l

Lhor sl toim ! apectilentlons for spmellylig, verlfyltg, tintis
enlly wyntliewimlig hnedwiee syntenm hecottilig widep

Lovind wpAlenbisi Gogtingen, bik nlio et gin 8
Fiane bl Mowisimnming ["‘A, R P iolog HWI 1’htH
bl Chatnniinlen g Syutenm (40, 20] Traee 't
Alkelwale Hywetlentonm atiel Brgstlotnl Do |18, 4
bt [E] il il Bpstendutne 2], b nas a fow. Biough
demennbintod to ity tie iwe of fornnd spectileations for V1A

lulroduetion

|
b il
ﬁlm&mnt

i

|

- Himhee Ol g
, 81, Byt hetmel ‘1 niblon Hys

y Henlgiling, fol wntoamal
pin e shiforont
Paremlinm i uwer

ani.

ittt of o

bn&n r‘lu \witpnial Lol M
‘ mf[v

, vrlone
e |1, &),

prennfve pen| e havn hoon
Healgtt Hownvar, e will

bo dllwevimmenl st artly, iy probsltm i the tee of Formml apeedieHom e VIRL do

sl et imlved - Mote lm'pnrl.n‘ntly. tntiy tiditert betiwlits of Ry g ol
spectllentonm Dl gt the doveloptient of new kitds of 181 deigh bk, §
haves nol Dy il enesiigh,

i b gty e psbewetit slinple el forind Hoedware Hitph)
"HOM (Hutlwate elowed wn Uhfwtn el Proscuanen), KHH pronsth (b8 HRN W
Wl ne vl (0 fwkelig et i lan‘?mvtnr«l denctfitionn of syabem Fin b
lewe vty Hie b ere iding s plgorithong eallnd PARUOMEY) Ehe ot
bt v it Btinelotnd ifeteeny (1) prodietion s D A sl
stibbon i e bt Bedinvlor, The math tentilbe preetbed agae (1)
Hvves oo Foy vttt on e Hie formand sl il of e deiimps 1100
wbvablig H ity ot We idig o worklng Inpleentabiog HHI
ovaalving, nnd Hi et topstts e sbnbow of ol wotk be of (ratighly) Hix e

Phompatboe bty o ot innnd s lienton Danginge, HED wpeellientiain e i sl
by e Ehoarbebe HOPY ewiy engshien with t'ln.rn(Hl“‘lbﬂ,rh Eivifhg ‘ﬁﬂhﬂwln Wil
e wanteowputedim ofen ehibtt 1 fiwe b u‘bnll,y W hlghlight Hintig/ronti
Fonetion/ ot wnpi s e bely, o el dewlgtiogs (HR Foein ol Bl AN Al
Wk sk Hie il O o wlinipples wotmintlen Hinh ek B expltbed e o
(s bloanal mlimnlwion, nind denlgine ontlentlon. We tiow et Hie ki’
HOP waed ot wpsesc e vowiil s

f

Mativalinn

Hpee Tyl s (il rotocel s s fgiejonal l«mi*mv!uf BE Wyt R IR Ryl
W equtboe b bnnt Rlnee futetlonal detalle gin ofteg hﬂ,nm,tw fHbHE Whvan
W I b et b ook, Tl s oo webineed 11 g |
b faneHon /w00l Lt ge/eont ol upecte i bie didetlplig seiig e an wol
al Ehe oo ey

b Taw Pttt beal kb cotiplnts formml verflention of ke 10 il
“’ "“"'““'“”T el |1 ', Uttt wtbntlen ehmiiges slghilleatitly, 1 sjisnis l‘ﬂut
Weatlom will b imed wntily for thelr dlrect mnnﬂin rostiest g hetbey sl

el bokbon commmmmmtention wmong hntd ware M'TW ninel kiR KM wa
et bk wpeen o it dodgn sitonmtlon s
el b Dl bw ol w1910

Hotblew, fi e ppin, we

nabig formal
0 lmbanen

0 L wigiige (1D1)

ran VI Al de

RlE whraetnral

nl b vantrol
i funebonal
ng the ahove
W) demen
eanbhnnonsly
if [URN.
y tnderstood
Ay ehanans
Anpiecin, and
k. Lot
FARCOMP,
for dewlgning

W wikh elarity
with thiming,
I wrprabion
TRIIRTRITT!

{10 1 R prosent,

Irmal kpoe
ki lng of
wilbore, ad
N e aneh

Specific Results Reported, and Organization of the Paper

Section 2 illustrates HOP, and section 3 presents its operational semantics. Section 4 illustrates
PARCOMP on a simple example, showing how each rule of the operational semantics is used.
Section 5 presents various experiments conducted using PARCOMP. First, we present the
result of performing PARCOMP on the stack module. We then deliberately introduce errors
into the stack controller, and show how PARCOMP can reveal these errors. We then show
how the stack may be pipelined, and present the behavior of the pipelined stack inferred using
PARCOMP. We also show how PARCOMP can be used to make functional simulation more
productive and efficient. Section 6 sketches a divide-and-conquer variant of the PARCOMP
algorithm that works on regular arrays. Section 7 presents our conclusions; In appendix Al
we briefly describe the HOP design system that was used to produce the results reported.

1.1 Understanding the Modeling Philosophy Behind HOP

One significant aspect of HOP is that it emphasizes the use of abstract data types for hard-
ware modeling. Instead of specifying hardware systems as ‘software abstract data types’ and
generating hardware designs from them (as done in e.g. [18, 13, 14]), we view hardware com-
ponents as concurrent processes that internally use user-defined data types for conveniently
modeling data path states. Instead of invoking data type operations to use data type objects
(as done in software), HOP processes are used by providing events and data to them according
to their interface timing protocol, specified via a finite control-state process. Operations on
objects are not composed via functional expressions, as done while programming using data
types; instead, the operators parallel composition and hiding, as introduced by Milner in CCS
[32] and Hoare in CSP [21] are employed.

Consider a stack data type implementation that uses a counter to implement the stack
pointer and a memory array to implement the stack locations. If such a stack were to be
specified as a software data type, the definitions of the stack operations (say push, pop, and
top) can be provided via functional expressions that use operators on the stack pointer and
memory types. The stack state can be modeled as a tuple < mem, ctr >, consisting of the
memory and counter states. The operation push can be defined as:

push(< mem, ctr >,v) < < write(mem, read(ctr),v), addl(ctr) > .

This says that the memory state should advance to write(mem, read(ctr),v) and that the
counter state should advance to addl(ctr). This view of hardware systems—that they imple-
ment a collection of intuitive to grasp mathematical functions—is also taken in [22].

As we showed in our past work with the SBL language, such specifications may be imple-
mented in hardware by synthesizing controller modules that “fire’ the operations write, read,
addl, etc. in an applicative order (actually the in situ evaluation order [17], which is slightly
more restrictive than the applicative order). However for this technique to be widely applica-
ble, it should be possible to view a wide variety of hardware systems as data types. This isn’t
natural often, especially where control aspects dominate. More seriously, the ‘software data

type like’ approach does not permit the specification of complex timings naturally, although
1t has been attempted [13, 37].

The Concept of “Modes of Behavior”

HOP takes a crucial departure from the functional/data-type view of hardware. Rather than
considering data-type operations, or functions, we focus on modes of behavior. A modes of
behavior is like a trace [21]. A mode of behavior is best characterized as a finitely describable
sequence of events, data input actions, and data output actions.

Consider a memory process modeled in HOP. Different realizations of the memory have
different (depending on design decisions such as pipelining etc.) read modes of behaviors. One
such mode of behavior consist of a read command event, a data input action corresponding
to the supply of address, and a data output action corresponding to the output of the read
data. These three actions may come in any order, with the only constraint that the ith
read command event and :th address input must precede the sth data output. Clearly, many
different modes of behavior are admitted by this (rather loose) constraint. For example, a
memory with a pipelined implementation of the read operation defines one specific mode of
behavior for read. A memory that queues up to (say) 12 read requests before it outputs
any data item, defines another mode of behavior. So not only do we need mathematical
functions to define I/O mappings from states and inputs to new states and outputs, but we
also need a way to capture the timings involved. Functions and their mappings must be
specified in conjunction with sequencing details. This extra degree of timing complexity is
not well-handled by functional-programming based approaches for hardware modeling.

Specifying Modes of Behavior in HOP

HOP is intended to capture modes of behavior directly. It does so by introducing a protocol
specification section. Let us understand the way protocol sections are written. Consider the
pipelined read operation, again. One of the most natural ways of explaining the behavior of
such an operation is by drawing the picture of a Deterministic Finite-state Automaton (DFA)
and associating a set of concurrent actions with each DFA transition. One may ask, “why not
use classical DFAs for specifying hardware”?

This question is being considered mainly for two reasons. For one, in this paper we
depict HOP process specifications using ‘DFA-like graphs’, and we want to avoid the readers
mistaking HOP to be a DFA specification language. For another, it is known that explaining
a new concept by first presenting a related but much weaker concept, and then showing that
such a concept won’t suffice, is very effective.

The following are some of the important reasons:

* DFA based languages cannot handle data related aspects well; modeling data path states
as automaton states results in an explosion of the number of states. In contrast, in HOP
we use high-level abstract data type (ADT) objects to model data related aspects.
Only control states are explicitly modeled. Data aspects are captured by annotating the

control graph. By doing so, both the data and control aspects of a system are completely
specified at a high level.

o Hardware systems are developed over a long time, and initially, only the “what” aspects
(requirements) on the system’s behavior are known. High-level ADTs can be used to
write a requirements specification of the system—and refined later when design details
become known. These benefits are not available if DFA based models are used.

e HOP facilitates the writing of requirements specifications for the temporal aspects of a
system using the concept of events.

o HOP’s process model addresses design issues such as the connection of modules via
busses, as well as the related issue of strengths[6]. It supports broadcast communication.

o HOP’s process model is based on the three fundamental operations of hierarchical system
design—composition, hiding, and renaming—as identified by Milner[32]. HOP is a high-
level specification language for synchronous systems and provides a theoretical basis for
the hierarchical design of VLSI systems.

1.2 Related Work

HOP is close in some respects to the work of Milne [29, 30]. The main differences are the
following. In HOP, value communication has been decoupled from synchronization. The
advantages of doing so are discussed in section 2. HOP processes are deterministic and
lock-step synchronous, thus making it well suited for describing synchronous (synchronously
clocked) hardware systems. A large majority of today’s VLSI systems are synchronous. These
decisions contribute directly to the simplicity of the language and makes specification driven
design more practical. On the other hand, Circal primitives are more elementary. It is not
specialized for lock-step synchronous systems.

Compared to the LOTOS specification language [8], [26], HOP is much simpler, and differs
in its adoption of a synchronous process model. The languages Esterel [4] and Lustre [9]
are both based on synchronous process models, as HOP is. However, HOP is specialized
towards hardware description and design, whereas both Esterel and Lustre are not. Neither
PARCOMP, nor constructs similar to Vecprocs, exist in the above works, as far as we know.

HOP is different from more traditional languages (e.g. VHDL[41], Karl[33], and ISPS[3])
In many ways, the most important being the following: (i) it is much simpler, syntactically
and semantically; (ii) it models hardware through a concurrent processes model—rather than
through traditional programming constructs. This, in our opinion, captures hardware behavior
more faithfully. Ideas developed in the context of domain specific and simple languages such
as HOP can be easily migrated to VHDL.

PARCOMP, as well as its planned uses, are similar to the work reported in [19], and to the
idea of constructive simulation reported in [31]. However our work is done for a much higher
level language that includes user-defined abstract data types. Our algorithm embodies useful
static checks of timing protocols. Our algorithm capitalizes on the structural information
(specifically, knowledge about events that are completely hidden within a module) to save
on computation time. Further, we have developed a version of PARCOMP called PCDC
(PARCOMP using divide-and-conquer) that can exploit the high regularity of many hardware
systems to reduce its run-time.

Finally, PARCOMP can be used to save the time of simulation; we can perform a “pre

simulation” of the tester and the testee using PARCOMP, and run the resultant process.
These computational-effort saving measures are believed to be new.

2 The HOP Language

Pl —— C1

BUS X = ?¢c1

y =?c2

P2 — C2

xofC1= y of C2 = lub(E1, E2)

Z

Lattice for computing Iub

Figure 4

ABSPROC <ModuleName> [<formal params pertaining to sizes & types>]
CONST <list of constants of the same value>

TYPE <list of type identifiers of the same type>
PORT <list of ports of the same type; clocks are also ports>
EVENT <events and their encodings in terms of port values>

PROTOCOL <a list of process definitions>
DEFUN <a list of function definitions>
END <ModuleName>

REALPROC
CONST
TYPE

PORT
SUBPROCESS
CONNECT
END

VECPROC
CONST
TYPE

PORT
SUBPROCESS
DIMENSIONS
CONNECT
END

Figure 1: The Skeleton of an Absproc Specification

<ModuleName> [<formal params pertaining to sizes & types>]
<list of constants of the same value>

<list of type identifiers of the same type>

<the external ports of the module being defined>
<instantiations of prev. defined abs/real/vec processes>
<the set of interconnections among the subprocesses>
<ModuleName>

Figure 2: The Skeleton of an Realproc Specification

<ModuleName> [<formal params pertaining to sizes & types>]
<list of constants of the same value>

<list of type identifiers of the same type>

<the external ports of the module being defined>
<instantiations of prev. defined abs/real/vec processes>
<the SIZES of each dimensions of regularity>
<interconnections betn. subprocesses, via recurrence eqns.>
<ModuleName>

Figure 3: The Skeleton of a Vecproc Specification

<< Figure on separate sheet >>

Figure 4: Use of Data Assertions and Queries for Value Communication

The basic unit of specification in HOP is a process. A process is characterized either
behaviorally or structurally. A process defined behaviorally is called an ABSPROC, standing
for ‘abstract process’. The internal structural details of an ABSPROC are not specified.
Its behavior alone is specified by providing a protocol specification. Processes specified as
a network of subprocesses are called REALPROCS, where subprocesses may themselves be
ABSPROCs or REALPROCs. Since topologically regular realprocs (e.g. single and two-
dimensional arrays of modules) occur very frequently in practice, we identify a sub-category of
realprocs called VECPROCs. Vecprocs in HOP may best be regarded as “arhythmic arrays” —
geometrically regular arrays in which computations aren’t necessarily regular, or rhythmic, as
in systolic arrays.

A process refers to many different pieces of information such as constants, ports, port
types, functions, etc. It is convenient to package such definitions along with the protocol
definition (for ABSPROCs) or the interconnection definitions (for REALPROCS) into a unit
called a module. A module definition starts with the keyword ABSPROC, REALPROC, or
VECPROC (as the case may be), followed by the name of the module, declarations, and ends
with ‘END modulename’ (see figures 1, 2, and 3).

The PROTOCOL section of an ABSPROC lists a collection of PROCESSes that are
defined mutually recursively. One process in this collection is identified to be the ‘top level
process’—one that specifies the behavior of the hardware unit at the time when it is ‘powered
up’. The name of the top level process is the same as the name of the module.

2.1 Specifying an Absproc

An absproc is specified by its ports, its events, and its protocol. We now examine some of the
unconventional sections of an absproc specification in each of the following subsections.

2.1.1 Ports and Value Communication

The mechanism of synchronized communication, such as used in e.g. [21] or [30], does
not accurately model the value communication in hardware systems. Two aspects that are
not satisfactorily modeled by these models are: combining values of different strengths; and
broadcast communication.

As an example, consider figure 4 which depicts a system consisting of two producer pro-
cesses P1 and P2 that can communicate with two consumer processes C'1 and C'2 over a bus.
In general there can be many producers as well as consumers. In such systems, it is perfectly
acceptable to have all the following situations: one producer alone writing while a consumer is
reading; more than one producer writing; a consumer seeking the value on the bus while there
are no simultaneous producers; etc. The values deposited on the bus by the various producers

are first ‘combined’ and then ‘broadcast’ (instantaneously made available to all consurmers)
before the next clock arrives.

In HOP, Value communication is performed through mechanisms called data assertions
and queries. A data assertion, written as !p=E, asserts that output port p is carrying the
value denoted by the functional expression E at the time of the assertion. The data assertion
'p=Z (Z stands for high-impedance) can model the output of tristated drivers. For modeling
a pull-up transistor, the assertion !p=weak1 may be used.

A data query, written as x=7q, binds x to the value of input port q at the time the query is
made. For handling multiple data assertions, the type of values communicable via ports must
be organized into a strength lattice, e.g. [6]. Multiple data assertions (as in bus connections)
then end up asserting the least upper bound with respect to the strength lattice of the asserted
values, on the port. For example the bit type of HOP includes the weakest value Z (high-
impedance), truth values T and F, an unknown value U, and the most dominant value E,
error. T\F, and U are incomparable amongst themselves and lie in-between 7 and E. This
lattice may also contain other values, such as weak1 and weako.

We now provide two examples to clarify all this. A wired-or connection can be modeled as
one producer of a value weak1 (the pull-up resistor) and some producers of strong0 (signifying
the pull-down paths). As another example, P1 outputs a value ‘Z’ (high impedance) while P2
is a flip-flop that has just been powered up, and hence outputs the ‘U’ value (unknown); the
result will be the least upper bound of Z and U, namely U. This value will be obtained by C1
and C2, if they were to query the bus at this time.

In HOP, we can model only unidirectional interactions. I/O ports may be bidirectional in
the sense that only one direction prevails at a time.

2.1.2 Events

Events are of two kinds: input, and output. An input event e (written Ie) denotes a (boolean
valued) condition that a process awaits (or relies upon) as a precondition to doing some
computation. An output event e (written Oe) denotes a condition that a process generates.
Usually a process has many possible computations to pursue and it selects one of these based
on input events. An input event has to synchronize in the sense that it must be matched by
a corresponding output event generated by another process, if the computation conditioned
upon the input event is to actually take place. Output events do not have to synchronize,
in the sense that it is permissible to have one process generating an output event (say, by
asserting a control line) without having any other processes simultaneously awaiting this event
as an input event.

This lack of symmetry between input and output events is another aspect that differentiates
our work from works such as CCS, CSP, and Circal. Our reasoning behind this choice of
semantics is the following. In designing a module M, it is not possible to anticipate the
behaviors of the communicating partners of M. Therefore, providing more information from
M (by generating more output events than necessary) should not make a difference as far
as the communicating partners of M are concerned because they can ignore these additional
output events.

Events provide yet another form of abstraction. While designing a hardware module, a
designer quite often anticipates the need to generate/sense certain conditions, even before
knowing how such conditions are to be encoded. Viewed this way, we can talk about event
connections between hardware modules rather than (the more detailed) control wirings. The

actual implementation of event connections requires combinational logic (often called ‘glue
logic’) that translates a condition in one module to a condition in another.

Finally there is yet another important use of events—abstract events that are merely meant
to highlight interesting points in time. Abstract events are not realized in hardware. The
significance of abstract events is illustrated by the following generic example. In traditional
designs of synchronous systems, the completion of an operation is often not explicitly notified,
but is tacitly assumed after the elapse of a certain interval of time from the start of the
operation. Such hard-wired delays are compared to hard-wired literal constants in programs
that are known to lead to programs that are hard to debug or modify. By highlighting
points in time through events, we achieve two goals: (a) specifications become more readable;
(b) PARCOMP is better able to match events across communicating modules and thereby
discover sequencing errors; since PARCOMP is run prior to simulation, we effectively have a
‘temporal type checking system’ that can detect sequencing errors, much like type-checking
avoids certain run-time errors.

Synchronization and Communication

By having two processes interaction mechanisms (events and data assertions) we have essen-
tially separated synchronization from communication. The key idea is that due to lock-step
synchronous execution, processes can implicitly synchronize by monitoring their own execu-
tion rates, and thereby exchange data across (memoryless) wires by being “in the right state
at the right time”. For example, consider a counter with two commands reset and up that are
triggered via events with the same names. The counter can, after it has been subject to the
reset event and until it is subject to the up event, assert 0 on its output port. Process that are
responsible for the reset and the up events can rely on this fact, and query the counter’s output
in between the execution of the reset and up events. Such queries go ‘completely un-noticed’
by the counter itself—i.e. it doesn’t have to rendezvous. This style of specification achieves
the effect of value broadcast quite naturally, as data assertions reach wherever the port that
carries the data is connected. Also, the above features lead to writing modular specifications
for two reasons: (i) the specification writer for counter does not have to know how many times
the counter will be queried in between a reset command and an up command; (i) we do not

have to simulate broadcast by using multiple unicast; doing so would require knowledge of
the number of recipients, a priori.

2.1.3 Boolean Guards

Events are conditions generated external to a module, and are like propositional variables.
Sometimes, while modeling a system it is not possible to specify all conditions of interest
using events. We therefore introduce another construct called hoolean guards. Boolean guards
are expressions involving predicates over data path states and data inputs. Example: in a
bounded stack, a boolean guard not(full(stack)) will be a pre-condition for the application
of a push operation.

It is computationally far easier to check for events awaited in a process against events
asserted in another process to see whether the awaited events are satisfied, because all this
involves is the syntactic comparison of the names of events. In comparison, it is much more
difficult to statically simulate the effect of value communications between modules and to then

determine which boolean guards are true when. Therefore, by expressing as many conditions
as events, the HOP system is able to more easily prune away unrealizable modes of behaviors
during PARCOMP. In addition, many conditions such as command inputs and status signals
are easy to model using events.

For these reasons, we encourage HOP programmers to identify as many conditions as
events, and use boolean guards only for more complex situations, or when the number of
conditions to be modeled is too large.

2.1.4 Data Path States

In the specification of an absproc, the data path state of the system being specified can be
modeled using an appropriate high-level ADT. In our experience (e.g. [15]), the use of ADTs
having simple definitions can make reference specifications far more reliable and easier to
understand.

2.1.5 The Timing Model

HOP is based on the model of conservative clocking, which means that each clock period
accommodates the delays of all the combinational stages whose evaluation the clock initiates.
In such systems there are two measures for time: clock period, and the delays of combinational
stages. Many low-level simulators treat the clock as ‘yet another signal’, and hence cannot
capitalize on many nice properties exhibited by conservatively clocked systems. For instance,
in a conservatively two-phase clocked system, phase-1 and phase-2 initiated events alternate
in time.

Another important optimization is possible if combinational loops are absent and the
system is conservatively clocked. In such systems it is possible to set all combinational delays
to zero and obtain an accurate functional simulation model; this model accurately predicts the
behavior of systems over clock periods. To better understand the role of the above assumptions
let us relax them one at a time. If conservative clocking is used but combinational loops are
allowed, a fixed-point [27] computation, as done by (say) MOSSIM [6] will be needed to find
out the system state after one clock period. If conservative clocking is not used, the behavior
can be predicted only by a more complex procedure, such as a timing simulator that maintains
time-sorted event lists.

In HOP, we assume both conservative clocking and the absence of combinational loops. The
latter fact can be checked by HOP’s simulation preprocessor by analyzing, for each (clock) time
step, whether a data assertion expression depends upon itself. With these assumptions, HOP
implements the Huffman model of hardware where the current inputs and state functionally
determine the current outputs and the next state. Inputs and outputs consist of events and
data, and the state consists of the control and data-path states. Roughly speaking, HOP
relates to the Huffman model in a way similar to how Pascal relates to Turing machines.

2.1.6 An Example of an Absproc: A Pipelined Memory

Consider memory module MEM which has an address input port ?addr, a data input ?din
port, and a data output port !'dout. It can, in its ‘powered up’ state, entertain events Imnop,

Iwrite, and Iread, which implement (respectively) the commands mnop (memory’s no op),

-- This is a comment.
ABSPROC MEM [address_size, data_size : int] -- Note-0
TYPE

addressType = 0 .. address_size - 1

dataType = 0 .. data_size - 1

memoryType = array[addressType] of dataType
PORT

?din, !dout : array [data_size] of bit
?ain : array [address_size] of bit
EVENT
Imnop, Iread, Iwrite = TBD
PROTOCOL
MEM [ms : memoryType] <=
Imnop -> MEM [ms]
| Iwrite, va=?addr, vd=?din -> MEM [write(ms,va,vd)]
| Iread, va=7addr -> MEM1i[ms, val -="-- Note-1

MEM! [ms : memoryType, oa : addressType] <=
Imnop, !dout=read(ms,oa) -> MEM [ms]
| Iwrite, na=7addr, vd=7din,
'dout=read(ms,oa) -> MEM [write(ms,na,vd)]
| Iread, na=?addr, !dout=read(ms,oa) -> MEM1[ms, na)
DEFUN
write :: m : memoryType, a: addressType, d:dataType -> mi : memoryType
IF (> addr memSize)
(print "Illegal memory address")
(error-obj memType)
ELSE (update-vector memType m a d) -- Note-2

read :: m : memoryType, a: addressType -> d : dataType
IF (> addr memSize)
(print "Illegal memory address")
(error-obj int)
ELSE (index-vector memType m a) -- Note-2
END MEM

-~ Note-0 : Upper and Lower Cases are Treated the Same in HOP.
-- Note-1 : write (defined in DEFUN) computes the new data path state.
== Note-2 : index-vector and update-vector supported by memoryType

Figure 5: Specifications of a Memory

<< Figure on separate sheet >>

Figure 6: Depiction of the PROTOCOL Specification of MEM

10

[ms,o0a]
Imnop

!dout=read(ms, oa)

Iread
> na=?addr
!dout=read (ms, oa)

Iread va = ?addr
[ms ,va]
[ms,na]

Iwrite vd=?din na=?addr
lwrite !dout=read (ms,o0a)
va = ?cdo [write(ms ,na ,vd)]
vd = 2din

[write(ms, va, vd)

STATE 0 ---> MEM

STATE 1 ---> MEM1

Figure 6

[es] Icnop

Idown lcdo=cs
lcdo = ¢cs
[cs]

[subl (cs))

lload
lup vdin=?cdi
lcdo = cs .
[addl (cs) [vdin]
Ireset Omnop
'snop Ocno
Omnop [1 P
Ocnop
Ocnop e o
—— a mno
Omnop @ 0 P
Ito
P Odown
Omnop

Ipop 4 Omnop Ipush

Omnop Omnop
6 Ocnop Ocnop °
Oread | Oup
Ocnop Omnop

Figure 7

Ocnop
Owrite

CTR [cs] <= Icnop, 'cdomcs -> CTR [cs]
| Iload, vdin=?cdi -> CTR [vdin]
| Iup, 'cdo=cs => CTR [add1(cs)]
| Idown, !cdo=cs =-> CTR [subi(cs)]

SCTL <= Isnop, Omnop, Ocnop =-> SCTL
| Ireset, Omnop, Ocnop =-> Oload, Omnmop -> SCTL
| Ipush, Omnop, Ocnop =-> Oup, Omnop ~-> Owrite, Ocnop =-> SCTL
| Ipop, Omnop, Ocnop =-> Odown, Omnop -> SCTL
| Itop, Omnop, Ocnop => Oread, Ocnop -> Omnop, Ocnop -=-> SCTL

== All the ‘‘nop’’ events have to be specified in the present version of HOP.

<< Also see figure on separate sheet >>

Figure 7: Stack’s Submodules:- CTR: An up/down counter; SCTL: Stack Controller

?edi

|

—-{C‘;R]

SCTL }

din MEMORY

1
J

events

4

ldout

Figure 8: Schematic of the Realproc of a Stack

11

REALPROC stack [<various size & type parameters>]

PORT
7cdi, ?din, !dout : <suitable types>
EVENT
Ireset, Ipush, Ipop, Itop, Isnop = TBD
SUBPROCESS -- Note-3

MEM : mem [<actual size parameters>]
CTR : ctr [<actual size parameters>]

SCTL : sctl
CONNECT
DATANODE
HIDDEN CONNECTS ((MEM ?7ain) (CTR !cdo)) -- Note-1
?din CONNECTS ((MEM 7din)) -- Note-4

?7cdi CONNECTS ((CTR 7cdi))
Idout CONNECTS ((MEM !dout))
EVENTNODE
HIDDEN CONNECTS ((MEM Imnop) (SCTL Omnop)) -- Note-1
HIDDEN CONNECTS ((MEM Iread) (SCTL Oread))
HIDDEN CONNECTS ((MEM Iwrite) (SCTL Cwrite))
HIDDEN CONNECTS ((CTR Icnop) (SCTL Ocnop)) =-- Note-2
HIDDEN CONNECTS ((CTR Iload) (SCTL Oload))
HIDDEN CONNECTS ((CTR Iup) (SCTL Oup))
HIDDEN CONNECTS ((CTR Idown) (SCTL Odown))

Ipush CONNECTS ((SCTL Ipush)) -- Note-4
Ireset CONNECTS ((SCTL Ireset))

Ipop CONNECTS ((SCTL Ipop))

Itop CONNECTS ((SCTL Itop))

Isnop CONNECTS ((SCTL Isnop))
END stack

--Note-1: These are hidden ports/events
--Note-2: Currently we have to specify even ‘‘obvious defaults’’: eg. Ocnop.

--Note-3: Module instance names and module type names are different, in general.
--Note-4: The following ports/events are not hidden.

Figure 9: Realproc of a Stack

12

write, and read. MEM is pipelined thus: the delivery of the result of a read request is
overlapped with waiting for the next command. Operation write as well as operation mnop
(no operation) aren’t pipelined.

Let us study figure 5. The header declares two size parameters. The PORT section declares
the I/O ports. The EVENT section defines three events, and equates them to “To Be Defined”
(TBD). Thus, the designer of MEM doesn’t yet care about the encodings of the control inputs
as well as clocks (if any). He/she pretends that Iwrite, Iread, and Imnop are three bit wires
coming in.

Consider the PROTOCOL section. This section can be depicted as shown in figure 6. This
is because HOP processes are finitely representable processes (that is, they have a finite-state
control skeleton, and this control skeleton can be annotated (“decorated”) with data path
state changes and port value assertions.) These annotations are done in a purely functional
notation.

The functional expressions used in the PROTOCOL section are defined in the DEFUN
section and/or in the ADT library. The ADT library is implemented using object oriented
techniques (our technique: “generic types are classes”), using the language FROBS [24].
Therefore, function definitions are realized as overloaded methods, that are dispatched cor-
rectly. Besides, subtyping is easy to support via class inheritance. Many of the data types of
HOP support both immutable and mutable constructors. This is to support the implemen-
tation of the in situ evaluation technique [17] to use mutable constructors whenever possible,
while preserving the referential transparency of HOP functional expressions.

Let us study the text of the PROTOCOL section. This section is also depicted in figure 6.
In this figure, we have annotated the transitions with current events, data queries and asser-
tions, and the next data path state. (The next data path state is shown only if it is different
from the current data path state.)

Process MEM begins in control state MEM and in datapath state ms. It offers a choice
of three events, Imnop, Ivrite, and Iwrite. If none of these events is asserted externally,
the behavior of MEM is undefined. Event Imnop causes MEM to go back to control state MEM.
Event Iwrite when asserted from outside must be accompanied by data assertions va on the
?addr bus, and vd on the data bus ?din. MEM goes back to the control state MEM; however its
datapath state changes to write(ms,va,vd). Event Iread must be accompanied by a data
assertion va on port ?addr. The next control state attained is MEM1, and the next data path
state is a pair [ms,va].

In control state MEM1, process MEM1 is in data. path state [ms,o0a]. It again offers the choice
of three events. However note that while waiting here, the data assertion !'dout=read(ms ,oa)
is made. This assertion corresponds to the result of the previously requested read. (This is
the pipelining effect). While reads keep coming, MEM1 goes back to MEM1. A Iwrite or Imnop
takes MEM1 back to MEM.

If this memory were to be used in a clocked system, the events Iwrite, Iread, etc. would
be generated at the appropriate clock phases. Details such as multiphase clocking would
be described in the EVENT section of an ABSPROC by replacing the “TBD”s by boolean
expressions involving input control wires and clocks.

In HOP, the capability of a module to ‘idle’ must be explicitly modeled. Events such as

Imnop serve this purpose. With this view, every HOP module has to be executing at least
one of its operations at every time step.

13

2.2 Specifying Realprocs and Vecprocs

A realproc is built using one or more absprocs by connecting some ports and events of the
absprocs, composing the external protocols of the absprocs using the || operator, and inter-
nalizing (hiding) some of the events and ports. A syntactically sugared notation (DATANODE
and EVENTNODE) mitigates the burden of specifying the renaming and hiding [32] information.
A Vecproc is essentially built in the same fashion; however a notation based on recurrence
relations is provided to easily specify the regular placement of modules as well as regular
interconnections among them.

A realproc specifies a system’s realization. As an example let us use the memory unit in
figure 5 to build a stack using an absproc CTR to implement the stack pointer and a controller
SCTL to control the stack. The design of the stack would be specified by writing a realproc
specification, as shown in figure 9. This specification captures the schematic shown in figure 8.

In the PORT and EVENT sections, the external ports and events of the realproc are
declared. All other ports and events are assumed to be internal, and hence hidden from the
outside world.

In the SUBPROCESS section, previously specified abs /real/vec processes are instantiated
to the required sizes as well as types. For example we could now instantiate a generic stack
to be a stack over bytes. The subprocesses themselves are described in figure 7. (We present
only the PROTOCOL section of the subprocesses.)

In the CONNECT section, interconnections between: (i) ports and events of the submod-
ules, and (ii) between the submodules and the external ports/events of the parent module,
are specified. Semantically, connections are treated as renamings, in the style of [32]. For
example, if we have a set of connected ports P, every p; € P is renamed to p,.,, a new name.

Let us look at the first two lines of the DATANODE subsection of the CONNECT section.
The node that connects ?ain of MEM and !cdo of CTR is hidden. The ?din port of MEM
connects to ?din of the stack.

14

Plvars] ::= |iie;, dgi, g; : oe;,da; — P[Exp;]
| Pr[Ezpsi] || Po[Ezps,)
| Hide ie in P[Ezp] | Hide oe in P[Ezp)
| Hide ?p in P[Ezp] | Hide !p in P[Ezp]

Figure 10: Abstract Syntax of HOP
3 Semantics of HOP

3.1 An Operational Semantics for HOP

We first briefly explain the translation from the user-level syntax of HOP to its abstract
syntax given in figure 10. We then present the operational semantics.

3.1.1 Translation Into the Abstract Syntax

The PROTOCOL section of an ABSPROC definition consists of processes that are defined
mutually recursively. Each process (such as SCTL in figure 7) defines the behavior of the
hardware module over intervals of time whose lengths can be greater than 1. These processes
are first translated into an equivalent, but much larger collection, of simpler processes, each

of which describes the behavior over one unit of time. Each process in the translation is of
the form:

Plvars] = |; ie;, dgi, g; : oe;, da; — P Ezp;]

where the ‘arms’ of the choice are subscripted using 7. Such a translation simplifies the
specification of the semantics, as well as the implementation of HOP.

In each such process ie;, dg;, g;, oe;, and da; are (respectively) sets of input events, data
queries, boolean guards, output events, and data assertions for the ith arm of the choice. De-
terminacy requires that only one arm of the choice must actually be chosen during execution:
that arm where all ie; synchronize and all gi are true. This is decided by the communicating
partners of process P, as will be explained shortly.

A REALPROC is translated into the abstract syntax by first creating copies of the SUB-
PROCESS instances and renaming the local names within the ABSPROCS of the subprocesses.
Now the CONNECT section is processed as explained below:

¢ The construct HIDDEN CONNECTS ((SM1i portl) (SM2 port2) ...) captures the fact
that port1, port2, ... are all connected to a common point which is then hidden.

Portl, port2, ... are renamed to newportname. Newportname is then recorded as
being hidden—a fact that will be used below.

o The construct externalport CONNECTS ((SM1i portl) (SM2 port2) ...) captures
the fact that port1, port2, ... are all connected to a common point which is then
exported via externalport. All these ports are renamed to externalport.

¢ Connections among events are translated in the same way as the connections among
ports, as done above.

* Unconnected ports and events are renamed to completely distinct names.

15

e Output ports meeting at a node N are turned into connections into the input of a BUS
module that applies the lub function to its inputs; the output of the BUS module is
connected to node N. Because of the introduction of these fictitious BUS modules, we
do not have to consider the case of more than one output port meeting at a node, in the
semantics.

* Subprocess instances within a REALPROC start at their ‘top level’ control states and
march in unison, interacting via their common events and ports, some of which are
hidden outside the REALPROC. This interaction is captured in HOP’s semantics by
the || operator and the ‘Hide x in P’ construct. Thus, a REALPROC is translated into
a construct of the form

Hide ze; in ... Hide oe; in ... Hide ?pr in ... Hide !p; in ...

Subprocess1[varsl] || Subprocess2[vars2] ||... . It is assumed that the names used within
each of the subprocesses of the REALPROC are renamed so as to be distinct, to handle
scoping rules.

3.2 Operational Semantic Rules

The operational semantic rules are defined via structural induction over the abstract syntax,

as done by Plotkin in [36]. We will consider a process P at time ¢, and define the relation

P[El](t) ie(t),dq(t),g_(ﬂ:)oe(t),da(t) P,[EQ] (t 4 1)

where de(t), dq(t), g(t) : oe(t), da(t) are the possible sets of actions of P[E1] at time ¢. This
means that an external agency has to supply ie(t), dq(t), g(t) in such a way that ie(t) is
synchronized by a matching oe'(t), dg(t) by a da"(t), and g(t) becomes true. Then only will
the possible behavior really manifest. From here onwards we omit ¢ and (t+1).

3.2.1 Rule for Deterministic Choices

This rule simply says that every choice defines a possible behavior:

(li iei,dgi, gi : oe;,da; — PE)) it pevdas P;[E;]

3.2.2 Rule for Parallel Composition
This rule computes the possible behaviors of P[v1] || @v2] from those of P[v1] and Q[v2).

el,dgl,gl : o ’] : ’
P[’Ul] iel,dg ﬂ_} el,dal P [E1], Q[’UQ] ze2,dq2£_)oe?,da2 Q [EQ]
IE(ielUie2, oelUoe2),
DQ(dg1Udq2, daluda?2),
G(dqlUdg2, dalUuda2, g1Ag2) :

Pl || Qv 28 pip) @'[E)]

Here, the U operation takes the set union of its arguments. The helping functions employed
above are now defined.

16

o [E(ie,0e) = ie\ oe; those ie that are not ‘satisfied’ are left over. Intuitively, we are
symbolically simulating the subprocesses of a REALPROC, and are determining stati-
cally those events that are awaited by some hardware units which are at the same time
furnished by other hardware units. Input events that are awaited but not asserted are
retained, because when a ‘third module’ is brought into consideration, it may well be
satisfied. Input events that are matched by corresponding output events are removed
because they are satisfied by the output events, and hence need not be awaited.

* DQ(dq,da) returns every (¢ =?p) € dg for which there is no corresponding (Ip = E)e
da. Again we are symbolically studying the interaction among the various data queries
and assertions. We retain data queries that are not matched by corresponding data
assertions.

o G(dg,da,g) = instantiate(g, bindings(dq, da))
where bindings(dq, da) = set of (var, exp) such that for every (var =?p) € dq there is
a corresponding (!p = exp) € da. In this step, we first determine the variable bindings
that result from having simultaneous data assertions and queries on the same port.
These variable bindings are then used to instantiate guard expressions. Thus we are
simulating the effect of value communications among processes symbolically.

o By = instantiate(Ey, bindings(dg,da)); and Ej = instantiate(s, bindings(dg,da)).
These take into account how the data path state of the processes change as a result of
value communications between processes.

3.2.3 Rules for Hiding

These simple rules capture what can be ignored as a result of internalizing events and ports.
o We first consider the most practically important of all these rules—the ‘Hide ie in P’ rule.
This rule says that hiding an input event causes the choice arm guarded by that input event
to be dropped. The key idea behind this rule is to “distill away” behaviors that will not
materialize at each point in time:

P[’U] iel,dql,il_i)oel,dal Pl[El], ie ¢i€1
Hide ie in P[v] P04l e e in P\ [E)]

e Hiding an output event oe merely suppresses this assertion from the outside world; no
computational paths are pruned:

Ply] “MHLN BB oe € oel

Hide oe in P|v] ebdibliogoe dal 1o oe in P, [E]

e If 7p is an input port, and if a data query z =?p is made through ?p, then hiding 7p from
a process P prevents P from accepting inputs via this port. We simply take away the data
query, and so = € gl,dal, E; will remain unbound. This may be okay if the value of = need
not be known in evaluating g1, dal and E;:

17

P[’U] iel,dql,g_l:_’oel,dal Pl[El], (JI z?p) € dql
SRS iel, dg1\(z="p), g1 : oel,dal SN
Hide ?p in P[v] —4 Hide ?7p in P|[Ey]

e Hiding an output port is similar to hiding an output event. All data assertions made on
port !p are expunged when port !p is hidden:

P[’U] iel,dql&oel,dal Pl[El], ('p _ E) € dal
Hide lp in P[] "9 2L3N=E) prige 1o in BB

The recursive application of the hiding rule—Hide !p in P;[E;] for example—captures how
PARCOMP effects the hiding rule as it unravels the timing behavior of the processes.

3.2.4 Determinacy of Choices

The syntax and the semantics introduced thus far does not prevent the definition of processes
for which the transition relation is not a function. For instance, it is possible to define a
process P such that P[dps] = P1[dps] and P[dps] < P2[dps]. On the other hand, HOP is
supposed to capture the behavior of synchronous hardware systems that are deterministic.

We can render HOP deterministic by imposing syntactic restrictions on its choice construct
(section 3.2.1). Determinacy will be achieved if the truth value assignments for the events and
guards are such that only one arm of the choice is selected. This can be achieved by obeying
the following restrictions on events and guards:

o If the set of input events on the ith arm of the choice is contained in the set of input
events on the jth arm of the choice (z # j), then g; A g; must be false. In other words,
if we consider input events alone and find that two arms of the choice qualify, then the
boolean guards must allow only one of the transitions to be actually taken.

e For those pairs of transitions where the set of input events on the ith arm of the choice
is not contained in the set of input events on the jth arm of the choice, and vice versa,
(¢ # J), the guards need not be mutually exclusive. In this case, define an event choose;
to be the conjunction of the events in ie; \ iej; similarly define choose; to be ie; \ ie;;
then, choose; and choose; must be mutually exclusive. Example: If there are three
transitions for P[dps| via input events (iel,ie2), (i€2,7e3), and (zel,1e3) respectively,
then el, ie2, and 7e3 must be mutually exclusive of each other. This information can
be passed on to the design phase that is responsible for implementing events (say, using
boolean encodings of control wires and clocks).

If boolean guards are expressions over a decidable subset of first order logic (which they are,
usually), determinacy can be statically checked.

4 Illustration of PARCOMP

4.1 What Exactly Does PARCOMP Do?

PARCOMP takes as input a realproc or a vecproc and produces as output an absproc. The ab-
sproc inferred by PARCOMP captures, via symbolic expressions, the behavior of the realproc

18

!dout =

read (ms, cs) 001 vdin = ?cdi

[ms, vdin]

N/

vd = ?2din
[write(ms, up(cs), vd)
up(cs)]

~~

04
[ms,

down(cs)]

[ms, up(cs)]

Figure 11

PROTOCOL
STACK [cs,ms] <=
Ireset -> di = 7cdi -> STACK [di,ms]
| Ipush -> Oidle -> vd=7din -> STACK [addi(cs), write(ms,addi(cs),vd)]
| Ttop -> 0idle -> !dout=read(ms,cs) -> STACK [cs,ms]
| Ipop -> 0idle -> STACK [subi(cs), ms]
| Isnop => STACK [cs,ms]
<< Also see figure on separate sheet >>

Figure 11: Absproc Automatically Inferred from stkreal using PARCOMP

or vecproc for all possible starting data-path states of the submodules, and for all external
inputs. The text of the inferred absproc can be manually studied to see if the system behaves
as understood by the designer. Thus, PARCOMP can greatly facilitate the understanding of
the collective behavior of a collection of synchronous systems.

In the inferred behavioral description, PARCOMP does not retain any of the unused
capabilities of the system. Consider a system built using three modules A, B, and C, where
C is the controller for A and B. Though A and B may individually support (say) 5 operations
each, C may actually use only (say) 2 each of their operations. In addition, C may sequence
these two operations only in a small number of ways—out of the large number of possible
ways in which they may be sequenced. PARCOMP discovers and retains only these modes of
behaviors by capitalizing on the event hiding information supplied by the designer.

The use of the event hiding information not only makes the inferred behavioral description
concise, but also reduces the run-time of PARCOMP. The worst-case time complexity of
PARCOMP is proportional to the number of control state tuples (tuples of the control states of
the subprocesses) actually generated. By pruning away control state tuples as early as possible,
entire control subgraphs are eliminated quite early during the execution of PARCOMP. As a
concrete example, in a pipelined memory system, PARCOMP generated 720 initial moves to
explore but immediately discarded 719 moves as they had hidden unsynchronized events. This
also implied that PARCOMP was not recursively invoked on those states that were reachable
only through those 719 moves.

4.2 Illustration of PARCOMP on the Stack

Given the above stack realproc specification and given the specifications for CTR and SCTL
shown in figure 7, we can use PARCOMP to infer the equivalent absproc specification STACK
shown in figure 11. (Only the PROTOCOL section of the inferred process is shown. Inferring
the behavior of the stack takes less than ten seconds of elapsed time running on a 1-MIP
workstation, running Common Lisp.)

The inferred PROTOCOL specification asserts that the STACK system offers a choice of
events Ireset, Ipush, Itop, Ipop, and Isnop. Let us study Itop. After asserting this event,
the external world (say, the “tester process” of the stack) has to idle for one tick. No event is
entertained by the stack (signified by the absence of any input events following Itop), as it is
internally busy. (The system puts out the Oidle event when no user-declared event or data
I/O is occurring.) During the second tick, it asserts the data value read(ms, cs) on the !dout

19

port. This symbolic expression confirms that the stack would output the correct result on port
'dout following the top command. Finally, the STACK[cs,ms] process continues to behave
like STACK[cs,ms] itself, meaning that the STACK process did not undergo any datapath
state changes.

Let us study the push operation. The external world is expected to supply the item
to be pushed two ticks after it applied the Opush trigger that matched with the Ipush
event. If this value were vd, then the future behavior of STACK would be like that of
STACK[add1(cs),write(ms,add1(cs),vd)]. This symbolic expression shows that the push op-
eration was implemented correctly. This is because the counter state has advanced from cs
to addi(cs), and the memory state has advanced from ms to write(ms,add1(cs),vd). In-
formally, the stack pointer was incremented, and the memory location pointed to by the new
stack pointer was written with vd.

The other operations can be similarly studied. It may be noticed that modes of behavior
such as ‘write into the memory and then increment the stack pointer’ are not generated,
though the counter as well as the memory individually are capable of this mode of behavior.
This is because controllers decide what happens in a system, and the stack controller doesn’t
orchestrate the submodules in many (illegal) ways.

4.3 How Does PARCOMP Work?
4.3.1 Lockstep Cartesian Product

Our explanation of PARCOMP would be greatly facilitated by introducing the concept of
lockstep cartesian product (LCP). Given two DFAs A and B, the LCP of A and B, written
lep(A, B), is obtained by applying the following steps until no new states or edges are added:

1. If Ap is the initial state of A, and By is the initial state of B, then the pair < Ag, By >
is in lcp(A, B).

2. If state < A;, B; > is in lcp(A, B), and there is a directed edge E;; going from A; to
a state A; in A, (and likewise Fj; is a directed edge going from state B; to a state B;
in B), then < Aj, B; > is in Icp(A, B). Further, the edge EFi; is in lep(A, B) directed
from < A;, B; > to < A;,B; >. EF}; is labeled with the union of the annotations on
Ei]’ and F”

Example: View the process diagrams in figure 12 as DFAs, with state 0 as the starting
state. Then, lcp(A, B) contains all the 25 states in the cross-product of A and B. On the
other hand if the loop from state 0 to state 0 of process B is absent, lcp(A, B) will contain
only the states 00, 11, 22, 33, and 44. The edges in lep(A, B) would then be: 00 — 11,
11 — 22, 22 — 33, 33 — 44, 44 — 00. Thus, in general, the number of states in the lep is less
than or equal to the number of states in the cartesian product of the states of the constituent
processes.

PARCOMP is an algorithm that embarks on creating the LCP, and in the process begins
to clash the annotations on the transitions of the subprocesses involved. In doing so, it uses
information on hidden events to discover many transitions of the LCP that will not be taken.
It eliminates these transitions from consideration, thereby ignoring much of the LCP graph
from consideration quite early in its execution.

20

4.3.2 An Illustrative Example

We illustrate PARCOMP on an example that has been constructed to involve many in-
teresting situations (figure 13). In this figure, the names of the events and ports associated
with modules A, B, and AB are ‘local’ to those modules. (We will indicate the renaming of
connected ports and events to common names in our narration.)

Structural Details

Two processes A and B are connected to form a system called AB. The Oel event of A is
unconnected as well as hidden; hence it is effectively ignored throughout. Event Oe of A is
connected to event Ie of B, and hence whenever Ie is offered by B and Oe is asserted by A,
the events would synchronize. This event is also exported as event Oer of AB. Thus whenever
Oe is asserted by A, event Oer would be seen asserted outside AB.

Process A has a data port !do connected to port ?di of B. Since this connection is hidden
within AB, the data assertions on !'do will not be visible outside AB. A also has an output
port !do2 that is connected to input port 7di of A, output port !do of B, and output port !do
of AB. The effects of these connections will be discussed momentarily. B has an input port
?hid that is connected nowhere; the effect of querying through this port will be of interest.
Finally, B has an input port 7exp that is exposed outside AB; the effect of B’s query on this
port will also be of interest.

Behavioral Details

The above structural connections show potentials for interaction through events and data
ports. Whether these potentials are actually utilized depends upon the protocol specifications
of A and B.

Figure 12 depicts the PROTOCOL sections of processes A and B. At time 0, process A
is in control state 0 and has data path state [as]. (Data path states are always sequences
of one or more items, and we write them within square brackets, to mimic the syntax used
in the textual version of the HOP specification.) While in control state 0, A keeps an output
event Oe asserted. It also asserts the data value !do=F(as) so long as it stays in control state
0. It moves to state 1 when time instant 1 arrives. In control state 1, it asserts a data item,
and also queries port ?di to obtain a value for a local variable y. The value of variable y
represents the value on port ?di at time 1. Process A then moves to control state 2. Further
behavior of A can be similarly understood. We indicate the state 0 of A using a darker circle
because it corresponds to an explicitly named process “Alas]” in the absproc description of
A.

Let us consider B. It offers a choice between events Iel and Ie in state 0. The former
transition will be taken if event Iel is asserted (from outside B). The latter transition will be
taken if event Ie is asserted. Since the intended semantics is one of deterministic execution
the situation where Iel and Ie are both asserted is not considered (see section 3.2.1).

If Te is asserted, the data query x=?di will be made. After this query, B goes to control
state 1. From control state 1, it goes to control state 2, and its data path state changes to
[bs, x]. State 2 of B is shown using a dark circle because it corresponds to the explicitly
named process B1[bis,t]. (We have defined processes B and Bl through mutual recursion.)

21

Note that we show the “next data path state” only if it changes. B starts from control state
2 in data path state [bis,t]. This pair is bound to [bs,x] by virtue of the data path state
change shown along the arc 1 — 2.

If processes A and B are coupled using the structure shown in figure 13, and allowed to run
starting them both in state 0, their behavior, as seen from outside AB, will be that of process
AB in figure 12. This behavior was automatically deduced using the PARCOMP procedure.
The behavior of process AB is expressed through mutual recursion, by introducing a new
process (say, ‘AB1’) corresponding to the control state 22.

Operational Rules Invoked in Deducing Process AB

Connections between ports and events of processes A and B are modeled by naming them
to common names. (In our narration below, we will perform these renamings “as and when
needed” during explanation.) Processes A and B are then composed via the | operator.
Thereafter certain events and ports are internalized using the ‘hide’ operator.

o PARCOMP can be thought of as a procedure that generates the LCP. While doing so,

events and data assertions/queries are clashed.

Consider the move of A from 0 to 1, and B from 0 to 0. We obtain the LCP edge
00 — 10. We find the labels on this LCP edge using the operational rule for |, as
follows:

— The set of input events is {Iel} \ {Oe}, i.e. {Iel}.
— The set of output events is {Oe}.
— The set of data assertions is {Ido = F(as)}.

e In a similar fashion we consider the move of B from 0 to 1, and of A from 0 to 1,
and obtain the LCP edge 00 — 11 as well as the labels on this edge, again using the
operational rule for ||. In this case, since ports !do and ?di are connected, we will
first rename them to a common name. Then, applying the rule for | will allow us to
determine that variable x will be bound to expression F(as).

¢ In the LCP, there are moves 00 — 10 and 00 — 11. Qut of these, edge 00 — 10 is
labeled by Iei. This is an unsynchronized event. Further it is hidden. Therefore the
LCP edge 00 — 10 is pruned.

® During the move through edge 00 — 11, event De is asserted. Since this is exported via
Oer, we see Oer being asserted by AB during the first transition. However, port !do
is hidden, and so we do not see this data assertion being asserted by AB. The value
communication does happen, albeit internally. The effect can be seen in being bound

to the expression F(as) in the next data path state of process AB that is recorded along
the transition 11 — 22.

o PARCOMP proceeds in this fashion and eventually re-encounters state 00. It now has to
compute PARCOMP of A and B which are (respectively) in data path states NS-A(. ..)
and NS-B(....). However we have already computed the PARCOMP of A and B for data
path states (respectively) as and bs—these are free variables, and hence more general

22

than NS-A(...) and NS-B(...). Hence nothing is to be gained by doing PARCOMP
again, and so the algorithm stops.

The other interesting things that happen along the way are:

— The data assertion !dot=1ub(G(x),as) is produced by AB at time 1, as a result
of the “collision” of the data assertions !do2=as by A and !'do=G(x) by B.

— The assertion 'dor=J(F(as) ,H(1ub(G(F(as)), as))) madeat time 3 is explained
thus: there is an assertion made by B at time 3. This assertion is J(t,z). However
by now, t and z have accumulated value bindings, and these value bindings are
substituted in. Thus we see that the behavior of AB represents the effects of value
communications between A and B in a closed form.

— A final point of interest is the occurrence of the term UB in the next data path
expression when going from state 44 of AB to state 00. UB stands for “unbound”,
and results from the query that B performed on its hidden port ?hid. So long as
this UB value is never ‘used’, the system can compute along safely. An example
would be this: if B were an OR gate and if one of its inputs is already 1, then the
other input is UB. (UB will be bound to HOP’s HIZ value ‘Z’, or to boolean False
‘F’, depending on the actual IC technology used.)

5 Experiments with PARCOMP

In this section we present various experiments conducted using PARCOMP.

5.1 Introducing Protocol Errors

We deliberately introduced mistakes into the stack controller and wanted to see if PAR-
COMP could detect these errors. Here is a specific experiment: take the process SCTL defined
in figure 7, and delete the Oread event that is generated after synchronizing on event Itop.
PARCOMP is able to detect this as an error.

This is possible because of the following reason. By omitting Oread, the SCTL process
does not generate any of the choices that MEM offers at that moment. Thus the behavior of
MEM beyond this point is not defined. Hence the behavior of the stack beyond this point is
not defined.

The results of PARCOMP with this erroneous SCTL are shown in figure 14. The inferred
Absproc has a transition from state 000 to state STOP, which is a dead-end. A STOP control
state in a process is indicative of a design error, because a hardware system’s behavior must
be defined for every time instant. Thus when a STOP state is generated during PARCOMP, it
issues a warning to the user. This feature of PARCOMP can help ensure that timing protocols
are mutually compatible. Much like in type-checking, the assumption is that in a majority
of cases only one process would be “wrong” relative to the other; that is, we won’t make
“compatible mistakes” in two systems, at the same time.

However note that not all timing errors can be caught in the above manner. For example,

1t is possible to have an execution trace where two events iel and ie2 synchronize, but in the
reverse order.

23

5.2 Pipelining the Stack

The inferred behavior of the Stack presented in figure 11 shows that it takes 3 ticks to
complete the push operation. Probing the reasons for this, we see that SCTL is the source
of this time wastage. It accepts Ipush during the first tick, does Oup during the second, and
Owrite during the third; then only goes back to state 0.

We can overlap the last Owrite operation with the awaiting of the next command on the
stack. Doing so, we would have pipelined the stack. The controller used for this purpose
1s PCTL, shown in figure 15. After accepting Ipush and performing Oup, PCTL goes into
control state 3. Here while it awaits the next stack operation, it performs the deferred Owrite
operation.

Using PCTL and the same old MEM and CTR, PARCOMP infers the behavior shown in
figure 16. This behavioral description shows all the modes of behavior of the stack. We will
study some of these modes in the next section.

5.3 Testing the Pipelined Stack, aided by PARCOMP

How do we know that the pipelined stack is correct? One way is to formally verify it
against a requirements specification. We do not take this approach in this paper.

Let us instead test the pipelined stack, to gain some confidence in its correctness. Let us
describe a tester process in HOP that would apply the following sequence of operations:

reset(stack); push(stack, 1); push(stack, 2); pop(stack); top(stack).

The expected result of this test is 1.

In order to test the stack, we should apply the above sequence of commands observing
proper timings for command invocations, data assertions from outside, and the data query for
the result of the top operation. It is our understanding of the timing as well as functionality
of the stack that we wish to confirm through testing. The tester so constructed is shown in
figure 17.

We can compose the tester and the “testee” (the pipelined stack) using PARCOMP, and
thus obtain a single process that embodies all observable aspects of the collective behavior
of the tester+testee. We can then run this single resultant process. The resultant process is

shown in figure 18. This approach has many practical advantages, and they are discussed in
the following subsections.

5.3.1 Detecting Timing Errors in Tester Processes Statically

PARCOMP can reveal certain timing errors in the tester, relative to the testee. In these cases,
wasteful simulation needn’t be performed, and instead the error can be corrected.

5.3.2 Obtaining Symbolic Simulation Results Without Simulation

As figure 18 shows, the inferred process reveals (approximately) how the simulation would
proceed. For instance, it tells us that the final result delivered by the top operation is:

24

<< Figure on separate sheet >>

Figure 12: Processes A, B, and AB

<< Figure on separate sheet >>

Figure 13: The Realization of the System AB

<< Figure on separate sheet >>

Figure 14: Inferred Behavior of the Stack using an Erroneous SCTL

<< Figure on separate sheet >>

Figure 15: The Pipelined Stack Controller

<< Figure on separate sheet >>

Figure 16: Inferred Behavior of the Pipelined Stack (one that uses PCTL)

<< Figure on separate sheet >>

Figure 17: A Tester Process for the Pipelined Stack

<< Figure on separate sheet >>

Figure 18: Composition of the Tester and the Testee (the pipelined Stack)

25

[as]
Oe ldo2 = as

ldo = F(as) y = ?di
O

Ido = K(y, w)
[NS-A(as .y, w)]

!do = H(y)

PROCESS A

le1
[e]
[bs] [bls,]

Ido = G(x)

le x = 2di m [bs, x]
1 >
RN

ub = ?hid
willb = ?exp
[NS-B(b1s, t, ub)]

zZ = ?2di

< PROCESS B
ldo = J(t, 2)
[as, bs] Idor = [as, bl1s, t]
lub(G(x), as

J(F(as), (H(lub(G(F(as)), as)))

willb = ?exp
[NS-A(as, Iub(G(F(as)),as)

J(F(as), (H(lub(G(F(as)), as))), PROCESS AB
NS-B(b1s, t, ub)]

Figure 12

Oet ?hid
'do ?di
—»
—]
A B
?exp
ldo2
« N\ —
2diY ldo le1
Oe Tle
 J 4
Oer ldor

Figure 13

?exp

Isnop

[ms, cs]

Ireset

P 001 vdin= ?cdi

\ [ms, vdin]
Ipop ‘ |push vd = ?2din
Y [write (ms, up(cs),
vd), up(cs)]
L
004
[ms,
down(cs)]

[ms, up(cs)]

Figure 14

]

Isno

Omno Ilreset
Ocnop Omnop
Ocnop ’
d Omnop
Omnop
Ocnop
itop Omnop
Omno Ocno
Ocnopp pu
ODdown
0
Ipop' 8 P Ipush
Ocnop mnop Isnop
Omnop Ocnop Omnop
2 Ocnop
— Oread
Oread 9 Oup Ocnop
Ocnop Omnop
A
Odown Oload '
Omnop Omnop Pwrne
to
chgp /f'
3 - 7
Owrite Owrite
Ipop Ipush
Ocnop Oup Ocdef
Omno)

O Owrite
Ocnop

Ireset

Figure 15

B e e

vdin =?cdi
Isnop [ms, cs]
[cs, vdin]
ireset
0 !dout = read(write(ms,
Idout = read (ms, cs) addi(cs), vd), addi(cs))
—— \\\\\\\\lﬂ:.&au ,add1(cs), vd),
e e addi(cs)]
fpush 108
Itop]f
[write(ms, add1(cs) ,vd)
4 ,add1(cs)]
Ipop
U
[ms, addi(cs)] 4
009
[ms , subl(cs)] [write(ms, ©
p 2cd addi(cs), vd), o
in =?cdi]
v _ addi(cs) Y 5
[write(ms, >— 007 P
addi(cs), vd),
10 11 ddi(cs)]
a cs
[write(ms , top
addi(cs), vd), 4 0 vd = ?din
subi(addi(cs))] [write (ms ,
004 ireset addi(cs), vd),
lpop vd =?din addi(cs)]
vd =7?din [write(ms, addi(cs), vd)
[write(ms ,add1(cs), vd), ,add1{cs)] Ipush
add1(cs)] vd =?din

[write(ms, addi(cs), vd) ,
addi(cs)]

Oidle

res = topval

topval = ?2dit
4

Opush
10 'dot = 1

<:E?f:)
Oidle

Figure 17

0000 0011 0002 0023

[ms, cs§ lresult = read
(write(write(ms, add1(0),1),
add1(add1(0)), 2),
subi(addi(add1(0))))
[write(write(ms, add1(0),1),
addi1(add1(0)), 2),

Oldle
ms, addi(0)]

subi(addi(add1(0)))]
!dot = 1
1 11 1 [write(ms ,add1 (0),1
add1 (0)]
Oldle

[write(write (ms ,add1 (0),1),

add1 (add1 (0)),2), Oldle
subi(addi(add1(0)))] write(ms, add1(0).,1)
dd1(add1(0))]

0036
Oldle \ dot = 2

[write(write (ms, add1(0),1), rwrite(write (ms, add1(0)1
add1(add1(0)), 2),
subi(add1(add1(0)))] addi(add1(0)).2),
Oldle addi(add1(0))]
[write(write(ms, add1(0),1),
add1 (add1(0)),2),
sub1 (add1(add1(0)))]

Figure 18

'result =

(READ
(WRITE (WRITE MS (ADD1 0) 1) (ADD1 (ADD1 0)) 2)
(SUB1 (ADD1 (ADD1 0)))

)

In this simple example, we can readily tell that this answer is correct; for, we can apply simple
algebraic rules of ADD1 and SUB1, to simplify this data assertion to:

'result =
(READ (WRITE (WRITE MS 1 1) 2 2) 1)

This can further be simplified to 1, using the following algebraic axiom of ordinary read-write
memories:

read(write(m, a,d),a) = d.
And 1 was indeed our expected answer.
This opens up the following attractive path towards speeding up functional simulation:

1. Build an algebraic expression simplifier as a part of the abstract data type library.
2. Obtain the “tester+testee” process thru PARCOMP.

3. Extract all the the next data-path state and data assertion expressions present in this
tester+testee. Simplify them using the expression simplifier.

4. Plug these simplified expressions back into the tester+testee.

5. Run detailed functional simulation on this simplified tester+testee.

5.3.3 Building Partial Testers

Suppose we want to supply certain test stimuli “automatically” from the tester process and
some other test stimuli interactively from the keyboard. This can be very easily done in our
present approach. For example, let us assume that the user wants to have control over the first
data item being pushed on the stack. He/she would simply leave out the data assertion !'dot=1
from figure 17. Running PARCOMP on this “tester+testee” would result in an “unsatisfied
but un-hidden” data query at time 4. When we run the HOP simulator on such an absproc,
the unsatisfied data query is turned into a query from the keyboard.

Thus users may selectively add or take away events and data assertions from the tester
process. Thus, a range of testers are possible. At one extreme, the tester does every data
assertion and query, and so the simulation will run on its own, without user intervention. At
the other extreme, the tester would do nothing, and the simulator would interrogate the user
for every event and data input. This was a pleasant and serendipitous discovery.

26

5.3.4 Interpreted Realproc Simulator

Sometimes it may be felt necessary to simulate a collection of processes without doing PAR-
COMP. This need can arise, for example, during the very early stages of a design where
(i) users may want to simulate a proper subset of the subprocesses; (ii) users may want to
get detailed information about the innards of a system. To support this need, we have devel-
oped a run-time version of PARCOMP that is embodied in an Realproc Interpreted Process
Simulator (RIPS).

5.3.5 The use of Probe Processes

Logic state analyzers are widely used to debug digital systems. In HOP, we can simulate logic
state analyzers. by constructing probe processes.

A probe process is constructed by specifying along its transitions a trace of the sequence
of events and data assertions of interest. Such a trace is similar to a “trigger” specification of
a logic state analyzer. We can then PARCOMP the probe process with the submodules of a
system, and then simulate the system.

Here is a probe process that can be used with the pipelined stack:
PROBE <= Iwrite > Iwrite > Iwrite "> Iread -> !probeout = ‘‘Success’’

The operator “> is an abbreviation for “busy wait until the following input event”. This
derived operator is available in HOP, and can be expressed in terms of ->.

If this probe process were to be composed with the pipelined stack and tested using fig-
ure 17, it will sense whether the memory is being subject to three writes and one read. If so it
will print ‘ ‘Success’’ on the !probeout port. For the command sequence push; push; pop; top
applied by our tester, this trace must manifest on the memory subprocess. Probe processes
may, after sensing the trigger condition, start acquiring data, and may even act like tester
processes by supplying test patterns.

5.3.6 Checking for Representation Invariants

Probe processes may be used for flagging the violation of of representation invariants during
the course of operation of a module. Representation invariants [25] are predicates that describe
the consistent internal states of a module. As an example, consider a simple associative
memory (AM) with 4 locations. A representation invariant found in most AMs is: “AM never
contains duplicate entries”. Stated formally,

Vz unary(assoc_srch(AM, z)).

This says that d, the result of doing an associative search, is always a unary quantity. If the
unary pattern is “0000”, it indicates that the search “missed”. If the pattern is “0010”, it
indicates that there was a hit at location 3. If pattern is “0101”, it indicates that = was found
in location 0 and 3; this is erroneous. A probe process to detect this condition is:

NODUP <= Isearch, x=7srchdata -> if(unary(x), NODUP, ERROR)
ERROR <= !probeout = ‘‘Error’’ -> STOP

27

Each cell is ‘M’

Ar Aty | Arr

As Ag. | Asr

Arrows signify that the
o is obtained from o

via copying and renaming.

Figure 19: Divide and Conquer PARCOMP

The probe process NODUP samples the Isearch event that triggers the associative search. It
samples the search’s result, x, also. Then if x is found to be unary, it goes back to behave like
NODUP. Else it behaves like the ERROR process.

This technique has one limitation: quite often, the entire internal state of a module is not
observable through its output ports. To overcome this limitation, we are investigating the use
of daemons—data driven procedures—that can directly monitor the ADT object states.

6 A Divide-and-conquer PARCOMP, ‘PCDC’

This section sketches a variant of PARCOMP that exploits the high degree of regularity
found in many real-world VLSI arrays. The arrays on which PCDC can be applied need not
be regular in their computation and communication (as systolic arrays are); they need only
be regular in their structure. To clarify this point, consider a 4x4 array of cells. Let each
cell support 4 different operations. Suppose that for certain data inputs some cells are doing
operation #1 while others are doing operation #2, etc. PCDC can be applied to this array
of cells. In addition, PCDC can be applied to arrays in which there exist embedded global
busses—something that systolic systems do not have.

For the same MxN array PCDC is expected to run faster than PARCOMP. To understand
how this is achieved, consider the array A shown in figure 19. It consists of a collection of

28

modules M connected in a regular interconnection pattern. For simplicity of explanation,
assume a nearest-neighbor connection that is regular in both the dimensions. Now consider
the problem of computing PARCOM P(A); i.e. the composition of all the Ms constituting
A.

A simple but crucial property enjoyed by PARCOMP is that is both commutative and
associative. This is exploited by PCDC. It splits A into two halves, say Ar standing for “the
top of A” and Ap, standing for “the bottom of A”, and uses the property:

PARCOMP(A) = PARCOMP(PARCOMP(Ar), PARCOMP(Ag)).

Since A7 and Ap differ only in the names of their external ports, PCDC need compute only
PARCOMP(Ar). PARCOMP(Ap) can be obtained from this, by renaming the ports of
Ar to the corresponding ports of Ag. This division process can be carried down to the leaf
cells, as depicted in figure 19.

PCDC has been implemented and applied to a few real-world arrays. For a large class of
practically occurring arrays, PCDC’s run time is O(N?log(N)) where N is the number of cells
in the regular array. PCDC’s complexity analysis and experimental results will be reported

in [16].

7 Summary of the Paper

We presented a language “Hardware viewed as Objects and Processes” (HOP) for specifying
the structure, behavior, and timing of hardware systems. HOP embodies a simple process
model for lock-step synchronous processes.

We presented the communication primitives of HOP, illustrated HOP through several ex-
amples, and then presented its operational semantics. Several design automation algorithms—
especially PARCOMP—were then examined in detail. The results presented herein were ob-
tained from our implementation of the HOP design system. Section A.1 presents an overview
of this system. It has a working prototype, currently written in Common Lisp and FROBS
[34].

Though we have taken simple examples in this paper, we have worked out some larger
examples as well. A few large as well as intricate systems specified to date are: (i) A Huffman
encoder; (ii) A cache memory system; (iii) A major portion of the Texas Instruments Micro
Sequencer chip 74AS890 [1]. We have run the first two of these examples through PARCOMP
as well as simulated the inferred process. These experiments have confirmed the utility of
most of our design decisions, some important ones being:

® separation of data I/O from control 1/0;
e separation of data state from control state;

o the PARCOMP algorithm, and its applications for deducing succinct behavioral descrip-
tions from structural descriptions;

e capitalizing on the locality of hidden events for detecting sequencing errors as well as

reducing the run-time of PARCOMP.

Work is currently in progress in generalizing HOP to encompass ‘truly concurrent’ systems.

29

References

[1]

(2]

(3]

(4]

[5]

[10]

[11]

12]

[13]

[14]

Venkatesh Akella. A micro assembler for the ti 74as890 micro sequencer. Technical Report
UUCS-88-016, Dept. of Computer Science, University of Utah, Salt Lake City, UT 84112, 1988.

T.S. Anantharaman, E.M. Clarke, M.J. Foster, and B. Mishra. Compiling path expressions into
vlsi circuits. In Proceedings of the 12th Symposium on Principles of Programming Languages.
ACM, January 1985.

Mario R. Barbacci. Instruction set processor specifications (isps): The notation and its appli-
cations. IEEE Transactions on Computers, C-30(1):24-40, January 1981.

Gerard Berry and Laurent Cousserat. The ESTEREL synchronous programming language and
its mathematical semantics. In S.D.Brookes, A.W.Roscoe, and G.Winskel, editors, Seminar on
Concurrency, LNCS 197, pages 389-448. Springer- Verlag, 1984.

M. Browne, Edmund Clarke, D. Dill, and B. Mishra. Automatic verification of sequential circuits
using temporal logic. In Proceedings of the Seventh International Conference on Computer
Hardware Description Languages, pages 98-113. North-Holland, 1985.

Randall E. Bryant. A switch level model and simulator for MOS digital systems. IEEE Trans-
actions on Computer, C-33:160-177, February 1984.

Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware specification and veri-
fication using higher order logic. In Processings of the IFIP WG 10.2 Working Conference
on “From HDL Descriptions to Guaranteed Correct Circuit Designs”, Grenoble, August 1986.
North-Holland, 1986.

Vincenza Carchiolo, Alberto Faro, Orazio Mirabella, Giuseppe Pappalardo, and Giuseppe Scollo.
A LOTOS specification of the PROWAY highway service. IEEE Transactions on Computers,
C-35(11):949-968, November 1986.

P. Caspi, D.Pilaud, N.Halbwachs, and J.A.Plaice. LUSTRE: A declarative language for pro-
gramming synchronous systems. In Proceedings of the 1{th Annual Symposium on Principles of
Programming Languages, pages 178-188. ACM, 1987.

Tam-Anh Chu. Synthesis of self-timed vlsi circuits from graph-theoretic specifications. In
International Workshop on Petri Nets and Performance Models, Madison, Wisconsin, August
1987. See also MIT VLSI Memo no.87-410, September 1987, with the same title.

Avra Cohn. Correctness properties of the Viper block model: The second level. In 1988 Banff
Workshop on Hardware Verification. Springer Verlag, 1988.

Stephen Garland, John Guttag, and Jorgen Staunstrup. Verification of vlsi circuits using Ip.
In George Milne, editor, 1988 Glasgow Workshop (IFIP WG 10.2) on Hardware Verification,
1988.

Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Systems. PhD thesis,
Dept. of Computer Science, State University of New York, December 1986. (Also Tech. Report
UU-CS-86-117 of Univ. of Utah).

Ganesh C. Gopalakrishnan. Synthesizing synchronous digital vlsi controllers using petri nets. In

International Workshop on Petri Nets and Performance Models, Madison, Wisconsin, August
1987.

30

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

(24]

(25]

[26]

[27]
[28]

(30]

Ganesh C. Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella, N.S. Mani, and Kevin N,
Smith. Specification-driven design of custom architectures in hop. In P.A.Subrahmanyam and
G.Birtwistle, editors, Current Trends in Hardware Verification and Automated Theorem Proving,
chapter 3, pages 128-170. Springer-Verlag, 1989.

Ganesh C. Gopalakrishnan, Narayana S. Mani, and Venkatesh Akella. A tool for the parallel
composition of finite-state processes with applications to hardware validation. In Workshop on
Automatic Verification Methods for Finite-State Systems, Grenoble, France, June 12-14, 1989.
Springer Verlag, 1989. Accepted for Publication.

Ganesh C. Gopalakrishnan and Mandayam K. Srivas. Implementing functional programs using
mutable abstract data types. Information Processing Letters, 26(6):277-286, January 1988.

Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From algebraic speci-
fications to correct vlsi circuits. In D.Borrione, editor, From HDL Descriptions to Guaranted
Correct Circuit Designs, pages 197-225. North-Holland, 1987. (Proc of the IFIP WG 10.2
Working Conference with the same title.).

Richard H. Lathrop Robert J. Hall and Robert S. Kirk. Functional abstraction from structure
in vlsi simulation models. In Proc. 24st Design Automation Conference, pages 822828, 1987.

Matthew Hennessy. Proving systolic systems correct. Technical Report CSR-162-84, Department
of Computer Science, University of Edinburg, June 1984.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New
Jersey, 1985. Definitive discussion of CSP, circa 1985.

Stephen Johnson, B. Bose, and C. Boyer. A tactical framework for hardware design. In Gra-
ham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 349-383. Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

Jeffrey Joyce and Graham Birtwistle. Proving a computer correct in higher order logic. Technical
Report 85/208/21, Dept. of Computer Science, Univ. of Calgary, August 1985.

Robert R. Kessler, Eric G. Muehle, and Jed Krohnfeldt. Efficient structures for knowledge-based
applications. In Proc. of the 1987 Rocky Mountain AI Conference, June 1987.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The
MIT Press, 1986. ISBN-0-07-037996-3.

L. Logrippo, A. Obaid, J.P.Briand, and M.C. Fehri. An interpreter for LOTOS, a specification
language for distributed systems. Software—Practice and Ezperience, 18(4):365-385, April 1988.

Zohar Manna. Mathematical Theory of Computation. New York: McGraw-Hill, 1974.

John Merk, John Lalonde, and Ganesh Gopalakrishnan. Adtp user’s manual. Requirements
Specification and User Manual for the Abstract Data Type definition Package (ADTP), Software
Engineering Lab., Spring 1988.

George G. Milne and Mauro Pezze. Typed circal: A high level framework for hardware veri-
fication. In Proc. 1988 IFIP WG 10.2 International Working Conference on “The Fusion of

Hardware Design and Verification”, Univ. of Strathclyde, Glasgow, Scotland, pages 115-136,
July 1988.

George J. Milne. Circal: A calculus for circuit description. Integration, (1):121-160, 1983.

31

(31]

[32]
(33]

(34]

[35]

[36]

[37)

[38]

(39]
[40]

41]

George J. Milne. Simulation and verification: Related techniques for hardware analysis. In
Proceedings of the Seventh International Conference on Computer Hardware Description Lan-
guages, pages 404-417. North-Holland, 1985.

Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. LNCS 92.

S. Morpurgo, A. Hunger, M. Melgara, and C. Segre. Rtl test generation and validation for vlsi:
An integrated set of tools for karl. In Proc. Seventh International Symposium on Computer
Hardware Description Languages, pages 261-271. North Holland, 1985.

Eric G. Muehle. Frobs: A merger of two knowledge representation paradigms. Master’s thesis,
Dept. of Computer Science, University of Utah, Salt Lake City, UT 84112, December 1987.
FROBS Stands for Frames+Objects.

P. Narendran and J. Stillman. Hardware verification in the interactive vhdl workstation. In Gra-
ham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 235-255. Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University, Denmark, September 1981.

R.C.Sekar and Mandayam Srivas. Formal verification of a microprocessor using equational
techniques. In G.Birtwistle and P.A.Subrahmanyam, editors, 1988 Banff Hardware Verification
Workshop, Banff, June 1988, 1988. Invited Paper, to appear as a chapter in a forthcoming
Springer-Verlag book.

Mary Sheeran. Design of regular hardware structures using higher order functions. In Proceedings
of the Functional Programming and Computer Architecture Conference. Springer-Verlag, LNCS
201, September 1985. Nancy, France.

Jan Snepscheut. Trace Theory and VLSI Design. Springer Verlag, 1985. LNCS 200.

Pashupathy A. Subramaniam. Overview of a conceptual and formal basis for an automatable
high level design paradigm for integrated systems. In Proceedings of the International Conference
for Computer Design and VLSI, Westchester, pages 647-651, 1983.

Vhdl language reference manual, August 1985. Intermetrics Report IR-MD-045-2; See also
IEEE Design and Test, April 1986.

[42] W.F.Clocksin. Logic programming and digital circuit analysis. Journal of Logic Programming,

(4):59-82, 1987.

32

Editors | .. o .

An ADT
Spec.
—
m.ap, .rp,
&r .Vp [meell T
e o 1 User e e e e)
| ; -~ Interface DefADT
i & f v oo s vomne wan .i
HOP->FROBS X !
Compiler | [FarComp :
i 4
,
1 wh Simulator . ADT
)T:Jzip,%,%e Preprocessor ProcVec Simulator Library

Figure 20: Data Flow Diagram of the HOP Design System

A Appendix

A.1 A Brief Description of the HOP Design System

Figure 20 illustrates the data flow diagram of the HOP design system. The rectangular
boxes indicate functional units, and boxes with curved sides indicate intermediate storage
units. Dotted lines show the flow of control, and solid lines show the flow of data. Currently,
working prototypes exist for all the functional units shown in this figure.

Input specifications are entered through text editors. File name extensions .ap, .rp, and
.vp refer to absproc, realproc, and vecproc. Cell specifications are entered using an available
VLSI design system. HOP specifications are compiled into FROBS representations using
the HOP—FROBS compiler. The algorithm PARCOMP can now be applied on Realprocs
and Vecprocs (presently implemented only for Realprocs). PARCOMP infers functionally
equivalent absproc specifications from Realproc and Vecproc specifications.

The simulator preprocessor compiles the FROBS database into a form suitable for the
simulator (under development). A data type definition mechanism has been implemented
using FROBS [28]. During simulation, the simulator will be called upon to evaluate functional
expressions that compute new datapath states as well as output port values. These will be
achieved by invoking the operations defined on the various data types. FROBS supports

33

daemons that can help probe simulation results, as explained in section 5.3.6.

34

