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ABSTRACT
A primary goal of AOSD in the context of systems software has
been to permit improved modularity without significantly degrad-
ing performance. Optimizations represent important crosscutting
concerns in this context but also a significant challenge due to their
fine-grained nature. This paper investigates how well the current
state-of-the-art in AOSD can support such optimization aspects, via
a case study involving an optimized network simulator, IP-TN. Du-
plication of optimizations achieved via low-level modifications to
IP-TN in C++ have been attempted via aspectization of those opti-
mizations in AspectC++. While comparable run-time performance
is achieved with AspectC++ and (un)pluggability is clearly simpler,
the effects on comprehensibility are less clear.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign—Simulation and emulation; C.4 [Computer Systems Or-
ganization]: Performance of Systems; D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement; D.1.m
[Programming Techniques]: Miscellaneous—Aspect-oriented
software development.

General Terms: Design, Experimentation, Languages, Perfor-
mance.

Keywords: Optimization, performance, network simulation, IP-
TN, AspectC++, modularity, fine-grained join points, evaluation.

1. INTRODUCTION

If you make an optimization and don’t measure to con-
firm the performance increase, all you know for certain
is that you’ve made your code harder to read. [12]

While systems software research has considered ideas from soft-
ware engineering and programming languages regarding improved
modularity (e.g., [19, 10, 37]), issues of improved comprehensi-
bility and evolvability have traditionally been considered far less
important than efficiency. As a result, systems software is typ-
ically difficult to understand and to modify. Since the early
days of research evaluating aspect-oriented software development
(AOSD) [36], a key goal has been to determine whether im-
proved modularity and efficient performance can be simultaneously
achieved in systems software.

While systems software development can begin from a
structurally-clean design, this design can quickly become obscured
by the necessary addition of optimizations. Premature optimiza-
tions and hard-to-unplug optimizations have the potential to de-
grade structure and inhibit performance through successions of

evolution steps. An AOSD approach to realizing optimizations
should be attractive to the systems community because of its po-
tential to separate the development process into two stages: con-
struction of the ideal structure followed by provision of optimiza-
tions that can be plugged-in and unplugged as the remainder of the
system evolves over time.

Such optimizations can be complex crosscutting concerns for
the sake of alternative computation paths [7, 5], or conceptually
simpler and finer-grained to eliminate run-time flexibility mecha-
nisms (such as polymorphism). Work-to-date has largely concen-
trated on the question of whether “non-trivial” crosscutting con-
cerns occur in systems software and whether they can be modular-
ized (e.g., [7, 22, 29]). In contrast, finer-grained optimizations may
be more prevalent, more technically challenging for aspect-oriented
(AO) programming languages, and less compelling examples of
improved modularity. They are not obviously amenable to the sup-
port provided by typical AO programming languages (e.g., [29,
34]), as those languages concentrate on granularities at or above
the method-level. While approaches to aspect-oriented refactoring
focus on provision of join points amenable to the AO program-
ming languages available (such as calls to “hook” methods) [24,
18], adding extra levels of indirection to a program tends to incur
performance costs that can be unacceptable in the context of sys-
tems software. At the same time, arguing that an aspect consisting
of a set of small tweaks exhibits improved modularity could be dif-
ficult.

In this paper, we consider how well the current state-of-the-art
is capable of reconciling the desires of high performance and im-
proved modularity in a specific systems software context: an opti-
mized network simulator, IP-TN [31]. To assess the effectiveness
of AOSD with respect to applying optimizations, two optimizations
to the packet buffer mechanism of IP-TN were chosen and imple-
mented in an aspect-oriented language, AspectC++ [33]. The chal-
lenges for an aspect-oriented modularization of buffer optimiza-
tions in IP-TN include:

• achieving comparable run-time performance;

• improving the localization of the optimizations, and to allow
them to be plugged into or unplugged from the base imple-
mentation;

• considering the optimizations as after-the-fact modifications
to the idealized design, without preplanning and preferably
without invasive modification of the base code, in order
to evaluate the potential for avoiding premature optimiza-
tion [12];



• improving the comprehensibility of the optimizations; and

• reproducing the fine-grained weaving capabilities provided
via compiler directives, or otherwise achieving the same ef-
fect.

We find that while comparable run-time performance can be
achieved with existing tool support and (un)pluggability is clearly
simpler, the effects on comprehensibility are less clear.

The remainder of the paper is structured as follows. Section 2 de-
scribes background information regarding the IP-TN network sim-
ulator that we have studied, and two optimizations (one that re-
duces the number of events without loss of accuracy, and one that
reduces the number of events by employing fluid-flow abstraction)
that were originally applied therein via traditional methods. Sec-
tion 3 describes our attempts to provide similar optimizations via
aspects written in AspectC++. Section 4 describes our empirical
evaluation of the performance of IP-TN to compare the C++ and
AspectC++ implementations. Section 5 discusses the results of our
study in terms of the lessons learned about AspectC++, and AOSD
in general, in this context. Section 6 describes related work. Sec-
tion 7 concludes and describes future work.

The contribution of this paper is the identification of strengths
and weaknesses of an existing AO approach to after-the-fact opti-
mizations in a systems software context.

2. BACKGROUND:
THE IP-TN SIMULATOR

Our case study considers how fine-grained optimizations can be
achieved via aspects in the Internet Protocol Traffic and Network
Simulator (IP-TN) [31]. Therefore, we begin with sufficient detail
on the requirements and design of IP-TN so that the purpose of the
optimizations can be understood.

IP-TN models IP networks at the network, transport, and appli-
cation layers of the Open Systems Interconnection (OSI) Reference
Model [13]. IP-TN allows for different network protocols and ap-
plications to be modelled and tested under various network con-
ditions in a controlled and repeatable environment. An emulation
extension to IP-TN, called IP-TNE, allows for real network hosts to
interact with the simulator in real-time. This extension enables the
direct testing of actual implementations of network protocols and
applications.

IP-TN is built on a parallel discrete event simulation kernel,
called CCTKit [32]. Network topology and traffic conditions to
simulate are specified in input files written in ANother Modelling
Language (ANML) [17]. ANML constructs allow for easy reuse
and aggregation of components to aid in the construction of com-
plex models. IP-TN consists of approximately 27 kloc of C and
C++ source code at its core; all of its extensions and libraries in-
crease the total to the neighbourhood of 100 kloc; the CCTKit sim-
ulation kernel consists of an additional 17 kloc.

Figure 1 shows the sequence of steps carried out by IP-TN in
the simulation of a network model. First, ANML files describing
the model to be simulated are input and processed. Next, the vari-
ous components of the input network model—including network
nodes, links, interfaces, packet buffers, and traffic objects—are
constructed. In the initialization phase, the network model compo-
nents are connected together and mapped to underlying simulation
kernel objects. The initial state of all network model and simulation
kernel components is also computed at this time. The simulation
is then executed with synchronization and advancement of simu-
lation time controlled by the underlying CCTKit kernel. Finally,
statistics on the resulting simulation are computed and output, in-
cluding simulation kernel metrics that measure the performance of
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Figure 1: High-level flow graph for IP-TN. Dotted lines indicate
dataflow; ellipses are the kind of data involved; solid lines are
control flow; boxes are processing steps.

the simulator as well as network-oriented metrics that measure the
behaviour of the network model and traffic flows.

Events are used to model the transmission of packets hop-by-
hop from source to destination in the simulated network with queu-
ing, transmission, and propagation delays accounted for. Packets
are queued for transmission and receipt by the network nodes in
packet buffers. The number of events required to model a single
packet transmission from one node to the next (one hop) depends
on the implementation of the packet buffers on network node inter-
faces. The fewer the events required to model a packet transmis-
sion, the better the performance that can be achieved by the simula-
tor. Therefore, optimizations on the packet buffers that reduce the
number of events during the simulation execution have the potential
to improve the execution performance.

The remainder of this section considers the kinds of buffer opti-
mizations that exist in IP-TN (in Section 2.1) and examines details
of their implementations (in Section 2.2).

2.1 Buffer Optimizations
Many different buffer types, including both preemptive and non-
preemptive buffers, have been implemented in IP-TN [8, 16]. Only
the non-preemptive buffers, which are modelled as fixed size FIFO
(first-in-first-out) queues, are considered in this paper.

The most basic and computationally expensive buffer in IP-TN
is called the Simple Buffer. An optimized buffer that maintains ac-
curacy but reduces the number of events required to model a packet
transmission is called the Standard Optimized Buffer. Another opti-
mized buffer, which makes use of simulation abstraction techniques
to further reduce the number of events but with some loss in ac-
curacy, is called the Hybrid Buffer. Further conceptual details of
these three kinds of buffer are examined in Sections 2.1.1, 2.1.2,
and 2.1.3 respectively.

2.1.1 Simple Buffer
The simplest and most intuitive buffer implementation—it most
closely matches buffer implementation in real networks—in IP-
TN is the Simple Buffer. When a packet arrives at a particular
network node, which is signaled by a packet arrival event, a route
lookup is performed to determine the output interface via which the
packet must next be sent on route to its destination. If the packet
buffer on the corresponding output interface has enough room for
the packet, the packet is inserted into the buffer; otherwise, the
packet is dropped. If the packet was successfully inserted into the
buffer and there are no other packets in the buffer, the packet is sent
to the next hop. This is done by generating an arrival event for the



next network node at a time equal to the current time plus the trans-
mission and link propagation delays. Another event must also be
generated at the current time plus the transmission delay to check
the buffer for newly arrived packets that need to be sent after the
current packet has finished transmitting.

Upon receipt of an event to check the buffer for more packets,
the next packet is sent following the process discussed above. If
the buffer is empty nothing further needs to be done. The Simple
Buffer requires two events to model a packet traversing one hop in
the network.

2.1.2 Standard Optimized Buffer
The Standard Optimized Buffer is an optimization of the Simple
Buffer that reduces the number of events required to model a packet
transmission without losing any accuracy. For a non-preemptive
FIFO buffer, the arrival time of the packet at the next node can
immediately be calculated upon receipt of the packet arrival event.
This allows the arrival event for the next node to be generated with-
out the need for an event to check the buffer for more packets.

To accurately keep track of the current buffer usage, a list con-
taining information on all the packets in the buffer is maintained.
When a packet arrives at a given network node, the list is “re-
freshed.” Information for packets that have finished transmission
are removed from the list, following which the current buffer usage
is calculated. If there is room in the buffer, the packet is sent with
the appropriate arrival time and information regarding the packet
inserted into the list; otherwise, the packet is dropped.

The Standard Optimized Buffer only requires one event to model
a packet traversing one hop in the network. In addition to a reduc-
tion in the number of events, there can be advantages in parallel
execution by allowing neighbouring nodes to safely execute further
into the future.

2.1.3 Hybrid Buffer
Both the Simple and Standard Optimized Buffers model each
packet individually. The number of events required to model a
packet transmission can be further reduced by making use of fluid-
based network simulation abstraction techniques [14, 20, 25], in
which network traffic is modelled as piecewise-constant bit-rate
flows. An event is only generated when there is a change in the
rate of a traffic flow. Rate changes may occur due to a change at
the traffic source or due to queuing and multiplexing in the net-
work. If many packets are represented by each change in a traffic
flow rate, then the number of events can be significantly reduced.
Although performance improvement can be achieved with the use
of fluid flows, there is some loss in accuracy; this loss has been
shown to be acceptable under many cases [25].

The Hybrid Buffer is capable of handling a mixture of detailed
packet flows and less detailed fluid flows. It operates in one of three
modes depending on the type of traffic it is handling. If the buffer
only handles packet flows then it operates in packet mode; if the
buffer only handles fluid flows then it operates in fluid mode; and
if the buffer handles a mixture of packet flows and fluid flows then
it operates in hybrid mode. The operation of the buffer in packet
mode is the same as that for the Standard Optimized Buffer. The
operation of the buffer in fluid mode is similar to that in the fluid-
based network simulation literature [14, 20, 25]. The operation
of the buffer in hybrid mode is similar to the fluid mode but with
modifications to handle packet-based flows [16].

2.2 Original Buffer Implementations
Since our goal is to provide a comparison of fine-grained optimiza-
tions in the original implementation with their aspect-oriented ana-

logues, we describe the design of the original buffer implementa-
tions here.

A simplified class diagram of all the buffer implementations and
their clients is provided in Figure 2; some names have been short-
ened and some details have been dropped (e.g., formal parameters,
return types, some member variables). Two subclass hierarchies
plus some supplementary classes are involved.

All the buffers in IP-TN extend the base class output buffer.
This class contains a set of virtual functions with minimal imple-
mentations that are overridden by subclasses. Both the Simple and
Standard Optimized Buffers are implemented in a single class and
are used by two other classes. The Hybrid Buffer is implemented in
a single class, with three other classes explicitly calling its member
functions. Furthermore, the Hybrid Buffer must be configured at
compile time in order to use it. To this end, the base code contains
a number of #ifdef ENABLE HYBRID compiler directives speci-
fying the actions to be taken at particular points when this buffer
is enabled; Figure 2 attaches notes to several of the classes where
these directives are used. The other buffer class is inserted in
the diagram to indicate that there are other buffer implementations
in IP-TN (i.e., preemptive buffers) that are not discussed in this
paper.

The second subclass hierarchy shown in the diagram involves the
representation of different kinds of nodes in the simulated network;
four of these nodes are of interest here: net node, ip base node,
ip service node and interconnect. When sending or receiv-
ing a packet, the interface between a given network node and the
corresponding link that the packet must travel through is respon-
sible to create and update information for various buffers. The
buffer factory class permits clients to create instances of regis-
tered buffer types via call-by-name; buffer init algs initializes
the factory by registering all the buffer types. The ip base node
class is responsible for requesting that a given kind of buffer be
created by the buffer factory, according to the specifications
provided as input to the simulation in ANML files. In addition,
ip base node determines the appropriate execution path for a
packet transmission, based on the buffer type.

Two events are generated per packet transmission if the Sim-
ple Buffer is chosen as the default buffer type. For each
packet that is processed, the ip base node class makes a call to
the write packet to buffer() method in the simple buffer
class. This method is responsible for writing a packet to the buffer
and sending the packet, if the buffer is empty, by generating a
packet arrival event for the next hop. After sending a packet, a sec-
ond event is generated to call the copy next packet to link()
method after the packet has finished transmission. This method
sends the next packet in the buffer if there is one.

If the Standard Optimized Buffer is chosen as the default buffer
type, only a single event is required to model a single packet trans-
mission. For each packet that is processed, the ip base node class
makes a call to the update next send time() method, which
generates an arrival event at the next node.

The Hybrid Buffer handles both packets and advertisements
specifying fluid flow rates. A single packet and multiple fluid ad-
vertisements can be sent in the same arrival event for the next node.
As such, the ip service node class is extended to direct pack-
ets and fluid advertisements that arrive together to the appropri-
ate output interface buffers and to ensure that each of the pack-
ets/advertisements at each output interface buffer is processed. The
latter is achieved by calling the process packets() method of
the hybrid buffer class for the buffer on each output interface.
In the process packets() method, calculations are performed to
determine any packet loss and changes in fluid flow rates, with an
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Figure 2: Simplified UML class diagram for the IP-TN non-preemptive buffers. Dashed arrows indicate dependencies; other dotted
lines indicate where the compiler directives occur.

arrival event generated to send non-dropped packets and fluid flow
rate change advertisements to the next network node.

The remaining methods and classes shown in the diagram mat-
ter to our context only inasmuch as they either contain #ifdef
ENABLE HYBRID compiler directives, or their functionality must ul-
timately be provided by an aspect; their details are otherwise be-
yond this paper.

Note that the Standard Optimized and Hybrid buffer ex-
ecution paths were not encapsulated exclusively in the
standard optimized buffer and hybrid buffer classes
respectively. This can be observed, for example, as the
buffer creation and selection mechanisms for each optimiza-
tion were implemented in separate classes (the ip base node and
buffer factory classes). As shown in Figure 2, the non-modular
implementation of these optimizations across several classes indi-
cate crosscutting concerns for each of them. Furthermore, in the
Hybrid case the existence of #ifdef ENABLE HYBRID compiler
directives indicate an especially scattered implementation of this
optimization. We proceed to consider how these optimization
crosscutting concerns could be realized as aspects.

3. OPTIMIZATION ASPECTS
Recall the challenges that our aspect-oriented modularization of
buffer optimizations must meet: (1) achieving run-time perfor-
mance comparable to that of the original C++ implementation;
(2) improving localization and pluggability of the optimizations;
(3) permitting the optimizations to be performed in an after-the-
fact manner; (4) improving comprehensibility; and (5) reproducing
or mimicking the fine-grained weaving capabilities of compiler di-
rectives.

The AspectC++ language [33] was used to implement the as-
pects, since the base code is in C++. In addition to the goals above
were a number of practical obstacles with which we had to cope.
The quantity of source code involved in these optimizations was
non-trivial to agglomerate into an aspect (the Standard Optimized
Buffer and Hybrid Buffer approaches added approximately 0.5 kloc
and 1.5 kloc, respectively). IP-TN is written in C++ in a style in-
tended to minimize run-time overhead from levels of indirection
(e.g., virtual function usage), so any addition of indirection could

impair performance.
The original implementation of IP-TN provides for an ability to

select which optimizations should apply on a per-instance basis (the
Hybrid Buffer approach additionally required compile-time modi-
fications via compiler directives). This run-time flexibility was pro-
vided chiefly for the sake of supporting a single kernel with which
to evaluate different simulation approaches. In contrast, we take
the approach of providing strict compile-time selection of each op-
timization for every non-preemptive buffer in an IP-TN simulation.
We discuss this issue further in Section 5.5.

The remainder of this section begins with a basic overview of
AspectC++, in Section 3.1. A description of the details of each
optimization is given, respectively, in Sections 3.2 and 3.3. Further
analysis and discussion is left until Sections 4 and 5.

3.1 Overview of AspectC++
The AspectC++ language is largely analogous to the AspectJ lan-
guage [15]. A class-like aspect construct is provided in which
can be provided named pointcuts, inter-type declarations, and ad-
vice (before(), after(), and around()). Other primitive point-
cuts of interest to us include call(), execution(), within(),
and args(), with analogous interpretations as in AspectJ, while
construction() is similar to AspectJ’s initialization().
A reflection mechanism is available via the pointer tjp, which
is equivalent to AspectJ’s thisJoinPoint. Within around()
advice, the original implementation can be resumed via the
proceed() functions accessible from tjp.

Of notable absence is support for fine-grained join points, as is
the case with AspectJ; thus, any attempt at accessing fine-grained
join points (such as deeply embedded compiler directives) must be
made indirectly, possibly by noting a particular sequence of higher-
level join points.

Figure 3 illustrates the syntax of AspectC++ for a sample aspect,
named redirecting opt. Two named pointcuts, addition()
and process(), and three advices are shown. Note that details
of pointcuts, including wildcards such as “%” and “...”, are de-
clared as string literals to simplify the extension to the already com-
plex C++ syntax. The addition() pointcut differs from AspectJ,
as it names an entire class, simple buffer. The process()



aspect redirecting_opt {
pointcut addition() = "simple_buffer";
pointcut process() =

"% ip_service_node::process_ip(...)";

// _state is introduced into simple_buffer
advice addition(): int _state;

advice construction(addition()): around() {
// Body replaces simple_buffer constructor

}

advice execution(process()) && args(ipp):
around(iptn_packet* ipp) {
// Body replaces impl. of process_ip()

if(some condition)
tjp->proceed(ipp);

}
}

Figure 3: Sample AspectC++ source code.

pointcut identifies the process ip() member function on the
ip service node class, ignoring details of the result and formal
parameter types. In the first advice, we use this named pointcut to
provide inter-type declarations, such as the addition of a member
variable, state, to simple buffer. In the second advice, the im-
plementation of the constructor for simple buffer is replaced via
around() advice on the primitive pointcut construction(). In
the third advice, around() advice again is used to replace the exe-
cution of the process ip() member function; an argument passed
to this execution is exposed and bound to a formal parameter (ipp)
for use within the body of the advice. The third advice illustrates
the use of proceed().

AspectC++ compilation support is provided via a preprocessor
that transforms the source to C++. To understand what known is-
sues exist with the AspectC++ preprocessor, communication with
the AspectC++ development team was undertaken; these issues are
elaborated upon in Section 5.

3.2 Optimizing the Simple Buffer via the Stan-
dard Optimized Buffer Approach

We wished to achieve the Standard Optimized Buffer opti-
mization by altering the functionality of the simple buffer
class with an aspect, rather than providing a separate
standard optimized buffer class. Therefore, the aspect
to be implemented needed to replicate the functionality of the
standard optimized buffer class, while any explicit reference
to the standard optimized buffer class within the rest of the
system had to be removed. Our design is depicted in Figure 4.

We created a single aspect, standard opt, to represent the
Standard Optimized Buffer optimization. This aspect made use
of four pointcuts: addition(), construction(), send(), and
init(). Details of these pointcuts follow.

The addition() pointcut referred to the simple buffer
class, and provided a hook for introducing member func-
tions and variables to that class. In this way, all of the
standard optimized buffer member functions and variables
were introduced into the simple buffer class.

The construction() pointcut captured invocation of the con-
structor of the simple buffer class. The constructor was modi-
fied via before advice to initialize the newly introduced member
variables (not shown on the diagram).

The init() pointcut captured execution of the initialize()

member function of the simple buffer class. This function is
responsible for setting a pointer to the network node interface that
this buffer belongs to and for initializing various buffer statistics. It
needed to be modified according to the Standard Optimized Buffer
approach. To accomplish this, around advice on this pointcut was
declared that replaced the original functionality with the function-
ality that had existed in the initialize member function of the
standard optimized buffer class (see Figure 2).

Finally, the send() pointcut captured execution of
the send ippacket simple() member function on the
ip base node class. In the original implementation, the
send ippacket() member function selected one of a set of helper
functions based on the buffer type. Thus, send ippacket() was
manually modified to remove mention of the Standard Optimized
Buffer approach, and the send ippacket standard() helper
function was removed from the ip base node class. The function-
ality so lost was then re-inserted as around advice on the send()
pointcut; any attempt at executing send ippacket simple()
resulted instead in the execution of the functionality of the original
send ippacket standard().

3.3 Optimizing the Simple Buffer via the Hy-
brid Buffer Approach

Similar to the Standard Optimized Buffer optimization, we wished
to realize the Hybrid Buffer optimization by eliminating all men-
tion of the Hybrid Buffer approach in favour of an aspect.
Again, the aspect needed to replicate the behaviour of the original
hybrid buffer class, and various points in the program had to
be advised to utilize the optimization methods so introduced. Our
design is depicted in Figure 5.

We created a single aspect, hybrid opt, with a total of
70 advices (not all shown in diagram) applied to 7 pointcuts:
addition(), arrival time(), init(), send(), lookup(),
process(), and hybrid warning(). Details of these pointcuts
follow.

The addition() pointcut serves an analogous purpose as in the
standard opt pointcut. It provides a mechanism for introducing
new member functions and variables to the simple buffer class.
The introduction of this new code effectively results in the transfor-
mation of the simple buffer to the hybrid buffer class.

When the packet mode is enabled, the arrival time() point-
cut calculates the proper arrival time of a given packet at a new
network node. Adjusting the arrival time in the hybrid mode is
necessary due to the fundamental assumption that transmission de-
lays are zero in the hybrid mode. An around advice implements
this adjustment. Although the entire method did not need to be
re-written, the aspect code changed the value of some of the local
variables that were used in other parts of the method body. These
variables were locally defined and thus inaccessible via the avail-
able join point constructs. Alternatively, we could have refactored
the method by inserting a call to a dummy method and passing it
the local state by reference; however, this would add a level of in-
direction and potentially impede performance.

Similar to the standard opt aspect, the init() pointcut cap-
tures execution of the initialize() member function of the
simple buffer class. As noted, this function is responsible for
setting a pointer to the network node interface to which this buffer
belongs and for initializing various buffer statistics. It needed to be
modified to use the Hybrid Buffer approach. To accomplish this, an
around advice on this pointcut is declared effectively eliminating
the original code and replacing it with the functionality that had ex-
isted in the initialize member function of the hybrid buffer
class.
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The send() pointcut captures execution of the
send ippacket simple() member function on the
ip base node class. The send ippacket() was manually
modified to remove mention of the Hybrid Buffer approach, and
the send ippacket hybrid() helper function was removed from
the ip base node class. This functionality was then restored as
around advice on the send() pointcut; any attempt at executing
send ippacket simple() results instead in the execution of the
functionality of the original send ippacket hybrid().

The lookup() pointcut captures the execution of the
lookup and send packet() member function in the
ip base node class. When the Hybrid Buffer optimization
is enabled, this function must include an extra error check and
behaviour to ensure that the proper execution path for sending
packets for Hybrid Buffers is followed. In addition, some Simple
Buffer behaviour must be eliminated. Although the entire func-
tionality of this method did not need to change, the method lacked
natural join point “hooks” to advise. For this reason, we used
an around advice and rewrote the method entirely. This issue is
examined further in Section 5.4.

The process() pointcut captures the execution of the
process ip() member function in the ip service node class.
When the Hybrid Buffer optimization is enabled, this function is
responsible for processing the set of packets and fluid rate change
advertisements that are packaged together in the same arrival event.
This is achieved in a single around advice, where a loop is added
around the entire function to process all packets and fluid rate
change advertisements. At first glance, it would seem that this ad-
ditional behaviour could have been achieved via paired before()
and after() advice; however, one of the local values generated in
the function itself was of crucial importance to the loop and there
was no way of capturing this variable without inserting extra calls
to dummy functions. As discussed in the preamble to this section,
this alternative design was not considered a viable option as it vio-
lates several of our stated goals.

Certain special-purpose functionality (i.e., the provision of in-
terconnects such as switches and hubs) had not been implemented
in IP-TN to operate under the Hybrid Buffer optimization. The
hybrid warning() pointcut is utilized to inform the user who at-
tempts to use such functionality that it is not supported under the
Hybrid Buffer optimization. This is implemented with a simple
before advice that prints a warning message at the initialization
time of the interconnect class.

4. EMPIRICAL EVALUATION
To evaluate the run-time performance effects of the buffer opti-
mizations, we performed a small set of characteristic simulations
on both the C++ and AspectC++ implementations of IP-TN.

The basic simulation configuration consisted of a tandem
network topology, as described in detail by Kiddle and col-
leagues [16]; this configuration is illustrated in Figure 6. The net-
work model consists of a series of source nodes where traffic flows
are generated, a series of sink nodes to where traffic flows are des-
tined, and a set of routers that route the traffic flows to their des-
ignated sink. Links from the source nodes to the routers and from
the routers to the sink nodes are modelled with a 1 ms propagation
delay and 10 Mbps transmission capacity. Links between routers
are modelled with a 5 ms propagation delay and a transmission ca-
pacity C such that the average network link load is 100%. The size
of output buffers on the modelled routers is set such that the max-
imum queuing delay is 20 ms. We choose 100% average load for
these experiments to ensure high buffer activity.

An exponential on/off process is used to model traffic flows.

Sources generate traffic at a rate of 5 Mbps in the on state and gener-
ate no traffic in the off state. The sojourn times in each state are in-
dependently drawn from an exponential distribution such that each
source spends 50% of the time in each state on average. This results
in an average rate of 2.5 Mbps for each traffic source. The average
burst size for each on period is 100 packets of size 576 bytes.

Traffic flows are divided into two categories: foreground flows
and background flows. Foreground flows are the traffic flows of
interest that are being studied. They traverse the whole network
and are always modelled as packet flows. Background flows are
traffic flows used to model other network activity and to compete
for resources with the foreground flows. They can be modelled as
either packet or fluid flows and generally traverse just one router.
One background flow also traverses the entire network to study the
impact of propagation of rate changes when background flows are
modelled as fluid flows. For tests involving the Simple Buffer and
Standard Optimized Buffer, all traffic flows are modelled as packet
flows. For tests involving the Hybrid Buffer, foreground flows are
modelled as packet flows and background flows are modelled as
fluid flows.

The network model was originally developed to study the per-
formance and behaviour of the Hybrid Buffer optimization under
a wide range of conditions. For the purposes of this paper, we ex-
plore a subset of these conditions to provide an indication of how
the performance of the AspectC++ and original implementations
compare. One foreground flow was used for all experiments, since
this would be a common configuration for simulations. To compare
performance over several data points the number of background
flows was varied from 4 to 32, and the number of routers was var-
ied from 2 to 8.

All tests were performed on a Dell Optiplex GX240 with an In-
tel Pentium 4 1.60 GHz processor, 256 KB L2 cache, and 1 MB
RAM, running Scientific Linux SL release 4.1 (Beryllium) with
kernel version 1.3. IP-TN was compiled with g++ (GCC) 3.4.3
using the -O2 optimization flag. The AspectC++ implementation
of IP-TN was preprocessed with ac++ version ac-0.9.2 and then
compiled with the same configuration of g++. (A small set of tests
were also performed using the -O3 optimization flag, but the results
were statistically identical to the -O2 optimization results so we do
not mention these further.) Each simulation configuration was run
10 times for 600 simulated seconds, with performance results aver-
aged over them.

Figure 7 illustrates the average run time of various buffer opti-
mizations with respect to number of background flows, for config-
urations with 4 routers; 95% confidence intervals were computed
in all cases, but these are too small to be visible on the graphs (the
largest of these is ±9.97 s while most are in the neighbourhood of
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Figure 7: Run-time results for the tandem topology, for con-
figurations with 4 routers and varying number of background
flows.

±1 s). Results for configurations with 2 and 8 routers are similar, so
they are not illustrated. Figure 8 illustrates the growth in run time
as the number of routers increases, with a constant 32 background
flows. Figure 9 illustrates the speedup of each optimization relative
to the Simple Buffer approach, for configurations with 4 routers
and varying numbers of background flows. In all three figures, the
abbreviations are as follows: Simp represents the results from the
un-optimized, Simple Buffer approach; Stan represents the results
from the Standard Optimized Buffer approach, as originally im-
plemented, and AO Stan from the Standard Optimized Buffer ap-
proach realized as an optimization aspect; Hybr and AO Hybr are
the equivalent results for the use of the Hybrid Buffer approach in
the original and AspectC++ implementations respectively.

The Simple Buffer shows the worst performance as expected,
with the Standard Optimized Buffer showing up to 1.5 times
speedup over the Simple Buffer and the Hybrid Buffer showing
up to 6.6 times speedup over the Simple Buffer. Simulation run
time increases with increasing number of background flows for all
of the buffer implementations as more traffic is simulated. This
is due to the increased transmission capacity of the links between
routers to maintain an average network load of 100% as the number
of background flows is increased.

Although the Standard Optimized Buffer requires half as many
events to model packet transmissions in comparison to the Simple
Buffer, it does not achieve two times relative speedup as might be
expected. This is because the execution cost of one kind of event
may not necessarily equal that of other kinds of events. Also, not
all of the events model packet transmissions; some model the gen-
eration of traffic flows. There are an equal number of the latter
events for both the Simple Buffer and Standard Optimized Buffer
simulation runs.

Relative speedup of the Hybrid buffer implementations increases
with increasing number of background flows initially. This is due
to the increased percentage of traffic modelled as fluid flows re-
sulting in fewer events simulated. As the number of background
flows is increased further, the relative speedup of the hybrid imple-
mentations begins to decrease. This is due to what is known as the

Figure 8: Run-time results for the tandem topology, for con-
figurations with 32 background flows and varying number of
routers.

Figure 9: Speedup of optimizations relative to the Simple
Buffer approach, for configurations with 4 routers and vary-
ing number of background flows.

ripple effect1 [20, 25]. At congested network nodes a change in
the rate of one flow causes changes in the rates of all other active
flows. These rate changes propagate down the network and create
new rate changes which could result in an explosion of events.

Overall, the AspectC++ implementation performed comparably
to the C++ implementation. With the Standard Optimized Buffer
approach, the two implementations were generally indistinguish-
able in their performance. The Hybrid Buffer approach was slightly
slower for the AspectC++ implementation, where the speedup of

1Not to be confused with the same term in change impact analysis.



the C++ implementation relative to the AspectC++ implementation
had a mean value of 1.11 and a standard deviation of 0.05. The key
difference between the two optimizations in the AspectC++ imple-
mentations was the greater use of around() advice for the Hybrid
Buffer approach; we consider this issue further in the following
section.

5. DISCUSSION
The performance results observed in our empirical study demon-
strate that little overhead was added by using the AspectC++ ap-
proach. The small performance degradation observed might derive
from any combination of three sources: (1) weaknesses in the im-
plementation of the AspectC++ compiler, (2) poor optimization as-
pect design on our part, or (3) weaknesses in the aspect-oriented
model at our disposal. In this section, we proceed to analyze and
discuss these issues and others that arise from our case study. The
discussion is organized into major issues, as follows: AspectC++
(Section 5.1), localization (Section 5.2), comprehensibility (Sec-
tion 5.3), fine-grained join points (Section 5.4), and additional as-
pects and interactions (Section 5.5).

5.1 AspectC++
Inquiring with the AspectC++ development team, Daniel Lohmann
informed us2 about the following known issues.

• The overhead of any advice is mainly determined by the
amount of join point context accessed by the advice code.
Information such as the pointers returned by that(),
target(), or args() are stored in a join point object. They
require some stack space and some cycles for initialization.
However, the actual calls to the join point objects are in-
lined, and so multiple calls to access the same context will
not increase overhead.

• The introduction of new methods and variables do not have
an impact on the performance relative to the C++ implemen-
tation, as they are directly in-lined.

• The before() and after() advices that we have used lead
to no overhead in CPU cycles or stack usage, as they are also
directly in-lined.

• On the other hand, around() advice uses a specific action
object for the implementation of tjp->proceed(). This ac-
tion object occupies some stack space and results in a func-
tion pointer call that can not be in-lined. A faster method
of implementing around() advices is currently being ex-
plored.

AspectC++ is not thread-safe. Since IP-TN provides parallel
simulation capabilities for the sake of improving performance, As-
pectC++ would not suffice in its present form to support this func-
tionality. Therefore, we avoided parallel simulation in our empiri-
cal evaluation.

Tool support for AspectC++ is not presently at an industrial stan-
dard: debugging remains difficult because of the source-to-source
transformations performed by the preprocessor; support for files
written in C is absent; occasionally incorrect C++ code is gen-
erated; and a fairly manual configuration process is necessary to
specify the detailed project paths in use. While these issues must
be addressed for AspectC++ to be industrially adopted, they are
straightforward development issues. Regardless, the tool support
is beyond the research prototype stage, and performed well for our
application.
2Personal communication, 8 August 2005.

5.2 Localization
The clearest advantage that we observed to using aspects is the
pluggability factor. Due to the localization of the optimizations,
they could be easily incorporated into or removed from IP-TN. In
our implementation we were careful to leave the base code intact
and unaware of the aspect. This enabled us to have compile-time
selection of the desired optimization without the need to scatter and
tangle code wrapped in compiler directives.

One question is how much of this effect could be achieved
through the modularization mechanisms available in C++, which
are less stringent than those in Java. For example, if an aspect
merely consisted of a set of complete member functions that hap-
pened to be scattered amongst several classes, C++ would permit
these to be collected into a single file. However, the majority of the
crosscutting behaviour that we observed in our case study consisted
of finer-grained elements within member functions. As such, many
advices that did not involve inter-type declarations were needed,
and C++ could not help to separate and localize these.

5.3 Comprehensibility
The execution path of the buffer optimizations in the original im-
plementation was difficult to understand due to its scattering and
tangling. The buffers were instantiated via a call-by-name inter-
face provided in the hybrid factory class. The ip base node
class implemented a selection mechanism to choose the appropriate
buffer optimization and to make use of the functionality provided
in the buffer classes via polymorphic function calls. The scattered
and tangled nature of the Hybrid Buffer optimization is even more
pronounced, due to the use of several code fragments wrapped in
#ifdef ENABLE HYBRID compiler directives. Implementing these
optimizations as aspects clearly increased the locality of the con-
cerns, and a specific representation of which code was involved in
a given optimization.

Nevertheless, it is less clear that the comprehensibility of the op-
timizations was improved overall. Each aspect represented its cor-
responding optimization in its totality, resulting in large aspect im-
plementations (approximately 0.5 kloc and 1.5 kloc respectively for
the Standard Optimized Buffer and Hybrid Buffer optimizations).
Individual advices tended to represent detailed behavioural modi-
fications that were difficult to interpret in isolation. The execution
paths that were difficult to understand in the original system remain
obscure, as the optimizations did not encapsulate them completely,
merely the portions that were modified; reference to the base code
continued to be necessary.

Several arguments could be made regarding these observations.
Perhaps optimizations do not represent sufficiently cohesive con-
cerns to be reasonable candidates for aspectization. However, the
buffer optimizations we have encountered here do crosscut and
have specific purposes ascribed to them. Thus, they represent cross-
cutting concerns, and as such, fall under the claims of improved
modularization made by AOSD. Given that we only separated
two optimization aspects, but many other crosscutting concerns ex-
ist within IP-TN, perhaps any shortcomings that exist are due to
the scattering and tangling of these other concerns. However, one
would expect separation of some crosscutting concerns to provide
partial benefit, as has been claimed elsewhere with other crosscut-
ting concerns. In contrast, it is not clear that comprehensibility
has changed significantly in our situation, either positively or neg-
atively.

5.4 Fine-Grained Join Points
As we have alluded to earlier, the support provided by AspectC++
for capturing natural fine-grained join points in the IP-TN system



is insufficient. The within() primitive pointcut can be used to
capture function calls made from within specific member functions,
but this does not suffice when a function is called several times
within a specific member function and only one of these calls is to
be advised.

Furthermore, situations where compiler directives are used to in-
sert unbalanced parentheses at seemingly arbitrary locations within
the body of a function (e.g., to enclose a set of existing statements
within the true-block of a new if-statement) remain difficult to cope
with, especially when local state must be exposed. While in most
contexts, the code to be enclosed could be refactored into a helper
function and local state exposed in a call to this function, inserting
such extra levels of indirection can undo the benefit to be gained
from an optimization.

The simplest alternative in our context was to apply around()
advice to the function to be modified, copy-and-paste the original
implementation, and insert the additional behaviour into the copy.
In our case study, following this procedure resulted in situations
where the function to be advised consisted of >100 loc, and the
behaviour to be added could be implemented in only a line or two.
This is, of course, not a desirable approach to take in general as
code replication leads to difficulties in debugging and evolution.

Better support for fine-grained join points might be necessary to
successfully support systems software fully.

5.5 Additional Aspects and Interactions
Many crosscutting concerns can be observed within IP-TN that
represent targets for modularization using an aspect-oriented ap-
proach. Preemptive buffers and their corresponding optimizations
could also be implemented in an AspectC++ and their performance
could be measured and compared. In addition to being a simula-
tor, IP-TN has extensions that let it function as an emulator. This
means that it can communicate with real hosts in real networks.
The implementation of the emulator extensions spans across more
than 20 files. An emulation aspect could modularize this imple-
mentation to a great extent. Such potential aspects remain future
work to investigate.

In Section 3, we described how the original implementation of
IP-TN allows different buffer optimizations to be applied to in-
dividual buffer instances within a given simulation, whereas our
compile-time approach applied the same optimization to every
buffer. Advanced simulation scenarios can benefit from such a
fine-grained optimization, to improve performance where detailed
simulation is not really needed. It is not obvious how the origi-
nal design of multiple, optimized buffer classes could be improved
upon without degrading performance with aspect instances. This
remains a difficult question for future work.

While we have noted that the Hybrid Buffer optimization is im-
plemented within code enclosed in compiler directives, we have not
mentioned that ENABLE HYBRID is but one of over 25 such flags
used by IP-TN and the underlying simulation kernel. Not all com-
binations of these flags are meaningful, but there are over 100 po-
tentially useful variations of the simulation kernel flags alone. Ide-
ally, one should be able to provide one aspect to correspond to each
flag; however, the interactions between these is non-trivial, so pro-
viding cohesive but correct aspect implementations for all of them
might be challenging for aspect interaction research.

6. RELATED WORK
Some research has previously considered the role of modularity
in operating systems (OS), using non-AO mechanisms. Levin and
colleagues constructed Hydra [19], an OS that explicitly separated
mechanism concerns from policy concerns to permit user-level

specification of policy while the implementation of those policies
was provided safely within the kernel. Various others followed this
trend towards attempts at combining efficiency with separation of
concerns (e.g, [27, 4, 2, 10]). Denys and colleagues provide a re-
cent survey [9]. Yokote attempted to provide an OS, Apertos, in
which computational reflection was key to providing customizabil-
ity [37]; unfortunately, performance was so poor that the OS com-
munity has largely turned their backs on the ideas.

Work has been done in identifying and aspectifying emer-
gent crosscutting concerns in systems contexts. Coady and col-
leagues developed an AspectC prototype and used it to modularize
prefetching in the FreeBSD operating system across several ver-
sions [6, 7]. They have expanded their work to modularize page
daemon activation, disk quotas, and blocking in device drivers [5].
Barreto, Åberg and their colleagues have heavily used AO ap-
proaches in developing the Bossa OS kernel [3, 1], with particular
attention paid to crosscutting concerns involving temporal patterns.
Mahrenholz and colleagues used AspectC++ to modularize inter-
rupt synchronization in the PURE operating systems [22]. They
have also created an AspectC++ implementation of program instru-
mentation which is used in the PURE operating systems for debug-
ging and monitoring purposes [23]. Ségura-Devillechaise and col-
leagues [30] created a prototype system (µDyner) for the dynamic
weaving of AOP in a running C program; they used µDyner to
implement web cache prefetching policies and dynamically place
them in web caches. Similar to the previous work in traditional ap-
proaches to structuring OSes, Lohmann and colleagues describe the
connection between non-functional and architectural properties in
the domain of OS product lines [21]. None of these approaches ad-
dresses the conceptually simpler but technically more problematic
optimization aspects with which we are concerned here.

Various work has considered alternative design approaches for
OSes to take advantage of AO properties. Schwanninger and col-
leagues propose an alternative architectural approach to deal with
crosscutting concerns in systems contexts [29]. A framework for
weaving aspects into real-time operating systems was proposed by
Park and colleagues [26], where the aspects have been designed in
a hierarchical fashion. Tešanović and colleagues propose a design
strategy that decomposes real-time systems into components and
aspects [35]. A component-based embedded real-time database
system (COMET) has been developed and real-time policies are
incorporated into this system as aspects. In contrast to these ideas,
convincing the systems community to adopt fundamentally differ-
ent design approaches so that optimizations can be conveniently
modularized would be difficult; a demonstration of detailed im-
provement would be necessary rather than a demonstration that
an AO design approach is merely possible—lessons from Apertos
must be remembered.

Surprisingly little work can be publicly found that addresses sys-
tems performance issues in the AOSD community. Coady and col-
leagues simulated limited micro-benchmarks to give an indication
of likely performance penalties, should their AspectC ever develop
sufficiently [5]; this is not a perfect indicator of end-to-end per-
formance. Schult and Polze discuss speed versus memory usage
in components [28]. Lohmann has indicated to us3 that the As-
pectC++ development team is working on a micro-benchmark suite
and hope to publish on it in the near future.

Limited work has addressed the need for join points at the sub-
method-level granularity. In the early days of the formation of
the AOSD community, discussions about this finer granularity oc-
curred but seem to have been pushed aside, perhaps for practi-

3Personal communication, 8 August 2005.



cal issues (one must start somewhere, after all) or philosophical
ones. Murphy and colleagues point out the difficulty in separating
crosscutting concerns that are tangled within basic control struc-
tures [24]. Schwanninger and colleagues note the limited scope and
poor quality of available tools, hinting at their inability to cope ef-
fectively [29]. Engel and Freisleben question the lack of join points
for capturing native code execution [11]. Sullivan and colleagues
have recently argued that existing pointcut mechanisms in AspectJ
were inadequate to provide true obliviousness, and promoted the
introduction of explicit hooks in the base code [34]. While such
explicit hooks are reasonable short-term workarounds in most con-
texts, they seem inappropriate here. Designing up-front for opti-
mizations raises the spectre of premature optimization, wasted ef-
fort, and weaker code. Invasively modifying the base code after-
the-fact raises the question of the usefulness of the aspect-oriented
modularization: if manual optimization is only partially eliminated,
it is unclear that partial benefit will be obtained.

7. CONCLUSIONS
For the systems software community to adopt aspect-oriented
approaches, it must be a clear win for them. Run-time per-
formance must be maintained while other properties—such as
(un)pluggability and comprehensibility of optimizations—are im-
proved.

We have examined how well current AOSD state-of-the-art can
achieve these goals, by considering fine-grained optimizations in
the context of an optimized network simulator. Two optimizations
in the original C++ implementation were mimicked in AspectC++,
in an attempt to apply the optimizations in an after-the-fact manner.
Base code was kept oblivious to the presence of the optimizations,
both to avoid invasive modification to support the optimizations and
to avoid the addition of levels of indirection.

The performance of the AspectC++ implementation was compa-
rable to that of the C++ implementation overall. A small degrada-
tion was observed to be correlated with frequent use of around()
advice, which is a known target for improvement by the AspectC++
development team. The ability to plug and unplug the optimiza-
tions is clearly improved in the AspectC++ implementation, due
to localization; however, it is not clear that the aspect solutions
provide better comprehensibility, as they are large and refer to fine-
grained details of the base code that are difficult to abstract away.
We found that improved support for fine-grained join points would
be helpful, to improve the ability to maintain performance without
copy-and-paste programming.

A cleaner design for the base code is another possible route for-
ward, but given the complexity of the system and the large num-
bers of tightly interacting optimizations present, this remains an
idealization that requires a major research undertaking to evaluate
fully. In the meantime, while these smaller-scale results will not
convince the systems software community to adopt AOSD tech-
niques, they should be encouraging for AOSD researchers that
aspect-orientation in the context of optimized systems software re-
mains a viable target.
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