
THE UNIVERSITY OF CALGARY

An Optimistic AND-Parallel Prolog Implementation

BY

Ian William Olthof

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

April, 1991

© Ian William Olthof 1991

1*1 National Library
of Canada

8ibliothèque nationale
du Canada

Canadian Theses Service Service des theses canadiennes

Ottawa. Canada
KIA 0N4

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrary
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Cmaaa1 1*4

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la 8ibllothèque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-66893-8

THE UNIVERSITY OF CALGARY

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, "An Optimistic AND-Parallel Prolog Implemen-

tation," submitted by Ian William Olthof in partial fulfillment of the requirements for the

degree of Master of Science.

Date 1991-04-23

11

6 -,%A-

Joha Cleary, . jervisor
Deem ment of Computer Science

JunGu
Department ofElectrica1 Engineering

'AZ
Bruce MacDonald
Department of Computer Science

Mike Williams
Department of Computer Science

(1
Ian H. Witten
Department of Computer Science

Abstract

This thesis documents the implementation and testing of a distributed Prolog interpreter

that exploits one of the major forms of parallelism available in Prolog: AND-parallelism.

Previous AND-parallel systems have had to make a tradeoff, sacrificing potential par-

allelism to retain the semantics of sequential Prolog, or giving up those semantics (in

particular, completeness) in order to achieve maximum parallelism. This tradeoff is seen

to be unnecessary when a total ordering is imposed on the goals executed by the parallel

system.

The implementation described in the thesis is based on an algorithm due to Cleary et al,

which uses Virtual Time to impose this total ordering. In the course of implementing the

distributed Prolog system, several points of the algorithm were clarified and a number of

small errors corrected. As well, an apparently obvious optimization to the algorithm was

found instead to be an over-optimization that caused the system to miss solutions. This

work resulted in a working parallel Prolog system blemished only by the over-optimization;

as well, a safer optimization is outlined.

The system was tested using a variety of Prolog programs—some that featured inde-

pendent AND-parallelism, some that offered stream AND-parallelism between dependent

goals, and some that were highly nondeterministic. For each program, different goal-

ordering strategies were tested. Results showed that several programs ran well under the

parallel system, and suggested that others could be made to run well with the addition

of two optimizations; proposed implementations for these optimizations are described in

detail.

111

Acknowledgements

Well, this thesis has been a lot of hard work. I dread to think how much harder it would

have been without the help and encouragement of many people. The most prominent of

these kind souls (and soulless institutions) are listed below.

John Cleary my supervisor, for helpful discussions about the algorithm and its imple-

mentation, for prompt and encouraging reviews of my scribblings, and for financial

support through the darkest days of thesis.

Lita Martin for holding the home front together and being an all-around sweetie.

Big Rock Brewery for producing fine creative juices that helped keep my creative juices

flowing.

Richard Esau for listening to all of those boring implementation details so I could explain

my latest bug, as well as for the weekly squash games.

Mike and Mark for the opportunities they gave me to get away from my thesis for a

while, to enjoy instead scintillating conversations (or was that incoherent babble?)

about hardware, motorcycles, politics, and/or beer.

David Pauli for showing the rest of the gang how to get it done.

RMR and all of its members, for all of the kilometers we've spent together on the

road pedalling to the next checkpoint, and for expanding my knowledge of sleep

deprivation.

NSERC for funding the early years of my research.

iv

Dedication

To my parents, for their quiet but unmistakable support throughout my educational career.

V

Contents

Approval ii

Abstract iii

Acknowledgements iv

Dedication v

1 Introduction 1

2 Parallelism in Prolog 5
2.1 Prolog 5
2.2 OR-Parallelism 10
2.3 AND-Parallelism 11
2.4 Other Forms of Parallelism 12

3 AND-Parallelism 15
3.1 Naive AND-Parallelism 16
3.2 Independent AND-Parallelism 17
3.3 Concurrent Logic Programming Languages 20
3.4 Backtracking Stream AND-Parallel Systems 22

4 AND-Parallelism Using Virtual Time 26
4.1 Virtual Time and lime Warp 26
4.2 Stacks and Frames 28
4.3 Messages 29
4.4 Mixing Prolog and lime Warp 30
4.5 Execution Model 31

4.5.1 Forward Execution 31
4.5.2 Local Backtracking 32
4.5.3 Rollback 32
4.5.4 Remote Backtracking 33
4.5.5 Example 35

4.6 Optimizations 39
4.6.1 BIND Optimization 40
4.6.2 ANTI-BIND Optimization 41
4.6.3 FAIL Over-optimization 41

vi

5 Implementation 45
5.1 Overview of the System 45
5.2 Solver Processes 48
5.3 Ear Processes 48
5.4 Binding Environment 52

5.4.1 Naming 52
5.4.2 Local and Shared Variables 53
5.4.3 Incomplete Data Structures 54

5.5 Delayed Predicates 54
5.5.1 User Predicates 54
5.5.2 Builtin Predicates 56

5.6 Termination Detection 61
5.7 Optimizations 64

5.7.1 BIND Optimization 64
5.7.2 ANTI-BIND Optimization 68
5.7.3 FAIL Optimizations 69

6 Testing and Results 73
6.1 Testing Environment 73
6.2 Testing 74

6.2.1 Determinism and Nondeterminism 75
6.2.2 Delay Characteristics 76
6.2.3 Goal-ordering Strategies 77

6.3 Results 80
6.3.1 Summary of Test Runs 81
6.3.2 Deterministic Programs 82
6.3.3 Shallow-nondeterministic Programs . 88
6.3.4 Deeply-nondeterministic Programs 92

6.4 Analysis 98
6.4.1 Comparison with the Sequential Interpreter 98
6.4.2 Comparison Between Parallel Versions 99
6.4.3 Conclusion 101

7 Conclusion 102
7.1 Future Work 104
7.2 Summary 105

Bibliography 107

A Pseudocode for AND-Parallel Prolog Algorithm 110

vii

B Source Code of Test Programs 113

viii

List of Tables

6.1 Messages processed under combinations of goal-scheduling parameters. . 79

6.2 Summary of comparisons of unifications. 99

6.3 Summary of comparisons of message counts. 99

ix

List of Figures

2.1 Prolog program and query 8

2.2 Goal tree for execution of a program and query 9

4.1 Forward execution 36

4.2 Rollback 37

4.3 Remote backtracking 37

4.4 Termination with solution 38

4.5 Backtracking among two processes 42

4.6 Backtracking to a third process (unoptimized) 43

4.7 Backtracking to a third process (optimized) 43

5.1 Relationship between ear and solver processes 50

5.2 Compatible BIND: no local binding 65

5.3 Compatible BIND: local binding has precedence 66

5.4 Compatible BIND: incoming binding has precedence 66

5.5 Incompatible BIND: message is rejected 67

5.6 Incompatible BIND: message is accepted after partial rollback 68

5.7 Pathological case for FAIL "optimization" 71

6.1 Average, minimum, and maximum unifications for mmult 83

6.2 Tokens, BINDs, ANTI-BINDs, and message annihilations for mmult. 84

6.3 Average, minimum, and maximum unifications for fib. 85

6.4 Message counts for fib. 85

x

6.5 Unification average, minimum, and maximum for tak 87

6.6 Message counts for tak. 87

6.7 Unification average, minimum, and maximum for qsort. 89

6.8 Message counts for qsort 90

6.9 Unification average, minimum, and maximum for union. 91

6.10 Message counts for union 91

6.11 Unification average, minimum, and maximum for inter. 93

6.12 Message counts for inter 93

6.13 Program and query for x15 94

6.14 Program and query for xyl5. 94

6.15 All-solutions averages, minima, and maxima for x15. 96

6.16 All-solutions message counts for x15. 97

6.17 All-solutions averages, minima, and maxima for xyl5 97

6.18 All-solutions message counts for xyl5 98

xi

Chapter 1

Introduction

One of the constants of the computing field is the insatiable need for greater computer

power to solve ever-larger problems. On the hardware end, this need has been met in

two ways: through advances in computer architecture, but mainly by producing ever-

faster hardware devices [Hwang & Briggs 1984]. As the physical (and economic) limits

to device speeds have been approached, attention has shifted more toward producing better

architectures. In this light, parallel architectures have become increasingly attractive; a

single-CPU supercomputer costs far more than a parallel system of comparable power that

uses many less-advanced CPUs.

With the shift in hardware focus comes a similar shift in software focus. In order to

exploit the power of a parallel computer, a program must itself be parallelizable. The

sequential codes of yesteryear rarely meet this criterion; thus the widespread interest in

developing parallel algorithms. (Thus also the continued interest in fast sequential systems,

which allow "dusty-deck" sequential codes to be run more quickly without modification.)

Designing parallel algorithms is itself no easy task, particularly when they must be

expressed in a programming language or pseudocode which is essentially sequential, even

though it may incorporate parallel constructs. The economic savings of running programs

on an inexpensive multiprocessor platform rather than on an expensive uniprocessor ma-

chine may well be outweighed by the cost of rewriting software to run in parallel.

An attractive alternative is to use a nonprocedural language, since such languages are by

definition asequential; where statements in a procedural language program imply a specific

1

CHAPTER 1. INTRODUCTION 2

order of execution, statements in a nonprocedural language do no such thing. A good ex-

ample is Prolog, a declarative language based on first-order predicate logic. Because logic

is asequential, so by extension is (pure) Prolog. The conjuncts and disjuncts of a Prolog

program imply no particular order of execution (though sequential Prolog implementations

require that some ordering be imposed), so they should be readily parallelizable.

The use of Prolog or another nonprocedural language offers an additional benefit:

since it is higher-level than a procedural language, programmers can concentrate more on

algorithms and less on low-level details. Thus, the cost of parallelizing software would be

reduced.

Two main forms of parallelism are available in Prolog, corresponding to the conjuncts

and disjuncts of a Prolog program. OR-parallelism refers to the concurrent execution of a

group of disjuncts; AND-parallelism refers to the parallel execution of conjuncts.

Many parallel implementations of Prolog and other logic programming languages

already exist. Of those exploiting AND-parallelism, most either fall to extract as much

parallelism as exists in many programs, or in attempting to extract that parallelism, they.

give up the logical semantics of Prolog. The system described in this thesis is (to my

knowledge) the first implementation to aspire to the best of both worlds. Jefferson's Time

Warp [Jefferson & Sowizral 1985] model is used as a basis for combining independent

and dependent AND-parallelism with backtracking, thus achieving maximum parallelism

while retaining Prolog's logical semantics.

The rest of the thesis examines the development of a fully AND-parallel Prolog. It

begins by examining sequential Prolog, after which several parallel execution models are

described. A backtracking algorithm allowing both dependent and independent AND-

parallel execution is outlined, and its implementation is discussed. Finally, test results and

CHAPTER 1. INTRODUCTION 3

an evaluation of the implementation are given. The thesis is structured as follows:

Chapter 2 begins by introducing the Prolog language, giving its syntax and a sequential

execution model. The various forms of parallelism available in Prolog are then

discussed: OR-parallelism, AND-parallelism, and low-level parallelism.

Chapter 3 focuses on AND-parallel execution, beginning with a look at a naive ap-

proach. Next, the two most common approaches for exploiting AND-parallelism

are described: the independent AND-parallel models and the concurrent logic pro-

gramming languages. Finally, an approach that combines the strengths of these

approaches while avoiding the weaknesses is introduced: the backtracking stream

AND-parallel models.

Chapter 4 introduces an algorithm for fully AND-parallel Prolog execution that incorpo-

rates backtracking. For backtracking to work correctly, some notion of goal ordering

is necessary; Virtual Time [Jefferson 1985] is presented as a basis for such an order-

ing. Next, the stack structures and message types necessary for parallel execution

are given, and an interface to the underlying virtual time system is suggested. At last,

the execution model is presented, and several optimizations to the basic algorithm

(as well as an over-optimization) are discussed.

Chapter S outlines an implementation of the algorithm given in the previous chapter.

This outline begins with an overview of the system, followed by a look at solver

and ear processes. Next, several features of the system are examined in detail: the

shared variable binding environment, the use of delay annotations on predicates, and

the detection of system termination. Finally, a discussion is presented on how to

implement the optimizations discussed previously.

CHAPTER 1. INTRODUCTION 4

Chapter 6 looks into the results of testing the system. First, the testing environment is

described, and the expected effects of several factors that varied in the testing are

discussed. Eight test programs are described, and results for each are given and

analyzed. The results are then summarized and interpreted.

Chapter 7 summarizes the work done on the system and suggests possible future work.

Finally, an analysis of the contributions of the thesis is given.

Appendix A presents an updated version of the algorithm given by [Cleary eta! 1987].

Appendix B lists the programs used in testing the system and the top-level queries for

each.

Chapter 2

Parallelism in Prolog

Parallelism in Prolog comes in several forms. Each of these forms has its own unique

characteristics, and its own strengths and weaknesses, but all are based on sequential

Prolog. Thus, we begin with a look at sequential Prolog and the algorithm for executing

a sequential Prolog program. Then we examine each parallel variant in turn, beginning

with OR-parallelism, moving on to AND-parallelism, and concluding with a look at other,

lower-level, forms of parallelism.

2.1 Prolog

A Prolog system is a resolution [Lloyd 1984] system. A Prolog execution consists of the

runtime system accepting a query from the user and trying to resolve it with respect to

some program.

A Prolog program is made up of one or more distinct predicates. Each predicate is a

disjunction of one or more clauses. A clause consists of a head and a body, either or both

of which may be empty. A clause with neither head nor body is the empty clause; a clause

with a head but no body is known as a unit clause. A query from the user is a clause with

no head.

0 % empty clause

head. % unit clause

:- body. % query

5

CHAPTER 2. PARALLELISM IN PROLOG 6

head : - body: % "normal" clause

The head of a clause, if it exists, is a positive literal; the body, if it exists, is a conjunction

of one or more positive or negative literals. A literal consists of afunctor (with some arity)

and its arguments.

if (3, a) % functor f/2, with arguments 3 and a

Overloading functor names is permitted; thus, a functor f with arity 2 (written f/2)

is distinct from the functor f /3. Each argument is a term; a term is a literal, a constant, or

a variable.

2 % constant

X % variable

a, f (Y) % literals

In a Prolog system, execution cycles through three phases: goal selection, clause

selection, and unification. The goal-selection mechanism chooses a goal to be resolved

from a goal list; initially, this list is composed of the literal(s) in the user's query. The clause

selection mechanism then attempts to find a clause with a head whose functor matches that

of the selected goal. Then, the arguments of the selected goal and selected head are unified

pairwise. If the unification succeeds (i.e. the goal and head are consistent with each other),

any variable bindings made are recorded, and the selected goal is replaced in the goal list

by the body of the selected clause.

In unification, a variable may be bound to some other term. If the variable is bound

to a constant, it may not be further instantiated, or mutated in any way. If it is bound to a

literal, the same is true, although any free variables within the literal may be bound later. If

CHAPTER 2. PARALLELISM IN PROLOG 7

it is bound to another variable, it becomes an alias for that other variable. Dereferencing it

yields that other. Unifying several variables with each other may lead to a long dereference

chain.

In the standard algorithm, the selected goal is the leftmost in the goal list, and a clause

body replacing its parent goal is placed leftmost. (Other algorithms, such as those in

systems that feature delays, may alter this rule somewhat.) Similarly, clauses are normally

selected from top to bottom as they appear in the input program text. When one clause of

a predicate has been selected, no other clause in the predicate can be selected until the first

has been backtracked.

Backtracking occurs when a unification fails, that is, when the selected goal and selected

clause are found to be mutually inconsistent. At this point, the clause-selection mechanism

tries to provide another clause. If it can find an alternate clause, forward execution begins

again with unification. Otherwise, the selected goal fails, and the execution must back up

to the previous goal. The selected clause for this previous goal must now be rejected, and

another selected. Whenever a clause is rejected in this manner, the bindings associated

with it are undone; variables that were bound when the clause head was unified are now

free again.

Backtracking continues only until an alternative clause is found for some goal. Then,

forward execution is restarted. Execution terminates with success when there are no more

goals left in the goal list; when this occurs, all top-level variable bindings are printed

out to the user. If the user requests another solution, the system behaves as though its

last (successful) unification had failed instead, and backtracks from that point. Through

repeated backtracking, all solutions to a query may be found (assuming that the program

does not loop). When backtracking reaches the leftmost goal of the initial goal list and

CHAPTER 2. PARALLELISM IN PROLOG 8

f(l)
f(2)

g(2)

g(l).

:- f(X), g(X).

Figure 2.1: Prolog program and query.

no more clauses can be found, the execution terminates with failure; all possible solution

paths have been searched.

Consider the program and query given in Figure 2.1. From the query, we see that the

initial goal list is

f(X), g(X).

Taking the goal f (X) and the clause f (1) ., unification succeeds and gives the binding

X = 1. The (empty) body is put on the goal list; the next goal selected is g (1). (Note that

the binding X = 1 is reflected in this goal.) The clause g (2) . is selected, and unification

fails. On backtracking, the clause g (1) . is selected; unification now succeeds. The goal

list is now empty, so the system reports the binding X = 1 to the user.

Suppose that the user wants another solution: the last unification is then treated as

a failure and another clause for g/l is sought. Since there are no more such clauses,

backtracking continues, so that the first clause of f / 1 is rejected. The binding X = 1 is

rescinded, and the second clause, f (2) ., is selected. Unification succeeds, X is bound

to 2, and g (2) is chosen as the next goal. The clause g (2) . is chosen and unification

again succeeds; since no goals remain, the binding X = 2 is printed. If the user were to

ask for a third solution, the system would eventually backtrack to the initial goal, find no

more clauses to try, and terminate with failure.

CHAPTER 2. PARALLELISM INPROLOG 9

fail true true fail

Figure 2.2: Goal tree for execution of a program and query.

Prolog execution can be represented as a tree traversal—specifically, a depth-first

traversal. Figure 2.2 shows the tree for the program and query of Figure 2.1. Each node

in the tree corresponds to a goal; each edge below a node for some goal corresponds to

a clause matching that goal. Thus, each path from the root to a leaf represents a possible

solution path. A successful path indicates a solution; a failed path represents a failed

unification. The tree is thus disjunctive in its breadth and conjunctive in its depth: for a

goal to be true, one or more branches below it must be true; for a branch to be true, each

of the goals along its path must be true.

In examining the tree, it is apparent that there are two main types of parallelism

available. The first is known as OR-parallelism, in which the clauses of a predicate, each

of which may produce a solution independently (i.e. branches in the tree) are searched in

parallel. The other is known as AND-parallelism, in which several goals, all of which

contribute to one solution (i.e. nodes from one path in the tree) are executed concurrently.

CHAPTER 2. PARALLELISM INPROLOG 10

2.2 OR-Parallelism

An OR-parallel system attempts to improve on sequential execution speed by parallelizing

the clause selection component of the sequential algorithm. Rather than selecting one

clause when trying to solve a goal and backtracking to try the others, an OR-parallel

system selects all the clauses of a predicate at once and schedules them as separate

processes. Subgoals within a clause are still executed sequentially.

Because each possible solution path is allocated its own process, backtracking becomes

unnecessary. If a process falls at an attempted unification, it need at most report its failure

before it terminates. When a process has no more goals to solve, it succeeds and reports

its solution.

For all its potential, however, this scheme is not without its problems. One problem is

simply that of too much parallelism; attempting to run each process as soon as it is created

can cause a combinatorial explosion in the number of processes vying for processor time.

A workable OR-parallel scheme must include some scheduling algorithm to maximize

processor usage without introducing too much additional overhead.

Another problem lies in maintaining a suitable binding environment. For example,

given the program

and the query

:- f(X).

two processes are created. One process attempts to bind x to the value 1; the other

CHAPTER 2. PARALLELISM IN PROLOG 11

tries to bind x to 2. In this case, the system must be able to maintain separate binding

environments for each process, yet still allow the top-level process that interacts with the

user and outputs results to access each binding.

An OR-parallel system lends itself well to search-oriented applications—game-playing

programs, for example, or map-coloring systems—in short, any application that is highly

nondeterministic. More deterministic programs, such as compilers or operating systems,

are poorly suited to OR-parallel computation and would leave such a system's potential

largely untapped.

2.3 AND-Parallelism

An AND-parallel system attempts to improve on sequential execution speed by paralleliz-

ing the goal selection component of the sequential algorithm. Instead of choosing the

single leftmost goal from the goal list, a process may choose multiple goals, running each

as a new process—each maintaining its own goal list—before itself executing a goal.

Because alternative clauses are still examined sequentially, backtracking is still neces-

sary in an AND-parallel system. This leads directly to the central problem of AND-parallel

execution: controlling parallel backtracking, particularly in the context of resolving bind-

ing conflicts in shared variables. For example, consider the program of Figure 2. 1, running

the two goals

in parallel.

When a binding conflict arises (process f wanting to bind X to 1, g wanting to bind X

to 2, the problem arises of which goal to backtrack. In sequential Prolog, the last goal to

CHAPTER 2. PARALLELISM IN PROLOG 12

execute would backtrack first, but in the parallel case, the question of which goal executed

"last" becomes moot.

There are a number of different ways around this problem, each of which gives rise

to a different class of systems. One approach is that taken by the committed-choice

languages. Another tack is that of the independent AND-parallel (TAP) models. Finally,

the backtracking stream AND-parallel methods attack the problem from a newer angle.

Each of these approaches is examined in greater detail in the next chapter; the system that

is the basis of this work belongs to the third group.

2.4 Other Forms of Parallelism

Other forms of parallelism are found at a lower level; in these forms, goal and clause selec-

tion both remain sequential. One possible source of parallelism comes in the unification

step of the sequential algorithm. Sequential Prolog unifies terms pair by pair; clearly, this

could be parallelized by unifying all pairs of terms at once.

Again, this form of parallelism has problems to overcome. Grain size is a distinct

factor; AND- and OR-parallel strategies can rely on the average cost of a sequential

unification to provide a grain size large enough to prevent prohibitive overhead. With

further decomposition into parallel unification, the average grain size may become very

fine indeed.

Another problem with parallel unification echoes that of the binding conflicts seen in

AND-parallel execution. Unifications are interdependent with respect to the occur check

[Lloyd 1984]: for example, two independently acceptable unifications

A = f(B)

CHAPTER 2. PARALLELISM IN PROLOG 13

B = g(A)

are unacceptable when taken together—in standard first-order semantics, a variable may

not occur within a structure to which it is bound, so that infinite terms cannot be created.

Since most sequential Prolog implementations omit the occur check, this point could be

ignored, but it should certainly be considered by any serious implementor.

Finally, the parallelism available to be exploited within a single unification may be

severely limited. This is similar to pipelining machine instructions in hardware: the

speedup over sequential execution is significant, but it is not scalable; adding more pro-

cessors will not reduce the execution time further.

Another form of parallelism involves pipelining sequential execution [Beer 1990]. The

observation that supports this idea is that the only "real" work done by a Prolog system

is unification; the rest is overhead: calling procedures, stacking arguments, setting up

environments, etc. Consider a root-to-leaf path in a goal tree. The goals that make up this

path can be pipelined in the following manner:

. the root goal spawns as a child the leftmost goal of its first clause;

• the root goal performs its own unifications; meanwhile, the child sets up its environ-

ment and spawns its own child—the leftmost goal of its own first clause;

• the root goal begins passing arguments to its child; either they will be early, or the

child will have to wait for them before it begins its own unifications.

The pipeline only stays full as long as each successive unification succeeds. When a

unification fails, the processors "ahead" of the failure must restart with a different goal.

CHAPTER 2. PARALLELISM IN PROLOG 14

This strategy has at least one benefit: it should be able to speed up any Prolog program,

even a highly-sequentialized "dusty-deck" one. The main drawback to this scheme is also

speedup: the speedup in any one program is bounded by the number of pipeline stages.

Thus, pipelining is not scalable; the only way to use more processors effectively would be

to run several programs at once.

Even with this small amount of parallelism, there are losses. A processor may often

have to wait for the arguments it needs to perform its unification. Also, parallelism is

lost when a unification fails, since the pipeline must then be refilled with goals from an

alternate path.

Chapter 3

AND-Parallelism

As noted in the previous chapter, the major hurdle in the successful exploitation of AND-

parallelism is in handling backtracking in the presence of shared variables. The naive

method of attacking this problem would be to avoid sharing altogether, having each

goal compute its own solutions independently and combining them afterward to find the

complete solutions. This naive method is seen to be infeasible; thus, some other approach

must be taken.

One approach—that taken by the independent AND-parallel systems—achieves par-

allelism by running independent goals concurrently. Dependent goals—that is, goals that

share variables—are run sequentially, usually using some form of backtracking to produce

all solutions.

The concurrent logic programming languages take the opposite approach, trying to

maximize parallelism by allowing all goals—including those that share variables—to ex-

ecute concurrently, while disallowing backtracking. The form of parallelism exploited by

these languages, combining independent and dependent parallelism is known as stream

AND-parallelism [Conery & Kibler 1985]: shared variables act as communication chan-

nels between processes (goals).

Finally, the backtracking stream AND-parallel models feature both parallel execution

of dependent and independent goals and backtracking, at the cost of execution algorithms

rather more complex than those of languages in the other two classes. The effort here

is to gain the best of both worlds, achieving maximum parallelism but still allowing all

15

CHAPTER 3. AND-PARALLELISM 16

solutions to be found.

This chapter examines each of these approaches to AND-parallelism and describes in

detail representative systems from each class. The relative strengths and weaknesses of

each system are considered.

3.1 Naive AND-Parallelism

A simple approach would prevent shared variables from occurring at all by having each

process keep its bindings local. Backtracking could be kept completely local, and each

process could compute its own set of partial solutions. The set of complete solutions

could then be generated by taking the cartesian product of all sets of partial solutions and

discarding elements with inconsistent bindings. Consider a simple example program

a(1). b(2).

a(2). b(3).

with respect to the query

:- a(X), b(Y).

For a (X), the set of partial solutions is { {x = i}, {x = 2} }; for b (Y), it is

{ JY = 2}, { = 3} }. The set of complete solutions, given by the cartesian prod-

uct,is thus {{X = 1, Y = 2},{X = 1, Y = 3},{X = 2, Y = 2},{X = 2,

Y = 3}}.

This method provides a high degree of parallelism, but as Conery and DeGroot point

out, it suffers from a number of drawbacks [Conery 1987, DeGroot 1984]. One such

drawback is that since each process runs ands produces bindings independently, much

CHAPTER 3. AND-PARALLELISM 17

work can be wasted; the bindings made by one process do not constrain those made by

another. Consider the program above with respect to the query

:- a(X),b(X).

The resulting cartesian product is { {x = 1, x = 2}, {x = 1, x = 3 }, {x = 2,

X = 2), {x = 2, X = 3 } }. Discarding inconsistent and redundant bindings, we

come up with { {x = 2 } } as the solution set. Surely much of the computation, particularly

in the construction of the cartesian product, was wasted. In more complex examples,

computation in generating sets of partial solutions would also be wasted.

Another problem is that not every goal will generate bindings; some (for example > / 2)

require one or more ground inputs. How can such a goal produce any partial solutions?

Surely we could not ask > / 2 to generate all possible sets of bindings.

Thus, we must conclude that the local-binding method is infeasible, given the problems

associated with dependent goals. Some other approach is necessary that allows dependent

goals to be handled gracefully and (more) efficiently.

3.2 Independent AND-Parallelism

To avoid binding conflicts, the independent AND-parallel systems must determine which

goals can safely be run in parallel. This may be done statically, at compile time; alter-

natively, it may be done dynamically, at run time. In both cases, the object is the same:

imposing some (partial) ordering of the goals to maximize parallelism, while still prevent-

ing binding conflicts. The rule is simple: no variable may be bound by more than one goal.

Thus, goals with non-overlapping sets of variables may safely be run in parallel; goals with

variables in common must be serialized. A goal that binds a variable is a producer of that

CHAPTER 3. AND-PARALLELISM 18

variable; other goals sharing the variable are consumers. A consumer of some variable

must wait for the producer to bind it completely; then the consumer may begin execution

and produce bindings of its own, for some other consumer.

Static analysis, such as that used to produce the data join graphs of Kale's REDUCE-OR

Process Model [Kale 1985], is attractive because it adds no run-time overhead; decisions

about which goals to run in parallel are all made at compile time. Because less information

about the variables is available at compile time than at run time (for example, two variables,

apparently distinct at compile time, may be aliased to one another during execution), static

analysis must be conservative. Thus, potential parallelism may be missed; for example,

two goals may share a variable, but if that variable is bound, both goals may safely execute

concurrently. Mode annotations are often used to help determine a producer for each

variable, thus making static analysis easier and more precise.

On the other hand, dynamic analysis, such as that used in Conery's AND/OR process

model [Conery 1987], needs no annotations; all the information necessary to determine

goal dependence or independence can be found by examining the state of the variables

involved. Thus, (independent) parallelism is maximized. The main problem with dynamic

analysis lies in the run-time overhead that results from continually having to check on the

state of variables as the computation progresses.

DeGroot's Restricted AND-Parallelism (RAP) model [DeGroot 1984] takes a hybrid

approach: static analysis determines potential parallelism, while simple run-time checks

determine whether that potential parallelism may be exploited. Static analysis may deter-

mine that two unbound variables could be independent; if a run-time check confirms this,

theft respective goals are run in parallel. Similarly, a run-time check determines whether

a shared variable is already bound; if so, goals that share it need not be sequentialized.

CHAPTER 3. AND-PARALLELISM 19

Backtracking in the lAP context is as a rule sequentialized. If an independent goal

fails, it may backtrack on its own, but in the general case, failure of a dependent goal must

be handled as well. For example, the consumer of some variable may fail. This failure

may be local, so this possibility must be examined first; only when it is determined that the

failure is due to the externally-bound variable can the producer be made to backtrack. After

backtracking locally, this producer may in turn need a producer for some other variable to

backtrack . . . and so it goes.

An exception to this general rule is the SYNC model [Li & Martin 1986], in which

variable bindings are in effect pipelined from producers to consumers, with each set of

distinct bindings separated by a synchronizing marker. Once a goal is solved, it may

backtrack immediately to find more solutions. Solutions must therefore be buffered, and

"shared" variables must be kept local. This is somewhat reminiscent of the naive algorithm

presented in Section 3. 1, except that the pipelining of results from producers to consumers

has the desirable effect of discarding inconsistent sets of bindings as soon as they are

detected, rather than first generating them completely. On the other hand, this method

may not exhibit much more parallelism than sequentialized backtracking, particularly for

highly deterministic problems or for programs in which sibling goals differ greatly in

computation time (i.e. the speed of a pipeline is determined by the speed of its slowest

stage).

From this discussion, it is clear that lAP systems are not well suited to highly determin-

istic problems, except those with a high degree of data independence (matrix multiplication,

for example). They are better suited to nondeterministic problems, in which a potential

solution may have to be discarded and another tried.

CHAPTER 3. AND-PARALLELISM 20

3.3 Concurrent Logic Programming Languages

The concurrent logic • programming (CLP) languages offer stream AND-parallelism, in

which shared variables may be thought of as streams which communicate bindings between

processes. All goals—even those with variables in common—may execute concurrently.

Languages in this class include PARLOG [Clark & Gregory 1986], Concurrent Prolog

[Shapiro 1983] , and GHC [Ueda 1985] and their "flat" versions; newer languages like

Strand [Foster & Taylor 1990] have recently come on the scene as well.

Like many independent AND-parallel systems, the concurrent logic programming

languages reduce the problem of binding shared variables by requiring that each variable

have exactly one producer; other processes sharing a variable are consumers. Unlike the

case in TAP systems, however, a variable need not be completely ground before a consumer

in a CLP system can use the binding. For example, consider the code

produce([XIL]) :- consume ([XIL]) :-

generate (X), use (X),

produce (L). consume (L)

with respect to the query

:- produce (L), consume (L).

In an TAP system, produce / 1 would have to terminate before consume / 1 could begin;

in a stream AND-parallel system, consume/i can use each list element as it is produced.

That is, a consumer can execute as soon as the variables it is waiting for are sufficiently

bound; if a variable is bound to a structure, variables within that structure may still be

free, and indeed may be bound by another process. The initial producer may even wait

CHAPTER 3. AND-PARALLELISM 21

for some consumer to bind the structure further; this is known as back communication

[Clark & Gregory 1986].

In PARLOG and Strand, the designation of producers and consumers is done via mode

declarations: for each predicate, arguments are specified as inputs or outputs. If a variable

designated as an input is not bound when the predicate is called, the call suspends until

the variable has been bound. In Concurrent Prolog, suspension is done instead through

the use of read-only variables as goal arguments: if solving a goal would bind a read-only

variable, then the goal is suspended until the variable has been bound by some other goal.

In GHC, suspension occurs when a guard goal attempts to bind a variable; the goal then

waits until that variable has been bound.

The ability to have processes cooperate on constructing a solution, rather than requiring

a producer to complete its entire computation before any consumer may begin, is the

essence of stream AND-parallelism; it exploits parallelism inaccessible to lAP systems.

Because processes can cooperate in creating the full binding of a variable, backtracking

can be much more complicated than in the lAP case. To avoid this, CLP languages give up

the backtracking of Prolog and the don't-know nondeterminism associated with it. These are

replaced by guarded clauses and don't-care nondeterminism, in which the system commits

to the first clause found to be acceptable; all other clauses are discarded. The concurrent

logic programming languages are thus also known as "committed-choice" languages.

A guarded clause has the form

head :- guard I body.

where "i" is the commitment operator. When a goal is executed, argument matching (a

restricted form of unification) is attempted with a clause head. If a clause head matches

CHAPTER 3. AND-PARALLELISM 22

successfully (e.g. all input variables are bound (PARLOG), or no attempt is made to bind

a read-only variable (Concurrent Prolog)), the clause's guard goals are executed. When all

of the guard goals have succeeded, the commitment operator is executed, and the system

commits to that clause. At this point, any guard computations for alternate clauses are

aborted, and the body goals of the committed clause are executed in parallel. Also, only

after commitment are any bindings made in the goal/head matching actually made and

transmitted.

This non-backtracking approach eases the shared-variable binding problem consider-

ably. Once a variable has been bound, the binding is permanent, and no information need

be kept to tell which process bound it. Thus, goals need not be ordered as they are in the

independent AND-parallel case.

In terms of application areas, the CLP languages are orthogonal to the TAP systems.

The committed-choice systems are well suited to deterministic problems, because the focus

is more on exploiting maximum parallelism within a solution path than on finding multiple

solutions or on having to search for the correct solution path. For nondeterministic

problems, the CLP systems fare poorly, since they do not allow backtracking. Some

nondeterminism is available via the use of OR-parallel all-solutions predicates, but these

are limited.

3.4 Backtracking Stream AND-Parallel Systems

These systems attempt to combine the advantages of both the independent AND-parallel

systems and of the concurrent logic programming languages: respectively, backtracking

and stream AND-parallelism. For several years, combining the two was deemed impracti-

CHAPTER 3. AND-PARALLELISM 23

cal. Recently, however, a number of algorithms have been published that efficiently com-

bine stream AND-parallelism and backtracking [Cleary et al 1987, Somogyi et a! 1988,

Tebra 1987].

Central to all of these algorithms is the notion of imposing a total ordering on the

goals executed by the system. The natural temporal goal ordering of sequential Prolog is

what allows it to backtrack successfully, but in a distributed environment, there is no such

ordering readily available. Thus, some ordering must be imposed artificially.

The ordering is used to determine the priority of a goal: the earlier it appears in the

ordering, the higher its priority. If two goals disagree on the value of a binding, the

binding made by the higher-priority goal is accepted; the lower-priority goal must retract

its binding and recompute. When a lower-priority goal can find no solution, it may ask a

higher-priority goal to recompute its bindings.

[Tebra 1987, Tebra 1989] in fact imposes on the computation Prolog's standard depth-

first ordering. The main advantage of this ordering it that it ensures that solutions are

delivered in the same order as they would be by a sequential system. There is, however,

the potential for a lot of "wasted" work: if a binding made deep in some branch of the

search tree conflicted with one made to the left of it, it would have to be retracted since

the binding to the left would have higher priority. Any work done below the right-hand

binding would have to be undone. If it were later found that the left-hand binding was

incompatible with any right-hand binding, work on the left-hand side would have to be

undone and work on the right-hand side actually redone. Tebra calls his system optimistic

in that it assumes that allowing processes to compute ahead will more than offset losses in

having to undo and redo work.

[Somogyi et a! 1988] orders goals on the basis of their producing or consuming van-

CHAPTER 3. AND-PARALLELISM 24

ables; as with many of the TAP and CLP systems mentioned before, each variable has

exactly one producer. The ordering is such that producers always come before consumers.

Assuming that the producers have been chosen correctly, there will be no wasted work as

there may be in Tebra's system: no lower-priority goal will have to retract a binding incom-

patible with that of a higher-priority goal (though it may still have to ask a higher-priority

goal for a new binding). On the other hand, this system is conservative, since consumers

are delayed, waiting for variable bindings rather than computing ahead. Another drawback

is that every producer must be known at compile time, requiring the programmer to supply

sophisticated mode declarations.

The Delta Prolog system [Pereira et a! 1986] takes an approach similar to Tebra's

system, except that interprocess communication and syncronization is achieved explicitly

via event goals, rather than implicitly via shared variables. An event is a synchronous

communication between two proceeses. Thus, processes may not compute ahead, and the

system must be classified as conservative.

Finally, [Cleary et a! 1987] presents an algorithm in which a Virtual Time system

[Jefferson 1985] is used to impose an ordering on the goals. This too is an optimistic system,

requiring no prior knowledge of producers and consumers. Thus, mode declarations are

not necessary—though they are allowed, and can be useful in clear producer/consumer

situations, for example. The ordering is explicitly not depth-first; rather, goal priorities are

distributed more evenly through the breadth of the tree. Processes should therefore stay

more closely synchronized (in terms of goal priority), and the depth of computations to be

undone and/or redone should be less than the corresponding depth under Tebra's scheme.

The backtracking stream AND-parallel systems are designed to work well for both

deterministic and nondeterministic problems—that is, as well as the CLP systems for

CHAPTER 3. AND-PARALLELISM 25

deterministic problems and as well as the TAP systems for nondeterministic ones. The

purpose of this thesis is to report on an implementation of the algorithm given in Cleary et

al and to demonstrate that this algorithm and the implementation live up to this standard.

Chapter 4

AND-Parallelism Using Virtual Time

The distributed Prolog system consists of a number of components. Each of these—the

underlying Time Warp system, the stack structure of each process in the system, the

messages used by these processes to communicate—are examined in detail, after which

the relationship between these components is explored. Next, the algorithm presented in

[Cleary et al 1987] is considered as a whole; finally, a number of possible optimizations

are discussed.

4.1 Virtual Time and Time Warp

A virtual time system [Jefferson 1985] imposes on a computation a temporal coordinate

system; all events in the computation are viewed in terms of this coordinate system. Each

process has its own local virtual time (LVT); each event (in a Prolog system, each goal-

head unification) receives its own timestamp based on the current LVT. Time increases

with each event, and execution is finished when all processes have a local virtual time of

+oo (i.e. the global virtual time (GVT) is +oo).

Virtual time is domain-specific and need not be related to real time. For example, in

distributed simulation, the natural basis for virtual time is simulation time. In a Prolog

system, an ordering based on the search tree maps easily onto a virtual time system.

What distinguishes virtual time from other strategies is that it is optimistic rather than

conservative. A process in a conservative system, before it can receive a message from

26

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 27

some other process, must be sure that no other message should have arrived earlier. In

an optimistic system, on the other hand, a process assumes that messages will arrive in

the correct order, and receives them immediately. If the correct-order assumption holds,

an optimistic system clearly wins. When the assumption is false, however (i.e. when a

message arrives out of order), the computation will be incorrect unless the ordering is

repaired. In this case, the optimistic system is little worse off than the conservative one:

computation time wasted by an optimistic process will equal blocking time wasted by a

conservative process performing the same computation; the optimistic method has only

the extra overhead of undoing the incorrect computation.

The virtual time definition does not specify how this order repair is to be carried out;

this is left up to the individual implementation. The first implementation of virtual time

was the Time Warp mechanism [Jefferson & Sowizral 1985]. It was designed with parallel

simulation in mind, but the ideas behind it can be applied as well to parallel Prolog.

The key component of the Time Warp mechanism is rollback; this is used to return

the computation to an earlier state. When a message arrives out of order at a Time Warp

process, the process performs a rollback to the virtual time of the message (given by its

timestamp); then, forward execution starts again, processing the incoming messages in the

correct order. To accomplish a rollback to a given time, a process must perform several

operations:

. it must "unreceive" already-received messages whose timestamp is greater than the

given time;

• it must cancel outgoing messages whose timestamp is greater than the given time;

• it must restore its internal state to what it was at a time just before the given time.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 28

Clearly, then, some form of state-saving is necessary. A Time Warp process uses three

queues to do this: an input queue (IQ), an output queue (OQ), and a state queue (SQ).

The IQ contains (in timestamp order) incoming messages for the process. The OQ holds

negative copies of all messages sent out by the process; a message is cancelled simply by

sending out its corresponding ant-message. The SQ contains "snapshots" of the process

at various virtual times; the internal state can be reconstructed using these snapshots.

Receipt of an anti-message may also cause a rollback. If its corresponding positive

message is on the IQ but not yet received, the two messages can just "annihilate" each

other; if the positive message has been received, the system must perform a rollback to the

time of that message before annihilation may occur.

4.2 Stacks and Frames

Like most sequential Prologs, the execution of the algorithm is based around a stack.

Entries on the stack are frames. One frame is created for each resolution step; such frames

are known as local frames. In the distributed case, remote frames are also created to record

variable bindings from other processes.

Each frame contains several pieces of information, including the following:

• a unique timestamp

• the identity of the frame's originator

• a unique identifier

Frames are kept on the stack in timestamp order: the frame with the earliest timestamp is

at the bottom of the stack; that with the latest timestamp is on the top. This ordering is

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 29

based on the virtual time paradigm [Jefferson 1985] and replaces the depth-first backtrack

order of the sequential algorithm. For local frames, this timestamp order is exactly the

depth-first order; the distinction comes from the remote frames, which are interspersed

among the local frames in the timestamp ordering.

A frame's originator must be known to allow for correct backtracking when a process

can find no solutions compatible with the bindings of another process; the falling process

must be able to cause the other process to backtrack.

A unique identifier for each frame is necessary because timestamps, although they are

unique (in the sense that no two frames on any one stack may have the same timestamp),

can be reused after a rollback or backtrack. For example, if a clause for some goal is

backtracked and another clause chosen, the frame with the old clause and that with the new

will have the same timestamp. Since messages may (and often do) arrive late, a message

intended to affect an old frame may errantly affect a new one instead. Thus these frames

must be disambiguated; a simple integer counter for each process suffices for this task.

4.3 Messages

Because of the distributed character of the algorithm, processes must communicate with

each other via messages, rather than by merely binding or unbinding variables, as in the

shared-memory approach. Thus, variable bindings must be disseminated explicitly; on

backtracking, these bindings must be retracted explicitly. This hooks in neatly to the Time

Warp concept of message/anti-message pairs. A binding can be propagated via a BIND

message; if that binding is later backtracked, it can be withdrawn via an ANTI-BIND

message that will annihilate the original BIND.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 30

A third type of message is necessary for a Prolog system, one that is not present in

the Time Warp scheme. (This is because Time Warp assumes a deterministic execution

model, so that virtual time will always increase.) This is the FAIL message, through which

a failing lower-precedence goal in one process may cause a higher-precedence goal in

another to backtrack.

4.4 Mixing Prolog and Time Warp

The Prolog system needs to provide its own versions of the Time Warp input, output, and

state queues. The SQ has an immediate Prolog analogue: the stack. The contents of the

stack up to a given virtual time exactly specify the state of a process at that time The stack

can also serve as an OQ: messages sent at a given virtual time can have their anti-messages

stored within the stack frame of that time. The only queue that needs special treatment is

the IQ, since it may contain unprocessed messages that are in the future of the receiving

process; the stack can only record messages from the past.

The IQ holds messages of all three kinds. The BIND message is a classic Time Warp

message; after being received it will remain in the input queue until its corresponding

ANTI-BIND arrives and annihilates it. That is, it remains in the queue even after it has

been processed, so that if a rollback causes it to be "unreceived," it will be reprocessed

when the receiving process begins forward execution again.

The ANTI-BIND messages are also persistent, since an ANTI-BIND may arrive before

its corresponding BIND. Such an ANTI-BIND is not processed; it is merely enqueued until

its BIND arrives, whereupon both are annihilated. The odd one out is the FAIL message.

Since it is not a Time Warp message, a FAIL is removed from the input queue immediately

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 31

on being processed the first time, never to be replaced.

The OQ holds only ANTI-BIND messages, each to be sent off when a rollback causes

the local virtual time to fall below that message's timestamp. No BIND messages are

stored in the OQ; for each BIND sent out, the corresponding ANTI-BIND is enqueued in

the OQ. FAIL messages are never stored in the OQ either; once sent out, they are forgotten

completely by the sender.

4.5 Execution Model

The distributed algorithm can be broken into several phases. Those most similar to parts

of sequential Prolog are examined first: forward execution and local backtracking. Next,

rollback and remote backtracking, which both relate to interactions between processes, are

discussed. Finally, an example that demonstrates all of these phases is presented, giving a

unified view of the system.

Note that the execution model given below is very general; while it refers to processes,

these are defined very loosely. They could be physical processes, distinguishable by the

operating system; they could be logical, like those in a process-model view [Conery 1987].

This choice is left up to the implementor. Similarly, the algorithm does not specify whether

parallelism is to be implicit or explicit (annotated); again, this is up to the implementor.

4.5.1 Forward Execution

Forward execution is straightforward. A process will select a goal to execute, next select a

clause, and then attempt to unify the two. This is recorded in a local stack frame, along with

any bindings made during unification; the timestamp of the frame is set to the current local

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 32

virtual time. Values for any variables bound by the unification are then sent (via a BIND

message) to every other process that shares any of those variables. Next, processes may be

spawned for the parallel execution of goals in the body of the selected clause. Finally, the

process checks for any incoming messages. Local virtual time is then incremented, and

the loop begins again with goal selection; this continues until no more goals are available

to execute. When all goals on all processes have succeeded, a solution has been-found and

may be printed.

4.5.2 Local Backtracking

Local backtracking is also simple. This phase begins as a result of a local goal failure;

the previous frame on the stack is then backtracked. If this frame is a local frame, then

backtracking occurs locally. (If the frame is remote, then remote backtracking must

occur.) When a local goal fails, the variable bindings resulting from the unification of the

previous goal and its current clause are undone. For each BIND message sent out after that

unification, an ANTI-BIND message is now sent out. Also, any new processes created

after the unification are destroyed. If another clause is available for the backtracked goal,

forward execution begins again with their unification; otherwise, backtracking continues

down the stack.

4.5.3 Rollback

Rollback may occur at the end of a forward execution cycle, when checking for incoming

messages. If a BIND or ANTI-BIND message arrives whose timestamp is earlier than

a process's current LVT, the process must roll back its state to what it was at a virtual

time just before that of the message; only then may it accept the message. That is, all

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 33

of the work—goal and clause selection, unification, output BIND messages, and process

creation—that was done at a virtual time after the message arrival time must be undone.

If the message that caused the rollback was a BIND, a remote stack frame is created

whose timestamp is equal to that of the received BIND. Binding values from the message

are stored in this frame and compared with local values. If all bindings are compatible,

the frame is retained; otherwise, it is discarded, and the originator of the BIND must

backtrack. (There is no need to send a FAIL message, however; the originator will itself

receive a BIND with the earlier values, thus rolling back on its own.) In either case, the

receiving process then simply restarts its forward execution, possibly redoing some of its

rolled-back work.

If the received message was an ANTI-BIND, it will annihilate its corresponding BIND,

and the remote frame for that BIND will be removed; variable bindings due to the BIND

will be retracted. As in the previous case, the receiving process then restarts forward

execution. (If the ANTI-BIND should somehow arrive before its corresponding BIND, no

rollback is necessary; the receiver need merely hold on to the ANTI-BIND until the proper

BIND arrives, at which point they annihilate each other.)

4.5.4 Remote Backtracking

Like local backtracking, remote backtracking is initiated by a local goal failure in some

process. In this case, however, the backtracking mechanism finds that it can no longer

backtrack locally: the stack frame it attempts to backtrack turns out to be a remote frame.

At this point, the process sends a FAIL message to the originator of the remote frame, so

that the bindings in that frame can be backtracked.

After sending a FAIL message, a process restarts forward execution from the virtual

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 34

time at which it sent the FAIL. It does not continue backtracking, since the recipient of

the FAIL is now backtracking. For any one failure, only one process—whether or not it

is the one that originally failed—may backtrack at a time; backtracking must be serialized

in order that potential solutions are not missed. Of course, if a process fails on its own

while backtracking is under way elsewhere, if may begin backtracking itself. If the two

backtrack paths stay separate, both may continue; if both cause the same process to fail,

backtracking continues with the earlier failure of the two.

The recipient of a FAIL message checks first to see that the message refers to a valid

frame. If not, then the frame must already have been backtracked or rolled back, so the

message is ignored and forward execution continues. If the referenced frame is a valid

one, it must be backtracked. To accomplish this, the process rolls back to a time just after

the timestamp of the frame in question; it then begins backtracking the frame.

It is important to note that simply being able to make another process backtrack is

not sufficient for correct remote backtracking. The bindings rejected by the sender of the

FAIL may not even be the cause of that sender's failure; they may merely have the latest

timestamp of a large group of "suspects," each of which could have contributed to the

failure. An earlier binding in that group may be the real culprit. Thus, a process that

receives a FAIL message needs some context with that message, since it may eventually

backtrack to the time of the next-latest suspect. If this occurs, the process must then

stop backtracking and force another process to backtrack—specifically, the binder of that

next-latest suspect.

This context may be maintained in the stack of a FAIL's recipient by inserting a remote

frame whose originator is the FAIL's sender and whose timestamp is that of the sender's

previous stack frame. If it encounters this frame during backtracking, it reacts as it would

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 35

to any other remote frame: it sends a FAIL message (including the timestamp of its own

previous frame) back to the originator, and restarts forward execution. The originator will

then take over backtracking again, inserting a new remote frame in its stack.

Remote backtracking actually provides a weak form of intelligent backtracking. In

sequential Prolog, a goal that was executed before a failed goal but after the cause of the

failure will be backtracked, even if it is independent of the failed goal. In the parallel

system, such an independent goal will not be backtracked, since it will not appear in the

context of the failing goal. Refinements to this feature are discussed in [Cleary et al 1987];

[Somogyi et al 19881 extends intelligent backtracking to certain types of dependent goals.

4.5.5 Example

In order to understand the algorithm more clearly, an illustrated example demonstrating

each phase of the execution may be of benefit.' Consider the query

:- a(X),b(X)

run in parallel with respect to the program

a(1) . b(X) :- c2 (X) . c2(2)

a(2) . b(X) :- cl(X) . C1 (1)

The processes in this execution will be denoted Pa and Pb for top-level goal a (X) and

b (X) respectively.

At first, both Pa and Pb proceed with forward execution (see Figure 4.1). Pb selects

goal b (X) and clause b (X) : - c2 (X) ., and unifies them, all at virtual time 1. It then

continues executing forward, selecting goal c2 (X) at time 6. Meanwhile, Pa selects goal

'Note that timestamps in this and later examples are quite arbitrary, and have no special meaning.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 36

Pa Pb

t=l

t=6

0
F-1

KEY

stack

local frame

remote frame

backtracking
link

__p. message

Figure 4.1: Forward execution

a (X) and clause a (1) ., and unifies them at time 3. This unification produces a binding

for the shared variable X; thus Pa sends a BIND message to Pb with a timestamp of 3.

Pb, now executing at time 6, receives the BIND message from Pa and discovers that

it must roll back to process the BIND properly. It does so, rolling back to time 3 and

accepting the binding X = 1. Pb then restarts forward execution, executing the goal

c2 (1) (note the variable substitution) at time 6. Meanwhile, Pa finds that it has no more

goals to solve; thus, it sets its virtual time to +oo and awaits termination. (This is the

situation in Figure 4.2.)

After selecting clause c2 (2) ., Pb finds that unification with goal c2 (1) fails. Be-

cause of this failure, it begins backtracking locally, trying to find another clause. When this

search fails, backtracking proceeds one step further back and encounters a remote frame

originating at Pa. Pb then initiates remote backtracking by sending a FAIL message to Pa,

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIP.'IE 37

Pa

X=1

Figure 4.2: Rollback

Pa

X=1

Pb

Pb

t=1

t=1

Figure 4.3: Remote backtracking

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 38

Pa

X=2

Pb

t=1

t=6

Figure 4.4: Termination with solution

including the information that it began the backtracking and that Pa should not backtrack

to before time 1 (see Figure 4.3).

When Pa receives the FAIL message, it immediately backtracks to time 3, retracting

the binding x = 1 and sending out the corresponding ANTI-BIND message. It then

tries to find another clause to match a (X) . Finding the clause a (2) ., it begins forward

execution again, unifies the two, and produces the binding X = 2, again to be sent to

Pb. Pb receives the message from Pa and accepts the binding x = 2. It then selects goal

c2 (2) and clause c2 (2) ., and finds that they unify. After this, neither Pa nor Pb have

any more goals to solve; both set their virtual times to +oo, and the system terminates with

the solution x = 2 (see Figure 4.4).

While this example is quite straightforward, it demonstrates many of the mechanisms

used by the system. Note the new remote frame in Pa's stack; if another solution were

requested, Pa would eventually force Pb to backtrack to time 1 and select its second clause

for b (X); thus the context contained in the original FAIL message of Figure 4.3) allows

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 39

further backtracking without missing potential solutions.

4.6 Optimizations

One of the premises of Time Warp is that rollbacks will be infrequent enough and shallow

enough that their cost will be low compared to the benefit gained from allowing processes

to compute ahead without waiting for messages to arrive. This premise should also apply

to a 'lime Warp-based Prolog system. Whether or not that premise holds, it is clearly

beneficial to attempt to reduce both the frequency and severity of rollbacks.

Prolog has an advantage over other applications in that its messages are highly defined:

variable bindings are either being asserted or retracted. Thus, it is easy to tell what

effect a message will have on the state of the system, just by inspecting its contents. Two

optimizations suggest themselves, one applying to BIND messages and one to ANTI-BIND

messages. These optimizations are examined below.

The algorithm presented in [Cleary et al 1987] also attempted to minimize the number

of FAIL messages sent, while the algorithm presented here does not. When the Prolog

system was implemented, what appeared to be an obvious optimization for reducing FAIL

messages turned out to be an over-optimization.

In the text that follows, each of these optimizations is described and given motivation.

The BIND and ANTI-BIND optimizations were not implemented; unfortunately, the FAIL

over-optimization was. Details on the proposed or actual implementation of each may be

found in the following chapter.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 40

4.6.1 BIND Optimization

The idea behind the BIND optimization is that some, even many, BIND messages need

not cause rollbacks. The only real criterion for requiring rollback is some incompatibility

between the bindings carried in a BIND message and the other bindings known to the

receiving process.

If the two sets of bindings are not inconsistent with each other, it should not be necessary

to roll back, absorb the incoming message, and work ahead again. The very same state

can be achieved simply by incorporating the BIND message as a remote frame in the stack

and updating timestamps on local bindings, thus saving work in rollback and especially in

recomputation.

If the two sets of bindings are mutually inconsistent, two possibilities exist. Among

the bindings that are inconsistent, either at least one binding from the BIND message

has a later timestamp than its corresponding locally-known binding, or none have a later

timestamp. In the first case, the BIND message will be rejected whether or not a rollback

is performed, so there is clearly no point in rolling back.

In the second case, a rollback is necessary, but even here there are potential gains to

be had: rather than rolling back all the way to the time of the BIND message, the system

need only roll back to the time of the earliest binding conflict. At this point, no bindings

will be inconsistent; the BIND message can be integrated into the stack just as in the

wholly-consistent case, and forward execution can begin again.

In the best case, a rollback becomes completely unnecessary. Even in the worst

case, the severity of the rollback may be significantly reduced. Only when a rollback to

the time of earliest inconsistency is equivalent to a full rollback are no gains realized.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 41

Thus, implementing this optimization seems well worthwhile; a possible implementation

is presented in the next chapter.

4.6.2 ANTI-BIND Optimization

A similar notion of avoiding rollback and recomputation occurs for receiving ANTI-BIND

messages. Compared to performing a rollback, removing the remote frame corresponding

to the BIND to be annihilated, and executing forward again, it would be much quicker

simply to remove that frame and the bindings associated with it.

Unfortunately, and unlike the case for the BIND optimization, adding the ANTI-BIND

optimization makes the execution algorithm rather more complex [Cleary et a! 1987]. The

distinction here is that accepting a BIND message and the variable bindings it. contains

has the effect of constraining the solution space; receiving an ANTI-BIND message and

undoing some variable bindings has the opposite effect. That is, once some bindings are

removed, a previously-rejected search path may become acceptable again. If the algorithm

is to have any chance at completeness, such potential solution paths must eventually be

retried.

As for the BIND optimization, a proposed implementation of the ANTI-BIND opti-

mization is given in the following chapter.

4.6.3 FAIL Over-optimization

The aim of trying to optimize FAIL messages is to reduce the number of FAIL messages

sent, and consequently to minimize wasted rollbacks. In the unoptimized algorithm, the

context sent with a FAIL message refers to the timestamp of the previous frame on the

sender's stack. If the FAIL's recipient cannot find an alternative without backtracking to

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 42

Pa Pb Pa Pb

AIL

Figure 4.5: Process Pa initiates remote backtracking, causing Pb to fail. Pb backtracks to
the time given in the FAIL's context without finding a new solution, and sends a FAIL back
to Pa, which then backtracks again.

before that timestamp, it sends a FAIL message back to the sender (along with its own

previous frame as context, of course).

In some cases (for example, in Figure 4.5), the previous frame sent as context is local

to the sender; in this case, if the failure comes back to it, the original sender will backtrack

locally. Often, however, the context refers to a remote frame, as in Figure 4.6. In this case,

when a FAIL is directed back at the original sender, that process rolls back all of its later

state, sends out a FAIL to a third process, and executes forward again. This is wasteful:

work is rolled back and then immediately redone, and another FAIL message is sent.

The optimization proposed in [Cleary et a! 1987] suggests that failure can be directed

immediately to the third process, bypassing the originator completely. This may be

accomplished by including the process ID of the previous frame's originator in the context,

along with its timestamp; this method is illustrated in Figure 4.7. This saves process Pa

from having to roll back, and results in one less FAIL message being sent out.

Though attractive, the optimization is buggy. In some cases, passing failure on to the

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 43

Pa Pb Pc

t=2 t=2

Pa Pb

FAIL

Pc

Figure 4.6: As for two-process backtracking, except that Pa passes failure on to Pc
immediately on receiving the FAIL itself.

Pa Pb Pc

t=2 t=2

Pa Pb Pc

Figure 4.7: Rather than sending a FAIL back through Pa, Pb can send it directly to P0, and
avoid making Pa roll back.

CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 44

previous frame's originator rather than back to the FAIL's originator results in incorrect

execution. Details are given in the next chapter.

Chapter 5

Implementation

Based on the algorithm presented in the previous chapter, I have designed and implemented

an AND-parallel interpreter for pure Prolog. This interpreter runs Edinburgh-style Prolog

programs explicitly annotated for parallel execution. The real work of the system is

done by solver processes; these solvers are accompanied by ear processes, which aid in

interprocess communication.

This chapter begins with an overview of the system; this is followed by a detailed

look at solver and ear processes. Next, several features of the system are examined: the

distributed variable binding environment, the use of delay annotations on user and builtin

predicates, and the detection of system termination. Finally, the optimizations introduced

in the previous chapter are discussed; though they were not implemented, the structures

and strategies necessary to implement them are presented.

5.1 Overview of the System

As noted previously, the interpreter uses a message-passing approach for interprocess

communication, rather than the shared-memory approach found in many parallel Prolog

systems. Each approach has its own advantages and drawbacks, but these are beyond

the scope of this thesis. For reasons of stability, reliability, and ease of use, the JiPc

system [JADE 1985] was chosen as the message-passing subsystem. The use of JiPc does,

however, constrain the Prolog system. Since JiPc runs under the UNIX operating system,

45

CHAPTER 5. IMPLEMENTATION 46

JiPc processes are UNIx processes; thus, the system was designed under the assumption

that processes' are heavyweight entities.

Rather than having every goal become a process, only particular goals do so (specif-

ically, those designated as parallel in the text of the input program). Because of this, the

parallelism exploited is generally less, but the overhead of process creation and scheduling

is drastically reduced. Goals may be run in parallel with only minor annotations: the

clause

p(X) :- q(X)@pl, r(X).

indicates that when the head p (X) is unified, q (X) should be run as a separate process;

r (X) is executed as part of the original process.

Although parallelism must be designated, any goal may be executed in parallel, whether

it is completely independent from any other goal, part of a producer/consumer relationship,

or one of a group of goals that could provide competing bindings. In this, the system

differs from both the TAP and CLP systems. Independent AND-parallel schemes require

that dependent goals be executed sequentially. Concurrent logic programming languages

allow parallelism among goals that could provide conflicting bindings, but due to their

committed-choice semantics; they will provide at most one possible solution even if many

are available. Such systems may even report failure when a solution actually exists.

The system also uses delay annotations to prevent wasted execution. Such annotations

allow a goal to be unified only if its arguments are sufficiently instantiated. For example,

a goal q (X) may be delayed until its single argument is bound; to accomplish this, the

predicate q/ 1 would include the declaration

'For the remainder of this thesis, the term process refers to a physical process, distinguishable by the
operating system, rather than a logical process, as would be implied in a process model view.

CHAPTER 5. IMPLEMENTATION 47

?- q(X) when X.

More complex declarations are possible, and are expected to be in disjunctive normal form:

a disjunction of conjunctions of individual arguments. The declaration

?- p(A,B,C) when A and B or C.

indicates that for a goal p / 3, either its first two arguments or its last argument must be

bound to a nonvariable.

Although these annotations come in the guise of NU-Prolog when declarations, they are

rather less sophisticated. In NU-Prolog [Thom & Zobel 1988], annotations may specify

structure within arguments; here, they are implemented as triggers [Naish 1986], which are

restricted to determining whether or not an argument is bound at all. (For this implemen-

tation, triggers are sufficient to demonstrate the execution, and were easy to implement.

True when declarations are harder to implement, but allow much greater precision, and

should be part of any future implementation of the algorithm.)

Just as the language is kept as close to sequential Prolog as possible, so too is the user

interface kept similar. Beyond allowing annotations of top-level goals at the "?-" prompt,

the distributed system behaves to the user exactly like a sequential system: prompting for a

top-level goal, attempting to solve the goal, and printing top-level variable bindings to the

screen. As in sequential Prolog, if another solution is desired, it can be requested by typing

a semicolon immediately after receipt of the previous solution. This is accomplished

by initiating backtracking from the last frame on the stack of the master process, which

handles the user interface.

CHAPTER 5. IMPLEMENTATION

5.2 Solver Processes

48

At the core of the parallel Prolog system are the solver processes. The solver processes

work together to find a solution to a top-level goal, each solving some annotated subgoal.

Solver execution is generally sequential, following the goal-selection - clause-selection -

unification model of standard Prolog.

Solution begins with the master process. It begins by creating a child solver process

for every annotated subgoal in the top-level goal conjunction. As it executes the remaining

sequential goals, it creates another solver every time it encounters an annotated subgoal

in the latest clause body. For child processes, execution follows the same scheme; each

annotated subgoal is forked off as a new solver as it appears in the body of a newly-unified

clause.

Thus, parallelism may occur anywhere in the search tree. If every subgoal is annotated,

the execution takes on a (horrendously inefficient) process-model character; conversely, if

no subgoals are annotated, execution is purely sequential.

As they execute, the solvers communicate binding information with each other. Specif-

ically, each solver sends messages to the other solvers with which it has variables in com-

mon. Since the master process either binds a variable itself or shares it with some child

process that binds the variable, upon termination it will find bindings for all of its top-level

variables, and print them to the user.

5.3 Ear Processes

Because of the nature of the message-passing subsystem, the solver processes cannot stand

alone. The J]Pc system is a synchronous protocol in which a process sending a message

CHAPTER 5. IMPLEMENTATION 49

is blocked until the receiver-replies. Using such a protocol, solver processes that blithely

sent messages to one another could easily cause deadlock.

In the usual case, message passing occurs as follows:

1. Process Pa sends a message to Pb and blocks.

2. Pb receives the message.

3. Pb acknowledges receipt to the sender, Pa, via a reply.

4. Pa gets the reply, and resumes execution.

If Pa and Pb sent messages to each other at the same (real) time, deadlock would occur:

neither could receive or reply to the other's message, since both would be blocked.

One solution to this problem is to use interrupt-driven message receipt and acknowl-

edgement, so that both processes could receive and reply to incoming messages even while

blocked. Since Jn'c provides no interrupt facilities, however, this approach is not feasible;

thus, a nonblocking or asynchronous protocol is necessary. Some form of mediation is

therefore required for message passing between solver processes.

In this implementation, such mediation is handled by ear processes—JIPc processes

whose purpose is to make communications between solver processes appear asynchronous.

One ear process runs on each processor in the network; its main task is to "listen" for input

messages intended for interpreter processes running on the same processor.

Thus, solver processes do not communicate directly. When one solver wants to

communicate with another, it actually sends its message to the other's associated ear

process. This is illustrated in Figure 5.1. The ear process replies immediately to the

CHAPTER 5. IMPLEMENTATION 50

Machine Ml Machine M2

message send

message poll/reply

Figure 5.1: Relationship between ear and solver processes

sender, allowing that process to continue execution. Then, it queues the incoming message,

waiting for the target process to poll it for messages.

Message receipt by a solver process is also nonbiocking; if a solver polls its ear when

no new messages have arrived, it receives a null message in return and continues executing

normally. This agrees with the optimistic philosophy of Time Warp—that is, if no new

messages have arrived, assume none will arrive.

There is one exception to the nonbiocking approach. A solver process will choose to

block until its next input message arrives if it has completed all of its own local computation.

In this way, it avoids consuming the system resources that it would use if it performed a

busy wait.

As the implementation evolved, responsibility for handling the input queue functions

gradually migrated from the solver processes to the ear processes. Initially, an ear process

CHAPTER 5. IMPLEMENTATION 51

did no more than enqueue incoming messages in the order that they arrived. It was obvious

that with only slightly greater effort, the messages could be enqueued in timestamp order. A

small optimization was immediately apparent: annihilation of BIND/ANTI-BIND message

pairs could take place within the ear process, rather than sending both messages on to an

solver to be processed there.

Finally, it became evident that the ear processes should take over the input queue

functions completely. Implementing queuing facilities in both ear and solver processes

cannot help but be somewhat wasteful, and since the ear processes must do some queuing,

why not let them do it all?

The solver processes are thus freed of responsibility, for example, of trying to "un-

receive" messages on rollback. Instead, each ear process keeps track of which input

messages have been received by each solver process it serves. If a solver rolls back, it need

only inform its associated ear process of how far it rolled back by including a timestamp

with its next polling message. The ear process uses this timestamp to adjust its notion

of which messages have been received, returning messages that postdate the timestamp

to unreceived status. (This also allows message annihilation to occur in cases where a

BIND message was received and passed on, its corresponding ANTI-BIND arrived and

was enqueued, and then the BIND was rolled back.)

Of course, the original reason for using ear processes must not be forgotten. The

effect of using ears to mediate communication is that message passing is guaranteed to

be deadlock-free (provided that memory is not exhausted). A message can be exchanged

only between an solver process and an ear process, and not directly between two solver

processes or between two ear processes. Solver processes initiate all communications and

receive information only via replies to polling messages, rather than via explicit receives.

CHAPTER 5. IMPLEMENTATION 52

An ear process blocks until it receives a message, whereupon it replies appropriately to the

sender, and blocks again to wait for the next message.

5.4 Binding Environment

One of the most important components of a distributed Prolog system is the binding

environment. Variables from different processes must be distinguished by unique internal

names 2ln the discussion that follows, "name" will refer to this internal name, as distinct

from the "print name" visible to the user, so that they are not confused with one another.

If a variable is shared among two or more processes, it must be readily distinguishable

as such. (Note that "shared" is not used literally—each process that "shares" a variable

maintains its own copy, and changes to that copy are made known via binding messages.)

If a variable is not yet shared, it may be in the future through the creation of child processes,

so it must be possible to upgrade it to shared status.

5.4.1 Naming

In a sequential system, the generation of unique variable names is accomplished by allo-

cating on the stack: the memory address of a variable becomes its internal name. In a

distributed system, this is not sufficient; different processes may produce variables with

identical names, and if either or both of these variables is shared, confusion could result.

A simple and effective, solution to this problem is to incorporate information about the

process ID of the solver that creates the variable, and about the processes on which that

solver runs, into the variable's internal name.

CHAPTER 5. IMPLEMENTATION 53

5.4.2 Local and Shared Variables

Most variables begin their careers as local; the exceptions are the variables in the top-level

goal of a new child process, which are always shared with at least the parent process. (For

uniformity, the top-level variables of the master process are also considered shared.) Local

variables are allocated on the stack, much as they are in sequential interpreters. When

a process rolls back or backtracks over some stack frame, all variables in that frame are

freed.

Shared variables are tagged for easy identification, since they must be treated specially.

A shared variable must be directly accessible, since not every access to it will be through

the stack. In particular, when a solver receives an external binding for one of its shared

variables, that variable will generally not be found in the latest stack frame. If direct access

is not available, the shared variable can only be found by searching back through the stack.

On the other hand, a shared variable must also be accessible through the stack, to handle

cases when it is referenced or bound locally.

A local variable becomes shared when the process that created it forks off a new process

whose top-level goal contains that variable. When this occurs, a new variable is allocated,

and the local variable on the stack is made to reference the shared variable. Indeed, every

shared variable must have a "local" associated with it on the stack, to allow the Prolog

component of the algorithm (particularly unification) to access it. The mechanism for

creating a new shared variable is simple: whenever a variable is encountered in process

creation, if that variable is still marked local, then a shared counterpart is allocated and

linked to the local.

When a BIND message is sent, the information in it comes in pairs, each composed of

CHAPTER 5. IMPLEMENTATION 54

a variable name and its value. The variable name is fully qualified, including machine and

process IDs. The value is an instantiated term—either an integer or a structure, which may

contain variables (actually, fully qualified variable names) that are unbound. (If a bound

variable is detected within a structure at the sending end, only the value is passed on.)

5.4.3 Incomplete Data Structures

Particularly in producer/consumer style programs, a shared variable may be only partially

instantiated. For example, a list may have its head bound, while its tail remains unbound:

L = (271L11

If L is a shared variable, so must Li be. Thus, whenever such a binding occurs, whether

locally or through the receipt of a binding, if the outside variable is shared, the variable

inside the data structure is allocated in the shared area, and linked to the stack.

5.5 Delayed Predicates

As noted above, user predicates may be given delay annotations. Such delays are discre-

tionary and need not be present for correct execution; their only effect is to make execution

more efficient. A number of builtin predicates also come with delays, but these delays are

mandatory. Leaving them out would result in an incorrect execution.

5.5.1 User Predicates

The need for delays in user predicates arises from producer/consumer process pairs in which

the consumer executes ahead and guesses wrong. When a binding from the producer it

forces a rollback, but this rollback may not be deep enough to undo the incorrect guess.

CHAPTER 5. IMPLEMENTATION 55

The timestamp of the frame for the incorrect guess may well antedate the timestamp of the

incoming binding. In this case, some amount of remote backtracking will have to occur

before the consumer backtracks far enough and makes the correct choice. Work is lost

in every participating process, not just in the process making an incorrect choice. This

inefficiency is rooted in the way priorities are assigned to goals.

In Tebra's system [Tebra 1987], priorities are depth-first, so that given two distinct

subtrees, each goal in the left subtree has higher priority than any in the right subtree.

If in a producer/consumer situation, optimistic execution by the consumer works well

as long as it is in the right subtree with respect to the producer, so that when a binding

arrives the process is rolled back completely. If the consumer is in the left subtree, then its

subgoals have higher priority than those of the producer; if it executes optimistically and

makes an incorrect choice, remote backtracking occurs with a vengeance, first of every

goal in the producer's subtree and then in the consumer's subtree. Unlike the Time Warp

case, no goals are rolled back; every goal is backtracked. Thus, Tebra's system implicitly

requires producers to precede consumers in order to extract good performance. Further,

this producer-before-consumer ordering is purely textual and cannot take into account input

and output modes determined by the top-level query. Still; for well-behaved programs,

Tebra's system provides maximum optimism.

Conversely, in a goal-ordering system like that in [Somogyi et a! 1988], a consumer

is blocked until its corresponding producer sends it a binding, so no optimistic execution

occurs. Producers and consumers are assigned by checking argument modes: a goal whose

inputs are sufficiently instantiated becomes a producer for its outputs; a goal that still needs

some inputs bound becomes a consumer of those inputs. Since consumers are blocked

until their required inputs arrive, execution is conservative; no optimistic work will have

CHAPTER 5. IMPLEMENTATION 56

to be undone.

In an unadorned Time Warp system, timestamps may be interleaved between goal

subtrees; thus, producers and consumers will have roughly comparable priorities, and the

backtracking problems noted above will occur if optimistic execution is attempted. One

solution would be to prioritize producers over consumers, while still allowing consumers

to execute optimistically. This approach would be rather complex, since priorities are

already given by Time Warp timestamps.

Another approach, and the one used in this implementation, is to use delays to mimic

producer/consumer ordering with timestamp ordering, at the expense of optimistic exe-

cution. If a consumer lacks the input bindings it needs, it falls asleep. The consumer

wakes up again after it receives the bindings it requires, so that the frames it creates have

a greater timestamp (thus a lower priority) than the incoming bindings. Rejection of the

Time Warp ideal is necessary, since allowing a consumer goal to execute ahead may give

it a lower timestamp than its corresponding producer. Such a situation can cause a great

deal of backtracking before a solution is found.

5.5.2 Builtin Predicates

In a distributed Prolog system, many builtin predicates require delays. The arithmetic

predicates (e.g. </ 2) and equality (=/ 2) are among these, but for different reasons.

Arithmetic

In most sequential implementations, arithmetic predicates are expected to be fully instan-

tiated before they are called; if such a predicate is called with one or more of its arguments

not fully bound, an instantiation error is flagged and the computation aborts. Given the

CHAPTER 5. IMPLEMENTATION 57

depth-first execution order of sequential systems, instantiation errors are not hard to avoid:

the programmer need merely order goals so that producers come before consumers.

The distributed case is more problematic: since execution is no longer strictly depth-

first, an arithmetic goal may be executed before its arguments are fully instantiated, thus

causing the computation to abort unexpectedly. Consider the parallel execution of the

following code:

X = 2, X < 4.

If the goal X = 2 executes first, the computation completes and gives the expected result

(i.e. success). If X < 4 executes first, however, an instantiation exception will be raised.

Such behavior is clearly undesirable; the results of a computation should not be susceptible

to the vagaries of execution order.

Of course, it may be argued (and has been: [Naish 1986]) that this behavior is also

undesirable in the sequential case; parallel execution merely illustrates the problem more

vividly. In both cases, the solution is the same: an arithmetic goal should be delayed until

its arguments are sufficiently instantiated; then it can be woken and executed.

Equality

Equality does not suffer from the same problem as the arithmetic predicates. Since its

effect amounts to unifying its arguments, the equality predicate does not logically require

either of its arguments to be bound. Thus, running goals such as

A = B, B = C, C = 5

in parallel produces the same result independent of execution order: A, B, and C are all

bound to the value 5.

CHAPTER 5. IMPLEMENTATION 58

The problem that does arise is rather more subtle, and is related to the timestamping of

bindings in the distributed Prolog system. Consider the following example:

e Process P1 executes the goal B = C at time t. No BIND message is produced, since

no variable was bound to an actual value.

• At time t + c, process P. executes the goal C = 5 and sends a BIND message with

this binding to Pj.

• Pf receives the binding and immediately discovers that B is now also bound. Thus,

it must send out a BIND message at time 2+ c with the binding B = 5.

What has happened here? Two messages with the exact same timestamp have been sent

from two different processes. Any process that receives both bindings is in deep trouble

if it ever backtracks to time 2 + C: it has no basis for deciding which binding to FAIL,

since either (or both) may have contributed to the failure. If it chooses arbitrarily, the goal

B = C may never be backtracked, and the search for a solution may fail because of it.

This problem could be remedied by forcing process P1 to send out a BIND message at

time t for the binding B = C. In this case; when P9 binds C = 5, it also binds B = 5,

and both bindings are sent out. This would ensure that backtracking could be carried out

successfully; each message would be ensured a unique virtual time.

Unfortunately, this solution causes another problem, due to aliasing: two variable

names become aliases for the same object. In a sequential system, when two variables are

unified, one of the variables is made to reference the other. If either variable is later bound,

the binding is actually applied to the variable at the end of the reference chain; the value

for the other can later be found by dereferencing the reference chain. Consider running

the goals

CHAPTER 5. IMPLEMENTATION 59

A = B, B = C

sequentially; this produces a reference chain like

If C is later bound to 5, any reference to A, B, or C will be dereferenced to the value 5.

In the distributed case, however, the bindings for A and B must be made explicit. If

C is bound, there is no immediate way to tell that A and B are also bound, because the

reference chain is unidirectional. To allow access from any variable to all other aliases for

it, the chain must be closed into a loop. Any non-variable binding must then be referenced

separately, leading to a messy, if workable design.

A much more elegant solution arises from avoiding aliasing altogether. Rather, the

equality predicate = / 2 is given delay conditions such that at least one of the two arguments

must be instantiated before execution is allowed:

?— X = Y when X or Y.

A goal like B = C is not allowed to execute immediately; rather, it is delayed until either

B or C is bound to a nonvariable term, for example when the binding C = 5 is produced.

Consider the following execution:

• Process Pf attempts to execute the goal B = C at time t. Since neither B nor C is

bound, the goal is delayed, and some other goal is executed.

• At time t + c, process P. executes the goal C = 5 and sends a BIND message with

this binding to P1.

• P1 receives the binding and discovers that the delayed goal B = C should be woken.

CHAPTER 5. IMPLEMENTATION 60

• P f executes the goal B = Cat time t + c + d and sends out the binding B = 5.

For local variables, it is not necessary to avoid aliasing, since if any of the aliases later

becomes bound, only the variable at the end of the reference chain would actually be linked

to a shared variable. For the sake of simplicity and uniformity, however, the unification of

two local variables is also delayed.

This uniformity has a price, however. When a local variable is bound, this binding

may trigger the wakeup of several delayed goals, each of which may wake up goals itself.

Fortunately, this cost is mitigated by a beneficial effect. When aliasing is allowed, a goal

sequence like

A = B, B = C, C = 5

results in a reference chain like

When aliasing is disallowed by delaying = / 2, executing that goal sequence results in the

following:

A - 5; B -* 5; C -* 5

Since no variables are ever aliased, reference chains become unnecessary. Derefer-

encing a variable is accomplished by moving directly to its binding. (Of course, a smart

aliasing system will dereference as much as possible at unification time, thus keeping

reference chains fairly short.)

CHAPTER 5. IMPLEMENTATION

5.6 Termination Detection

61

One of the main problems of distributed execution lies in determining when the system

has terminated. A naive approach would simply wait for every process to report its own

completion and then declare the entire system to have completed execution.

If each process were completely independent, this would be quite sufficient. In general,

however, processes must communicate with each other. In this case, messages that are still

in transit cannot be ignored. Consider the following scenario:

. process Pa reports completion;

. process Pb sends a message to Pa, and then reports completion;

• process Pa discovers that it has not completed after all, and begins execution again

by processing the incoming message;

• all other processes in the system have previously reported completion;

• since all processes have reported completion, the system is incorrectly considered

to have terminated.

In a standard Time Warp system, termination is detected through the calculation of

global virtual time: the minimum of the virtual times of all processes and of the timestamps

of messages received but unprocessed or still in transit. When GVT reaches +oo, the system

has terminated.

GVT has other functions as well. Since the standard Time Warp definition assumes

that all processes are completely deterministic, garbage collection of the input, output, and

state queues becomes possible (and indeed necessary, for example in the case of a large

CHAPTER 5. IMPLEMENTATION 62

simulation system); GVT is computed regularly, and queue entries with timestamps less

than GVT can be garbage collected. Termination detection is really a side effect of this

garbage collection function, occurring when GVT reaches +00.

In a Prolog system, computing GVT is clearly overkill. Garbage collection cannot

occur as in a stanclaM Time Warp system; every entry in the IQ, OQ, and SQ may be

needed for backtracking, so none should be removed. Thus, the main function of GVT

calculation is wasted; termination detection remains as a side effect.

For this reason, an algorithm more specific to termination detection is indicated.

[Dijkstra et al 1983] describe an algorithm for detecting termination in a ring of pro-

cesses that can easily be adapted to the Prolog system. This algorithmS uses a circulating

token to gather information about the status of each process in the system. (The algorithm

is actually very similar to the GVT algorithm, except that token propagation is delayed as

long as possible, so that fewer passes through the system are made.)

Each process maintains information about its own state by coloring itself white or

black, with black indicating that it is busy, and white indicating that it is idle. The token

starts out white, but as it circulates through the system, it may be colored black, indicating

that some process is still busy. For a ring of ii processes Po to P,i, the complete algorithm

is as follows:

1. while it is active, a process keeps the token; when it becomes idle, it passes the token

on to the next process

2. when a process sends out a message, it colors itself black

3. when a process propagates the token, it colors the token black if it is black itself; if

the process is white, the token is passed on unchanged

CHAPTER 5. IMPLEMENTATION 63

4. if the token is black after completing the circuit, the system has not terminated; the

initiating process sends the token out for another circuit

5. the initiating process starts a termination probe by coloring itself white and sending

outa white token

6. after passing on the token, a process colors itself white

This algorithm must be adapted slightly to work for the Prolog system. First, rather

than traveling around a ring, the token must traverse a hierarchy of processes. This is

accomplished easily enough by a depth-first traversal of the hierarchy, with the token

starting and finishing at the master process.

The second alteration is necessary to account for indefinitely-delayed goals. The

execution of some programs may cause a goal to be delayed and never woken; this occurs

when the bindings needed by the delayed goal are never produced. This may be due to

incorrect delay conditions on the clauses for that goal, or it may simply mean that there are

an infinite number of solutions for the goal [Naish 1986]. In either case, this condition,

known as floundering, should be reported.

To handle this, a third token color is necessary: gray is used to represent the state in

which all processes are idle, but one or more processes have indefinitely-delayed goals.

Token coloring is modified to the following:

• if the process is black, it colors the token black

• if the process is gray and the token is not black, it colors the token gray

• if the process is gray and the token is black, it passes the token on unchanged

CHAPTER 5. IMPLEMENTATION 64

• if the process is white; it passes the token on unchanged

The system has terminated if the token is colored white or gray when it returns to the

master process. If the token is gray, the system has floundered; otherwise, a complete

solution has been found.

5.7 Optimizations

The BIND and ANTI-BIND optimizations, introduced in the previous chapter, have not

been implemented. However, it is worth discussing bow these optimizations could be

implemented. Ironically, the FAIL over-optimization was implemented. An example is

given to demonstrate that the optimization is incorrect; finally, a modification to correct it

is proposed.

5.7.1 BIND Optimization

The BIND optimization allows the receiver of a BIND message to decide whether the

contents of that message are compatible with its own bindings before it rolls back. Four

cases are possible:

• The variable bindings in the message are consistent with the local bindings, so the

BIND can be incorporated into the stack without rolling back.

• The bindings in the message would be inconsistent even after rolling back; the BIND

can be ignored and forward execution can continue.

• Only a partial rollback is necessary to make the incoming bindings compatible; after

this partial rollback, the BIND may be incorporated into the stack.

CHAPTER 5. IMPLEMENTATION 65

t=12
IND: X=2

t=21

t=12

t=21

Figure 5.2: X is still unbound locally; the binding is simply incorporated into the stack.

• A full rollback is necessary and sufficient to make the incoming bindings compatible;

this is the only case for which the optimization gives no benefit.

To distinguish these cases and determine the correct action to take, binding timestamps

must be accessible to the shared variables (local variables cannot cause inconsistency with

respect to another process). This can be accomplished by including in the shared variable

structure a pointer back to the stack frame in which it was bound; the timestamp can then

be found from the frame.

For each variable bound in a BIND message, the local copy of the variable must be

examined. The actions that may be taken are illustrated in Figures 5.2 through 5.6. For

simplicity, the incoming BIND is assumed to contain only one binding. If a partial rollback

is necessary when several variables are bound in the incoming message, the rollback must

be to the time of the earliest binding conflict.

The first three cases deal with compatible bindings. If the variable bound in the

incoming message is still unbound locally (Figure 5.2), the binding need simply be linked

CHAPTER 5. IMPLEMENTATION 66

t=6

t=21

Figure 5.3: x is bound locally and compatible; the local timestamp is less, so it is retained.

t=12

t=21

t=12

t=21

Figure 5.4: x is bound locally but is compatible; the message timestamp is less, so the
binding pointer for x is adjusted.

CHAPTER 5. IMPLEMENTATION 67

t=6

t=12

t=21

t=6

t=21

Figure 5.5: x is bound locally but incompatible; the incoming message has a higher

timestamp, so it is ignored.

in to the stack; no rollback is necessary. If the variable in question is bound locally, two

cases are possible. If the local binding antedates the incoming binding (Figure 5.3), it may

safely be ignored. The sending process will eventually encounter the situation shown in

Figure 5.4. In this case, the frame pointer for the bound variable must be adjusted to point

to the earlier, remote frame.

In the final two cases, the local binding and that in the message are found to be

inconsistent. If the local binding is earlier than the message timestamp (Figure 5.5), the.

message is simply ignored. At some point, the sending process will arrive at a state like

that in Figure 5.6: the message timestamp will precede the local binding time. In this case,

a partial rollback is necessary; if there are no stack frames with intermediate timestamps,

this amounts to a full rollback.

CHAPTER 5. IMPLEMENTATION 68

t=12

t=15

t=21

t=12

t=15

Figure 5.6: x is bound locally, but its value conflicts with the value in the message. The
message has a lower timestamp, so the process must roll back to before the time of the

local binding, and restart forward execution.

5.7.2 ANTI-BIND Optimization

The ANTI-BIND optimization is analogous to the BIND optimization in that it attempts

to avoid rollback if possible. However, avoiding rollbacks in the ANTI-BIND case is

more complex. It requires a modification to the basic execution algorithm; the BIND

optimization needs only timestamp information to accomplish its attempted effect.

The necessary modification is in the clause selection component. When a rollback is

performed, goals that are rolled back are eventually retried, and all clauses for each goal

are available for selection. When a remote frame and its associated bindings are simply

removed, this may not be the case. Those bindings may have constrained the execution;

clauses rejected due to conflicts with these bindings may become candidates again once

the bindings are gone.

CHAPTER 5. IMPLEMENTATION 69

If rollback is to be avoided, all goals with timestamps later than that of the incoming

ANTI-BIND message must have their respective lists of candidate clauses adjusted so that

previously-rejected clauses may be retried. The easiest way to do this is to maintain the

clause list for each goal as a circular list; on receipt of and ANTI-BIND, the current clause

becomes the "first" one. The clause list for a goal is exhausted when the next clause is also

the first.

Suppose a goal g has three candidate clauses, Ci, C2, and C3. Initially, c is the "first"

available clause, and thus the first selected. After backtracking, C2 is selected. If an

ANTI-BIND then arrives, the current clause, C2, is made the first available clause and c1

the last available. Thus, ci will eventually be retried—specifically, after C3 has been tried

and backtracked.

There are two cases in which this sort of adjustment can be avoided. The first case

involves the receipt of an ANTI-BIND for which the corresponding BIND was ignored.

In this case, the ANTI-BIND may also be ignored. A remote frame may also be removed

without recourse to rollback when a situation like that in Figure 5.4 exists. If a frame pointer

is adjusted on receipt of a BIND, it can be adjusted back if that BIND is annihilated, as

long as information about the previous frame pointer is retained. No adjustment of any

clause list is necessary, since the binding values are no less constrained after the remote

frame is removed.

5.7.3 FAIL Optimizations

As described in the previous chapter, the FAIL optimization gives a reasonable saving

in terms of rollbacks performed and FAIL messages sent, but it comesat the expense of

completeness: in a few pathological cases, this optimization causes solutions to be missed.

CHAPTER 5. IMPLEMENTATION 70

Consider the situation in Figure 5.7. Process Pf has been unable to succeed because the

bindings from Pq, Pr, and P3 have been incompatible with its own values. At this point,

both Pr and P8 have been forced to backtrack and to come up with new bindings. These

bindings are now compatible with the values in the first clause for f / 3, yet the goal

f (A, B, C) still fails. The problem is with PqS binding, but under the the small-context

direct-backtracking model, Pq cannot be made to backtrack, as the following execution

fragment shows:

• P1 fails to unify goal f (1, 3, 4) with clause head f (2, 3, 4)

• P1 fails to unify goal f (1, 3, 4) with clause head f (1, 4, 5)

• P1 begins backtracking, sending a FAIL at time 8 to P.,, with context of Pr at time 4.

• P., begins backtracking and finds no further clauses, so sends a FAIL at time 4

directly to Pr, with no additional context

• Pr backtracks and finds no further clauses, backtracks further and finds no previous

stack frames, and fails completely.

In this case, the solution { A = 2, B = 3, C = 4 } was missed, simply because it

was impossible to make Pq backtrack; not enough context was available to allow further

backtracking.

Under the unoptimized scheme, failure would have passed back to P1, and thence to

Pg. The problem with the optimized scheme is clear: not enough context is passed on in

the FAIL message itself to allow correct backtracking. In the unoptimized case, limited

context is sufficient because the remainder is implicit in the stack of the FAIL's sender; in

the optimized case, that remainder may no longer be accessible.

CHAPTER 5. IMPLEMENTATION 71

Pf Pq Pr Ps

=1I \t=1

LI B=3EY=4

C=41 "t=8

f(2,3,4)

f(1,4,5)

q(1)
q(2)

r(2)

r(3)

s(3)

s(4)

?— f(A,B,C), q(A),

r(B), s(C).

Figure 5.7: Pathological case for FAIL "optimization"

Extending the context by some fixed amount is of no avail. If the context of a FAIL

message were extended to include the two previous stack frames, the example in Figure 5.7

could be extended by adding another process, P2, contributing a binding to P1 at time 2,

and process Pq would still never receive a failure. In general, for n frames of context, a

counterexample with n + 3 processes can be constructed. Thus, an indefinite amount of

context in the FAIL message is necessary for the optimization to work.

Happily, this optimization is not entirely unsalvageable. The case described in Fig-

ure 5.7 is relatively uncommon, so a hybrid approach is possible: a FAIL message can

contain a limited context, as long as the last context will force the originator to backtrack.

Failures occurring in the remainder of the context may be optimized.

CHAPTER 5. IMPLEMENTATION 72

Easiest is a two-component context, with the first component corresponding to the first

previous frame, and the second to the next previous frame. The first component directs

backtracking to a stack frame's originator; if this is insufficient, the second component

will eventually direct the failure back to the originating process. This scheme itself may

be optimized: if both components direct the failure back to the same process, the second

component need not be included, since backtracking will in any case return to the originator.

(Naturally, this hybrid version of the FAIL optimization awaits experimental verification.)

Chapter 6

Testing and Results

6.1 Testing Environment

The implementation was tested on a small distributed system: a network of five SuN3

workstations running UNIX. JIPc was used for interprocess communication. Ear processes

were added to prevent deadlock and to provide input queue services for the solver processes.

Due to the limited number of processors, the algorithm for sending BIND and ANTI-

BIND messages was simplified. Rather than requiring solvers to determine the recipients

of BIND and ANTI-BIND messages and whether or not they should be propagated further,

it was decided to broadcast such messages to all ear processes. Each ear would then

determine which solvers on its processor were interested in the message. At the expense

of a system-wide broadcast, the delay due to hierarchical message propagation (e.g. from

a child process to its parent, and thence to its other children) is avoided.

This simplification assumes that several processes will be oneach processor and that

related processes are distributed throughout the system rather than highly localized. These

assumptions are satisfied quite easily on a five-processor system, but not on a much larger

one. Thus, the simplification is not scalable, especially since having every solver broadcast.

to every ear in a large, busy system could saturate the communication network. Still, it

made implementing the system easier.

Because of the limited number of processors and the expense of process creation,

parallelism was restrained by means of a depth bound. To implement this bound, the the

73

CHAPTER 6. TESTING AND RESULTS 74

master process is given level n for depth 0; its immediate children get level n - 1 (depth

1), children of those solvers get level n - 2, and so on. A process at level 0 (depth n)

creates no children; goals annotated to run in parallel are instead run sequentially by that

process. This also provides a simple control over the granularity of the parallel execution,

even when many processors are available.

It should be noted that this depth bound is a very simple-minded technique. Using it to

control parallelism may result in processes having significantly different amounts of work

to do, leading to unbalanced execution and thus to reduced speedup. For this thesis, the

point is moot, however: the aim is to present a working distributed Prolog system, not to

find the best load-balancing algorithm.

Related to this is the issue of processor allocation: if all processes were allocated

on just a few processors, parallel execution would again result in little speedup. Again,

processor allocation is rather simple-minded: a process at level n creates a process on

every 2'th processor (modulo the number of processors). In test runs, every processor

showed activity; this was deemed sufficient for the purpose of the thesis.

6.2 Testing

A number of factors affect the parallelism achieved in a distributed execution. First, the type

and degree of parallelism inherent in the test programs must be considered—for example,

in an AND-parallel system, a searching program would be expected to perform worse

than a divide-and-conquer program. As well, unfavorable delay characteristics (generally,

executing before inputs are ready) can cause a reduction in performance. Finally, different

execution strategies can affect the behavior exhibited by a test program. All of these

CHAPTER 6. TESTING AND RESULTS 75

factors are examined below.

6.2.1 Determinism and Nondeterminism

As discussed in Chapter 2, deterministic programs are more amenable to AND-parallel

execution, while nondeterministic programs are more suited to OR-parallel execution. The

results presented in the next section bear this out.

The degree of nondeterminism may be characterized by the number of clauses unifiable

with each goal as it is run. If every goal unifies with exactly one clause, the execution

is fully deterministic, and no backtracking is necessary. An example of this is matrix

multiplication.

Nondeterminism may be either shallow or deep.' Shallow nondeterminism occurs

when a number of clauses may initially unify with a goal, but all clauses save one are

quickly rejected by a test in the body, for example in the partitioning of a list in the quicksort

algorithm. In deep nondeterminism, much more search is necessary to determine that a
candidate clause must be rejected; search programs fall into this category.

Several example programs of each of these types were tested. For full determinism,

mmult (matrix multiplication), fib (Fibonacci numbers), and tak (the tak benchmark)

were run. Programs exhibiting shallow nondeterminism were qsort (quicksort), union

(union of sets represented as trees), and inter (set intersection using trees). To test

nondeterministic execution, two small programs, x15 and xyl5 were composed. All of

these programs and the queries with which they were tested are given in Appendix B.

1The notion of shallow vs. deep nondeterminism is similar to that of don't-care vs. don't-know
nondeterminism.

CHAPTER 6. TESTING AND RESULTS 76

6.2.2 Delay Characteristics

In Chapter 5 it was noted that the delay annotations used in the system were not the most

precise available. Because of this, they may allow goals to execute prematurely, resulting in

wasted execution as such goals are rolled back. The shallowly nondeterministic programs

exhibit this behavior: when a clause is selected for some goal, their unification may wake

up other goals; the clause may then be rejected because a test in the body fails, causing the

woken goals to roll back and become delayed again.

Consider the following code fragment:

part([HeadlTail], Pivot, [lleadlRestSm], Bigs)

Head =< Pivot,

partition(Tail, Pivot, RestSm, Bigs).

?— qsort (List, -) when List.

When the goals

part([12,1O,...],5,Smls,Bigs), qsort(Smls,SortSm)@pl

are run in parallel, the qsort goal is initially delayed, but as soon as Smis in the

goal unifies with [Head I Rest Sm] in the clause head, it is woken. When the test

Head =< Pivot fails, any work that the qsort call has done must be undone.

This problem can be alleviated only by ensuring that merely unifying a goal with some

clause does not cause other goals to wake immediately. This can be done by shifting output

unification into the clause body (after a test), rather than letting it occur in the head:

part([HeadlTail], Pivot, Smalls, Bigs) :-

CHAPTER 6. TESTING AND RESULTS 77

X =< P,

Smalls = [HeadiPivot],

part(Tail, Pivot, RestSm, Bigs)

In this case, qsort does not begin executing until the output unification is made—that is,

after the test has succeeded.

The problem may be even more severe for deeply nondeterministic programs. When

a clause is chosen, it may be rejected only after much forward execution has transpired.

The goals woken when the clause was bound will also have executed forward, and their

work too must be undone. To make matters worse, all of this work might only be undone

after exhaustive distributed backtracking.

On the other hand, allowing goals to execute immediately in a deeply nondeterministic

program may allow failure to occur quickly, thus saving work. Further study would be

desirable to indicate whether savings due to early failure can balance or even outweigh the

cost of distributed backtraking to undo an incorrect choice.

6.2.3 Goal-ordering Strategies

Several different strategies may be applied to assigning goal priorities in a parallel system.

As noted in Chapter 3, Tebra's system ([Tebra 1987]) bases the goal priorities on the depth-

first ordering of a program's sequential search tree; [Somogyi et a! 1988] use explicit

producer/consumer relationships to assign priorities. Both of these strategies produce

fixed, deterministic orderings.

In contrast, the algorithm of [Cleary et al 1987] does not assign goal priorities in

advance; rather, the priority of each goal is assigned dynamically, based on the local

CHAPTER 6. TESTING AND RESULTS 78

virtual time (LVT) of the process executing the goal. Beyond this, no goal ordering is

specified—but in an implementation, some ordering must be chosen. No "best" ordering

was immediately apparent, so several different orderings were examined. Three binary

choices were available, giving eight different versions of the system.

The first parameter is concerned with the number of incoming messages a solver should

process after it has completed a successful unification. On one side, a solver should use

all the information available to it, including all pending messages. On the other hand, it

may get so swamped with incoming messages that it accomplishes little useful work itself.

Only the two extrema were tested: solvers would either accept just one message after each

successful unification or process all pending messages.

The effect on goal priorities in this case is rather subtle. The salient point is that

incoming messages cause LVT to advance; the more messages processed at some point,

the greater the timestamp of the next unification is likely to be, and a higher timestamp

corresponds to lower goal priority.

The second parameter is concerned with the size of the time window within which

messages should be accepted. Certainly, all messages in the past of a solver's current LVT

must be processed, but the future is somewhat murkier. One option is for the solver to

process incoming messages regardless of their timestamps. The solver's LVT will then

be adjusted to be later than the latest incoming message, and local work continues from

that time. The idea here is based on the Time Warp philosophy: events in the future

should be accepted on the assumption that no intervening events will occur. All pending

external events (incoming messages) are therefore processed; intervening internal events

(unifications) are avoided by adjusting the LVT.

A more deterministic approach to execution allows only those pending messages

CHAPTER 6. TESTING AND RESULTS 79

ONE MANY

SMALL earliest message within increment all messages within increment

LARGE earliest pending message all pending messages

Table 6.1: Messages processed under combinations of goal-scheduling parameters.

whose timestamp is within a single increment of the current LVT to be processed. The

next scheduled internal event (unification) is then performed at the incremented LVT. This

approach, like the one-message alternative above, prefers internal work to external work;

meanwhile, postponed future messages may be annihilated, or messages could arrive that

precede the still-unprocessed messages, in both cases avoiding local rollback.

The final parameter alters the way in which a process's LVT is assigned. Under normal

execution, LVT is based on the latest timestamp on the stack; if rollback occurs, then LVT

is also rolled back. The alternative is one of temporal inflation: the LVT of a solver is

based on the latest timestamp it has encountered, and grows throughout the execution.

This is in fact an approximation to real time, as the LVT at each process is monotonically

nondecreasing throughout the execution (except in backtracking and for brief rollbacks to

handle messages in the past).

The idea here is to automatically synchronize processes so that producers will precede

consumers in timestamp order, thus reducing wasteful execution. A producer will make

a binding; recipients of that binding advance to the time of the binding. If the binding is

discovered to be inconsistent, the consumers will not roll back their LVTs. Thus, they will

not compete with an established producer by sending out bindings with low timestamps.

These parameters are not entirely orthogonal, particularly the first two—both affect the

number of pending messages that are processed. The effect of combining these parame-

ters is given in Table 6.1. The SMALL-ONE combination from this table appears rather

CHAPTER 6. TESTING AND RESULTS 80

wasteful when compared with the SMALL—MANY combination: why accept only the first

message preceding the next scheduled (internal) unification when any other pending mes-

sages with a timestamp before that unification will cause a rollback when it is processed?

If message traffic is low, the effect may not be noticeable, but it could be pronounced if

traffic is heavy.

The LARGE—MANY combination takes the opposite tack, favoring external work and

postponing internal work. The SMALL—MANY and LARGE—ONE combinations take an

intermediate course, trying to balance internal and external work.

The third parameter, concerned with inflationary vs. noninflationary execution (INFL

vs. NON), is relatively independent of the other two. (Of course, the more messages

accepted at once, the higher LVT is likely to go, so there is still a connection.) For

deterministic programs, deliberately inflationary execution seems unlikely to have any

effect, since timestamps will increase naturally, even for noninflationary exection. Only

in nondeterministic programs might temporal inflation be expected to have an effect.

6.3 Results

In evaluating the parallel system, two measurements were used: the number of unifications

done, and the number of messages sent and received. The first of these is a measure of

the amount of work done in a parallel execution, and is readily comparable to the number

of unifications done by a similar sequential interpreter. The second is used to gauge the

message-passing overhead of the system.

CHAPTER 6. TESTING AND RESULTS 81

6.3.1 Summary of Test Runs

Each of the programs listed above were run several times. Some, like the fully deterministic

programs, needed very few runs (five times each) to give consistent results. The nonde-

terministic programs showed rather more variance and were run upwards of twenty times

each. Each test was performed with the depth bound set at 2 to keep the five processors

from being overloaded. Parallel execution results are considered from two perspectives:

first, they are compared as a group against the results for sequential execution; then, they

are compared with each other.

Averages were taken of all runs; extrema (largest and smallest values) have also been

kept for the unification results to give some feel for the variance in the executions. For

each program, parallel unification results were scaled to the sequential value, which was

set at 1. Message counts were broken down into five parts:

. tokens: the number of times the termination-detection token was passed from one

process to another

•. BINDs: the number of BIND messages that reached another solver

• ANTIs: the number of ANTI-BIND messages that reached another solver

• FAILs: the number of FAIL messages sent

• annihilated messages: the number of BIND and ANTI-BIND messages that were

annihilated at the ear processes, rather than being passed on to the solvers

In the graphs that follow, the different versions of the system are identified by three-

letter abbreviations, as follows:

CHAPTER 6. TESTING AND RESULTS

ILO Inflationary, Large window, One message

ELM Inflationary, Large window, Many messages

ISO Inflationary, Small window, One message

ISM Inflationary, Small window, Many messages

NLO Noninflationary, Large window, One message

NLM Noninflationary, Large window, Many messages

NSO Noninflationary, Small window, One message

NSM Noninflationary, Small window, Many messages

SEQ SEQuential

6.3.2 Deterministic Programs

82

rnmult

Matrix multiplication is a classic "easy" program to run in parallel—even in imperative

programming languages—since it is readily broken down by row and column into many

independent and equal-sized subtasks. This offers high parallelism and balanced execution

with minimal effort.

The results given in Figure 6.1 bear out the "easy parallelism" expectation. Only one

version of the system took more than 10% more unification steps than the sequential inter-

preter took to arrive at the solution. This is mostly due to the independence of the subgoals:

the top-level outputs are computed directly from the top-level inputs, without generating

intermediate bindings that would require additional interprocess communication. Because

CHAPTER 6. TESTING AND RESULTS 83

1.35

1.3

1.25

1.2

1.15

1.1

1.05

3.

0.95
ILO ILM 'So ISM NLO NLM NSO NSM SEQ

Figure 6.1: Average, minimum, and maximum unifications for mmult.

of the depth bound, process granularity remains fairly large—each process fully computes

one element of the product matrix. This also keeps the message count low, and accounts

for the small differences between system versions.

Results for different versions show a number of variations, both in unifications and

in messages (Figure 6.2). The temporally-inflated versions were slightly busier and more

erratic in terms of unifications than the noninflated versions. Overall message counts vary

little, but when the individual components (BINDs, ANTI-BINDs, etc.) are considered,

variations are apparent. The one-message versions had very few ANTI-BIND messages

get through to the solvers; the multiple-message versions received significantly more.

Large time-window versions received fewer BINDs than small-window versions.

There seems little correlation (or even a negative correlation) between unification totals

CHAPTER 6. TESTING AND RESULTS 84

60

50

40

30

20

10

0

I I

,
,

I I

S..

I I

/ Annihs
- . . - —.--4-

- . .• /..ft_s
'-•:..

__•_\

N ,/

s_',I_1f'

- - --
ANTIs

/
-. .-

/,

-.—'

BINDs

4-•- —4- -•-4- -9-4— -9—•

Tokens

I, • I . 1 . I
I •

ILO ILM ISO ISM NLO NLM NSO NSM

Figure 6.2: Tokens, BINDs, ANTI-BINDs, and message annihilations for mmult.

and message counts: note that the ILO, ILM, and NLM versions were high in unifications

but low in message traffic; the converse holds for NLO, NSO, and NSM.

fib

The Fibonacci program uses a "divide-and-conquer" strategy, breaking a relatively com-

plex problem into two independent, simpler problems. This approach is also well suited

to parallel execution. Because of the depth bound, some processes do slightly more work

than others, but the execution is still fairly well balanced.

As with matrix multiplication, the unification and message count results displayed

in Figures 6.3 and 6.4 indicate that a divide-and-conquer program like fib can indeed

execute well in parallel. Little difference between versions of the system is apparent;

again, this is due to the low message traffic (itself again due to the nature of the problem).

CHAPTER 6. TESTING AND RESULTS 85

1.25

1.2

1.15

1.1

1.05

1

0.95

50

45

40

35

30

25

20

15

10

5

0

ILO ILM 'so ISM NLO NLM NSO MSM SEQ

Figure 6.3: Average, minimum, and maximum unifications for fib.

I I I I I I

- -

BINDs

-

•••'..-.. - -

-

-.--._

- Tokens -

., _I_ I_ • I_ a'. •a ala I

ILO ILM 'so ISM NLO NLM NSO NSM

Figure 6.4: Message counts for fib.

CHAPTER 6. TESTING AND RESULTS 86

Comparing the results of the parallel versions with each other reveals little. The many-

message versions appear more variable with respect to the number of unifications, but this

effect is not universal (the ILO-ILM pair is an exception). As for message counts, almost

no differences are visible (the small bump' in the NLM result is due to a large number of

termination-detection messages being sent in one of the runs of that version).

tak

The tak benchmark is multiply recursive, with each level of the recursion producing three

mutually independent subgoals, and one subgoal that depends on the other three. Unlike the

case for the other deterministic programs, these subgoals may differ greatly in the amount

of work below them, so using the depth bound may result in unbalanced execution. Thus,

parallelism is limited by two factors: goal dependence and the work disparity between

goals at the same level (in particular, those at level 0).

The results for tak (see Figures 6.5 and 6.6) are consistent across every execution;

each individual run took 1187 unifications, just 16 more than the sequential execution.

Each of these 16 unifications corresponds to a goal that was tried once, delayed, and later

woken again and run.

As with fib, almost no differences between versions can be detected when running

tak. No variation occurred in unifications; in message counts, three of the temporally-

inflated versions showed slightly more activity than the other versions.

CHAPTER 6. TESTING AND RESULTS 87

1.04

1.02

1

0.98

0.96

120

100

80

60

40

20

0

ILO ILM 'so TSM NLO MLH NSO NSM $50

Figure 6.5: Unification average, minimum, and maximum for tak.

4-0

-.-

—0-0

BINDs -

Tokens

ILO ILM 'so ISM NLO NLM NSO NSM

Figure 6.6: Message counts for tak.

CHAPTER 6. TESTING AND RESULTS

6.3.3 Shallow-nondeterministic Programs

qsort

88

Quicksort, like the Fibonacci program, also uses a divide-and-conquer approach, parti-

tioning its input list into two smaller lists and sorting each of those. The qsort program

differs from fib, however, in that it takes advantage of some stream AND-parallelism:

partitioning a large list can be done in parallel with sorting the two lists that result—as

the partitioning process produces the sublists, the quicksort processes can consume them.

This is a distinct gain over independent AND-parallel execution, which can only run the

quicksort processes after the partitioning is complete.

The results shown in Figure 6.7 indicate that all parallel versions had to do much more

work than the sequential interpreter—from 2.5 to 3 times as many unifications. This huge

gap is directly attributable to the lack of precise delays, which causes consumer goals (in

this case, therecursive quicksort calls) to awaken immediately a clause is unified with the

producer goal (the partition call), rather than remaining delayed until the correct clause

is determined. In cases when the partitioning process has made an incorrect choice, the

quicksort processes must be rolled back and delayed again.

As for the parallel results alone, the temporally-inflated versions performed somewhat

more unification work than their noninflated counterparts. For the message counts (see

Figure 6.8), the situation is reversed, with the inflated versions sending fewer messages

than the noninflated ones. Breaking the totals down by message type, the noninflated

versions sent far more FAILs and somewhat more ANTI-BINDs, and experienced more

annihilations. BINDS and termination token counts remained stable across all versions.

This trend is reversed for message counts: the inflated versions sent fewer messages than

CHAPTER 6. TESTING AND RESULTS

3.5

3

2.5

2

1.5

1

0.5

4 I

ILO ELM 'so ISM NLO NLM NSO NSM SEQ

Figure 6.7: Unification average, minimum, and maximum for qsort.

the noninflated ones.

89

union

The set union program is similar in structure to quicksort, since the sets are represented as

ordered trees. That is, the set union is performed by selecting the root of one of the trees

as a pivot, and partitioning the other tree according to that pivot (the first tree is trivially

partitioned). A divide-and-conquer approach may then be used to find the respective

unions of the left subtrees and the right subtrees, thereby finding the union of the original

two trees.

Unification results (Figure 6.9) demonstrate the same sort of behavior that quicksort

did: all parallel versions take significantly more unifications than the sequential version to

reach the solution. However, the penalty for allowing goals to awaken prematurely is not

CHAPTER 6. TESTING AND RESULTS 90

200

150

100

50

0

I I I I

- .- s.

I

• •-4-

I

-

I

-

FAI Ls
_o-- -•.--•-

-.---.-

- ,
.—,.

.
.

ANTIs

BINDs

.-.- -.-.- .-.--.- -..---.- -.--.-
.-.--... - - -- .-.-.-

Tokens

. 1.a , . a l e I t I I I

ILO ILM ISO ISM NLO NLM NSO NSM

Figure 6.8: Message counts for qsort.

as severe here. The reason for this is simple: partitioning an ordered tree of size n does not

require every node to be processed (and therefore, 0(n) goals woken); on average, only

0(10g2 n) nodes need be accessed.

Comparing parallel results, the inflated versions did significantly more work than

the noninflated ones, particularly in unifications done, but also in messages sent (see

Figure 6.10). Changing the size of the time window also had a clear effect: small-window

versions performed better than their large-window counterparts in both measures. The

versions giving low message counts did so because they sent fewer ANTI-BIND messages

and encountered fewer annihilations.

CHAPTER 6. TESTING AND RESULTS

6

5

4

3

2

1

ILO ILM ISO ISM NLO NLM NSO NSM SEQ

Figure 6.9: Unification average, minimum, and maximum for union.

300

250

200

150

100

50

IL

/
/
/
/

ILM ISO

Annihs
. _.--ITT
V, KA

BINDs

Tokens

I . I

NLO NLM NSO NSM

Figure 6.10: Message counts for union.

91

CHAPTER 6. TESTING AND RESULTS 92

inter

The set intersection program is very similar to that for union. The main difference is that

trees must be reorganized, since the root node of a (sub)tree must be deleted if it does not

occur in the other tree; some other node must take its place. Beyond this, the divide-and-

conquer approach is familiar: select the root node of one tree, partition the other according

to that node, and perform the intersection on both of the resulting subtree pairs.

Unification results for the intersection program (Figure 6.11) are similar to those for

the union program. Parallel execution took about twice as many unifications as sequential;

this is again attributable to rollbacks and backtracking caused by having consumer goals

awaken too soon.

Unlike many of the other test programs, the presence or lack of temporal inflation had

little effect on the results for inter. In this case, more noticeable was that the versions

accepting all pending messages outperformed those accepting only one incoming message

per unification, both in the number of messages sent (see Figure 6.12) and in the number of

unifications done. In breaking down the message count figures, the differences are mainly

due to variations in the number of BIND and ANTI-BIND messages sent, either to be

received or annihilated.

6.3.4 Deeply-nondeterministic Programs

x15 and xyl5

The x15 program and its relative, xyl5, were designed to display vigorous (if rather

shallow) nondeterministic behavior. Because of this nondeterminism, performance was

measured in two ways: once for finding the first solution, and again for finding all solutions.

The programs (and queries for each) are displayed in Figures 6.13 and 6.14: they

CHAPTER 6. TESTING AND RESULTS 93

4

3.5

3

2.5

2

1.5

1

0.5
ILM 'so ISM NLO NLM NSO NSM SSQ ILO

Figure 6.11: Unification average, minimum, and maximum for inter.

300

250

200

150

100

50

I \
I \

II

7—.. _4__•

.—*
I ' ---.- / Annihs

/ FAILs

' I ANTIs
fr•••S ..—' #

- - ---.-. /
/ — '--4.

ILO ILM ISO ISM NLO

' I,

NLM NSO NSM

BINDs

Tokens

Figure 6.12: Message counts for inter.

CHAPTER 6. TESTING AND RESULTS 94

x(1,2)

x(2,3)
x(3,4)

x(4,5)

x(5,1)

:- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A).

Figure 6.13: Program and query for x15.

x(1,N) :- y(1,N)
x(2,N) :- y(2,N)
x(3,N) :- y(3,N)
x(4,N) :- y(4,N)
x(5,N) :- y(5,N)

y(l,2)

y(2,3)

y(3, 4)

y(4,5)
y(5,l)

:- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A)

Figure 6.14: Program and query for xyl5.

have the property that each process tries to bind two variables, and that each variable is

shared by two processes. When x 15 is run, three (or rarely, four) processes will contribute

bindings; for xy 15, each process may contribute a binding to the solution. As a result,

execution can easily result in a situation like that in Figure 5.7, causing one or more

solutions to be missed because of the over-optimization of FAIL messages. (In fact, this

over-optimization, discussed in Chapters 4 and 5, was only discovered during all-solutions

testing.)

Results for these tests are thus on rather shaky ground. In the all-solutions testing, test

runs that missed solutions obviously have to be discarded—but then the successful runs

whose results are retained no longer give a representative sample of the possible execution

paths. The situation is even worse for the single-solution case: in every test run, a solution

CHAPTER 6. TESTING AND RESULTS 95

was found, but there is no guarantee that that solution was "first." Therefore, first-solution

results must be deemed completely unreliable.

Only the results for successful all-solutions runs are presented (in Figures 6.15 through

6.18), and these permit only guarded comparison between different versions of the parallel

system. (Some versions may succeed more often than others. For the xyl5 program,

the inflated versions were less likely to miss a solution, given the synchronizing effect of

temporal inflation and the fact that any process can be a producer.) All parallel versions

do much more work than the sequential interpreter.

In unifications for x15 (Figure 6.15), the noninflationary versions performed slightly

better than the inflated ones. The same holds for the message counts (Figure 6.16). As

well, the many-message versions sent and received fewer messages than the one-message

versions, reporting fewer BINDs, ANTI-BINDs, and annihilations (but more FAILs).

For xyl5, the results changed dramatically, both for unifications and for message

counts (see Figures 6.17 and 6.18 respectively). The temporally-inflated versions per-

formed much better than the noninflated versions. Also, the many-message versions were

superior to the one-message versions, particularly in the noninflated cases. Breaking down

the message counts by type reveals more detail. In every category but termination tokens,

the noninflated versions reported higher counts than the inflated ones. One-message ver-

sions were higher in ANTI-BINDs, FAILs, and annihilations, but lower in BINDs, than

their many-message counterparts.

CHAPTER 6. TESTING AND RESULTS 96

7

6

5

4

3

2

1

ISO ISM NLO NLM NSO MSM SEQ ILO ILM

Figure 6.15: All-solutions averages, minima, and maxima for x15.

CHAPTER 6. TESTING AND RESULTS 97

700

600

500

400

300

200

100

0

25

20

15

10

.-

I

fr—

I I I I

'S I 'S

N .

-'-

/ •-o

/
/

\ /

Annihs

• - 4.
_•-•S

/
/

FAILs
-

ANTIs

-
--.-

BINDs

- .- - - -.- -.-
-.-.-

-.-.- -.-.-

Tokens

l_. •l . 1 . . 1 . II. II I. 9 I,

ILO ILM 'so ISM NLO NLM NSO NSM

Figure 6.16: All-solutions message counts for x15.

I I I I I I

ILO ILM ISO ISM NLO NLM NSO NSM SEQ

Figure 6.17: All-solutions averages, minima, and maxima for xyl5.

CHAPTER 6. TESTING AND RESULTS 98

3500

3000

2500

2000

1500

1000

500

0

I \

I
I

(
j -

I
-

I /
I I
I \ I
I \ I

I I
I I

Annihs

- I

I FAILs

I /
II --'—

I ANTIs

•-•S ••• -- / / •-•---• / / —
'I

, BINDS

- - -.— - -.—- -: - -
_I. . 1 * . 1 . •I• . 1 . •I• ,t,Token

LO

6.4 Analysis

LM ISO ISM NLO NLM MS NSM

Figure 6.18: All-solutions message counts for xyl5.

6.4.1 Comparison with the Sequential Interpreter

In all of the fully-deterministic tests (mmult, fib, and tak), the parallel runs did little

more work than the sequential interpreter did. The extra work done corresponds to rollbacks

caused by late (but consistent) messages; it could be avoided if the BIND optimization were

implemented as described in Chapter 5. Beyond this, achieving good speedups depends

only on achieving a balanced execution—work distributed equally among all processors.

Programs that were shallowly nondeterministic (qsort, union, and inter) took

significantly more work when executed in parallel than when executed sequentially. For the

most part, this was because consumer goals were woken prematurely. A large improvement

would be expected with the addition of more-precise delay declarations. Further (though

CHAPTER 6. TESTING AND RESULTS 99

mmult fib. tak qsort union inter x15 xyl5 Total

INFL/NON 0 0 0 +NON +NON 0 +NON +INFL +2 NON

SML/LGE 0 0 0 0 +SML 0 0 0 +1SML

ONE/MANY 0 0 0 -1-ONE 0 0 0 -4-MANY 0

Table 6.2: Summary of comparisons of unifications.

xnmult fib tak qsort union inter x15 xyl5 Total

INFL/NON 0 0 0 +INFL +NON 0 +NON +INFL 0

SML/LGE 0 0 0 0 +SML 0 0 0 +1SML

ONE/MANY -i-ONE 0 0 0 0 0 +MANY +MANY +1 MANY

Table 6.3: Summary of comparisons of message counts.

less dramatic) improvement would come again from adding the BIND optimization.

The deeply-nondeterministic programs (x15 and xyl5) were clear losers in paral-

lel execution. Where there are clear producer/consumer relationships (for example, the

generate-and-test strategy of the n-queens program), using delays to control stream AND-

parallel execution may be of avail. Some programs, such as those tested, have no obvious

producers or consumers; in this case, it must be sufficient merely to deal with the programs

successfully, in the hope that the nondeterminism is isolated, so that the program as a

whole still benefits from AND-parallel execution. Such programs could still benefit from

both the BIND and ANTI-BIND optimizations, however.

6.4.2 Comparison Between Parallel Versions

Differences between versions of the parallel system were not overwhelming. A summary

of the better and worse results is presented in Tables 6.2 and 6.3. (As noted above, results

for x15 and xyl5 are somewhat suspect, but they are included for completeness.)

CHAPTER 6. TESTING AND RESULTS 100

Temporal inflation

Allowing temporal inflation gave no benefit in the fully deterministic test runs, and seemed

clearly detrimental in the shallowly nondeterministic executions. (This detrimental effect

would likely be removed by avoiding the premature awakening of consumer goals and

adding the BIND optimization.) Only in the xyl5 test was inflationary execution of any

avail.

At present, it is too early to tell whether the inflationary option should be retained;

the information presented above is inconclusive. Tests seemed to go as expected, with

temporal inflation having little effect on deterministic programs, but affecting the execution

of deeply nondeterministic programs.

Two factors must yet be examined: the effect of the BIND optimization on the results

reported by the inflated versions, and the effect of inflationary execution on other deeply

nondeterministic programs.

Small vs. large time window

The results comparing large and small time windows are even less conclusive than those

for inflationary execution. Only one program exhibited behavior that depended on using

a small or large message window. Testing of further examples is also indicated here; one

line of attack would be to try "busier" programs, in order to test the system under heavier

message traffic.

One vs. many messages

The results for accepting one or all pending messages are also inconclusive, although they

at least suggest that the "many" version is superior for running deeply nondeterministic

programs, while the "one" version may be better with deterministic and shallowly nonde-

CHAPTER 6. TESTING AND RESULTS 101

terministic programs. Again, further testing is indicated, so that these suspicions can be

corroborated or denied.

6.43 Conclusion

AND-parallel execution worked very well for the deterministic examples. For shallow

nondeterininism, the results were less impressive, but there is hope that by applying the

BIND optimization and delaying output unifications, parallel performance could improve

dramatically. Finally, the results for executing deeply-nondeterministic programs were

poor, as expected. Even in this case, there is hope: such programs would benefit from both

BIND and ANTI-BIND optimizations, and inflationary execution may help sort priorities

out so that parallel execution is not too expensive.

Chapter 7

Conclusion

This thesis describes the implementation and testing of a distributed AND-parallel inter-

preter for pure Prolog. The interpreter is based on an algorithm due to [Cleary et al 1987].

This is a stream AND-parallel backtracking algorithm, incorporating the advantages of

both the concurrent logic programming languages (i.e. dependent parallelism) and the

independent AND-parallel Prologs (i.e. backtracking). The combination offers more par-

allelism than is available in the independent AND-parallel systems, while retaining the

Prolog semantics given up by the concurrent languages. The language accepted by the

interpreter is kept as close to Edinburgh-style Prolog as possible.

In implementing the algorithm of [Cleary et al 1987], several problems arose, leading

to minor corrections to the algorithm and a more exact specification. A prominent example

came in dealing with aliased variables: if two variables were aliased to each other, then

binding one would immediately require binding the other. On backtracking, the system

would be unable to determine which binding occurred first, making correct execution

impossible. To alleviate this problem, aliasing was prevented by using delays on =/ 2.

Other refinements include specifying when a process may accept incoming messages

safely: only during forward execution—that is, after a successful unification.

A number of optimizations were suggested in the original algorithm. A BIND message

arriving in the past of a process need not cause that process to roll back, as long as the

bindings in the BIND are compatible with those already known to the process. Similarly,

an ANTI-BIND need not cause a rollback if search paths rejected because of the original

1O2

CHAPTER 7. CONCLUSION 103

binding are retried. These optimizations were not implemented, but a proposed imple-

mentation was described, and testing suggests that adding them would be well worth the

effort.

Testing demonstrated that the system worked well for fully deterministic test programs,

with few runs requiring more than 10% more unifications than a comparable sequential

interpreter. Results for shallowly-nondeterministic programs were less encouraging, as

parallel runs took on average two to three times as many unifications as a sequential run.

Still, this result is not as bad as it seems. Two alterations to the system would completely

prevent this extra work from being done: first, implementing the BIND optimization;

and second, preventing consumer goals from executing too soon by postponing output

unifications in producer goals until the chosen clause is known to be the correct one.

Deeply-nondeterministic programs, as expected, performed poorly. Such programs

would benefit from both the BIND and ANTI-BIND optimizations. Executing these

programs also made it clear that the original algorithm contained an over-optimization

that allowed potential solutions to be missed. This over-optimization, concerned with

directing nonlocal backtracking via FAIL messages, was analyzed in depth and a new,

safer optimization was proposed.

Eight different versions of the system were tested, corresponding to all possible combi-

nations of the three binary execution parameters available. Variations between the versions

were small, but visible. Further testing is required to determine the relative utility of each

of the versions. This is particularly true of the deeply-nondeterministic programs, whose

results were tainted by the effects of the FAIL over-optimization.

CHAPTER 7. CONCLUSION 104

7.1 Future Work

Several opportunities exist for further work. Some affect the execution algorithm; others

affect the speed or usability of the system. Improvements include the following:

• replacing the FAIL over-optimization with code that handles FAIL messages cor-

rectly;

a implementing the BIND and ANTI-BIND optimizations;

• altering the system to send BINDs and ANTI-BINDs to specific recipients, rather

than broadcasting them;

• using a different, faster message-passing subsystem;

• implementing more powerful delays;

• adding more builtins (particularly negation).

As each of these improvements is made, the system should be tested and evaluated, using

both the test programs used in this thesis and other ones.

The most important improvement is to remove the FAIL over-optimization. This

alteration will result in correct execution in all cases, which is clearly desirable—and

necessary. Adding the BIND optimization should improve the performance of all test

programs. The ANTI-BIND optimization should help deeply-nondeterministic programs.

(Deterministic and shallowly-nondeterministic programs do no nonlocal backtracking, and

therefore will not gain from this optimization.)

Alterations to the message-passing system will improve the scalability and speed of

the system. Scalability will be enhanced by eliminating message broadcasts, which work

CHAPTER 7. CONCLUSION 105

well enough on a five-processor platform but could easily cause a larger system to be

swamped with messages. Speed could be increased by using a faster message-passing

system, whether ear processes were retained or an interrupt-driven scheme were used.

The remaining additions allow more functionality and flexibility to the user. As such,

they appear somewhat tangential to the main goal of furthering research. However, they

will eventually become necessary to allow a larger set of Prolog programs to be tested.

Many possible improvements have not been listed. For example, it would be nice to

have a blindingly-fast compiler-based system. However, this and other additions must be

left to the interested implementor.

7.2 Summary

The work presented in this thesis constitutes a significant contribution to research in the

field of parallel Prolog systems. Contributions of the work include the following:

• A real, working distributed stream AND-parallel interpreter for pure Prolog, based

on the algorithm of Cleary et a!, has been implemented.

• Testing of the implementation demonstrates that a flexible goal-ordering method

based on virtual time can achieve good performance, and that changing the goal

ordering can affect that performance.

• Proposed implementations of optimizations to improve performance for shallowly-

and deeply-nondeterministic programs were presented.

• The system provides a base for further research into parallel Prolog execution—for

example, for experimenting further with different goal-ordering strategies.

CHAPTER 7. CONCLUSION 106

Based on the results of this and other work [Tebra 1989, Somogyi eta! 1988], it is clear

that the benefits of stream parallelism need not be traded off against the ability to back-

track. Stream AND-parallelism and backtracking can successfully be combined in a single

system, and at acceptable cost.

Bibliography

[Beer 1990]

[Clark & Gregory 1986]

[Cleary et al 1987]

[Conery 1987]

[Conery & Kibler 1985]

[DeGroot 1984]

[Dijkstra et a! 1983]

[Foster & Taylor 1990]

[Hwang & Briggs 1984]

[JADE 1985]

[Jefferson 1985]

Joachim Beer. Concepts, Design, and Performance Anal-
ysis of a Parallel Prolog Machine. PhD thesis, GMD Re-
search Center for Innovative Computer Systems and Com-
puter Technology, Technical University Berlin, 1990.

K.L. Clark and S. Gregory. PARLOG: parallel programming
in logic, ACM TOPLAS, 8(l):1-49,1986.

J.G. Cleary, B.W. Unger, and X. Li. A distributed AND-

parallel backtracking algorithm using Virtual Time. Re-
search Report 87/281/29, Department of Computer Science,
University of Calgary, October 1987.

John S. Conery. Parallel Execution of Logic Programs.

Kluwer Academic Publishers, 1987.

John S. Conery and Dennis F. Kibler. AND parallelism and
nondeterminism in logic programs, New Generation Com-

puting, 3(1):43-70, 1985.

Doug DeGroot. Restricted AND-parallelism, In Proceed-
ings of the 1984 Interntional Conference on Fifth Genera-

tion Computer Systems, pages 471-478, Tokyo, November

1984.

E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren.

Derivation of a termination detection algorithm for dis-

tributed computations, Information Processing Letters,

16:217-219,1983.

Ian Foster and Steve Taylor. Strand: New Concepts in Par-

allel Programming. Prentice-Hall, 1990.

Kai Hwang and Fay6 A. Briggs. Computer Architecture and

Parallel Processing. McGraw-Hill, New York, 1984.

SRDG, University of Calgary. JADE User's Manual, 1985.

David R. Jefferson. Virtual Time, ACM TOPLAS, 7(3):404-
425, July 1985.

107

BIBLIOGRAPHY 108

[Jefferson & Sowizral 1985]. David R. Jefferson and Henry A. Sowizral. Fast concurrent
simulation using the Time Warp mechanism, In Proccedings
of the SCS Distributed Simulation Conference, San Diego,
CA, January 1985.

[Kale 1985] L.V. Kale. Parallel Architectures for Problem Solving.
PhD thesis, Department of Computer Science, SUNY Stony
Brook, 1985.

[Li & Martin 1986]

[Lloyd 1984]

[Naish 1986]

[Pereira et al 1986]

[Shapiro 1983]

[Somogyi et al 1988]

[Tebra 1987]

[Tebra 1989]

P. Li and A.J. Martin. The Sync model: a parallel execution
method for logic programming, In Proceedings of the 1986
Symposium on Logic Programming, pages 223-234, Salt
Lake City, Utah, 1986.

J.W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1984.

Lee Naish. Negation and Control in Prolog. PhD thesis,
Department of Computer Science, University of Melbourne,
1986. Published as Lecture Notes in Computer Science 238
by Springer-Verlag.

L.M. Pereira, L. Monteiro, J. Cunha, and J.N. Aparfcio.
Delta Prolog: a distributed backtracking extension with
events, In Proceedings of the Third International Conference
on Logic Programming, pages 69-83, 1986. Published as
Lecture Notes in Computer Science 225 by Springer-Verlag.

Ehud Shapira. A subset of Concurrent Prolog and its inter-
preter. Technical Report TR-003, ICOT, February 1983.

Z. Somogyi, K. Ramamohanarao, and J. Vaghani. A back-
tracking algorithm for the stream AND-parallel execution
of logic programs. Technical Report 87/10, Department of
Computer Science, University of Melbourne, May 1988.

Hans Tebra. Optimistic AND-parallelism in Prolog, In Par-
allel Architectures and Languages Europe, pages 420-431,
1987. Published as Lecture Notes in Computer Science 258

by Springer-Verlag.

Hans Tebra. Optimistic AND-Parallelism in Prolog. PhD
thesis, Vrije Universiteit, Amsterdam, 1989.

BIBLIOGRAPHY 109

[Thom & Zobel 1988]

[Ueda 1985]

• J.A. Thom and J. Zobel. NU-Prolog Reference Manual,
Version 1.3. Department of Computer Science, University
of Melbourne, 1988.

K. Ueda. Guarded Horn clauses. Technical Report TR-103,

ICOT, June 1985.

Appendix A

Pseudocode for AND-Parallel Prolog Algorithm

Local Goal Execution

handle incoming messages
if a woken goal is available then

choose it for execution
else

choose a pending goal

increment local clock

create goal stack frame
if goal satisfies delay conditions then

continue with local clause execution for first clause of goal

else
put goal on delayed list

continue with local goal execution

Local Clause Execution

create clause stack frame
increment ID counter; use value as unique ID for frame
resolve current goal against head of chosen clause

if resolution fails then
continue with local clause failure for this clause

else
move any goals that now satisfy delays from delayed list to woken

list
determine all shared variables bound by the resolution

send one BIND message to each processor
for each outgoing BIND, store a corresponding ANTI-BIND

if process limit not reached then
create a process for each clause subgoal that specifies a

new process
continue with local goal execution

110

APPENDIX A. PSEUDOCODE FOR AND-PARALLEL PROLOG ALGORITHM 111

Local Goal Failure

send one ANTI-BIND message for each outgoing message of current frame

if current stack frame is a remote frame then
send FAIL message to originator
include information from sibling stack frame, pretending that frame
is local, even if it is actually a remote frame
backtrack all bindings associated with this frame
delete this clause frame and parent goal frame
continue with local goal execution from sibling stack frame

else
backtrack all bindings associated with this frame

if child processes from this frame exist then
kill those child processes

delete subgoals of this frame from all lists

return re-delayed goals from woken list to delayed list

delete this clause frame
continue with local clause failure from goal frame

Local Clause Failure

select next clause
if no alternative clauses for current goal then

delete goal frame
if goal was woken then

return goal to woken list
else

return goal to pending list
continue with local goal failure of sibling

else
continue with local clause execution for selected clause

Receipt of Bind Message

look for goal frame with same timestamp as that of incoming message

if goal frame exists then
if associated clause frame has a unique ID greater than message
then

ignore the incoming message and exit
else

APPENDIX A. PSEUDOCODE FOR AND-PARALLEL PROLOG ALGORITHM 112

roll back stack frames up to and including associated
clause frame
create clause frame with unique ID of message

else
roll back stack frames with timestamp greater than message

create goal frame and clause frame for message
attempt unification of bindings in message with local variables

if unification fails then
remove goal and clause frames

else
move any goals that now satisfy delays from delayed list to woken

list

Receipt of ANTI-BIND Message

look for goal and clause frame with same timestamp and unique ID
if frames exist then

roll back all stack frames up to located goal frame

else
ignore message

Receipt of FAIL message

look for goal and clause frame with same timestamp and unique ID

if frames exist then
if prior stack frame does not already exist then

create new goal and clause frames with sibling timestamp
and ID supplied by FAIL message, and insert in stack

if frames are remote then
send FAIL message to originator
include info from sibling, pretending that frame is local

roll back all stack frames through to located goal frame
continue with local goal execution from sibling stack

frame
else

roll back all frames with timestamp greater than message
continue with local clause failure of clause frame

else

ignore the message

Appendix B

Source Code of Test Programs

Matrix multiplication

mmult(M1,M2,MM) :-

transpose (M2,M2T),

matinult (M1,M2T, MM) .

transpose(M, []) :-

nulirows (M).

transpose (Ml, (RowIM2J) :-

makerow (Ml, Row,M3),

transpose (M3,M2).

makerow([], [I, El).

makerow([[XIR1] IMi], [XIRow], [RlIM2]) :-

makerow(Ml,Row,M2).

nulirows (El).

nullrows([[] IM])

nulirows (M).

matmultU],_, C]).

matmult([RllM1],M2T, [MRlIRMM])
mult row (Rl,M2T,MRl) @pl,

matmult (Ml, M2 T, RMM) .

multrow(, [], El).

mult row (Ri, CC1IM2TJ, [DlIDR]) :-

dot (Rl,Cl,Dl),

multrow(Rl,M2T,DR).

dot ((], [] , 0)

dot(EH1IV1], [H21V2],Dot) :-

±s(Part,*(Hl,H2)),

dot (Vi,V2,RDot),

is(Dot,+(Part,RDot)).

?- mmult([[l,2,3,4],[6,7,8,9],[li,12,131 14]l,

[[i,2,3],E4,5,6],[7,8,9],Ei0,ii, 12 1],MM).

113

APPENDIXB. SOURCE CODE OF TEST PROGRAMS 114

Fibonacci numbers

fib (0, 1)

fib (1,1)

fib(N,F)

>(N,i)

is (Ni, -(N, 1)),

is (N2, - (N, 2)),

fib(Ni, Fi) @pi,

fib(N2,F2)@p2,

is(F,+(Fi,F2)).

?- fib(5,N).

The tak benchmark

tak(X,Y,Z,A) :- =<(X,Y),

tak(X,Y,Z,A)

>(X,Y),
is(Xi,-(X,i)), tak(Xi,Y,Z,Ai)@Pi,

is(Yi,-(Y,1)), tak(Yi,Z,X,A2)@P2,

is(Zi,-(Z,i)), tak(Zi,X,Y,A3)@p3,

tak(Ai,A2,A3,A).

?- tak(9,6,3,A).

Quicksort using difference lists

?- qsort(Li,L2) when Li.

qsort(Li,L2) :-

qsortdl(Li,L2, [1).

?- qsort_dl(Li,L23,L2E) when Li.

qsort_dl([],L,L).

qsortdi([XlLi),L2B,L2E) :-

part (Li, X, Littles, Bigs),

qsortdi(Litties,L2B, [XIL2M])pi,

qsortdi (Bigs, L2M, L2E) @p2.

APPENDIX B. SOURCE CODE OF TEST PROGRAMS 115

?- part(A,P,L,B) when A and P.

part([XIXs],Y,[XILs],BS)

part(Xs,Y,Ls,Bs).

part((XIXs] ,Y,Ls, [XIBs]) :-

>(X,Y),

part(Xs,Y,Ls,Bs).

part (E] ,Y, [1, []

?- qsort([27,74,17,33,94,18,46,83,65,2,32,53,28,85 199,47 128,82,6,ii],S)

Set union using ordered trees

?- neq(Ni, N2) when Ni and N2.

neq(Nl, N2) :-

>(Ni, N2).

neq(Ni, N2) :-

<(Ni, N2).

?- split(N, T, —, _) when N and T.

split(_, nil, nil, nil).

split(N, t(N,L,R), L, R).

split (N, t (X, L, R), LL, t (X, LR, R)) -

<(N, X),

split(N, L, LL, LR).

split(N, t (X, L, R), t (X, L, RL), BR)

>(N, X),

split(N, R, RL, BR)

?- union(Ti, T2, _) when Ti and T2.

union(nil, T, T).

union(t(X,L,R), nil, t(X,L,R)).

union(t(X, Li,Rl), t(X, L2,R2), t(X, L3,R3))

union(Li, L2, L3)@pi,

union (R1, R2, R3).

union(t(Xi, Li,Ri), t(X2, L2,R2), t(Xl, L3,R3)) :-

neq(Xi, X2),

split(Xi, t(X2,L2,R2), TL, TR),

union(Li, TL, L3)tpl,

union(Rl, TR, R3)@p2.

?-
t(4,t(2,t(l,nil,nil),t(3,nil,nil)),t(7,t(6,nil,flil),nil)), T).

APPENDIX B. SOURCE CODE OF TEST PROGRAMS 116

Set intersection using ordered trees

?- neq(Ni, N2) when Ni and N2.

neq(Ni, N2) :-

>(Ni, N2).

neq(Nl, N2) :-

<(Ni, N2).

?- split(N, T, —, _) when N and T.

split(_, nil, nil, nil).

split (N, t (N, L, R), L, R)

split(N, t(X,L,R), LL, t(X,LR,R)) :-

<(N, X),

split(N, L, LL, LR).

split(N, t(X,L,R), t(X,L,RL), RR) :-

>(N, X),

split(N, R, RL, RR).

?- inter(Ti, T2, T3) when Ti and T2.

inter(nil, , nil).

inter(t(_,_,_), nil, nil).

inter(t(Xi,Li,Ri), t(X2,L2,R2), t(Xi,LI,RI)) :-

mem(Xi, t(X2,L2,R2)),

split(Xi, t(X2,L2,R2), TL, TR),

inter(L1, TL, LI)@pl,

inter(Ri, TR, RI)@p2.

inter(t(Xi,Li,Ri), t(X2,L2,R2), TI) :-

non mem(Xl, t(X2,L2,R2)),

split(Xl, t(X2,L2,R2), TL, TR),

inter(Li, TL, LI)@pi,

inter(Rl, TR, RI)@p2,

make_tree(LI, RI, TI)@p3.

?- mem(N, T) when N and T.

mem(N, t(N,_,_))

mem(N, t(X,L,_))

<(N, X),

mem(N, L).

mem(N, t(X,_,R)) :-

>(N, X),

mem(N, R).

7- non mem(N, T) when N and T.

non mem(_, nil).

non mem(N, t(X,L,_))

<(N, X),

non mem(N, L).

non mem(N, t(X,_,R))

APPENDIXB. SOURCE CODE OF TEST PROGRAMS 117

>(N, X),

non_mem(N, R).

rightmost (t(X,L, nil) , X, L).
rightmost(t(X,L,R), RN, t(X,L,RR))

rightmost (R, RN, RR).

?- make_tree(Tl, T2, _) when Ti and T2

make _tree (nil, T, T).
make tree(t(X,L,R), nil, t(X,L,R)).

make_tree Ct (X, L,R), t (X2, L2,R2), t(RM,

rightmost (t(X,L,L), RN, LL).

?- inter(t(6,t(4,t (3,t(i,nil,nil) , nii)

t(4,t(2,t(i,nil,riil),t(3,nhl,

x15 program

x(l,2)

x(2,3)

x(3,4)

x(4,5)

x(5,i)

LL,t(X2,L2,R2)))

,t(5,nil,nil)),t(8,t(7,nil,nil),riil)),

nil)),t(7,t(6,nil,nil),nil)), T).

?- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A).

xyl5 program

run(A,B,C,D,E) :- x(A,B), x(B,C)@pi, x(C,D)@p2, x(D,E)@p3, x(E,A)@p4.

x(1,N)

x(2,N)

x(3,N)

x(4,N)

x(5,N)

y(i,2)
y(2,3)

y(3,4)

y(4,5)

y(5,l)

y(l,N)

y(2,N)

y(3,N)

y(4,N)

y(5,N)

?- run(A,B,C,D,E).

