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Abstract 

This thesis documents the implementation and testing of a distributed Prolog interpreter 

that exploits one of the major forms of parallelism available in Prolog: AND-parallelism. 

Previous AND-parallel systems have had to make a tradeoff, sacrificing potential par-

allelism to retain the semantics of sequential Prolog, or giving up those semantics (in 

particular, completeness) in order to achieve maximum parallelism. This tradeoff is seen 

to be unnecessary when a total ordering is imposed on the goals executed by the parallel 

system. 

The implementation described in the thesis is based on an algorithm due to Cleary et al, 

which uses Virtual Time to impose this total ordering. In the course of implementing the 

distributed Prolog system, several points of the algorithm were clarified and a number of 

small errors corrected. As well, an apparently obvious optimization to the algorithm was 

found instead to be an over-optimization that caused the system to miss solutions. This 

work resulted in a working parallel Prolog system blemished only by the over-optimization; 

as well, a safer optimization is outlined. 

The system was tested using a variety of Prolog programs—some that featured inde-

pendent AND-parallelism, some that offered stream AND-parallelism between dependent 

goals, and some that were highly nondeterministic. For each program, different goal-

ordering strategies were tested. Results showed that several programs ran well under the 

parallel system, and suggested that others could be made to run well with the addition 

of two optimizations; proposed implementations for these optimizations are described in 

detail. 
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Chapter 1 

Introduction 

One of the constants of the computing field is the insatiable need for greater computer 

power to solve ever-larger problems. On the hardware end, this need has been met in 

two ways: through advances in computer architecture, but mainly by producing ever-

faster hardware devices [Hwang & Briggs 1984]. As the physical (and economic) limits 

to device speeds have been approached, attention has shifted more toward producing better 

architectures. In this light, parallel architectures have become increasingly attractive; a 

single-CPU supercomputer costs far more than a parallel system of comparable power that 

uses many less-advanced CPUs. 

With the shift in hardware focus comes a similar shift in software focus. In order to 

exploit the power of a parallel computer, a program must itself be parallelizable. The 

sequential codes of yesteryear rarely meet this criterion; thus the widespread interest in 

developing parallel algorithms. (Thus also the continued interest in fast sequential systems, 

which allow "dusty-deck" sequential codes to be run more quickly without modification.) 

Designing parallel algorithms is itself no easy task, particularly when they must be 

expressed in a programming language or pseudocode which is essentially sequential, even 

though it may incorporate parallel constructs. The economic savings of running programs 

on an inexpensive multiprocessor platform rather than on an expensive uniprocessor ma-

chine may well be outweighed by the cost of rewriting software to run in parallel. 

An attractive alternative is to use a nonprocedural language, since such languages are by 

definition asequential; where statements in a procedural language program imply a specific 
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CHAPTER 1. INTRODUCTION 2 

order of execution, statements in a nonprocedural language do no such thing. A good ex-

ample is Prolog, a declarative language based on first-order predicate logic. Because logic 

is asequential, so by extension is (pure) Prolog. The conjuncts and disjuncts of a Prolog 

program imply no particular order of execution (though sequential Prolog implementations 

require that some ordering be imposed), so they should be readily parallelizable. 

The use of Prolog or another nonprocedural language offers an additional benefit: 

since it is higher-level than a procedural language, programmers can concentrate more on 

algorithms and less on low-level details. Thus, the cost of parallelizing software would be 

reduced. 

Two main forms of parallelism are available in Prolog, corresponding to the conjuncts 

and disjuncts of a Prolog program. OR-parallelism refers to the concurrent execution of a 

group of disjuncts; AND-parallelism refers to the parallel execution of conjuncts. 

Many parallel implementations of Prolog and other logic programming languages 

already exist. Of those exploiting AND-parallelism, most either fall to extract as much 

parallelism as exists in many programs, or in attempting to extract that parallelism, they. 

give up the logical semantics of Prolog. The system described in this thesis is (to my 

knowledge) the first implementation to aspire to the best of both worlds. Jefferson's Time 

Warp [Jefferson & Sowizral 1985] model is used as a basis for combining independent 

and dependent AND-parallelism with backtracking, thus achieving maximum parallelism 

while retaining Prolog's logical semantics. 

The rest of the thesis examines the development of a fully AND-parallel Prolog. It 

begins by examining sequential Prolog, after which several parallel execution models are 

described. A backtracking algorithm allowing both dependent and independent AND-

parallel execution is outlined, and its implementation is discussed. Finally, test results and 
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an evaluation of the implementation are given. The thesis is structured as follows: 

Chapter 2 begins by introducing the Prolog language, giving its syntax and a sequential 

execution model. The various forms of parallelism available in Prolog are then 

discussed: OR-parallelism, AND-parallelism, and low-level parallelism. 

Chapter 3 focuses on AND-parallel execution, beginning with a look at a naive ap-

proach. Next, the two most common approaches for exploiting AND-parallelism 

are described: the independent AND-parallel models and the concurrent logic pro-

gramming languages. Finally, an approach that combines the strengths of these 

approaches while avoiding the weaknesses is introduced: the backtracking stream 

AND-parallel models. 

Chapter 4 introduces an algorithm for fully AND-parallel Prolog execution that incorpo-

rates backtracking. For backtracking to work correctly, some notion of goal ordering 

is necessary; Virtual Time [Jefferson 1985] is presented as a basis for such an order-

ing. Next, the stack structures and message types necessary for parallel execution 

are given, and an interface to the underlying virtual time system is suggested. At last, 

the execution model is presented, and several optimizations to the basic algorithm 

(as well as an over-optimization) are discussed. 

Chapter S outlines an implementation of the algorithm given in the previous chapter. 

This outline begins with an overview of the system, followed by a look at solver 

and ear processes. Next, several features of the system are examined in detail: the 

shared variable binding environment, the use of delay annotations on predicates, and 

the detection of system termination. Finally, a discussion is presented on how to 

implement the optimizations discussed previously. 
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Chapter 6 looks into the results of testing the system. First, the testing environment is 

described, and the expected effects of several factors that varied in the testing are 

discussed. Eight test programs are described, and results for each are given and 

analyzed. The results are then summarized and interpreted. 

Chapter 7 summarizes the work done on the system and suggests possible future work. 

Finally, an analysis of the contributions of the thesis is given. 

Appendix A presents an updated version of the algorithm given by [Cleary eta! 1987]. 

Appendix B lists the programs used in testing the system and the top-level queries for 

each. 



Chapter 2 

Parallelism in Prolog 

Parallelism in Prolog comes in several forms. Each of these forms has its own unique 

characteristics, and its own strengths and weaknesses, but all are based on sequential 

Prolog. Thus, we begin with a look at sequential Prolog and the algorithm for executing 

a sequential Prolog program. Then we examine each parallel variant in turn, beginning 

with OR-parallelism, moving on to AND-parallelism, and concluding with a look at other, 

lower-level, forms of parallelism. 

2.1 Prolog 

A Prolog system is a resolution [Lloyd 1984] system. A Prolog execution consists of the 

runtime system accepting a query from the user and trying to resolve it with respect to 

some program. 

A Prolog program is made up of one or more distinct predicates. Each predicate is a 

disjunction of one or more clauses. A clause consists of a head and a body, either or both 

of which may be empty. A clause with neither head nor body is the empty clause; a clause 

with a head but no body is known as a unit clause. A query from the user is a clause with 

no head. 

0 % empty clause 

head. % unit clause 

:- body. % query 

5 



CHAPTER 2. PARALLELISM IN PROLOG 6 

head : - body: % "normal" clause 

The head of a clause, if it exists, is a positive literal; the body, if it exists, is a conjunction 

of one or more positive or negative literals. A literal consists of afunctor (with some arity) 

and its arguments. 

if ( 3, a) % functor f/2, with arguments 3 and a 

Overloading functor names is permitted; thus, a functor f with arity 2 (written f/2) 

is distinct from the functor f /3. Each argument is a term; a term is a literal, a constant, or 

a variable. 

2 % constant 

X % variable 

a, f (Y) % literals 

In a Prolog system, execution cycles through three phases: goal selection, clause 

selection, and unification. The goal-selection mechanism chooses a goal to be resolved 

from a goal list; initially, this list is composed of the literal(s) in the user's query. The clause 

selection mechanism then attempts to find a clause with a head whose functor matches that 

of the selected goal. Then, the arguments of the selected goal and selected head are unified 

pairwise. If the unification succeeds (i.e. the goal and head are consistent with each other), 

any variable bindings made are recorded, and the selected goal is replaced in the goal list 

by the body of the selected clause. 

In unification, a variable may be bound to some other term. If the variable is bound 

to a constant, it may not be further instantiated, or mutated in any way. If it is bound to a 

literal, the same is true, although any free variables within the literal may be bound later. If 
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it is bound to another variable, it becomes an alias for that other variable. Dereferencing it 

yields that other. Unifying several variables with each other may lead to a long dereference 

chain. 

In the standard algorithm, the selected goal is the leftmost in the goal list, and a clause 

body replacing its parent goal is placed leftmost. (Other algorithms, such as those in 

systems that feature delays, may alter this rule somewhat.) Similarly, clauses are normally 

selected from top to bottom as they appear in the input program text. When one clause of 

a predicate has been selected, no other clause in the predicate can be selected until the first 

has been backtracked. 

Backtracking occurs when a unification fails, that is, when the selected goal and selected 

clause are found to be mutually inconsistent. At this point, the clause-selection mechanism 

tries to provide another clause. If it can find an alternate clause, forward execution begins 

again with unification. Otherwise, the selected goal fails, and the execution must back up 

to the previous goal. The selected clause for this previous goal must now be rejected, and 

another selected. Whenever a clause is rejected in this manner, the bindings associated 

with it are undone; variables that were bound when the clause head was unified are now 

free again. 

Backtracking continues only until an alternative clause is found for some goal. Then, 

forward execution is restarted. Execution terminates with success when there are no more 

goals left in the goal list; when this occurs, all top-level variable bindings are printed 

out to the user. If the user requests another solution, the system behaves as though its 

last (successful) unification had failed instead, and backtracks from that point. Through 

repeated backtracking, all solutions to a query may be found (assuming that the program 

does not loop). When backtracking reaches the leftmost goal of the initial goal list and 



CHAPTER 2. PARALLELISM IN PROLOG 8 

f(l) 
f(2) 

g(2) 

g(l). 

:- f(X), g(X). 

Figure 2.1: Prolog program and query. 

no more clauses can be found, the execution terminates with failure; all possible solution 

paths have been searched. 

Consider the program and query given in Figure 2.1. From the query, we see that the 

initial goal list is 

f(X), g(X). 

Taking the goal f ( X) and the clause f ( 1) ., unification succeeds and gives the binding 

X = 1. The (empty) body is put on the goal list; the next goal selected is g ( 1). (Note that 

the binding X = 1 is reflected in this goal.) The clause g ( 2) . is selected, and unification 

fails. On backtracking, the clause g ( 1) . is selected; unification now succeeds. The goal 

list is now empty, so the system reports the binding X = 1 to the user. 

Suppose that the user wants another solution: the last unification is then treated as 

a failure and another clause for g/l is sought. Since there are no more such clauses, 

backtracking continues, so that the first clause of f / 1 is rejected. The binding X = 1 is 

rescinded, and the second clause, f ( 2) ., is selected. Unification succeeds, X is bound 

to 2, and g ( 2) is chosen as the next goal. The clause g ( 2) . is chosen and unification 

again succeeds; since no goals remain, the binding X = 2 is printed. If the user were to 

ask for a third solution, the system would eventually backtrack to the initial goal, find no 

more clauses to try, and terminate with failure. 
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fail true true fail 

Figure 2.2: Goal tree for execution of a program and query. 

Prolog execution can be represented as a tree traversal—specifically, a depth-first 

traversal. Figure 2.2 shows the tree for the program and query of Figure 2.1. Each node 

in the tree corresponds to a goal; each edge below a node for some goal corresponds to 

a clause matching that goal. Thus, each path from the root to a leaf represents a possible 

solution path. A successful path indicates a solution; a failed path represents a failed 

unification. The tree is thus disjunctive in its breadth and conjunctive in its depth: for a 

goal to be true, one or more branches below it must be true; for a branch to be true, each 

of the goals along its path must be true. 

In examining the tree, it is apparent that there are two main types of parallelism 

available. The first is known as OR-parallelism, in which the clauses of a predicate, each 

of which may produce a solution independently (i.e. branches in the tree) are searched in 

parallel. The other is known as AND-parallelism, in which several goals, all of which 

contribute to one solution (i.e. nodes from one path in the tree) are executed concurrently. 
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2.2 OR-Parallelism 

An OR-parallel system attempts to improve on sequential execution speed by parallelizing 

the clause selection component of the sequential algorithm. Rather than selecting one 

clause when trying to solve a goal and backtracking to try the others, an OR-parallel 

system selects all the clauses of a predicate at once and schedules them as separate 

processes. Subgoals within a clause are still executed sequentially. 

Because each possible solution path is allocated its own process, backtracking becomes 

unnecessary. If a process falls at an attempted unification, it need at most report its failure 

before it terminates. When a process has no more goals to solve, it succeeds and reports 

its solution. 

For all its potential, however, this scheme is not without its problems. One problem is 

simply that of too much parallelism; attempting to run each process as soon as it is created 

can cause a combinatorial explosion in the number of processes vying for processor time. 

A workable OR-parallel scheme must include some scheduling algorithm to maximize 

processor usage without introducing too much additional overhead. 

Another problem lies in maintaining a suitable binding environment. For example, 

given the program 

and the query 

:- f(X). 

two processes are created. One process attempts to bind x to the value 1; the other 
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tries to bind x to 2. In this case, the system must be able to maintain separate binding 

environments for each process, yet still allow the top-level process that interacts with the 

user and outputs results to access each binding. 

An OR-parallel system lends itself well to search-oriented applications—game-playing 

programs, for example, or map-coloring systems—in short, any application that is highly 

nondeterministic. More deterministic programs, such as compilers or operating systems, 

are poorly suited to OR-parallel computation and would leave such a system's potential 

largely untapped. 

2.3 AND-Parallelism 

An AND-parallel system attempts to improve on sequential execution speed by paralleliz-

ing the goal selection component of the sequential algorithm. Instead of choosing the 

single leftmost goal from the goal list, a process may choose multiple goals, running each 

as a new process—each maintaining its own goal list—before itself executing a goal. 

Because alternative clauses are still examined sequentially, backtracking is still neces-

sary in an AND-parallel system. This leads directly to the central problem of AND-parallel 

execution: controlling parallel backtracking, particularly in the context of resolving bind-

ing conflicts in shared variables. For example, consider the program of Figure 2. 1, running 

the two goals 

in parallel. 

When a binding conflict arises (process f wanting to bind X to 1, g wanting to bind X 

to 2, the problem arises of which goal to backtrack. In sequential Prolog, the last goal to 
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execute would backtrack first, but in the parallel case, the question of which goal executed 

"last" becomes moot. 

There are a number of different ways around this problem, each of which gives rise 

to a different class of systems. One approach is that taken by the committed-choice 

languages. Another tack is that of the independent AND-parallel (TAP) models. Finally, 

the backtracking stream AND-parallel methods attack the problem from a newer angle. 

Each of these approaches is examined in greater detail in the next chapter; the system that 

is the basis of this work belongs to the third group. 

2.4 Other Forms of Parallelism 

Other forms of parallelism are found at a lower level; in these forms, goal and clause selec-

tion both remain sequential. One possible source of parallelism comes in the unification 

step of the sequential algorithm. Sequential Prolog unifies terms pair by pair; clearly, this 

could be parallelized by unifying all pairs of terms at once. 

Again, this form of parallelism has problems to overcome. Grain size is a distinct 

factor; AND- and OR-parallel strategies can rely on the average cost of a sequential 

unification to provide a grain size large enough to prevent prohibitive overhead. With 

further decomposition into parallel unification, the average grain size may become very 

fine indeed. 

Another problem with parallel unification echoes that of the binding conflicts seen in 

AND-parallel execution. Unifications are interdependent with respect to the occur check 

[Lloyd 1984]: for example, two independently acceptable unifications 

A = f(B) 
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B = g(A) 

are unacceptable when taken together—in standard first-order semantics, a variable may 

not occur within a structure to which it is bound, so that infinite terms cannot be created. 

Since most sequential Prolog implementations omit the occur check, this point could be 

ignored, but it should certainly be considered by any serious implementor. 

Finally, the parallelism available to be exploited within a single unification may be 

severely limited. This is similar to pipelining machine instructions in hardware: the 

speedup over sequential execution is significant, but it is not scalable; adding more pro-

cessors will not reduce the execution time further. 

Another form of parallelism involves pipelining sequential execution [Beer 1990]. The 

observation that supports this idea is that the only "real" work done by a Prolog system 

is unification; the rest is overhead: calling procedures, stacking arguments, setting up 

environments, etc. Consider a root-to-leaf path in a goal tree. The goals that make up this 

path can be pipelined in the following manner: 

. the root goal spawns as a child the leftmost goal of its first clause; 

• the root goal performs its own unifications; meanwhile, the child sets up its environ-

ment and spawns its own child—the leftmost goal of its own first clause; 

• the root goal begins passing arguments to its child; either they will be early, or the 

child will have to wait for them before it begins its own unifications. 

The pipeline only stays full as long as each successive unification succeeds. When a 

unification fails, the processors "ahead" of the failure must restart with a different goal. 
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This strategy has at least one benefit: it should be able to speed up any Prolog program, 

even a highly-sequentialized "dusty-deck" one. The main drawback to this scheme is also 

speedup: the speedup in any one program is bounded by the number of pipeline stages. 

Thus, pipelining is not scalable; the only way to use more processors effectively would be 

to run several programs at once. 

Even with this small amount of parallelism, there are losses. A processor may often 

have to wait for the arguments it needs to perform its unification. Also, parallelism is 

lost when a unification fails, since the pipeline must then be refilled with goals from an 

alternate path. 



Chapter 3 

AND-Parallelism 

As noted in the previous chapter, the major hurdle in the successful exploitation of AND-

parallelism is in handling backtracking in the presence of shared variables. The naive 

method of attacking this problem would be to avoid sharing altogether, having each 

goal compute its own solutions independently and combining them afterward to find the 

complete solutions. This naive method is seen to be infeasible; thus, some other approach 

must be taken. 

One approach—that taken by the independent AND-parallel systems—achieves par-

allelism by running independent goals concurrently. Dependent goals—that is, goals that 

share variables—are run sequentially, usually using some form of backtracking to produce 

all solutions. 

The concurrent logic programming languages take the opposite approach, trying to 

maximize parallelism by allowing all goals—including those that share variables—to ex-

ecute concurrently, while disallowing backtracking. The form of parallelism exploited by 

these languages, combining independent and dependent parallelism is known as stream 

AND-parallelism [Conery & Kibler 1985]: shared variables act as communication chan-

nels between processes (goals). 

Finally, the backtracking stream AND-parallel models feature both parallel execution 

of dependent and independent goals and backtracking, at the cost of execution algorithms 

rather more complex than those of languages in the other two classes. The effort here 

is to gain the best of both worlds, achieving maximum parallelism but still allowing all 

15 
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solutions to be found. 

This chapter examines each of these approaches to AND-parallelism and describes in 

detail representative systems from each class. The relative strengths and weaknesses of 

each system are considered. 

3.1 Naive AND-Parallelism 

A simple approach would prevent shared variables from occurring at all by having each 

process keep its bindings local. Backtracking could be kept completely local, and each 

process could compute its own set of partial solutions. The set of complete solutions 

could then be generated by taking the cartesian product of all sets of partial solutions and 

discarding elements with inconsistent bindings. Consider a simple example program 

a(1). b(2). 

a(2). b(3). 

with respect to the query 

:- a(X), b(Y). 

For a (X), the set of partial solutions is { {x = i}, {x = 2} }; for b (Y), it is 

{ JY = 2}, { = 3} }. The set of complete solutions, given by the cartesian prod-

uct,is thus {{X = 1, Y = 2},{X = 1, Y = 3},{X = 2, Y = 2},{X = 2, 

Y = 3}}. 

This method provides a high degree of parallelism, but as Conery and DeGroot point 

out, it suffers from a number of drawbacks [Conery 1987, DeGroot 1984]. One such 

drawback is that since each process runs ands produces bindings independently, much 
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work can be wasted; the bindings made by one process do not constrain those made by 

another. Consider the program above with respect to the query 

:- a(X),b(X). 

The resulting cartesian product is { {x = 1, x = 2}, {x = 1, x = 3 }, {x = 2, 

X = 2), {x = 2, X = 3 } }. Discarding inconsistent and redundant bindings, we 

come up with { {x = 2 } } as the solution set. Surely much of the computation, particularly 

in the construction of the cartesian product, was wasted. In more complex examples, 

computation in generating sets of partial solutions would also be wasted. 

Another problem is that not every goal will generate bindings; some (for example > / 2) 

require one or more ground inputs. How can such a goal produce any partial solutions? 

Surely we could not ask > / 2 to generate all possible sets of bindings. 

Thus, we must conclude that the local-binding method is infeasible, given the problems 

associated with dependent goals. Some other approach is necessary that allows dependent 

goals to be handled gracefully and (more) efficiently. 

3.2 Independent AND-Parallelism 

To avoid binding conflicts, the independent AND-parallel systems must determine which 

goals can safely be run in parallel. This may be done statically, at compile time; alter-

natively, it may be done dynamically, at run time. In both cases, the object is the same: 

imposing some (partial) ordering of the goals to maximize parallelism, while still prevent-

ing binding conflicts. The rule is simple: no variable may be bound by more than one goal. 

Thus, goals with non-overlapping sets of variables may safely be run in parallel; goals with 

variables in common must be serialized. A goal that binds a variable is a producer of that 
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variable; other goals sharing the variable are consumers. A consumer of some variable 

must wait for the producer to bind it completely; then the consumer may begin execution 

and produce bindings of its own, for some other consumer. 

Static analysis, such as that used to produce the data join graphs of Kale's REDUCE-OR 

Process Model [Kale 1985], is attractive because it adds no run-time overhead; decisions 

about which goals to run in parallel are all made at compile time. Because less information 

about the variables is available at compile time than at run time (for example, two variables, 

apparently distinct at compile time, may be aliased to one another during execution), static 

analysis must be conservative. Thus, potential parallelism may be missed; for example, 

two goals may share a variable, but if that variable is bound, both goals may safely execute 

concurrently. Mode annotations are often used to help determine a producer for each 

variable, thus making static analysis easier and more precise. 

On the other hand, dynamic analysis, such as that used in Conery's AND/OR process 

model [Conery 1987], needs no annotations; all the information necessary to determine 

goal dependence or independence can be found by examining the state of the variables 

involved. Thus, (independent) parallelism is maximized. The main problem with dynamic 

analysis lies in the run-time overhead that results from continually having to check on the 

state of variables as the computation progresses. 

DeGroot's Restricted AND-Parallelism (RAP) model [DeGroot 1984] takes a hybrid 

approach: static analysis determines potential parallelism, while simple run-time checks 

determine whether that potential parallelism may be exploited. Static analysis may deter-

mine that two unbound variables could be independent; if a run-time check confirms this, 

theft respective goals are run in parallel. Similarly, a run-time check determines whether 

a shared variable is already bound; if so, goals that share it need not be sequentialized. 
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Backtracking in the lAP context is as a rule sequentialized. If an independent goal 

fails, it may backtrack on its own, but in the general case, failure of a dependent goal must 

be handled as well. For example, the consumer of some variable may fail. This failure 

may be local, so this possibility must be examined first; only when it is determined that the 

failure is due to the externally-bound variable can the producer be made to backtrack. After 

backtracking locally, this producer may in turn need a producer for some other variable to 

backtrack . . . and so it goes. 

An exception to this general rule is the SYNC model [Li & Martin 1986], in which 

variable bindings are in effect pipelined from producers to consumers, with each set of 

distinct bindings separated by a synchronizing marker. Once a goal is solved, it may 

backtrack immediately to find more solutions. Solutions must therefore be buffered, and 

"shared" variables must be kept local. This is somewhat reminiscent of the naive algorithm 

presented in Section 3. 1, except that the pipelining of results from producers to consumers 

has the desirable effect of discarding inconsistent sets of bindings as soon as they are 

detected, rather than first generating them completely. On the other hand, this method 

may not exhibit much more parallelism than sequentialized backtracking, particularly for 

highly deterministic problems or for programs in which sibling goals differ greatly in 

computation time (i.e. the speed of a pipeline is determined by the speed of its slowest 

stage). 

From this discussion, it is clear that lAP systems are not well suited to highly determin-

istic problems, except those with a high degree of data independence (matrix multiplication, 

for example). They are better suited to nondeterministic problems, in which a potential 

solution may have to be discarded and another tried. 
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3.3 Concurrent Logic Programming Languages 

The concurrent logic • programming (CLP) languages offer stream AND-parallelism, in 

which shared variables may be thought of as streams which communicate bindings between 

processes. All goals—even those with variables in common—may execute concurrently. 

Languages in this class include PARLOG [Clark & Gregory 1986], Concurrent Prolog 

[Shapiro 1983] , and GHC [Ueda 1985] and their "flat" versions; newer languages like 

Strand [Foster & Taylor 1990] have recently come on the scene as well. 

Like many independent AND-parallel systems, the concurrent logic programming 

languages reduce the problem of binding shared variables by requiring that each variable 

have exactly one producer; other processes sharing a variable are consumers. Unlike the 

case in TAP systems, however, a variable need not be completely ground before a consumer 

in a CLP system can use the binding. For example, consider the code 

produce([XIL]) :- consume ([ XIL]) :-

generate (X), use (X), 

produce (L). consume (L) 

with respect to the query 

:- produce (L), consume (L). 

In an TAP system, produce / 1 would have to terminate before consume / 1 could begin; 

in a stream AND-parallel system, consume/i can use each list element as it is produced. 

That is, a consumer can execute as soon as the variables it is waiting for are sufficiently 

bound; if a variable is bound to a structure, variables within that structure may still be 

free, and indeed may be bound by another process. The initial producer may even wait 



CHAPTER 3. AND-PARALLELISM 21 

for some consumer to bind the structure further; this is known as back communication 

[Clark & Gregory 1986]. 

In PARLOG and Strand, the designation of producers and consumers is done via mode 

declarations: for each predicate, arguments are specified as inputs or outputs. If a variable 

designated as an input is not bound when the predicate is called, the call suspends until 

the variable has been bound. In Concurrent Prolog, suspension is done instead through 

the use of read-only variables as goal arguments: if solving a goal would bind a read-only 

variable, then the goal is suspended until the variable has been bound by some other goal. 

In GHC, suspension occurs when a guard goal attempts to bind a variable; the goal then 

waits until that variable has been bound. 

The ability to have processes cooperate on constructing a solution, rather than requiring 

a producer to complete its entire computation before any consumer may begin, is the 

essence of stream AND-parallelism; it exploits parallelism inaccessible to lAP systems. 

Because processes can cooperate in creating the full binding of a variable, backtracking 

can be much more complicated than in the lAP case. To avoid this, CLP languages give up 

the backtracking of Prolog and the don't-know nondeterminism associated with it. These are 

replaced by guarded clauses and don't-care nondeterminism, in which the system commits 

to the first clause found to be acceptable; all other clauses are discarded. The concurrent 

logic programming languages are thus also known as "committed-choice" languages. 

A guarded clause has the form 

head :- guard I body. 

where "i" is the commitment operator. When a goal is executed, argument matching (a 

restricted form of unification) is attempted with a clause head. If a clause head matches 
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successfully (e.g. all input variables are bound (PARLOG), or no attempt is made to bind 

a read-only variable (Concurrent Prolog)), the clause's guard goals are executed. When all 

of the guard goals have succeeded, the commitment operator is executed, and the system 

commits to that clause. At this point, any guard computations for alternate clauses are 

aborted, and the body goals of the committed clause are executed in parallel. Also, only 

after commitment are any bindings made in the goal/head matching actually made and 

transmitted. 

This non-backtracking approach eases the shared-variable binding problem consider-

ably. Once a variable has been bound, the binding is permanent, and no information need 

be kept to tell which process bound it. Thus, goals need not be ordered as they are in the 

independent AND-parallel case. 

In terms of application areas, the CLP languages are orthogonal to the TAP systems. 

The committed-choice systems are well suited to deterministic problems, because the focus 

is more on exploiting maximum parallelism within a solution path than on finding multiple 

solutions or on having to search for the correct solution path. For nondeterministic 

problems, the CLP systems fare poorly, since they do not allow backtracking. Some 

nondeterminism is available via the use of OR-parallel all-solutions predicates, but these 

are limited. 

3.4 Backtracking Stream AND-Parallel Systems 

These systems attempt to combine the advantages of both the independent AND-parallel 

systems and of the concurrent logic programming languages: respectively, backtracking 

and stream AND-parallelism. For several years, combining the two was deemed impracti-
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cal. Recently, however, a number of algorithms have been published that efficiently com-

bine stream AND-parallelism and backtracking [Cleary et al 1987, Somogyi et a! 1988, 

Tebra 1987]. 

Central to all of these algorithms is the notion of imposing a total ordering on the 

goals executed by the system. The natural temporal goal ordering of sequential Prolog is 

what allows it to backtrack successfully, but in a distributed environment, there is no such 

ordering readily available. Thus, some ordering must be imposed artificially. 

The ordering is used to determine the priority of a goal: the earlier it appears in the 

ordering, the higher its priority. If two goals disagree on the value of a binding, the 

binding made by the higher-priority goal is accepted; the lower-priority goal must retract 

its binding and recompute. When a lower-priority goal can find no solution, it may ask a 

higher-priority goal to recompute its bindings. 

[Tebra 1987, Tebra 1989] in fact imposes on the computation Prolog's standard depth-

first ordering. The main advantage of this ordering it that it ensures that solutions are 

delivered in the same order as they would be by a sequential system. There is, however, 

the potential for a lot of "wasted" work: if a binding made deep in some branch of the 

search tree conflicted with one made to the left of it, it would have to be retracted since 

the binding to the left would have higher priority. Any work done below the right-hand 

binding would have to be undone. If it were later found that the left-hand binding was 

incompatible with any right-hand binding, work on the left-hand side would have to be 

undone and work on the right-hand side actually redone. Tebra calls his system optimistic 

in that it assumes that allowing processes to compute ahead will more than offset losses in 

having to undo and redo work. 

[Somogyi et a! 1988] orders goals on the basis of their producing or consuming van-
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ables; as with many of the TAP and CLP systems mentioned before, each variable has 

exactly one producer. The ordering is such that producers always come before consumers. 

Assuming that the producers have been chosen correctly, there will be no wasted work as 

there may be in Tebra's system: no lower-priority goal will have to retract a binding incom-

patible with that of a higher-priority goal (though it may still have to ask a higher-priority 

goal for a new binding). On the other hand, this system is conservative, since consumers 

are delayed, waiting for variable bindings rather than computing ahead. Another drawback 

is that every producer must be known at compile time, requiring the programmer to supply 

sophisticated mode declarations. 

The Delta Prolog system [Pereira et a! 1986] takes an approach similar to Tebra's 

system, except that interprocess communication and syncronization is achieved explicitly 

via event goals, rather than implicitly via shared variables. An event is a synchronous 

communication between two proceeses. Thus, processes may not compute ahead, and the 

system must be classified as conservative. 

Finally, [Cleary et a! 1987] presents an algorithm in which a Virtual Time system 

[Jefferson 1985] is used to impose an ordering on the goals. This too is an optimistic system, 

requiring no prior knowledge of producers and consumers. Thus, mode declarations are 

not necessary—though they are allowed, and can be useful in clear producer/consumer 

situations, for example. The ordering is explicitly not depth-first; rather, goal priorities are 

distributed more evenly through the breadth of the tree. Processes should therefore stay 

more closely synchronized (in terms of goal priority), and the depth of computations to be 

undone and/or redone should be less than the corresponding depth under Tebra's scheme. 

The backtracking stream AND-parallel systems are designed to work well for both 

deterministic and nondeterministic problems—that is, as well as the CLP systems for 
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deterministic problems and as well as the TAP systems for nondeterministic ones. The 

purpose of this thesis is to report on an implementation of the algorithm given in Cleary et 

al and to demonstrate that this algorithm and the implementation live up to this standard. 



Chapter 4 

AND-Parallelism Using Virtual Time 

The distributed Prolog system consists of a number of components. Each of these—the 

underlying Time Warp system, the stack structure of each process in the system, the 

messages used by these processes to communicate—are examined in detail, after which 

the relationship between these components is explored. Next, the algorithm presented in 

[Cleary et al 1987] is considered as a whole; finally, a number of possible optimizations 

are discussed. 

4.1 Virtual Time and Time Warp 

A virtual time system [Jefferson 1985] imposes on a computation a temporal coordinate 

system; all events in the computation are viewed in terms of this coordinate system. Each 

process has its own local virtual time (LVT); each event (in a Prolog system, each goal-

head unification) receives its own timestamp based on the current LVT. Time increases 

with each event, and execution is finished when all processes have a local virtual time of 

+oo (i.e. the global virtual time (GVT) is +oo). 

Virtual time is domain-specific and need not be related to real time. For example, in 

distributed simulation, the natural basis for virtual time is simulation time. In a Prolog 

system, an ordering based on the search tree maps easily onto a virtual time system. 

What distinguishes virtual time from other strategies is that it is optimistic rather than 

conservative. A process in a conservative system, before it can receive a message from 

26 
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some other process, must be sure that no other message should have arrived earlier. In 

an optimistic system, on the other hand, a process assumes that messages will arrive in 

the correct order, and receives them immediately. If the correct-order assumption holds, 

an optimistic system clearly wins. When the assumption is false, however (i.e. when a 

message arrives out of order), the computation will be incorrect unless the ordering is 

repaired. In this case, the optimistic system is little worse off than the conservative one: 

computation time wasted by an optimistic process will equal blocking time wasted by a 

conservative process performing the same computation; the optimistic method has only 

the extra overhead of undoing the incorrect computation. 

The virtual time definition does not specify how this order repair is to be carried out; 

this is left up to the individual implementation. The first implementation of virtual time 

was the Time Warp mechanism [Jefferson & Sowizral 1985]. It was designed with parallel 

simulation in mind, but the ideas behind it can be applied as well to parallel Prolog. 

The key component of the Time Warp mechanism is rollback; this is used to return 

the computation to an earlier state. When a message arrives out of order at a Time Warp 

process, the process performs a rollback to the virtual time of the message (given by its 

timestamp); then, forward execution starts again, processing the incoming messages in the 

correct order. To accomplish a rollback to a given time, a process must perform several 

operations: 

. it must "unreceive" already-received messages whose timestamp is greater than the 

given time; 

• it must cancel outgoing messages whose timestamp is greater than the given time; 

• it must restore its internal state to what it was at a time just before the given time. 
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Clearly, then, some form of state-saving is necessary. A Time Warp process uses three 

queues to do this: an input queue (IQ), an output queue (OQ), and a state queue (SQ). 

The IQ contains (in timestamp order) incoming messages for the process. The OQ holds 

negative copies of all messages sent out by the process; a message is cancelled simply by 

sending out its corresponding ant-message. The SQ contains "snapshots" of the process 

at various virtual times; the internal state can be reconstructed using these snapshots. 

Receipt of an anti-message may also cause a rollback. If its corresponding positive 

message is on the IQ but not yet received, the two messages can just "annihilate" each 

other; if the positive message has been received, the system must perform a rollback to the 

time of that message before annihilation may occur. 

4.2 Stacks and Frames 

Like most sequential Prologs, the execution of the algorithm is based around a stack. 

Entries on the stack are frames. One frame is created for each resolution step; such frames 

are known as local frames. In the distributed case, remote frames are also created to record 

variable bindings from other processes. 

Each frame contains several pieces of information, including the following: 

• a unique timestamp 

• the identity of the frame's originator 

• a unique identifier 

Frames are kept on the stack in timestamp order: the frame with the earliest timestamp is 

at the bottom of the stack; that with the latest timestamp is on the top. This ordering is 
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based on the virtual time paradigm [Jefferson 1985] and replaces the depth-first backtrack 

order of the sequential algorithm. For local frames, this timestamp order is exactly the 

depth-first order; the distinction comes from the remote frames, which are interspersed 

among the local frames in the timestamp ordering. 

A frame's originator must be known to allow for correct backtracking when a process 

can find no solutions compatible with the bindings of another process; the falling process 

must be able to cause the other process to backtrack. 

A unique identifier for each frame is necessary because timestamps, although they are 

unique (in the sense that no two frames on any one stack may have the same timestamp), 

can be reused after a rollback or backtrack. For example, if a clause for some goal is 

backtracked and another clause chosen, the frame with the old clause and that with the new 

will have the same timestamp. Since messages may (and often do) arrive late, a message 

intended to affect an old frame may errantly affect a new one instead. Thus these frames 

must be disambiguated; a simple integer counter for each process suffices for this task. 

4.3 Messages 

Because of the distributed character of the algorithm, processes must communicate with 

each other via messages, rather than by merely binding or unbinding variables, as in the 

shared-memory approach. Thus, variable bindings must be disseminated explicitly; on 

backtracking, these bindings must be retracted explicitly. This hooks in neatly to the Time 

Warp concept of message/anti-message pairs. A binding can be propagated via a BIND 

message; if that binding is later backtracked, it can be withdrawn via an ANTI-BIND 

message that will annihilate the original BIND. 
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A third type of message is necessary for a Prolog system, one that is not present in 

the Time Warp scheme. (This is because Time Warp assumes a deterministic execution 

model, so that virtual time will always increase.) This is the FAIL message, through which 

a failing lower-precedence goal in one process may cause a higher-precedence goal in 

another to backtrack. 

4.4 Mixing Prolog and Time Warp 

The Prolog system needs to provide its own versions of the Time Warp input, output, and 

state queues. The SQ has an immediate Prolog analogue: the stack. The contents of the 

stack up to a given virtual time exactly specify the state of a process at that time The stack 

can also serve as an OQ: messages sent at a given virtual time can have their anti-messages 

stored within the stack frame of that time. The only queue that needs special treatment is 

the IQ, since it may contain unprocessed messages that are in the future of the receiving 

process; the stack can only record messages from the past. 

The IQ holds messages of all three kinds. The BIND message is a classic Time Warp 

message; after being received it will remain in the input queue until its corresponding 

ANTI-BIND arrives and annihilates it. That is, it remains in the queue even after it has 

been processed, so that if a rollback causes it to be "unreceived," it will be reprocessed 

when the receiving process begins forward execution again. 

The ANTI-BIND messages are also persistent, since an ANTI-BIND may arrive before 

its corresponding BIND. Such an ANTI-BIND is not processed; it is merely enqueued until 

its BIND arrives, whereupon both are annihilated. The odd one out is the FAIL message. 

Since it is not a Time Warp message, a FAIL is removed from the input queue immediately 
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on being processed the first time, never to be replaced. 

The OQ holds only ANTI-BIND messages, each to be sent off when a rollback causes 

the local virtual time to fall below that message's timestamp. No BIND messages are 

stored in the OQ; for each BIND sent out, the corresponding ANTI-BIND is enqueued in 

the OQ. FAIL messages are never stored in the OQ either; once sent out, they are forgotten 

completely by the sender. 

4.5 Execution Model 

The distributed algorithm can be broken into several phases. Those most similar to parts 

of sequential Prolog are examined first: forward execution and local backtracking. Next, 

rollback and remote backtracking, which both relate to interactions between processes, are 

discussed. Finally, an example that demonstrates all of these phases is presented, giving a 

unified view of the system. 

Note that the execution model given below is very general; while it refers to processes, 

these are defined very loosely. They could be physical processes, distinguishable by the 

operating system; they could be logical, like those in a process-model view [Conery 1987]. 

This choice is left up to the implementor. Similarly, the algorithm does not specify whether 

parallelism is to be implicit or explicit (annotated); again, this is up to the implementor. 

4.5.1 Forward Execution 

Forward execution is straightforward. A process will select a goal to execute, next select a 

clause, and then attempt to unify the two. This is recorded in a local stack frame, along with 

any bindings made during unification; the timestamp of the frame is set to the current local 
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virtual time. Values for any variables bound by the unification are then sent (via a BIND 

message) to every other process that shares any of those variables. Next, processes may be 

spawned for the parallel execution of goals in the body of the selected clause. Finally, the 

process checks for any incoming messages. Local virtual time is then incremented, and 

the loop begins again with goal selection; this continues until no more goals are available 

to execute. When all goals on all processes have succeeded, a solution has been-found and 

may be printed. 

4.5.2 Local Backtracking 

Local backtracking is also simple. This phase begins as a result of a local goal failure; 

the previous frame on the stack is then backtracked. If this frame is a local frame, then 

backtracking occurs locally. (If the frame is remote, then remote backtracking must 

occur.) When a local goal fails, the variable bindings resulting from the unification of the 

previous goal and its current clause are undone. For each BIND message sent out after that 

unification, an ANTI-BIND message is now sent out. Also, any new processes created 

after the unification are destroyed. If another clause is available for the backtracked goal, 

forward execution begins again with their unification; otherwise, backtracking continues 

down the stack. 

4.5.3 Rollback 

Rollback may occur at the end of a forward execution cycle, when checking for incoming 

messages. If a BIND or ANTI-BIND message arrives whose timestamp is earlier than 

a process's current LVT, the process must roll back its state to what it was at a virtual 

time just before that of the message; only then may it accept the message. That is, all 
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of the work—goal and clause selection, unification, output BIND messages, and process 

creation—that was done at a virtual time after the message arrival time must be undone. 

If the message that caused the rollback was a BIND, a remote stack frame is created 

whose timestamp is equal to that of the received BIND. Binding values from the message 

are stored in this frame and compared with local values. If all bindings are compatible, 

the frame is retained; otherwise, it is discarded, and the originator of the BIND must 

backtrack. (There is no need to send a FAIL message, however; the originator will itself 

receive a BIND with the earlier values, thus rolling back on its own.) In either case, the 

receiving process then simply restarts its forward execution, possibly redoing some of its 

rolled-back work. 

If the received message was an ANTI-BIND, it will annihilate its corresponding BIND, 

and the remote frame for that BIND will be removed; variable bindings due to the BIND 

will be retracted. As in the previous case, the receiving process then restarts forward 

execution. (If the ANTI-BIND should somehow arrive before its corresponding BIND, no 

rollback is necessary; the receiver need merely hold on to the ANTI-BIND until the proper 

BIND arrives, at which point they annihilate each other.) 

4.5.4 Remote Backtracking 

Like local backtracking, remote backtracking is initiated by a local goal failure in some 

process. In this case, however, the backtracking mechanism finds that it can no longer 

backtrack locally: the stack frame it attempts to backtrack turns out to be a remote frame. 

At this point, the process sends a FAIL message to the originator of the remote frame, so 

that the bindings in that frame can be backtracked. 

After sending a FAIL message, a process restarts forward execution from the virtual 
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time at which it sent the FAIL. It does not continue backtracking, since the recipient of 

the FAIL is now backtracking. For any one failure, only one process—whether or not it 

is the one that originally failed—may backtrack at a time; backtracking must be serialized 

in order that potential solutions are not missed. Of course, if a process fails on its own 

while backtracking is under way elsewhere, if may begin backtracking itself. If the two 

backtrack paths stay separate, both may continue; if both cause the same process to fail, 

backtracking continues with the earlier failure of the two. 

The recipient of a FAIL message checks first to see that the message refers to a valid 

frame. If not, then the frame must already have been backtracked or rolled back, so the 

message is ignored and forward execution continues. If the referenced frame is a valid 

one, it must be backtracked. To accomplish this, the process rolls back to a time just after 

the timestamp of the frame in question; it then begins backtracking the frame. 

It is important to note that simply being able to make another process backtrack is 

not sufficient for correct remote backtracking. The bindings rejected by the sender of the 

FAIL may not even be the cause of that sender's failure; they may merely have the latest 

timestamp of a large group of "suspects," each of which could have contributed to the 

failure. An earlier binding in that group may be the real culprit. Thus, a process that 

receives a FAIL message needs some context with that message, since it may eventually 

backtrack to the time of the next-latest suspect. If this occurs, the process must then 

stop backtracking and force another process to backtrack—specifically, the binder of that 

next-latest suspect. 

This context may be maintained in the stack of a FAIL's recipient by inserting a remote 

frame whose originator is the FAIL's sender and whose timestamp is that of the sender's 

previous stack frame. If it encounters this frame during backtracking, it reacts as it would 
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to any other remote frame: it sends a FAIL message (including the timestamp of its own 

previous frame) back to the originator, and restarts forward execution. The originator will 

then take over backtracking again, inserting a new remote frame in its stack. 

Remote backtracking actually provides a weak form of intelligent backtracking. In 

sequential Prolog, a goal that was executed before a failed goal but after the cause of the 

failure will be backtracked, even if it is independent of the failed goal. In the parallel 

system, such an independent goal will not be backtracked, since it will not appear in the 

context of the failing goal. Refinements to this feature are discussed in [Cleary et al 1987]; 

[Somogyi et al 19881 extends intelligent backtracking to certain types of dependent goals. 

4.5.5 Example 

In order to understand the algorithm more clearly, an illustrated example demonstrating 

each phase of the execution may be of benefit.' Consider the query 

:- a(X),b(X) 

run in parallel with respect to the program 

a(1) . b(X) :- c2 (X) . c2(2) 

a(2) . b(X) :- cl(X) . C1 (1) 

The processes in this execution will be denoted Pa and Pb for top-level goal a (X) and 

b (X) respectively. 

At first, both Pa and Pb proceed with forward execution (see Figure 4.1). Pb selects 

goal b (X) and clause b (X) : - c2 (X) ., and unifies them, all at virtual time 1. It then 

continues executing forward, selecting goal c2 (X) at time 6. Meanwhile, Pa selects goal 

'Note that timestamps in this and later examples are quite arbitrary, and have no special meaning. 
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Figure 4.1: Forward execution 

a ( X) and clause a ( 1) ., and unifies them at time 3. This unification produces a binding 

for the shared variable X; thus Pa sends a BIND message to Pb with a timestamp of 3. 

Pb, now executing at time 6, receives the BIND message from Pa and discovers that 

it must roll back to process the BIND properly. It does so, rolling back to time 3 and 

accepting the binding X = 1. Pb then restarts forward execution, executing the goal 

c2 ( 1) (note the variable substitution) at time 6. Meanwhile, Pa finds that it has no more 

goals to solve; thus, it sets its virtual time to +oo and awaits termination. (This is the 

situation in Figure 4.2.) 

After selecting clause c2 ( 2) ., Pb finds that unification with goal c2 ( 1) fails. Be-

cause of this failure, it begins backtracking locally, trying to find another clause. When this 

search fails, backtracking proceeds one step further back and encounters a remote frame 

originating at Pa. Pb then initiates remote backtracking by sending a FAIL message to Pa, 
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Figure 4.3: Remote backtracking 
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Figure 4.4: Termination with solution 

including the information that it began the backtracking and that Pa should not backtrack 

to before time 1 (see Figure 4.3). 

When Pa receives the FAIL message, it immediately backtracks to time 3, retracting 

the binding x = 1 and sending out the corresponding ANTI-BIND message. It then 

tries to find another clause to match a (X) . Finding the clause a ( 2) ., it begins forward 

execution again, unifies the two, and produces the binding X = 2, again to be sent to 

Pb. Pb receives the message from Pa and accepts the binding x = 2. It then selects goal 

c2 ( 2) and clause c2 ( 2) ., and finds that they unify. After this, neither Pa nor Pb have 

any more goals to solve; both set their virtual times to +oo, and the system terminates with 

the solution x = 2 (see Figure 4.4). 

While this example is quite straightforward, it demonstrates many of the mechanisms 

used by the system. Note the new remote frame in Pa's stack; if another solution were 

requested, Pa would eventually force Pb to backtrack to time 1 and select its second clause 

for b (X); thus the context contained in the original FAIL message of Figure 4.3) allows 
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further backtracking without missing potential solutions. 

4.6 Optimizations 

One of the premises of Time Warp is that rollbacks will be infrequent enough and shallow 

enough that their cost will be low compared to the benefit gained from allowing processes 

to compute ahead without waiting for messages to arrive. This premise should also apply 

to a 'lime Warp-based Prolog system. Whether or not that premise holds, it is clearly 

beneficial to attempt to reduce both the frequency and severity of rollbacks. 

Prolog has an advantage over other applications in that its messages are highly defined: 

variable bindings are either being asserted or retracted. Thus, it is easy to tell what 

effect a message will have on the state of the system, just by inspecting its contents. Two 

optimizations suggest themselves, one applying to BIND messages and one to ANTI-BIND 

messages. These optimizations are examined below. 

The algorithm presented in [Cleary et al 1987] also attempted to minimize the number 

of FAIL messages sent, while the algorithm presented here does not. When the Prolog 

system was implemented, what appeared to be an obvious optimization for reducing FAIL 

messages turned out to be an over-optimization. 

In the text that follows, each of these optimizations is described and given motivation. 

The BIND and ANTI-BIND optimizations were not implemented; unfortunately, the FAIL 

over-optimization was. Details on the proposed or actual implementation of each may be 

found in the following chapter. 



CHAPTER 4. AND-PARALLELISM USING VIRTUAL TIME 40 

4.6.1 BIND Optimization 

The idea behind the BIND optimization is that some, even many, BIND messages need 

not cause rollbacks. The only real criterion for requiring rollback is some incompatibility 

between the bindings carried in a BIND message and the other bindings known to the 

receiving process. 

If the two sets of bindings are not inconsistent with each other, it should not be necessary 

to roll back, absorb the incoming message, and work ahead again. The very same state 

can be achieved simply by incorporating the BIND message as a remote frame in the stack 

and updating timestamps on local bindings, thus saving work in rollback and especially in 

recomputation. 

If the two sets of bindings are mutually inconsistent, two possibilities exist. Among 

the bindings that are inconsistent, either at least one binding from the BIND message 

has a later timestamp than its corresponding locally-known binding, or none have a later 

timestamp. In the first case, the BIND message will be rejected whether or not a rollback 

is performed, so there is clearly no point in rolling back. 

In the second case, a rollback is necessary, but even here there are potential gains to 

be had: rather than rolling back all the way to the time of the BIND message, the system 

need only roll back to the time of the earliest binding conflict. At this point, no bindings 

will be inconsistent; the BIND message can be integrated into the stack just as in the 

wholly-consistent case, and forward execution can begin again. 

In the best case, a rollback becomes completely unnecessary. Even in the worst 

case, the severity of the rollback may be significantly reduced. Only when a rollback to 

the time of earliest inconsistency is equivalent to a full rollback are no gains realized. 
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Thus, implementing this optimization seems well worthwhile; a possible implementation 

is presented in the next chapter. 

4.6.2 ANTI-BIND Optimization 

A similar notion of avoiding rollback and recomputation occurs for receiving ANTI-BIND 

messages. Compared to performing a rollback, removing the remote frame corresponding 

to the BIND to be annihilated, and executing forward again, it would be much quicker 

simply to remove that frame and the bindings associated with it. 

Unfortunately, and unlike the case for the BIND optimization, adding the ANTI-BIND 

optimization makes the execution algorithm rather more complex [Cleary et a! 1987]. The 

distinction here is that accepting a BIND message and the variable bindings it. contains 

has the effect of constraining the solution space; receiving an ANTI-BIND message and 

undoing some variable bindings has the opposite effect. That is, once some bindings are 

removed, a previously-rejected search path may become acceptable again. If the algorithm 

is to have any chance at completeness, such potential solution paths must eventually be 

retried. 

As for the BIND optimization, a proposed implementation of the ANTI-BIND opti-

mization is given in the following chapter. 

4.6.3 FAIL Over-optimization 

The aim of trying to optimize FAIL messages is to reduce the number of FAIL messages 

sent, and consequently to minimize wasted rollbacks. In the unoptimized algorithm, the 

context sent with a FAIL message refers to the timestamp of the previous frame on the 

sender's stack. If the FAIL's recipient cannot find an alternative without backtracking to 
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Pa Pb Pa Pb 

AIL 

Figure 4.5: Process Pa initiates remote backtracking, causing Pb to fail. Pb backtracks to 
the time given in the FAIL's context without finding a new solution, and sends a FAIL back 
to Pa, which then backtracks again. 

before that timestamp, it sends a FAIL message back to the sender (along with its own 

previous frame as context, of course). 

In some cases (for example, in Figure 4.5), the previous frame sent as context is local 

to the sender; in this case, if the failure comes back to it, the original sender will backtrack 

locally. Often, however, the context refers to a remote frame, as in Figure 4.6. In this case, 

when a FAIL is directed back at the original sender, that process rolls back all of its later 

state, sends out a FAIL to a third process, and executes forward again. This is wasteful: 

work is rolled back and then immediately redone, and another FAIL message is sent. 

The optimization proposed in [Cleary et a! 1987] suggests that failure can be directed 

immediately to the third process, bypassing the originator completely. This may be 

accomplished by including the process ID of the previous frame's originator in the context, 

along with its timestamp; this method is illustrated in Figure 4.7. This saves process Pa 

from having to roll back, and results in one less FAIL message being sent out. 

Though attractive, the optimization is buggy. In some cases, passing failure on to the 
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Figure 4.6: As for two-process backtracking, except that Pa passes failure on to Pc 
immediately on receiving the FAIL itself. 
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Figure 4.7: Rather than sending a FAIL back through Pa, Pb can send it directly to P0, and 
avoid making Pa roll back. 
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previous frame's originator rather than back to the FAIL's originator results in incorrect 

execution. Details are given in the next chapter. 



Chapter 5 

Implementation 

Based on the algorithm presented in the previous chapter, I have designed and implemented 

an AND-parallel interpreter for pure Prolog. This interpreter runs Edinburgh-style Prolog 

programs explicitly annotated for parallel execution. The real work of the system is 

done by solver processes; these solvers are accompanied by ear processes, which aid in 

interprocess communication. 

This chapter begins with an overview of the system; this is followed by a detailed 

look at solver and ear processes. Next, several features of the system are examined: the 

distributed variable binding environment, the use of delay annotations on user and builtin 

predicates, and the detection of system termination. Finally, the optimizations introduced 

in the previous chapter are discussed; though they were not implemented, the structures 

and strategies necessary to implement them are presented. 

5.1 Overview of the System 

As noted previously, the interpreter uses a message-passing approach for interprocess 

communication, rather than the shared-memory approach found in many parallel Prolog 

systems. Each approach has its own advantages and drawbacks, but these are beyond 

the scope of this thesis. For reasons of stability, reliability, and ease of use, the JiPc 

system [JADE 1985] was chosen as the message-passing subsystem. The use of JiPc does, 

however, constrain the Prolog system. Since JiPc runs under the UNIX operating system, 

45 
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JiPc processes are UNIx processes; thus, the system was designed under the assumption 

that processes' are heavyweight entities. 

Rather than having every goal become a process, only particular goals do so (specif-

ically, those designated as parallel in the text of the input program). Because of this, the 

parallelism exploited is generally less, but the overhead of process creation and scheduling 

is drastically reduced. Goals may be run in parallel with only minor annotations: the 

clause 

p(X) :- q(X)@pl, r(X). 

indicates that when the head p (X) is unified, q (X) should be run as a separate process; 

r ( X) is executed as part of the original process. 

Although parallelism must be designated, any goal may be executed in parallel, whether 

it is completely independent from any other goal, part of a producer/consumer relationship, 

or one of a group of goals that could provide competing bindings. In this, the system 

differs from both the TAP and CLP systems. Independent AND-parallel schemes require 

that dependent goals be executed sequentially. Concurrent logic programming languages 

allow parallelism among goals that could provide conflicting bindings, but due to their 

committed-choice semantics; they will provide at most one possible solution even if many 

are available. Such systems may even report failure when a solution actually exists. 

The system also uses delay annotations to prevent wasted execution. Such annotations 

allow a goal to be unified only if its arguments are sufficiently instantiated. For example, 

a goal q (X) may be delayed until its single argument is bound; to accomplish this, the 

predicate q/ 1 would include the declaration 

'For the remainder of this thesis, the term process refers to a physical process, distinguishable by the 
operating system, rather than a logical process, as would be implied in a process model view. 
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?- q(X) when X. 

More complex declarations are possible, and are expected to be in disjunctive normal form: 

a disjunction of conjunctions of individual arguments. The declaration 

?- p(A,B,C) when A and B or C. 

indicates that for a goal p / 3, either its first two arguments or its last argument must be 

bound to a nonvariable. 

Although these annotations come in the guise of NU-Prolog when declarations, they are 

rather less sophisticated. In NU-Prolog [Thom & Zobel 1988], annotations may specify 

structure within arguments; here, they are implemented as triggers [Naish 1986], which are 

restricted to determining whether or not an argument is bound at all. (For this implemen-

tation, triggers are sufficient to demonstrate the execution, and were easy to implement. 

True when declarations are harder to implement, but allow much greater precision, and 

should be part of any future implementation of the algorithm.) 

Just as the language is kept as close to sequential Prolog as possible, so too is the user 

interface kept similar. Beyond allowing annotations of top-level goals at the "?-" prompt, 

the distributed system behaves to the user exactly like a sequential system: prompting for a 

top-level goal, attempting to solve the goal, and printing top-level variable bindings to the 

screen. As in sequential Prolog, if another solution is desired, it can be requested by typing 

a semicolon immediately after receipt of the previous solution. This is accomplished 

by initiating backtracking from the last frame on the stack of the master process, which 

handles the user interface. 
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5.2 Solver Processes 

48 

At the core of the parallel Prolog system are the solver processes. The solver processes 

work together to find a solution to a top-level goal, each solving some annotated subgoal. 

Solver execution is generally sequential, following the goal-selection - clause-selection - 

unification model of standard Prolog. 

Solution begins with the master process. It begins by creating a child solver process 

for every annotated subgoal in the top-level goal conjunction. As it executes the remaining 

sequential goals, it creates another solver every time it encounters an annotated subgoal 

in the latest clause body. For child processes, execution follows the same scheme; each 

annotated subgoal is forked off as a new solver as it appears in the body of a newly-unified 

clause. 

Thus, parallelism may occur anywhere in the search tree. If every subgoal is annotated, 

the execution takes on a (horrendously inefficient) process-model character; conversely, if 

no subgoals are annotated, execution is purely sequential. 

As they execute, the solvers communicate binding information with each other. Specif-

ically, each solver sends messages to the other solvers with which it has variables in com-

mon. Since the master process either binds a variable itself or shares it with some child 

process that binds the variable, upon termination it will find bindings for all of its top-level 

variables, and print them to the user. 

5.3 Ear Processes 

Because of the nature of the message-passing subsystem, the solver processes cannot stand 

alone. The J]Pc system is a synchronous protocol in which a process sending a message 



CHAPTER 5. IMPLEMENTATION 49 

is blocked until the receiver-replies. Using such a protocol, solver processes that blithely 

sent messages to one another could easily cause deadlock. 

In the usual case, message passing occurs as follows: 

1. Process Pa sends a message to Pb and blocks. 

2. Pb receives the message. 

3. Pb acknowledges receipt to the sender, Pa, via a reply. 

4. Pa gets the reply, and resumes execution. 

If Pa and Pb sent messages to each other at the same (real) time, deadlock would occur: 

neither could receive or reply to the other's message, since both would be blocked. 

One solution to this problem is to use interrupt-driven message receipt and acknowl-

edgement, so that both processes could receive and reply to incoming messages even while 

blocked. Since Jn'c provides no interrupt facilities, however, this approach is not feasible; 

thus, a nonblocking or asynchronous protocol is necessary. Some form of mediation is 

therefore required for message passing between solver processes. 

In this implementation, such mediation is handled by ear processes—JIPc processes 

whose purpose is to make communications between solver processes appear asynchronous. 

One ear process runs on each processor in the network; its main task is to "listen" for input 

messages intended for interpreter processes running on the same processor. 

Thus, solver processes do not communicate directly. When one solver wants to 

communicate with another, it actually sends its message to the other's associated ear 

process. This is illustrated in Figure 5.1. The ear process replies immediately to the 
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Figure 5.1: Relationship between ear and solver processes 

sender, allowing that process to continue execution. Then, it queues the incoming message, 

waiting for the target process to poll it for messages. 

Message receipt by a solver process is also nonbiocking; if a solver polls its ear when 

no new messages have arrived, it receives a null message in return and continues executing 

normally. This agrees with the optimistic philosophy of Time Warp—that is, if no new 

messages have arrived, assume none will arrive. 

There is one exception to the nonbiocking approach. A solver process will choose to 

block until its next input message arrives if it has completed all of its own local computation. 

In this way, it avoids consuming the system resources that it would use if it performed a 

busy wait. 

As the implementation evolved, responsibility for handling the input queue functions 

gradually migrated from the solver processes to the ear processes. Initially, an ear process 
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did no more than enqueue incoming messages in the order that they arrived. It was obvious 

that with only slightly greater effort, the messages could be enqueued in timestamp order. A 

small optimization was immediately apparent: annihilation of BIND/ANTI-BIND message 

pairs could take place within the ear process, rather than sending both messages on to an 

solver to be processed there. 

Finally, it became evident that the ear processes should take over the input queue 

functions completely. Implementing queuing facilities in both ear and solver processes 

cannot help but be somewhat wasteful, and since the ear processes must do some queuing, 

why not let them do it all? 

The solver processes are thus freed of responsibility, for example, of trying to "un-

receive" messages on rollback. Instead, each ear process keeps track of which input 

messages have been received by each solver process it serves. If a solver rolls back, it need 

only inform its associated ear process of how far it rolled back by including a timestamp 

with its next polling message. The ear process uses this timestamp to adjust its notion 

of which messages have been received, returning messages that postdate the timestamp 

to unreceived status. (This also allows message annihilation to occur in cases where a 

BIND message was received and passed on, its corresponding ANTI-BIND arrived and 

was enqueued, and then the BIND was rolled back.) 

Of course, the original reason for using ear processes must not be forgotten. The 

effect of using ears to mediate communication is that message passing is guaranteed to 

be deadlock-free (provided that memory is not exhausted). A message can be exchanged 

only between an solver process and an ear process, and not directly between two solver 

processes or between two ear processes. Solver processes initiate all communications and 

receive information only via replies to polling messages, rather than via explicit receives. 
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An ear process blocks until it receives a message, whereupon it replies appropriately to the 

sender, and blocks again to wait for the next message. 

5.4 Binding Environment 

One of the most important components of a distributed Prolog system is the binding 

environment. Variables from different processes must be distinguished by unique internal 

names 2ln the discussion that follows, "name" will refer to this internal name, as distinct 

from the "print name" visible to the user, so that they are not confused with one another. 

If a variable is shared among two or more processes, it must be readily distinguishable 

as such. (Note that "shared" is not used literally—each process that "shares" a variable 

maintains its own copy, and changes to that copy are made known via binding messages.) 

If a variable is not yet shared, it may be in the future through the creation of child processes, 

so it must be possible to upgrade it to shared status. 

5.4.1 Naming 

In a sequential system, the generation of unique variable names is accomplished by allo-

cating on the stack: the memory address of a variable becomes its internal name. In a 

distributed system, this is not sufficient; different processes may produce variables with 

identical names, and if either or both of these variables is shared, confusion could result. 

A simple and effective, solution to this problem is to incorporate information about the 

process ID of the solver that creates the variable, and about the processes on which that 

solver runs, into the variable's internal name. 
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5.4.2 Local and Shared Variables 

Most variables begin their careers as local; the exceptions are the variables in the top-level 

goal of a new child process, which are always shared with at least the parent process. (For 

uniformity, the top-level variables of the master process are also considered shared.) Local 

variables are allocated on the stack, much as they are in sequential interpreters. When 

a process rolls back or backtracks over some stack frame, all variables in that frame are 

freed. 

Shared variables are tagged for easy identification, since they must be treated specially. 

A shared variable must be directly accessible, since not every access to it will be through 

the stack. In particular, when a solver receives an external binding for one of its shared 

variables, that variable will generally not be found in the latest stack frame. If direct access 

is not available, the shared variable can only be found by searching back through the stack. 

On the other hand, a shared variable must also be accessible through the stack, to handle 

cases when it is referenced or bound locally. 

A local variable becomes shared when the process that created it forks off a new process 

whose top-level goal contains that variable. When this occurs, a new variable is allocated, 

and the local variable on the stack is made to reference the shared variable. Indeed, every 

shared variable must have a "local" associated with it on the stack, to allow the Prolog 

component of the algorithm (particularly unification) to access it. The mechanism for 

creating a new shared variable is simple: whenever a variable is encountered in process 

creation, if that variable is still marked local, then a shared counterpart is allocated and 

linked to the local. 

When a BIND message is sent, the information in it comes in pairs, each composed of 
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a variable name and its value. The variable name is fully qualified, including machine and 

process IDs. The value is an instantiated term—either an integer or a structure, which may 

contain variables (actually, fully qualified variable names) that are unbound. (If a bound 

variable is detected within a structure at the sending end, only the value is passed on.) 

5.4.3 Incomplete Data Structures 

Particularly in producer/consumer style programs, a shared variable may be only partially 

instantiated. For example, a list may have its head bound, while its tail remains unbound: 

L = (271L11 

If L is a shared variable, so must Li be. Thus, whenever such a binding occurs, whether 

locally or through the receipt of a binding, if the outside variable is shared, the variable 

inside the data structure is allocated in the shared area, and linked to the stack. 

5.5 Delayed Predicates 

As noted above, user predicates may be given delay annotations. Such delays are discre-

tionary and need not be present for correct execution; their only effect is to make execution 

more efficient. A number of builtin predicates also come with delays, but these delays are 

mandatory. Leaving them out would result in an incorrect execution. 

5.5.1 User Predicates 

The need for delays in user predicates arises from producer/consumer process pairs in which 

the consumer executes ahead and guesses wrong. When a binding from the producer it 

forces a rollback, but this rollback may not be deep enough to undo the incorrect guess. 
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The timestamp of the frame for the incorrect guess may well antedate the timestamp of the 

incoming binding. In this case, some amount of remote backtracking will have to occur 

before the consumer backtracks far enough and makes the correct choice. Work is lost 

in every participating process, not just in the process making an incorrect choice. This 

inefficiency is rooted in the way priorities are assigned to goals. 

In Tebra's system [Tebra 1987], priorities are depth-first, so that given two distinct 

subtrees, each goal in the left subtree has higher priority than any in the right subtree. 

If in a producer/consumer situation, optimistic execution by the consumer works well 

as long as it is in the right subtree with respect to the producer, so that when a binding 

arrives the process is rolled back completely. If the consumer is in the left subtree, then its 

subgoals have higher priority than those of the producer; if it executes optimistically and 

makes an incorrect choice, remote backtracking occurs with a vengeance, first of every 

goal in the producer's subtree and then in the consumer's subtree. Unlike the Time Warp 

case, no goals are rolled back; every goal is backtracked. Thus, Tebra's system implicitly 

requires producers to precede consumers in order to extract good performance. Further, 

this producer-before-consumer ordering is purely textual and cannot take into account input 

and output modes determined by the top-level query. Still; for well-behaved programs, 

Tebra's system provides maximum optimism. 

Conversely, in a goal-ordering system like that in [Somogyi et a! 1988], a consumer 

is blocked until its corresponding producer sends it a binding, so no optimistic execution 

occurs. Producers and consumers are assigned by checking argument modes: a goal whose 

inputs are sufficiently instantiated becomes a producer for its outputs; a goal that still needs 

some inputs bound becomes a consumer of those inputs. Since consumers are blocked 

until their required inputs arrive, execution is conservative; no optimistic work will have 
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to be undone. 

In an unadorned Time Warp system, timestamps may be interleaved between goal 

subtrees; thus, producers and consumers will have roughly comparable priorities, and the 

backtracking problems noted above will occur if optimistic execution is attempted. One 

solution would be to prioritize producers over consumers, while still allowing consumers 

to execute optimistically. This approach would be rather complex, since priorities are 

already given by Time Warp timestamps. 

Another approach, and the one used in this implementation, is to use delays to mimic 

producer/consumer ordering with timestamp ordering, at the expense of optimistic exe-

cution. If a consumer lacks the input bindings it needs, it falls asleep. The consumer 

wakes up again after it receives the bindings it requires, so that the frames it creates have 

a greater timestamp (thus a lower priority) than the incoming bindings. Rejection of the 

Time Warp ideal is necessary, since allowing a consumer goal to execute ahead may give 

it a lower timestamp than its corresponding producer. Such a situation can cause a great 

deal of backtracking before a solution is found. 

5.5.2 Builtin Predicates 

In a distributed Prolog system, many builtin predicates require delays. The arithmetic 

predicates (e.g. </ 2) and equality (=/ 2) are among these, but for different reasons. 

Arithmetic 

In most sequential implementations, arithmetic predicates are expected to be fully instan-

tiated before they are called; if such a predicate is called with one or more of its arguments 

not fully bound, an instantiation error is flagged and the computation aborts. Given the 
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depth-first execution order of sequential systems, instantiation errors are not hard to avoid: 

the programmer need merely order goals so that producers come before consumers. 

The distributed case is more problematic: since execution is no longer strictly depth-

first, an arithmetic goal may be executed before its arguments are fully instantiated, thus 

causing the computation to abort unexpectedly. Consider the parallel execution of the 

following code: 

X = 2, X < 4. 

If the goal X = 2 executes first, the computation completes and gives the expected result 

(i.e. success). If X < 4 executes first, however, an instantiation exception will be raised. 

Such behavior is clearly undesirable; the results of a computation should not be susceptible 

to the vagaries of execution order. 

Of course, it may be argued (and has been: [Naish 1986]) that this behavior is also 

undesirable in the sequential case; parallel execution merely illustrates the problem more 

vividly. In both cases, the solution is the same: an arithmetic goal should be delayed until 

its arguments are sufficiently instantiated; then it can be woken and executed. 

Equality 

Equality does not suffer from the same problem as the arithmetic predicates. Since its 

effect amounts to unifying its arguments, the equality predicate does not logically require 

either of its arguments to be bound. Thus, running goals such as 

A = B, B = C, C = 5 

in parallel produces the same result independent of execution order: A, B, and C are all 

bound to the value 5. 
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The problem that does arise is rather more subtle, and is related to the timestamping of 

bindings in the distributed Prolog system. Consider the following example: 

e Process P1 executes the goal B = C at time t. No BIND message is produced, since 

no variable was bound to an actual value. 

• At time t + c, process P. executes the goal C = 5 and sends a BIND message with 

this binding to Pj. 

• Pf receives the binding and immediately discovers that B is now also bound. Thus, 

it must send out a BIND message at time 2+ c with the binding B = 5. 

What has happened here? Two messages with the exact same timestamp have been sent 

from two different processes. Any process that receives both bindings is in deep trouble 

if it ever backtracks to time 2 + C: it has no basis for deciding which binding to FAIL, 

since either (or both) may have contributed to the failure. If it chooses arbitrarily, the goal 

B = C may never be backtracked, and the search for a solution may fail because of it. 

This problem could be remedied by forcing process P1 to send out a BIND message at 

time t for the binding B = C. In this case; when P9 binds C = 5, it also binds B = 5, 

and both bindings are sent out. This would ensure that backtracking could be carried out 

successfully; each message would be ensured a unique virtual time. 

Unfortunately, this solution causes another problem, due to aliasing: two variable 

names become aliases for the same object. In a sequential system, when two variables are 

unified, one of the variables is made to reference the other. If either variable is later bound, 

the binding is actually applied to the variable at the end of the reference chain; the value 

for the other can later be found by dereferencing the reference chain. Consider running 

the goals 
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A = B, B = C 

sequentially; this produces a reference chain like 

If C is later bound to 5, any reference to A, B, or C will be dereferenced to the value 5. 

In the distributed case, however, the bindings for A and B must be made explicit. If 

C is bound, there is no immediate way to tell that A and B are also bound, because the 

reference chain is unidirectional. To allow access from any variable to all other aliases for 

it, the chain must be closed into a loop. Any non-variable binding must then be referenced 

separately, leading to a messy, if workable design. 

A much more elegant solution arises from avoiding aliasing altogether. Rather, the 

equality predicate = / 2 is given delay conditions such that at least one of the two arguments 

must be instantiated before execution is allowed: 

?— X = Y when X or Y. 

A goal like B = C is not allowed to execute immediately; rather, it is delayed until either 

B or C is bound to a nonvariable term, for example when the binding C = 5 is produced. 

Consider the following execution: 

• Process Pf attempts to execute the goal B = C at time t. Since neither B nor C is 

bound, the goal is delayed, and some other goal is executed. 

• At time t + c, process P. executes the goal C = 5 and sends a BIND message with 

this binding to P1. 

• P1 receives the binding and discovers that the delayed goal B = C should be woken. 
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• P f executes the goal B = Cat time t + c + d and sends out the binding B = 5. 

For local variables, it is not necessary to avoid aliasing, since if any of the aliases later 

becomes bound, only the variable at the end of the reference chain would actually be linked 

to a shared variable. For the sake of simplicity and uniformity, however, the unification of 

two local variables is also delayed. 

This uniformity has a price, however. When a local variable is bound, this binding 

may trigger the wakeup of several delayed goals, each of which may wake up goals itself. 

Fortunately, this cost is mitigated by a beneficial effect. When aliasing is allowed, a goal 

sequence like 

A = B, B = C, C = 5 

results in a reference chain like 

When aliasing is disallowed by delaying = / 2, executing that goal sequence results in the 

following: 

A - 5; B -* 5; C -* 5 

Since no variables are ever aliased, reference chains become unnecessary. Derefer-

encing a variable is accomplished by moving directly to its binding. (Of course, a smart 

aliasing system will dereference as much as possible at unification time, thus keeping 

reference chains fairly short.) 
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5.6 Termination Detection 

61 

One of the main problems of distributed execution lies in determining when the system 

has terminated. A naive approach would simply wait for every process to report its own 

completion and then declare the entire system to have completed execution. 

If each process were completely independent, this would be quite sufficient. In general, 

however, processes must communicate with each other. In this case, messages that are still 

in transit cannot be ignored. Consider the following scenario: 

. process Pa reports completion; 

. process Pb sends a message to Pa, and then reports completion; 

• process Pa discovers that it has not completed after all, and begins execution again 

by processing the incoming message; 

• all other processes in the system have previously reported completion; 

• since all processes have reported completion, the system is incorrectly considered 

to have terminated. 

In a standard Time Warp system, termination is detected through the calculation of 

global virtual time: the minimum of the virtual times of all processes and of the timestamps 

of messages received but unprocessed or still in transit. When GVT reaches +oo, the system 

has terminated. 

GVT has other functions as well. Since the standard Time Warp definition assumes 

that all processes are completely deterministic, garbage collection of the input, output, and 

state queues becomes possible (and indeed necessary, for example in the case of a large 
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simulation system); GVT is computed regularly, and queue entries with timestamps less 

than GVT can be garbage collected. Termination detection is really a side effect of this 

garbage collection function, occurring when GVT reaches +00. 

In a Prolog system, computing GVT is clearly overkill. Garbage collection cannot 

occur as in a stanclaM Time Warp system; every entry in the IQ, OQ, and SQ may be 

needed for backtracking, so none should be removed. Thus, the main function of GVT 

calculation is wasted; termination detection remains as a side effect. 

For this reason, an algorithm more specific to termination detection is indicated. 

[Dijkstra et al 1983] describe an algorithm for detecting termination in a ring of pro-

cesses that can easily be adapted to the Prolog system. This algorithmS uses a circulating 

token to gather information about the status of each process in the system. (The algorithm 

is actually very similar to the GVT algorithm, except that token propagation is delayed as 

long as possible, so that fewer passes through the system are made.) 

Each process maintains information about its own state by coloring itself white or 

black, with black indicating that it is busy, and white indicating that it is idle. The token 

starts out white, but as it circulates through the system, it may be colored black, indicating 

that some process is still busy. For a ring of ii processes Po to P,i, the complete algorithm 

is as follows: 

1. while it is active, a process keeps the token; when it becomes idle, it passes the token 

on to the next process 

2. when a process sends out a message, it colors itself black 

3. when a process propagates the token, it colors the token black if it is black itself; if 

the process is white, the token is passed on unchanged 
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4. if the token is black after completing the circuit, the system has not terminated; the 

initiating process sends the token out for another circuit 

5. the initiating process starts a termination probe by coloring itself white and sending 

outa white token 

6. after passing on the token, a process colors itself white 

This algorithm must be adapted slightly to work for the Prolog system. First, rather 

than traveling around a ring, the token must traverse a hierarchy of processes. This is 

accomplished easily enough by a depth-first traversal of the hierarchy, with the token 

starting and finishing at the master process. 

The second alteration is necessary to account for indefinitely-delayed goals. The 

execution of some programs may cause a goal to be delayed and never woken; this occurs 

when the bindings needed by the delayed goal are never produced. This may be due to 

incorrect delay conditions on the clauses for that goal, or it may simply mean that there are 

an infinite number of solutions for the goal [Naish 1986]. In either case, this condition, 

known as floundering, should be reported. 

To handle this, a third token color is necessary: gray is used to represent the state in 

which all processes are idle, but one or more processes have indefinitely-delayed goals. 

Token coloring is modified to the following: 

• if the process is black, it colors the token black 

• if the process is gray and the token is not black, it colors the token gray 

• if the process is gray and the token is black, it passes the token on unchanged 
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• if the process is white; it passes the token on unchanged 

The system has terminated if the token is colored white or gray when it returns to the 

master process. If the token is gray, the system has floundered; otherwise, a complete 

solution has been found. 

5.7 Optimizations 

The BIND and ANTI-BIND optimizations, introduced in the previous chapter, have not 

been implemented. However, it is worth discussing bow these optimizations could be 

implemented. Ironically, the FAIL over-optimization was implemented. An example is 

given to demonstrate that the optimization is incorrect; finally, a modification to correct it 

is proposed. 

5.7.1 BIND Optimization 

The BIND optimization allows the receiver of a BIND message to decide whether the 

contents of that message are compatible with its own bindings before it rolls back. Four 

cases are possible: 

• The variable bindings in the message are consistent with the local bindings, so the 

BIND can be incorporated into the stack without rolling back. 

• The bindings in the message would be inconsistent even after rolling back; the BIND 

can be ignored and forward execution can continue. 

• Only a partial rollback is necessary to make the incoming bindings compatible; after 

this partial rollback, the BIND may be incorporated into the stack. 
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t=12 
IND: X=2 

t=21 

t=12 

t=21 

Figure 5.2: X is still unbound locally; the binding is simply incorporated into the stack. 

• A full rollback is necessary and sufficient to make the incoming bindings compatible; 

this is the only case for which the optimization gives no benefit. 

To distinguish these cases and determine the correct action to take, binding timestamps 

must be accessible to the shared variables (local variables cannot cause inconsistency with 

respect to another process). This can be accomplished by including in the shared variable 

structure a pointer back to the stack frame in which it was bound; the timestamp can then 

be found from the frame. 

For each variable bound in a BIND message, the local copy of the variable must be 

examined. The actions that may be taken are illustrated in Figures 5.2 through 5.6. For 

simplicity, the incoming BIND is assumed to contain only one binding. If a partial rollback 

is necessary when several variables are bound in the incoming message, the rollback must 

be to the time of the earliest binding conflict. 

The first three cases deal with compatible bindings. If the variable bound in the 

incoming message is still unbound locally (Figure 5.2), the binding need simply be linked 
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t=6 

t=21 

Figure 5.3: x is bound locally and compatible; the local timestamp is less, so it is retained. 

t=12 

t=21 

t=12 

t=21 

Figure 5.4: x is bound locally but is compatible; the message timestamp is less, so the 
binding pointer for x is adjusted. 
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t=6 

t=12 

t=21 

t=6 

t=21 

Figure 5.5: x is bound locally but incompatible; the incoming message has a higher 

timestamp, so it is ignored. 

in to the stack; no rollback is necessary. If the variable in question is bound locally, two 

cases are possible. If the local binding antedates the incoming binding (Figure 5.3), it may 

safely be ignored. The sending process will eventually encounter the situation shown in 

Figure 5.4. In this case, the frame pointer for the bound variable must be adjusted to point 

to the earlier, remote frame. 

In the final two cases, the local binding and that in the message are found to be 

inconsistent. If the local binding is earlier than the message timestamp (Figure 5.5), the. 

message is simply ignored. At some point, the sending process will arrive at a state like 

that in Figure 5.6: the message timestamp will precede the local binding time. In this case, 

a partial rollback is necessary; if there are no stack frames with intermediate timestamps, 

this amounts to a full rollback. 
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t=12 

t=15 

t=21 

t=12 

t=15 

Figure 5.6: x is bound locally, but its value conflicts with the value in the message. The 
message has a lower timestamp, so the process must roll back to before the time of the 

local binding, and restart forward execution. 

5.7.2 ANTI-BIND Optimization 

The ANTI-BIND optimization is analogous to the BIND optimization in that it attempts 

to avoid rollback if possible. However, avoiding rollbacks in the ANTI-BIND case is 

more complex. It requires a modification to the basic execution algorithm; the BIND 

optimization needs only timestamp information to accomplish its attempted effect. 

The necessary modification is in the clause selection component. When a rollback is 

performed, goals that are rolled back are eventually retried, and all clauses for each goal 

are available for selection. When a remote frame and its associated bindings are simply 

removed, this may not be the case. Those bindings may have constrained the execution; 

clauses rejected due to conflicts with these bindings may become candidates again once 

the bindings are gone. 
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If rollback is to be avoided, all goals with timestamps later than that of the incoming 

ANTI-BIND message must have their respective lists of candidate clauses adjusted so that 

previously-rejected clauses may be retried. The easiest way to do this is to maintain the 

clause list for each goal as a circular list; on receipt of and ANTI-BIND, the current clause 

becomes the "first" one. The clause list for a goal is exhausted when the next clause is also 

the first. 

Suppose a goal g has three candidate clauses, Ci, C2, and C3. Initially, c  is the "first" 

available clause, and thus the first selected. After backtracking, C2 is selected. If an 

ANTI-BIND then arrives, the current clause, C2, is made the first available clause and c1 

the last available. Thus, ci will eventually be retried—specifically, after C3 has been tried 

and backtracked. 

There are two cases in which this sort of adjustment can be avoided. The first case 

involves the receipt of an ANTI-BIND for which the corresponding BIND was ignored. 

In this case, the ANTI-BIND may also be ignored. A remote frame may also be removed 

without recourse to rollback when a situation like that in Figure 5.4 exists. If a frame pointer 

is adjusted on receipt of a BIND, it can be adjusted back if that BIND is annihilated, as 

long as information about the previous frame pointer is retained. No adjustment of any 

clause list is necessary, since the binding values are no less constrained after the remote 

frame is removed. 

5.7.3 FAIL Optimizations 

As described in the previous chapter, the FAIL optimization gives a reasonable saving 

in terms of rollbacks performed and FAIL messages sent, but it comesat the expense of 

completeness: in a few pathological cases, this optimization causes solutions to be missed. 
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Consider the situation in Figure 5.7. Process Pf has been unable to succeed because the 

bindings from Pq, Pr, and P3 have been incompatible with its own values. At this point, 

both Pr and P8 have been forced to backtrack and to come up with new bindings. These 

bindings are now compatible with the values in the first clause for f / 3, yet the goal 

f (A, B, C) still fails. The problem is with PqS binding, but under the the small-context 

direct-backtracking model, Pq cannot be made to backtrack, as the following execution 

fragment shows: 

• P1 fails to unify goal f ( 1, 3, 4) with clause head f ( 2, 3, 4) 

• P1 fails to unify goal f ( 1, 3, 4) with clause head f (1, 4, 5) 

• P1 begins backtracking, sending a FAIL at time 8 to P.,, with context of Pr at time 4. 

• P., begins backtracking and finds no further clauses, so sends a FAIL at time 4 

directly to Pr, with no additional context 

• Pr backtracks and finds no further clauses, backtracks further and finds no previous 

stack frames, and fails completely. 

In this case, the solution { A = 2, B = 3, C = 4 } was missed, simply because it 

was impossible to make Pq backtrack; not enough context was available to allow further 

backtracking. 

Under the unoptimized scheme, failure would have passed back to P1, and thence to 

Pg. The problem with the optimized scheme is clear: not enough context is passed on in 

the FAIL message itself to allow correct backtracking. In the unoptimized case, limited 

context is sufficient because the remainder is implicit in the stack of the FAIL's sender; in 

the optimized case, that remainder may no longer be accessible. 
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Pf Pq Pr Ps 
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LI B=3EY=4  

C=41 "t=8 

f(2,3,4) 

f(1,4,5) 

q(1) 
q(2) 

r(2) 

r(3) 

s(3) 

s(4) 

?— f(A,B,C), q(A), 

r(B), s(C). 

Figure 5.7: Pathological case for FAIL "optimization" 

Extending the context by some fixed amount is of no avail. If the context of a FAIL 

message were extended to include the two previous stack frames, the example in Figure 5.7 

could be extended by adding another process, P2, contributing a binding to P1 at time 2, 

and process Pq would still never receive a failure. In general, for n frames of context, a 

counterexample with n + 3 processes can be constructed. Thus, an indefinite amount of 

context in the FAIL message is necessary for the optimization to work. 

Happily, this optimization is not entirely unsalvageable. The case described in Fig-

ure 5.7 is relatively uncommon, so a hybrid approach is possible: a FAIL message can 

contain a limited context, as long as the last context will force the originator to backtrack. 

Failures occurring in the remainder of the context may be optimized. 
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Easiest is a two-component context, with the first component corresponding to the first 

previous frame, and the second to the next previous frame. The first component directs 

backtracking to a stack frame's originator; if this is insufficient, the second component 

will eventually direct the failure back to the originating process. This scheme itself may 

be optimized: if both components direct the failure back to the same process, the second 

component need not be included, since backtracking will in any case return to the originator. 

(Naturally, this hybrid version of the FAIL optimization awaits experimental verification.) 



Chapter 6 

Testing and Results 

6.1 Testing Environment 

The implementation was tested on a small distributed system: a network of five SuN3 

workstations running UNIX. JIPc was used for interprocess communication. Ear processes 

were added to prevent deadlock and to provide input queue services for the solver processes. 

Due to the limited number of processors, the algorithm for sending BIND and ANTI-

BIND messages was simplified. Rather than requiring solvers to determine the recipients 

of BIND and ANTI-BIND messages and whether or not they should be propagated further, 

it was decided to broadcast such messages to all ear processes. Each ear would then 

determine which solvers on its processor were interested in the message. At the expense 

of a system-wide broadcast, the delay due to hierarchical message propagation (e.g. from 

a child process to its parent, and thence to its other children) is avoided. 

This simplification assumes that several processes will be oneach processor and that 

related processes are distributed throughout the system rather than highly localized. These 

assumptions are satisfied quite easily on a five-processor system, but not on a much larger 

one. Thus, the simplification is not scalable, especially since having every solver broadcast. 

to every ear in a large, busy system could saturate the communication network. Still, it 

made implementing the system easier. 

Because of the limited number of processors and the expense of process creation, 

parallelism was restrained by means of a depth bound. To implement this bound, the the 

73 



CHAPTER 6. TESTING AND RESULTS 74 

master process is given level n for depth 0; its immediate children get level n - 1 (depth 

1), children of those solvers get level n - 2, and so on. A process at level 0 (depth n) 

creates no children; goals annotated to run in parallel are instead run sequentially by that 

process. This also provides a simple control over the granularity of the parallel execution, 

even when many processors are available. 

It should be noted that this depth bound is a very simple-minded technique. Using it to 

control parallelism may result in processes having significantly different amounts of work 

to do, leading to unbalanced execution and thus to reduced speedup. For this thesis, the 

point is moot, however: the aim is to present a working distributed Prolog system, not to 

find the best load-balancing algorithm. 

Related to this is the issue of processor allocation: if all processes were allocated 

on just a few processors, parallel execution would again result in little speedup. Again, 

processor allocation is rather simple-minded: a process at level n creates a process on 

every 2'th processor (modulo the number of processors). In test runs, every processor 

showed activity; this was deemed sufficient for the purpose of the thesis. 

6.2 Testing 

A number of factors affect the parallelism achieved in a distributed execution. First, the type 

and degree of parallelism inherent in the test programs must be considered—for example, 

in an AND-parallel system, a searching program would be expected to perform worse 

than a divide-and-conquer program. As well, unfavorable delay characteristics (generally, 

executing before inputs are ready) can cause a reduction in performance. Finally, different 

execution strategies can affect the behavior exhibited by a test program. All of these 
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factors are examined below. 

6.2.1 Determinism and Nondeterminism 

As discussed in Chapter 2, deterministic programs are more amenable to AND-parallel 

execution, while nondeterministic programs are more suited to OR-parallel execution. The 

results presented in the next section bear this out. 

The degree of nondeterminism may be characterized by the number of clauses unifiable 

with each goal as it is run. If every goal unifies with exactly one clause, the execution 

is fully deterministic, and no backtracking is necessary. An example of this is matrix 

multiplication. 

Nondeterminism may be either shallow or deep.' Shallow nondeterminism occurs 

when a number of clauses may initially unify with a goal, but all clauses save one are 

quickly rejected by a test in the body, for example in the partitioning of a list in the quicksort 

algorithm. In deep nondeterminism, much more search is necessary to determine that a 
candidate clause must be rejected; search programs fall into this category. 

Several example programs of each of these types were tested. For full determinism, 

mmult (matrix multiplication), fib (Fibonacci numbers), and tak (the tak benchmark) 

were run. Programs exhibiting shallow nondeterminism were qsort (quicksort), union 

(union of sets represented as trees), and inter (set intersection using trees). To test 

nondeterministic execution, two small programs, x15 and xyl5 were composed. All of 

these programs and the queries with which they were tested are given in Appendix B. 

1The notion of shallow vs. deep nondeterminism is similar to that of don't-care vs. don't-know 
nondeterminism. 
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6.2.2 Delay Characteristics 

In Chapter 5 it was noted that the delay annotations used in the system were not the most 

precise available. Because of this, they may allow goals to execute prematurely, resulting in 

wasted execution as such goals are rolled back. The shallowly nondeterministic programs 

exhibit this behavior: when a clause is selected for some goal, their unification may wake 

up other goals; the clause may then be rejected because a test in the body fails, causing the 

woken goals to roll back and become delayed again. 

Consider the following code fragment: 

part([HeadlTail], Pivot, [ lleadlRestSm], Bigs) 

Head =< Pivot, 

partition(Tail, Pivot, RestSm, Bigs). 

?— qsort (List, -) when List. 

When the goals 

part([12,1O,...],5,Smls,Bigs), qsort(Smls,SortSm)@pl 

are run in parallel, the qsort goal is initially delayed, but as soon as Smis in the 

goal unifies with [ Head I Rest Sm] in the clause head, it is woken. When the test 

Head =< Pivot fails, any work that the qsort call has done must be undone. 

This problem can be alleviated only by ensuring that merely unifying a goal with some 

clause does not cause other goals to wake immediately. This can be done by shifting output 

unification into the clause body (after a test), rather than letting it occur in the head: 

part([HeadlTail], Pivot, Smalls, Bigs) :-
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X =< P, 

Smalls = [HeadiPivot], 

part(Tail, Pivot, RestSm, Bigs) 

In this case, qsort does not begin executing until the output unification is made—that is, 

after the test has succeeded. 

The problem may be even more severe for deeply nondeterministic programs. When 

a clause is chosen, it may be rejected only after much forward execution has transpired. 

The goals woken when the clause was bound will also have executed forward, and their 

work too must be undone. To make matters worse, all of this work might only be undone 

after exhaustive distributed backtracking. 

On the other hand, allowing goals to execute immediately in a deeply nondeterministic 

program may allow failure to occur quickly, thus saving work. Further study would be 

desirable to indicate whether savings due to early failure can balance or even outweigh the 

cost of distributed backtraking to undo an incorrect choice. 

6.2.3 Goal-ordering Strategies 

Several different strategies may be applied to assigning goal priorities in a parallel system. 

As noted in Chapter 3, Tebra's system ([Tebra 1987]) bases the goal priorities on the depth-

first ordering of a program's sequential search tree; [Somogyi et a! 1988] use explicit 

producer/consumer relationships to assign priorities. Both of these strategies produce 

fixed, deterministic orderings. 

In contrast, the algorithm of [Cleary et al 1987] does not assign goal priorities in 

advance; rather, the priority of each goal is assigned dynamically, based on the local 
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virtual time (LVT) of the process executing the goal. Beyond this, no goal ordering is 

specified—but in an implementation, some ordering must be chosen. No "best" ordering 

was immediately apparent, so several different orderings were examined. Three binary 

choices were available, giving eight different versions of the system. 

The first parameter is concerned with the number of incoming messages a solver should 

process after it has completed a successful unification. On one side, a solver should use 

all the information available to it, including all pending messages. On the other hand, it 

may get so swamped with incoming messages that it accomplishes little useful work itself. 

Only the two extrema were tested: solvers would either accept just one message after each 

successful unification or process all pending messages. 

The effect on goal priorities in this case is rather subtle. The salient point is that 

incoming messages cause LVT to advance; the more messages processed at some point, 

the greater the timestamp of the next unification is likely to be, and a higher timestamp 

corresponds to lower goal priority. 

The second parameter is concerned with the size of the time window within which 

messages should be accepted. Certainly, all messages in the past of a solver's current LVT 

must be processed, but the future is somewhat murkier. One option is for the solver to 

process incoming messages regardless of their timestamps. The solver's LVT will then 

be adjusted to be later than the latest incoming message, and local work continues from 

that time. The idea here is based on the Time Warp philosophy: events in the future 

should be accepted on the assumption that no intervening events will occur. All pending 

external events (incoming messages) are therefore processed; intervening internal events 

(unifications) are avoided by adjusting the LVT. 

A more deterministic approach to execution allows only those pending messages 
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ONE MANY 

SMALL earliest message within increment all messages within increment 

LARGE earliest pending message all pending messages 

Table 6.1: Messages processed under combinations of goal-scheduling parameters. 

whose timestamp is within a single increment of the current LVT to be processed. The 

next scheduled internal event (unification) is then performed at the incremented LVT. This 

approach, like the one-message alternative above, prefers internal work to external work; 

meanwhile, postponed future messages may be annihilated, or messages could arrive that 

precede the still-unprocessed messages, in both cases avoiding local rollback. 

The final parameter alters the way in which a process's LVT is assigned. Under normal 

execution, LVT is based on the latest timestamp on the stack; if rollback occurs, then LVT 

is also rolled back. The alternative is one of temporal inflation: the LVT of a solver is 

based on the latest timestamp it has encountered, and grows throughout the execution. 

This is in fact an approximation to real time, as the LVT at each process is monotonically 

nondecreasing throughout the execution (except in backtracking and for brief rollbacks to 

handle messages in the past). 

The idea here is to automatically synchronize processes so that producers will precede 

consumers in timestamp order, thus reducing wasteful execution. A producer will make 

a binding; recipients of that binding advance to the time of the binding. If the binding is 

discovered to be inconsistent, the consumers will not roll back their LVTs. Thus, they will 

not compete with an established producer by sending out bindings with low timestamps. 

These parameters are not entirely orthogonal, particularly the first two—both affect the 

number of pending messages that are processed. The effect of combining these parame-

ters is given in Table 6.1. The SMALL-ONE combination from this table appears rather 
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wasteful when compared with the SMALL—MANY combination: why accept only the first 

message preceding the next scheduled (internal) unification when any other pending mes-

sages with a timestamp before that unification will cause a rollback when it is processed? 

If message traffic is low, the effect may not be noticeable, but it could be pronounced if 

traffic is heavy. 

The LARGE—MANY combination takes the opposite tack, favoring external work and 

postponing internal work. The SMALL—MANY and LARGE—ONE combinations take an 

intermediate course, trying to balance internal and external work. 

The third parameter, concerned with inflationary vs. noninflationary execution (INFL 

vs. NON), is relatively independent of the other two. (Of course, the more messages 

accepted at once, the higher LVT is likely to go, so there is still a connection.) For 

deterministic programs, deliberately inflationary execution seems unlikely to have any 

effect, since timestamps will increase naturally, even for noninflationary exection. Only 

in nondeterministic programs might temporal inflation be expected to have an effect. 

6.3 Results 

In evaluating the parallel system, two measurements were used: the number of unifications 

done, and the number of messages sent and received. The first of these is a measure of 

the amount of work done in a parallel execution, and is readily comparable to the number 

of unifications done by a similar sequential interpreter. The second is used to gauge the 

message-passing overhead of the system. 
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6.3.1 Summary of Test Runs 

Each of the programs listed above were run several times. Some, like the fully deterministic 

programs, needed very few runs (five times each) to give consistent results. The nonde-

terministic programs showed rather more variance and were run upwards of twenty times 

each. Each test was performed with the depth bound set at 2 to keep the five processors 

from being overloaded. Parallel execution results are considered from two perspectives: 

first, they are compared as a group against the results for sequential execution; then, they 

are compared with each other. 

Averages were taken of all runs; extrema (largest and smallest values) have also been 

kept for the unification results to give some feel for the variance in the executions. For 

each program, parallel unification results were scaled to the sequential value, which was 

set at 1. Message counts were broken down into five parts: 

. tokens: the number of times the termination-detection token was passed from one 

process to another 

•. BINDs: the number of BIND messages that reached another solver 

• ANTIs: the number of ANTI-BIND messages that reached another solver 

• FAILs: the number of FAIL messages sent 

• annihilated messages: the number of BIND and ANTI-BIND messages that were 

annihilated at the ear processes, rather than being passed on to the solvers 

In the graphs that follow, the different versions of the system are identified by three-

letter abbreviations, as follows: 
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ILO Inflationary, Large window, One message 

ELM Inflationary, Large window, Many messages 

ISO Inflationary, Small window, One message 

ISM Inflationary, Small window, Many messages 

NLO Noninflationary, Large window, One message 

NLM Noninflationary, Large window, Many messages 

NSO Noninflationary, Small window, One message 

NSM Noninflationary, Small window, Many messages 

SEQ SEQuential 

6.3.2 Deterministic Programs 

82 

rnmult 

Matrix multiplication is a classic "easy" program to run in parallel—even in imperative 

programming languages—since it is readily broken down by row and column into many 

independent and equal-sized subtasks. This offers high parallelism and balanced execution 

with minimal effort. 

The results given in Figure 6.1 bear out the "easy parallelism" expectation. Only one 

version of the system took more than 10% more unification steps than the sequential inter-

preter took to arrive at the solution. This is mostly due to the independence of the subgoals: 

the top-level outputs are computed directly from the top-level inputs, without generating 

intermediate bindings that would require additional interprocess communication. Because 
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Figure 6.1: Average, minimum, and maximum unifications for mmult. 

of the depth bound, process granularity remains fairly large—each process fully computes 

one element of the product matrix. This also keeps the message count low, and accounts 

for the small differences between system versions. 

Results for different versions show a number of variations, both in unifications and 

in messages (Figure 6.2). The temporally-inflated versions were slightly busier and more 

erratic in terms of unifications than the noninflated versions. Overall message counts vary 

little, but when the individual components (BINDs, ANTI-BINDs, etc.) are considered, 

variations are apparent. The one-message versions had very few ANTI-BIND messages 

get through to the solvers; the multiple-message versions received significantly more. 

Large time-window versions received fewer BINDs than small-window versions. 

There seems little correlation (or even a negative correlation) between unification totals 
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Figure 6.2: Tokens, BINDs, ANTI-BINDs, and message annihilations for mmult. 

and message counts: note that the ILO, ILM, and NLM versions were high in unifications 

but low in message traffic; the converse holds for NLO, NSO, and NSM. 

fib 

The Fibonacci program uses a "divide-and-conquer" strategy, breaking a relatively com-

plex problem into two independent, simpler problems. This approach is also well suited 

to parallel execution. Because of the depth bound, some processes do slightly more work 

than others, but the execution is still fairly well balanced. 

As with matrix multiplication, the unification and message count results displayed 

in Figures 6.3 and 6.4 indicate that a divide-and-conquer program like fib can indeed 

execute well in parallel. Little difference between versions of the system is apparent; 

again, this is due to the low message traffic (itself again due to the nature of the problem). 
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Figure 6.3: Average, minimum, and maximum unifications for fib. 
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Comparing the results of the parallel versions with each other reveals little. The many-

message versions appear more variable with respect to the number of unifications, but this 

effect is not universal (the ILO-ILM pair is an exception). As for message counts, almost 

no differences are visible (the small bump' in the NLM result is due to a large number of 

termination-detection messages being sent in one of the runs of that version). 

tak 

The tak benchmark is multiply recursive, with each level of the recursion producing three 

mutually independent subgoals, and one subgoal that depends on the other three. Unlike the 

case for the other deterministic programs, these subgoals may differ greatly in the amount 

of work below them, so using the depth bound may result in unbalanced execution. Thus, 

parallelism is limited by two factors: goal dependence and the work disparity between 

goals at the same level (in particular, those at level 0). 

The results for tak (see Figures 6.5 and 6.6) are consistent across every execution; 

each individual run took 1187 unifications, just 16 more than the sequential execution. 

Each of these 16 unifications corresponds to a goal that was tried once, delayed, and later 

woken again and run. 

As with fib, almost no differences between versions can be detected when running 

tak. No variation occurred in unifications; in message counts, three of the temporally-

inflated versions showed slightly more activity than the other versions. 
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6.3.3 Shallow-nondeterministic Programs 

qsort 

88 

Quicksort, like the Fibonacci program, also uses a divide-and-conquer approach, parti-

tioning its input list into two smaller lists and sorting each of those. The qsort program 

differs from fib, however, in that it takes advantage of some stream AND-parallelism: 

partitioning a large list can be done in parallel with sorting the two lists that result—as 

the partitioning process produces the sublists, the quicksort processes can consume them. 

This is a distinct gain over independent AND-parallel execution, which can only run the 

quicksort processes after the partitioning is complete. 

The results shown in Figure 6.7 indicate that all parallel versions had to do much more 

work than the sequential interpreter—from 2.5 to 3 times as many unifications. This huge 

gap is directly attributable to the lack of precise delays, which causes consumer goals (in 

this case, therecursive quicksort calls) to awaken immediately a clause is unified with the 

producer goal (the partition call), rather than remaining delayed until the correct clause 

is determined. In cases when the partitioning process has made an incorrect choice, the 

quicksort processes must be rolled back and delayed again. 

As for the parallel results alone, the temporally-inflated versions performed somewhat 

more unification work than their noninflated counterparts. For the message counts (see 

Figure 6.8), the situation is reversed, with the inflated versions sending fewer messages 

than the noninflated ones. Breaking the totals down by message type, the noninflated 

versions sent far more FAILs and somewhat more ANTI-BINDs, and experienced more 

annihilations. BINDS and termination token counts remained stable across all versions. 

This trend is reversed for message counts: the inflated versions sent fewer messages than 
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Figure 6.7: Unification average, minimum, and maximum for qsort. 

the noninflated ones. 

89 

union 

The set union program is similar in structure to quicksort, since the sets are represented as 

ordered trees. That is, the set union is performed by selecting the root of one of the trees 

as a pivot, and partitioning the other tree according to that pivot (the first tree is trivially 

partitioned). A divide-and-conquer approach may then be used to find the respective 

unions of the left subtrees and the right subtrees, thereby finding the union of the original 

two trees. 

Unification results (Figure 6.9) demonstrate the same sort of behavior that quicksort 

did: all parallel versions take significantly more unifications than the sequential version to 

reach the solution. However, the penalty for allowing goals to awaken prematurely is not 
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Figure 6.8: Message counts for qsort. 

as severe here. The reason for this is simple: partitioning an ordered tree of size n does not 

require every node to be processed (and therefore, 0(n) goals woken); on average, only 

0(10g2 n) nodes need be accessed. 

Comparing parallel results, the inflated versions did significantly more work than 

the noninflated ones, particularly in unifications done, but also in messages sent (see 

Figure 6.10). Changing the size of the time window also had a clear effect: small-window 

versions performed better than their large-window counterparts in both measures. The 

versions giving low message counts did so because they sent fewer ANTI-BIND messages 

and encountered fewer annihilations. 
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inter 

The set intersection program is very similar to that for union. The main difference is that 

trees must be reorganized, since the root node of a (sub)tree must be deleted if it does not 

occur in the other tree; some other node must take its place. Beyond this, the divide-and-

conquer approach is familiar: select the root node of one tree, partition the other according 

to that node, and perform the intersection on both of the resulting subtree pairs. 

Unification results for the intersection program (Figure 6.11) are similar to those for 

the union program. Parallel execution took about twice as many unifications as sequential; 

this is again attributable to rollbacks and backtracking caused by having consumer goals 

awaken too soon. 

Unlike many of the other test programs, the presence or lack of temporal inflation had 

little effect on the results for inter. In this case, more noticeable was that the versions 

accepting all pending messages outperformed those accepting only one incoming message 

per unification, both in the number of messages sent (see Figure 6.12) and in the number of 

unifications done. In breaking down the message count figures, the differences are mainly 

due to variations in the number of BIND and ANTI-BIND messages sent, either to be 

received or annihilated. 

6.3.4 Deeply-nondeterministic Programs 

x15 and xyl5 

The x15 program and its relative, xyl5, were designed to display vigorous (if rather 

shallow) nondeterministic behavior. Because of this nondeterminism, performance was 

measured in two ways: once for finding the first solution, and again for finding all solutions. 

The programs (and queries for each) are displayed in Figures 6.13 and 6.14: they 
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Figure 6.11: Unification average, minimum, and maximum for inter. 
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x(1,2) 

x(2,3) 
x(3,4) 

x(4,5) 

x(5,1) 

:- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A). 

Figure 6.13: Program and query for x15. 

x(1,N) :- y(1,N) 
x(2,N) :- y(2,N) 
x(3,N) :- y(3,N) 
x(4,N) :- y(4,N) 
x(5,N) :- y(5,N) 

y(l,2) 

y(2,3) 

y(3, 4) 

y(4,5) 
y(5,l) 

:- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A) 

Figure 6.14: Program and query for xyl5. 

have the property that each process tries to bind two variables, and that each variable is 

shared by two processes. When x 15 is run, three (or rarely, four) processes will contribute 

bindings; for xy 15, each process may contribute a binding to the solution. As a result, 

execution can easily result in a situation like that in Figure 5.7, causing one or more 

solutions to be missed because of the over-optimization of FAIL messages. (In fact, this 

over-optimization, discussed in Chapters 4 and 5, was only discovered during all-solutions 

testing.) 

Results for these tests are thus on rather shaky ground. In the all-solutions testing, test 

runs that missed solutions obviously have to be discarded—but then the successful runs 

whose results are retained no longer give a representative sample of the possible execution 

paths. The situation is even worse for the single-solution case: in every test run, a solution 
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was found, but there is no guarantee that that solution was "first." Therefore, first-solution 

results must be deemed completely unreliable. 

Only the results for successful all-solutions runs are presented (in Figures 6.15 through 

6.18), and these permit only guarded comparison between different versions of the parallel 

system. (Some versions may succeed more often than others. For the xyl5 program, 

the inflated versions were less likely to miss a solution, given the synchronizing effect of 

temporal inflation and the fact that any process can be a producer.) All parallel versions 

do much more work than the sequential interpreter. 

In unifications for x15 (Figure 6.15), the noninflationary versions performed slightly 

better than the inflated ones. The same holds for the message counts (Figure 6.16). As 

well, the many-message versions sent and received fewer messages than the one-message 

versions, reporting fewer BINDs, ANTI-BINDs, and annihilations (but more FAILs). 

For xyl5, the results changed dramatically, both for unifications and for message 

counts (see Figures 6.17 and 6.18 respectively). The temporally-inflated versions per-

formed much better than the noninflated versions. Also, the many-message versions were 

superior to the one-message versions, particularly in the noninflated cases. Breaking down 

the message counts by type reveals more detail. In every category but termination tokens, 

the noninflated versions reported higher counts than the inflated ones. One-message ver-

sions were higher in ANTI-BINDs, FAILs, and annihilations, but lower in BINDs, than 

their many-message counterparts. 
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Figure 6.17: All-solutions averages, minima, and maxima for xyl5. 
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Figure 6.18: All-solutions message counts for xyl5. 

6.4.1 Comparison with the Sequential Interpreter 

In all of the fully-deterministic tests (mmult, fib, and tak), the parallel runs did little 

more work than the sequential interpreter did. The extra work done corresponds to rollbacks 

caused by late (but consistent) messages; it could be avoided if the BIND optimization were 

implemented as described in Chapter 5. Beyond this, achieving good speedups depends 

only on achieving a balanced execution—work distributed equally among all processors. 

Programs that were shallowly nondeterministic (qsort, union, and inter) took 

significantly more work when executed in parallel than when executed sequentially. For the 

most part, this was because consumer goals were woken prematurely. A large improvement 

would be expected with the addition of more-precise delay declarations. Further (though 
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mmult fib. tak qsort union inter x15 xyl5 Total 

INFL/NON 0 0 0 +NON +NON 0 +NON +INFL +2 NON 

SML/LGE 0 0 0 0 +SML 0 0 0 +1SML 

ONE/MANY 0 0 0 -1-ONE 0 0 0 -4-MANY 0 

Table 6.2: Summary of comparisons of unifications. 

xnmult fib tak qsort union inter x15 xyl5 Total 

INFL/NON 0 0 0 +INFL +NON 0 +NON +INFL 0 

SML/LGE 0 0 0 0 +SML 0 0 0 +1SML 

ONE/MANY -i-ONE 0 0 0 0 0 +MANY +MANY +1 MANY 

Table 6.3: Summary of comparisons of message counts. 

less dramatic) improvement would come again from adding the BIND optimization. 

The deeply-nondeterministic programs (x15 and xyl5) were clear losers in paral-

lel execution. Where there are clear producer/consumer relationships (for example, the 

generate-and-test strategy of the n-queens program), using delays to control stream AND-

parallel execution may be of avail. Some programs, such as those tested, have no obvious 

producers or consumers; in this case, it must be sufficient merely to deal with the programs 

successfully, in the hope that the nondeterminism is isolated, so that the program as a 

whole still benefits from AND-parallel execution. Such programs could still benefit from 

both the BIND and ANTI-BIND optimizations, however. 

6.4.2 Comparison Between Parallel Versions 

Differences between versions of the parallel system were not overwhelming. A summary 

of the better and worse results is presented in Tables 6.2 and 6.3. (As noted above, results 

for x15 and xyl5 are somewhat suspect, but they are included for completeness.) 
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Temporal inflation 

Allowing temporal inflation gave no benefit in the fully deterministic test runs, and seemed 

clearly detrimental in the shallowly nondeterministic executions. (This detrimental effect 

would likely be removed by avoiding the premature awakening of consumer goals and 

adding the BIND optimization.) Only in the xyl5 test was inflationary execution of any 

avail. 

At present, it is too early to tell whether the inflationary option should be retained; 

the information presented above is inconclusive. Tests seemed to go as expected, with 

temporal inflation having little effect on deterministic programs, but affecting the execution 

of deeply nondeterministic programs. 

Two factors must yet be examined: the effect of the BIND optimization on the results 

reported by the inflated versions, and the effect of inflationary execution on other deeply 

nondeterministic programs. 

Small vs. large time window 

The results comparing large and small time windows are even less conclusive than those 

for inflationary execution. Only one program exhibited behavior that depended on using 

a small or large message window. Testing of further examples is also indicated here; one 

line of attack would be to try "busier" programs, in order to test the system under heavier 

message traffic. 

One vs. many messages 

The results for accepting one or all pending messages are also inconclusive, although they 

at least suggest that the "many" version is superior for running deeply nondeterministic 

programs, while the "one" version may be better with deterministic and shallowly nonde-
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terministic programs. Again, further testing is indicated, so that these suspicions can be 

corroborated or denied. 

6.43 Conclusion 

AND-parallel execution worked very well for the deterministic examples. For shallow 

nondeterininism, the results were less impressive, but there is hope that by applying the 

BIND optimization and delaying output unifications, parallel performance could improve 

dramatically. Finally, the results for executing deeply-nondeterministic programs were 

poor, as expected. Even in this case, there is hope: such programs would benefit from both 

BIND and ANTI-BIND optimizations, and inflationary execution may help sort priorities 

out so that parallel execution is not too expensive. 



Chapter 7 

Conclusion 

This thesis describes the implementation and testing of a distributed AND-parallel inter-

preter for pure Prolog. The interpreter is based on an algorithm due to [Cleary et al 1987]. 

This is a stream AND-parallel backtracking algorithm, incorporating the advantages of 

both the concurrent logic programming languages (i.e. dependent parallelism) and the 

independent AND-parallel Prologs (i.e. backtracking). The combination offers more par-

allelism than is available in the independent AND-parallel systems, while retaining the 

Prolog semantics given up by the concurrent languages. The language accepted by the 

interpreter is kept as close to Edinburgh-style Prolog as possible. 

In implementing the algorithm of [Cleary et al 1987], several problems arose, leading 

to minor corrections to the algorithm and a more exact specification. A prominent example 

came in dealing with aliased variables: if two variables were aliased to each other, then 

binding one would immediately require binding the other. On backtracking, the system 

would be unable to determine which binding occurred first, making correct execution 

impossible. To alleviate this problem, aliasing was prevented by using delays on =/ 2. 

Other refinements include specifying when a process may accept incoming messages 

safely: only during forward execution—that is, after a successful unification. 

A number of optimizations were suggested in the original algorithm. A BIND message 

arriving in the past of a process need not cause that process to roll back, as long as the 

bindings in the BIND are compatible with those already known to the process. Similarly, 

an ANTI-BIND need not cause a rollback if search paths rejected because of the original 

1O2 
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binding are retried. These optimizations were not implemented, but a proposed imple-

mentation was described, and testing suggests that adding them would be well worth the 

effort. 

Testing demonstrated that the system worked well for fully deterministic test programs, 

with few runs requiring more than 10% more unifications than a comparable sequential 

interpreter. Results for shallowly-nondeterministic programs were less encouraging, as 

parallel runs took on average two to three times as many unifications as a sequential run. 

Still, this result is not as bad as it seems. Two alterations to the system would completely 

prevent this extra work from being done: first, implementing the BIND optimization; 

and second, preventing consumer goals from executing too soon by postponing output 

unifications in producer goals until the chosen clause is known to be the correct one. 

Deeply-nondeterministic programs, as expected, performed poorly. Such programs 

would benefit from both the BIND and ANTI-BIND optimizations. Executing these 

programs also made it clear that the original algorithm contained an over-optimization 

that allowed potential solutions to be missed. This over-optimization, concerned with 

directing nonlocal backtracking via FAIL messages, was analyzed in depth and a new, 

safer optimization was proposed. 

Eight different versions of the system were tested, corresponding to all possible combi-

nations of the three binary execution parameters available. Variations between the versions 

were small, but visible. Further testing is required to determine the relative utility of each 

of the versions. This is particularly true of the deeply-nondeterministic programs, whose 

results were tainted by the effects of the FAIL over-optimization. 
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7.1 Future Work 

Several opportunities exist for further work. Some affect the execution algorithm; others 

affect the speed or usability of the system. Improvements include the following: 

• replacing the FAIL over-optimization with code that handles FAIL messages cor-

rectly; 

a implementing the BIND and ANTI-BIND optimizations; 

• altering the system to send BINDs and ANTI-BINDs to specific recipients, rather 

than broadcasting them; 

• using a different, faster message-passing subsystem; 

• implementing more powerful delays; 

• adding more builtins (particularly negation). 

As each of these improvements is made, the system should be tested and evaluated, using 

both the test programs used in this thesis and other ones. 

The most important improvement is to remove the FAIL over-optimization. This 

alteration will result in correct execution in all cases, which is clearly desirable—and 

necessary. Adding the BIND optimization should improve the performance of all test 

programs. The ANTI-BIND optimization should help deeply-nondeterministic programs. 

(Deterministic and shallowly-nondeterministic programs do no nonlocal backtracking, and 

therefore will not gain from this optimization.) 

Alterations to the message-passing system will improve the scalability and speed of 

the system. Scalability will be enhanced by eliminating message broadcasts, which work 
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well enough on a five-processor platform but could easily cause a larger system to be 

swamped with messages. Speed could be increased by using a faster message-passing 

system, whether ear processes were retained or an interrupt-driven scheme were used. 

The remaining additions allow more functionality and flexibility to the user. As such, 

they appear somewhat tangential to the main goal of furthering research. However, they 

will eventually become necessary to allow a larger set of Prolog programs to be tested. 

Many possible improvements have not been listed. For example, it would be nice to 

have a blindingly-fast compiler-based system. However, this and other additions must be 

left to the interested implementor. 

7.2 Summary 

The work presented in this thesis constitutes a significant contribution to research in the 

field of parallel Prolog systems. Contributions of the work include the following: 

• A real, working distributed stream AND-parallel interpreter for pure Prolog, based 

on the algorithm of Cleary et a!, has been implemented. 

• Testing of the implementation demonstrates that a flexible goal-ordering method 

based on virtual time can achieve good performance, and that changing the goal 

ordering can affect that performance. 

• Proposed implementations of optimizations to improve performance for shallowly-

and deeply-nondeterministic programs were presented. 

• The system provides a base for further research into parallel Prolog execution—for 

example, for experimenting further with different goal-ordering strategies. 
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Based on the results of this and other work [Tebra 1989, Somogyi eta! 1988], it is clear 

that the benefits of stream parallelism need not be traded off against the ability to back-

track. Stream AND-parallelism and backtracking can successfully be combined in a single 

system, and at acceptable cost. 
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Appendix A 

Pseudocode for AND-Parallel Prolog Algorithm 

Local Goal Execution 

handle incoming messages 
if a woken goal is available then 

choose it for execution 
else 

choose a pending goal 

increment local clock 

create goal stack frame 
if goal satisfies delay conditions then 

continue with local clause execution for first clause of goal 

else 
put goal on delayed list 

continue with local goal execution 

Local Clause Execution 

create clause stack frame 
increment ID counter; use value as unique ID for frame 
resolve current goal against head of chosen clause 

if resolution fails then 
continue with local clause failure for this clause 

else 
move any goals that now satisfy delays from delayed list to woken 

list 
determine all shared variables bound by the resolution 

send one BIND message to each processor 
for each outgoing BIND, store a corresponding ANTI-BIND 

if process limit not reached then 
create a process for each clause subgoal that specifies a 

new process 
continue with local goal execution 
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Local Goal Failure 

send one ANTI-BIND message for each outgoing message of current frame 

if current stack frame is a remote frame then 
send FAIL message to originator 
include information from sibling stack frame, pretending that frame 
is local, even if it is actually a remote frame 
backtrack all bindings associated with this frame 
delete this clause frame and parent goal frame 
continue with local goal execution from sibling stack frame 

else 
backtrack all bindings associated with this frame 

if child processes from this frame exist then 
kill those child processes 

delete subgoals of this frame from all lists 

return re-delayed goals from woken list to delayed list 

delete this clause frame 
continue with local clause failure from goal frame 

Local Clause Failure 

select next clause 
if no alternative clauses for current goal then 

delete goal frame 
if goal was woken then 

return goal to woken list 
else 

return goal to pending list 
continue with local goal failure of sibling 

else 
continue with local clause execution for selected clause 

Receipt of Bind Message 

look for goal frame with same timestamp as that of incoming message 

if goal frame exists then 
if associated clause frame has a unique ID greater than message 
then 

ignore the incoming message and exit 
else 
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roll back stack frames up to and including associated 
clause frame 
create clause frame with unique ID of message 

else 
roll back stack frames with timestamp greater than message 

create goal frame and clause frame for message 
attempt unification of bindings in message with local variables 

if unification fails then 
remove goal and clause frames 

else 
move any goals that now satisfy delays from delayed list to woken 

list 

Receipt of ANTI-BIND Message 

look for goal and clause frame with same timestamp and unique ID 
if frames exist then 

roll back all stack frames up to located goal frame 

else 
ignore message 

Receipt of FAIL message 

look for goal and clause frame with same timestamp and unique ID 

if frames exist then 
if prior stack frame does not already exist then 

create new goal and clause frames with sibling timestamp 
and ID supplied by FAIL message, and insert in stack 

if frames are remote then 
send FAIL message to originator 
include info from sibling, pretending that frame is local 

roll back all stack frames through to located goal frame 
continue with local goal execution from sibling stack 

frame 
else 

roll back all frames with timestamp greater than message 
continue with local clause failure of clause frame 

else 

ignore the message 
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Source Code of Test Programs 

Matrix multiplication 

mmult(M1,M2,MM) :-

transpose (M2,M2T), 

matinult (M1,M2T, MM) . 

transpose(M, []) :-

nulirows (M). 

transpose (Ml, ( RowIM2J) :-

makerow (Ml, Row,M3), 

transpose (M3,M2). 

makerow([], [ I, El). 

makerow( [[XIR1] IMi], [XIRow], [RlIM2]) :-

makerow(Ml,Row,M2). 

nulirows ( El). 

nullrows([[] IM]) 

nulirows (M). 

matmultU],_, C]). 

matmult([RllM1],M2T, [MRlIRMM]) 
mult row (Rl,M2T,MRl) @pl, 

matmult (Ml, M2 T, RMM) . 

multrow(, [], El). 

mult row (Ri, CC1IM2TJ, [DlIDR]) :-

dot ( Rl,Cl,Dl), 

multrow(Rl,M2T,DR). 

dot ((], [] , 0) 

dot(EH1IV1], [H21V2],Dot) :-

±s(Part,*(Hl,H2)), 

dot (Vi,V2,RDot), 

is(Dot,+(Part,RDot)). 

?- mmult([[l,2,3,4],[6,7,8,9],[li,12,131 14 ]l, 

[[i,2,3],E4,5,6],[7,8,9],Ei0,ii, 12 1],MM). 
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Fibonacci numbers 

fib ( 0, 1) 

fib ( 1,1) 

fib(N,F) 

>(N,i) 

is (Ni, -(N, 1)), 

is ( N2, - (N, 2)), 

fib(Ni, Fi) @pi, 

fib(N2,F2)@p2, 

is(F,+(Fi,F2)). 

?- fib(5,N). 

The tak benchmark 

tak(X,Y,Z,A) :- =<(X,Y), 

tak(X,Y,Z,A) 

>(X,Y), 
is(Xi,-(X,i)), tak(Xi,Y,Z,Ai)@Pi, 

is(Yi,-(Y,1)), tak(Yi,Z,X,A2)@P2, 

is(Zi,-(Z,i)), tak(Zi,X,Y,A3)@p3, 

tak(Ai,A2,A3,A). 

?- tak(9,6,3,A). 

Quicksort using difference lists 

?- qsort(Li,L2) when Li. 

qsort(Li,L2) :-

qsortdl(Li,L2, [1). 

?- qsort_dl(Li,L23,L2E) when Li. 

qsort_dl([],L,L). 

qsortdi([XlLi),L2B,L2E) :-

part ( Li, X, Littles, Bigs), 

qsortdi(Litties,L2B, [XIL2M])pi, 

qsortdi (Bigs, L2M, L2E) @p2. 
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?- part(A,P,L,B) when A and P. 

part([XIXs],Y,[XILs],BS) 

part(Xs,Y,Ls,Bs). 

part((XIXs] ,Y,Ls, [XIBs]) :-

>(X,Y), 

part(Xs,Y,Ls,Bs). 

part ( E] ,Y, [1, [] 

?- qsort([27,74,17,33,94,18,46,83,65,2,32,53,28,85 199,47 128,82,6,ii],S) 

Set union using ordered trees 

?- neq(Ni, N2) when Ni and N2. 

neq(Nl, N2) :-

>(Ni, N2). 

neq(Ni, N2) :-

<(Ni, N2). 

?- split(N, T, —, _) when N and T. 

split(_, nil, nil, nil). 

split(N, t(N,L,R), L, R). 

split (N, t (X, L, R), LL, t (X, LR, R)) - 

<(N, X), 

split(N, L, LL, LR). 

split(N, t (X, L, R), t (X, L, RL), BR)  

>(N, X), 

split(N, R, RL, BR) 

?- union(Ti, T2, _) when Ti and T2. 

union(nil, T, T). 

union(t(X,L,R), nil, t(X,L,R)). 

union(t(X, Li,Rl), t(X, L2,R2), t(X, L3,R3)) 

union(Li, L2, L3)@pi, 

union (R1, R2, R3). 

union(t(Xi, Li,Ri), t(X2, L2,R2), t(Xl, L3,R3)) :-

neq(Xi, X2), 

split(Xi, t(X2,L2,R2), TL, TR), 

union(Li, TL, L3)tpl, 

union(Rl, TR, R3)@p2. 

?-
t(4,t(2,t(l,nil,nil),t(3,nil,nil)),t(7,t(6,nil,flil),nil)), T). 
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Set intersection using ordered trees 

?- neq(Ni, N2) when Ni and N2. 

neq(Ni, N2) :-

>(Ni, N2). 

neq(Nl, N2) :-

<(Ni, N2). 

?- split(N, T, —, _) when N and T. 

split(_, nil, nil, nil). 

split (N, t (N, L, R), L, R) 

split(N, t(X,L,R), LL, t(X,LR,R)) :-

<(N, X), 

split(N, L, LL, LR). 

split(N, t(X,L,R), t(X,L,RL), RR) :-

>(N, X), 

split(N, R, RL, RR). 

?- inter(Ti, T2, T3) when Ti and T2. 

inter(nil, , nil). 

inter(t(_,_,_), nil, nil). 

inter(t(Xi,Li,Ri), t(X2,L2,R2), t(Xi,LI,RI)) :-

mem(Xi, t(X2,L2,R2)), 

split(Xi, t(X2,L2,R2), TL, TR), 

inter(L1, TL, LI)@pl, 

inter(Ri, TR, RI)@p2. 

inter(t(Xi,Li,Ri), t(X2,L2,R2), TI) :-

non mem(Xl, t(X2,L2,R2)), 

split(Xl, t(X2,L2,R2), TL, TR), 

inter(Li, TL, LI)@pi, 

inter(Rl, TR, RI)@p2, 

make_tree(LI, RI, TI)@p3. 

?- mem(N, T) when N and T. 

mem(N, t(N,_,_)) 

mem(N, t(X,L,_)) 

<(N, X), 

mem(N, L). 

mem(N, t(X,_,R)) :-

>(N, X), 

mem(N, R). 

7- non mem(N, T) when N and T. 

non mem(_, nil). 

non mem(N, t(X,L,_)) 

<(N, X), 

non mem(N, L). 

non mem(N, t(X,_,R)) 
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>(N, X), 

non_mem(N, R). 

rightmost (t(X,L, nil) , X, L). 
rightmost(t(X,L,R), RN, t(X,L,RR)) 

rightmost (R, RN, RR). 

?- make_tree(Tl, T2, _) when Ti and T2 

make _tree (nil, T, T). 
make tree(t(X,L,R), nil, t(X,L,R)). 

make_tree Ct (X, L,R), t (X2, L2,R2), t(RM, 

rightmost (t(X,L,L), RN, LL). 

?- inter(t(6,t(4,t ( 3,t(i,nil,nil) , nii) 

t(4,t(2,t(i,nil,riil),t(3,nhl, 

x15 program 

x(l,2) 

x(2,3) 

x(3,4) 

x(4,5) 

x(5,i) 

LL,t(X2,L2,R2))) 

,t(5,nil,nil)),t(8,t(7,nil,nil),riil)), 

nil)),t(7,t(6,nil,nil),nil)), T). 

?- x(A,B)@pl, x(B,C)@p2, x(C,D)@p3, x(D,E)@p4, x(E,A). 

xyl5 program 

run(A,B,C,D,E) :- x(A,B), x(B,C)@pi, x(C,D)@p2, x(D,E)@p3, x(E,A)@p4. 

x(1,N) 

x(2,N) 

x(3,N) 

x(4,N) 

x(5,N) 

y(i,2) 
y(2,3) 

y(3,4) 

y(4,5) 

y(5,l) 

y(l,N) 

y(2,N) 

y(3,N) 

y(4,N) 

y(5,N) 

?- run(A,B,C,D,E). 


