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Abstract 

In the petroleum industry, the economic advantage of drawdown 

testing have long been recognized over those of buildup 

testing. However, drawdown tests are rarely analyzed due to 

the difficulty in achieving a constant production rate. 

Theoretically, deconvolution can make drawdown tests inter-

pretable by unmasking reservoir response during varying rate 

drawdown tests. When the mathematical form of the flow rate 

schedule is complex or discontinuous, analog deconvolution 

methods become difficult to apply to well tests. Other 

deconvolution methods proposed in the literature to date have 

been unsuccessful in deconvolving all flow schedules and all 

flow patterns. In this thesis a new method of deconvolution 

is derived by using forward differences. The method requires 

bottom hole pressure and sandf ace flow rate data sampled at 

equal time intervals. The deconvolution method was tested 

with synthetic variable rate well tests convolved using four 

flow patterns and five sandf ace flow rate schedules. The flow 

patterns included radial flow, linear flow and spherical flow 

and a combination of radial and linear flaw. Constant, linear, 

exponential, periodic and discontinuous sandface flow sched-

ules were considered. The deconvolution. algorithm was also 

successfully tested against two variable rate well test 

examples in the literature. The proposed method successfully 

deconvolved all synthetic well tests. In each case, the 
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deconvolved pressure response was similar to the original 

pressure influence function by the standard type curve 

matching. In addition, the proposed method produced reservoir 

parameters that matched those published for the two well tests 

from the literature. The deconvolution method is general in 

nature and applicable to all reservoir flow patterns and all 

sandface flow rate schedules. Use of the method improved 

confidence in calculated permeability and skin values. It 

also enables drawdown tests affected by variable flow rates 

to be analyzed. 
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Nomenclature 

Variable Description (Units)  

B formation volume factor (rbbl/STB) 

Cf fluid compressibility ( 1/psi) 

C t total compressibility (1/psi) 

g acceleration due to gravity (ft/s2) 

h formation height (ft) 

i time counter 

k permeability (mD) 

K inverse Laplace transform related to 

the dimensionless flow rate 

kr radial permeability (mD) 

spherical permeability (mD) 

k vertical permeability (mD) ' 

L characteristic half length of a frac- ( ft) 

ture 

• L' inverse Laplace operator 

m slope (1/psi) 

N number of data points 

Plhr bottom hole pressure after 1 hour of (.psi) 

flow 



Nomenclature ( continued) 

Variable Description (Units)  

Plhr deconvolved bottom hole pressure after ( psi) 

1 hour of flow 

PD pressure influence function or 

dimensionless pressure function 

P'D semi-log derivative of the pressure 

influence function ( ie. tDclpD/dtD) 

second derivative of the pressure 

influence function 

initial reservoir pressure (psi) 

Pwd difference between initial reservoir ( psi) 

Iwd 

PWD 

P wDRQf 

pressure and flowing bottom hole 

pressure 

difference between initial reservoir ( psi) 

pressure and deconvolved flowing bot-

tom hole pressure 

dimensionless bottom hole pressure 

function 

dimensionless bottom hole pressure 

function at a reference flow rate 
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Nomenclature ( continued) 

Variable Description (Units)  

P 'wDRf 

pwJ 

semi-log derivative of the dimension-

less bottom hole pressure function at 

a reference flow rate 

bottom hole flowing pressure (psi) 

Pwf deconvolved bottom hole flowing (psi,) 

pressure 

q flow rate (bbl/d) 

qD dimensionless flow rate 

qD average dimensionless flow rate 

q01 flow rate at time .1 (bbl/d) 

flow rate at time 2 (bbl/d) 

qDL flow rate at time i (bbl/d) 

qRf reference flow rate (bbl/d) 

qsj sandface flow rate (bbl/d) 

spherical radius (ft) 

welibore radius (ft) 

skin 

t time (hour) 
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Nomenclature ( continued) 

Variable Description (Units)  

T dimensionless time integration vari-

able 

tD dimensionless time 

tD1 dimensionless time 1 

tDi dimensionless time i 

tDk dimensionless time k 

tDL dimensionless linear time 

tD. dimensionless spherical time 

v velocity (ft/s) 

difference operator 

11 viscosity (cp) 

P density 

dimensionless time integration vari-

able 

porosity 

(1bm/ft) 
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Chapter 1. 

Introduction 

Oil and gas well operators use transient well testing to 

determine a variety of formation properties and weilbore 

condition. The two most commonly used pressure transient 

tests are the drawdown test and the buildup test. Both require 

constant rates during the test. A drawdown test is conducted 

by producing a well in a previously stabilized reservoir at 

a constant rate. This draws down the pressure at the sandface 

of the well. The bottom hole pressure recorded during the 

test is analyzed to provide estimates of reservoir properties. 

A buildup test, however, is conducted by producing a well at 

constant rate and then shutting the well in [ 1]. This allows 

the pressure at the sandf ace of the well to build up. The 

measured bottom hole pressure from this test can also be 

analyzed for reservoir properties. Buildup tests are analyzed 

more often than drawdown tests because a constant rate of zero 

is easy to maintain while a well is shut in. On the other 

hand, "in drawdown testing, the rate fluctuates with time, as 

a truly constant production rate can rarely be maintained 

under the field conditions" [ 11]. 

Analysts can obtain the same information about reservoir 

permeability and skin from either a constant rate drawdown or 

a buildup test. Lee [ 1] asserts that even reservoir pressure 
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can be determined from a two rate drawdown test. However, 

drawdown tests with arbitrary flow rate variations can not be 

analyzed by conventional methods. 

Several factors contribute to changes in production rate. 

Welibore storage causes the sandf ace flow rate to vary during 

the early stage of a well test. Tubing liquid loading or 

hydrates in the tubing cause temporary flow interruptions. 

Surface equipment malfunctions ( eg. instrument failure or 

compressor break-down) may cause reduced flow. Gas processing 

plant upsets can, restrict or limit gas flow. Flow is also 

restricted or interrupted because of natural gas market demand 

fluctuations. 

Drawdown testing has a definite economical advantage. If 

drawdown tests could be analyzed in spite of the arbitrary 

flow rate variations, well operators could receive cash flow 

from production while testing. This is particularly attrac-

tive for low permeability reservoirs. In fact, some tight 

reservoirs exhibit such low permeability that a buildup test 

would not reach pseudosteady- state for years. Obviously, well 

owners can not tolerate such a large loss of cash flow. Thuá 

an extended drawdown test is preferable for the purpose of 

obtaining reservoir parameters. 

The pressure influence function of a well is defined as 

the dimensionless bottom hole pressure variation over time 

under conditions of constant sandf ace flow rate from the 

formation to the weilbore. It is affected by both the res-
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ervoir and wellbore characteristics. From a pressure influ-

ence function an analyst may identify the type of flow in the 

reservoir ( ie. radial, linear or spherical) and estimate 

reservoir parameters ( ie. permeability and skin). 

For short flow durations, the flow rate at the tubing head 

of a well is rarely identical to the sandface flow rate because 

of the storage volume of the wellbore. Sandface flow rate can 

be measured and used to eliminate the masking effect of 

wellbore storage on the pressure influence function. This 

unmasking is called deconvolution. 

Most existing methods of analyzing a varying rate drawdown 

test assume radial flow of fluidsin a homogeneous reservoir. 

However, the reservoir may exhibit linear or spherical flow 

or may be of a heterogeneous nature. The use of an incorrect 

flow model for a given reservoir could result in erroneous 

permeability and skin estimates [ 11]. 

Section 1.1 Thesis Scope 

In this thesis, a numerical method of deconvolving 

variable rate drawdown tests is proposed. Based on measured 

sandface flow rate and bottom hole pressure data, the method 

generates an ersatz constant rate pressure influence function. 

This pressure influence function can then be analyzed using 

conventional theory. The proposed method is verified using 

synthetic well test data and examples from the literature. 
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The proposed deconvolution method was tested against a 

greater variety of'flow rate schedules than other methods 

reported in the literature. Thef low rate schedules include 

multiple constant rates, linearly increasing rates, weilbore 

storage induced flow rate fluctuations and periodically 

changing flow rates. Three types of reservoir flow are con-

sidered, namely radial, linear and spherical flow. 

This thesis does not consider the actual techniques of 

measuring sandface flow rate. Information regarding these 

techniques can be obtained from service companies that spe-

cialize in measuring sandf ace flow rate through the use of 

spinner surveys. This thesis assumes the availability of 

accurate sandf ace flow rate data. 
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Chapter 2. 

Deconvolution Background 

A fundamental assumption in the development of conven-

tional well test theory is constant sandf ace flow rates. Any , 

flow rate variation during a well test violates this 

assumption and renders the well test uninterpretable. The 

objective of deconvolution is to eliminate the affect of rate 

variation thus allowing the use of conventional well test 

theory. 

Strictly speaking, deconvolution is a mathematical 

solution of the convolution integral. The convolution inte-

gral ( equation 2.1) describes the bottom hole pressure 

response (pDRj) during a well test in which the flow rate 

varies. The integrand of the convolution integral contains 

two terms: dimensionless flow rate (q), and the pressure 

influence function ( PD). The solution of the integral for one 

of the integrand terms is called deconvolution. During a well 

test, PWDReJ and qD are measured. Therefore deconvolution is 

used to solve equation 2.1 for PD. This process is trivial 

in the case where qD is constant, but very challenging when 

the flow rate varies. 

Convolution Integral 

P wDRef(tD) = 
dpD(tD -  

di 
2.1 
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Deconvolution produces a pressure influence function (PD) 

which can be used to identify the type of flow through the 

porous media of the reservoir. The fluid may flow radially, 

linearly or spherically to the weilbore. The reservoir flow 

model determines the type of equations required to analyze the 

well test data. 

Equation 2.1 is known to be a Volterra equation of the 

first kind. The solution of this type of equation is often 

accomplished by use of the Laplace transforms and depends on 

the form of the forcing function q,. In this thesis a method 

of deconvolution is proposed that is applicable to any form 

of qD. 

Section 2.1 Methods of Deconvolution in the Literature 

Many researchers in the petroleum industry have suggested 

methods of deconvolving variable rate drawdown and buildup 

tests. In this section the deconvolution algorithms of var-

ious authors are examined. 

2.11 Superposition  

The principle of superposition is used in well testing to 

predict the pressure response in a reservoir as a result of 

varying flow rates. Superposition mathematically combines a 

pressure influence function and a flow rate schedule to pro-

duce the bottom hole pressure response. 

Jargon and Van Poollen [ 2] suggest using superposition to 

solve variable rate well test problems. However their 
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approach assumes radial flow. If the reservoir flow pattern 

for a particular well test is not radial, the reservoir 

parameters calculated by their method will be erroneous. 

Similar methods are available for linear or spherical flow 

regimes as well, but they too assume a single flow regime 

throughout the test. 

2.1.2 Rate Normalization  

Gladfelter, Tracy and Wilsey [ 3] suggested normalizing 

the bottom hole pressure during after-flow of a buildup test 

to eliminate the effect of weilbore storage. They normalized 

the dimensionless bottom hole pressure. using 

PwDRef = PwD 

Winestock and Colpitts [ 4] later suggested using this type 

of normalization for gas well deliverability tests with 

smoothly varying flow rates. They showed that for a flow rate 

expressed as a polynomial function of time [ 4], 

2.2 

P WD 

(  qRey  

q R9f — q 

(t) = PD + additionai terms 
q 

in which they assert that the additional terms are negligible. 

This method was recommended by Lee [ 1] when the variations of 

q(t) are small. 

More recently a study by Kuchuk has shown that this type 

of deconvolution "is valid only if the down-hole flow rate 

varies linearly with time" [ 5]. 

2.3 
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2.1.3 Odeh and Jones' Variable Rate Analysis 

For the conditions of radial flow, Odeh and Jones [ 14] 

proposed a method of analyzing variable rate drawdown tests 

by approximating the flow rate schedule with a series of 

discrete rate steps. Using the method of superposition for 

a drawdown test with n consecutive constant flow rates, they 

derived the equation 

Pt_Pwf  162.6" (qj—qj-,) log(tn — t 0- 1))] 
q Iz k  qn 

khl (••Lctrw) - 

which suggests that plotting 

Pt — Pwf versus 

(q f—q 11 )log(t fl --t (11)) 

would produce a straight line with a slope m: 

m= 162.6 
kh 

2.4 

2.5 

The limitations of this method include the assumption of 

radial flow and an infinitely large reservoir. The method 

also ignores wellbore storage effects during the rate changes 

[1]. 

2.1.4 Deconvolution Using Laplace Transforms  

As early as 1949, van Everdingen and Hurst [ 6] suggested 

the use of the Laplace transform for convolution and decon-
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volution. They mathematically modelled the sandf ace flow rate 

caused by welibore storage using a function which increases 

exponentially to a constant rate. Applying the Laplace 

transform to this model, they were able to solve the convo-

lution integral for the constant bottom hole pressure case and 

the constant tubing head flow rate case. 

Kucuk and Ayestaran [ 7] reviewed the use of Laplace 

transforms specifically for deconvolution. They showed that 

the pressure influence function can be calculated from 

tD 2.6 

PD(to) = fo K(t)pWD(to  

where K is an inverse Laplace transform related to the 

dimensionless flow rate as shown below. 

[Sq- K(tD) = L' 1() 

2.1.5 Numerical Deconvolution 

In an attempt to deal with well test data convolved by 

arbitrary flow schedules, some authors have turned to numer-

ical methods of deconvolution. In these methods, the solution 

at each time point becomes a function of the solutions at all 

previous time points. Hamming [ 9] noted that most of these 

methods of numerical deconvolution suffer from stability 

problems in the form ofgeometriàally increasing oscillation. 

2.7 
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2.1.6 Meunier Method 

In 1985, Meunier, Wittmann, and Stewart [ 8] proposed a 

numerical method of finding reservoir parameters from a 

buildup test with after-flow. Their method assumed radial 

flow and should not be used for other flow patterns. 

2.1.7 Hamming Deconvolution  

Hamming [ 9 ] designed a numerical deconvolution method for 

use in a creep and relaxation problem. He noted that the 

method works well for pressure influence functions that 

decrease with time. The method becomes unstable when PD 

increases making the method unsuitable for well testing since 

radial, linear and spherical pressure influence functions all 

increase with time. 

2.1.8 Deconvolution by Assuming Pressure Response  

Kucük and Ayestaran [ 7 ] suggested assuming a reservoir 

flow pattern and curve-fitting the pressure influence function 

with a power series or some other function. 
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2.1.9 Deconvolution with Constraints  

Since numerical deconvolution methods are highly sus-

ceptible to data errors, Kucuk, Carter, and Ayestaran [ lO] 

proposed a method of deconvolution that constrains the 

pressure influence function (PD). They suggested the fol-

lowing constraints for t≥O 

PD≥O 2.8 

P D ≥O 

P"D≤O 

P"D is monotonically increasing. 

where p' is the derivative of pressure with respect to time. 

In addition, it is required that the pressure solution be 

a piecewise quadratic function. They solved the convolution 

integral by using finite elements and a least square methods. 

They found that their deconvolution method was successful when 

flow rate noise did not exceed 2.0%. 

In this thesis, another method of deconvolution is pro-

posed that can successfully deconvolve all flow variations and 

flow patterns. 
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Chapter 3. 

Proposed Deconvolution Method 

The object of this thesis is to propose a deconvolution 

method that can be used for any arbitrary flow rate schedule. 

Real and significant fluctuations in flow rate are not 

ignored. It is not practical to represent real flow rate data 

as a smooth function as other researchers have done because 

gas and oil well prOduction rates rarely behave smoothly. To 

be useful, the method of deconvolution must be able to handle 

flow rate schedules that include discontinuities, nonlin-

earities and periodic fluctuations. 

Section 3.1 Method- Derivation  

This section outlines a novel approach to finding an 

unknown pressure influence function from sandf ace flow rate 

and bottom hole pressure data. 

As discussed in Appendix A, the solution of the diffu-

sivity equation for a constant rate can be expressed in general 

terms as 

P w DRf(tD) = qp D (t) 3.1 

in which PwDRf is the dimensionless bottom hole pressure 

function at a reference sandface flow rate 

defined by 

PWDReJ 

(p - p)kh 

(q1) • PWDReJ 

3.2 

is 
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The variable qD represents the dimensionless sandface flow 

rate specified by 

ED) 
q(C) - qSf( 

qRf 

3.3 

in which q31 is the sandf ace flow rate. The symbol PD 

represents the pressure influence function. 

The solution in equation 3.1 assumes a constant flow rate 

of slightly compressible fluid and is applicable to any res-

ervoir flow pattern. The solution can be modified for a 

varying flow rate using the law of superposition: 

k—i 

PwDRef(tDk) = - - tDt) 

3.4 

wherei and k are time data point counters. The notation of 

equation 3.4 is simplified by assuming equal time intervals 

and therefore letting the integers i and k replace dimen-

sionless time tDi and tDk yielding 

3.5 

PwDRef(") 
1=0 

[q(' ± 1)- q(i)]p(k - 1) 

The forward difference LP W DRgJ is defined by 

A PwDRf(k)PwDRef(/t ± l)PwDRef(k) 3.6 
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Substituting the expression for PWDRJ from equation 3.5 into 

equation 3.6 generates the following equation: 

3.7 

PwDRef(') [q0('± l) — c1D(i)]pD(k± 1—i) 
1=0 

k—i 

+ 1)— q(i)]p(k - i) 
1=0 

which may be expanded to 

P wDRef('C) [qD(1)—q 0(0)]jJ(k+ 1) 

- qD( 1)]p(k) 

+[q(3)—q 0(2)]p 0(k— 1)+... 

+[q 0(k— l)—q(k-2)]p 0(3) 

-'-[q(k)—q(k— ')] PD(2) 

+[q(k+ l)—q(k)]p(l) 

—[q( 1)— q(0)]p(k) 

—[q(2) - qD( 1)]p(k - 1) 

—[q(3) - q(2)]p(k —2)—... 

—[q(k— 1)—q(k-2)]p(2) 

—[q(k)q(k— ')] PD(') 

3.8 
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By collecting like terms, and stipulating that PD(0)=O, 

equation 3.8 may be rearranged into the following form 

AP W DRef ( k)= [q(1) — q(0)][p(k'+ 1) -p D(k)] 

+[q(2)—q(1)][p(k)—p(k— 1)] 

+[q(3) - q(2)][p(k - 1)— PD(" - 2)] + 

+[q(k— 1)—q(k-2)][p(3)—p(2)] 

+[q(k)—q(k— l)][PD( 2)— PD( 1 )] 

+[q(k+ 1) — CJ(k)][p(1)—p(0)] 

3.9 

This equation may be simplified using forward difference 

notation 

PwDReJ(") AciD(0)L≥PD(k) 

+Lq 0(1)Lp 0(k— 1) 

+Aq(k-2)p(2) 

+Aq(k. l)Lp D(l) 

+Lq(k)Ap(0) 

and further simplified using summation notation 

APwDReI(k) = Aq(0)p(k)+ TAq(k - 
1=0 

3.10 

3.11 
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Equation 3.11 may be solved for L\p D (k) by rearranging 

APWDRf(k) k—I 3.12 

APD(k) = Aq(0) Aq(k - 

Replacing the integer k with tDk, equation 3.12 can be restated 

in terms of dimensionless time as 

P wDReJ(tDk) - 

A p0(t Dk ) -  
zq D(0) 

1 k—i 

Lq(0) Z 
- tDj)/PD(tDL) 

3.13 

Equation 3.13 expresses the solution for the forward 

difference of the pressure influence function at time tDk in 

terms of all of the previously computed values of this 

function. The pressure influence function may be calculated 

by summation of the forward difference function [ 9] 

k 3.14 

Equation 3.13 and 3.14 represent a new method of 

deconvoiving variable rate well test data to obtain the 

constant rate pressure influence function of the well. The 

method requires knowledge of PwDRef (obtained from bottom hole 

pressure data) and sandf ace flow rate. 'The derivation has not 

restricted the type of reservoir flow pattern nor the type of 
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flow rate schedule. The method uses discrete summation and 

difference techniques applicable to data points sampled at 

equal time intervals and assumes that PD(0)=O. 

Section 3.2 Practical Concerns  

Three practical concerns are associated with equation 

3.13. Firstly, bottom hole pressure data are rarely measured 

at equal time intervals. Secondly, the division of the right 

hand side of equation 3.13 by Aq D (0) could cause round off 

error. Lastly, when interpreting a well test, the reservoir 

parameters required to calculate the dimensionless bottom hole 

pressure (pDRJ) are unknown. 

The fact that equation 3.13 requires data at equally 

spaced time intervals is not a serious drawback. Several 

techniques including linear interpolation may be used to 

interpolate such data points from the raw data. 

The denominator of the right hand side of Equation 3.13 

is Lq(0), the difference between the dimensionless flow rate 

attime 1 and at time 0. The difference is defined as 

3.15 q(0) 

qref qrej 

To reduce the round off error in equation 3.13, qr,j should be 

set to the value of the first flow rate data point: 

qr.f = q( 1) 3.16 
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This, in addition to the fact that the well is not initially 

flowing,' reduces equation 3.15 to 

Aq (0) = 
q(1) 0 - 

q(1) q(1) 

3. 17 

and simplifies equation 3.13 to 

k— I 3.18 

PD(tDk) = APWDRe!(tDk) Z Aq(t - tD1)p D (t DI) 

eliminating a potential source of round off error. 

Equation 3.13 requires the calculation of the dimen-

sionless bottom hole pressure PWDRoJ as defined by equation 

3.2. However, when interpreting a well test, the analyst 

rarely knows the permeability k of the formation needed in 

equation 3.2. Indeed, one major purpose of well testing is 

to deduce' this parameter. 

To work with bottom hole pressure directly rather than 

PwDRoj, equation 3.2 is expressed as 

Pt - p 1(t) 
P wDRf(t) - 

M 

3.19 

in which m is a constant related to parameters of the 

reservoir. If the bottom hole pressure difference Pwd is 

defined by 

P Wd(t) = PL - P Wf(t) 3.20 
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then equation 3.19 can be expressed as 

P wd (t) 
P w DRef(t) = 

ITi 

3.21 

Equation 3.21 is substituted into equation 3.13 to produce 

1\P Wd (tk) 1 k- I 

rnL\q(0) LqD(0) 1=0 
Aq(t -.t.)tp D(t.) 

Multiplying Equations 3.22 and 3.14 by myields 

V (t 
mi.p (L)   

D k = L\q0(0) zqD(O 

and 

k- I 

- tL)mLpD(1L) 

3.22 

3.23 

k-i 3.24 

mp 0(k).= Y MAP(i) 
i=O 

in a constant rate well test, the bottom hole pressure 

and pressure influence function are related by 

3.25 

This relationship also applies to a deconvolved well test 

if the bottom hole pressure is replaced with the deconvolved 

bottom hole pressure, 

P 1PD 

Therefore the pressure influence function is also related 

Pwj 

to the deconvolved bottom hole pressure difference by 

pWd — p1pWmpD 

3.26 

3.27 
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Thus equation 3.24 calculates the deconvolved bottom hole 

pressure difference p wd(t). Modifying equations 3.23 and 3.24 

with this information yields 

/2P Wd (t k) 1 k-i 

)5,d(1k) = 
tqD(0) Lq(0) 

and 

Pd(') 

k- I 

P wd (0 

Aq(t - t3AfWd(tl) 

3.28 

3.29 

Therefore, if Pwd is used in place of PwDRef in equation 

3.13, then the deconvolution method calculates j5,,j instead of 

PD. In this way, the proposed method can be used to deconvolve 

bottom hole pressure data directly. 

Section 3.3 Well Test Analysis Using  

the Proposed Deconvolution Method  

The analysis of a variable rate drawdown test becomes as 

simple as analyzing a constant rate drawdown test after using 

the proposed deconvolution method. The following outline 

details the steps involved in analyzing a drawdown. test using 

the proposed deconvolution method. 

1. Interpolate bottom hole pressure data and sandf ace flow 

rate data at equally spaced time intervals. The proposed 

deconvolution method requires evenly spaced bottom hole 
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pressure and sandf ace flow rate data, but field data are rarely 

measured at equal time intervals. Data may be interpolated 

using linear interpolation, or cubic splines. 

- 2. Deconvolve the bottom hole pressure using the sandf ace  

flow rate data and the proposed method. Use equations 3.28 

and 3.29 as shown in the algorithm in Figure 3-1. After the 

bottom hole pressure is deconvolved, calculate the derivative 

of the data using any of the numerical differentiation algo-

rithms proposed in the literature [ 15]. 

3. Identify the reservoir model(s) in the test. Plot ]3wd 

and its derivative against time on log-log coordinates in 

order to identify the segments of the test affected by dif-

ferent reservoir flow models. Choose a conventional or type 

curve analysis method for each separate flow model segment 

identified. 

4. Analyze each segment of the deconvolved data to find  

the reservoir parameters. The deconvolved variables )5,j and 

J5  can be used in the analysis methods chosen in step 3 above 

as if the well was tested at a constant rate. For example, 

for a segment of a well test that exhibits infinite radial 

flow, one might analyze it using the log-log plot created in 

step 3 in conjunction with type curve analysis, or by creating 

a semi-log plot of pressure 5,1 versus the log of time. 
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Deconvolution Algorithm 

PURPOSE: To deconvolve the bottom hole pressure of a drawdown 

test given the sandface flow rate. 

INPUT: number of data points N+ 1; initial reservoir pressure 

p; sandf ace flow rate data points q 1 (k) and bottom hole 

pressure data points pWf(k)at equal time intervals where 

o k ≤ N. 

OUTPUT: deconvolved bottom hole pressure -)5,,, (k) where 

0≤k≤N-1. 

Step 1 Set qrG,=q s,(1). 

Step 2 Set Pwd(l)PiPW/(l). 

Step 3 For k = 1 , •.., N do Steps 4-7. 

Step 4 Let 

Step 5 Let AqD(k - l)=q(Ic)-q(k-l) 

Step 6 Let PWd(/c)=m - PW,(k) 

Step 7 Let Pwd(kl)Pwd(k)PWd(k1) 

Step 8 Let 

Step 9 Let fiwd(0) 0 

Step 10 For k=1,...,N do Steps 11-15. 

Step 11 Let ApWd(k)=Lxp Wd (k). 

Step 12 For i=O,...,k-1 

Let 

Step 13 Let 

Step 14 Let Pwd(k)Pwd(k1)±ApWd(k1). 

Step 15 Set Pw,(k)—pi—pwd(k). 

Figure 3-1 Proposed Deconvolution Algorithm 
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Chapter 4. 

Testing of the Proposed Deconvolution Method 

The validity and accuracy of the proposed deconvolution 

method were tested using simulated well test data. The 

nineteen well test simulations included linear, radial and 

spherical reservoir flow models with several varying sandf ace 

flow rate schedules. Each set of simulated bottom hole 

pressure data PWDRQJ was created by convolving a pressure 

influence function PD and a sandface flow rate function q. 

The bottom hole pressure data PWDReJ were subsequently decon-

volved using the proposed method to produce a pressure 

influence function which was compared to the original PD. 

In addition to the nineteen synthetic well tests, two 

variable rate well tests reported in the literature were 

deconvolved and analyzed. The resulting reservoir parameters 

were compared with those in the original publications. 

Section 4.1 Reservoir Flow Models  

The proposed deconvolution method was tested with three 

typesof reservoir flow models; radial, linear and spherical. 

Each type of flow assumes different orientation of flowlines 

within the reservoir as shown in Figure 4-1. 
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LINEAR RADIAL SPHERICAL 

Figure 4-1. Three Reservoir Flow Models [ 13] 

A. Radial Flow  

The pressure transient behavior in a homogeneous reser-

voir in which radial flow occurs to a welibore of infinites-

imally small radius is described by the exponential integral 

solution or the log approximation of this solution [ 11]. The 

log approximation states 

11 ( t 

P.DL mfl _.)+ O.8O9 
\rD 

At the weilbore, rD becomes unity and the semi-log 

4.1 

pressure derivative of the pressure influence function is a 

constant 0.5 as shown in Figure 4-2. 

4.2 

PD 
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Log—Log Diagnostic Plot 
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Figure 4-2. Pressure Influence Function of a Well 
Test Exhibiting Radial Flow in the Reservoir 

Table 4.1. Reservoir Parameters Used to Model Syn-
thetic Pressure Response in an Infinite Cylindrical' 
Reservoir 

Reservoir 
Parameter 

Parameter 
Value Units 

k 

h 

I.L 

It, 

c 

Pt 

qref 

B0 

12. 

10. 

1.2 

0.40 

10.% 

1.oe-5 

3000. 

100. 

1.2 

mD 

ft 

cp 

ft 

1/Psi 

psia 

STB/day 

bbl/STB 
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For the synthetic well with parameters listed in Table 

4.1, dimensionless time is related to real time by 

2.637x 10 4kt 
CD - 

2.637x 10 4(12)t 

0.1O(1.2)(lx 10 5)(O.40) 2 

4.3 

=16481.25t 

Incorporating this result, the pressure influence func-

tiqn is 

4.4. 
PD = [1n(16481.25t)+ 0.809] 

B Linear Flow 

In a hydraulically fractured reservoir, fluid flows from 

the reservoir to the fracture in a linear flow pattern. During 

a constant rate well test of a reservoir with a linear flow 

pattern, the pressure influence function and its derivative, 

both exhibit a slope of 1/2 on a log-log plot as shown in 

Figure 4-3. 
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Log— Log Diagnostic Plot 
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Figure 4-3. Pressure Influence Function of a Well 
Test Exhibiting Linear Flow in the Reservoir 

Table 4.2. Reservoir Parameters Used to Model Syn-
thetic Pressure Response in a Hydraulically Fractured 
Reservoir Exhibiting Linear Flow 

Reservoir 
Parameter 

Parameter 

Value Units 

Ic 

h 

I-L 

Ct 

Pi 

qrej 

L 

12. 

10. 

1.2 

0.40 

lo.% 

1. oe-5 

3000. 

100. 

1.2 

50. 

mD 

ft 

cp 

ft 

1/psi 

psia 

STB/day 

bbl/STB 

ft 
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The pressure influence function p0 for linear flow is 

mathematically expressed following Streitsova's solution [ 12] 

as 

PD = 3.5449JtDL 

where 

2.637x10 4kt 
1DL - 

4.5 

4.6 

Using the reservoir parameters of Table 4.2, equation 4..6 

becomes 

tDL 10 5)(50) 2 

= 1,0548t 

and the dimensionless bottom hole pressure is 

PD3.641fl 

2.637x 10 4(12)t 

with a derivative of 

P'D 1.821[ 

4.7 

4.8 

4.9 
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C. Spherical Flow 

During a constant rate well test of a reservoir with a 

spherical flow pattern, the pressure derivative exhibits a 

slope of -1/2 on a log-log plot as shown in Figure 4-4. 

The pressure influence function for spherical flow at late 

time [ 11] is expressed by 

1  
PD 1 \J Tit 
where 

Ds - 

2.637x 1O 4kt 

k=(k k  

and 

•LCt r2 

I r s )1/2(,. 1/4 

= 2 ) 

4.10 

4.11 

4.12 

4.13 

Using the synthetic well with parameters listed in Table 

4.3, the spherical permeability and radius are 

k=55.7mD 4.14 

and 

r=44.72ft 4.15 
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Figure 4-4. Pressure Influence Function of a Well 
Test Exhibiting Spherical Flow in the Reservoir 

Table 4.3. Reservoir Parameters Used to Model Syn-
thetic Pressure Response of a Reservoir Exhibiting 
Spherical Flow 

Reservoir 
Parameter 

Parameter 
Value Units 

kr 

kz 

I-

r 

C  

Pt 

qrej 

B0 

12. 

1200. 

1000. 

1.2 

0.40 

20.% 

1.oe-5 

3000. 

100. 

1.2 

mD 

mD 

ft 

cp 

ft 

1/psi 

psia 

STB/day 

bbl/STB 
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Therefore the equation for dimensionless spherical time is 

expressed as 

- 2.637x 10 4(55.7)t 

OS O.20(1.2)(1x105)(44.72)2 

4.16 

=3.060t 

and the pressure influence function for this synthetic well 

is 

PD(1D) 1 
3.10 

1 

with a derivative of 

p'0(10)= 6.202 
1 

4.17 

4.18 

D. Composite Reservoir Flow Model  

To establish the validity of the proposed deconvolution 

method for well tests that feature several consecutive flow 

reservoir patterns, some of the simulations were conducted 

with a composite pressure influence function. For example, 

a well situated in a linear sand bar might exhibit radial flow 

initially followed by linear flow. Such a system was modelled 

by assuming a pressure influence function described by 

PD =  

[1n(16481.25t)+0.809], 1<25 

1.3738fl, t≥25 

4.19 
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with a derivative of 

P 

1 

2 

O.6869fl, t≥25 

1<25 
4.20 

This expression for PD implies an abrupt transition from 

radial flow to linear flow at 25 hours. The transition is 

evident in Figure 4-5. 
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Figure 4-5. Pressure Influence Function of a Well 
Test Exhibiting Composite ( Radial and then Linear) 
Flow in the Reservoir 
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Section 4.2 Sandface Flow Rate Schedules  

Although each of the methods discussed in Chapter 2 were 

restricted in their treatment' of flow schedules, a very 

reliable deconvolution method should successfully deconvolve 

many different schedules. The simulated bottom hole pressure 

data used for testing the proposed method incorporates five 

different types of sandf ace flow rate schedules including 

constant flow rates, linearly changing flow rates, weilbore 

storage affected rates, periodic rates, and multiple consec-

utive constant rates. 

1. Constant Flow Rate  

The first sandface flow rate schedule studied was the 

trivial case of the constant rate. Strictly speaking, this 

flow rate schedule needs no deconvolution at all. However, 

an accurate deconvolution method should apply to this model 

as well as more exotic flow schedules. The synthetic well 

test data were generated using a reference constant flow rate 

of 120 barrels of oil per day. The mathematical description 

of this flow schedule is 

4.21 
q(t) 

2. Linearly Increasing Rate  

Since some drawdown tests have sandf ace flow rate 

schedules that increase linearly through part of the test, the 

proposed deconvolution method has been tested with this flow 

schedule to assure its stability. The flow schedule used to 
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generate synthetic well test data was chosen so as to increase 

the flow rate to 120 barrels of oil per day in 50 days and is 

described by 

q(t)= 0.1t 4.22 

3. Exponential Increase to a Constant Rate  

The effect of welibore storage on sandface flow rate is 

often simulated by an exponential increase to a constant rate 

[6] as shown in Figure 4-6. The proposed deconvolution method 

has been tested using a flow rate schedule that increased to 

99.9% of 120 barrels per day in 24 hours. The welibore storage 

flow rate schedule is mathematically modeled by 

q(t) = 120(1 - _0.3 ) 

F
l
o
w
 
(
b
b
!
/
d
a
y
)
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Figure 4-6. Weilbore Storage Sandf ace Flow Rate 
Schedule 

4.23 
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4. Cosinusoidal Rate 

Some flow rate schedules feature periodic fluctuation. 

To simulate such periodic flow a cosinusoidal flow rate 

schedule was studied. As shown in Figure Figure 4-7, this 

flow schedule was designed to have a period of about 12 hours 

and to stay above 120 bbl/d. It is expressed mathematically 

by 

q(t) = 120[cos(O.St)+ 2] 4.24 
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Figure 4-7. Cosine Periodic Sandface Flow Rate 
Schedule 

5. Multiple Consecutive Constant Rates  

Finally, many flow schedules can be approximated through 
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a consecutive series of constant rates. Therefore a multiple 

rate flow schedule was considered to test the stability of the 

proposed method. The sandface flow rate followed the fol-

lowing form: 

q(t) 

0, t=0 

60, 0<t<25 

120, 25=<t<50 

90, 50=<t<76 

60, 75=<t<100 

4.25 

Section 4.3 Simulation Cases  

Each simulated well test was generated by convolving one 

pressure influence function from Section 4.1 with a sandface 

flow rate schedule from Section 4.2. The simplest method of 

simulating the well test bottom hole pressure profile is to 

use the principle of superposition as described by equation 

3.4 to discretely convolve PD and q,. This is the same as 

assuming that the sandface flow rate is not a con'tinuous 

function, but a series of discrete forward difference step 

functions as shown in Figure 4-8. The, discrete convolution 

method of equation 3.4 was used to simulate bottom hole 

pressure for seventeen of the test cases. 

P w DRef(tDk) = - tD1) 

3.4 



Section 4.3 Low 37 

F
l
o
w
 
(
b
b
l
/
d
a
y
)
 

160 

Flow Rate Schedule 
q120 [1—exp(-0.3 t)1 

140 - 

120 - 

100 

80 

60 

40 - 

20 - 

0 I I 

4 8 12 16 

time (hours) 

20 .24 

Figure 4-8. Weilbore Storage Sandface Flow Rate as 
a Discrete Function 

A more rigorous yet difficult method of simulating well 

test bottom hole pressure is to continuously convolve 

cID using the convolution integral ( equation 2.1). 

tDcq () 

PwDRef d PD(ID)dT 
f  

PD with 

2.1 

Since the integration becomes very involved, only two of 

the synthetic well tests were generated in this manner. In 

the first of these ( case A3C), the log approximation for radial 

flow was convolved with the welibore storage flow schedule. 

The solution to the convolution integral for this simulation 
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follows that of Streltsova's [ 12] and is detailed in Appendix 

B. Streltsova treated solutions to the convolution integral 

for radial flow patterns only. 

The second continuously convolved simulation ( case B3C) 

used the linear flow pressure influence function and the 

wellbore storage sandface flow schedule. The details of the 

integration involved may be found in Appendix C. 

Section 4.4 Simulation Results  

Simulation case numbers and descriptions are displayed in 

Table 4.4. All the bottom hole pressure profiles were dis-

cretely convolved using equation 3.4 except cases A3C and B3C 

which were continuously convolved using equation 2.1. 

Table 4.4. Well Test Simulation Cases. 

Flow rate 

Schedules 

A 

Radial 

Reservoir 

B 

Linear 

Flow Models 

C 

Spherical 

D 

Composite 

1 Constant Al Bi Cl - 

2 Linear 
Increasing 

A2 B2 C2 D2 

3 Weilbore 
Storage 

A3 B3 C3 - 

3C Wellbore 
Storage 

A3C B3C - - 

4 Cosinusoidal A4 B4 C4 D4 

5 Multiple 
Constant 
Rates 

A5 BS C5 - 

Note: All cases were discretely convolved using 
equation 3.4 except as otherwise noted. 
Cases A3C and B3C were continuously convolved using 

equation 2.1. 
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The advantage of the proposed deconvolution method is 

apparent from Figures 4-9 through 4-12. These show that the 

deconvolved pressure data and derivatives compare well with 

the original constant rate pressure influence functions for 

all well test simulation cases. 

Appendix D documents the well test simulations graphi-

cally. For each simulation case, the various stages of the 

simulation are presented; the synthetic pressure influence 

function, the sandf ace flow rate schedule, the convolved 

bottom hole pressure response, and the deconvolved pressure 

influence function. 
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Figure 4-9. Comparison of Deconvolved Radial Flow 
Models 
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Figure 4-10. Comparison of Deconvolved Linear Flow 
Models 
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Deconvolved Log—Log Diagnostic Plot 
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Figure 4-11. Comparison of Peconvolved Sherica1 
Flow Models 
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Figure 4-12. Comparison of Deconvolved Composite 
(Radial and then Linear) Flow Models 
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Section 4.5 Deconvolving Examples from Literature  

In addition to the nineteen simulations summarized above, 

two varying rate well tests from the literature were decon-

volved. The first is a well test identified by Lee [ 1] as 

Example 3.3. He used it to illustrate the rate normalization 

method described in this thesis in Section 2.1.2 on page 7. 

Appendix E contains the deconvolution and analysis details of 

this well test, using the proposed deconvolution method. 

Figures 4-13 and 4-14 were used td analyze the deconvolved 

pressure response. As reported in Appendix E, the perme-

ability and skin compare closely with those calculated by Lee 

using the rate normalization method ( see Table 4.5). 

Table 4.5 Lee's Varying Rate Well Test Example. 
Reservoir Parameters Calculated in Reference 1-and 
This Work 

Reservoir 
Parameter 

This 
Work 

Reference 
1 Difference 

Permeability 
(mD) 

7.2 7.4 -0.2 

Skin 5.5 6.0 -0.5 
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Diagnostic Log— Log Diagnostic Plot 
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Figure 4-13. Pressure Response of Lee's Varying 
Rate Well Test Example After Deconvolution 
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Deconvolved Log—Log Diagnostic Plot 
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Figure 4-15. Pressure Response of Odeh and Jones' 
Three Rate Well Test Example .After Deconvolution 
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Figure 4-16. Analysis of Odeh and Jones' Three Rate 
Well Test Example After Deconvolution 
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The proposed deconvolution method was also tested using 

an example presented by Odeh and Jones [ 14]. Their three rate 

well test is deconvolved and analyzed in Appendix F. Figures 

4-15 and 4-16 show how the deconvolved data were used to 

analyze the well test. As shown in Table 4.6, the reservoir 

parameters calculated by the proposed method agree closely 

with those published in the literature [ 1,14]. Because Odeh 

and Jones did not publish a skin value, the published skin in 

Table 4.6 is from Lee [ 1]. 

Table 4.6 Odeh and Jones' Three Rate Well Test 
Example. Reservoir Parameters as Calculated in 
the Literature and This Work 

Reservoir 
Parameter 

This 
Work 

Published 
Values Difference 

Permeability- 
height ( mD-ft) 
Skin 

102 

0.43 

103 

0.53 

-1 

-0.1 
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Chapter 5. 

Discussion of Results 

The 'results presented in the previous chapter show that 

the proposed deconvolution method is very successful. For 

each synthetic well test, the deconvolved pressure response 

was so similar to the original pressure influence function 

that the same well test type curve matches both. In addition, 

the proposed method produced reservoir parameters very similar 

to those published for the two well tests taken from the 

literature. In this chapter the results of the various tests 

are discussed and the potential benefits of the method are 

explored. 

Section 5.1 Synthetic Well Tests 

The deconvolved pressure responses for all the synthetic 

well test cases generated by the discrete equation 3.4 com-

pared identically to their original pressure influence func-

tions ( see Figures 4-9 through 4-12). This is to be expected 

since the proposed deconvolution method was also developed 

using equation 3.4. 

It can be seen in Figures, 4-9 and 4-10 that the contin-

uously convolved simulations ( cases A3C and B3C) vary slightly 

from the original pressure influence function. The variation 

is greatest at early times. This variation is due to the fact 

that the bottom hole pressure was simulated using continuous 

convolution as suggested by equation 2.1, but was deconvolved 

using the proposed method which is based on evenly spaced 
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discrete equation 3.4. The deconvolved response matches the 

original pressure influence function best at late times when 

there is little change between evenly spaced data points. Even 

so, the deconvolved pressure and the original pressure 

influence function of cases A3C and B3C are so similar that 

they are matched by the same type curve. In well tests where 

early time variation becomes significant, a smaller- step size 

could be used to reduce the variance. 

These excellent results indicate that the proposed 

deconvolution method can handle a variety of flow rate 

schedules very well. The algorithm is very stable when faced 

with discontinuous or periodic flow rate schedules such as the 

multiple flow rate schedule and the periodic cosine flow 

schedule. 

The results also indicate that the proposed method can be 

used regardless of the type of reservoir flow pattern 

affecting the well test. It performs equally well for radial, 

linear and spherical flow. It also handles flow pattern 

changes during well tests. 

Section 5.2 Literature Examples  

The deconvolved results of the two examples taken from 

Lee [ 1], and Odeh and Jones [ 14] show that the proposed 

deconvolution method can be used for many different types of 

flow variations. Lee and Odeh both suggested different 

methods to analyze their variable rate well test, however, one 

author's deconvolution method will not deconvolve the other's 
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data. On the other hand, the deconvolution method proposed 

in this work, can deconvolve both data sets as well as many 

other types. 

To maximize the utility of the proposed deconvolution 

method, it is important to obtain accurate sandf ace flow rate 

data. In Lee's varying flow rate example, the surface flow 

changes were recorded instead of the sandface flow rate. With 

this information, the proposed method was able to deconvolve 

changes evident in the surface flow rate, but was unable to 

unmask the weilbore storage affect. If the flow rate data had 

been measured at the sandf ace, even the welibore storage 

period of the test would have been deconvolved. 

Sandf ace flow rate data measurement should be frequent 

enough to capture all flow variations. As discussed in 

Appendix F, anomalies appeared in the deconvolved data because 

the three rate well test of Odeh and Jones had more flow rate 

variation than was reported. Indeed, Odeh and Jones state 

that the flow rates were averaged over each hour [ 14]. Flow 

rate averaging introduces error and is unnecessary when using 

the proposed deconvolution method. Even with the noise 

introduced by flow rate averaging, the deconvolved Odeh data 

was readily analyzed. 

Section 5.3 Benefits of the Method  

Use of the proposed deconvolution method will improve 

confidence in permeability and skin estimates calculated from 

well tests by increasing confidence in analysis methods and 
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providing better data to analyze. Firstly, the method can be 

used to eliminate the effect of welibore storage enabling 

analysis of a greater portion of well test data. In addition, 

the method can deconvolve tests in which arbitrary flow rate 

changes occur. If data deconvolved by the method is used in 

constructing diagnostic log-log plots, identification of the 

correct reservoir model can be made with more confidence. This 

improves confidence in selecting the correct reservoir anal-

ysis procedures. 

Using the proposed deconvolution method, drawdown tests 

can be confidently analyzed. Reservoir engineers are often 

hesitant to conduct buildup tests on wells which produce high 

cashf low, but drawdown tests can rarely be analyzed because 

of the inevitable flow rate changes. The proposed method 

eliminates rate change concerns for any type of flow schedule 

and for any reservoir flow pattern. Continuous cash flow from 

wells on test may now be a reality. 

The proposed method also creates deconvolved drawdown 

data from buildup tests. 'Use of equation 3.13 or 3.28 requires 

that the difference between the flow rate at time zero and 

the flow rate at the first time point (L\q(0)) be non-zero. 

Since buildup tests require a flow period before the shut-in 

period, the non-zero Aq(0) requirement is satisfied. When 

buildup tests are deconvolved they can be used in conjunction 

with drawdown type curves without regard to the usual 



Section 53 Low 50 

restriction that the shut-in time be less than 10% of the 

producing time. In the process, afterf low effects during 

buildup tests are also eliminated. 

Practical concerns make it impossible to test many wells 

because of rate variations, lengthy wellbore storage affects, 

or lengthy time to stabilization. The proposed deconvolution 

method increases the scope of wells that can be tested. The 

proposed method can be especially useful for testing low 

permeability wells. Such wells require very long duration 

drawdowri tests to investigate further than a few feet into the 

reservoir. Long well tests usually incorporate unavoidable 

flow variations. The detrimental effect of such variations 

can be eliminated through the use of the proposed deconvolu-

tion method. 

Welibore storage can mask the entire duration of well 

tests in high permeability wells. Since such reservoirs 

quickly transmit pressure transients, distant reservoir 

boundaries may be encountered before the wellbore storage 

effect has ended. If the sandface. flow rate is known, the 

proposed method of deconvolution will unmask all wellbore 

storage effects and allow analysis of the well test data. 

The proposed deconvolution method improves analysis of 

tests on wells that exhibit large wellbore storage coeffi-

cients. Wells in this category typically have a large tubing 

diameter and low fluid density ( eg. high rate gas wells). 
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Deconvolving the pressure data with knowledge -of the sandf ace 

flow rate enables analysis of early time data and shortens 

well tests considerably. 

Dual porosity reservoirs are sometimes mistaken for 

single porosity systems because the secondary porosity pres-

sure transient is masked by wellbore storage. Deconvolution 

can unmask the wellbore storage effect on early time data, 

making the secondary porosity system visible. 

Sometimes it is not possible to achieve a long buildup 

period after a gas well modified isochronal deliverability 

test. This extended flow and buildup period is essential- for 

assessing permeability and skin. Using the proposed method 

to deconvolve the short flow and shut-in periods of the iso-

chronal test produces deconvolved drawdown data that can be 

analyzed for these reservoir parameters. 

Finally, in horizontal wells the early radial and early 

linear flow periods can be masked by wellbore storage. However 

analyzing the early radial flow period is critical to the 

determination of vertical permeability (kr) and skin. The 

longer wellbore of the horizontal well can contribute to a 

more pronounced wellbore storage affect.. Deconvolving the 

pressure transient data using the proposed method can enable 

analysis of these early flow periods. 
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Chapter 6. 

Conclusions 

In order to continually produce revenue while well 

testing, operators of flowing oil and gas wells can replace 

popular buildup tests with drawdown tests that are analyzed 

using the proposed deconvolution method. Indeed, use of the 

method increases the scope of wells that can be practically 

tested to include wells that incur unavoidable flow rate 

changes, or have extended welibore storage affects. 

The method deconvolves bottom hole pressure data in 

conjunction with sandf ace flow rate data yielding the pressure 

influence function. Using the deconvolved data, well test 

analysts can more confidently identify the correct reservoir 

flow model and choose the appropriate analysis methods. 

Analysis using type curve or conventional techniques provides 

more accurate reservoir parameters when deconvolved test data 

are used rather than raw measured data. 

The proposed deconvolution method is general in nature 

and easy to use. The method is reliable for any type of 

fluctuation in flow rate and a variety of reservoir flow types. 

It is equally suitable for radial, linear and spherical flow. 

It also successfully deconvolves well' tests influenced by 

several different flow regimes. It unmasks various sandf ace 

flow rate schedules including linear increasing flow rates, 

rate changes caused by welibore storage, multiple constant 

flow rates and periodically changing flow rates'. 
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Appendix A. 

Derivation of the Convolution Integral 

Mathematical modelling of fluid flow through porous media 

is achieved by applying continuity of mass and momentum. The 

conservation of energy need not be considered except for those 

reservoirs being treated with a steam flood or in situ 

combustion. For single phase flow, the principle of conser-

vation of mass states 

a(p)  --( pv) 
at 

A.l 

However, three distinct ' fluid phases may flow in 

hydrocarbon reservoirs namely, 'oil, gas and water. The 

principle of mass conservation for each phase, follows the form 

Oil 

a •So] +7 vo] + qO 0 
at Bo BO 

Water 

1 

Gas 

iBW V wJ+ q = 0 

at BO B9 [[ s+ Sg]]± V. 

A.3 

R 1 1 A.4 
—v+ — v i±q jg +Rq 0=0 
B0 0 Bg 9] 

where S, q, and vi are the saturation, flow rate and velocity 

of phase i in the porous media. The formation volume factor 

B1 is a ratio of the volume of phase i at reservoir conditions 
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to the volume of the same mass of phase at standard 

conditions. The solution gas/oil ratio R is the volume of 

gas liberated from one unit volume of oil [ l3]. 

A flow relationship such as the Navier-Stokes equation 

could be used to describe the conservation, of momentum. 

However, forming the boundary conditions for solution of such 

an equation are impossible to describe due to the conpiex 

geometry of flow though pore spaces. Rather, the empirical. 

Darcy flow equation suggests 

k A.5 
v=--(7p+pg) 

where the velocity v is the defined as the volumetric flow 

rate per unit of cross section area of the porous medium. The 

proportionality constant k is known as the permeability of the 

porous medium. Combination of this equation with equation A.l 

produces 

  7. [pk(,7p+pg)] 
at 

A.6 

One further equation relating the unknowns p and p is 

needed. ' Liquid hydrocarbons often exhibit constant com-

pressibility, which is defined by 

C =  'I ap i j 
A.7 
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This definition may be integrated to obtain the needed 

relationship between p  and p. 

p=p °exp[c f(p-p °)] A.8 

in which p° is fluid density at the standard pressure p°. 

Assuming constant rock properties (k,), constant vis-

cosity ( pU), negligible gravitation effects and ignoring the 

square of the pressure gradient, the following homogeneous 

linear partial differential equation results 

ap k 

,.3t 4 tct 

in which c1 is the compressibility of the total system 

A.9 

including fluid and rock matrix. Equation A.9 is known as the 

diffusivity equation. The preceding derivation follows the 

treatment in reference 11. 

The solution of the diffusivity equation ( in field units) 

for a constant sandface flow rate (q31) is 

141 .2iq 1 

- kh PD(tD) 

A. 10 

in which PD is the pressure influence function which depends 

on the pattern of flow in the reservoir rock matrix. For 

example, the PD for radial flow in the porous media to a 

wellbore of very small diameter can be approximated by a 

function related to the logarithm of time. The wellbore 
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schematic diagram in Figure A-i illustrates the variables of 

equation A.lO. The pressure at the bottom of the welibore, 

is lower than pi causing fluid flow through the porous 

media of the reservoir toward the welibore. The flow at the 

interface of the reservoir rock and the welibore is q1. The 

pressure at the top of the weilbore, Pth, is lower than 

Since the fluids flowing in the wellbore are compressible, an 

abrupt change in the wellhead flow rate ( q) is followed by a 

gradual change in q31. This lag in change of . f low rate is 

known as the wel].bore storage effect. 

GRADE 

RESERVOIR 

q 0 
 ) 

f in, q3f Pi 

Figure A-i. Welibore Schematic Diagram 
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Introducing the dimensionless variable qD simplifies the 

mathematics of equation A.lO. 

q Sf 

qRej 

A. 11 

where qRef is a reference sandface flow rate. Using this 

definition, the general form of-solution for the flow equation 

becomes: 

141 .2LqRfqD 
PPwf(D)  PD(tD) 

kh 

A. 12 

The dimensionless variable PWDReJ is related to the bottom 

hole pressure difference via 

PwDRef i41.2tq 
(Ps — Pwf)'' A. 13 

Therefore, the dimensionless form of the. diffusivity equation 

for a constant rate is 

P W DRef(tD) = qp(t) A.14 

For linear differential equations, such as equation A.9, 

the principle of superposition can be used to modify the 

solution for different boundary conditions. The principle of 

superposition for a two rate test would produce 

P wDRf(tD) q 1p(t)± {q2 - qDI]pD(D - tD1) 
A.15 
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Where qDI is the first rate, D2 is the second rate, and 

tD1 is the time that the second rate begins. Using the prin-

ciple of superposition for a test of N sandface flow rates: 

L. A.16 

PWDReJ(D) = 
i= 1 

[q - - 

Multiplying and dividing the flow equation by the quantity 

(tD—tD(11)) produces 

P wDRf(tD) = 
i 1 

qD - (7D(1-1) 

tDjtD(j_1) 

PD(tD - tD(1))} 

A. 17 

As the time increment becomes infinitesimally short the 

limit of the above equation is a form of the convolution 

integral [ 6]. 

P wDRef(tD) = fo 
tDdq (.t) 

d-t PD(tD) 

A.18 

Another form of the integral can be derived through a 

change of variables: 

T = 

tt D T, and 

dT = -cit. 

When tt D , T=0. 

When t=O, T=tD. 
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Substituting this transformation into the integral 

equation produces 

°clq(t-T) A.19 

PtODRe!(tD) =  cIT PD(T)dT 

Since T and t are merely integration variables of convenience, 

they may be used interchangeably to produce 

P W DR QI(tD) fo 
A. 20 

which is a second form of the convolution integral. 

We may integrate this equation by parts to obtain another 

form. The principle of integration by parts is 

fo 

tD tD tD 

udv=fd(uv)_fvdu 

In this case, the following substitutions are made 

U = Po() 

to yield 

C) 
du- dpD(dt 

qD(tT) dq(t- i) 
dv - dt 

d't 

P W DRef(tD) = P D(t)q(0) + p(0)q(t) 

±f 1D dp(t) 
ro q(t dt di 

A. 21 
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If both PD and qD disappear when tDO, then the above 

formula becomes another form of the convolution integral. 

tD dpD(c) 

PWDRQJ(D) = Jo q(t- cit ) dt 

A.22 

Lastly, a change of variables similar to that used to 

produce Equation A.11 .from Equation A.9 yields the fourth and 

final form of the integral. 

ID dPD(tDT) 
PwDRef(tD) = Io q 0 (t at ) cit 

J  

A. 23 
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Appendix B. 

Continuous Convolution of Radial Flow 

with a Wellbore Storage Sandface Flow Schedule 

An infinitely acting cylindrical reservoir in which 

radial flow occurs to a weilbore of infinitesimally small 

radius is usually modelled using the exponential integral 

solution or the log approximation to this solution [ ll]. When 

tested at a constant rate, the semi-log pressure derivative 

is a constant 0.5 as shown in Figure B-l.' 

Log—Log Diagnostic Plot 
INFINITE ACTING RADIAL FLOW 

U) 

E 

1 O 

WDRef - WDRef 

Figure B-l. Pressure Influence Function of a Well 
Test in which Fluids Flow Radially in the Reservoir 
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The log approximation of the exponential integral solu-

tion is usually expressed as 

PD = 21 + 0.809 
B.1 

Table B.l. Reservoir Parameters Used to Model 
Synthetic Pressure Response in an Infinite Cylindrical 
Reservoir Produced at a Constant Flow Rate Affected 
by Weilbore Storage 

Reservoir 
Parameter 

Parameter 
Value Units 

12. 

10. 

1.2 

0.40. 

10 .% 

1.oe-5 

3000. 

100. 

1.2 

mD 

ft 

cp 

ft 

1/psi 

psia 

STB/day 

bbl/STB 

For the synthetic well with parameters listed in Table 

B.l, the dimensionless bottom hole pressure from a constant 

rate drawdown test is 

B.2 
PWDRf = [1n(16481.23t)+ 0.809] 

The effect of weilbore storage on a constant rate test is 

sometimes modelled as exponentially increasing to a constant 

value. Although the wellhead flow valve is opened and the 
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well is encouraged to produce at a constant rate, there is 

some delay in the sandf ace flow rate as the fluids in the 

weilbore unload to the production tank. For the synthetic 

well test examined in this section, the sandface flow rate is 

displayed in Figure B-2 and mathematically modelled as 

q()= 120(1 0.3t ) 

F
l
o
w
 
(
b
b
l
/
d
a
y
 

180 

160 

140 

120 

100 

80 

60 

40 

20 

0 
0 

B. 3 

Flow Schedule 
q1 20(1 — exp(—.3t)) 

20 40 60 

time ( hours) 

80 100 

Figure B-2. Flow Rate Exponentially Increasing to 
a Constant Value 
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The drawdown test was conducted on the synthetic well 

defined by the parameters in Table B.].. Stréltsova [ 12] found 

that when the welibore radius r and the time constant of the 

exponential flow schedule are both small, the bottom hole 

pressure response of the well follows 

p 1(t) =3000 - 84.72(1 - O.3t ) B.4 

(1rTt(16481.25t)+0.809) 

Expressed as a dimensionless variable, the bottom hole 

pressure becomes 

1 B.5 
PWDReJ = ( 1 - G 03 t)(1 fl( 16481 .25t) + 0.809) 

Using the deconvolution algorithm of Figure 3-1 on page 

22, this synthetic well test was successfully deconvolved. 

The stages of the simulation are detailed pictorially in 

Appendix D. 
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Appendix C. 

Continuous Convolution of Linear Flow 

with a Welibore Storage Sandface Flow Schedule 

In order to be useful., the proposed deconvolution method 

must be able to deconvolve any reservoir flow model. To 

approximate a well test of a fractured well, the linear flow 

model was continuously convolved with the weilbore storage 

sandf ace flow rate schedule using equation 2.1. The inte-

gration' required is detailed in this section. 

The welibore storage sandface flow rate, is expressed as 

q(t) = 120(1 - O.3t ) 

which can be expressed in dimensionless terms by 

q(t) = 120(1 - e 03t ) 

q ref 

Differentiating with respect to time produces 

q' 0(1)- 
36 

C1 re 

C.]. 

C.2 

C. 3 

Using the reservoir parameters in Table ' 4.2 on page 27, 

the pressure influence function is 

P D (t) = 3.641/ 

or 

PD(t)3.641t 

C.4 

C.5 
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Substituting equations C.3 and C.5 into the convolution 

integral ( Equation 2.1 on page 5) produces 

PwDRef(t) t 36 o.3T3641d 
f  qref 

The binomial theorem states 

(x ± y)fl = x ± nx' y ± 
which can be used to simplify the dimensionless pressure 

portion of the integrand of Equation C.6. Using the first two 

terms of the binomial theorem produces 

(t--r)''2 112 
Ir 

=t 

C.6 

2t"2 

Equation C.6 thus becomes 

(t) 
( r T 

2[i ) 
PwDRef = fo t 36 O•3t3,641 t  Idt G  

or 

fi 
PwDkef (t) - 36(3.641) fo °3 d 

qr  

36(3.641) fot-o.3td 
2q rj fl  

Integrating provides 

P wDRef(t) - 

36(3.641 )\T (1 _O.3t ) 

qref 

36(3.64].)  
1]) 

C.7 

C.8 

C.9 

C. 10 

C.11 
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which simplifies to 

436.92f  
P wDRej(t) - 

q ref 

728.20  —O.3t 
0.31± 1]) 

C.12 

Equation C.12 was used to generate the bottom hole 

pressure data of the synthetic weilbore storage masked well 

test in simulation case B3C. The bottom hole pressure data 

was then deconvolved using the algorithm in Figure 3-1 on page 

22. The deconvolution was quite successful as shown in the 

graphical comparison of Figure 4-10 on page 40. A pictorial 

history of the entire simulation is recorded in Appendix D. 
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Appendix D. 

Pictorial Results From Simulations 

The proposed deconvolution method makes pressure deriv-

atives recognizable on a diagnostic plot. When tested at a 

varying flow rate, a log-log plot of raw bottom hole pressure 

derivatives rarely afford much information. However, after 

deconvolution, the applicable reservoir models become 

obvious. The advantage of deconvolution is apparent from the 

figures included in this Appendix which show the simulations 

used to test the proposed deconvolution method. 

Each figure includes four graphs which document the stages 

of each simulation. The pressure influenc&function and flow 

schedule as well as the bottom hole pressure response that was 

obtained by convolution are displayed. Then the proposed 

deconvolution method was used to deconvolve the bottom hole 

pressure response, the results of which are also shown as the 

final plot of each figure. 

In all cases, the deconvolved pressure response compares 

closely with the pressure influence function. The pictorial 

histories also show that the convolved pressure response would 

be difficult to analyze without deconvolution. The derivative 

curves for each of the convolved bottom hole pressure graphs 

were calculated using the forward difference algorithm which 

tends to underestimate the derivative of the pressure influ-

ence functions. 
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For a description of each simulation case, please refer 

to Table 4.4 on page 38. 
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Flow Schedule 
q=120 

tD 

Flow Schedule 

Deconvolveci Log—Log Diagnostic Plot 
IARI, q1Z0 

1'0 1'06 
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WDRI WDRs( 

Convolved Pressure Response Deconvolved Pressure Response 

Figure D-l. Graphical History of Simulation Case Al. 
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Figure D-2. Graphical History of Simulation Case A2. 
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Figure D-3. Graphical History of Simulation Case A3. 
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Figure D-4. Graphical History- of Simulation Case A3C. 
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Figure D-5. Graphical History of Simulation Case A4. 
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Figure D-6. Graphical History of Simulation Case A5. 
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Figure D-7. Graphical History of Simulation Case Bi. 
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Figure D-8. Graphical History of Simulation Case B2. 
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Figure D-9. Graphical History of Simulation Case B3. 
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Figure D-1O. Graphical History of Simulation Case B3C. 
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Figure D-ll. Graphical History of Simulation Case B4. 
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Figure D-12. Graphical History of Simulation Case B5. 
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Figure D-13. Graphical History of Simulation Case Cl. 
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Figure D-14. Graphical History of Simulation Case C2. 
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Figure D-15. Graphical History of Simulation Case C3. 
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Figure D-16. Graphical History of Simulation Case C4. 
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Figure D-17. Graphical History of Simulation Case C5. 
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Figure D-18. Graphical History of Simulation Case D2. 



Appendix D. 

D
i
m
e
n
s
i
o
n
l
e
s
s
 
p
r
e
s
s
u
r
e
 
a
n
d
 
de
ri
va
ti
ve
 

D
i
m
e
n
s
i
o
n
l
e
s
s
 
p
r
e
s
s
u
r
e
 a
n
d
 
de
ri
va
ti
ve
 

Log—Log Diagnostic Plot 
RADIAL & LINEAR FLOW 

ID 
WDRef - ' WDRet 

Pressure Influence Function 

Log—Log Diagnostic Plot 
ARE & LINEAR, qc03 

I'O 1'06 

WDRof - P WORef 

D
i
m
e
n
si

on
le
ss
 
p
r
e
s
s
u
r
e
 a
n
d
 d

er
iv
at
iv
e 

Low 90 

Flow Schedule 
q I2CIco(O.5I)+2I 

fD 

Flow Schedule 

Deconvolved Log—Log Diagnostic Plot 
ARE & LINEAR, qco 

I'0 

to 
WORet PWDRØf 

Convolved Pressure Response Deconvolved Pressure Response 

Figure D-19. Graphical History of Simulation Case D4. 
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Appendix E. 

Lee's Varying Rate Well Test Example 

This appendix documents the deconvolution of the fol-

lowing example from Lee [ 1]. 

"The data in Table E.1 were obtained in a drawdown 
test in which the rate was measured as a function of 
time. Other data include the following:" 

B=1.136 bbl/sTB, 

i=0.8 cp, 

h=69 ft, 

p=53 lb/cu ft, 

Ab=O.O2lS sq ft, 

=0.039, 

c=17X1O 6 1/psi 

r,=O.198 ft 

Table E.I. Measured Bottom Hole Pressure and 
Sandf ace Flow Rate Data for Lee's Varying Rate Well 
Test [ 1] 

t 
(hours) 

p 
(psi) 

q 
(STB/d) 

t 
(hours) 

p 
(psi) 

q 
(STB/d) 

0 4412 250 8.32 3927 147 
0.105 4332 180 9.99 3928 145 
0.151 4302 177 14.4 393]. 143 
0.217 4264 174 20.7 3934 140 
0.313 4216 172 29.8 3937 137 
0.45 4160 169 43 3941 134 
0.648 4099 166 61.8 3944 132 
0.934 4039 163 74.2 3946 130 
1.34 3987 161 89.1 3948 129 
1.94 3952 158 107. 3950 127 
2.79 3933 155 128. 3952 126 
4.0]. 3926 152 154. 3954 125 
5.78 3926 150 185. 3956 123 
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1. Interpolate Data Points at Equal Time Steps. The first 

step is to calculate evenly spaced data from the measured data 

using linear interpolation. A time time step of 1 hour was 

used. The pressure difference p i- p ,j was also calculated at 

each evenly spaced time step. 

2. Deconvolve. The algorithm of Figure 3-1 on page 22 

was used to deconvolve the evenly spaced data. 

3. Log-log Diagnostic Plot. The log-log plot of the 

deconvolved pressure vs time aids in identifying the middle 

time region from which the reservoir parameters will be cal-

culated. From Figure 4-13 on page 43, it can be seen that the 

early time region ends at about 4 hours. From the plot of the 

deconvolved data, infinite homgeneous radial flow is evident 

throughout the test. 

4. Semi-log Plot. A semi-log plot of the well's decon-

volved pressure vs time is then used to find a slope of 48.5 

psi/cycle ( see Figure 4-14 on pag.e 43). 

5. Calculate Reservoir Parameters. Using the equation 

q.B•L[ I.g( 1688••tc,r 2 
= pi+ 162.6 1kh kt w ) —0.869s 

the slope may be found 

m= 1626qBt485 
kh 

E.l 

E.2 
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Rearranging to solve for permeability, 

k = 162  —7.18mD 
mk  

The equation for calculating skin is 

s= 1.151 

E. 3 

1PiPIhr " log 23 k  " ) E.4 

M tcrj 3  

From Figure 4-14 it is found that Plhr is 3922 psig. 

Substituting this value into , the above equation produces a 

skin of 5.52. 

Both permeability and skin calculated with this method 

are very similar to those calculated by Lee. Using a different 

method, he calculated 

k=7.44mD E.5 

s=6.02 
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Appendix F. Odeh and Jones' 

Three Rate Well Test 

This three rate well test example was presented by Odeh 

and -Jones [ 14]. 

"A three-hour drawdown test was conducted on a new 

well. The average flow rates during the first, the 

second, and the third hour were, respectively, 

478.5, 319, and 159.5 reservoir bbl/day. The 

original reservoir pressure was 3,000 psi. The 

flowing bottom-hole pressure as a function of time 

is given in Table F.1. Calculate the average kh 

of the field." 

Table F.I. Measured Data from Odeh and Jones' 
Three Rate Well Test Example 

t 
(hours) 

p 
(psi) (STB/d) 

0 3000 0 
0.3 999 478.5 
0.6 857 478.5 
1 778.5 478.5 
2 1378.5 319 

2.3 2043 159.5 
2.6 2067.5 159.5 
3 2094 159.5 

1. Interpolate Data Points at Equal Time Intervals.  

Linear interpolation was used to produce evenly spaced data 

with a time step of 1/3 of an hour. The pressure difference 

was also calculated at each time step. 
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2. Deconvolve. The algorithm of Figure 3-1 on page 22 

was used to deconvolved the evenly spaced data. 

3. Log-log Diagnostic Plot. The log-log plot of the 

deconvolved pressure vs time shows that there are no welibore 

storage effects ( see Figure 4-15 on page 44). Radial flow is 

also evident from the deconvolved data. 

4. Semi-log Plot. A semi-log plot of the well's decon-

volved pressure vs time was used to find the slope. In the 

analysis of Odeh and Jones' data the fourth, fifth, seventh 

and eighth data points were ignored. Since Figure 4-15 does 

not indicate any weilbore storage, the trend set by the first 

three data points should be trusted. Since the trend set by 

the first three data points on the semi-log straight line of 

Figure 4-16 is continued by the sixth and nineth data points, 

these points should be used in the analysis and the fourth 

fifth, seventh and eight data points rejected. The reason 

that these four points do not follow the trend may be because 

the flow data was averaged over each hour, or because wellbore 

storage affects after each flow rate change were unquantif led. 

A value of 460 psi/cycle is found from the semi-log straight 

line of Figure 4-16 on page 45. 

5. Calculate Reservoir Parameters assuming [ 1] a reser-

voir fluid viscosity of 0.6 cp and using the equation 

\ PWP 162.61og 1688 .Lcr 
kh (  kt )_ O.869s] 

F.l 
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with slope 

m qBp.=162.6 kh -460 

Low 96 

F.2 

Rearranging to solve for permeability-thickness product, 

The equation for calculating skin is 

t'lhr 1 k '\ 
s=1.151 1 Pi  g  21+ 3 .23) 

M Ct 

F.3 

F.4 

From Figure 4-16 it is found that Plhr is 778.5 psig. Lee [ 11 

assumed that 

k F.5 
- 4.81 x 10 7 

Substituting this value into the above equation produces a 

skin of 0.43. 

Permeability is similar to that reported by Odeh and Jones 

[14] who reported 103 md-ft. However, they did not report a 

skin value. Lee [ 1] analyzed the same data and reported a 

skin of 0.53. 


