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Abstract 

Recursive digital systems have become commonplace in recent years. This thesis 

examines recursive digital systems and oscillations that can occur within them. Two very 

different kinds of oscillations are discussed. 

The first, limit cycles, are caused by non-linear quantization operations within recursive 

filters. Because these oscillations are undesirable, it is important to be able to bound their 

amplitude for any given filter implementation. A general bound on the amplitude of limit 

cycles is presented, as well as a method of creating digital filters that do not display limit 

cycles at the output. 

The second form of oscillation discussed is the discrete time sinusoid. Discrete time 

sinusoids are extensively used in many aspects of modern communication systems and 

are thus of considerable importance. Several methods of generating digital 

approximations to discrete time sinusoids are presented, including a structure based on an 

analog prototype. The effects of finite precision arithmetic on each of the structures is 

analyzed. Based on a comparison of the different structures, one is selected for 

implementation and an audio range oscillator is constructed. The oscillator generates 

quadrature sinusoids with 0.4 Hz resolution over the frequency range 0 to 52 kHz. 
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Chapter 1 

Introduction 

Digital filters were envisioned by Norbert Weiner and N. Levinson as early as the 1940's, 

but the lack of suitable hardware prevented their use [ 1]. With the invention of the digital 

computer, as well as the enormous reductions in hardware cost that have occurred as a 

result of the VLSI revolution, digital filters have become readily available and digital 

filtering has become increasingly more important in many areas [2]. Control systems, 

ranging from those operating nuclear power plants to those controlling automobile 

engines employ digital filters [3, 4, 5]. Modern telephone systems are almost entirely 

digital, and radio systems are making the transition to digital operation as well [6]. What 

was once impractical and of theoretical interest only has become commonplace. It is 

because of this ever growing importance of digital filters that the research described in 

this thesis was undertaken. 

1.1 Digital Filters 

Before discussing the research, however, it is necessary to present some definitions in 

order to clarify terminology. A discrete time system is defined as one in which timet (the 

independent variable) is quantized [7]. Discrete time signals are defined only at discrete 

points in time. Such signals are represented as sequences of numbers. The signal level 

t For this thesis, the independent variable is considered to be time. In general, it can be any quantity. 
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itself can take on a continuum of values. Digital systems are those in which both the 

independent variable and the value of the signal are quantized [7]. The signal is defined 

only for discrete values of time and can only take on a finite set of amplitude values. A 

digital filter is a computational process by which a digital signal is transformed into a 

second digital signal termed the output [7]. A restriction imposed on the discrete time 

filters that will be considered in this thesis is that they are linear and shift invariant. A 

linear shift invariant (LSI) filter can be completely characterized by its unit sample 

response, denoted by h,,. The output is given by the convolution summation 

Y. = 
jUkh,,-, 

where u,, represents the input sequence and y represents the output sequence [2]. 

The convolution summation above can be more conveniently dealt with using the z-

transform. The z-transform of a sequence s,, is given by [2] 

S(z) = iSn Z—n. (1.2) 

The z-transform allows the convolution summation above to be expressed as [2] 

Y(z) = H(z)U(z). (1.3) 

The LSI filter is completely characterized by either H(z) or h,,. The z-transform allows 

the frequency response of a signal or system to be characterized. If the substitution 

z = ejOT is made, the steady state sinusoidal frequency response can be determined from 

its z-transform [2]. Note that the unit sample response, and the z-transform, characterize 

only linear, shift invariant systems. 

Another method of describing a digital filter is the state space representation [8]. The 

state of a system is a minimum set of variables such that if their values are known at 

some initial time, and all inputs are known from this time onwards, then the behaviour of 
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the system is completely defined. A recursive, linear, shift invariant filter can be 

described using the equations 
x 1 = A; + Bu 

y = Cx + A n 
(1.4) 

assuming that the filter has only a single input and a single output. The state is 

represented by x,,, the output by y, and the input by ;. Of particular interest is the A 

matrix, known as the state transition matrix. If the eigenvalues of this matrix, or the poles 

of the filter transfer function, are all inside the unit circle (that is they have a modulus less 

than one), then the filter is stable [8]. The expression 

x,,+1 = A; (1.5) 

is known as the autonomous state equation and it completely describes the state 

transitions that occur under zero input conditions [9]. If the filter is stable, the 

z-transform can be determined from the state space representation according to the 

relation [8] 

H(z) = d+C(zl—A)'B. (1.6) 

Digital filters can be implemented in hardware or software [10]. When digital filters are 

implemented in software, the filter designer may have the luxury of using floating point 

arithmetic. This is not the case for many hardware implementations. Because floating 

point functional units require very large amounts of hardware, fixed point arithmetic may 

have to be used. Fixed point, finite precision arithmetic leads to more compact functional 

units, however, fixed point, finite precision arithmetic introduces its errors in the filter, 

and these errors must be understood and characterized.t 

t Floating point arithmetic also introduces errors, however these are beyond the scope of this thesis. 
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1.2 Digital Sinusoids 

Discrete time sinusoids are an important part of many digital systems. Such systems 

include modems, digital radio, satellite communications systems as well as frequency 

analyzers and other laboratory equipment [ 11]. This thesis examines the problem of 

generating discrete time sinusoids for use in fixed point, finite precision digital systems. 

A discrete time sinusoid is completely defined by 

y(n) = Asin(n20T+ 0) (1.7) 

where A is the amplitude, K20T is the ideal normalized frequency and 4 is the phase. 

Because this is a discrete time signal, only time is quantized. The amplitude, frequency 

and phase of the signal can take on a continuum of values. In practice, when the signal is 

generated by a digital system with a finite number of respresentable values, it is quantized 

in value and time. Thus, a digital approximation to a discrete time sinusoid is given by 

y'(n) = A'sin(nc2oT+ o') (1.8) 

where A' represents the amplitude, c2'0T the actual normalized frequency and Ø' the 

actual phase. Note that these quantities can be considered as changing from sample to 

sample due to the effects of quantizing the discrete time sinusoid. The manner and 

amount in which these values vary depends upon the means used to approximate the 

discrete time sinusoid. There is no such thing as a perfect digital sinusoid. Because the 

signal levels are quantized, the digital signal will always be an approximation of a 

discrete time sinusoid. 
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1.3 Research Goals 

The purpose of this thesis is to study oscillations as they relate to recursive digital 

systems implemented using finite precision fixed point arithmetic. Two very different 

kinds of oscillations are considered. The first, found in digital filters, are highly 

undesirable oscillations known as limit cycles. These are oscillations caused by the non-

linearities inherent in finite precision fixed point arithmetic. They can be particularly 

troublesome in communications and control systems, where an oscillatory output is 

highly undesirable and even dangerous. The research into limit cycles is therefore 

presented with a view towards eliminating them. The goal of this research is to determine 

a general limit cycle bound that is applicable to all digital filter implementations and to 

determine ways of eliminating limit cycles from digital filters. 

The second form of oscillation considered is a sinusoidal oscillation. Whereas limit 

cycles are undesirable artifacts of finite precision arithmetic, digital sinusoids are an 

integral part of many digital systems. The goal of the research is to study different 

methods of generating sinusoids, and to evaluate each method in terms of speed, accuracy 

and amount of hardware required for implementation. Based on the comparison of 

different means of generating sinusoids, a compact, high precision oscillator is to be 

constructed. 

1.4 Overview 

A review of finite precision arithmetic is presented in Chapter 2. Methods by which 

finite precision arithmetic can be modeled, as well as the effects due to finite precision 
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arithmetic are discussed. An in depth examination of limit cycles is presented in 

Chapter 3. An explanation of how limit cycles can occur, as well as a general bound on 

the magnitude of limit cycles is presented. This chapter also discusses ways in which 

digital filters can be constructed such that they are free from limit cycles at the output. 

The problem of generating digital sinusoids is addressed in Chapter 4. Several 

techniques, including a new oscillator structure, are presented. The implementation of a 

digital sinusoidal oscillator is described in Chapter 5. Lastly, Chapter 6 summarizes the 

results found in the course of the research and discusses the degree to which the research 

goals were met. 
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Chapter 2 

Finite PrecisiOn Effects 

Because of the reduced complexity of fixed point arithmetic, digital filters often use fixed 

point binary representations of signals and coefficients. When fixed point arithmetic is 

used, signals and coefficients can be represented with only a finite degree of precision. 

The fact that only a limited set of numbers can be used in the filter causes changes to the 

filter's transfer function, as well as changes to the signals associated with the filter. This 

chapter presents fixed point binary representations of numbers, and discusses the types of 

errors inherent in fixed point arithmetic and their effects of these errors on filter 

performance and operation. 

2.1 Representations of Fixed Point Numbers 

There, are many ways of representing numbers. One familiar representation is the base 10 

integer format. For example, when the number. 108 is written, it is understood to mean 

1x102+OxlO'+8x10°=108. (2.1) 

This notation can also be used for binary, or base 2, representations. For example, the 

number 108 can be written as 

1X26+1X25+0X24+1X23+1X22+0X2'+0X2° 1101100. (2.2) 

Thus, 1101100 and 108 can be used to represent the same number. This scheme is easily 

extended to include rational numbers. With base 10 representations, a decimal point is 

added to represent the fractional portion of the number. For example, 45.375 represents 

4x10' +5x10° +3x10' + 7x10 2 +5x10-3= 45.375. (2.3) 
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Likewise, a binary point can be added to represent fractional portions of the number. The 

previous example is represented as 

1x25 + 0x24 + 1x23 + 1 x22 + 0x2'+ 1 x2° + 0x2' + 1x2 2 + 1x2 3 = 101101.011. 

(2.4) 

For this discussion, it is assumed that fixed point arithmetic is used. That is, for any 

particular register or operator within the digital filter, the location of the binary point is 

fixed. The binary point does not move or "float". Note that although the location of the 

binary point is fixed for any register or operator, different registers and operators may be 

scaled so that the binary point is in different locations. 

So far, only positive representations of numbers have been discussed. In digital filter 

implementations, it is important to be able to represent both positive and negative 

numbers. For most binary number formats, an extra bit is added to indicate the sign of 

the number. There are two common ways of doing this. The simplest is to simply use 

the sign bit to indicate that the number represented is negative if it is set. For example, 

the number -3.5 is represented as 

—lx(0x22 + 1x2' + 1x2° + 1x2')= 1011.1. (2.5) 

This is known as signed magnitude representation. Note that there are two 

representations for zero with signed magnitude representation. 

Perhaps the most common representation is that known as two's complement. In this 

scheme, the power of two associated with the most significant bit is given a negative 

value. For example, -3.5 would be written as 

lx-23+1x22+0x2'+0x2°+1x2'=1100.1. (2.6) 

This system is far more commonly used than signed magnitude because it has several 

advantages when implementing digital filters in hardware [10]. These include, simplicity 
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of construction for adders and multipliers, unique representation of zero, and correct 

computation of machine representable sums even if intermediate overflows occur. All 

the digital systems discussed in this thesis will be assumed to use two's complement 

representations of numbers. 

2.2 Coefficient Quantization 

The coefficients of a filter are chosen to meet a frequency response specification. The 

ideal filter transfer function is a function of the filter coefficients and can be written as 

H(z) = f(c0,c1,c2 ... c) (2.7) 

where c0 , c1, c2. . . are the filter coefficients. When the actual filter is implemented, the 

coefficient values must be quantized to a representable finite precision value. This 

modifies the transfer function of the filter, causing pole and zero locations to be shifted. 

The transfer function of the finite precision implementation is given by 

H(z) = f({co]Q , [c IL. [C2 1,,"' '[C.],,)- (2.8) 

The transfer function of the finite precision implementation must be examined to see if it 

still meets the original specification. If the poles and zeroes have shifted to such a degree 

that the filter response is unacceptable, then the coefficient word length must be 

increased. It is also possible that coefficient quantization can cause poles to be located on 

or outside the unit circle. In this case, the filter is not stable and will not operate 

properly. Again, the coefficient word length must be increased, the quantization method 

changed, or a different filter structure must be used. 

Consider the notch filter shown in Figure 2.1. This filter is designed to have a narrow 

notch at 0.15 radians in the frequency response. The ideal frequency response is shown 

in Figure 2.2. Also shown in this figure is the frequency response that would occur if the 
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filter were implemented using coefficients that have been quantized to eight fractional 

bits. That is, the quantized coefficient is represented using a binary number with eight 

bits following the binary point. It can be seen that the actual finite precision transfer 

function differs noticeably from the ideal response in that the notch frequency has 

increased. If the quantized coefficient response is unacceptable, then the number of 

fractional bits in the coefficient must be increased. If the number of fractional bits is 

increased to 16, then the actual frequency response and the ideal frequency response do 

not differ by more than 0.1 dB over the entire spectrum, except for the range from 0.149 

radians to 0.151 radians. Although the frequency response with 16 fractional bits more 

closely matches the ideal response, it does not match it exactly. Only if the quantized 

coefficients exactly match the ideal coefficients will the quantized transfer function 

exactly match the ideal transfer function. For any filter implementation, the number of 

fractional bits required depends upon the original filter specifications. The final 

implementation of the filter with finite precision coefficients must meet this original 

specification. 

2.3 Signal Overflow 

Overflow occurs when the resulting value of a summation of two numbers exceeds the 

maximum number that can be represented in the finite precision system. Overflows in 

finite word length adders can be dealt with in two ways, saturation and two's complement 

overflow. Saturation implies that if a sum exceeds the maximum representable value, it 

is simply replaced with the maximum representable value of the same sign. Two's 

complement overflow implies that if a sum exceeds the representable value, the most 

significant bits (i.e. those that exceed the wordlength) are simply ignored. Examples of 

two's complement and saturation truncation are depicted in Figure 2.3. 



11 

u(n) A91L Alk (n) 

Figure 2.1 - Notch Filter 

1.2 

0.8Cd 

I 

I 

0.2 — 

I 

J 

/ 
I 
I 

Ideal 

— — — Quantized 

I I I I I I I I J I I I I I I I I I I a II I I a 

0.05 0.1 0.15 0.2 0.25 0.3 
Normalized Frequency (radians) 

Figure 2.2 - Notch Filter Response (8 Bit Coefficients) 



12 

Representation of Sum 

Saturation 

Two's 
Complement / 

/ 
, 

/ 
, 

/ 
/ 

/ 

/ 

V . 

Figure 2.3 - Overflow Characteristics 

/ 
 >Sum 

These overflows can lead to large magnitude overflow oscillations, also termed overflow 

limit cycles, rendering the filter useless [ 12]. It is imperative that they be avoided. The 

simplest way of avoiding overflow oscillations is to ensure that overflow does not occur. 

One interesting feature of addition performed using two's complement overflow is that if 

the final summation is representable, then the addition can be performed correctly, even if 

overflows occur in intermediate operations [10]. Thus, it is not necessary to prevent 

overflows from occurring at the inputs of adders, if two's complement overflow is used. 

It is only necessary to prevent overflow from occurring at the points where signals are 

quantized. If an overflow error is quantized, it cannot be "unwrapped" or corrected at a 

later stage [2]. Thus, the signals entering quantizers cannot be allowed to overflow and 
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for a system implemented using two's complement overflow such nodes represent the 

critical nodes in the system. The filter output is also considered a critical node, as 

overflows at the output cannot be allowed. 

Some means of guaranteeing that overflows do not occur at the critical nodes within the 

filter must be found. One such method of doing so is to find a bound on the magnitude of 

signals entering critical nodes and to scale the signal so that the system is capable of 

representing such signals. If this is done, overflows cannot occur. One such bound is as 

follows: Recall that the output y(n) of a filter with unit sample response g(n) to an input 

sequence u(n) is given by 

y(n) = I g(1)u(n — 1). (2.9) 
1=0 

If gj(n) is taken to be the unit sample response computed from the filter input to the 

critical node i, and u(n) is the filter input, a bound can be computed for the magnitude of 

the signal at the critical node. Let the input be bounded such that Ju(n)! < M, then 

y(n)j = g1(1)u(n — 1) 
1=0 

≤ 1 Igi(1)u(n - 1) 
1=0 

≤ Mg(1) 

(2.10) 

where is the 1 norm, jlx(i)II1. For a stable filter, this summation will always 
1. 

converge. This computation can be performed from the input to every critical node and 

the signal scaled such that Mx max(Igi(l)tJ does not exceed the value representable in 
1=0 

the filter. Such a bound is guaranteed to avoid overflows at all critical nodes, regardless 

of the input signal. In practice, this bound is conservative, as signals of the type 

necessary to cause the output to approach its maximum are rare. In control theory, they 
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are referred to as "bang-bang" inputs and must be carefully computed [ 12] and as such, 

are more contrived than practical. 

2.4 Signal Quantization 

When two binary numbers are multiplied together, to represent the product exactly will 

require a wordlength equal to the sum of the two input wordlengths, assuming that two's 

complement representation is used. Thus, if the two input words are eight bits long, then 

the product will require sixteen bits to be exactly represented. If signals were required to 

be exactly represented in a recursive filter, the wordlength would need to grow infinitely 

large, because of feedback within the filter. In a practical recursive filter implementation 

it is not possible to have arbitrarily large signal word lengths, so the product must be 

truncated in some fashion. One common method is to truncate the product such that it is 

represented with the same number of bits as the original input signal. Using this method, 

a 32 bit signal multiplied by a 16 bit coefficient is represented by a 32 bit product, even 

though the product requires 48 bits to be represented exactly. There are several means of 

truncating the product, namely rounding, magnitude truncation and two's complement 

truncation. Each method will be examined in turn. 

When rounding is used, the product is quantized to the representable number that is 

closest to the infinite precision product. If the step size between values in the finite 

precision is given by h, then the greatest magnitude of error possible between the ideal 

and quantized product is given by h/2. In order to simplify discussion of quantization, let 

the operator [•] represent the quantization operation. The operation of quantization by 

rounding can be written as 

[x]Q = h x round(x/h) (2.11) 
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where h is the step size of the finite precision word and round(-) represents the operation 

of rounding to the nearest integer. 

Another common type of quantization is magnitude quantization (also known as sign-

magnitude quantization). Under this scheme, numbers are quantized to the nearest 

representable number that is smaller in magnitude than the ideal product. Using the 

notation introduced above, magnitude quantization is written as 

[x]Q = h x sign(x)floor(x/hI) (2.12) 

where floor(.) and sign(.) are defined as [9] 

floor(x) = greatest integer ≤ x 

11, x≥O (2.13) 
sign(x) = < 0. 

The absolute value of the difference between the quantized product and the unquantized 

product will less than or equal to h. 

The last type of quantization to be presented is two's complement truncation. This is the 

easiest to implement in hardware as it simply involves truncating the binary product at 

the desired wordlength and discarding the remainder of the product. The sign of the word 

is not considered during the truncation operation. The operation of two's complement 

truncation can be expressed as 

[x]Q =hxfloor(x/h). (2.14) 

The product is rounded towards minus infinity in all cases, thus the difference between 

the quantized product and the unquantized product will be in the range from 0 to -h. 

Rounding and two's complement truncation are very similar operations. Note that 

because 

round (x) = floor(x+3/2) (2.15) 
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and 

floor(x) = round(x_3/2) (2.16) 

the operation of two's complement truncation is equivalent to performing rounding on a 

signal that has a constant of - 1/2 added to -it [ 12]. Also note that for all three types of 

quantization, the quantization operation will not cause the product to change sign. 

2.4.1 Modeling Quantization at Multipliers 

The effect of quantization due to multiplication can be exactly modeled as an ideal 

multiplier followed by an additive error signal [10]. This is shown below in Figure 2.4. 

Figure 2.4 - Quantizing Multiplier Model 

The error e associated with each x is a deterministic function of x. That is, a given value 

of x will always produce the same value of e, provided cx remains constant. Because x 

represents a signal in a fixed point finite word length digital filter, it can only take on a 

limited number of values. This means that e and y will only take on a finite number of 

values. For this discussion, it is assumed that x is an integer value. Because the systems 

in question utilize fixed point arithmetic, this assumption can be made with no loss of 

generality. If x1 is the lowest value x can have and x is the upper value, then the 

number of possible values x can take is given by 
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R = x —x,+1 (2.17) 

Assume that a is less than one. Any multiplier can be represented by an integer multiply 

(which can be computed without error) summed with a quantizing fractional multiplier. 

In this case, the range of values y can take is given by 

≤y≤ ax. . (2.18) 

The number of different possible values e can have is determined by a. Let 

a = a,b E Integer (2.19) 

where a<b and a and b do not have any common factors. Note that while an ideal filter 

implementation may have coefficients which are irrational numbers, these coefficients 

will be quantized to some rational value and thus any practical finite precision filter can 

have its coefficients expressed as above. Let the quantization operation be written as 

before 
ía 

y=I — x 
Lb Q 

The output of the multiplier before quantization can be written as 

I+-, 0≤m<b 

(2.20) 

(2.21) 

where I,,n,b are integers. This is an integer added to a rational fraction. Any unquantized 

product in a fixed point, finite word length system can be expressed this way. Thus, 
... =  [a X], r m 
YIXI I1 

LUJQ L LIQ (2.22) 

For some common quantization schemes, specifically rounding and two's complement 

truncation, the quantization operation depends only on the fractional part of the number 

and not the integer part. Because the quantization operation depends only on the 

fractional part of the produèt, 

= 

b Q (2.23) 
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Thus, the value of the error, e, can be written as 
e = 9 — y 

r ml I 
=11+—i —I I+ 
L bJQ b 

Ib =1+ 1m , -1I1+ k b 

Imi M. 
LbJQ b 

(2.24) 

Since the quantization operation always yields the same value for any given value of m, 

and O≤m<b there can be at most b different values for the error e. If values in the range 

0 ≤ .. < 1 are all quantized to the same value, then there will be exactly b unique values 

for e. For two's complement truncation, [V = 0 and there will be b unique values that 

e can take. For rounding, the values over the range ≤ < I will all be quantized to 

the same value. Thus, for rounding, there will be b unique values that e can take. With 

magnitude quantization, the quantization operation depends on the sign of the number. If 

the number range is divided into positive, and negative sections, it can be shown using the 

arguments above that there are b distinct error values possible for each section. Thus, for 

the entire range of values there can be 2b distinct values of e. 

2.4.2 Modeling Quantization Errors as Random Noise 

Although the quantization errors are a deterministic function of the input to the 

multiplier, and thus statistically related, they can, under some circumstances, be modeled 

as uncorrelated random noise. Let the input to the multiplier be a random variable X with 

a discrete probability distribution f(x). Note that X is a discrete random variable 

because the filter is a fixed point, finite precision system, and there is a finite set of values 

that X can take. Nothing is assumed about f(x) at this point. Since the error due to 
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quantization e is a function of x , it can be written as e = w(x). This is a many-to-one 

transformation. There are only b different values for e and it can be shown that 

w(x) = w(x + b) for two's complement truncation and rounding as follows: 

lb IQ b 

  1+—i ml — I ( I+ =1 
L bJQ ' b 

[mb]Q 
+—I b 

[mi m 

LbiQ b 

w(x +b) =[(x+b)] —(x+b) 

=[i+a+.] _(i+a+!) 

= i+a+[..] — I—a— f  

_lmi m 

Lb]Q b 

(2.25) 

(2.26) 

.. W(x) = w(x + b). 

This can be used to derive the probability distribution for e. The complete set of values 

that e can take is given by 

e0 = w(x0) 

el = w(x1) 

= w(x2) 

eb_l = w(xb...1). 

(2.27) 

Recall that e can take on only b distinct values. Note that in general e0 < e1 < ... e,_1 is not 

true. The probability that any given e will occur is equal to the sum of probabilities that 

an x yielding this e will be selected. Thus, 
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g(e0)= If(x0+nb) 
n—c 

g(e1)=f(x1+nb) 

n=--

g(e2) = I f(x2+nb) 

=I f(x i + nb). 
n=--

(2.28) 

It can be seen that the shape of g(e) depends on the shape of f(x), however simulations 

have shown that some statements can be made about the distribution of g(e) [12]. If the 

frequency spectrum of X is relatively wide and the probability distribution function jtx) is 

broad relative to the quantization step size so that several quantization levels are crossed 

between samples of X, then g(e) will be uniformly distributed over its possible range [ 12]. 

These are reasonable conditions for most practical systems. This model breaks down 

only when X has a limited dynamic range, or an unusual probability distribution function. 

In most cases, the quantization errors will appear as a uniformly distributed discrete 

probability distribution. 

2.4.3 Modeling Quantization Effects at the Output 

It was shown that the effects of quantization can be modeled as random noise sources 

added to the filter at the quantizing nodes. If the effects of noise sources due to 

quantizing multipliers can be referred to the output, then they can be compared to the 

output signal. Two methods of doing this will be considered. 
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In the first method, it is assumed that the quantization errors are white noise that is added 

to the system. White noise is defined as a signal with a zero mean and a uniform power 

spectral density function. The quantization noise is assumed to be uniformly distributed 

over some range [ 12]. Recall that when rounding is used, the noise will be uniformly 

distributed over the range —h/2 to h/2. When magnitude quantization is used, this range 

will be from -h to h. Two's complement truncation does not meet the requirement of 

having a zero mean as the errors are uniformly distributed over the range -h to 0. The 

noise power, or variance, associated with a rounding quantizer can be shown to be h2/12, 

while that associated with a magnitude truncation quantizer is h2/3 [12]. According to 

[12], the output noise power due to the white noise from the quantizers is given by 

= 

= a! I ( lg?(k)) 

where o represents the noise power at each quantizer and g1 represents the unit sample 

response from quantizer i to the output. The operator 11911, represents the 12 norm which 

is defined as 

ugh2 

(2.29) 

(2.30) 

Thus, the total noise power expected at the output of the filter is equal to the sum of the 

squares of the 12 norms from each quantizer to the output, multiplied by the noise power 

of the quantizers. It can be seen that a filter implemented using rounding quantization 

will have an output noise power that is expected to be only about a quarter of that found 

in the same filter implemented using magnitude quantization. The case of a filter that 

uses two's complement truncation is somewhat different. The noise power of two's 

complement truncation quantizers is equal to that of rounding qüantizers, yet noise due to 

such quantizers does not have a zero mean. The total set of quantization, errors due to 
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two's complement truncation is a subset of those due to magnitude quantization, however. 

Thus, it is expected that the noise at the output due to two's complement truncation 

quantizers will be somewhere between that of rounding and that of magnitude 

quantization. 

The estimate of output noise due to quantization is based on several assumptions about 

the nature of the signals. In particular, it is assumed that the quantization noise has a 

uniform distribution and that noise sources are uncorrelated. Because it is not possible to 

guarantee that this is true in all cases, the above estimate does not represent a guaranteed 

bound on the output noise. A guaranteed bound can be determined by considering the 

convolution summation of the filter response and the error signals. The signal at the 

output of the filter due to a single quantizer is simply the convolution summation of the 

quantization error and the unit sample response from the quantizer to the output. This is 

stated explicitly as 
It 

s1(n)_—g(n—j)e(j) (2.31) 
j=O 

where s (n) is the output due to quantizer i, gi is the unit sample response from quantizer 

i to the output and e (n) is the error signal due to quantizer i. The magnitude of the 

output is bounded as follows: 

≤ - j)e(j)I = I g(fl —J)lIe(J)I 
(2.32) 

≤ 
j=o 

where e represents the bound on the quantizer error. For rounding, this bound will be 

h/2 while for both magnitude quantization and two's complement truncation it will be h. 

Because the system is a linear, shift invariant system, the bound on the output due to all 

quantization noise sources will be the sum of the individual bounds 
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ls(n)I ≤ eg1(j). 
i j=O 

The above expression can be more compactly written as 

Is(n)I ≤ 

(2.33) 

(2.34) 

This bound is more pessimistic than the 4 norm bound, and tends to give overly 

conservative estimates. 

In this chapter, finite precision arithmetic was presented as were the effects of finite 

precision arithmetic. Ways in which these effects can be characterized were presented. 

In the next chapter, a special type of finite precision effect, the limit cycle, is presented 

and analyzed. Ways of eliminating and avoiding limit cycles are discussed and the 

bounds determined for limit cycles are compare to those determined for noise. 
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Chapter 3 

Limit Cycles 

In the previous chapter, finite precision arithmetic was introduced and it was shown that 

signal quantization can be modeled as noise that appears at the filter output. Product 

quantization can have other effects in recursive digital filters, including low level 

oscillations, termed limit cycles. Limit cycle oscillations can be particularly troublesome 

because they do not decay to zero and they are particularly difficult to characterize due to 

the non-linear operation of the quantization operations. Much work has been done to 

bound the amplitude of limit cycles [9, 13, 14, 15, 16, 17, 18, 19, 20]. Unfortunately, 

most of these bounds are for specific structures, such as wave digital filters, or are limited 

to second order sections. This chapter describes how limit cycles can occur in recursive 

digital filters. A general bound on the amplitude of limit cycles is derived and is 

compared to an earlier bound derived by Yakowitz and Parker [21] as well as the 4 norm. 

Lastly, a method for designing filters that do not exhibit limit cycles at the output is 

presented. 

3.1 How Limit Cycles Occur 

Limit cycles are undesirable self sustaining oscillations caused by quantization operations 

within the filter. Limit cycles are different from the filter's response to a driving function. 

A stable filter's response to a driving function may be oscillatory, but it will eventually 

decay to zero after the driving function has been removed. Limit cycle oscillations on the 

other hand, continue indefinitely, even after the driving function has been removed. 
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Consider the filter shown in Figure 3.1. The filter is assumed to be at rest initially. If the 

input sequence to this filter is given by u(n) = {5, 0,0,0,.. .}, then the ideal output will be 

as shown in Figure 3.2. The envelope of the ideal response approaches zero as n 

approaches oo. If the filter is implemented using finite precision arithmetic (integer 

arithmetic with two's complement truncation at the output of multipliers), then the output 

sequence will be as shown in Figure 3.2. It can be seen that the output is periodic with a 

period greater than one, not decaying and that the oscillations will continue indefinitely. 

The fact that the oscillations are periodic may be verified by examining the state of the 

filter over time. If the filter, under zero input conditions, reaches the same state twice, 

then the filter's response must be periodic. If the input sequence is changed to 

u(n) = {20, 0,0,0,.. .}, then the output sequences will be as shown in Figure 3.3. The 

ideal response is four times that of the previous input, while the output of the finite 

precision filter is radically different. Clearly, the non-linear nature of the quantization 

operations make limit cycles difficult to predict. 

u(n) -  Or y(n) 

Figure 3.1 - Fifth Order LDI Filter 



26 

4—. 

10 

-10 

40 

Ideal Response 

 Finite Precision Response 

L'' I''' ' I IllIlilIll 1111 1 1111 1 1 k 11 1 1111 

0 10 20 30 40 50 60 70 80 90 100 
Sample Time 

Figure 3.2 - Filter Output 
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Figure 3.3 - Filter Output' 
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3.2 Energy Functions and Limit Cycles 

According to classical mechanical theory, a vibrating system is stable if the total energy 

in the system is decreasing until an equilibrium level is reached [3]. For physical 

systems, the amount of energy in a system is a real, measurable quantity. This is also true 

for simple electrical systems, such as passive filters. For purely mathematical systems, 

such as digital filters, there is no energy to measure, at least, not in a physical sense. 

Thus, while a digital filter may be constructed based on an analog prototype, the 

operation of the filter cannot be expressed in terms of energy like the prototype. The 

Russian mathematician, A.M. Lyapunov [3] introduced the concept of the Lyapunov 

function, a fictitious measure of energy, to describe mathematical systems in terms 

similar to physical systems. This allows the concepts of energy to be extended to purely 

mathematical systems. In fact, energy as defined for physical systems, represents a 

Lyapunov function for the system. In this discussion, when the term energy is applied to 

digital filters, it is a reference to the fictitious energy defined by the Lyapunov function 

for the filter in question. 

A Lyapunov function is defined as a scalar function V(x) which is positive definite and 

V(x.,1) - V(x) is negative definite for all n., where x is the state of the discrete time 

system [3]. If such a function exists, then the system is stable. Conversely, if a LSI 

system is stable, then a Lyapunov function must exist for it [22]. 

Consider a recursive discrete time filter under zero input conditions. The state transitions 

can be completely characterized by the autonomous state equation 

x,,+1 =Ax. (3.1) 
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Provided A has unique eigenvalues, a Lyapunov function can be defined as [9] 

V(x) = 11T'x112 (3.2) 

where Il•Il2 is the Euclidean norm and T is the matrix of eigenvectors of A and x 

represents the state of the system. The function defined by (3.2) is positive definite. As 

well, V(x +1) - V(x), is negative definite, as follows: 

V(x +1) = V(Ax) = IIT'AxII2 

= IIT1ATT'xIL 

= IIAAT'xn 112 

≤IJAAIIJT " 11'x II2 _IMIV(xfl) 

if MI <1 

(3.3) 

where AA is the diagonal matrix of eigenvalues of A, and ?M is the eigenvalue of A with 

the greatest modulus. 

The quantization operations inherent in digital filters can affect the energy in the filter. 

Quantization causes the state of the filter to change from the ideal state to, some 

representable state. Because there is an energy level associated with each point in the 

state space, this change in the state corresponds to a change in energy level. The change 

in energy level can be positive or negative, and this depends on both the filter's state and 

the type of quantization used. Thus, while an ideal stable filter will always have a 

decreasing level of energy, the finite precision version may have an increasing energy 

level, because of the effects of quantization. Figure 3.4 shows the energy levels as 

defined by (3.2) in response to the input sequence u(n) = {20, 0,0,0,.. .} for the ideal and 

finite precision versions of the filter shown in Figure 3.1. It can be seen that the ideal 

version has an amount of energy that asymptotically approaches zero while the finite 

precision version has an energy level that increases, and then oscillates indefinitely. 
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Figure 3.4 - Energy versus Time 

With V(x) defined in (3.2), it can be shown, that the maximum change in energy due to 

quantization is given by [9] 

(3.4) 

where 1u1 is the largest eigenvalue of the matrix (r')'r', and p is the length of the 

largest movement in state possible due to quantization. Since limit cycles can only occur 

in regions where quantization can increase the energy in the filter, limit cycles will be 

confined to the region where the change in energy due to quantization is as large as or 

larger than the loss in energy from one state to the next in the ideal filter. Outside this 

region, the filter's loss in energy will be greater than any possible addition of energy due 
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to quantization and limit cycles cannot occur because the energy is always decreasing. 

Stated mathematically, limit cycles can only occur in the region where 

V(x) - V(x 1) ≤ Le (3.5) 

In order to simplify notation, rewrite V(x) as 

V(x) = Jx'Sx (3.6) 

where S = (T_1)*T_1. The change in energy from one state to the next, can then be 

written as 

V(x) - V(x +1) = V(x) - V(Ax) 

= Jx'Sx - Vx'A'SAx 

Thus, limit cycles can only occur in the region where 

Jx'Sx - -Jx'A'SAx ≤ Ae. (3.8) 

Consider a second order system with two's complement quantizers located at the states 

and a state transition matrix given by 

(3.7) 

A= 
0.6797 0.5546 

-0.5590 0.9922 
(3.9) 

The maximum length of movement in the state space due to quantization is p = V [9], 

while the greatest eigenvalue of S has a modulus equal to 1.3901. Thus, the greatest 

change in energy due to quantization is equal to 1.67. Figure 3.5 shows a contour plot of 

V(x) - V(x +1) for the region around the origin. The dotted line is the curve 

corresponding to the contour V(x) - V(x +1) = 1.67. Any limit cycles that occur, must 

occur within this region. Unfortunately, while Le is easy to compute, it is difficult to 

determine the curve where iJx'Sx - Vx'A'SAx ≤ Ae. This can be done graphically for 

second order systems, but is computationally difficult to obtain for higher order systems. 
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Figure 3.5 - Change in V(x) versus State for Second Order Filter 
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3.3 A General Limit Cycle Bound 

A linear shift invariant digital filter can be described by the state difference equations [8] 
x +1 = Ax + Bu 

(3.10) 
yn = Cx,, + du,,. 

The quantization of any signal in the digital filter implementation is a non-linear 

operation which can be exactly modeled as an additive error input [10]. That is, the 

quantization of signal g(n) results in a digital signal (n) where 

g(n) = Q[g(n)] (3.11) 

or 

(n) = g(n) - e, (n), Ie8(n)I <h (3.12) 

where h is the quantization step size. Thus, a finite precision recursive digital filter can 

be modeled as a linear shift invariant system with multiple inputs; 

Xn+1 +Bu' +BE 
A (3.12) 

y,, = C A " +du,, ±1)E,, 

where E,, is a vector of additive error sources, Beis a matrix describing the gain from the 

error sources to the states, and De is a similar matrix describing the gain from the error 

sources to the output. Since only the signals due to the quantization operations are of 

interest, the principle of superposition can be applied and the input u,, can be set to zero. 

If the filter input is set to zero, the state transition equation becomes 

= Ak,, + BEE,,. (3.14) 

If the filter is assumed to be initially at rest (i.e io= 0), the state vector i,, is given by 
'I 

= n-j n >0. (3.15) 
j=1 

In this discussion, the same notation given in [21] is used. If W and W' are both real 

vectors, then W<W' means that each element of W is less than the corresponding 

element of W. If W is a matrix, then (W) denotes the matrix formed by taking the 
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absolute value or modulus of each element in W. If E is bounded such that (En) ≤ E, 

then 
JI 

(xv) = ( Afl 1JBeEn) ≤ (A)(Be)E. (3.16) 

Let AA be a diagonal matrix of distinct eigenvalues of A and T be a matrix of the 

eigenvectors such that 

AT = TAA (3.17) 

If this is the case, then 

= T1  AA' JT_1 (3.18) 
i=O \ i=O 

and 

≤ (T)(AA )(T 1) = (T)((AAi))(T') (3.19) 

Because AA is a diagonal matrix of eigenvalues, it can be shown that 

0 0 ••• 0 

0 (i—l.a21)' 0 •.. 0 

0 . 0 (i-I;I)' ... 0 

• ..: (i—)' 

where N is the system order. In order to simplify notation, let 

f(AA)=(AA ) 

Thus, 

(AJ) ≤ (T)f(AA)(T'). (3.22) 
j=o 

(3.20) 

(3.21) 

Combining (3.16) and (3.22) yields the closed form bound 

(;K,,):5 (T)f(AA)(T')(Be)E. (3.23) 

The quantization error signals observed at the output will be bounded in amplitude by 

(yn) ≤.(C)(A)(Be)E + (DC)E (3.24) 
j=o 
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which can be written in closed form as 

(y,,):5 (C)(T)f(A )(T' )(BC)E + (D)E. (3.25) 

Together (3.23)-(3.25) are termed the General Bound (GB), because they allow bounds 

on quantization errors to be computed for any filter. The term closed formed GB refers to 

(3.23) and (3.25), while the term iterative GB refers to the iterative expressions (3.22) and 

(3.24). 

If the quantization operations are performed at the states, then the state transition equation 

is given by 

=A +E. (3.26) 

This is equivalent to setting Be in (3.14) equal to the identity matrix, I. Because (I) = I, 

(3.23) and (3.25) simplify to 

(X,, ) :!g (T)f(AA)(T')E (3.27) 

and 

(y,,):5 (C)(T)f(AA)(T')E+(De)E (3.28) 

respectively. Note that (3.27) and (3.28) are identical to ( 15) and (17) reported in [21] 

(Yakowitz and Parker). Thus, (3.27) and (3.28) will be referred to as the Yakowitz-

Parker (YP) bound. The YP bound is a special case of the GB reported here. 

34 Comparing the General Bound to the li Norm 

In Chapter 2, the l norm was introduced as a means of bounding quantization errors. In 

this section, the 1 norm will be related to the GB, and the YP bound. The 1 norm is the 

summation of the absolute values of the unit sample response of the filter due to input 

error signals modeling the effects of quantization. The time domain response of the filter 

is given by [8] 
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Thus, 

11)eEn ifn=0 
yn = + DeEn. 'n>0 

(3.29) 

IYnI≤ 1 (CA'Be)E+(DC)E (3.30) 
j=O 

for all n. By examining (3.30), it can be seen that it provides a tighter bound on than the 

iterative General Bound because 

(CAiBe)E + (DC)E ≤ (C)((AJ))(Be)E + (De)E. (3.31) 

The 1 norm also provides a tighter bound than the closed form General Bound (and 

hence the Yakowitz-Parker bound) because 

(c)(i (A1 )J(Be)E + (D )E ≤ (C)(T)f(AA )(r' )(Be)E + (De)E (3.32) 
1=0 

and hence 

(CAJBC )E + (D6)E ≤ (C)(T)f(AA )(r' )(B)E + (De)E. (3.33) 
j=0 

Thus, the 1 norm provides a tighter bound on the magnitude of limit cycles than both the 

iterative and closed form General Bound. The General Bound, however, has the 

advantage of providing a closed form solution, which the 1 norm does not. 

3.5 Convergence 

One difficulty associated with using the 11 norm or the iterative General Bound is 

determining the number of iterations required for convergence. This problem can be 

addressed by using the Lyapunov function defined in Section 3.2. It was shown that 

V(Xn+i) ≤ I.2MIV(xfl) (3.34) 
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where I2.MI is the eigenvalue of A with the largest modulus. This can be extended to 

show that [9] 

and 

Recall that 

V(xfl+k) ≤I2MIV(Xfl) 

asn—oo. 

V(x)=Vx TSx. 

(3.35) 

(3.36) 

(3.37) 

and it can be shown that S is a real symmetric matrix [9]. Thus, S can be decomposed as 

follows [9]: 

S = QA5QT (3.38) 

where Q is an orthogonal norm-preserving real matrix of normalized eigenvectors of S 

and A. is the diagonal matrix of real eigenvalues of S. This can be used to define a new 

coordinate system 

so that 

v = QTx 

V(x)2 = X'SX = XTQASQTX = vTAsv 

= + IV. Jil' +. . 

(3.39) 

(340) 

where p1,i2,• . •,/i,, are the eigenvalues of S [9]. Thus, V(x) = K describes an n-

dimensional hyper-ellipse, where n is the order of the filter. 

As well, V(x) has the important property 

V(ax) = aV(x) (3.41) 

where a ≥ 0, because 



37 

V(ax) = IIT-'H  
V(T-1 aX)T(T-'a-x) 

= Ja 2 (T-'x)'(T-'x) 

= a j(r1x)T(r1x) 

= aIjT'xH = cxV(x). 

(3.42) 

The summations in both the iterative GB and the l norm are equivalent to summing the 

absolute values of the unit sample response of the filter [2]. When computing the unit 

sample response of a filter, the filter is assumed to be initially at rest. At time n=O, the 

unit sample occurs, and as n -> 00, the filter states and output asymptotically approach 

zero. Let the value of the Lyapunov function immediately after the impulse has occurred 

be given by 

V(x1)=K. (3.43) 

When n>O, the output of the filter is given by 

y,=Cx,,. (3.44) 

Because y is a scalar, (3.44) can be considered the dot product of the vectors CT and x. 

Refer to ,Figure 3.6 for a graphical representation. Note that although the figure 

represents the second order case, this discussion is not limited to second order filters. Let 

X the point on the curve V(x1) K that yields the largest possible value of y. No 

assumption is made as to whether x1 is actually equal to x, but because xrepresents the 

point on the curve V(x1) = K that yields the maximum possible output, we can say 

and in general 

Iy1I ≤ 

lyni 

(3.45) 

(3.46) 

Using (3.45) and (3.46), after n iterations, the point that at which the maximum output 

can occur is given by 

X ≤ IMI xc. (3.47) 
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x2 

Figure 3.6 - Geometry of V(x) 

The maximum possible output that can occur is thus given by 

≤ Cx ≤ IMIICXiI. 
If the maximum possible output is denoted by y 

IyI = Cxl. 
This leads to 

I, lyni I.2MI Cxii VMIfl-i 
iyi iCxii 

(3.48) 

(3.49) 

(3.50) 
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After N iterations, the envelope of the unit sample response is less than I'MI1YmaxJ 

Thus, 

Iy1I ≤ Yrnaxi 
Iy2I ≤ I2MIIYmax 
Iy3I ≤ P'MIIYmaxI 

IYnI ≤ !MIIYmaxI 

(3.50) 

The error after N iterations will be equal to the difference between the infinite summation 

and the finite summation as given below: 

error = 11y.1 — IYI = (3.52) 

Furthermore, 

tlynl ≤ 1"M 1̀ lYmaxi = IYmxII2MI (3.53) 
n=N n=N n=N 

and 

I.2 MI = IMI = I.2MJ - iIMI (3.54) 
n=N-1 n0 n=O 

It can be shown that [23] 

and 

1  
(3.55) 

n=o 1I2 MI 

N-2 1—I.aMI N—I 

ii=0 1 I2 MI 

Thus, (3.52), (3.53), (3.54), (3.55) and (3.56) can be combined to show that 

(3.56) 

Ih1.MI N—i 
(3.57) error :5 IYmaxI111 

This yields an expression that can be used to determine the maximum error in the 

summation after N iterations. It is necessary to compute ly. 1 and this can be done in a 

straightforward fashion. Recall that 
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Yrnax  Xt = CT . 

= IIC 92 II'41L cos 0 
≤JJCT 112 IkiII2 

(3.58) 

where 0 is the angle between CT and x [24]. Since the 12 norm has the property of 

distance in a Euclidian space, Ilx1I2 will be less than or equal to the length of the longest 
axis of the n-dimensional hyper-ellipse. With V(x) defined as (3.40), the length of the 

longest axis is given by V(X [23] where /i is the eigenvalue of S which has the 

smallest square root. Because S is a positive definite symmetric real matrix, all of its 

eigenvalues will be positive real numbers [9]. Thus, 

Ymax IlCTH V(x1) (3.59) 

The number of iterations required to compute the summation with an error less than a 

specified value can be determined by rearranging (3.57) to yield 

In  - IM I)error  ') 
N=  (3.60) 

1fl(IaM I) 
Computing N iterations will guarantee that the error in the summation is less than the 

value specified. 

3.6 Examples 

The General Bound developed in the preceding sections has been applied to the fifth 

order Chebychev lowpass LDI filter [9] shown in Figure 3.7 and the sixth order Elliptic 

bandpass LDI filter [25] shown in Figure 3.8. 

The fifth order Chebychev filter has a quantization operation located at the input of each 

state. The results of computing the closed form GB, the iterative GB and the l norm are 

summarized in Table 3.1. It can be seen that the closed form GB yields the poorest 

bound, while the iterative GB and the 4 norm yield equivalent results. This is expected 
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because C = I and Be = I. Note that because of the location of the quantization 

operations, the closed form GB is equivalent to the YP bound. The iterative results 

required 49 iterations for the summations in the 1 norm and the iterative GB to converge 

with an error of less than 0.01. Table 3.1 also includes results reported in [9] for this 

particular filter. It can be seen that both the iterative GB and the 1 norm provide tighter 

bounds than those reported in [9] for states S1,S3,S5 and the output. 

Input 

Figure 3.7 - Fifth Order Chebychev Lowpass LDI Filter 

Table 3.1 - Quantization Error Bounds for Figure 3.7 

Output 
> 

State Closed Form GB Iterative GB 11 norm Green/Turner Bound [9] 

Si 26 10 10 32 

S2 34 16 16 10 

S3 35 15 15 22 

S4 53 16 16 13 

S5 54 14 14 33 

Output 54 14 14 33 

The sixth order elliptic filter has quantization operations located at the outputs of the 

multipliers. The results of computing the closed form GB, the iterative GB and the 

norm are summarized in Table 3.2. It can be seen that the closed form GB provides the 
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poorest bound while the ! norm provides the tightest. The iterative results required 94 

iterations for the summations in the 11 norm and the iterative GB to converge with an 

error of less than 0.01. Note that the method reported in {9} is not applicable to filters 

with the quantization operations located anywhere but the states and thus is not applicable 

to this filter. 

Figure 3.8 - Sixth Order Elliptic Bandpass LDI Filter 

Table 3.2 - Quantization Error Bounds for Figure 3.8 

State Closed Form GB Iterative GB 1 norm 

Si 97 35 24 

S2 151 71 48 

S3 117 49 32 

S4 138 55 36 

S5 138 55 36 

S6 97 35 24 

Output 267 108 42 
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3.7 Using the Limit Cycle Bound 

The limit cycle bounds given above can be used to create filter implementations 

guaranteed to be free from limit cycles at the output. Suppose the sixth order elliptic 

band pass filter depicted in Figure 3.8 is to be implemented. For the purposes of this 

example, assume that the filter will use two's complement truncation for quantization of 

the products. According to the 1 norm, limit cycles (and quantization noise) will be no 

greater than 42 times the quantization interval at the output. Thus, any limit cycle 

oscillations will be limited in magnitude to the six least significant bits of the output 

word. If the input to the filter is shifted left by six bits, and the output shifted right by six 

bits, then no limit cycle oscillations will be present at the filter output. Note that it is 

possible for limit cycle oscillations to occur inside the filter, but these oscillations will not 

be observable at the output of the filter. Further, because the 4 norm bounds all forms of 

quantization noise, quantization will not introduce more than one bit of error in the filter 

output. 

Although the filter can be scaled such that limit cycles and quantization noise are not 

observable at the output, a penalty in the form of increased wordlength must be paid. In 

the above example, the filter's internal wordlength would have to be increased by six bits. 

Whether this is feasible or not depends upon the technology used to implement the filter. 

For bit serial systems, the filter's internal wordlength may be much greater than the data 

input wordlength due to the nature of bit serial implementations [26]. If this is the case, 

the necessary extra bits are already present, and it is simply a matter of correctly scaling 

the input and output. Many modern DSP chips such as the Motorola 56000 use thirty-

two bit arithmetic for integer operations. Data words this large often allow effective 
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scaling so that overflows do not occur and limit cycles and noise are not present at the 

output. In all cases, however, whether or not the extra wordlength required for scaling is 

available depends upon the technology used to implement the filter and the application at 

hand. 

3.8 Filter Structure and Limit Cycles 

In the derivation of the GB it was shown that the error due to quantization depends on the 

structure of the filter, and not just the transfer function of the filter. Thus, changing the 

structure of the filter will change the bounds for limit cycle oscillations. 

Consider the filter shown in Figure 3.9. The filter is implemented using integer 

arithmetic, and two's complement truncation with the quantizers located at the states. The 

iterative GB for the quantization errors seen at output of this structure is equal to 12. If 

the filter is rearranged as shown in Figure 3.10, the iterative GB at the output is 3. 

Although the two systems have the same transfer function, they will behave differently 

because of the effects of finite precision arithmetic. If the two structures are examined 

strictly in terms of limit cycle oscillations, then the second structure is superior, as the 

magnitude of any possible limit cycles is lower. Other finite precision effects must also 

be considered however. The first filter requires three extra bits of wordlength to prevent 

overflow, while the second requires four bits. The total wordlength, to prevent overflow 

and to prevent limit cycles from appearing at the output is lower for the second structure. 

Therefore, it is the preferable implementation, from the point of view of wordlength 

required. Although different filter structures can implement the same transfer function, 

they may display very different performance when implemented using finite precision 
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arithmetic. Limit cycles, along with other aspects of finite precision arithmetic must be 

carefully considered when implementing digital filters. 

>€<  

V 
0.2000 

04000 

Figure 3.9 - Third Order LDI Filter 

y(n) 
> 

u(n) - y(n) 

Figure 3.10. Rearranged Third Order LDI Filter 
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Chapter 4 

Discrete Time Sinusoids 

Many digital signal processing applications such as digital radios, satellite 

communication systems, modems, frequency analyzers and laboratory equipment require 

discrete time sinusoids. Because of the quantized nature of these digital systems, true 

discrete time sinusoids cannot be generated. Rather, digital approximations to discrete 

time sinusoids are used. These digital approximations to discrete time sinusoids will be 

termed digital sinusoids. Although the term is not strictly accurate, it is a convenient way 

of describing the digital approximations and use of this term does not introduce any 

errors or ambiguities into the discussion. This chapter is concerned with ways of 

generating digital sinusoids in real time. There are two main categories of digital 

oscillators, those in which the sinusoid is computed ahead of time and stored in .a look-up 

table and those in which an algorithm is used to compute the sinusoid as it is generated. 

The performance, advantages and disadvantages of each method are examined. 

4.1 ROM Based Oscillators 

One method of generating a fixed point digital approximation to a discrete time sinusoid 

is to use a phase accumulator in conjunction with a read only memory (ROM) [2]. A 

discrete time sinusoid is a sine function of a time varying phase. The phase increases 

linearly with respect to time and can be viewed as a straightforward addition operation, in 

which the phase is incremented at each sample time. The digital hardware required to 

implement this is an accumulator. The most straightforward method of implementing the 



47 

sine function is to use a look-up table method in which the phase is used as an index into 

a table of sinusoid values. This is implemented in hardware as a ROM in which the 

phase is the address and the data stored in the ROM is the sinusoidal value corresponding 

to each phase. This is shown schematically in Figure 4.1. This structure is used in many 

commercially available digital sinusoidal oscillators [27, 28, 29]. 

Phase 

Phase 

+ 

Increment 

bO 

Phase Accumulator 

ROM 

Lookup 

Table 

Figure 4.1 - ROM Oscillator 

Sine output 

/ > 
b2 

One advantage of oscillators of this type is that their performance is easy to characterize. 

Let the width of the phase accumulator (in bits) be. denoted by b0. The frequency of 

oscillation will be given by 

(4.1) 

where N is the phase increment (an integer value) and F is the sample frequency of the 

oscillator. The normalized frequency of oscillation is given by 

(4.2) 2b0 
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Note that this type of oscillator can operate at frequencies up to one half of the sample 

frequency. The resolution with which the frequency can be set is determined by the 

width of the phase accumulator, b0. The interval between possible frequencies is given 

by 

Af0 =—xF (4.3) 

If the maximum the frequency can be in error is one bit at the phase accumulator input, 

then the maximum error in the sinusoidal frequency is given by Af0. 

The variations in amplitude in the ROM output can be viewed as noise added on top of 

the sinusoidal signal. Because the ROM values are computed in advance, the maximum 

error that they will have is less than one least significant bit. Thus, the noise added will 

always be less than one least significant bit for any sample and will be bounded by 

IeI <  (4.4) 

where e. When le,,j is expressed in dB, it is termed spectral purity [27]. This oscillator 

structure is interesting in that the errors in frequency and amplitude are completely 

separate; they are controlled by different elements within the oscillator circuitry. 

4.1.1 Example 

The HSP45 106 [27] is an example of a commercially available ROM based digital 

sinusoidal oscillator. Implemented in single chip form, it features sample rates of up to. 

40 MHz, both sine and cosine outputs with spectral purity greater than -90 dB, and 

frequency resolution of less than 0.01 Hz at 40 MHz operation [27]. 
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The phase accumulator is 32 bits wide in the HSP45 106. This yields a frequency 

resolution of 0.0093 Hz at a 40 MHz sample rate, according to (4.3). The outputs are 16 

bits, thus according to (4.4) the magnitude of the maximum error at the output is 

30.52 x 10 or -90.3 dB. These figures agree with those published by the manufacturer. 

4.1.2 Practical Concerns 

One limitation of this type of oscillator is the large ROM size required. The ROM size is 

given by 

ROM size = b2 x 2 b1 (4.5) 

Because 

sin(p) = —sin(q + ir) = sin(ir— q) = —sin(2ir— (p) (4.6) 

ROM size can be reduced by storing only one quarter of the sinusoid and computing the 

output value for each sample. ROM size can also be reduced by only storing a limited set 

of values in the ROM and computing the output using interpolation. Both of these 

methods require extra hardware, but the cost of this is often offset by the savings in 

reduced ROM size. Interpolation will reduce the accuracy of the output. 

It can be seen' that ROM based digital sinusoidal oscillators offer high performance that is 

easily characterized. The greatest drawback of this method is the large amount of ROM 

storage required for the look-up table. 

4.2 Algorithmic Oscillators 

Sinusoidal oscillators can also be designed using second order discrete time systems. 

Consider the second order transfer function 
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The poles are located at 

O(z)_  N(z)  

1(z) z2+cz+l 
(4.7) 

_b±11b2_4 
Pi,2 - 2 (4.8) 

It can be shown that if —2 < b < 2, then the poles will be complex conjugates located on 

the unit circle. The unit sample response of a filter with two complex conjugate poles on 

the unit circle will be sinusoidal and the oscillations will continue indefinitely [2]. The. 

frequency of oscillation is given by the angle of the poles, and the phase of the oscillation 

is determined by the zeros of the transfer function [2]. 

4.2.1 Direct Form Oscillator 

A straightforward way of implementing a filtet with poles on the unit circle is to use a 

second order direct form (DF2) section [ 10] as shown in Figure 4.2. The difference 

equation is given by [30] 

y = by.-, — y,,-2. (4.9) 
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> y(n) 

y(n-1) 

T 

y(n-2) 

Figure 4.2 - Direct Form Oscillator 

If the delay corresponding to y..1 has its initial condition set to one and the otherdelay is 

set to zero, then the z transform of the signal y will be 

(4.10) 

which is equivalent to a time domain sinusoid with a frequency given by [2] 

0T'= cos-1 (k2 (4.11) 

provided that —2 < b < 2. If b is outside this range, then the response will be a hyperbolic 

sinusoid which will grow without bound [31]. 

This structure is suited for use as an oscillator because the poles are always on the unit 

circle, even when the coefficients are quantized. The poles are given by 

P1,2 = ± —4. (4.12) 

With —2< b <2, 1p,, = 1, meaning that even though the value of b will change slightly 

when it is quantized, the quantization will not move the poles off of the unit circle. 
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4.2.2 Practical Concerns 

There are two major practical problems with the DF2 oscillator, both related to finite 

precision arithmetic effects. The first concerns coefficient sensitivity. If the coefficient 

is assumed to be a finite precision, fixed point number, then the number of values it can 

assume is limited. From (4.12) it can be seen that the real part of the pole locations are 

equal to b/2 and that the poles are always on the unit circle. The frequency of oscillation 

is given by the angle between the pole and the real axis, which is equal to cos-'(b/2)-

Poles near the positive z axis correspond to low frequencies, while those on the imaginary 

axis correspond to a frequency of QOT = 7r/2 or 4 samples per sinusoidal cycle. 

Unfortunately, the possible pole locations are not uniformly distributed around the unit 

circle. Figure 4.3 shows the possible pole locations for the oscillator with four fractional 

bits for the coefficient. It can be seen that there are fewer poles near the positive real axis 

and more near the imaginary axis, meaning that there are fewer coefficients 

corresponding to low frequencies. Thus, the high sensitivity to coefficient quantization at 

low frequencies requires that the number of fractional bits for the coefficients be 

increased, increasing filter size and cost. 
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++ 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
real 

Figure 4.3 - Pole Locations for DF2 

The second difficulty is caused by signal quantization. Because the oscillator will be 

implemented with finite precision arithmetic, the signals within the oscillator will be 

quantized and this can cause changes in the amplitude and frequency of oscillation 

[30, 32]. Several solutions to this problem have been proposed. One method suggested 

in [2] is to reset the oscillator to its initial conditions every mn samples where -- = 
mF 

The drawback of this method is that it requires external hardware and does not address 

the problem of the errors which build up before the reset occurs. Another solution 

proposed in [30] is to select initial conditions and coefficients which guarantee that the 

oscillator is absolutely periodic and of known period length. Unfortunately, this is a trial 

and error procedure and is only feasible for oscillators with small word length and a small 



54 

number of fractional bits in the coefficient. Other structures have been proposed [32, 33] 

which attempt to reduce the errors inherent in the structure, but none can guarantee the 

continued operation of the oscillators. 

4.2.3 Normal Form 

In addition to the DF2 structure, other second order systems with poles on the unit circle 

can be used to construct sinusoidal oscillators. A second order normal form structure is 

shown in Figure 4.4. 

yl(n) 

V 

y2(n) 

Figure 4.4 - Normal Form Oscillator 

For this structure, the pole locations are given by 

P1,2 = a±jb. (4.13) 

Since the poles must be exactly on the unit circle for the circuit to oscillate indefinitely, 

a2 + b must equal one exactly. If a2 +b <1, then the response will be a decaying 

sinusoid which will asymptotically approach zero. If a2 +b > 1, the response will grow 

without bound. Because of coefficient quantization, it will be virtually impossible to find 
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quantized values for a and b that yield the desired frequency of operation and exactly 

satisfy a2 + b2 = 1. Thus, this structure is not suited for use as a sinusoidal oscillator. 

4.2.4 Wave Digital Oscillator 

Another possible way of generating a second order digital structure with poles on the unit 

circle is to create a wave digital filter from an analog prototype. Because wave digital 

filters are mapped from the continuous domain into the discrete domain using the bilinear 

transform [34, 35], an analog prototype with two poles on the imaginary s-plane axis will 

yield a discrete time circuit with poles on the unit circle. The circuit shown in Figure 4.5 

is such a circuit and it can be shown that the poles are located at ±j  in the s-plane. 

The resonant frequency of this circuit is determined by the pole location, and will be 
1 

0)0 = 

The analog prototype is converted to a digital circuit by describing the propagation of 

voltage waves within the circuit and expressing these as digital signals according to the 

technique described in [35]. This yields the digital circuit shown in Figure 4.6. 

The coefficients msl and ms2 are given by 

2T2  
msl = 

T2+4LC 

8LC  
ms2 = 

T2+4LC 

where T is the inverse of the sample frequency of the discrete time system. 

(4.14) 
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to 

t%• 

Figure 4.5 - Analog Prototype 

-msl -ms2 

Figure 4.6 - Wave Digital Oscillator 

The frequency of oscillation of the analog prototype is given by wo which 

2 
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If the poles of this structure are to be located on the unit circle, then (1— msl - ms2) must 

equal -1 exactly. Ideally, 1 -ms l-ms2 will equal - 1, but in practice, when rnsl and ms2 are 

quantized their values will change and this will cause the poles to move off of the unit 

circle. With the poles not exactly on the unit circle, the amplitude of oscillations will not 

remain constant. Therefore, this structure is unsuited for use as an oscillator. 

4.4 The LDI Oscillator 

Another method of creating a digital circuit from an analog prototype is using the lossless 

discrete integrator (LDI) transform [36]. The circuit shown in Figure 4.5 can be 

described by the voltage-current signal flowgraph shown in Figure 4.7. 

-1 

Figure 4.7 - Analog Prototype 

i(t) 

This analog circuit is transformed to a digital circuit by replacing the continuous 

integrators (equal to with lossless discrete integrators [36] as shown in Figure 4.8. 

1 1 

Z 1 •  
This is equivalent to making the substitution - - [36]. 

S T 
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 > v(n) 

T TIL 

2 

Figure 4.8 - Transformed Analog Prototype 

i(n) 

The half delay elements can be eliminated by signal flowgraph manipulation as shown in 

Figure 4.9. Note that the LDI transformation is an exact one in this case, because there 

are no lossy elements [36]. 

The relationship between continuous and discrete time frequencies is given by [36] 

T=2sin'I 
coT) 

so that the frequency of oscillation is 

_j  T  " = _1(aT ≥0T=2sin i2sin I-
2[Lë ) 2 

(4.16) 

(4.17) 
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>v(n) 

T 

-TIC 

A 

i(n-T12) 

Figure 4.9 - LDI Oscillator 

The state transition matrix for this system is given by 
1—ab b 

A= 
—a 

where a = and b = I . The characteristic equation is given by 

(4.18) 

D(z)z2—(2—ab)z+1. (4.19) 

The fact that the last term in (4.19) is always unity indicates that when the poles are 

complex conjugates, they will fall exactly on the unit circle. The pole locations are given 

by 

- (2—ab)±-J(2 — ab)2 4  
p1,2 2 (4.20) 

The poles will be complex conjugate pairs when 

I2—abk2 (4.21) 

or 

0<ab<4. (4.22) 
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If the same quantization scheme is used, there is a greater number of possible pole 

locations for the LDI oscillator than for the DF2 oscillator due to the fact that there are 

two multipliers in the LDI oscillator as opposed to one for the DF2, resulting in a greater 

number of possible stable coefficients. If coefficients with four fractional bits are used 

and a and b are equal, then the poles will be distributed as shown in Figure 4.10. From 

this, it can be seen that there are many more possible pole locations near the point z = 1, 

thus a large number of low frequency oscillations can be implemented. 

1 

0.8 

0.6 

0.4 

0.2 

-0.6 

-0.8 

gill 11111 11111 T*.F 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
real 

Figure 4.10 - Possible Pole Locations for LDI Oscillator 
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4.5 Oscillator Theory 

According to classical oscillator theory, an oscillator can be viewed as a frequency 

selective network connected in a feedback configuration [37]. Such a structure is shown 

in Figure 4.11. 

i(n) 

B(U))  H:  
Figure 4.11 - General Feedback Oscillator 

The output of the oscillator is denoted by o(n) and the input (an impulse to start the 

oscillations) is given by i(n). If sinusoidal oscillations are to be sustained, the gain 

around the loop must be unity and the phase shift around the loop zero at the frequency of 

oscillation [37]. According to [37], this condition holds even if the frequency selective 

network includes non-linear elements, provided the effect of the non-linearities are not 

too great. In classical oscillator theory, it is assumed that the effects of the non-linearities 

do not dominate the circuit operation and that the circuit operates almost like a linear 

circuit. If a gross non-linearity is included, then the output will be far from sinusoidal. 

This same method will be used to analyze the LDI oscillator. First, the oscillator will be 

treated as an ideal circuit, free from non-linear quantization operations. Next, the effects 

of the quantization operations will be modeled under the assumption that the behaviour of 

the circuit does not differ greatly from the ideal circuit. 

Assuming that the circuit is ideal, the oscillations will occur at the frequency where 
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B(w) =1. (4.23) 

The LDI oscillator can be implemented in the form shOwn in Figure 4.11 if the frequency 

selective network is drawn as shown in Figure 4.12. This is the LDI oscillator redrawn 

with the feedback loop broken at the output of the forward Euler integrator. Assume that 

ideal arithmetic is used. This means that linear analysis techniques can be used. The 

transfer function of the oscillator is given by 

O(z)_ 

where 

1(z) 1—B(z) 

B(z)=—ab (z z 1)2 * 

HTH 

Figure 4.12 - LDI Frequency Selective Block 

(4.24) 

(4.25) 

Sinusoidal oscillations will occur when B(z) = 1. First, consider the phase of B(z), given 

by 
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arg{B(e)] = arg —ab (e - 1)2] 

= arg[—ab] + arg[e'] - arg[(e - 1)] 

= ir+fT-2arg[cos≤2T-1+j sin ≤TT] 

=7r+≤T+2tan Icot T— 
' 2 

h 
= r+T+2i r QT 

2 2 

(4.26) 

=2,r. 

The phase shift is always 2ir, provided 0< ab < 4. This leads to this important 

conclusion that the frequency of oscillation is determined solely by the 'magnitude 

characteristic of B(z). The magnitude response of the frequency selective section is given 

by 

Ie'I 
= ab 

- 1)21 

ab (cosT - 1)2 + T (4.27) 

—a 2-2cosT 

The frequency of oscillation, CIOT is the point at which the magnitude response is unity. 

Thus, the frequency of operation can be solved for as follows: 

IB(e jII.T) = 1 
ab 1  —1 (4.28) 

2-2cos≤ 0T 

_(2 - ab  
≤0T=cos I 

This is equivalent to (4.17) as follows: 
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f20T=cos 1 I ( 2— ab  

cos(9 0T) = 2— ab 
2 

cos( 0T) = 1— ab 

ab - 1— cos(920T) 
2 

ab = 2 sin 
lI 

2 2) 

srn • (cl0T\ 
- I 
2J 2 t  

≤0T=2sin I 
2) 

T=2 sin-   
1 2/L 

(4.29) 

The next step is to consider the effects of implementing the oscillator using finite 

precision arithmetic. For this discussion, it will be assumed that the quantizers are 

located at the outputs of the multipliers and that the quantization operations will be 

magnitude truncation, rounding or two's complement truncation. The frequency selective 

network implemented using finite precision arithmetic is shown in Figure 4.13. 

Figure 4.13 - Model of Finite Precision Frequency Selective Network 
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It is assumed that the amplitude of the signals in the circuit are many times greater than 

the quantization step size. Because the amplitude of the signals are many times greater 

than the quantization step size, the circuit will be assumed to operate in an almost linear 

fashion. If the amplitude of the signal in the oscillator is not sufficiently large then this 

model can no longer be considered valid. 

Because the phase shift through the frequency selective network is independent of the 

coefficients chosen, the phase shift will be equal to 2it, even if multiplier outputs are 

quantized. This means that the quantizing operations will affect only the gain of the 

frequency selective network, and not the phase. 

Consider the effects of using magnitude quantization. This reduces the magnitude of the 

output of the multiplier. Figure 4.14 shows the bounds on the output of a quantizing 

multiplier driven by a sine wave. 

Ideal 

  Lower Bound 

- - - Approximation 

Sample Time 

Figure 4.14 - Sinusoid After Magnitude Quantization 
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With a magnitude quantizing multiplier, the actual output will fall somewhere in between 

the ideal output and the lower bound given by the dotted line. For this analysis, assume 

that the output of the magnitude quantizing multiplier will be a sinusoid with an 

amplitude that falls between the ideal amplitude and the maximum lower bound value. 

Thus, the worst case quantization error will be approximated by the dotted line labeled 

"approximation" in Figure 4.14. 

This approximation allows the effects of the non-linear quantization operation to be 

modeled as another multiplier in series with the original multiplier. The value of this 

multiplier is determined by the magnitude of the waveform being quantized. With 

magnitude quantization, the maximum the signal can be reduced by is one quantization 

interval, given by h. If the amplitude of the ideal output is given by X, then the amplitude 

of the approximation to the worst case output will be given by 

X  - jr). (4.30) 

If V and I are the amplitudes of the two quadrature outputs (taken from the forward and 

backward integrator respectively), the amplitude of the signals, at the output of the 

quantizing multipliers are given by 

and 

(4.31) 

(4.32) 

respectively. This leads to an expression for the gain of the frequency selective network 

when the approximation to the worst case quantization is used, namely 
1  

k\ VbJ Iab(l )2-2cosf2T 

This in turn yields an estimate for the worst case frequency of oscillation 

(4.33) 



67 

" 2—ab(1_h/Vb)(1_h/ 
QO T = cos'  a)] 

2 
(4.34) 

Thus, the actual frequency of operation of the LDI oscillator implemented with 

magnitude quantizing multipliers is expected to fall between the ideal frequency, 920T, 

and the estimated worst case frequency, 9207. Notice that the worst case estimate for the 

frequency of oscillation will be lower than ideal frequency because (i - <1 and 

(1— 1) < 1. Also note that the expressions for the worst case frequency are only valid 
Ia) 

when Vb >> h and la >> h. This condition is met however, when values of V and I are 

chosen to be many times greater than the quantization interval, as stated before. 

4.5.1 Example 

An implementation of the LDI oscillator using magnitude quantization was constructed to 

test the above estimate for the worst case frequency of oscillation. The oscillator was 

implemented using the Texas Instruments TMS32O1O and was created such that a=b and 

V—I. The testing was performed with the oscillator operating in real time and generating 

digital outputs which were converted to analog signals. Table 4.1 lists the ideal 

frequency of oscillation, the actual measured frequency and the estimate for the worst 

case frequency fOr a variety of coefficients and signal magnitudes. In all cases, where 

Vb>>h and Ia>>h the actual frequency of oscillation falls in between the ideal frequency 

and the estimated worst case frequency. 
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Table 4.1 - Ideal, Worst Case and Actual Frequencies of Oscillation 

V,I 
Coefficient (a=b) 

0.1000 0.2000 0.3000 0.4000 0.5000, 
4 0.0159 

* 
0.0319 
* 

0.0479 
0.0080 
0.0300 

0.0641 
0.0239 
0.0400 

0.0804 
0.0399 
0.0700 

8 0.0159 
* 

0.0319 
0.0119 
0.018 

0.04793 
0.02789 
0.0400 

0.0641 
0.0440 
0.0530 

0.0804 
0.0600 
0.074 

16 0.0159 
0.0060 
0.0100 

0.0319 
0.0219 
0.0259 

0.0479 
0.0379 
0.0421 

0.0641 
0.0540 
0.0560 

0.0804 
0.0702 
0.0802 

32 0.0159 
0.0109 
0.0140 

0.0319 
0.0269 
0.0300 

0.0479 
0.0429 
0.0460 

0.0641 
0.0590 
0.0634 

0.0804 
0.0753 
0.0804 

64 0.0159 
0.0134 
0.0150 

0.0319 
0.0294 
0.0300 

0.0479 
0.0454 
0.0479 

0.0641 
0.0616 
0.0641 

0.0804 
0.0779 
0.0804 

128 0.0159 
0.0147 
0.0150 

0.0319 
0.0306 
0.0319 

0.0479 
0.0467 
0.0479 

0.0641 
0.0628 
0.0641 

0.0804 
0.0792 
0.0804 

256 0.0159 
0.0153 
0.0159 

0.0319 - 
0.0313 
0.0319 

0.0479 
0.0473 
0.0479 

0.0641 
0.0635 
0.0641 

0.0804 
0.0798 
0.0804 

512 0.0159 
0.0156 
0.0159 

0.0319 
0.0316 
0.0319 

0.0479 
0.0476 
0.0479 

0.0641 
0.0638 
0.0641 

0.0804 
0.0801 
0.0804 

1024 0.0159 
0.0158 
0.0159 

0.0319 
0.0317 
0.0319 

0.0479 
0.0478 
0.0479 

0.0641 
0.0639 
0.0641 

0.0804 
0.0803 
0.0804 

Each table entry lists ideal, worst case and actual frequency in that order. An asterisk 
indicates that the model is not valid for this entry because Vb, Ia are not >> h. 

Figure 4.15 shows the frequency versus magnitude curve for a single set of coefficients. 

From this graph, it can be seen that as the signal magnitude (effectively the word length) 

increases, both the actual frequency of oscillation and the estimated worst case frequency 

approach the ideal frequency. This is what is expected to occur because as the word 

length increases, the effects due to quantization are reduced. As the word length 

increases to infinity, the errors will approach zero. It can be seen that the model 

suggested above is consistent with this idea. Further, it can be seen that the model 

predicts lower frequencies of operation when magnitude quantization is used. Again, this 
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is consistent with what is expected. The multipliers are connected directly to the 

integrators. The multiplier output represents the change in the value of the integrators for 

each cycle. Magnitude quantization tends to reduce the magnitude of this change, which 

corresponds to a reduction in frequency. The model proposed yields results which are 

consistent with this notion as well. Because the model is consistent with these qualitative 

arguments and the observed behaviour of the prototypes match this model, this model 

will be used to estimate the worst case frequency of operation for a given set of 

coefficients and initial conditions. 
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Figure 4.15 - Frequency Bounds versus Signal Magnitude 

4.5.2 Rounding Multipliers 

As in the case of magnitude quantizing multipliers, rounding multipliers can decrease the 

magnitude of the signal being multiplied, but unlike magnitude quantizing multipliers, 

they can also increase it. This will lead to an estimate for an upper bound on the 
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frequency, as well as a lower bound. Consider the effect of quantizing a sine wave by 

rounding. The result will be bounded as shown in Figure 4.16. There will be both an 

upper bound and a lower bound. 

Ideal 

Lower Bound 

  Lower Approximation 

  Upper Bound 

- - Upper Approximation 

Sample Time 

Figure 4.16 - Output of Rounding Multiplier 

If the amplitude of the ideal output is X, the amplitude of the lower bound will be X-h12. 

Thus, the amplitude of the sinusoidal approximation to the lower bound will be given by 

X(1 - --- 1. (4.35) 
' 2X} 

Likewise, the amplitude of the approximation to the upper bound will be given by 
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X 1+ h ( (4.36) 
2X) 

Using the same arguments as in the previous section, expressions for both the upper and 

lower frequencies of operation can be derived. The expression for the lower frequency 

bound, denoted by 92,T is given by 

"2— ab(1 - hl /b)(1.... h/21a) 
= cos-' 

IN 

2 

while OUT, the upper frequency bound is given by 

"2_ab(1+V2Vb)(1+h/2Ja) 
QuT = cos-' 

4.5.3 Example 

2 
I 

(4.37) 

(4.38) 

As before, a prototype oscillator was constructed using the, TMS32O1O to test the 

proposed model. In this case, the oscillator was implemented using rounding as the 

quantization scheme and the coefficients were chosen such that a=b and V—I. Table 4.2 

lists the ideal frequency of oscillation, the estimated' minimum and maximum 

frequencies, as well as the actual measured frequency of oscillation. It can be seen that in 

all cases, where Vb>>h and Ia>>h the measured frequency of operation falls in between 

the upper and lower frequency estimates. 
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Table 4.2 - Ideal, Upper, Lower and Measured Frequencies of Oscillation 
V,I Coefficients 

0.100 0.200 0.300 0.400 10.500 
4 0.0159 0.0319 0.0479 0.0641 0.0804 

* * 0.0279 0.0439 0.0600 
* * 0.0682 0.0845 0.1012 
* * 0.0455 0.0714 0.0703 

8 0.0159 0.0319 0.0479 0.0641 0.0804 
* 0.0219 0.0379 0.0540 0.0702 
* 0.0419 0.0580 0.0743 0.0907 
* 0.0333 0.0453 0.0624 0.0769 

16 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0109 0.0269 0.0429 0.0590 0.0753 
0.0209 0.0369 0.0530 . 0.0692 0.0856 
0.0172 0.0319 0.0453 0.0624 0.0779 

32 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0134 0.0294 0.0454 0.0616 .0.0779 
0.0184 0.0344 0.0504 0.0666 0.0830 
0.0160 0.0319 0.0476 0.0624 0.0804 

64 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0147 0.0306 0.0467 0.0628 0.0791 
0.0172 0.0331 0.0492 0.0654 0.0817 
0.0160 0.0319 0.0476 0.0639. 0.0804 

128 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0153 0.0313 0.0473 0.0635 0.0798 
0.0165 0.0325 0.0486 0.0647 0.0811 
0.0160 0.0319 0.0479 0.0641 0.0804 

256 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0156 0.0316 0.0476 0.0638 0.0801 
0.0162 0.0322 0.0482 0.0644 0.0808 
0.0160 0.0319 0.0479 0.0641 0.0804 

512 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0158 0.0317 0.0478 0.0639 0.0803 
0.0161 0.0320 . 0.0481 0.0643 0.0806 
0.0160 0.0319 0.0479 0.0641 0.0804 

1024 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0158 0.0318 0.0478 0.0640 0.0804 
0.'0160 0.0320 0.0480 0.0642 0.0805 
0.0159 0.0319 0.0479 0.0641 0.0804 

Each table entry lists ideal, worst case upper, worst case lower and actual frequency in 
that order. An asterisk indicates that the model is not valid for this entry because Yb, Ia 
are not >> h. 
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4.5.4 Two's Complement Quantization 

If two's complement truncation operations are placed at the outputs of the multipliers, the 

result will be similar to that of placing rounding quantizers at the multiplier output. That 

is, there will be an upper and a lower bound on the magnitude of the signals at the 

multiplier outputs, and hence an upper and a lower bound on the frequencies of 

oscillation. Consider the effect of quantizing a sine wave by two's complement 

truncation. The result will be bounded as shown in Figure 4.17. 
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Sample Time 

Figure 4.17 - Output of Two's Complement Truncation 
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If the amplitude of the ideal output is X, the amplitude of the lower bound will be X-h. 

Thus, the amplitude of the sinusoidal approximation to the lower bound will be given by 

x(i - A)- (4.39) 

Likewise, the amplitude of the approximation to the upper bound. will be given by 

( Xi 1+ h —). (4.40) 

Using the same arguments as before, expressions for both the upper and lower 

frequencies of operation can be derived. The expression for the lower frequency bound, 

denoted by c21T is given by 

-1(2  ab(1 - -  

= 

while 92UT, the upper frequency bound is given by 

- ab(1+ hl .•h,4 
niT = cos' 

4.5.5 Example 

2 
I 

(4.41) 

(4.42) 

A prototype oscillator was constructed using the TMS32010 to test the proposed model. 

In this case, the oscillator was implemented using two's complement truncation as the 

quantization scheme and the coefficients were chosen such that a=b and V=I. Table 4.3 

lists the ideal frequency of oscillation, the estimated minimum and maximum 

frequencies, as well as the actual measured frequency of oscillation. It can be seen that in 

all cases where Vb>>h and Ia>>h, the measured frequency of operation falls between 

the upper and lower frequency estimates. 



75 

Table 4.3 - Ideal, Upper, Lower and Measured Frequencies of Oscillation (Two's 
Complement) 

V,I Coefficients 
0.100 0.200 0.300 0.400 0.500 

4 0.0159 0.0319 0.0479 0.0641 0.0804 
* * 0.0080 0.0239 0.0399 
* * 0.0887 0.1054 0.1224 
* * 0.0556 0.0555 0.0820 

8 0.0159 0.0319 0.0479 0.0641 0.0804 
* 0.0119 0.0279 0.0439 0.0600 
* 0.0520 0.0682 0.0845 0.1012 
* 0.0294 0.0500 0.0625 0.0820 

16 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0060 0.0219 0.0379 0.0540 0.0702 
0.0259 0.0419 0.0580W 0.0743 0.0907 
0.0151 0.0334 0.0465 0.0625 0.0806 

32 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0109 0.0269 0.0429 0.0590 0.0753 
0.0209 0.0369 0.0530 0.0692 0.0856 
0.0168 0.0325 0.0476 0.0625 0.0807 

64 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0134 0.0294 0.0454 0.0616 0.0779 
0.0184 0.0344 0.0504 0.0666 0.0830 
0.0162 0.0321 0.0476 0.0639 0.0807 

128 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0147 0.0306 0.0467 0.0628 0.0791 
0.0172 0.0331 0.0492 0.0654 0.0817 
0.0160 0.0320 0.0479 0.0639 0.0804 

256 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0153 0.0313 0.0473 0.0635 0.0798 
0.0165 0.0325 0.0486 0.0647 0.0811 
0.0160 0.0320 0.0479 0.0640 0.0804 

512 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0156 0.0316 0.0476 0.0638 0.0801 
0.0162 0.0322 0.0482 0.0644 0.0808 
0.0160 0.0320 0.0479 0.0641 0.0804 

1024 0.0159 0.0319 0.0479 0.0641 0.0804 
0.0158 0.0317 0.0478 0.0639 0.0803 
0.0161 0.0320 0.0481 0.0643 0.0806 
0.0159 0.0319 0.0479 0.0641 0.0804 

Each table entry lists ideal, worst case upper, worst case lower and actual frequency in 
that order. An asterisk indicates that the model is not valid for this entry because Vb, Ia 
are not >> h. 
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4.5.6 Limitations and Observations 

The above model has been developed as a means of predicting the performance of the 

oscillator when implemented with finite precision arithmetic. While the model has been 

shown to realistically predict the performance of the oscillator, several points should be 

kept in mind. First, it was assumed that the linear operation of the oscillator would 

dominate. That is, the sinusoidal oscillation represents the major component of the signal 

in the oscillator. It has been observed that if the magnitude of the oscillations is many 

times greater than the quantization interval, then this will indeed be the case. Secondly, 

the proposed model attempts to approximate the behaviour of a non-linear system with a 

linear system. This is a fairly loose approximation, and should not be considered a 

rigorous analysis. Thus, while the bound has been observed to realistically model the 

performance of the oscillator, it can in no way be considered a guarantee of performance. 

Although a rigorous guarantee of this model's correctness cannot be provided, several 

arguments can be made in favour of using this model. The first argument is that the 

phase shift through the frequency selective network does not depend on the multipliers. 

Thus, the multiplier values will affect only the magnitude response. The quantization 

effects will change the frequency of operation by changing the magnitude response of the 

frequency selective section, but not the phase. This allows the effects of quantization to 

be modeled as a simple change in the magnitude response of the frequency selective 

section This analysis takes advantage of the unique structure of the LDI oscillator and 

cannot be extended to include other structures discussed in this thesis, such as the DF2. 

Secondly, this model presumes that the linear mode' of operation dominates the 

oscillators' operation. This has been seen to be the case in all prototypes constructed 

provided that the amplitude of oscillations is many times greater than the quantization 

interval. Thirdly, the model makes quantitative predictions about the behaviour of the 
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• oscillator that agree with qualitative arguments about its behaviour. Lastly, the model has 

been shown to agree with the performance of actual. prototypes. Thus, based on these 

arguments, it is felt that the model presented allows approximations to the worst case 

performance to be computed, although these approximations cannot, and should not be 

considered rigorous guarantees of performance, or of -the continuing oscillation of the 

circuit. 
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Chapter 5 

Implementation of A Digital Sinusoidal Oscillator 

In this chapter, the design of a high precision audio frequency digital sinusoidal oscillator 

suitable for use in a laboratory or test setting is discussed. To this end, it is required that 

the oscillator produce sinusoids up to 50 kHz selectable in at least 0.5 Hz increments, that 

the oscillator have an output word length of at least 16 bits, that the implementation use 

no more than a single chip for the digital section, and that an easy to use interface be 

included. 

In the previous chapter, two different methods of approximating discrete time sinusoids 

were presented: pre-computed lookup tables and second order structures with poles on the 

unit circle. Because these structures are so varied, it is not a simple matter of using the 

"best" one to implement a sinusoidal oscillator because each will have different strengths 

and weaknesses. Of the second order structures presented, the wave digital oscillator and 

the normal form oscillator can be eliminated immediately because they were shown to be 

unfeasible when finite precision arithmetic is used. For the remaining structures, the 

strengths and weaknesses of each must be considered relative to the oscillator 

requirements. 

Facilities for fabricating the oscillator were made available by the Alberta 

Microelectronic Centre. The Actel A1280 field programmable gate array (FPGA) was 

provided, along with computer and programming services. The A1280 is a one time field 

programmable logic device consisting of 608 combinational modules and 624 sequential 
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modules which can be combined in an arbitrary fashion [38]. The combinational 

modules are used to implement combinational logic functions while the sequential 

modules are used to implement flip flops of various types. These can be combined to 

achieve a total of 998 flip flops. A maximum of 140 110 pins are available and the 

manufacturer claims speeds of up to 33 MHz for a 16 bit accumulator. It is based on 

these device characteristics that the decisions regarding implementation of the oscillator 

will be made. 

5.1 Selecting a Structure 

In the previous section, three different structures were found to be feasible for 

implementing digital sinusoidal oscillators. These are the ROM based lookup table 

method, the DF2 oscillator, and the LDI oscillator. Each of these will be examined with 

respect to the requirements stated above and the available hardware. 

5.1.1 Frequency Range 

The first requirement that needs to be met is that the oscillator must be capable of 

generating audio frequency sinusoids. With the ROM based oscillator, the limiting 

factors on the speed of operation are the speed of the accumulator and the speed of the 

ROM. With the Actel A1280, the maximum speed of the device is given by the 

manufacturer as 33 MHz for a 16 bit accumulator. This fast enough to construct both an 

accumulator and a ROM which allow the oscillator to operate in the audio frequency 

range. In general, the parallel structure of the ROM based oscillator lends itself to high 

speed operation, as is the case here. Because the ROM based oscillator uses parallel 
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arithmetic, it can generate a single output per clock cycle. This allows sample 

frequencies in the tens of megahertz, well above the states requirements. 

The DF2 and LDI structures must be approached somewhat differently. Because these 

oscillators require more complex arithmetic than the ROM based oscillator, special 

consideration must be given to the size of the arithmetic elements. In particular, parallel 

multipliers are known to be simply too large to fit on a chip such as the A1280 [25]. Bit 

serial arithmetic, in which computations are performed one binary digit at a time, on the 

other hand, yield structures Which are compact enough to fit on an A1280 [25, 26, 39]. It 

is also known that bit serial systems can easily be constructed which operate in the audio 

range [25, 39]. Further, a well characterized design system, allowing automated synthesis 

of digital hardware from a signal flowgraph exists [40]. With these facts in mind, it is 

decided that the DF2 and the LDI oscillators will be implemented using bit serial 

arithmetic if chosen. This will allow these systems to operate in the audio frequency 

range while fitting on a single A1280 part. 

5.1.2 Frequency Resolution 

All three structures, the ROM based oscillator, the DF2 oscillator and the LDI oscillator 

can operate in the audio frequency range. The next requirement to be considered is the 

frequency resolution of 0.5 Hz. Before this requirement can be examined in detail, it is 

necessary to select a sample frequency. In theory, it is possible to recover a band limited 

continuous signal from 'a discrete time signal up to the Nyquist rate or the half sample 

frequency [41]. Thus, it is theoretically possible to construct a digital sinusoidal 

oscillator with a sample frequency of 100 kHz and exactly recover continuous sinusoids 

of 50 kHz using an ideal lowpass reconstruction filter. Unfortunately, ideal lowpass 
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filters cannot be constructed. A practical analog filter can be used for reconstruction 

however if the sample frequency is greater than the Nyquist rate [ 12]. With this in mind, 

the sample frequency was specified as being three times the Nyquist rate, a typical value 

for most practical systems [2]. This means that a 50 kHz sinusoid will be generated with 

six samples per cycle of the sinusoid and that the sample frequency will be 300 kHz. 

According to the relations derived in the Chapter 4, the ROM based oscillator requires a 

20 bit phase accumulator. This could be constructed on the A1280 part, and could be 

made to operate at 300 kHz. Thus, achieving a frequency resolution of 0.5 Hz is not a 

problem using the ROM based structure. 

The frequency resolution of the DF2 oscillator is determined by the coefficient word 

length of the multiplier. The oscillator was shown to be most sensitive to the coefficient 

at low frequencies. Using the relations derived in Chapter 4, a frequency resolution of at 

least 0.5 Hz at a sample frequency of 300 kHz over the entire frequency range requires 34 

fractional bits for the coefficient. 

The frequency resolution of the LDI oscillator is also determined by the number of 

fractional bits in the coefficient. It is assumed that both coefficients in the oscillator will 

be equal. This is beneficial from the standpoint of signal scaling as the magnitude of the 

signals in both the forward and backward integrators will be the same. As well, there will 

be an almost linear relationship between coefficient value and output frequency because 

for small values of ≤0T, sin(DOT) 0T. To achieve a frequency resolution of 0.5 Hz 

with a sample frequency of 300 kHz, it is necessary to have at least 17 fractional 

coefficient bits. This is a feasible size of multiplier, and much smaller than the 34 bit 

multiplier required by the DF2 oscillator. 



82 

5.1.3 Implementation Size 

The requirement that the oscillator output be 16 bits wide dictates the size of the ROM 

for the ROM based oscillator. If the entire 20 bits of the phase accumulator are used as 

the index into the ROM and the output is 16 bits wide, then 16 megabits of ROM are 

required. Memory elements on gate array style chips require at least one flip flop per bit 

of storage. The A1280 has an absolute maximum of 998 flip flops, far short of the 16 

million required. If the number of points in the sinusoid stored in the ROM is reduced, 

the ROM based oscillator be made to fit on the A1280. Assuming that all 998 flip flops 

are available for storing the sine wave, only 62 data points can be stored. If only one 

quarter of the sinusoid is stored on the chip, and the entire wave computed from these 

values as described in the previous chapter, it is only possible to have 248 sample per sine 

wave period; too few to be acceptable at lower frequencies. Note that this estimate 

assumes that the entire A1280 is devoted to the look up table. This estimate neglects the 

fact that extra circuitry is required for the phase accumulator and the user interface. The 

size problem could be circumvented if external ROM chips were used, but this was 

deemed unacceptable as the final oscillator is to occupy only a single chip. 

Both the DF2 and the LDI oscillators have wordiengths greater than 16 bits. This is 

because the wordlength of the bit serial systems must be at least as long as the latency, or 

number of bit times required to compute an output, of the multiplier. This corresponds to 

a minimum 52 bit system word length for the DF2 oscillator and a minimum 28 bit 

wordlength for the LDI oscillator. A 16 bit output can be derived from the serial word, 

simply by converting the 16 most significant bits to parallel format and discarding the 

least significant bits. 



83 

5.1.4 The Choice 

The RUM based oscillator can be removed from further consideration because it cannot 

fit on a single A1280 chip. Although it is capable of operating at much higher speeds 

than the bit serial oscillators, this is not a requirement for this application. All that 

remains is to decide between the DF2 and LDI structures. It has been shown that both 

can be constructed to meet the specifications listed at the beginning of the chapter. There 

are several additional factors to consider. First, the DF2 oscillator is known to have 

stability problems [30, 32]. While these problems can be corrected with methods which 

force the stability, these methods require external hardware to implement. As well, some 

require trial and error searches of the state space, something not feasible for a system with 

a 52 bit word length. On the other hand, the LDI oscillator prototypes described in 

Chapter 4 did not exhibit stability problems. The model developed in the previous 

chapter predicts that the frequency of oscillation will be stable within 23p Hz for a 

sample frequency of 300 kHz. This corresponds to an accuracy of 73.6 x 10 parts per 

million. In actual practice, it is not likely that the oscillator will operate with the degree 

of accuracy. The chip will be driven by a crystal master clock, and the accuracy of this 

master clock determines the accuracy of the oscillator. Typical crystal oscillators used in 

digital systems have accuracy's in the order of ten's of parts per million [42, 43] causing 

the frequency variation to be greater than the predicted 23 pHz. As well, the LDI 

oscillator requires a smaller coefficient word length than the DF2, and hence a shorter 

signal word length, reducing the circuit size. A further advantage of the LDI structure is 

that it automatically generates quadrature signals, that is both sine and cosine terms. It is 

based on these arguments that the LDI oscillator structure was chosen to implement the 

oscillator as specified at the beginning of the chapter. 
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5.2 Implementing the LDI Oscillator 

Now that the LDI oscillator structure has been selected, it is necessary to determine the 

most efficient means of implementing it. As stated before, bit serial arithmetic will be 

used in the implementation. The principle of bit serial arithmetic is to perform arithmetic 

operations one bit at a time, producing a result one bit at a time [26]. Thus, a single wire 

can carry an entire signal, regardless of wordlength. There are several ways in which the 

LDI oscillator can be implemented if bit serial arithmetic is used. These are: 

• two multipliers with no multiplexing 

• one multiplier with no multiplexing 

• one multiplier multiplexed two ways 

• one multiplier implementing a difference equation. 

Each of these structures will be evaluated. 

5.2.1 Two Multipliers - No Multiplexing 

The LDI oscillator can be implemented with two multipliers simply by replacing the 

components in Figure 4.9 with their corresponding bit serial equivalents as shown in 

Figure 5.1. This figure shows the main components of the circuit, excluding control 

signals. Since the A1280 does not have a global reset to each flip flop, some 

multiplexors must be included to break the feedback loops and allow initial conditions to 

be set. In the above diagram, m represents the latency of the multiplier. In the previous 

section it was found that a minimum of 17 fractional bits were required for the desired 

frequency resolution. 
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With the addition of a sign bit, a total of 18 bits of coefficient word length is required. 

The multipliers used have a latency equal to 28 bit clock cycles. The total latency around 

the main loop of the oscillator must be equal to one word, therefore one word must be no 

shorter than 59 bits. While it is feasible to construct the oscillator this way, the word 

length is much longer than it needs to be. 

5.2.2 One Multiplier - No Multiplexing 

A straightforward solution to the problem of excessive word length is to simply remove 

one multiplier from the circuit shown in Figure 5.1. This leads to the circuit shown in 

Figure 5.2. It can be verified that this circuit, which is equivalent to setting the T/L 

coefficient to one, will still function as desired, provided O<T/C<4. 

The minimum word length for this structure is equal to 31 bits. This is certainly more 

compact than the previous structure. Unfortunately, this leads to a problem of signal 

scaling. The signal in the backward integrator will always be greater in amplitude than 

that in the forward integrator. This will require either that the word length be increased to 

prevent overflow or that the dynamic range of the cosine signal be reduced. Neither of 

these options are particularly desirable. Further, the differences in signal magnitude will 

change as the multiplier coefficient changes which is highly undesirable. 

5.2.3 One Multiplier Multiplexed 

The advantages of the one multiplier solution, namely short wordlength and low 

hardware requirements, can be combined with the desirable signal scaling characteristics 

of the two multiplier solution by multiplexing a single multiplier. 
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One such structure that can be used is shown in Figure 5.3. This structure was developed 

by Peter Graumann and L. E. Turner. The multiplexors in the system allow the initial 

conditions to be set explicitly, and also allow the multiplier to be shared between the two 

integrators in the circuit. Typically, multiplexing a multiplier will reduce the throughput 

of a bit serial system [39]. For this particular multiplexing scheme, the wordlength is 34 

bits. Thus, one output will be generated every 68 bit times, a slightly longer time than is 

required by the two multiplier solution. The amount of hardware required is comparable 

to that of the one multiplier solution. Thus, this system retains the signal scaling 

advantages of the two multiplier solution while having the compact size of the one 

multiplier solution. The drawback is that the speed of operation is reduced. 

5.2.4 One Multiplier Difference Equation 

It is possible to simplify the implementation of the oscillator by using the unique 

structure of the LDI oscillator. The difference equation for the LDI oscillator is written 

as 
T 

1,1+1 = ln +_jVn 

T. 72 

lI+1 = l, —• l LC 

but can also be rearranged as 

(5.1) 

(5.2) 

This implies that i and v.1 can be computed sequentially. A simple structure to 

implement this is shown in Figure 5.4. 
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Figure 5.4 - Difference Equation Structure 

With the above structure, the multiplier coefficient must alternate between _T/c and T/L 

on alternate word times. The output will be equal to v and i on alternate word times as 

well. The above structure is shown assuming that the multiplier has no latency or delay. 

In fact, the bit serial multiplier has a latency associated with it. The structure shown in 

Figure 5.5 accounts for this and allows a bit serial implementation to be constructed. 
-TIC, TIL 

Figure 5.5 - Modified Difference Equation Structure 

This structure can easily be translated into a bit serial implementation as shown in Figure 

5.6. 
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Figure 5.6 - Bit Serial Difference Equation Implementation 

The minimum wordlength of this system is determined by the latency of the feedback 

loop through the multiplier as before, and is equal to 30 bits. Because two complete word 

times are required to generate an output, a total of 60 bit times are required for each 

output. Note that the delay element inside the dotted box is included in the multiplier unit 

and does not need to be constructed separately. 

Figure 5.7 summarizes the size and speeds of the various bit serial implementations. The 

x axis lists the number of bit times required to generate a single word or sample at the 

output while the y axis lists the estimated size in Actel logic modules. Note that the size 

estimate does not include control circuitry, coefficient storage or input and output 

circuits. It is reasonable to assume that these sections will be similar for each 

implementation. A 20 MHZ clock was chosen as the maximum acceptable bit rate. This 

speed can be achieved in a straightforward fashion with a gate array such as the A1280. 

While higher speeds are possible given sufficient fine tuning of the circuit, it was decided 
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to avoid this if possible. If a 300 kHz sample rate is to be achieved, then a single sample 

can take no longer than 66 bit times to be generated. Thus, any acceptable solution must 

be to the left of the dotted line at 66 bit times, as shown in Figure 5.7. 

600 
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j 200 

2MULT • 

MUX'ed MULT 

1 MULT. 

. 
Difference Eqn 

1111 1 1 111 1111 iii.oil 1111 111 1 111 1 I 

0 10 20 30 40 50 60 70 
Bit Times per Output 66 

Figure 5.7 Size and Speed Comparison 

It can be seen that the thultiplexed one multiplier solution, which requires 68 bit times to 

generate each sample, exceeds this limit. While it may be possible to fine tune this 

circuit to achieve the desired throughput, this is unnecessary as alternative solutions exist. 

The fastest implementation is the one multiplier solution. This solution was deemed to be 

unacceptable, however, because of the variations in signal amplitude throughout the 

circuit that are inherent in this design. The two remaining choices are the difference 

equation implementation and the two multiplier solution. It can be seen that the 

difference equation solution offers almost the same speed as the two multiplier solution, 

yet requires less than half as much hardware. Clearly, this is the optimal choice for 
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implementation because it offers acceptable speed with the most compact hardware. The 

difference equation solution was used in the final implementation on the A1280 device. 

5.3 Implementation Details 

In addition to the bit serial circuit shown in Figure 5.6, several other components were 

required for a complete implementation. Some means of generating and storing the 

oscillator coefficients is required, as is a user interface. 

In order to simplify coefficient storage, it was decided that the coefficients should be 

fixed such that -TIC = TIL. There are several advantages to doing so. First, this ensures 

that the amplitude of both the sine and cosine waveforms will be equal, regardless of the 

coefficient values. Secondly, only a single coefficient needs to be stored. The other 

coefficient can be simply and efficiently generated by computing the negative of the 

stored coefficient. This reduces the size of the coefficient unit. 

The coefficients of the oscillator determine the frequency of oscillation and the structure 

of the coefficient unit is dictated by the user interface. Therefore, the user interface must 

be specified before the coefficient unit can be completely design. 

It was decided that the user interface would consist of an input for setting the frequency 

range, increment and decrement push buttons and fine increment and decrement push 

buttons. The frequency range control is used to select the initial operating frequency 

from a limited number of choices. The increment and decrement as well as the fine 

increment and decrement controls are used to adjust the frequency of oscillation. In the 

final implementation, the frequency range control was a 5 bit bus, allowing 32 different 



94 

frequency ranges to be selected. It was decided to divide the frequency ranges into 32 

coarse increment and decrement divisions. This allows frequencies to be specified to 

within approximately 0.1% full scale range using only the range control and the coarse 

increment and decrement. As well, this accuracy can be achieved with a single range 

selection and no more than 16 presses of the increment or decrement controls. The fine 

increments were defined to be the smallest amount of change possible (i.e. one least 

significant bit) of the coefficient. 

This form of interface led to the structure for storing and generating coefficients shown in 

Figure 5.8. This structure is based on a recirculating loop with a length equal to the 

system word length to ensure synchronization. The loop is broken with a multiplexor to 

allow the frequency range to be set. The coefficient for the initial frequency range is 

simply the 5 bit range input connected to the most significant fractional bits of the 

coefficient word. The control for the multiplexor, as well as the oscillator reset circuitry, 

is connected to the 5 bit input through a state machine so that the entire oscillator is reset 

whenever the range setting changes. The increment and decrement controls are 

connected to state machines so that whenever one of these buttons is pressed, an 

appropriate value is added to or subtracted from the value stored in the recirculating 

register. 

During the schematic capture and simulation phase of construction, it was found that 

significant amounts of space remained available on the A1280. It was decided to increase 

the signal word length from 30 bits to 32 bits. The maximum expected speed of 

operation of the circuit is 20 MHz; a 32 bit word length allowed a maximum sample rate 

of 312.5 kHz. Because the bit serial multipliers cannot represent coefficients greater in 

magnitude than one, the frequency of oscillation is limited to one sixth the sample 
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frequency. This yields a maximum sinusoidal frequency of 52.1 kHz, slightly greater 

than that originally specified. The extra two bits of wordlength increase the accuracy of 

the oscillator without reducing the speed unacceptably. 

The remainder of the extra chip space was used to construct a frequency counter. This 

allows the user to set the frequency of oscillation without using an external frequency 

counter. The counter functions by counting the number of rising edge zero crossings in a 

tenth of a second time period. The number of such transitions is equal to ten times the 

frequency in kHz. An display driver, capable of driving.seven segment LCD and LED 

displays was included in the final chip implementation. As the frequency counter was not 

considered to bean essential part of the circuit, it was felt that making the counter 

accurate to 0.1 kHz was acceptable. 

Both the sine and cosine Outputs of the oscillator are brought out in parallel format. 

Because many 110 pins were available, it was decided to make the outputs 18, rather than 

16 bits wide. This allows the use of high precision D/A's to be used in conjunction with 

the oscillator. In addition, a format control allowing the output to be in either two's 

complement or offset binary format was included to allow a broad range of D/A's to be 

connected to the oscillator. 

The circuit described above was programmed into the Actel A1280 device. In order to 

simplify testing, a printed circuit board containing the oscillator and user interface, 

including an LCD display for the frequency counter and two D/A's with reconstruction 

filters was constructed. 
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5.4 Testing and Performance 

Coefficient 
 No-

The oscillator was tested using the Hewlett-Packard Structural Dynamics Analyzer 

(SDA) to measure the spectrum of The oscillator output. Because 12 bit D/A's are used, 

the spectral purity is expected to be no greater than 66 dB. 
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The output spectrum of the oscillator operating at 1.6 kHz with a bit clock rate of 20 

MHz is shown in Figure 5.9. Figure 5.10 shows the output spectrum for the oscillator 

operating at 14.0 kHz. Other tests were conducted with the oscillator operating at 

frequencies of 3.1 kHz, 4.7 kHz, 6.2 kHz and 9.3 kHz. In all cases, the spectral purity of 

the output is 66 dB. This implies that the accuracy of the oscillator is limited by the 

D/A's. 

A low frequency test, with the oscillator operating at 0.8 Hz was performed as well. The 

output spectrum for this test is given in Figure 5.11. It can be seen that the spectral purity 

is 66 dB at this frequency as well. 

Because the SDA has a bandwidth of only 25 kHz, the full range of the oscillator could 

not be tested. In order to test the operation of the oscillator at high normalized 

frequencies, the 20 MHz bit clock was replaced with an 8 MHz bit clock. This change 

caused the maximum output frequency to be 20.8 kHz, which is within the SDA's 

bandwidth, Measurements of the output sinusoids generated with an 8 MHz bit clock 

also yielded 66 dB spectral purity. 

The tests above indicate that the spectral purity of the oscillator is limited by the D/A's 

used to convert the digital signal to an analog signal. Unfortunately, more accurate D/A's 

were not available for more testing. It is reasonable to conclude, however, that given the 

12 bit D/A's used, the accuracy of the output is limited by the D/A's and that the oscillator 

has at least 66 dB spectral purity over its entire operating range. 
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Chapter 6 

Conclusions 

The goals of the research described in this thesis were to determine a general limit cycle 

bound, applicable to any recursive digital filter implementations, and to create a compact, 

highly accurate digital sinusoidal oscillator. The derivation of the General Bound to 

account for arbitrary filter structures meets the first goal. The second research goal was 

met by the implementation of a functional single chip digital sinusoidal oscillator. 

6.1 Achievement of Research Goals 

The first research goal considered was characterizing and eliminating limit cycles due to 

product quantization in digital filters. The existence of limit cycles was explained using 

the concept of Lyapunov functions. It was shown that although an ideal filter will always 

show a decrease in the value of its Lyapunov function from state to state, the signal 

quantization operations in a digital filter may cause the value of the Lyapunov function to 

increase from one state to the next. This effect can lead to limit cycles, as was 

demonstrated in Chapter 3. The General Bound derived in Chapter 3 provides a means of 

bounding the magnitude of any possible limit cycles (as well as any other effects due to 

quantization) for any filter structure, regardless of filter order, or quantization operation 

placement. It is also shown that the closed form General Bound is equivalent to that 

reported by Yakowitz and Parker [21] for filters with the quantization operations located 

at the states. As well, it was shown that the 11 norm provides a bound that is equal, to or 

tighter than both the iterative and closed form General Bound. Lastly, a means of 
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determining the number of iterations required for the iterative General Bound and the 

11 norm was found. 

It was also shown that the limit cycle bounds can be used to scale filter implementations 

so that limit cycles do not appear at the output of the filter. Because of the large signal 

wordlengths which are becoming common in both DSP chips and custom 

implementations, it is often an easy task to accomplish this scaling. Lastly, it was 

demonstrated that the structure of a filter can effect the non-ideal performance, even if the 

ideal performance is the same. 

The second goal of the research was to study different methods of generating digital 

approximations to discrete time sinusoids. Three practical methods of generating 

sinusoids were examined. The first, consisting of an accumulator used as an index into a 

look up table is commonly used in industrial applications. While being simple and highly 

accurate, it tends to require large amounts of storage space for the look up table. The 

second method consists of a simple second order direct form filter with poles on the unit 

circle. Ideally, a second order system with poles on the unit circle will have an 

oscillatory response that does not decay over time. In practice, this oscillator has a high 

sensitivity to its coefficient at low frequencies, as well as known stability problems. The 

third method of generating sinusoids, known as the LDI oscillator, also involves a second 

order filter with poles on the unit circle. This oscillator is derived from an analog 

prototype and generates both sine and cosine terms and has low sensitivity to its 

coefficients at low frequencies. Several other second order filters with poles in the unit 

circle were considered as oscillators, but these were discarded because it was found that 

quantizing the coefficients would move the poles off of the unit circle. If the poles are 
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not on the unit circle, then the magnitude of the oscillations will change over time, which 

is unacceptable. 

In addition to studying methods of generating sinusoids, a further aspect of the research 

was to construct a single chip, high precision audio frequency oscillator. Because a field 

programmable gate array was made available for implementation, a requirement that the 

oscillator fit on a single device was included. The oscillator was required to be able to 

generate sinusoids up to 50 kHz, and the frequency must be selectable in at least 0.5 Hz 

increments with the outputs being at least 16 bits wide. An examination of the three 

structures showed that the LDI oscillator yielded the most compact implementation that 

met the specifications. The LDI oscillator was implemented using bit serial arithmetic 

and a prototype demonstration board was constructed. The prototype did not display any 

instability and was found to generate outputs with a measured spectral purity of 66 dB. 

6.2 Further Research 

For both the limit cycle research and the sinusoidal oscillator research, there are several 

areas in which further study could be made. In the case of the limit cycle research, the 

region of the state space in which limit cycles can occur could be searched to determine if 

limit cycle oscillations do in fact occur. The General Bound and the l norm bound the 

magnitude of limit cycles, but these bounds are pessimistic estimates. The filter may not 

actually display limit cycles, or the limit cycles that do occur may not be as large as these 

bounds. Consider the case of the 5th order LDI all pole filter in Chapter 3 (Figure 3.7). 

If the quantization operations are located at the states, the limit cycle bounds for each of 

the states are 10, 16, 15, 16 and 14. The total number of possible states in the region 

where limit cycles can occur is 11,793,600. The number of states is low enough that it 
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may be possible to exhaustively search for any limit cycle trajectories. Any search would 

be specific to a particular structure and a given set of coefficients. 

Significant further research can be performed in the area of the LDI oscillator. First, a 

rigorous bound on the frequency stability and the spectral purity of the oscillator is highly 

desirable. One way of guaranteeing the absolute periodicity of the LDI oscillator is to 

perform an exhaustive search of its state space. For the implementation described in 

Chapter 5, which has 32 bit state variables, an exhaustive search would require examining 

232 x2 31  or about 18.5 billion billion points. If each point were examined only once, and 

this operation took a single nanosecond, the entire search would require 18.5 billion 

seconds or about 590 years. Clearly, this is not a feasible approach. 

There are other areas which could be examined, however. In the testing section, it was 

shown that the spectral purity of the output was limited by the 12 bit D/A's used. Further 

spectral testing could be performed using higher accuracy D/A's, up to the 18 bit limit 

imposed by the oscillators outputs. Also of interest is the possibility of using the 

oscillator as a modulator by varying the coefficients with time. If the coefficients are 

varied in time, the frequency of oscillation will also vary. The stability of the oscillator 

must be carefully considered however, as changing the coefficients could cause the 

signals to overflow. In the course of testing the oscillator, it was found that if the 

coefficients were varied slowly, the oscillator would continue to oscillate and that 

overflows would not occur. On the other hand, if the coefficients were changed rapidly, 

or were changed in large increments, the oscillator would quickly become unstable. 

Determining the magnitude and rate of change in the coefficients that can be tolerated 

before the oscillator becomes unstable would allow the oscillator to be used in modulator 

applications. Lastly, the oscillator has potential for use in analog test applications. The 
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LDI oscillator is a compact, controllable sinusoid generator, and with the addition of a 

compact D/A, could be used in on-chip test applications in analog designs. 
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