w ∈ Wr}. The partition of Φr into 〈w〉-orbits determines a partial order (<)

on Wr, corresponding to ‘finer’ factorizations of Pr: w ≤ w′ ⇔ the factorization

corresponding to w divides into the factorization corresponding to w′. This is not the

same as the Bruhat order. Thus 1 is minimal and the Coxeter elements w1w2 and

w2w1 are maximal. For instance, if r ∈ Z then 1 < w2 < (w2w1)
2 < w2w1. Moreover,

w ≤ w′ implies the existence of a canonical map Sr,w′ → Sr,w over Sr. For each

w ∈ W , let Sw
r ⊆ Sr be the definable subset given by the rule

Sw
r :=µr,w(Sr,w) \ ∪w<w′µr,w′(Sr,w′).
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The definable subsets Sw
r ⊆ Sr are also recorded in Chapter 3.

The definable subsets Sw
r ⊆ Sr determine the index sets Is and I ′s appearing in

K[λ]/(Qs(λ)), as follows. Suppose s ∈ Sr(k). Then s ∈ Sw
r (k) for a unique w ∈ Wr.

This w determines the factorization of Rs(λ) and R′
s(λ) into irreducible polynomials

over k and thus the index sets Is and I ′s appearing in K[λ]/(Qs(λ)) .

2.8 Galois representations

Having found all irreducible factors of Rs(λ), for every s ∈ Sr(k), we may now find

the splitting extensions Ks; Table 2.5 records the results.

Following the strategy of Section 2.5, Table 2.6 records a tame Galois represen-

tation ρs : Gal(K̄/K) → W for each s ∈ Sw
r (k) and thus defines a tamely ramified

algebraic torus Ts for each s ∈ Sw
r (k). Here we say a few words about the calculation

of H1
tr(K,W ) above, using the inflation-restriction sequence

1→ H1(k,W )→ H1
tr(K,W )→ H1

tr(K
nr,W )Fr.

First, we observe that

H1(k,W )∼=W/W -conj,

since Gal(k̄/k)∼= Ẑ, and H1(k,W ) → H1
tr(K,W ) is injective [Ser02]. Thus, the part

of H1
tr(K,W ) corresponding to the case {r} = 0 is exactly the image of H1(k,W )

in H1
tr(K,W ), which is H1(Gal(Knr/K),W ); clearly, this is the unramified part of

H1
tr(K,W ). We fix a lift σ of Frobenius. Next, we observe that

H1
tr(K

nr,W )Fr∼=W [q − 1]/W -conj
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Table 2.5: The splitting extension of lifts of Rs(λ) for s ∈ Sw
r (k) and s = µr,w(x)

{r} w ∈ Wr lift of Ks

Rs(λ)

0 w2w1 λ6 + 2π2rẋ2λ4 + π4rẋ2
2λ

2 − π6rẋ1 K(6) = K(ζ̇)
λ6 + 2x2λ4 + x2

2λ
2 − x1 ζ6 + 2x2ζ4 + x2

2ζ
2 − x1 = 0

0 (w2w1)2 (λ3 + π2rẋ2λ+ π3rẋ1)(λ3 + π2rẋ2λ− π3rẋ1) K(3) = K(ζ̇)
(λ3 + x2λ+ x1)(λ3 + x2λ− x1) ζ3 + x2ζ + x1 = 0

0 (w2w1)3 (λ2 − π2rẋ1)(λ2 − π2rẋ2)(λ2 − π2rẋ3) K(2) = K(ζ̇)
(λ2 − x1)(λ2 − x2)(λ2 − x3) ζ2 − x1 = 0

0 w1 (λ2 − π2rẋ1)(λ2 + πrẋ3λ+ π2rẋ2)(λ2 − πrẋ3λ+ π2rẋ2) K(2) = K(ζ̇)
(λ2 − x1)(λ2 + x3λ+ x2)(λ2 − x3λ+ x2) ζ2 − x1 = 0

0 w2 (λ2 + πrẋ2λ+ π2rẋ1)(λ2 − πrẋ2λ+ π2rẋ1)(λ2 − π2rẋ2
2) K(2) = K(ζ̇)

(λ2 + x2λ+ x1)(λ2 − x2λ+ x1)(λ2 − x2
2) ζ2 + x2ζ + x1 = 0

0 1 (λ2 − π2rẋ2
1)(λ

2 − π2rẋ2
2)(λ

2 − π2rẋ2
3) K

(λ2 − x2
1)(λ

2 − x2
2)(λ

2 − x2
3)

1
2

(w2w1)2 λ6 + 2π2rẋ2λ4 + π4rẋ2
2λ

2 − π6rẋ1 K(3)(

√
πζ̇)

λ3 + 2x2λ2 + x2
2λ− x1 ζ3 + 2x2ζ2 + x2

2ζ − x1 = 0

1
2

w2 (λ2 − π2rẋ3)(λ4 − π2rẋ2λ2 + π4rẋ1) K(2)(

√
πζ̇,

√
πẋ3)

(λ− x3)(λ2 − x2λ+ x1) ζ2 − x2ζ + x1 = 0

1
2

1 (λ2 − π2rẋ1)(λ2 − π2rẋ2)(λ2 − π2rẋ3) K(
√
πẋ1,

√
πẋ2,

√
πẋ3)

(λ− x1)(λ− x2)(λ− x3)

1
3
, 2

3
(w2w1)3 λ6 − π6rẋ1 K(2)(

3

√
πζ̇), K(2)(

3

√
π2ζ̇)

λ2 − x1 ζ2 − x1 = 0

1
3
, 2

3
1 λ6 − π6rẋ2

1 K( 3
√
πẋ1,

3
√
−πẋ1),

λ2 − x2
1 K( 3

√
π2ẋ1,

3
√

−π2ẋ1)

1
6
, 5

6
1 λ6 − π6rẋ1 K(ζ3,

6
√
πẋ1),

λ− x1 K(ζ3,
6
√

π5ẋ1)
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as pointed sets, since Gal(Ktr/Knr)∼= (Ẑ/Zp)(1) as a Gal(k̄/k)-module. We fix a

topological generator τ for Gal(Ktr/Knr). Then, for every ρ ∈ Z1
tr(K,W ),

ρ(στσ−1) = ρ(τ)q.

This makes it easy to build ρ from ρ(σ) and ρ(τ). Case-by-case calculations are given

in Chapter 4; Table 2.6 records the results.

2.9 Proof of Proposition 2.1

To see that µr/K : g(r,K) → Sr(k) is surjective and that its fibres are thickened

stable orbits, we argue as in [CH04, Thm 4.4]. Suppose s ∈ Sr(k). Then s ∈ Sw
r (k)

for a unique w ∈ W . Then ts :=LieTs admits an embedding into g as a Cartan

subalgebra. Let P (λ) ∈ K[λ] be any lift of Ps(λ) ∈ k[λ]. Then P determines a

stable conjugacy class Os(K) ⊂ g(K) that intersects ts(K). Any X ∈ ts(K)∩Os(K)

maps to s under µr/K . This shows that µr/K : g(r,K) → Sr(k) is surjective. It is

clear that Z ∈ Ost
r (X) implies µr/K(Z) = µr/K(X). To see that µ−1

r/K(µr/K(X)) is a

thickened stable orbit we suppose µr/K(X) = µr/K(Y ). Then, up to stable conjugacy,

X, Y ∈ ts(K) and PX(λ) and PY (λ) have the same r-reduction, so X − Y ∈ ts(K)r+ ,

by [CH04, Cor 3.11], so Y ∈ Ost(X).

To see that the collection of functions µr/K : g(r,K) → Sr(k), for K and k as

above, define a map of definable subassignments µr : g(r) → Sr, it is sufficient to

observe that Ost
r (s) :=µ−1

r (s) is definable and depends on s ∈ Sr in a definable way.

Both statements are clear.
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Table 2.6: Representatives ρs ∈ Z1
tr(K,W ) for H1

tr(K,W ), for all s ∈ Sw
r (k),

s = µr,w(x).

{r} w Ks/K ρs(τ) ∈ W ρs(σ) ∈ W Gal(Ks/K)
r ∈ 1

6
Z w ∈ Wr s ∈ Sw

r (k) τ ∈ Gal(Ktr/Knr) σ 7→ Fr iso type

0 w2w1 K(6) 1 w2w1 C6

0 (w2w1)2 K(3) 1 (w2w1)2 C3

0 (w2w1)3 K(2) 1 (w2w1)3 C2

0 w1 K(2) 1 w1 C2

0 w2 K(2) 1 w2 C2

0 1 K 1 1 1

1
2

(w2w1)2 K(3)(

√
πζ̇) (w2w1)3 (w2w1)2 C6

ζ3 + 2x2ζ2 + x2
2ζ − x1 = 0

1
2

w2 K(2)(

√
πζ̇,

√
πẋ1) (w2w1)3 w2 V4

ζ2 − x2ζ + x3 = 0

1
2

1 K(
√
πẋ1,

√
πẋ2,

√
πẋ3) (w2w1)3 1 C2

1
3
, 2

3
(w2w1)3 K(2)(

3

√
πζ̇), K(2)(

3

√
π2ζ̇) (w2w1)2 1, q ≡ 1(3) C3, q ≡ 1(3)

ζ2 − x1 = 0 w2, q ≡ 2(3) S3, q ≡ 2(3)

1
3
, 2

3
1 K(ζ3,

3
√
πẋ1), K(ζ3,

3
√

π2ẋ1) (w2w1)2 1, q ≡ 1(3) C3, q ≡ 1(3)
w2, q ≡ 2(3) S3, q ≡ 2(3)

1
6
, 5

6
1 K(ζ3,

6
√
πẋ1), K(ζ3,

6
√

π5ẋ1) w2w1 1, q ≡ 1(3) C6, q ≡ 1(3)
w2, q ≡ 2(3) D6, q ≡ 2(3)
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Chapter 3

Factorizations of coverings and

definable subsets

In this chapter we calculate the coverings Sr,w → Sr of schemes over Z[6−1] that

appeared in Section 2.7, then use these morphisms to give explicit descriptions of the

definable subsets Sw
r →֒ Sr, for every r ∈ 1

6
Z and every w ∈ Wr.

tregr

Sr,w

Sr

µr Wr

µr,w

3.1 Fractional depth 0

If the fractional depth of r is 0 (so r is an integer) then

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 and P ′
r(λ) = λ6 + 2s′2λ

4 + (s′2)
2λ2 − s′1.

Thus, Φr = R and Wr = W . Thus, Z[6−1][tr] = Z[Φr] |Wr| = Z[R]6.

Observe that Z[R]6∼=Z[α1, α3, α5]6∼=Z[y1, y2, y3]6/(y1 + y2 + y3) under y1 = −α1,
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y2 = −α3 and y3 = α5. Consequently,

tregr = Spec(Z[y1, y2, y3]Dr/(y1 + y2 + y3)) and Sr = Spec(Z[s1, s2]dr)

where Dr = 6y21y
2
2y

2
3(y1 − y2)

2(y2 − y3)
2(y3 − y1)

2 and dr = −12s1(27s1 + 4s32). Using

this notation, the morphism µr : t
reg
r → Sr is given by

µr : t
reg
r → Sr

(y1, y2, y3) 7→ (y21y
2
2y

2
3, y1y2 + y2y3 + y3y1).

Of course, it is also true that Z[R]6∼=Z[α2, α4, α6]6∼=Z[y′1, y
′
2, y

′
3]6/(y

′
1 + y′2 + y′3)

under y′1 = α2, y
′
2 = α4 and y′3 = −α6. Moreover, s1 7→ s′1 and s2 7→ s′2 defines an

isomorphism S ′ := Spec(Z[s′1, s
′
2]d′r) → Spec(Z[s1, s2]dr) = S, with d′r defined in the

obvious way; indeed, the inverse to s1 7→ s′1 and s2 7→ s′2 is given by s′′1 = 36s1 and

s′′2 = 33s2. Set

t′r
reg

:= Spec(Z[y′1, y
′
2, y

′
3]D′

r
/(y′1 + y′2 + y′3)) and S ′

r := Spec(Z[s′1, s
′
2]d′r)

Then the inclusion Z[Rshort] →֒ Z[R] induces isomorphisms treg → t′reg and S → S ′

compatible with the map µ : treg → S. We choose to work with the short roots

exclusively, for the remainder of this section, dealing with the case {r} = 0.
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3.1.1 Case: w = 1

Since all orbits in R under the action of 〈w〉 = 1 are singletons, the element w = 1

determines the factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − α2
1)(λ

2 − α2
3)(λ

2 − α2
5).

Thus, Sr,w = tregr = treg and Sr,w → Sr is µr,w = µr = µ : treg → S which, with

reference to the notation above, is given by

Z[s1, s2]dr → Z[y1, y2, y3]Dr/(y1 + y2 + y3)

with s1 7→ y21y
2
2y

2
3 and s2 7→ y1y2 + y2y3 + y3y1.

Aside: In this case, the cover tregr → Sr,w is the identity on tregr .

The definable subset Sw
r ⊂ Sr attached to the morphism of affine schemes µr :

tregr → Sr is µr(t
reg
r ) ⊂ Sr, which is to say,

S1
r = {(s1, s2) ∈ S | ∃(y1, y2, y3), y1+y2+y3 = 0, (s1, s2) = (y21y

2
2y

2
3, y1y2+y2y3+y3y1)}.

3.1.2 Case: w = w1

The action of w1 on R determines the factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − α2
1)(λ

2 − α6λ+ α3α5)(λ
2 + α6λ+ α3α5).
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Set x1 = α2
1 and x2 = α3α5 and x3 = α3 + α5 = α6; then x2

3 − 4x2 = x1. Then

µr,w : Sr,w → Sr is given by

Z[s1, s2]dr → Z[x1, x2, x3]Dr,w/(x
2
3 − 4x2 − x1)

with s1 7→ x1x
2
2 and 2s2 7→ 2x2 − x2

3 − x1 where Dr,w = µ#
r,w(dr).

Aside: The cover tregr → Sr,w is given by x1 7→ y21 and x2 7→ −y2y3 and x3 7→ y3 − y2.

Since 1 < w1, is the only chain to w1 inWr, the definable subset S
w1
r ⊂ Sr attached

to the morphism of affine schemes µr,w1 : Sr,w1 → Sr in this case is

Sw1
r = µr,w1(Sr,w1) \ µr,1(Sr,1).

Case: w = w2w1w2

Since w2w1w2 is conjugate to w1, this case is nothing more than a re-labelling of the

case w = w1, above. The action of w2w1w2 on R determines the factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − α4λ+ α1α5)(λ
2 − α2

3)(λ
2 + α4λ+ α1α5).

Consequently, if we set x1 = α2
3 and x2 = α1α5 and x3 = α1 + α5 = α4 then

x2
3 − 4x2 = x1, as above. Thus, µr,w : Sr,w → Sr is given, again in this case, by

Z[s1, s2]dr → Z[x1, x2, x3]Dr,w/(x
2
3 − 4x2 − x1)

with s1 7→ x1x
2
2 and 2s2 7→ 2x2 − x2

3 − x1 and Dr,w = µ#
r,w(dr), as in the case w1,

above.



34

Aside: However, in this case, the cover tregr → Sr,w is given by x1 7→ y23 and x2 7→ y1y3

and x3 7→ y3 − y1.

As above, since 1 < w2w1w2, is the only chain to w2w1w2 in Wr, the definable sub-

set Sw2w1w2
r w ⊂ Sr attached to the morphism of affine schemes µr,w2w1w2 : Sr,w2w1w2 →

Sr in this case is

Sw2w1w2
r = µr,w2w1w2(Sr,w2w1w2) \ µr,1(Sr,1).

Case: w = w1w2w1w2w1

Since w1w2w1w2w1 is conjugate to w1, this case is, again, nothing more than a re-

labelling of the case w = w1, above. The action of w1w2w1w2w1 on R determines the

factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − α5λ+ α1α3)(λ
2 + α5λ+ α1α3)(λ

2 − α2
5).

Consequently, if we set x1 = α2
5 and x2 = α1α3 and x3 = α1 + α3 = α5 then

x2
3 − 4x2 = x1, as above. Thus, µr,w : Sr,w → Sr is given in this case by

Z[s1, s2]dr → Z[x1, x2, x3]Dr,w/(x
2
3 − 4x2 − x1)

with s1 7→ x1x
2
2 and 2s2 7→ 2x2 − x2

3 − x1 and Dr,w = µ#
r,w(dr), as in the case w1,

above.

Aside: However, in this case, the cover tregr → Sr,w is given by x1 7→ y25 and x2 7→ y1y3

and x3 7→ y3 − y1.

As above, since 1 < w1w2w1w2w1, is the only chain to w1w2w1w2w1 in Wr,

the definable subset Sw1w2w1w2w1
r ⊂ Sr attached to the morphism of affine schemes
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µr,w1w2w1w2w1 : Sr,w1w2w1w2w1 → Sr in this case is

Sw1w2w1w2w1
r = µr,w1w2w1w2w1(Sr,w1w2w1w2w1) \ µr,1(Sr,1).

3.1.3 Case: w = w2

The action of w2 on R determines the factorization

Pr(λ) = λ6+2s2λ
4+ s22λ

2− s1 = (λ2−α5λ+α1α3)(λ
2+α5λ+α1α3)(λ−α5)(λ+α5).

Set x1 = α1α3 and x2 = −α5. Then µr,w : Sr,w → Sr is given by

Z[s1, s2]dr → Z[x1, x2]Dr,w

with s1 7→ x2
1x

2
2 and 2s2 7→ 2x1 − x2

2 and Dr,w = µ#
r,w(dr).

Aside: The cover tregr → Sr,w is given by x1 7→ y1y2 and x2 7→ −y3.

Since 1 < w2, is the only chain to w2 inWr, the definable subset S
w2
r ⊂ Sr attached

to the morphism of affine schemes µr,w2 : Sr,w2 → Sr in this case is

Sw2
r = µr,w2(Sr,w2) \ µr,1(Sr,1).

Case: w = w1w2w1

Since w1w2w1 is conjugate to w2, this case is a mere re-labelling of the case w = w2,

above. The action of w1w2w1 on R determines the factorization

Pr(λ) =
(
λ2 − α3λ− α1α5

)
(λ− α3) (λ+ α3)

(
λ2 + α3λ− α1α5

)
.



36

Set x1 = −α1α5 and x2 = −α3. Then µr,w : Sr,w → Sr is as above:

Z[s1, s2]dr → Z[x1, x2]Dr,w

with s1 7→ x2
1x

2
2 and 2s2 7→ 2x1 − x2

2 and Dr,w = µ#
r,w(dr).

Aside: Unlike the case above, here the cover tregr → Sr,w is given by x1 7→ y1y3 and

x2 7→ y2.

The only chain to w1w2w1 in Wr is 1 < w1w2w1, so the definable subset Sw1w2w1
r ⊂

Sr attached to the morphism of affine schemes µr,w1w2w1 : Sr,w1w2w1 → Sr is

Sw1w2w1
r = µr,w1w2w1(Sr,w1w2w1) \ µr,1(Sr,1).

Case: w = w2w1w2w1w2

Since w2w1w2w1w2 is conjugate to w2, this case is again a mere re-labelling of the

case w = w2, above. The action of w2w1w2w1w2 on R determines the factorization

Pr(λ) = (λ− α1) (λ+ α1)
(
λ2 − α1λ− α3α5

) (
λ2 + α1λ− α3α5

)
.

Set x1 = −α3α5 and x2 = −α1. Then µr,w : Sr,w → Sr is as above:

Z[s1, s2]dr → Z[x1, x2]Dr,w

with s1 7→ x2
1x

2
2 and 2s2 7→ 2x1 − x2

2 and Dr,w = µ#
r,w(dr).

Aside: Unlike the case above, here the cover tregr → Sr,w is given by x1 7→ y2y3 and

x2 7→ y1.
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The only chain to w2w1w2w1w2 in Wr is 1 < w2w1w2w1w2, so the definable sub-

set Sw2w1w2w1w2
r ⊂ Sr attached to the morphism of affine schemes µr,w2w1w2w1w2 :

Sr,w2w1w2w1w2 → Sr is

Sw2w1w2w1w2
r = µr,w2w1w2w1w2(Sr,w2w1w2w1w2) \ µr,1(Sr,1).

3.1.4 Case: w = (w2w1)
3

The action of (w2w1)
3 on R determines the factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − α2
1)(λ

2 − α2
3)(λ

2 − α2
5).

Set x1 = α2
1 and x2 = α2

3 and x3 = α2
5. Let Ir,w be the ideal in Z[x1, x2, x3] generated

by the relation x2
1 + x2

2 + x2
3 = 2(x1x2 + x2x3 + x3x1). Then µr,w : Sr,w → Sr is given

by

Z[s1, s2]dr → Z[x1, x2, x3]Dr,w/Ir,w

with s1 7→ x1x2x3 and −2s2 7→ x1 + x2 + x3 and Dr,w = µ#
r,w(dr).

Aside: The cover tregr → Sr,w is given by x1 7→ y21 and x2 7→ y22 and x3 7→ y23.

The only chain to (w2w1)
3 in Wr is 1 < (w2w1)

3. So, the definable subset

S
(w2w1)3

r ⊂ Sr attached to the morphism of affine schemes µr,(w2w1)3 : Sr,(w2w1)3 → Sr

is

S(w2w1)3

r = µr,(w2w1)3(Sr,(w2w1)3) \ µr,1(Sr,1).
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3.1.5 Case: w = (w2w1)
2

The action of (w2w1)
2 on R determines the factorization

Pr(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ3 + s2λ+ α1α3α5)(λ
3 + s2λ− α1α3α5).

Set x1 = α1α3α5 and x2 = α1α3 − α3α5 − α5α1. Then µr,w : Sr,w → Sr is given by

Z[s1, s2]d → Z[x1, x2]D

with s1 7→ x2
1 and s2 7→ x2.

Aside: The cover tregr → Sr,w is given by x1 7→ y1y2y3 and x2 7→ y1y2 + y2y3 + y3y1.

The complete list of elements less than (w2w1)
2 in Wr is: 1, w2, w1w2w1 and

w2w1w2w1w2. So, the definable subset S
(w2w1)2

r ⊂ Sr attached to the morphism of

affine schemes µr,(w2w1)2 : Sr,(w2w1)2 → Sr is

S(w2w1)2

r = µr,(w2w1)2
(
Sr,(w2w1)2

)
\

⋃

w∈(w2)

µr,w(Sr,w),

where (w2) denotes the conjugacy class of w2 in Wr.

3.1.6 Case: w = w2w1

Since w2w1 acts transitively on R, this element of Wr determines no factorization of

P (λ). Thus, Sr,w = Sr in this case and µr,w : Sr,w → Sr is the identity on Sr.

Aside: In this case, the cover tregr → Sr,w is exactly µr.
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All elements of order less than 6 are less than w2w1 in Wr are, so

Sw2w1
r = Sr \


µr,(w2w1)2(Sr,(w2w1)2) ∪ µr,(w2w1)3(Sr,(w2w1)3)

⋃

w∈(w1)

µr,w(Sr,w)




3.2 Fractional depth 1
6 or 5

6

If the fractional depth of r is 1
6
or 5

6
then

Qr(λ) = Pr(λ)P
′
r(λ) = (λ− s1)(λ− s′1) = (λ− α2

1α
2
3α

2
5)(λ− α2

2α
2
4α

2
6),

so Φr = {α2
1α

2
3α

2
5, α

2
2α

2
4α

2
6} and Wr = 1. Recall the notation s1 = α2

1α
2
3α

2
5 and

s′1 = α2
2α

2
4α

2
6 from Section 2.1; set Dr = 6s1s

′
1. Then

tregr = Spec(Z[s1, s
′
1]Dr) = Sr

and µr : tregr → Sr is the identity map, as are µr,1 : Sr,1 → Sr and tregr → Sr,1 and

S1
r = Sr.

3.3 Fractional depth 1
3 or 2

3

If the fractional depth of r is 1
3
or 2

3
then

Qr(λ) = Pr(λ)P
′
r(λ) = (λ2 − α2

1α
2
3α

2
5)(λ

2 − α2
2α

2
4α

2
6).
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Thus, in this case, Φr = {α1α3α5, α2α4α6} so Wr = 〈(w2w1)
3〉∼=C2. Set y = α1α3α5

and y′ = α2α4α6 so y2 = s1 and y′2 = s′1. Set Dr = 6y2y′2 and dr = 6s1s
′
1. Then

tregr = Spec(Z[y, y′]Dr) and Sr = Spec(Z[s1, s
′
1]dr),

and µr : t
reg
r → Sr is given by µ#

r : s1 7→ y2 and µ#
r : s′1 7→ y′2.

3.3.1 Case: w = 1

The element 1 ∈ Wr determines the factorizations

Pr(λ) = (λ− α1α3α5)(λ+ α1α3α5) and P ′
r(λ) = (λ− α2α4α6)(λ+ α2α4α6).

Thus, Sr,w = tregr and Sr,w → Sr is µr,w = µr : t
reg
r → Sr. Recall that µ

#
r (s1) = y2 and

µ#
r (s

′
1) = y′2.

Aside: The cover tregr → Sr,w is the identity on tregr .

The definable subset S1
r ⊂ Sr attached to the morphism of affine schemes µr :

tregr → Sr is µr(t
reg
r ) ⊂ Sr, which is to say,

S1
r = {(s1, s′1) ∈ Sr | ∃y, y′, y2 = s1, y

′2 = s′1}.

3.3.2 Case: w = (w2w1)
3

The element (w2w1)
3 ∈ Wr determines the trivial factorization of Pr(λ) and P ′

r(λ).

Thus, Sr,w ⊂ Sr and µr,w : Sr,w → Sr is the identity on Sr.

Aside: In this case, the cover tregr → Sr,w is exactly µr.
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The definable subset attached to µr,1 is

S(w2w1)3

r = µr,(w2w1)3
(
Sr,(w2w1)3

)
\ µr,1(Sr,1),

which is to say,

S(w2w1)3

r = {(s1, s′1) ∈ Sr | ∀y, y′, y2 6= s1 or y′2 6= s′1}.

3.4 Fractional depth 1
2

If the fractional depth of r is 1
2
then

Qr(λ) = Pr(λ)P
′
r(λ) = (λ3 + 2s2λ

2 + s22λ− s1)(λ
3 + 2s′2λ

2 + (s′2)
2λ− s′1).

Thus, in this case, Φr = {α2
1, α

2
3, α

2
5, α

2
2, α

2
4, α

2
6} and Wr = 〈w2, (w2w1)

2〉∼=S3. Set

y1 = α2
1, y2 = α2

3, y3 = α2
5; also set y′1 = α2

2, y
′
2 = α2

4, y
′
3 = α2

6. Then

y21 + y22 + y23 = 2(y1y2 + y2y3 + y3y1);

let Ir be the ideal in Z[y1, y2, y3] generated by this relation. Set Dr = 6y1y2y3 and

dr = −12s1(27s1 + 4s32). Then

tregr = Spec(Z[y1, y2, y3]Dr/Ir) and Sr = Spec(Z[s1, s2]dr)

The morphism µr : tregr → Sr is given by s1 7→ y1y2y3 and −2s2 7→ y1 + y2 + y3. If

t′r and S ′
r are the schemes defined using y′1, y

′
2 and y′3 in place of y1, y2 and y3 then
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t′r
∼= tr and S ′

r
∼=Sr. Accordingly, we work only with Pr(λ), tr and Sr, below.

3.4.1 Case: w = 1

The element 1 ∈ Wr determines the factorization

Pr(λ) = λ3 + 2s2λ
2 + s22 − s1 = (λ− α2

1)(λ− α2
3)(λ− α2

5).

Thus, Sr,w = tregr and Sr,w → Sr is µr,w = µr : t
reg
r → Sr.

Aside: The cover tregr → Sr,w is the identity on tregr .

The definable subset S1
r ⊂ Sr attached to the morphism of affine schemes µr :

tregr → Sr is µr(t
reg
r ) ⊂ Sr, which is to say,

S1
r = {(s1, s2) ∈ Sr | ∃(y1, y2, y3), s1 = y1y2y3,−2s2 = y1 + y2 + y3}.

3.4.2 Case: w = w2

The element w2 ∈ Wr determines the factorization

Pr(λ) = λ3 + 2s2λ
2 + s22λ− s1 = (λ2 − (α2

1 + α2
3)λ+ α2

1α
2
3)(λ− α2

5)

Set x1 = α2
1α

2
3 and x2 = α2

1 + α2
3 and x3 = α2

5. Then (x2 + x3)
2 = 4(x1 + x2x3); let

Ir,w be the ideal in Z[x1, x2, x3] generated by this relation. Then µr,w : Sr,w → Sr is

given by

Z[s1, s2]dr → Z[x1, x2, x3]Dr/Ir,w

with s1 7→ x1x3 and −2s2 7→ x2 + x3 and Dr = 6x1x3.
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Aside: In this case, the cover tregr → Sr,w is x1 7→ y1y2, x2 7→ y1 + y2 and x3 7→ y3.

The definable subset attached to µr,w2 is

Sw2
r = µr,w2(Sr,w2) \ µr,1(Sr,1).

Case: w = w1w2w1

Since w is conjugate to w2 this case is like the case w2, above. The element w1w2w1 ∈

Wr determines the factorization

Pr(λ) = λ3 + 2s2λ
2 + s22 − s1 = (λ2 − (α2

1 + α2
5)λ+ α2

1α
2
5)(λ− α2

3)

Set x1 = α2
1α

2
5 and x2 = α2

1+α2
5 and x3 = α2

3. Then the relation determining the ideal

Ir,w in Z[x1, x2, x3] is the same as that in the case w2 , above; likewise, µr,w : Sr,w → Sr

is again given by

Z[s1, s2]dr → Z[x1, x2, x3]Dr/Ir,w

with s1 7→ x1x3 and −2s2 7→ x2 + x3 and Dr = 6x1x3.

Aside: In this case, the cover tregr → Sr,w is x1 7→ y1y3, x2 7→ y1 + y3 and x3 7→ y2.

The definable subset attached to µr,w1w2w1 is

Sw1w2w1
r = µr,w1w2w1(Sr,w1w2w1) \ µr,1(Sr,1).
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Case: w = w2w1w2w1w2

Since w is conjugate to w2 this case is also like the case w2, above. The element

w = w2w1w2w1w2 ∈ Wr determines the factorization

Pr(λ) = λ3 + 2s2λ
2 + s22 − s1 = (λ2 − (α2

3 + α2
5)λ+ α2

3α
2
5)(λ− α2

1)

Set x1 = α2
3α

2
5 and x2 = α2

3+α2
5 and x3 = α2

1. Then the relation determining the ideal

Ir,w in Z[x1, x2, x3] is the same as that in the case w2, above; likewise, µr,w : Sr,w → Sr

is again given by

Z[s1, s2]dr → Z[x1, x2, x3]Dr/Ir,w

with s1 7→ x1x3 and −2s2 7→ x2 + x3 and Dr = 6x1x3.

Aside: In this case, the cover tregr → Sr,w is x1 7→ y2y3, x2 7→ y2 + y3 and x3 7→ y1.

The definable subset attached to µr,w2w1w2w1w2 is

Sw2w1w2w1w2
r = µr,w2w1w2w1w2(Sr,w2w1w2w1w2) \ µr,1(Sr,1).

3.4.3 Case: w = (w2w1)
2

The element (w2w1)
2 ∈ Wr determines the trivial factorization of Pr(λ) = λ3+2s2λ

2+

s22λ− s1. Thus, Sr,w = Sr and µr,w : Sr,w → Sr is the identity on Sr.

Aside: In this case, the cover tregr → Sr,w is exactly µr.

The definable subset attached to µr,(w2w1)2 is

S(w2w1)2

r = µr,(w2w1)2
(
Sr,(w2w1)2

)
\

⋃

w∈(w2)

µr,w(Sr,w),
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where (w2) denotes the conjugacy class of w2 in Wr.
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Chapter 4

Galois cohomology: H1(K,W )

In this chapter we review the calculations summarized in Tables 2.5 and 2.6. Recall

that ‘fractional depth’ refers to the fractional part {r} of the depth r ∈ 1
6
Z. To define

ρs we will exploit the action of Gal(Ks/K) on the fibre in X̌⊗Ks through the second

component, which determines an action of W on X̌⊗Ks through the first component.

4.1 Fractional depth 0

If {r} = 0 and s = (s1, s2) ∈ Sr(K) then

Qs(λ) = Ps(λ)P
′
s(λ) = (λ6 + 2s2λ

4 + s22λ
2 − s1)(λ

6 + 2s′2λ
4 + (s′2)

2λ2 − s′1).

Recall the partition

Sr(k) =
∐

w∈Wr

Sw
r (k)

introduced in Section 2.7 with supporting calculations presented in Chapter 3. Then

each s ∈ Sr(k) lies in Sw
r (k) for a unique w ∈ Wr. We will find the splitting extension

Ks of every polynomial with r-reduction Qs(λ), for every s ∈ Sw
r (k). In the cases

below, we consider only Ps(λ) since it contains all the needed information.
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4.1.1 Case: w = 1 ∈ W0

Suppose s ∈ S1
r (k). Then s = µr,1(x) for some x = (x1, x2, x3) ∈ Sr,1(k); see Sec-

tion 3.1.1. Then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − x2
1)(λ

2 − x2
2)(λ

2 − x2
3)

so Ps(λ) splits in k[λ], and any lift

P (λ) = λ6 + 2π2rṡ2λ
4 + π4rṡ22λ

2 − π6rṡ1 = (λ2 − π2rẋ2
1)(λ

2 − π2rẋ2
2)(λ

2 − π2rẋ2
3).

splits in K[λ].

In this case, ρs : Gal(K̄/K)→ W is trivial.

4.1.2 Case: w ∈ (w1) ⊂ W0

Suppose w lies in the conjugacy class of w1 in W0 and s ∈ Sw
r (k); without loss of

generality, suppose w = w1. Then s = µr,w1(x) for some x = (x1, x2, x3) ∈ Sr,w1(k).

Then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − x1)(λ
2 − x3λ+ x2)(λ

2 + x3λ+ x2)

is the decomposition of Ps(λ) into irreducible monic factors in k[λ]. Let ζ be a root

of the irreducible factor λ2−x1 of Ps(λ). Then [k(ζ) : k] = 2. Let K(2) be the unique

unramified extension of K of degree 2. Then the factors of any lift

P (λ) = (λ2 − π2rẋ1)(λ
2 + πrẋ3λ+ π2rẋ2)(λ

2 − πrẋ3λ+ π2rẋ2)
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are also irreducible and the splitting extension of this polynomial is K(2) = K(ζ̇)

where ζ̇ is any lift of ζ ∈ k(ζ) to K(2).

With reference to Section 5.1.2, pick y = (y1, y2, y3) ∈ X̌⊗K(2) = t(K(2)), regular,

such that its image under µr/K(2) : treg(K(2)) → Sr(K
(2)) is a lift of s = µr,w(x) ∈

Sr(k). Then, without loss of generality, y1 = ζ̇ with ζ =
√
x1. Let σ ∈ Gal(K(2)/K)

be the element defined by σ(ζ̇) = −ζ̇. Then, comparing the form of Ps(λ) with Pr(λ)

from Section 5.1.2, we have

σ(y1, y2, y3) = (−y1,−y3,−y2) = w1(y1, y2, y3).

In this way we determine a homomorphism Gal(K̄/K)→ W with ρs(σ) = w1. Since

Gal(K(2)/K) = 〈σ〉, this determines ρs : Gal(K̄/K) → W with kernel Gal(K̄/K(2))

and image 〈w1〉 ⊂ W .

4.1.3 Case: w ∈ (w2) ⊂ W0

Suppose w lies in the conjugacy class of w2 in Wr and s ∈ Sw
r (k); without loss of

generality, suppose w = w2. Then s = µr,w2(x) for some x = (x1, x2) ∈ Sr,w2(k).

Then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 + x2λ+ x1)(λ
2 − x2λ+ x1)(λ+ x2)(λ− x2)

is the decomposition of Ps(λ) into irreducible monic factors in k[λ]. Let ζ be a root of

the irreducible quadratic factor λ2 + x2λ+ x1 of Ps(λ); write ζ =
−x2+
√

x2
2−4x1

2
. Then

[k(ζ) : k] = 2. Let K(2) be the unique unramified extension of K of degree 2. Then
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the factors of any lift

P (λ) = (λ2 + πrẋ2λ+ π2rẋ1)(λ
2 − πrẋ2λ+ π2rẋ1)(λ

2 − π2rẋ2
1)

are also irreducible and the splitting extension of this polynomial is K(2) = K(ζ̇)

where ζ̇ is any lift of ζ ∈ k(ζ) to K(2).

With reference to Section 3.1.3, pick y = (y1, y2, y3) ∈ X̌⊗K(2) = t(K(2)), regular,

such that its image under µr/K(2) : treg(K(2)) → Sr(K
(2)) is a lift of s = µr,w(x) ∈

Sr(k). Let σ ∈ Gal(K(2)/K) be non-trivial. Then σ(
√
x2
2 − 4x1) = −

√
x2
2 − 4x1.

Then, comparing the form of Ps(λ) with Pr(λ) from Section 3.1.3, we have

σ(y1, y2, y3) = (y2, y1, y3) = w2(y1, y2, y3).

In this way we determine a homomorphism Gal(K̄/K)→ W with ρs(σ) = w2. Since

Gal(K(2)/K) = 〈σ〉, this determines ρs : Gal(K̄/K) → W with kernel Gal(K̄/K(2))

and image 〈w2〉 ⊂ W .

4.1.4 Case: w = (w2w1)
3 ∈ W0

Suppose s ∈ S
(w2w1)3

r (k), so s = µr,(w2w1)3(x) for some x = (x1, x2, x3) ∈ S
(w2w1)3

r (k).

Then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ2 − x1)(λ
2 − x2)(λ

2 − x3)

is the decomposition of Ps(λ) into irreducible monic factors in k[λ]. Let ζ be any

root of the irreducible quadratic factor λ2 − x1 of Ps(λ); write ζ =
√
x1. Then

[k(ζ) : k] = 2. Let K(2) be the unique unramified extension of K of degree 2. Then
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the factors of any lift

P (λ) = (λ2 − π2rẋ1)(λ
2 − π2rẋ2)(λ

2 − π2rẋ3)

are also irreducible and the splitting extension of this polynomial is K(2) = K(ζ̇)

where ζ̇ is any lift of ζ ∈ k(ζ) to K(2).

With reference to Section 3.1.4, pick y = (y1, y2, y3) ∈ X̌⊗K(2) = t(K(2)), regular,

such that its image under µr/K(2) : treg(K(2)) → Sr(K
(2)) is a lift of s = µr,w(x) ∈

Sr(k). Let σ ∈ Gal(K(2)/K) be non-trivial; then σ(ζ) = −ζ. Then, comparing the

form of Ps(λ) with Pr(λ) from Section 3.1.4, we have

σ(y1, y2, y3) = (−y1,−y2,−y3) = (w2w1)
3(y1, y2, y3).

In this way we determine a homomorphism Gal(K̄/K) → W with ρs(σ) = (w2w1)
3.

Since Gal(K(2)/K) = 〈σ〉, we have now determined ρs : Gal(K̄/K)→ W with kernel

Gal(K̄/K(2)) and image 〈(w2w1)
3〉 ⊂ W .

4.1.5 Case: w = (w2w1)
2 ∈ W0

Suppose s ∈ S
(w2w1)2

r (k). Then s = µr,(w2w1)2(x) for some x = (x1, x2) ∈ S
(w2w1)2

r (k).

Then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = (λ3 + x2λ+ x1)(λ
3 + x2λ− x1).

is the decomposition of Ps(λ) into irreducible monic factors in k[λ]. Let ζ be any root

of the irreducible cubic factor λ3 + x2λ + x1 of Ps(λ). Then [k(ζ) : k] = 3. Let K(3)
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be the unique unramified extension of K of degree 3. Then the factors of any lift

P (λ) = (λ3 + π2rẋ2λ+ π3rẋ1)(λ
3 + π2rẋ2λ− π3rẋ1)

are also irreducible and the splitting extension of this polynomial is K(3) = K(ζ̇)

where ζ̇ is any lift of ζ ∈ k(ζ) to K(3).

With reference to Section 3.1.5, pick y = (y1, y2, y3) ∈ X̌⊗K(3) = t(K(3)), regular,

such that its image under µr/K(3) : treg(K(3)) → Sr(K
(3)) is a lift of s = µr,w(x) ∈

Sr(k). Let σ ∈ Gal(K(3)/K) be non-trivial, hence a generator. Then, comparing the

form of Ps(λ) with Pr(λ) from Section 3.1.5, we have

σ(y1, y2, y3) = (y2, y3, y1) = (w2w1)
2(y1, y2, y3).

In this way we determine a homomorphism Gal(K̄/K) → W with ρs(σ) = (w2w1)
2.

Since Gal(K(3)/K) = 〈σ〉, we have now determined ρs : Gal(K̄/K)→ W with kernel

Gal(K̄/K(3)) and image 〈(w2w1)
2〉 ⊂ W .

4.1.6 Case: w = w2w1 ∈ W0

If s = (s1, s2) ∈ Sw2w1
r (k) then

Ps(λ) = λ6 + 2s2λ
4 + s22λ

2 − s1 = λ6 + 2x2λ
4 + x2

2λ
2 − x1
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is irreducible in k[λ]. Let ζ be any root of Ps(λ). Then [k(ζ) : k] = 6. Let K(6) be

the unique unramified extension of K of degree 6. Then any lift

P (λ) = λ6 + 2π2rẋ2λ
4 + π4rẋ2

2λ
2 − π6rẋ1 ∈ K[λ]

is also irreducible, where ẋ1, ẋ2 ∈ OK are any lifts of x1, x2 ∈ k. The splitting

extension of this polynomial in K[λ] is K(6) = K(ζ̇) where ζ̇ is any lift of ζ ∈ k(ζ) to

K(6).

The lift P (λ) ∈ K[λ] above determines a W -conjugacy class of homomorphisms

ρs : Gal(Ks/K)→ W as follows. Split P (λ) ∈ K[λ] in K(6):

P (λ) = (λ2 − λ2
1)(λ

2 − λ2
2)(λ

2 − λ2
3).

With reference to Section 3.1.6, pick y = (y1, y2, y3) ∈ X̌ ⊗ K(6) = t(K(6)), regular,

such that its image under µr/K(6) : treg(K(6)) → Sr(K
(6)) is a lift of s = µr,w(x) ∈

Sr(k). Let σ ∈ Gal(K(6)/K) be a generator. Then, comparing the form of Ps(λ) with

Pr(λ) from Section 3.1.6, we have

σ(y1, y2, y3) = (−y3,−y1,−y2) = w2w1(y1, y2, y3).

In this way we determine a homomorphism Gal(K̄/K) → W with ρs(σ) = w2w1.

Since Gal(K(6)/K) = 〈σ〉, we have now determined ρs : Gal(K̄/K)→ W with kernel

Gal(K̄/K(6)) and image 〈w2w1〉 ⊂ W .
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4.2 Fractional depth 1
6 or 5

6

If {r} = 1
6
or 5

6
and s = (s1, s

′
1) ∈ Sr(K) then

Qs(λ) = Ps(λ)P
′
s(λ) = (λ− x1)(λ− x′

1)

for x = (x1, x
′
1) ∈ Sr(k). Since Wr = 1, there is only one case to consider: Sr = S1

r

and Ps(λ) and P ′
s(λ) are evidently irreducible; see Section 2.7 and 3.2. Then, for any

lifts ẋ1, ẋ
′
1 ∈ OK , the sextic factors of

Q(λ) = (λ6 − π6rẋ1)(λ
6π6rẋ′

1)

are irreducible. The splitting extension Ks of this lift is K(ζ3,
6
√
πẋ1) = K(ζ3,

6
√

πẋ′
1)

if {r} = 1
6
and is K(ζ3,

6
√
π5ẋ1) = K(ζ3,

6
√
π5ẋ′

1) if {r} = 5
6
.

Next, we see how s determines a representation ρs : Gal(Ks/K)→ W , unique up

to W -conjugation. Split λ6 − π6rẋ1 in Ks:

λ6 − π6rẋ1 = (λ− θ)(λ− ζ3θ)(λ− ζ23θ)(λ+ θ)(λ+ ζ3θ)(λ+ ζ23θ).

where θ = πr 6
√
ẋ1 if {r} = 1

6
and θ = πr 6

√
π5ẋ1 if {r} = 5

6
. Set y1 = θ, y2 = ζ3θ

and y3 = ζ23θ. With reference to the notation of Table 2.6, define σ ∈ Gal(Ks/K) by

σ(ζ3) = ζ23 if q ≡ 2 mod 3 and σ(ζ3) = ζ3 if q ≡ 1 mod 3; then

σ(y1, y2, y3) =





(y1, y3, y2) = w2w1w2w1w2(y1, y2, y3), q ≡ 2 mod 3;

(y1, y2, y3) q ≡ 1 mod 3.
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Define τ ∈ Gal(Ks/K) by τ(θ) = ζ6θ where ζ6 := − ζ23 , a primitive sixth root-of-unity

in Ks; then,

τ(y1, y2, y3) = (−y3,−y1,−y2) = w2w1(y1, y2, y3).

Since

στσ−1 = τ q,

this completely defines a homomorphism Gal(Ks/K)→ W . We conjugate this homo-

morphism by w1w2 to define ρs : Gal(K̄/K)→ W appearing in Table 2.5; note that

the image Ws of ρs is 〈w2w1〉 if q ≡ 1mod 3 while the image of ρs is 〈w2, w2w1〉 = W

if q ≡ 2 mod 3.

4.3 Fractional depth 1
3 or 2

3

If {r} = 1
3
or 2

3
and s = (s1, s

′
1) ∈ Sr(K) then

Qs(λ) = Ps(λ)P
′
s(λ) = (λ2 − s1)(λ

2 − s′1).

In this case, Wr = 〈(w2w1)
3〉.

4.3.1 Case: w = 1

Suppose s ∈ S1
r (k). Then, using Section 3.3.1, s = µr,1(x) is given by µr,1(x1, x

′
1) =

(x2
1, x

′
1
2). Thus,

Ps(λ) = (λ− x1)(λ+ x1) and P ′
s(λ) = (λ− x′

1)(λ+ x′
1).
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so Ps(λ) splits in k[λ]. Consider a lift to K[λ]:

P (λ) = (λ3 − π3rẋ1)(λ
3 + π3rẋ1) and P ′(λ) = (λ3 − π3rẋ′

1)(λ
3 + π3rẋ′

1).

The splitting extension Ks of P (λ)P ′(λ) is K(ζ3,
3
√
πẋ1) if {r} = 1

3
and K(ζ3,

3
√
π2ẋ1)

if {r} = 2
3
.

We now define the representation ρs : Gal(Ks/K) → W appearing in Table 2.5.

Split P (λ) in Ks:

(λ3 − π3rẋ1)(λ
3 + π3rẋ1) = (λ− θ)(λ− ζ3θ)(λ− ζ23θ)(λ+ θ)(λ+ ζ3θ)(λ+ ζ23θ),

where θ = πr 3
√
πẋ1 if {r} = 1

3
and θ = πr 3

√
π2ẋ1 if {r} = 2

3
and where ζ3 is a primitive

third root-of-unity in Ks. As above, set y1 = θ, y2 = ζ3θ and y3 = ζ23θ, and define

σ ∈ Gal(Ks/K) by σ(ζ3) = ζ23 if q ≡ 2 mod 3 and σ(ζ3) = ζ3 if q ≡ 1 mod 3; then

σ(y1, y2, y3) =





(y1, y3, y2) = w2w1w2w1w2(y1, y2, y3), q ≡ 2 mod 3;

(y1, y2, y3) q ≡ 1 mod 3.

Define τ ∈ Gal(Ks/K) by τ(θ) = ζ3θ; then,

τ(y1, y2, y3) = (y2, y3, y1) = (w2w1)
2(y1, y2, y3).

Since

στσ−1 = τ q,

this completely defines a homomorphism Gal(Ks/K)→ W . We conjugate this homo-
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morphism by w1w2 to define ρs : Gal(K̄/K)→ W appearing in Table 2.5; note that

the image Ws of ρs is 〈(w2w1)
2〉 if q ≡ 1 mod 3 while the image of ρs is 〈w2, (w2w1)

2〉

if q ≡ 2 mod 3.

4.3.2 Case: w = (w2w1)
3

Suppose s ∈ S
(w2w1)3

r (k). Recall from Section 3.3.2 that µr,(w2w1)3 : Sr,w → Sr is the

identity. Here,

Qs(λ) = Ps(λ)P
′
s(λ) = (λ2 − s1)(λ

2 − s′1),

and Ps(λ) and P ′
s(λ) are irreducible in k[λ]. Let ζ be a root of Ps(λ) = λ2− s1; thus,

ζ =
√
s1; let ζ

′ be a root of P ′
s(λ) = λ2 − s′1; thus, ζ

′ =
√

s′1. Consider a lift of Ps(λ)

to K[λ]:

P (λ) = λ6 − π6rṡ1 = (λ3 − π3rζ̇)(λ3 + π3rζ̇).

Then the splitting extension Ks of P (λ) is K(2)(
3

√
πζ̇) if {r} = 1

3
and K(2)(

3

√
π2ζ̇) if

{r} = 2
3
. Let ζ be a root of the irreducible factor λ2−x1 of Ps(λ). Again [k(ζ) : k] = 2,

and K(2) = K(ζ̇) where ζ̇ is any lift of ζ ∈ k(ζ) to K(2).

We now define the representation ρs : Gal(Ks/K) → W appearing in Table 2.5.

Split P (λ) in Ks:

(λ3 − π3rζ̇)(λ3 + π3rζ̇) = (λ− θ)(λ− ζ3θ)(λ− ζ23θ)(λ+ θ)(λ+ ζ3θ)(λ+ ζ23θ),

where θ = πr 3

√
πζ̇ if {r} = 1

3
and θ = πr 3

√
π2ζ̇ if {r} = 2

3
and where ζ3 is a primitive

third root-of-unity in Ks. As above, define σ ∈ Gal(Ks/K) by σ(ζ3) = ζ23 if q ≡ 2
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mod 3 and σ(ζ3) = ζ3 if q ≡ 1 mod 3; then

σ(y1, y2, y3) =





(y1, y3, y2) = w2w1w2w1w2(y1, y2, y3), q ≡ 2 mod 3;

(y1, y2, y3) q ≡ 1 mod 3.

Define τ ∈ Gal(Ks/K) by τ(θ) = ζ3θ; then,

τ(y1, y2, y3) = (y2, y3, y1) = (w2w1)
2(y1, y2, y3).

Since

στσ−1 = τ q,

this completely defines a homomorphism Gal(Ks/K)→ W . We conjugate this homo-

morphism by w1w2 to define ρs : Gal(K̄/K)→ W appearing in Table 2.5; note that

the image Ws of ρs is 〈(w2w1)
2〉 if q ≡ 1 mod 3 while the image of ρs is 〈w2, (w2w1)

2〉

if q ≡ 2 mod 3.

4.4 Fractional depth 1
2

If {r} = 1
2
and s = (s1, s2) ∈ Sr(K) then

Ps(λ) = λ3 + 2s2λ
2 + s22λ− s1

and Wr = 〈w2, (w2w1)
2〉. Any lift of Ps(λ) to K[λ] takes the form

P (λ) = λ6 + 2π2rṡ2λ
4 + π4rṡ22λ

2 − π6rṡ1.
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4.4.1 Case: w = 1 ∈ W1/2

Suppose s = (s1, s2) ∈ S1
r (k). Then, with reference to Section 3.4.1, s = µr,1(x) for

x = (x1, x2, x3) ∈ Sr,1(k) and

Ps(λ) = λ3 + 2s2λ
2 + s22λ− s1 = (λ− x1)(λ− x2)(λ− x3),

so Ps(λ) splits in k[λ]. Consider a lift:

P (λ) = (λ2 − π2rẋ1)(λ
2 − π2rẋ2)(λ

2 − π2rẋ3)

Then the splitting extension of P (λ) is Ks = K(
√
πẋ1,
√
πẋ2,
√
πẋ3). Set y1 =

√
πẋ1

and y2 =
√
πẋ2 and y3 =

√
πẋ3. From the structure of S1

r (k) we find that if σ ∈

Gal(Ks/K) is non-trivial, then σ(y1) = −y1 and σ(y2) = −y2 and σ(y3) = −y3, so

Gal(Ks/K) = 〈σ〉 and, moreover,

σ(y1, y2, y3) = (−y1,−y2,−y3) = (w2w1)
3(y1, y2, y3).

This defines Gal(Ks/K)→ W by σ 7→ (w2w1)
3 and thus defines ρs : Gal(K̄/K)→ W

for s ∈ S1
1/2(k) in Table 2.6.

4.4.2 Case: w ∈ (w2) ⊂ W1/2

Suppose s = (s1, s2) ∈ Sw
r (k). Then, with reference to Section 3.4.2, s = µr,w(x) for

x = (x1, x2, x3) ∈ Sr,w(k) where (x2 + x3)
2 = 6(x1 + x2x3). Then

Ps(λ) = (λ2 − x2λ+ x1)(λ− x3).
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Let ζ be a root of the irreducible polynomial λ2 − x2λ + x1, so ζ =
x2+
√

x2
2−4x1

2
; set

ζ ′ =
x2−
√

x2
2−4x1

2
. Then k(ζ)/k is a splitting extension for Ps(λ).

Consider a lift of Ps(λ) to K[λ]:

P (λ) = (λ4 − π2rẋ2λ
2 + π4rẋ3)(λ

2 − π2rẋ1).

The splitting extension for P (λ) over K is Ks = K(2)(

√
πζ̇,
√
πẋ1). Set y1 = πr

√
πζ̇,

y2 = πr

√
πζ̇ ′, y3 = πr

√
πẋ3. Then

σ(y1, y2, y3) = (y2, y1, y3) = w2(y1, y2, y3)

and

τ(y1, y2, y3) = (−y1,−y2,−y3) = (w2w1)
3(y1, y2, y3)

generate Gal(Ks/K). Since στσ−1 = τ q, this defines Gal(Ks/K)→ W with σ 7→ w2

and τ 7→ (w2w1)
3 with image Ws

∼= V4. This defines ρs : Gal(K̄/K)→ W in this case,

as appearing in Table 2.6.

4.4.3 Case: w = (w2w1)
2 ∈ W1/2

Suppose s = (s1, s2) ∈ S
(w2w1)2

r (k). Then, with reference to Section 3.4.3,

Ps(λ) = λ3 + 2s2λ
2 + s22λ− s1

is irreducible. Let ζ1, ζ2, ζ3 be roots of this polynomial; let ζ̇1, ζ̇2, ζ̇3 be lifts to K(3).

Then y1 = πr

√
πζ̇1, y2 = πr

√
πζ̇2, y3 = πr

√
πζ̇3 are roots of a lift of Ps(λ) to P (λ).
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The splitting extension Ks of this lift is K(3)(πr

√
πζ̇), where ζ is any root of Ps(λ).

The Galois group Gal(Ks/K) is generated by σ and τ with στσ−1 = τ q where

σ(y1, y2, y3) = (y2, y3, y1) = (w2w1)
2(y1, y2, y3)

and

τ(y1, y2, y3) = (−y1,−y2,−y3) = (w2w1)
3(y1, y2, y3).

This determines ρs : Gal(K̄/K)→ W in this case, with kernel Gal(Ks/K) and image

Ws = 〈(w2w1)
2, (w2w1)

3〉 = 〈w2w1〉∼=C6.
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Chapter 5

Galois cohomology of maximal tori

In Chapter 3 we found the sets Sw
r (k) and in Chapter 4 we found the Galois repre-

sentation ρs : Gal(K̄/K)→ W for every s ∈ Sw
r (k), and therefore a torus Ts over K

which embeds into G over K as a maximal torus. In this chapter we find H1(K,Ts)

and therefore find the cardinality of G(K)-conjugacy classes of embeddings of Ts into

G over K; the results of this chapter are summarized in Table 6.1 where they are

used to prove Theorem 1.1.

To determine H1(K,Ts) we use Tate-Nakayama ([Lan79, p. 3] or [Ser02] more

generally):

H1(K,Ts) = X̌trWs=0/X̌Ws ,

where Ws = ρs(Gal(K̄/K)) (so Ws
∼= Gal(Ks/K), since Ks = ker ρs) and

X̌trWs=0 = {y ∈ X̌ |
∑

w∈Ws

w(y) = 0} and X̌Ws = 〈w(y)− y | y ∈ X̌, w ∈ Ws〉.

If |Ws| > 2, we use ∨ (the logical ‘or’) to separate the non-trivial cases in the

calculations.
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5.1 Fractional depth 0

5.1.1 Case: w = 1

If s ∈ S1
r (k) then Ws = 1; see Table 2.6, Section 4.1.1 and Section 3.1.1. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1}〉
=
{(y1, y2, y3) | (y1, y2, y3) = (0, 0, 0)}

〈(y1, y2, y3)− (y1, y2, y3)〉
=
{(0, 0, 0)}
〈(0, 0, 0)〉

∼= 0

5.1.2 Case: w = w1

If s ∈ Sw1
r (k) thenWs = 〈w1〉 = {1, w1}; see Table 2.6, Section 4.1.2 and Section 5.1.2.

In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w1} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w1}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (−y1,−y3,−y2) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (−y1,−y3,−y2)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (0, y2 − y3, y3 − y2) = (0, 0, 0)}
〈(0, 0, 0), (−2y1,−y3 − y2,−y2 − y3)〉

=
{(y1, y2, y3) | y2 = y3, y1 = −y2 − y3 = −2y2}

〈(−2y1, y1, y1)〉
=
{(−2y2, y2, y2)}
〈(−2y1, y1, y1)〉

∼= Z

Z
∼= 0
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Case: w = w2w1w2

Since w2w1w2 is conjugate to w1, this case is nothing more than a re-labelling of the

case w = w1, as in Section . If s ∈ Sw2w1w2
r (k) then Ws = 〈w2w1w2〉 = {1, w2w1w2};

see Section 4.1.2 and Section 5.1.2. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w2w1w2} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w2w1w2}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (−y3,−y2,−y1) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (−y3,−y2,−y1)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (y1 − y3, 0, y3 − y1) = (0, 0, 0)}
〈(0, 0, 0), (−y3 − y1,−2y2,−y1 − y3)〉

=
{(y1, y2, y3) | y1 = y3, y2 = −y1 − y3 = −2y1}

〈(y2,−2y2, y2)〉
=
{(y1,−2y1, y1)}
〈(y2,−2y2, y2)〉

∼= Z

Z
∼= 0

Case: w = w1w2w1w2w1

Since w2w1w2w1w2 is conjugate to w1, this case is nothing more than a re-labelling

of the case w = w1, above. If s ∈ Sw1w2w1w2w1
r (k) then Ws = 〈w1w2w1w2w1〉 =

{1, w1w2w1w2w1}; see Section 4.1.2 and Section 5.1.2. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w1w2w1w2w1} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w1w2w1w2w1}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (−y2,−y1,−y3) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (−y2,−y1,−y3)− (y1, y2, y3)〉
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=
{(y1, y2, y3) | (y1 − y2, y2 − y1, 0) = (0, 0, 0)}
〈(0, 0, 0), (−y2 − y1,−y1 − y2,−2y3)〉

=
{(y1, y2, y3) | y1 = y2, y3 = −y1 − y2 = −2y1}

〈(y3, y3,−2y3)〉
=
{(y1, y1,−2y1)}
〈(y3, y3,−2y3)〉

∼= Z

Z
∼= 0

5.1.3 Case: w = w2

If s ∈ Sw2
r (k) thenWs = 〈w2〉 = {1, w2}; see Table 2.6, Section 4.1.3 and Section 3.1.3.

In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w2} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w2}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (y2, y1, y3) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (y2, y1, y3)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (y1 + y2, y2 + y1, 2y3) = (0, 0, 0)}

〈(0, 0, 0), (y2 − y1, y1 − y2, 0)〉
=
{(y1, y2, y3) | y2 = −y1, y3 = 0}
〈(y2 − y1,−(y2 − y1), 0)〉

=
{(y1,−y1, 0)}

〈(y2 − y1,−(y2 − y1), 0)〉
∼= Z

Z
∼= 0

Case: w = w1w2w1

Since w1w2w1 is conjugate to w2, this case is nothing more than a re-labelling of the

case w = w2, above. If s ∈ Sw1w2w1
r (k) then Ws = 〈w1w2w1〉 = {1, w1w2w1}; see
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Table 2.6, Section 4.1.3 and Section 3.1.3. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w1w2w1} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w1w2w1}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (y3, y2, y1) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (y3, y2, y1)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (y1 + y3, 2y2, y3 + y1) = (0, 0, 0)}

〈(0, 0, 0), (y3 − y1, 0, y1 − y3)〉
=
{(y1, y2, y3) | y3 = −y1, y2 = 0}
〈(y3 − y1, 0,−(y3 − y1))〉

=
{(y1, 0,−y1)}

〈(y3 − y1, 0,−(y3 − y1))〉
∼= Z

Z
∼= 0

Case: w = w2w1w2w1w2

Since w2w1w2w1w2 is conjugate to w2, this case is nothing more than a re-labelling

of the case w = w2, above. If s ∈ Sw2w1w2w1w2
r (k) then Ws = 〈w2w1w2w1w2〉 =

{1, w2w1w2w1w2}; see Table 2.6, Section 4.1.3 and Section 3.1.3. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,w2w1w2w1w2} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, w2w1w2w1w2}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (y1, y3, y2) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (y1, y3, y2)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (2y1, y2 + y3, y3 + y2) = (0, 0, 0)}

〈(0, 0, 0), (0, y3 − y2, y2 − y3)〉
=
{(y1, y2, y3) | y3 = −y2, y1 = 0}
〈(0, y3 − y2,−(y3 − y2))〉

=
{(0, y2,−y2)}

〈(0, y3 − y2,−(y3 − y2))〉
∼= Z

Z
∼= 0
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5.1.4 Case: w = (w2w1)
3

If s ∈ S
(w2w1)3

r (k) then Ws = 〈(w2w1)
3〉 = {1, (w2w1)

3}; see Table 2.6, Section 4.1.4

and Section 3.1.4. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,(w2w1)3} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, (w2w1)3}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (−y1,−y2,−y3) = (0, 0, 0)}
〈(y1, y2, y3)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3)〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}
〈(0, 0, 0), (−2y1,−2y2,−2y3)〉

=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}

〈(−2y1,−2y2,−2y3)〉
=

{(y1, y2,−y1 − y2)}
〈(−2y1,−2y2, 2y1 + 2y2)〉

∼= Z× Z

2Z× 2Z
∼= Z

2Z
× Z

2Z

5.1.5 Case: w = (w2w1)
2

If s ∈ S
(w2w1)2

r (k) then Ws = 〈(w2w1)
2〉 = {1, (w2w1)

2, (w2w1)
4}; see Table 2.6, Sec-

tion 4.1.5 and Section 3.1.5. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{1,(w2w1)2,(w2w1)4} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {1, (w2w1)2.(w2w1)4}〉
=
{(y1, y2, y3) | (y1, y2, y3) + (y2, y3, y1) + (y3, y1, y2) = (0, 0, 0)}
〈(0, 0, 0), (y2 − y1, y3 − y2, y1 − y3), (y3 − y1, y1 − y2, y2 − y3)〉
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=
{(y1, y2, y3) | y1 + y2 + y3 = 0}

〈(y2 − y1,−y1 − 2y2, 2y1 + y2), (−y2 − 2y1, y1 − y2, 2y2 + y1)〉
=

{(y1, y1 + v1,−2y1 − v1)}
〈(v,−3y1 − 2v, 3y1 + v) ∨ (−v − 3y1,−v, 2v + 3y1)〉

=
Z× Z

Z× 3Z ∨ 3Z× Z
∼= Z

3Z

5.1.6 Case: w = w2w1

If s ∈ Sw2w1
r (k) then Ws = 〈w2w1〉 = {1, w2w1, (w2w1)

2, (w2w1)
3, (w2w1)

4, (w2w1)
5};

see Table 2.6, Section 4.1.6 and Section 3.1.6. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈〈w2w1〉 w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ 〈w2w1〉〉

=





(y1, y2, y3) + (−y3,−y1,−y2) + (y2, y3, y1)

+(−y1,−y2,−y3) + (y3, y1, y2) + (−y2,−y3,−y1) = (0, 0, 0)





〈




(y1, y2, y3)− (y1, y2, y3), (−y3,−y1,−y2)− (y1, y2, y3),

(y2, y3, y1)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3),

(y3, y1, y2)− (y1, y2, y3), (−y2,−y3,−y1)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}

〈



(0, 0, 0), (y2, y3, y1), (y2 − y1, y3 − y2, y1 − y3),

(−2y1,−2y2,−2y3), (y3 − y1, y1 − y2, y2 − y3), (y3, y1, y2)





〉
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=
{(y1, y2, y3) | y3 = −y1 − y2}

〈



(y2, y3, y1) ∨ (y2 − y1, y3 − y2, y1 − y3) ∨ (−2y1,−2y2,−2y3)

∨(y3 − y1, y1 − y2, y2 − y3) ∨ (y3, y1, y2)





〉

=
{(y1, y2,−y1 − y2)}

〈




(y2,−y1 − y2, y1) ∨ (v,−3y1 − 2v, 3y1 − v)

∨(−2y1,−2y2, 2y1 + 2y2) ∨ (−v − 3y1,−v, 2v + 3y1)

∨(−y1 − y2, y1, y2)





〉

=
Z× Z

Z× Z ∨ Z× 3Z ∨ 2Z× 2Z ∨ 3Z× Z ∨ Z× Z
∼= Z× Z

Z× Z
∼= 0

5.2 Fractional depth 1
6 or 5

6

Suppose s ∈ Sr(k). Refer to Table 2.6, Section 4.2 and Section 3.2.

If q ≡ 1(3) then Ws = 〈1, w2w1〉 = {1, w2w1, (w2w1)
2, (w2w1)

3, (w2w1)
4(w2w1)

5}

In this case, X̌trWs=0/X̌Ws = 0 as in the w = w2w1 case of fractional depth 0.

If q ≡ 2(3) then Ws = 〈w2, w2w1〉 = 〈w2, w1〉 = {1, w2, w1, w2w1, w1w2, w2w1w2,

w1w2w1, w2w1w2w1, w1w2w1w2, w2w1w2w1w2, w1w2w1w2w1, w2w1w2w1w2w1} ∼= D6.

Thus, in this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{〈w2,w1〉} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ 〈w2, w1〉〉
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=





(y1, y2, y3) + (y2, y1, y3) + (−y1,−y3,−y2)

+(−y3,−y1,−y2) + (−y2,−y3,−y1) + (−y3,−y2,−y1)

+(y3, y2, y1) + (y2, y3, y1) + (y3, y1, y2)

+(y1, y3, y2) + (−y2,−y1,−y3) + (−y1,−y2,−y3) = (0, 0, 0)





〈





(y1, y2, y3)− (y1, y2, y3), (y2, y1, y3)− (y1, y2, y3),

(−y1,−y3,−y2)− (y1, y2, y3), (−y3,−y1,−y2)− (y1, y2, y3),

(−y2,−y3,−y1)− (y1, y2, y3), (−y3,−y2,−y1)− (y1, y2, y3),

(y3, y2, y1)− (y1, y2, y3), (y2, y3, y1)− (y1, y2, y3),

(y3, y1, y2)− (y1, y2, y3), (y1, y3, y2)− (y1, y2, y3)

(−y2,−y1,−y3)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}

〈





(0, 0, 0), (y2 − y1, y1 − y2, 0),

(−2y1,−y3 − y2,−y2 − y3), (−y3 − y1,−y1 − y2,−y2 − y3),

(−y2 − y1,−y3 − y2,−y1 − y3), (−y3 − y1,−2y2,−y1 − y3),

(y3 − y1, 0, y1 − y3), (y2 − y1, y3 − y2, y1 − y3),

(y3 − y1, y1 − y2, y2 − y3), (0, y3 − y2, y2 − y3),

(−y2 − y1,−y1 − y2,−2y3), (−2y1,−2y2,−2y3)





〉

=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}

〈





(0, 0, 0), (v3,−v3, 0), (−2y1, y1, y1), (y2, y3, y1), (y3, y1, y2),

(y2,−2y2, y2), (v2, 0,−v2), (y2 − y1,−y1 − 2y2, 2y1 + y2)

(−y2 − 2y1, y1 − y2, y1 + 2y2), (0, v1,−v1), (y3, y3,−2v3),

(−2y1,−2y2,−2y3)





〉
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=
{(y1, y2,−y1 − y2}

〈





(v3,−v3, 0) ∨ (−2y1, y1, y1) ∨ (y2,−y1 − y2, y1)

∨(−y1 − y2, y1, y2) ∨ (y2,−2y2, y2) ∨ (v2, 0,−v2)

∨(v3,−3y1 − 2v3, 3y1 + v3) ∨ (−v3 − 3y1,−v3, 2v3 + 3y1)

∨(0, v1,−v1) ∨ (y3, y3,−2v3) ∨ (−2y1,−2y2, 2y1 + 2y2)





〉

=
Z× Z




Z× 0 ∨ Z× 0 ∨ Z× Z ∨ Z× Z ∨ Z× 0 ∨ Z× 0

∨Z× 3Z ∨ 3Z× Z ∨ Z× 0 ∨ Z× 0 ∨ 2Z× 2Z





∼= Z× Z

Z× Z
∼= 0

5.3 Fractional depth 1
3 or 2

3

5.3.1 Case: w = 1

Suppose s ∈ S1
r (k). The cases below refer to Table 2.6, Section 3.3.1 and Section 4.3.1.

If q ≡ 1(3) then Ws = 〈1, (w2w1)
2〉 = 〈(w2w1)

2〉 = {1, (w2w1)
2, (w2w1)

4}. In this

case, X̌trWs=0/X̌Ws =
Z

3Z
as in the w = (w2w1)

2 case of fractional depth 0.

If q ≡ 2(3) then Ws = 〈w2, (w2w1)
2〉∼=S3. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{〈w2,(w2w1)2〉} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ 〈w2, (w2w1)2〉〉
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=





(y1, y2, y3) + (y2, y1, y3) + (y3, y2, y1)

+(y1, y3, y2) + (y2, y3, y1) + (y3, y1, y2) = (0, 0, 0)





〈




(y1, y2, y3)− (y1, y2, y3), (y2, y1, y3)− (y1, y2, y3),

(y3, y2, y1)− (y1, y2, y3), (y1, y3, y2)− (y1, y2, y3)

(y2, y3, y1)− (y1, y2, y3), (y3, y1, y2)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | y1 + y2 + y3 = 0}

〈




(0, 0, 0), (y2 − y1, y1 − y2, 0),

(y3 − y1, 0, y1 − y3), (0, y3 − y2, y2 − y3)

(y2 − y1, y3 − y2, y1 − y3), (y3 − y1, y1 − y2, y2 − y3)





〉

=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}

〈



(0, 0, 0), (v3,−v3, 0), (v2, 0,−v2), (0, v1,−v1),

(y2 − y1,−y1 − 2y2, 2y1 + y2), (−y2 − 2y1, y1 − y2, y1 + 2y2)





〉

=
{(y1, y2,−y1 − y2}

〈



(v3,−v3, 0) ∨ (v2, 0,−v2) ∨ (0, v1,−v1)

∨(v3,−3y1 − 2v3, 3y1 + v3) ∨ (−v3 − 3y1,−v3, 2v3 + 3y1)





〉

=
Z× Z

Z× {0} ∨ Z× {0} ∨ Z× {0} ∨ Z× 3Z ∨ 3Z× Z

∼= Z× Z

Z× 3Z
∼= Z

3Z

5.3.2 Case: w = (w2w1)
3

Suppose s ∈ S
(w2w1)3

r (k). The calculations in this case are identical to those in the

w = 1 case for fractional depth 1
3
or 2

3
above.
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5.4 Fractional depth 1
2

5.4.1 Case: w = 1

Suppose s ∈ S1
r (k). Then Ws = 〈1, (w2w1)

3〉 = {1, (w2w1)
3}; see Table 2.6, Sec-

tion 3.4.1 and Section 4.4.1. In this case, X̌trWs=0/X̌Ws =
Z

2Z
× Z

2Z
as in the

w = (w2w1)
3 case of fractional depth 0.

5.4.2 Case: w = w2

Suppose s ∈ Sw2
r (k). Then Ws = 〈w2, (w2w1)

3〉 = {1, w2, w1w2w1w2w1,

w2w1w2w1w2w1} ∼= V4 ; see Table 2.6, Section 3.4.2 and Section 4.4.2. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{w2,(w2w1)3} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {w2, (w2w1)3}〉

=





(y1, y2, y3)

∣∣∣∣∣∣∣

(y1, y2, y3) + (y2, y1, y3)

+(−y2,−y1,−y3) + (−y1,−y2,−y3) = (0, 0, 0)





〈



(y1, y2, y3)− (y1, y2, y3), (y2, y1, y3)− (y1, y2, y3),

(−y2,−y1,−y3)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}

〈



(0, 0, 0), (y2 − y1, y1 − y2, 0),

(−y2 − y1,−y1 − y2,−2y3), (−2y1,−2y2,−2y3)





〉
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=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}
〈



(0, 0, 0), (v3,−v3, 0),

(y3, y3,−2y3), (−2y1,−2y2,−2y3)





〉

=
{(y1, y2,−y1 − y2}

〈(v3,−v3, 0), (y3, y3,−2y3), (−2y1,−2y2, 2y1 + 2y2)〉
=

Z× Z

Z× {0} ∨ Z× {0} ∨ 2Z× 2Z
∼= Z

2Z
× Z

2Z

Case: w = w1w2w1

Since w1w2w1 is conjugate to w2, this case is nothing more than a re-labelling of the

case w = w2, above. Suppose s ∈ Sw1w2w1
r (k). Then Ws = 〈w1w2w1, (w2w1)

3〉 =

{1, w1w2w1, w2w1w2, w2w1w2w1w2w1} ∼= V4 ; see Table 2.6, Section 3.4.2 and Sec-

tion 4.4.2. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{w1w2w1,(w2w1)3} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {w1w2w1, (w2w1)3}〉

=





(y1, y2, y3)

∣∣∣∣∣∣∣

(y1, y2, y3) + (y3, y2, y1)

+(−y3,−y2,−y1) + (−y1,−y2,−y3) = (0, 0, 0)





〈



(y1, y2, y3)− (y1, y2, y3), (y3, y2, y1)− (y1, y2, y3),

(−y3,−y2,−y1)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}

〈



(0, 0, 0), (y3 − y1, 0, y1 − y3),

(−y3 − y1,−2y2,−y1 − y3), (−2y1,−2y2,−2y3)





〉
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=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}
〈



(0, 0, 0), (v2, 0,−v2),

(y2,−2y2, y2), (−2y1,−2y2,−2y3)





〉

=
{(y1, y2,−y1 − y2}

〈(v2, 0,−v2), (y2,−2y2, y2), (−2y1,−2y2, 2y1 + 2y2)〉
=

Z× Z

Z× {0} ∨ Z× {0} ∨ 2Z× 2Z
∼= Z

2Z
× Z

2Z

Case: w = w2w1w2w1w2

Since w2w1w2w1w2 is conjugate to w2, this case is nothing more than a re-labelling

of the case w = w2, above. Suppose s ∈ Sw2w1w2w1w2
r (k). Then Ws = 〈w2w1w2w1w2,

(w2w1)
3〉 = {1, w2w1w2w1w2, w1, w2w1w2w1w2w1} ∼= V4 ; see Table 2.6, Section 3.4.2

and Section 4.4.2. In this case,

X̌trWs=0/X̌Ws =
{y ∈ X̌ | ∑w∈Ws

w(y) = 0}
〈w(y)− y | y ∈ X̌, w ∈ Ws〉

=

{
(y1, y2, y3) |

∑
w∈{w2w1w2w1w2,(w2w1)3} w(y1, y2, y3) = (0, 0, 0)

}

〈w(y1, y2, y3)− (y1, y2, y3) | y ∈ X̌, w ∈ {w2w1w2w1w2, (w2w1)3}〉

=





(y1, y2, y3)

∣∣∣∣∣∣∣

(y1, y2, y3) + (y1, y3, y2)

+(−y1,−y3,−y2) + (−y1,−y2,−y3) = (0, 0, 0)





〈



(y1, y2, y3)− (y1, y2, y3), (y1, y3, y2)− (y1, y2, y3),

(−y1,−y3,−y2)− (y1, y2, y3), (−y1,−y2,−y3)− (y1, y2, y3)





〉

=
{(y1, y2, y3) | (0, 0, 0) = (0, 0, 0)}

〈



(0, 0, 0), (0, y3 − y2, y2 − y3),

(−2y1,−y3 − y2,−y2 − y3), (−2y1,−2y2,−2y3)





〉
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=
{(y1, y2, y3) | y1, y2 arbitrary, y3 = −y1 − y2}
〈



(0, 0, 0), (0, v1,−v1),

(−2y1, y1, y1), (−2y1,−2y2,−2y3)





〉

=
{(y1, y2,−y1 − y2}

〈(0, v1,−v1), (−2y1, y1, y1), (−2y1,−2y2, 2y1 + 2y2)〉
=

Z× Z

Z× {0} ∨ Z× {0} ∨ 2Z× 2Z
∼= Z

2Z
× Z

2Z

5.4.3 Case: w = (w2w1)
2

Suppose s ∈ S
(w2w1)2

r (k). Then Ws = 〈(w2w1)
2, (w2w1)

3〉 = 〈w2w1〉; see Table 2.6,

Section 3.4.3 and Section 4.4.3. In this case, X̌trWs=0/X̌Ws = 0 as in the w = w2w1

case of fractional depth 0.
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Chapter 6

Proof of the main result

In this chapter we prove the main result in this thesis, stated again here for conve-

nience.

Theorem 1.1. Let G be a Chevalley group scheme of type G2 and let g be its

Lie algebra. Every Chevalley basis for g determines a family of maps of definable

subassignments

∀r ∈ Q, νr : g(r)→ Br

such that if K is a local field and 6 is invertible in the residue field k of K then the

specialization νr/K determined by K is surjective and

Or(X) = ν−1
r/K(νr/K(X)).

6.1 Kostant section

In this section we recall the Kostant section κ : S → greg of the Steinberg map

µ : greg → S.

Following [Kos63] (and a nice précis in [Kot99, §2.4]), set X+ = Xα1 + Xα2 and
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X− = X−α1 + X−α2 . Using the structure coefficients of Table 1.2, the centralizer

ker ad(X−) of X− in g is found to be the linear span of

{X−α1 −X−α2 , X−α̃}.

Passing from Z to Z[2−1] and using [Kos63, Prop 19], we find that the restriction of

g → t/W to X+ + ker ad(X−) is an isomorphism of Z[2−1]-schemes. In this way we

find that the Kostant section t2/W → g2, with image X+ + ker ad(X−), is given by

(s1, s2) 7→ Xα1 +Xα2 +
s1
4
X−α̃ −

s2
2
(X−α1 −X−α2) .

The restriction of µ to X+ + ker ad(X−) is not an isomorphism of schemes over Z,

but is after base change to Z[2−1]. This recipe for the section t2/W → g2 of the base

change of g → t/W to Z[2−1] depends only on the basis ∆ = {α1, α2} for R and

the Chevalley basis {Xα | α ∈ R}. We write κ : S2 → g
reg
2 for the restriction of the

Kostant section to S2.

6.2 Tate-Nakayama

In Chapter 2 we attached a torus Ts to every s ∈ Sr(k) using the partition Sr =

∐
w∈Wr

Sw
r of definable sets of Section 2.7. The torus Ts was determined by the

cocycle (just a homomorphism, actually) ρs : Gal(K̄/K)→ W defined in Section 2.8.

This made it easy to calculate H1(K,Ts) using Tate-Nakayama, and the calculation

of X̌trWs=0/X̌Ws , for every r ∈ 1
6
Z and w ∈ Wr and s ∈ Sw

r (k), was carried out in

Chapter 5. The groups H1(K,Ts) are listed in Table 6.1, from which we see that
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H1(K,Ts) depends only on the conjugacy class of w ∈ Wr for which s ∈ Sw
r (k).

Recall that H1(K,Ts) classifies G(K)-conjugacy classes of subtori of G of type Ts.

Table 6.1: H1(K,Ts) for tori Ts determined by s ∈ Sw
r (k).

{r} w H1(K,Ts) hr(w)
r ∈ 1

6
Z w ∈ Wr = #H1(K,Ts)

0 w2w1 0 1
0 (w2w1)2 Z/3Z 3
0 (w2w1)3 Z/2Z× Z/2Z 4
0 w1 0 1
0 w2 0 1
0 1 0 1

1
2

(w2w1)2 0 1
1
2

w2 Z/2Z× Z/2Z 4
1
2

1 Z/2Z× Z/2Z 4

1
3
, 2

3
(w2w1)3 Z/3Z 3

1
3
, 2

3
1 Z/3Z 3

1
6
, 5

6
1 0 1

From Table 6.1 we note that the group H1(K,Ts) is determined by its car-

dinality: if #H1(K,Ts) = 1 then H1(K,Ts) is trivial; if #H1(K,Ts) = 3 then

H1(K,Ts)∼=Z/3Z; and if #H1(K,Ts) = 4 then H1(K,Ts)∼=Z/2Z× Z/2Z. For each

n ∈ {1, 3, 4}, let An be the corresponding group, interpreted as a definable set. Using

these facts we define hr : Wr → N, for each r ∈ 1
6
Z, by the data appearing in the

final column of Table 6.1.
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6.3 Proof of the main result

For each w ∈ Wr, let g(r, w) →֒ g(r) be the fibre of Sw
r →֒ Sr under the map of

definable subassignments µr : g(r) → Sr from Proposition 2.1. By pull-back, the

partition Sr =
∐

w∈Wr
Sw
r defines a partition

g(r) =
∐

w∈Wr

g(r, w)

and maps of definable subassignments

µw
r : g(r, w)→ Sw

r .

We now define a function

δwr/K : g(r, w,K)→ Ahr(w)

for every r ∈ 1
6
Z and w ∈ Wr. Suppose X ∈ g(r, w,K); set s = µ(X). Using

the Kostant section, set X0 :=κ(µ(X)) and note that X0 ∈ g(r,K) and X is stably

conjugate to X0. The relationship between the stable orbit Os(K) and the G(K)-

orbit O(X0) of X0 is found by computing the connecting homomorphism of the long

exact sequence in Galois cohomology

1 TX0(K) G(K) Os(K) H1(K,TX0) H1(K,G)
δX0
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derived from the short exact sequence of K-varieties

1 TX0 G G/TX0 1.

Since H1(K,G) = 0, the Galois cohomology of TX0 measures how many G(K)-orbits

lie in Os(K): with the choice of X0 ∈ Os(K) as a base point, the torsor Os(K)/G(K)

becomes a group isomorphic to H1(K,TX0). By Tate-Nakayama, H1(K,TX0) may be

calculated directly from the action of Gal(K̄/K) on the cocharacter lattice X∗(TX0).

Indeed, since TX0 = Ts, we have already determined the group H1(K,TX0), above. In

particular, from Table 6.1 we see

H1(K,TX0)
∼=Ahr(w).

Since X is stably conjugate to X0, we have X ∈ Os(X0), so the connecting homo-

morphism δX0 : Os(X0)→ H1(K,TX0) sends X to an element of H1(K,TX0). In this

way we have defined the function

δwr/K : g(r, w,K)→ Ahr(w).

Note that δwr/K is clearly surjective.

Set

Bw
r :=Sw

r × Ahr(w);

note that this is a definable set. The argument above shows that

νw
r/K :=µw

r/K × δwr/K : g(r,K)→ Bw
r (k)
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is surjective.

Moreover, arguing as in the proof of Proposition 2.1, we see that the fibre of νw
r/K

above νw
r/K(X) ∈ Bw

r (k), for X ∈ g(r, w,K), is precisely the thickened orbit of X in

g(K):

Or(X) = (νw
r/K)

−1(νw
r/K(X)).

This justifies the notation O(x, a) for Or(X) if µw
r/K(X) = (x, a) ∈ Bw

r (k) = Sw
r (k)×

Ahr(w). Since thickened orbits are definable and since the dependence of O(x, a) in

(x, a) ∈ Sw
r (k) × Ahr(w) is definable, the functions νw

r/K : g(r,K) → Bw
r (k) define a

map of definable subassignments,

νw
r : g(r)→ Bw

r .

Set

Br :=
∐

w∈Wr

(
Sw
r × Ahr(w)

)
;

note that this too is a definable set. Let

νr : g(r)→ Br

be the map of definable subassignments defined by composing the isomorphism of

definable subassignments g(r,K)→∐
w∈Wr

g(r, w,K) with the coproduct of the maps

νw
r : g(r, w,K)→ Bw

r and the isomorphism of definable subassignments
∐

w∈Wr
Bw

r →

Br. Then νr : g(r) → Br is a map of definable subassignments and if 6 is invertible

in the residue field of K then the specialization νr/K : g(r,K)→ Br(k) is surjective,
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and

Or(X) = ν−1
r/K(νr/K(X))

for every X ∈ g(r,K). This completes the proof of Theorem 1.1.

6.4 Application to stable orbit representatives

We conclude by explaining how to use this thesis to enumerate representatives for

stable conjugacy classes of good (equivalued) elements in LieG(2) over K, assuming

only that the residual characteristic of K is at least 5.

For each r ∈ 1
6
Z, consider the definable subassignment Sr ⊂ S given by the

specializations

Sr(K) = {(s1, s2) ∈ S(K) | ordK(s1) = 6r and ordK(s2) ≥ ⌈2r⌉}.

Recall the definition of Sr from Section 2.4 and the map of definable subassignments

µr : g(r)→ Sr appearing in Proposition 2.1. Let

resr : S
r → Sr

be the map of definable subassignments given by the surjective specializations

resr/K : Sr(K)→ Sr(k)



83

where

resr/K(s1, s2) :=





(res6r(s1), res⌈2r⌉(s2)) {r} = 0, 1
2

(res6r(s1), res6r(−33s1)) {r} = 1
6
, 1
3
, 2
3
, 5
6
.

Then the image of g(r,K) under the Steinberg quotient µK : greg(K) → S(K) is

precisely Sr(K) and µr : g(r)→ Sr factors through resr:

greg(K) S(K)

g(r,K) Sr(K) Sr(k)

µK

def’ble

µr

µK |g(r,K)

def’ble

resr/K

Now, suppose s ∈ Sr(k). Then s ∈ Sw
r (k) ⊆ Sr(k) for a unique w ∈ Wr. This

parameterizes the components of s by s = µr,w(x) for x ∈ Sr,w(k). Let ṡ be any lift

of s ∈ Sr(k) to Sr(K); thus, resr/K(ṡ) = s. Using Section 6.1, we see that

κ(ṡ) = Xα1 +Xα2 +
ṡ1
4
X−α̃ −

ṡ2
2
(X−α1 −X−α2)

lies in g(r,K). Letting s range over Sr(k), the set

{κ(ṡ) ∈ g(r,K) | ṡ ∈ res−1
r/K(s), s ∈ Sr(k)}

is a set of representatives for the stable orbits in g(r,K).
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6.5 Future work

The techniques presented in this thesis may also be used to produce a complete list

of Cartan subalgebras of g(K). We leave that for another day.
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Appendix A

Representation of G(2) in SO(8)

Traditionally, getting a handle on G(2) has been difficult. Élie Cartan noted in

1914 [Car14] that G(2) was the automorphism group of the octonions. Springer

[Spr09, §17.4] realizes this using a direct sum of 2× 2-matrices over a field.

A standard, but even more involved, way of saying this has been through the use

of Cayley algebras: G(2) is the automorphism group of a Cayley algebra where the

Cayley algebra is built, for example, from 2×2-matrices this time over a 3-dimensional

cross product algebra over Q.

Using this Cayley algebra, Bump and Joyner [BJ87, §1] define a group we call G(2)

of automorphisms of type G2 and its Lie algebra g(2) = LieG(2). They show G(2)

embeds in SO(8) the special orthogonal group, so g(2) embeds in so(8) = LieSO(8)

the special orthogonal Lie algebra.

Then they offer a Chevalley basis for g(2) in so(8) which we used for doing explicit

calculations. It is, in our notation:

Xα1 =




0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0




, Xα2 =




0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




,
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Xα1+α2 =




0 0 −1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, X2α1+α2 =




0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




,

X3α1+α2 =




0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, and X3α1+2α2 =




0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




with the Chevalley basis elements for the negative roots being simply the transpose

of those for the positive roots. So [Xα1 , X−α1 ] =




1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1




and

[Xα2 , X−α2 ] =




0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0




.


