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Abstract
 

Mammography is the current gold standard imaging modality for breast cancer diagnosis, 

providing detailed 2D projection images of the compressed breast. However, unprocessed 

mammograms are unable to provide 3D information due to significant distortion and a 

limited number of views. 

This thesis presents a method to estimate the external shape and internal features 

of the breast from two 2D mammograms. The distortion resulting from compression is 

removed by registration with 2D projection images created from an MR reference image; 

this method is validated by a simulated model. The skin surface is reconstructed by 

fitting ellipses at twenty equally spaced coronal slices of the breast. Internal features 

visible on both views are reconstructed by orthogonal backprojection. 

This algorithm was tested on four patient data sets, and shown to be successful for 

all eight breasts. Results and applications of this work to a novel microwave imaging 

technique (TSAR) are discussed. 
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Chapter 1 

Introduction 

1.1 Motivation 

Breast cancer is the most common cancer affecting women, with an estimated 22,700 

new cases occurring each year in Canada alone [1]. Although overall mortality rates are 

declining, breast cancer continues to be the second highest cause of cancer death among 

women [1]. As treatments are more successful if cancer is detected in its early stages, 

accurate diagnosis and monitoring of disease progression are crucial to patient survival 

and well-being. 

Various imaging techniques are used for screening, detection, and diagnosis of breast 

cancer, with the current gold standard or definitive test being X-ray mammography [2]. 

Mammography is a 2D imaging technique that involves compressing the breast and ob­

taining X-ray images in each of the cranial-caudal (CC) and medial-lateral oblique (MLO) 

directions [3]. However, mammography has been shown to have low sensitivity and speci­

ficity among pre-menopausal women and women with dense breasts [4]. Mammography 

is also an uncomfortable procedure, and the use of ionizing X-rays carries health risks 

[3]. 

As a result of these limitations of mammography, other imaging modalities such as 

magnetic resonance (MR) imaging and ultrasound are used to assist in the diagnosis of 

symptomatic patients [4, 5, 6]. MRI provides a 3D representation of the breast based on 

the response of 1H protons  in  a  changing  magnetic field,  whereas ultrasound  creates  an  

image based on the reflections from sound waves in a localized area [4]. Since different 

modalities rely on different properties of the tissue to generate an image, examining mul­
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tiple modalities can provide diagnostic information that might be missed if only a single 

imaging technique were used [4]. Because of the advantages of combining information 

from different sources, there is considerable interest in developing new imaging methods. 

One alternative approach, microwave imaging, examines the electromagnetic (EM) 

properties (complex permittivity and conductivity) of breast tissues. This technique was 

first proposed by England and Sharples in 1949, who found significant differences in EM 

properties between breast fat and carcinoma regions [7]. Further work supported these 

findings, indicating that microwave imaging has strong potential for detecting tumours 

in fatty regions of the breast [8]. However, recent studies have shown that only a 10% 

difference exists between normal glandular tissue and cancerous regions, suggesting that 

microwave imaging techniques require further refinement to detect tumours in non-fatty 

regions [9]. 

Two methods of obtaining an image from microwave data have been proposed: to­

mographic and radar. Tomographic imaging aims to reconstruct a complete map of the 

EM properties of the breast by recording the transmitted waves, whereas radar based 

techniques focus the reflected waves to detect and localize tumours [3, 10]. Using very 

low power microwave energy, both methods show promise as safe, low-cost, and pain-free 

methods of detecting tumours at early stages of development [3]. 

As a technology currently in its infancy, microwave breast imaging has both exciting 

potential and significant challenges. One such challenge is the ill-posed and non-linear 

reconstruction task required to form a tomographic image from the acquired electro­

magnetic data [11]. In radar based techniques, such as the tissue sensing adaptive radar 

(TSAR) system developed at the University of Calgary, antenna placement and scan pat­

tern are important factors in image quality and must be modified on a patient-specific 

basis [12]. As TSAR has matured and moved into the early stages of clinical testing, 

the need for a priori structural information for each patient has been identified. A sim­
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ilar need has been identified to address the ill-posedness of tomographic reconstruction 

[13, 14]; however, the remainder of this work will focus on applications to TSAR. 

Since current breast cancer care protocols specify the acquisition of mammograms 

in almost all cases, mammographic images have the potential to be a convenient source 

of a priori information [2]. Furthermore, the ability to directly compare the results of 

microwave imaging methods to the current gold standard would assist with the validation 

of these new diagnostic techniques. 

The challenge in using mammograms as a source of a priori information or validation 

lies in the problem of obtaining 3D data from only two 2D images, both of which are inde­

pendently distorted due to the compression required. In this work, MR images are used 

to assist with the undistortion of mammograms through the use of image registration. 

The two mammographic views are oriented at approximately 45◦ to each other, and 

do not provide enough information to completely reconstruct the full 3D volume of the 

breast such as the image produced by MR imaging. However, several assumptions about 

the breast shape can be made to obtain a skin surface estimate, which would benefit 

TSAR imaging by allowing for a scan pattern to be determined on a patient-specific 

basis as well as providing information essential to creating an image from microwave 

signals. 

In addition to the skin surface estimate, lesions that are detectable on both mam­

mographic views can be reconstructed in 3D space. Clinical evaluation of TSAR images 

would benefit from prior knowledge of expected lesion locations, and the ability to deter­

mine such regions of interest from mammography would provide valuable multi-modal 

diagnostic power. For this application, high precision of lesion location is not required. 

In addition, current TSAR images are capable of resolving objects no less than 1 cm 

apart, which is considerably larger scale than mammography. As a result, this project 

aims to detect a region of interest with quadrant-level accuracy. 
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In addition to TSAR applications, the methods described in this thesis have potential 

roles in several other clinical and research problems. The registered images have value in 

themselves, as they provide the ability to directly compare regions of interest on MR and 

mammogram images. The deformation resulting from registration could also provide 

information on the biomechanical properties of the tissues. Finally, reconstruction of 

mammographic features in 3D could assist in locating tumours during surgical procedures. 

1.2 Objective 

The main objective of this project is to obtain a 3D estimation of the external shape 

and internal feature locations of the breast from two 2D X-ray mammograms. The work 

required to achieve this goal can be separated into two specific aims: 

1. Develop a robust and validated algorithm to remove distortion from mammograms 

through registration with MR images. 

2. Develop a method to reconstruct and visualize the shape of the breast and the 

location of relevant features in 3D with quadrant-level accuracy. 

Furthermore, an emphasis on automation, ease of use, and speed will be placed on each 

of the algorithms developed in these specific aims. 

1.3 Thesis Outline 

Overall, this thesis describes a method to generate a 3D estimate of the skin surface and 

the 3D location of visible lesions from mammograms as illustrated in the flow chart of fig­

ure 1.1. The mammographic image acquisition process requires compressing the breast, 

resulting in a distorted image. To estimate the original 3D shape of the breast, a refer­

ence shape is required; in this work, an MR image is used. A projection image through 
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the MR volume and its corresponding mammogram are registered in 2D, producing as 

intermediate results two undistorted mammograms (CC and MLO views). These images 

are then aligned in 3D space according to their acquisition angles, and edge splines defin­

ing the skin/air boundary are used as inputs to an ellipse-based skin surface estimation 

algorithm. Finally, any features that are identifiable on both of the mammograms are 

located in 3D space by orthogonal backprojection. 

As a result of the processing methods described in this thesis, two 3D objects are 

obtained: a skin surface estimate and a region of interest. The skin surface can then be 

used to determine a TSAR scan pattern and assist with image formation, while the 3D 

region of interest can be used to target a specific area and to evaluate suspicious regions 

with multiple modalities. 

With the exception of the finite element model described in §3.4, all of the methods 

described in this thesis were developed by the author. 

Chapter 2 introduces essential background on breast imaging modalities, the repre­

sentation of images as continuous and discrete signals, and discusses previous work on 

breast MR/mammographic image registration and 3D reconstruction of mammograms. 

Chapter 3 describes the methods used to register X-ray mammograms to MR pro­

jection images. Results are presented showing successful registration for both MLO and 

CC views and on simulated and acquired data. 

Chapter 4 describes the methods used to reconstruct the external surface and inter­

nal features of X-ray mammograms in 3D space and presents examples of visualization 

results. 

Chapter 5 summarizes and concludes this work, detailing contributions and future 

applications with a focus on TSAR imaging. 
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Figure 1.1: Overview of processing algorithm
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Chapter 2
 

Background and Literature Review 

The field of medical imaging is vast and diverse, with image formation resulting from 

interactions ranging from X-rays being blocked by tissues to radioactive decay. This 

chapter begins with an introduction to image representation as discrete and continuous 

signals as well as the breast imaging modalities used in this work. Following this es­

sential background information, a review of the relevant literature on 3D mammogram 

reconstruction is provided. 

2.1 Digital Image Representation 

Digital images, while creating an intuitive picture that can be displayed on a computer 

screen, are also represented mathematically as signals. Signals are functions of indepen­

dent variables that change over a range of values; this range may be either continuous or 

discrete. 

In this work, signals representing images are either functions of two spatial variables 

(2D) or of three spatial variables (3D). Processes occurring in the physical world, such as 

interactions between X-ray beams and the body, are modelled as continuous functions of 

space such as f(x, y, x), where (x, y, z) are coordinates in space [15]. However, computers 

are only able to store, process, and display discrete signals containing a finite number of 

values such as f(i, j, k), where (i, j, k) are integer  indices.  

2.1.1 Continuous Signal Discretization 

Conversion from a continuous to a discrete signal requires sampling and quantization. 

Sampling is a broad term covering a range of methods to take representative values from 
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the continuous signal and discard the rest, while quantization refers to converting the
 

value to a number that can be stored digitally [15]. 

a) Sampling 

Regular sampling records the value of the continuous signal at regular intervals; for a 1D 

signal, the sampling period Ts or∆ t is the length of that interval in seconds (minutes, 

hours, etc.), and the number of samples collected in one second is the sampling rate or 

frequency fs = T 
1 . This  is  illustrated  in  figure  2.1,  where  the  discrete  signal  (shown  as  

blue dots) is a sampled version of a continuous sinusoid (black curve). 

1.0 

0.5 

0.0 

− 0.5 

− 1.0 

va
lu
e

←→ 
∆t = Ts 

0 2 4 6 8 
time t 

Figure 2.1: Sampling a continuous one-dimensional signal 

It is desirable to collect the smallest number of samples possible that can still ac­

curately be reconstructed to form the continuous signal, as lower frequency sampling 

rates require less complex equipment and reduce storage and processing requirements 

[15]. However, if a signal is not sampled at a high enough rate, it can be corrupted by 

aliasing, a phenomenon where the digital signal resembles a lower frequency continuous 



9 

signal [15]. An example of undersampling a high-frequency sinusoid is shown in figure 

2.2, with the original continuous signal shown in black, the sampled signal marked as 

blue dots, and the reconstructed aliased signal shown in blue. 

The minimum sampling rate required to avoid aliasing is twice the frequency of the 

highest frequency component in the continuous signal; this threshold is known as the 

Nyquist rate [15]. For most natural signals, the exact frequency distribution is not known, 

and sampling rates higher than Nyquist are used to ensure high frequency components 

are accurately captured. 

1.0 

0.5 

0.0 

−0.5 

−1.0 

va
lu
e 

0 1 2 3 4 5 6 7 
time t 

Figure 2.2: Undersampling of a continuous signal results in aliasing 

For higher dimensional signals (2D and 3D images), the theory described above is 

simply extended to the appropriate number of dimensions, with variations in space re­

placing variations in time. In the case of a 2D image, a regular grid (the digital sensor) 

composed of equally spaced rectangles is used to capture the continuous signal. The 

values at the centres of each∆ x × ∆y rectangle are assigned to a discrete value f(i, j) 

[15].∆ x and∆ y are analogous to the sampling period Ts of the 1D signal in figure 2.1, 
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and they may be different for each dimension, resulting in anisotropic pixels. The corre­

sponding inverse of this value, analogous to the sampling frequency fs of a 1D signal, is 

pixel resolution, measured in pixels per inch (PPI). 

The spatial resolution of a 2D signal is measured in line pairs per mm (lp/mm) and 

describes the ability of the imaging system to distinguish differences between two closely 

adjacent features [15]. The spatial resolution is affected by all the components of the 

imaging system, such as the scattering of photons through the volume of interest, and 

decreased spatial resolution manifests as increased “blurriness” in the final image. 

The equation describing the amount of blur introduced by an imaging system is the 

point spread function (PSF) [15]. The PSF is the image that is obtained from imaging 

a single point (mathematically,  the  ideal Dirac  δ function). The width of the blur or 

“spread” of the resulting image determines the spatial frequency and the Nyquist rate 

required for accurate discretization [15]. Figure 2.3 illustrates the difference between 

image resolution and pixel resolution. Both figures 2.3c and 2.3d exhibit blurring and 

are unable to resolve the fine details at 5 lp/mm, but only figure 2.3c is undersampled 

and exhibiting aliasing. 

3D images are represented as a stack of 2D image slices through the cross section 

of the volume of interest as illustrated in figure 2.4. The spacing between these cross 

sections is referred to as the slice thickness and becomes the third sampling period∆ z. 

The∆ x × ∆y × ∆z rectangle is known as a voxel, short for “volume element” [15]. 3D 

image signals can be processed either as a volume f(i, j, k), or as a series of 2D images, 

f(i, j) at  locations  k = [0...kn]. 

As the images in this work are clinical images acquired using standard breast imaging 

protocols, it is assumed that the pixel/voxel size is sufficient for the purposes of each 

modality and system resolution. The pixel and voxel sizes of the images used in this 

work are summarized in table 2.1. 
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(a) Continuous signal (b) High PPI, High Resolution

(c) Low PPI, High Resolution (d) High PPI, Low Resolution

Figure 2.3: Illustration of image resolution vs. pixel resolution (400% scale)

Figure 2.4: Representation of a 3D image as a stack of slices 

Mammography MRI
∆x = ∆y (mm) 0.094 ­ 0.07 0.43 ­ 0.39
Slice thickness (mm) N/A 1.12

Table 2.1: Pixel and voxel sizes of mammographic and MR images 
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b) Quantization
 

Like sampling, quantization is a necessary step in converting from continuous to discrete 

signals that may potentially introduce errors. While a continuous signal may have an 

instantaneous value consisting of any real number to an infinite level of precision, digital 

signals are limited to values that have a finite range and precision [16]. 

The fundamental storage unit of digital information is the bit, defined as being either 

“on” (1) or “off” (0) [16]. The data types used to store digital information are composed 

of several bits, and both the number of bits and the representation of the data define the 

range of values and precision of the data. The smallest data type is a boolean, occupying 

a single bit; images composed of this data type would be completely binary (black and 

white) [15]. 

Numeric data types can be divided into two major categories: integers (both signed 

and unsigned) and floating point numbers [16]. Integer types can only contain whole 

numbers, and their range is dependent on the number of bits allocated and the sign. For 

example, an 8-bit integer can be one of 28 = 256 values; if it is unsigned, the values range 

from 0 to 255; if signed, the values range from -128 to 127. 

Floating point numbers, such as 6.02214×1023, use  three  integers  to  represent  fractions  

in scientific notation: the sign (in this case, +), the significand or fraction (602214), and 

the exponent (+23) [17]. This allows for a much broader range of numbers, but only 

a fixed precision.  In this  example  case of a 32-bit float,  the data type is capable  of  

describing a number up to seven significant digits. 

The digital images used in this work use 16-bit unsigned integers to store data; thus, a 

given pixel can have an integer value in the range [0, 65 535], typically scaled so that the 

lowest intensity signal of the image is 0 and the highest is 65 535. As only integer values 

are used, quantization errors could result from subtle changes in the continuous signal as 

illustrated in figure 2.5. However, sub-integer changes in intensity are very small relative 



13 

to the overall range and are unlikely to be physiologically relevant.
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Figure 2.5: Quantization of a 1D continuous signal 

2.1.2 Coordinate Systems 

Several different coordinate systems and terms describing anatomical directions are used 

throughout this thesis. Cartesian coordinate systems are used to describe mathematical 

methods, whereas anatomical terms are used to discuss results. 

The world coordinate system (x, y, z) has units  of  millimetres  and provides  a  reference  

for the physical size of the image. The origin (0, 0, 0) of this coordinate system is defined 

at a constant location on the imaging unit, whereas the origin of the resultant image 

is defined at the smallest (x, y, z) coordinate. This image origin marks the voxel index 

[0, 0, 0] or pixel index [0, 0]; as a result, increasing indices correspond to an increase in 

physical dimension. 

Figure 2.6 illustrates the orientation of the world coordinate system and direction of 

positive rotation relative to both the right and left breasts. Anatomical directions are 



14

also indicated. 

Figure 2.6: Anatomical directions and world coordinates relative to left and right breasts
with MLO image planes indicated by dashed lines

As the world coordinate system is defined relative to the imaging unit, 2D mammog­

raphy results in coordinates in the (x, y) plane only, as it is the imaging unit that is

rotated to obtain the different views.

The anatomical planes of the body are referenced with respect to a person standing

in neutral posture. These planes are used to describe cross­sectional slices through the

body (shown in figure 2.7).

Figure 2.7: Anatomical planes of the human body 
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2.2 X-ray Mammography 

Mammography, the current gold standard breast cancer diagnostic and screening method, 

is an X-ray based imaging modality. X-rays are high energy photons generated in X-ray 

tubes by bombarding a heavy metal anode with a stream of electrons [16]. While X-rays 

are emitted in all directions, the emitter is shielded to allow only a directional beam to 

exit. The X-ray beam is aimed through the volume of interest towards an X-ray detector 

and as it passes through various different tissues the beam energy is attenuated due to 

both absorption and scattering. The amount of attenuation is dependent on the atomic 

number of the material, the density and thickness of the material, and the photon energy 

[16]. 

Photons that are not significantly attenuated increase the exposure of the detector, 

resulting in darker regions [16]. Tissues that largely attenuate the photons appear as 

bright regions; in this manner, the X-ray image that is formed represents a “shadow” of 

the internal tissues of the volume of interest. In other words, image contrast is a result 

of differential attenuation by the various tissues undergoing examination [16]. 

If the energy of a given photon is sufficiently high, it has the potential to ionize an 

atom or cause an electron to break free from its orbit [16]. This can damage DNA and 

cause significant biological effects such as cancer. Hydrogen, the easiest atom to ionize, 

has the potential to be ionized at energies equal to or greater than 13.6 eV, and as 

diagnostic X-rays are in the 20-200 keV range, all X-ray imaging is potentially dangerous 

[15]. 

Lower energies are more readily absorbed by tissues, increasing the chance of damage 

due to ionization. Therefore, appropriate X-ray energies must be carefully chosen to 

optimize image contrast while minimizing radiation dose [16]. 

Most applications of X-ray imaging involve contrast between air, bone, and soft tissue, 
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as these have very different attenuating properties and result in high contrast images [16]. 

Mammography, however, seeks to discriminate between different types of soft tissue. To 

achieve this, low energy X-rays (20-30 keV) are used, as they are more easily attenuated 

by soft tissues. 

As previously mentioned, lower energy X-rays result in higher radiation dose to the 

patient. To reduce this effect, the breast is compressed between two parallel plastic plates 

up to 50% of its original thickness [16]. This also improves image quality by reducing 

scatter of the photons and placing the detector closer to the X-ray tube, resulting in a 

very high resolution image capable of detecting small features such as microcalcifications 

[16]. 

In Canada, two views of each breast are acquired during mammographic imaging: one 

with the X-ray beam parallel to the cranial-caudal (CC) axis, and one with the beam at 

an oblique angle (medial-lateral oblique or MLO) running parallel to the pectoral muscle 

[18]. These angles and the direction of compression are shown in figure 2.8. 

(a) CC view (b) MLO view 

Figure 2.8: Illustration of mammographic image acquisition of the right breast 
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2.3 Magnetic Resonance Imaging
 

MR imaging is not currently part of standard breast cancer management; however, it is 

occasionally used as an adjunct to mammography, particularly for younger women with 

dense breasts and women at high risk [19]. In addition to providing 3D images with 

excellent soft tissue contrast, MR imaging has the ability to show dynamic functionality 

of the breast through the use of contrast agent injections [19]. Since MR relies on differ­

ent tissue properties than X-ray imaging techniques, breast MR and mammography are 

complementary modalities. 

The three major components of an MR imaging system are the main magnet, the gra­

dient coils, and the radio frequency (RF) coil, which work together to produce an image 

resulting from electromagnetic interactions with certain atomic nuclei (predominantly 1H 

protons) [16]. 

The main magnet is a strong superconducting electromagnet (in this work, generating 

a field strength of 1.5 Tesla) large enough to surround the patient,  causing some of the  

spins of atomic nuclei within the body to tend to align to the magnetic field [15]. The 

gradient coils provide very small magnetic field gradients in each of the three orthogonal 

directions, allowing for localization of the signal [16]. The RF coil is placed around the 

object of interest to measure the signal; in this case, the patient lies prone on the scanner 

with the breast pendant inside the coil, causing distortion in shape due to gravity (figure 

2.9). 

During image acquisition, the RF coil or a larger whole-body RF coil emits a series of 

carefully timed electromagnetic pulses, which cause the protons to tip out of alignment 

with the main magnetic field. As these protons realign themselves, they emit a responding 

RF signal [15]. It is this induced signal that is measured and used to form the final 3D 

image. 
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Figure 2.9: Patient positioning within an MR scanner 

Since the electromagnetic radiation used in MR imaging is in the radiofrequency 

(MHz) range, the energies associated are much lower than the 13.6 eV required to cause 

ionization [16]. As such, MR imaging is considered safer than X-ray based modalities. 

However, RF energy can be deposited into tissue in the form of heat, and rapidly changing 

magnetic fields can induce currents [16]. To avoid harmful effects from these factors, 

careful selection of the RF pulse sequence, such as limiting the rate of change of the 

gradients, is required. 

In addition to potential direct damage to tissues, MR imaging can cause metal ar­

tifacts within the body to heat up or shift, thus damaging tissues indirectly. Due to 

this effect, patients with significant metallic devices such as pacemakers, surgical clips, 

and some prostheses are unable to undergo MR examination [16]. Furthermore, patients 

unable to withstand loud noises or enclosed spaces may not be able to tolerate MR image 

acquisition. 

MR imaging has a complex set of parameters that must be optimized to produce an 

appropriate image. In particular, increasing image quality affects the time required to 

obtain an image, calculated for a single x location according to the simplified equation 

[16]: 

t = My × Mz × TR× Nex (2.1) 
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where My and Mz are the number of pixels in the y and z directions, TR  is the repetition 

time between pulse sequences, and Nex is the number of measurements made per pixel. 

Increases in any of these parameters can lead to improved image quality, but introduces 

the risk of patient discomfort and motion artifacts [16]. 

Clinical breast MR imaging is performed with the use of a contrast agent, referred to 

as contrast enhanced (CE) imaging. MR contrast agents contain gadolinium, a param­

agnetic material that affects the magnetic response of nearby atomic nuclei and causes 

them to appear brighter on the resulting image [16]. In CE imaging of the breast, the 

contrast agent is injected into the bloodstream and a series of images are acquired to 

observe the rate at which the contrast-containing blood enters and exits various regions 

of the breast [19]. The speed at which contrast is taken up and washed out of a region 

can indicate malignancies [19]. 

A comparison between MR imaging and X-ray mammography is presented in table 

2.2 below. 

Parameter MR Mammography 
Cause of contrast Proton density and relax­

ation time 
Atomic number, density, 
and thickness 

Information provided Structural and functional 
(with CE) 

Structural, including mi­
crocalcifications 

Spatial resolution Low High 
Acquisition time Minutes Seconds 
3D information Complete Limited to 2 views 
Anatomical distortion Gravity Compression 

Table 2.2: Comparison of breast MR imaging and X-ray mammography 

2.4 Registration of Mammograms and MR Images 

Examining table 2.2, it is evident that mammograms and MR images provide different 

and complementary information. Previous researchers have noticed this fact, and several 
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methods for combining the information from MR and mammographic images have been

proposed. The most common method for determining correspondence between images is

registration [20].

Image registration can be formally defined as the process of mapping points from

one image (the “moving” image) to corresponding points on another image (the “fixed”

image) [21]. This process is illustrated in figure 2.10, with the mapping transform rep­

resented by T. Registration in its simplest form is rigid, where the moving image is

simply translated and rotated until it corresponds with the fixed image. In contrast,

non­rigid or deformable registration allows the moving image to deform nonlinearly un­

til correspondence is achieved [21]. In other words, the transformation mapping points

from the moving to the fixed image cannot be represented by a simple matrix. For

A1 A2

T

Figure 2.10: Registering a moving image (A1) to a fixed image (A2)

both deformable and rigid applications, there are three types of registration algorithms:

landmark­based, region­based, and intensity­based [21]. Landmark­based methods involve

manually or automatically selecting corresponding points on the two images; region­based

methods require segmentation and identification of corresponding regions of interest; and

intensity­based methods operate directly on the intensity information of the images.

Rigid registration methods are both the simplest and most rigorously validated [22].

These techniques are are well established in research and are becoming increasingly com­
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mon in clinical settings, particularly in neuroimaging [20, 22]. While the simplest of 

these methods are the fully automated, validated and highly accurate intra-modality 

registration algorithms, the most common clinical applications involve registration of 

low-resolution functional images such as those obtained from single photon emission 

computed tomography (SPECT) to anatomically detailed roadmap images obtained from 

computed tomography (CT) or MR [22]. These images allow for brain function to be 

localized to anatomical features, and one such algorithm is gaining clinical acceptance 

for epilepsy diagnosis [23]. 

Non-rigid registration is facing larger resistance to clinical adoption due to issues 

such as difficulties in validating results as well as increased computational complexity 

[20]. However, validated techniques that are accurate enough for clinical applications are 

becoming more common while technological advances are removing the computational 

limitations, and it is anticipated that image registration will play a greater role in clinical 

image analysis in the future [22]. 

Breast images present a unique challenge to image registration due to the large and 

anisotropic deformations resulting from mammographic compression and gravitational 

forces during MR acquisition [6, 24]. Furthermore, the two modalities differ in dimension, 

resolution, dynamic range, intensity/tissue relationship, and noise level. As a result, 

breast image registration methods are in their infancy compared to neuroimaging and 

other rigid registration application areas. 

So far, only three approaches to problem of registering mammograms to MR images 

have been published. In 2003, Behrenbruch et al. used  a landmark-based  registration  

algorithm to align mammograms to “simulated mammograms” created from MR images 

[25]. Behrenbruch’s technique began with three predefined external landmarks followed 

by internal landmarks obtained through a wavelet-based feature detection method. Mart́ı 

et al. took  a similar approach in 2004,  with  the  addition of  an  intensity-based registration  
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technique to determine the appropriate angle for MLO projection of the MR data [26]. 

Both groups effectively removed the mammographic distortion through their non-rigid 

registration techniques. 

Most recently, Ruiter et al. took the  approach of  creating a patient-specific  finite  

element model based on an MR image, deforming it computationally to simulate mam­

mographic compression, then creating a simulated mammogram through this compressed 

volume [27]. Following model creation, Ruiter’s group achieved correspondence by iter­

atively modifying the applied deformation, creating a projection image, then using an 

intensity-based registration method until satisfactory alignment was achieved. 

Results of these studies are difficult to compare, as all three chose different reporting 

methods. Mart́ı’s work focuses on estimating the projection angle of the MLO view and 

determining the MR slice corresponding to features seen in mammograms, but does not 

present quantitative results of lesion localization [26]. Behrenbruch et al. compare  lesion  

locations on the registered images, reporting errors averaging 20% of the deformation 

displacement distance [25]. Finally, Ruiter’s group measured the Euclidean distance 

between corresponding lesions as seen in both the 2D registered view and the 3D MR 

view, resulting in an average error of 4 mm [27]. 

The method proposed by Ruiter et al. produced highly accurate results, and as such 

is objectively the best of the three. However, the authors provide the caveat that the 

data set used involved mammograms acquired under compression of only 21% strain, 

which is on the low end of mammographic procedures [27]. Furthermore, development 

of a patient-specific finite element model is not a trivial task, and as such poses a barrier 

to clinical use of this technique. 

The feature-based registration techniques described above have similar limitations. 

As breasts are non-uniform structures, the presence of specific internal landmarks is not 

guaranteed, which could lead to non-corresponding points being used as alignment points. 
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Furthermore, pathological regions were often used as strong landmarks for alignment [25, 

26]. However, it is often desirable to compare regions that do not obviously correspond 

such as microcalcifications seen on mammograms or regions of increased contrast agent 

uptake on MR images. 

All three of the aforementioned studies were performed using film mammograms that 

were digitized. While the resulting images were of similar diagnostic quality as current 

digital images, information about the MLO acquisition angle and the amount of mammo­

graphic compression were lost. As a result, estimation of these parameters posed further 

challenges [25, 26, 27]. 

2.5 Reconstruction of Mammograms in 3D 

Estimation of 3D features from mammograms has received limited attention due to the 

same challenges affecting registration. Nonetheless, several groups have investigated 

reconstruction of microcalcifications in 3D. 

The first attempt at estimating 3D features from standard two view mammograms 

was in 1998, when Müller et al. developed a method to reconstruct the 3D shape of 

microcalcification clusters [28]. Müller’s group found corresponding microcalcification 

clusters on each view and backprojected along the X-ray beam trajectories, then found 

the 3D location as the intersection between the two [28]. Affine deformation due to 

compression was assumed, and the cluster was presented in 3D space without information 

on location within the breast. 

In 2001, Yam et al. and  Kita  et al. expanded  on this  concept  by  estimating the  curved  

trajectory of the X-ray beam due to mammographic compression as well as estimating 

the shape of the breast surface from the mammograms [29, 30]. This allowed for the 

localization of 3D structures with deformation taken into account, as well as provided 
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a reference model of the breast shape. However, this work was limited by two major 

assumptions: 1) the undistorted breast profile is the same as an eroded version of the 

compressed breast profile; and 2) the MLO view is approximately the same as the ML 

view [30]. 

More accurate results can be obtained by precise calibration of the mammographic 

imaging system, as demonstrated by Daul et al. [31]. However, as this requires a modifi­

cation to standard imaging procedures, it cannot be compared with previous techniques. 

2.6 Summary 

This chapter introduced important concepts such as the representation of images as con­

tinuous and discrete signals, as well as some of the critical differences between mammog­

raphy and MR imaging. Limitations of previous breast MR/mammogram registration 

techniques were identified as: the need for discrete feature detection, lack of knowledge 

of MLO acquisition angle, and complex finite element model creation. Mammographic 

feature reconstruction also suffered from the lack of MLO acquisition angle information, 

as all previous studies found in literature assumed the two views to be at 90◦ to each 

other. 

In the work described in this thesis, a combination of methods similar to those found 

in the literature was used, with modern automated intensity-based registration replac­

ing previous feature-based techniques. In chapter 3, the mammograms are registered 

to projection images created from MR image volumes to remove the distortion caused 

by mammographic compression. Following this undistortion step, chapter 4 describes 

how features visible in the mammograms were backprojected along orthogonal X-ray 

trajectories to determine their locations in 3D space. Chapter 4 also introduces a novel 

skin surface estimation technique and quantifies the accuracy of this estimate through 



25 

comparison with a ground truth. 

By combining modern registration methods and 3D estimation techniques, several 

limitations of the methods found in the literature are addressed. Intensity-based regis­

tration removes the need for discrete feature detection in both modalities, while undis­

tortion of the mammograms allows for orthogonal backprojection to be valid. This work 

also presents a validation method for the registration technique, addressing one of the 

key clinical concerns with image registration. 
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Chapter 3
 

Mammogram/MR Image Registration 

This chapter describes the methods used to remove mammographic distortion by reg­

istering mammograms to projection images created from breast MR images. First, a 

series of preprocessing steps are performed on both images to detect landmarks, which 

are used for preliminary alignment. The mammogram is then mapped into the space of 

the magnetic resonance projection image (MRPI) using an intensity-based registration 

method. The purpose of this registration procedure is to generate an estimate of a mam­

mogram that would have been produced in the absence of compression, allowing for the 

reconstruction methods of chapter 4 to be applied. 

The algorithms described below were implemented using a combination of the Insight 

Toolkit (ITK), an open source C++ image processing library, and the Visualization 

Toolkit (VTK) [32, 33]. A graphical user interface was created to enable interactive 

modification of algorithm parameters, as determining appropriate values required apply­

ing the algorithm and inspecting the result. A more complete description of the software 

created for this work is available in appendix A. 

3.1 Preprocessing Algorithm 

The preprocessing algorithm, shown in figure 3.1, was used to prepare the images for 

registration. The only difference between the treatment of the two image types is in the 

first step, where a single MR volume was used to generate two 2D MRPIs at different 

angles. These two images were then processed as if they were individual mammograms. 
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3.1.1 MR Volume Rotation and Projection 

In order to register 2D mammograms to 3D MR image volumes, 2D images approximating 

the fields of view (FOVs) of the mammograms were first created from the MR volume. In 

digital mammography, the angle of the X-ray beam vector relative to vertical is known; 

thus, an excellent estimate of the exact acquisition angle of the imaging plane can be 

assumed. 

In the case of the medial-lateral oblique (MLO) FOV, the MR image volume was ro­

tated around the x axis (defined in §2.1.2) by the negative value of the X-ray beam vector 

θ contained in the metadata of the corresponding mammogram. The z and y coordinates 

were multiplied with a 2D rotation matrix, leaving the x coordinates unchanged. 
     

z� cos(θ) − sin(θ) z  =   
(3.1) 

� 
   

y sin(θ)  cos(θ) y 

While the voxel coordinates of the rotated volume were easily obtained using equation 

3.1, the intensity values required interpolation and resampling onto a regular grid [34]. 

This was accomplished by defining a new rectangular grid large enough to contain the 

rotated volume and computing the intensity values of each new voxel using bilinear 

interpolation. This rotation procedure is illustrated in figure 3.2. 

y 

z 

Figure 3.2: Illustration of image rotation 

After the MR image volume was rotated to match the field of view of the mammogram, 

a projection image  was created.  The  average voxel intensity value  along the  z axis (MLO) 
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or y axis (cranial­caudal or CC) was computed and assigned to a 2D pixel. This procedure

is illustrated in figure 3.3.

(a) Mean intensity projection through volume (b) Resulting 2D image

Figure 3.3: Creation of an MR projection image

Following MRPI creation for both MLO and CC views, the rest of the preprocessing

algorithm was performed separately on each of the MRPIs as well as their corresponding

mammograms.

MLO MRPIs have coordinates in the xy� plane as described above, while CC MRPIs

have coordinates in the zy plane. However, in mammography as well as in the 2D image

data type used for processing operations, only x and y coordinates are available and

spatial orientation information is lost; thus, for the remainder of this chapter, image

processing operations are described for images in the xy plane.

3.1.2 Background Segmentation and Smoothing

To detect the anatomical landmarks and the breast/air boundary line, the image was sep­

arated into background (air) and breast regions. This was accomplished by segmentation

of the background using a fuzzy connectedness algorithm [35]. 
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Medical images, by nature of their acquisition processes, contain inherent inaccuracies
 

[35]. As such, it can often be a challenge to segment an image into binary objects, as a 

given object is unlikely to have clearly-defined edges and uniform intensity values. One 

approach to this problem uses the notion of fuzzy “hanging togetherness” to describe the 

connectivity of pixels within objects. 

The fuzzy connectivity algorithm, described in detail in appendix B.1, is initiated 

with a seed pixel (chosen in this work to be the top-left pixel). Each of the neighbours of 

this pixel are examined and a connectivity value is computed, and if any of these pixels 

are determined to be connected, their neighbours are in turn examined. This process 

continues until all the pixels in the image have been visited [35]. 

This algorithm produced a new image composed of the fuzzy connectedness values 

for each pixel relative to the seed pixel, ranging from 0.0 to 1.0. The image was then 

divided into background and breast regions by thresholding at a manually adjustable 

fuzzy membership value, with an intensity value of 0 assigned to the background region 

and 1 assigned to the breast region. The threshold value typically ranged from 0.3 to 

0.6. 

Following fuzzy segmentation, a median filter was used to remove scattered islands in 

the binary segmentation and ensure a smooth breast edge. Median filtering is a nonlinear 

processing technique that implements the following algorithm: 

1. Duplicate the image to obtain an input and an output image. 

2. Compute the median of an n×n region centred on the first pixel of the input image. 

3. Assign the median value to the corresponding pixel in the output image. 

4. Shift the n × n region to the next pixel in the input image. 

5. Repeat steps 3-4 until the entire input image has been traversed. 
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For pixels at the extrema where the n× n region extended beyond the bounds of the

image, an intensity of 0, or background, was assumed. Different values of n were appro­

priate for different image types and pixel sizes; 5 was typically used for mammograms

and 3 for MRIs.

An example of a mammogram with its corresponding smoothed segmentation is shown

in figure 3.4

(a) Original mammogram (b) Segmented binary image

Figure 3.4: Segmentation of an image into background and breast regions

3.1.3 Edge Detection

Using the segmented image as shown in figure 3.4b, the largest edge in the image was

detected and assumed to be the line defining the boundary between the background and

the breast. This line was created by iterating through all the pixels of the foreground

(breast) region and examining its 8­connected neighbours. If there were at least one of

each background and foreground neighbours, the centre pixel was assumed to be part of

the boundary.

As there was no prior knowledge of the boundary shape within the segmentation

image, pixel scan order (figure 3.5) was used to iterate through the pixels. However, to

be able to compute curvatures (described in step 3.1.5) the points must be ordered such
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that a smooth and continuous path is formed by moving from one to the next. Again, this 

was accomplished by iterating through each of the pixels and examining its neighbours. 

The first pixel that had only one neighbour in the boundary set was defined as the start. 

From there, the centre of the 3 × 3 neighbourhood was shifted  to the next boundary  

pixel, and this process was repeated until the other end was reached. 

Pixel Scan Order 8-Connected 
Neighbourhood 

Figure 3.5: Ordering the set of points lying on the breast/air boundary 

3.1.4 Spline Creation 

In order to display the boundary as a continuous curve, the ordered points were used 

to create 1D cardinal splines for the x and y coordinates. To ensure smoothness and 

minimize the impact of outliers, the points were averaged in sets of N , where  N is a 

user-determined integer typically ranging from 3 to 15 depending on image resolution. 

The new reduced data sets were then used as control points in the cardinal splines. 

A spline can  be defined  as “a  set of polynomials of degree  k that are smoothly con­

nected at certain data points” [36]. To enforce the smoothly connected requirement, at 

each data point (where two polynomials connect) the derivatives up to the (k −1)st order 

must be equal. 

For a third order cardinal spline, first-order continuity is enforced but second-order 

continuity is not; as such, it is not a true spline according to the definition above [36]. 

However, it is constructed in a similar manner, and provides a useful degree of local 
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control, as modification of one spline segment affects only its immediate neighbours [36]. 

To construct a cardinal spline fit to n points, the set of points is divided into n − 3 

overlapping groups of four consecutive points each: 

[P1, P2, P3, P4], [P2, P3, P4, P4], · · · [Pn−3, Pn−2, Pn−1, Pn]  (3.2)  

For each group, Hermite interpolation is used to create a curve segment (appendix 

B.2). For the cardinal spline, tangents P1 
t and P2 

t of equation B.7 are defined as s(P3 −P1) 

and s(P4 − P2), respectively, where s is a real number. The choice of s, ranging  from  

0 to 1, controls the “tension” of the spline; If s = 0,  a  straight  line  (infinite  tension)  is  

obtained [36]. However, this is counter intuitive to the concept of tension, so a tension 

parameter T is defined as T = 1  − 2s, allowing  a  tension  value  of  0  to  correspond  to  the  

minimal tension case [36]. 

For this work, a tension parameter of T = 0 was chosen. This results in a curve that 

is defined as having zero tension, also known as the Catmull-Rom spline. 

3.1.5 Landmark Point Set Creation 

As shown by Behrenbruch et al. three  anatomical landmarks  can be  used to assist with  

alignment of breast images: the curvatures where the breast meets the chest wall, referred 

to as axilla and rib1; and  the  nipple.  To  automatically  detect  these  landmarks,  the  

maximum curvature points along the spline were computed [25]. 

The curvature C(u) where  u is a parameter ranging from 0 to 1.0 along the path of the 

spline, was computed as the dot product of the curvature and the normalized gradient 

as follows: 
d2u du − du d2u· · dx2 dy dx dy2 

C(u) =  (3.3)
(du )2 + (du )2 
dx dy 

1For the CC case, these landmarks do not correspond to the axilla and rib regions; however, the same 
labels are used for convenience 
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At a manually adjustable number of equally spaced points (ranging from 50 to 150

depending on spline length), the curvature was computed according to equation 3.3. The

nipple was defined as the point of maximum positive curvature, and was constrained

to region A as shown on figure 3.6. The axilla and rib landmarks were defined as the

locations of maximum negative curvature in regions B and C respectively.

Figure 3.6: Constraint regions for landmark detection

In certain cases, such as data sets where the nipple was obscured or a portion of the

chest wall was cut off, manual identification of the landmarks was required. For these

situations, an interactive graphical interface was used to assist the user in selecting a

location u along the spline.

3.1.6 Cropping and Background Zeroing

The final stage in the preprocessing algorithm was to crop the image around the breast

region and “zero” the background. Both of these procedures remove extraneous informa­

tion and prevent background noise or the chest wall from influencing the registration.

Zeroing the background, or setting all of the background pixel values to zero, was

accomplished using the binary segmentation image created in step 3.1.2. This image was

multiplied pixel­wise with the original mammogram or MRPI, resulting in a background
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region that was uniformly zero and a breast region that was unchanged.

Cropping of the image was performed by removing the portions of the edge spline

that extended beyond the rib and axilla landmarks, then cropping the image around the

smallest rectangular bounding box containing this spline.

Example images resulting from the preprocessing pipeline are shown in figure 3.7.

(a) Mammogram (b) MR Projection image

Figure 3.7: Preprocessed images with contour spline in red, landmarks in green

3.2 Registration Algorithm

The registration algorithm, as shown in the flowchart in figure 3.8, takes the outputs

from the preprocessing algorithm and warps the mammogram to match the shape of the

corresponding MRPI. While this appears to be simpler than the preprocessing algorithm

(figure 3.1), the steps involved are more complicated and have parameters that are more

difficult to estimate.
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Figure 3.8: Overview of the registration algorithm

3.2.1 Preliminary Landmark Alignment

Registration is performed in the world coordinate system (see §2.1.2). As the two acqui­

sition methods are very different, the mammogram and the MRPI are unlikely to be close

to each other in physical space. Landmark­based registration using the three features

marked in figure 3.7 was used to align the two images and to provide a better starting

image for intensity­based registration.

The transformation was implemented using an elastic body spline (EBS) coordinate

transform, a landmark­based deformable registration technique [37]. The EBS transform

uses the displacement between corresponding landmarks as control points and the rest

of the pixel locations are interpolated using a spline modelling the physical properties

of an elastic body [37]. In other words, the image is assumed to be composed of a

certain material, and is allowed to deform based on how that material would behave if

the deformation were fixed at the control points.

While the method described by Davis et al. applies to the deformation of a 3D volume,

it can also be used to deform a 2D image by eliminating the third dimension in a set of

independent equations [37]. The result is that the image is still modelled as an elastic

body, but only two dimensions are considered when computing the spline parameters.
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Figure 3.9: MLO mammogram aligned to MRPI (contour shown in red) using landmarks

Using the EBS method, the displacement of a pixel location �x = [x, y] can be calcu­

lated as follows:
N

�)i�p−x�(G
�

� d(�x) =  ci +A�x+�b (3.4) 
i=0

�where pi

is an affine transform accounting for the bulk displacement, rotation, and scaling of the

image. A more complete description of this equation and the EBS transformation is

included in appendix B.3.

For this work, the three landmarks detected in the preprocessing algorithm were

used to calculate the parameters of the EBS transform. The mammogram was first

transformed to the space of the MRPI using the affine component of equation 3.4, then

deformed pixel­wise to give a rough deformation. An example of the result of this pre­

liminary alignment is shown in figure 3.9.

3.2.2 Mutual Information Registration

The EBS transform described in the previous section computes image displacement values

based on the known displacements of landmarks. For intensity­based image registration

are the coordinates of the N landmarks, ci are spline coefficients, and A�x +�b
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methods, no such known displacements are available. Therefore, an iterative process 

beginning with an initial estimate was used.

Iterative registration algorithms are treated as optimization problems [21]. Three

components, described in the following sections, are used in the registration process:

a) an interpolator and transform, b) a metric, and c) an optimizer. The high­level

algorithm for registration is shown as a flow chart in figure 3.10.

Fixed 
Image 

Moving
Image 

Interpolator 

Transform 

Optimizer 

Metric 
fitness value 

transform 
parameters 

pixels points 

pixels 

pixels 

Figure 3.10: An overview of the iterative registration method (adapted from [34])

a) The Interpolator and Transform

The interpolator and transform are used during each iteration to transform the coordi­

nates of the moving image into the space of the fixed image. This transform can be as

simple as a rigid rotation and translation, or it can be a complex deformation field. The

interpolator is used to determine the intensity values of the transformed image, as there

is unlikely to be a one­to­one correspondence between the discrete image grids [21].

For this work, complex non­linear deformations were obtained by using a B­spline ba­

sis to represent the images and deformations, providing a smoother gradation of intensity

values than simpler interpolation methods [38, 39]. Recalling the definitions for image

representation presented in §2.1, an image represents an underlying continuous image



39 

f(x, y). To interpolate on a B-spline basis, any value of f(x) that  does not correspond  

to a discrete pixel location xi can be calculated according to: 

f(x) =  
� 

ciβ
(3)(x − xi) (3.5) 

i 

where x and xi are, respectively, the continuous and discrete n-tuples representing the 

location in the image (e.g. x = [x, y]T for a 2D image); ci are the coefficients calculated 

according to the upsampled method described in appendix B.4; and β(3) is the separa­

ble sampled third-order B-spline convolution kernel for each dimension [39]. For the x 

coordinate, the B-spline kernel is given as: 
 

1 (4 − 6x2 + 3|x|3), 0 ≤ |x| < 1 6
 

β(3)(x) =  

 

1 (2 − |x|)3 , 1 ≤ |x| < 2 (3.6)
6
0 2 ≤ |x| 

The image transform is also modelled as a cubic B-spline using a sparse regular grid 

of control points λj , with  j knots on a user-defined grid spacing n-tuple ρ [39]. In this 

work, the value of ρ was generally [3, 3] to [5, 5]. The spacing of the grid is computed as: 

� 
qx − 1 qy − 1 

�T 

∆ρ = [ ∆ρx, ∆ρy]
T = , (3.7)

ρx − 1 ρy − 1 

where qx and qy are the dimensions of the moving image. 

Each of the control points λj has an associated deformation coefficient δj describing 

the deformation in each of the component directions. The deformation at any image 

point x can be interpolated via: 

D(x|δ) =  
� 

δj β
(3) 

�
x − λj 

� 

(3.8)
∆ρ 

j 

where again, β(3) is the separable cubic B-spline convolution kernel [39]. Finally, the 

transformation of the moving image is achieved by combining the deformation term of 
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equation 3.8 with a bulk rotation R and translation T :
 

g(x|µ) =  R(x − xC ) − (T − xC ) +  D(x|δ) 	  (3.9)  

where x is any pixel location [x, y]T in the fixed image and xC is the centre of the moving 

image. The full set of transformation parameters is given as µ = {α, β, tx, ty; δj }, where  

α and β give the Euler angles of the rotation matrix R; tx and ty define the translation 

vector T ; and  δj are the deformation coefficients of equation 3.8. 

The transform undergoing optimization maps coordinates from the fixed image space 

into the moving image space [21]. While counter intuitive to the task of aligning the 

moving image to the fixed image, this can be explained as follows (see figure 3.11): 

1. A pixel location (if , jf ) on the discrete grid of the fixed image is located in physical 

space (xf , yf ). 

2.	 The coordinate (xf , yf ) is transformed using equation 3.9, yielding coordinates 

(xm, ym) in  the  moving image  space.  

3.	 The coordinate (xm, ym) is located on the discrete grid of the moving image. 

4.	 The intensity value f(xm, ym) is interpolated from the adjacent  pixels  of  the moving  

image and assigned to the original pixel location (if , jf ) in  the  fixed image grid.  

This process is repeated for each pixel location of the fixed image grid, resulting in 

a new  image in  the same  physical space  as the fixed  image but  with intensity values  

corresponding to the moving image. 

b) The Metric 

The metric is the component of the registration system that implements a cost function 

to compare the moving image to the fixed image [21]. In its simplest form, this might 

consist of computing the pixel-wise difference between the two images. Such a metric is 
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Figure 3.11: Mapping the moving image into the fixed image space (adapted from [21])

not possible for registration of multiple modalities, as the intensity values are not likely

to correspond [39]. Therefore, a measurement of mutual information (MI) was chosen to

compare the fitness of the transformed mammogram to the MRPI.

MI provides a statistical measure of how much information one image tells about

another [40]. If two images do indeed represent the same object, then it is reasonable to

expect that the MI will be higher when the two images are aligned. The main advantage

to this metric is that the form of the dependency between the two images does not need to

be specified, allowing it to work with images of differing tissue/intensity correspondence

[21].

In this work, the implementation developed by Mattes et al. was used, as it is more
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computationally efficient than previous methods [39, 40]. Mattes’ method, based on work 

by Thévenaz and Unser, uses the negative of MI as a measure of image discrepancy so 

that a minimizing optimizer may be used [39, 41]. 

The cost function, expressed as a function of the independent transformation param­

eters µ of equation 3.9, is given as [39]: 

N N
p(κ,ι |µ)

S(µ) =  − 
�� 

p(κ,ι |µ) log2 (3.10) 
pM (ι|µ)pF (κ)κ ι 

which has units of bits. p, pM , and  pF are the joint, moving image marginal, and fixed 

image marginal probability distributions, respectively, and ι and κ are the integer indices 

of the N histogram bins for each image. The probability distributions are estimated from 

the two images by using a B-spline based Parzen window, and are explained in more detail 

by both Mattes et al. and Thévanaz and Unser [39, 41]. In the implementation developed 

by Mattes et al. (used  in this  work),  a random  subset of  pixels  (ranging  from 50%-100%  

of the total number) was used to estimate the probability distributions, increasing the 

computational efficiency of the registration. 

c) The Optimizer 

An optimizer is a technique used to find the best solution to a problem that does not 

necessarily have a unique correct answer. Generally, optimizers determine minima (or 

maxima) of a cost function describing the problem at hand. As an example, a simple 

univariate optimization problem may require only computing the derivative and setting 

it equal to zero, thus finding the critical point of the curve [42]. 

For the cost function described by equation 3.10, a limited-memory Broyden Fletcher 

Goldfarb Shanno minimization algorithm with simple bounds (L-BFGS-B) was used as 

the optimizer. This is a modification of the popular quasi-Newton BFGS method [42]. 

Newton’s method of optimization is an iterative algorithm that achieves fast con­

vergence in complex problems by assuming that the cost function takes the form of a 
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quadratic in the local region around the point of interest, then taking a step towards 

the minimum (or maximum) of that quadratic. Mathematically, the value of the set of 

parameters µ undergoing optimization is calculated at iteration m +1  according  to  [42]:  

µm+1 = µm − [∇2S(µm)]
−1∇S(µm)  (3.11)  

where ∇2S(µ) is the Hessian matrix of the MI function and ∇S(µ) is the  gradient.  

The BFGS method aims to resolve two problems that can arise while implementing 

Newton’s method: the computation expense of evaluating or inverting ∇2S(µ), and 

the direction of convergence; equation 3.11 may move either “uphill” or “downhill” at 

locations far from the minimum [42]. 

Both of these problems are solved by introducing a matrix H to approximate ∇2S(µ). 

While the algorithm begins with an initial estimate H0, each  subsequent  iteration  is  

updated with an efficient addition operation, with the direction of the update vector 

constrained to ensure convergence [42]. 

As H must be retained through each iteration, memory limitations can become a 

problem. The L-BFGS method addresses this problem by further approximating H 

with a low-rank matrix, while the introduction of bound constraints on the independent 

variables results in the final L-BFGS-B method used in this work [39]. 

3.3 Registration Evaluation 

For registration between two images of the same modality, evaluation of “goodness of fit” 

can be visualized directly by computing the pixel-wise difference [34]. However, inter-

modality registration cannot be assessed in this manner, as pixel intensities are unlikely 

to correspond. In addition, breast imaging poses additional registration assessment chal­

lenges due to the highly variable nature of the tissues and a lack of internal landmarks 

[25]. Therefore, another method is required to determine registration accuracy. 



44 

The values produced by the MI metric provide a scalar measure of fitness. These 

values can be plotted against iteration number to provide an understanding of how image 

correlation is achieved; however, as a single scalar value it can be a difficult measure to 

understand. As an alternative visual method of fitness assessment, the joint entropy can 

be plotted as a 2D image. 

The MI function S(µ) of  equation 3.10 can also be  expressed  in terms  of  image  entropy  

or randomness as follows [43]: 

S(µ) =  E(f) +  E(m|µ) − E(f, m|µ)  (3.12)  

where E(f) and  E(m) are the  entropies  of the  fixed  and moving images,  respectively,  and  

E(f, m) is the joint entropy of the two images; thus, maximization of MI is the same as 

minimization of joint entropy. The entropy function is defined in terms of the probability 

distribution as [43]: 
X

E(x) =  
� 

pX (x)log2(pX (x)) (3.13) 
i 

where x are the pixels in image X. The  joint  entropy  is  calculated  similarly,  substituting  

the joint probability distribution for the marginal distribution pX . 

For the purposes of visualization, the joint entropy is plotted using the image his­

tograms in lieu of the estimated probability distributions. The joint entropy plot is thus 

an N × M image, where N and M are the number of bins in the fixed and moving image 

histograms respectively. The intensity value f at each pixel location (i, j) in  the entropy  

image is computed as [34]: 

fij = −pij log2(pij )  (3.14)  

where pij is calculated from the frequency count of the bins of the joint histogram between 

the two images: 

pij = �N−1 

qij (3.15)�M −1 
i=0 j=0 qij 
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The value qij is the frequency of the bin ij in the joint histogram, calculated as the 

number of pixels where the fixed image has intensities falling into bin i and the moving 

image has intensities in bin j at corresponding locations [34]. The entropy plot therefore 

produces a visualization of pixel correspondence between images, regardless of modality, 

and the scalar MI value is the sum of all pixels in this plot. An entropy plot showing 

perfect correlation (i.e. a plot of the joint entropy between two copies of the same image) 

appears as straight y = x line, where the x and y axes correspond to the histogram bins 

of the fixed and moving images, respectively. 

In addition to the MI value, the accuracy of registering the external shape of the 

breast can be calculated from binary segmentations of the undistorted mammograms 

and MRPI breast regions. The measure used in this work is Dice’s coefficient, calculated 

as [44]: 
2|X ∩ Y |

D = (3.16)|X| + |Y | 

where |X| and |Y | are the sizes in physical units of the fixed and moving breast segmen­

tations, and |X ∩ Y | is the size of the overlapping region. Dice’s coefficient ranges from 

0 (no overlap) to 1 (completely aligned),  and represents the  overlapping fraction of the  

total area. 

3.4 Validation Using Simulated Images 

Validation of image registration is a difficult task as the ground truth is generally not 

available [6]. Typical methods of quantifying registration accuracy involve placing fidu­

cials in the object of interest, performing phantom studies, or using clearly defined land­

marks within the object [6]. 

In this work, fiducial placement was determined to be impractical as mammograms 

and MR images could not be acquired on the same day. Similarly, no clearly defined 
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landmarks could be identified within the breast. Therefore, a simulated phantom was
 

created and deformed using a corresponding coupled Eulerian-Lagrangian finite element 

(FE) model created by Martin Kuhlmann [45]. 

The FE model was defined as a hemispherical Lagrangian skin surface filled by an 

Eulerian fluid representative of fatty tissue as well as a sphere of denser Eulerian material 

to act as glandular tissue [45]. The flat surface of the hemisphere was defined as the 

chest wall and was not allowed to deform, while a parallel-plate displacement boundary 

condition was used to mimic mammographic compression in the CC view. A constant 

force simulating gravity was used for the MR distortion case [45]. 

A simulated image matching the physical dimensions of the FE model (illustrated in 

figure 3.12a) was created with a voxel intensity value of 200 for fatty tissue. Glandular 

tissue was assigned a voxel intensity of 400, and two smaller spheres with intensity values 

of 800 were created to represent lesions. While these lesions were not present on the FE 

model, it is assumed that they do not affect significantly affect breast deformation. 

The point clouds defining the positions of the skin elements of the FE model before 

and after mechanical deformation were used to deform the simulated image. The point 

clouds defining the original geometry were treated as the moving landmarks of the EBS 

transform described in §3.2.1, while the deformed geometry point clouds were used as 

fixed landmarks. This procedure was repeated for both CC mammographic compression 

and MR gravitational distortion. Cross sections of the original and deformed images are 

shown in figure 3.12. 

Average intensity projections through each of the deformed images were taken and 

the resulting 2D images were registered using the algorithm described in section 3.2. The 

simulated MRPI, original simulated mammogram, and joint entropy plot prior to regis­

tration are shown in figure 3.13. Similarly, the simulated MRPI, undistorted simulated 

mammogram, and joint entropy plot after registration are shown in figure 3.14. 
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(a) Original Image (b) Simulated MRI (c) Simulated Mammo­
gram (Sagittal view)

Figure 3.12: Simulated images deformed via finite element modelling

(a) MRPI (b) Original Mammo­ (c) Joint Entropy Before
gram Registration

Figure 3.13: Simulated images prior to registration
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(c) Joint Entropy After 
Registration 

(a) MRPI	 (b) Undistorted
 
Mammogram
 

Figure 3.14: Results from registration of simulated images 

The final MI value for the registered simulated images was 2.2377, while the MI 

for the simulated MRPI registered to itself (auto-correlation) was 3.366; therefore, the 

registration result is highly accurate numerically. This can also be seen by comparing 

the joint entropy plots of figures 3.13c and 3.14c, where the plot prior to registration 

shows significant disorder and the plot following registration gains cohesiveness as well 

as approaches the ideal y = x line. Finally, visual inspection of the registered image shows 

that despite the high level of deformation applied to the two models, close correspondence 

was achieved. 

To test the sensitivity of the registration algorithm to variations in image rotation, 

the simulated image was rotated around the x axis from 0 to 15◦ in 5◦ intervals. The 

resulting registered images, using the parameters determined to be optimal for the zero 

rotation case, are shown in figure 3.15 for the 5- and 10-degree rotations, while the 15­

degree rotation case failed to converge. These results indicate that registration accuracy 

is not significantly affected by rotation errors of up to 10 degrees. 
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Figure 3.15: Registered simulated images following rotation of MR volume 

3.5 Results 

The registration process described in the previous section was tested on a total of eight 

pairs of images from patients enrolled in studies 22121 and 18463 approved by the Con­

joint Health Research Ethics Board (CHREB). Patients whose breasts contacted large 

regions of the MR coil were excluded, as the resulting images were significantly deformed 

and could not be used as reference images. 

For each pair of images, parameters were optimized iteratively through visual assess­

ment of results. Modifications were made according to table 3.1. 

Figure 3.16 shows the registered mammogram and pre- and post-registration entropy 

plots of the sample MLO data set, with the MRPI and original mammogram shown in 

figure 3.7. The joint entropy plot following registration shows improved cohesiveness 

relative to the joint entropy plot prior to registration; however, a perfect x = y curve is 

not expected with clinical data, as the intensity distributions of the two image types do 

not have a one-to-one correspondence. 

The final MI value, Dice’s coefficients, and time taken to perform registration for each 



50 

Problem Modification 
Optimizer failure Relax accuracy and tolerances, de­

crease number of histogram bins 
Image not aligning in dark regions Increase number of histogram bins 
Image contour too variable/smooth Decrease/increase number of B-

spline knots 
Small features not aligning Increase number of spatial samples 

used by metric 
Image not deforming enough Increase number of corrections 
Optimizer exits without converging Increase number of iterations 

Table 3.1: Modifications made to parameters to optimize result 

data set are presented in table 3.2. 

Subject Breast View Final MI Value Dice’s Coeff. Time (s) 
091208 L CC 0.5802 0.92 195 
091208 L MLO 0.5988 0.92 147 
091208 R CC 0.7086 0.97 147 
091208 R MLO 0.7264 0.92 131 
091210 L CC 0.6401 0.95 126 
091210 L MLO 0.7384 0.92 213 
091210 R CC 0.7023 0.89 106 
091210 R MLO 0.7781 0.91 71 
100704 L CC 0.5218 0.94 191 
100704 L MLO 0.7514 0.98 121 
100704 R CC 0.6594 0.92 191 
100704 R MLO 0.7453 0.95 121 
Average 0.6792 0.93 147 

Table 3.2: Registration Results 

The MRPIs and corresponding registered mammograms from all eight data sets, along 

with brief descriptions, are shown in §3.5.1- §3.5.8. Visual inspection of the results 

indicates that a very good match of external shape has been achieved for all data sets. 

This is corroborated by the high values of Dice’s coefficient in table 3.2, averaging 0.93. 
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(a) Registered mammogram with MRPI contour (b) Joint entropy before
(top) and after (bottom)
registration

Figure 3.16: Registration results for sample MLO data set (final MI = 0.7264)
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3.5.1 Subject 091208, Left Breast
 

The MR image of this data set exhibits flattening of the breast at the nipple end, caused 

by contact with the bottom of the MR RF coil. This resulted in difficulties in locating 

the nipple on the MRPI, particularly the MLO view (3.17c), potentially reducing the 

accuracy of the landmark registration algorithm. 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram (MLO 
view) 

Figure 3.17: Result of registering data set 091208-L 
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3.5.2 Subject 091208, Right Breast 

This data set was chosen as the exemplar for all the algorithm descriptions in this thesis, 

as the nipple is clearly visible and centred in all images. However, the registration 

algorithm was still unable to predict the concave contour at the bottom of the MLO view 

(3.18c). 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram (MLO 
view) 

Figure 3.18: Result of registering data set 091208-R 
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3.5.3 Subject 091210, Left Breast
 

This data set provides a good example of the challenge of non-uniform breast shapes.
 

In the MR image, the side of the breast is in contact with the MR RF coil, seen in the
 

CC MRPI (3.19a), whereas the nipple on the MLO mammogram (3.19d) is downturned.
 

As the registration algorithm has no knowledge of anatomical motion, this resulted in
 

strange deformations in the nipple region.
 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram (MLO 
view) 

Figure 3.19: Result of registering data set 091210-L 
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3.5.4 Subject 091210, Right Breast 

As this is the other breast from the same subject as presented in §3.5.3, a similar breast 

shape is seen. However, the nipple on the MLO mammogram was not downturned, and 

the resulting undistorted mammogram has a smoother contour (figure 3.20d). 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram 
(MLO view) 

Figure 3.20: Result of registering data set 091210-R 
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3.5.5 Subject 100201, Left Breast
 

The mammograms for this data set were acquired using a newer digital mammography 

system, resulting in obviously different images. This demonstrates that the registration 

algorithm is robust to variations in image acquisition. 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram 
(MLO view) 

Figure 3.21: Result of registering data set 100201-L 
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3.5.6 Subject 100201, Right Breast
 

This is the other breast of the previous section (§3.5.5), and thus the mammograms were 

acquired using the same imaging system. With the clearly visible linear structures of 

the mammograms, images 3.22b and 3.22d are good demonstrations of the ability of the 

algorithm to deform the mammograms without exceeding anatomical limits. 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram 
(MLO view) 

Figure 3.22: Result of registering data set 100201-R 
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3.5.7 Subject 100704, Left Breast
 

This data set is another good example of a “typical” breast shape, with relatively consis­

tent curvature and symmetry. However, the nipple location has shifted laterally due to 

gravity during MR imaging, as is seen on the CC view (3.23a). This resulted in a slight 

distortion of the nipple shape of the corresponding registered mammogram (3.23b). 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram 
(MLO view) 

Figure 3.23: Result of registering data set 100704-L 
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3.5.8 Subject 100704, Right Breast 

As the only data set containing a lesion visible on both mammograms and the MR 

image volume, this data set was used as the test case for internal feature reconstruction, 

described in chapter 4. While the lesion is clearly visible in both mammographic views, 

it cannot be seen in the MRPIs. 

(a) Reference MRPI (CC view) (b) Undistorted Mammogram (CC 
view) 

(c) Reference MRPI (MLO view)	 (d) Undistorted Mammogram 
(MLO view) 

Figure 3.24: Result of registering data set 100704-R 
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3.6 Discussion
 

As described in §3.3, registration accuracy can often be difficult to assess. However, 

creation of a simulated image containing such landmarks provides a partial validation of 

the registration algorithm, and the results from §3.4 clearly show that when there are 

corresponding features visible, registration is highly accurate. In addition, the algorithm 

is robust to slight variations in rotation, which may result from variations in patient 

positioning. 

The final metric values presented in table 3.2 are considerably lower than the MI 

values obtained during simulated image registration, as shown in figure 3.14. This is 

expected, as the images themselves are much more complex and variable; for example, 

registration of the test case MLO mammogram of figure 3.16 to itself resulted in an MI 

value of 2.420. The MI values of table 3.2, as well as the appearance of the joint entropy 

plots, are similar to previous work performing a different multi-modality registration 

task [43]. This is a promising result, as it indicates that reasonable registration has been 

achieved. 

The MI values are difficult to interpret, largely due to the variability of the images, 

as the auto-correlation MI values (representing an effective maximum) range from 2.0 to 

3.5. Furthermore, the number of histogram bins chosen for registration had an effect on 

the final MI values, as this changed the pixels used to compute the joint entropy. 

In 2004, Mart́ı et al. used  an MI  registration algorithm to  compare  mammograms  

to MR projection images at various angles, obtaining a maximum MI value of 0.233 

[26]. While small differences in MI values are not necessarily indicative of differences in 

accuracy, the average final MI value of 0.6792 obtained in this work is over twice the 

value obtained by Mart́ı et al ,̇ suggesting that the technique presented in this thesis is 

more accurate than the registration technique used by Mart́ı et al [26]. 
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In contrast to the registration technique developed by Behrenbruch et al. in  2003,  

the MI method used in this work does not require the identification of corresponding 

internal landmarks [25]. This reduces the reliance on discrete features and removes any 

assumptions of feature correspondence, resulting in a more robust registration algorithm 

that is suitable for a wide variety of breast types. 

In the literature review presented in §2.4, the method developed by Ruiter et al. was  

found to produce the most accurate registration results. However, Ruiter’s technique 

was limited to mammographic strains of 21% or less, while the technique presented in 

this thesis has no such limitation [27]. Furthermore, the MI technique does not require 

construction of a patient-specific finite element model, allowing for a more automated 

and computationally efficient registration procedure. 

In general, the undistorted mammograms tended to fit within the boundaries of their 

corresponding MRPIs, indicating a slight underestimation of the size of the breast. This 

is a reasonable result, as the longitudinal extension of the breast under the influence of 

gravity in an MR scanner exceeds the lateral expansion resulting from mammographic 

compression. In other words, the original mammograms tend to have smaller surface 

areas than the MRPIs. 

For all of the processing operations, several iterations were required to determine 

the optimal parameters, particularly during the mutual information registration step. 

A slight  modification  of one parameter  (e.g.  changing  the number  of spatial  samples  

from 50% to 60%) has the potential to have a significant effect on the final result, with 

the optimizer occasionally getting trapped in local minima. However, with repeated 

executions performed by an experienced operator, satisfactory registration was achieved 

for all data sets. 

In summary, this chapter presented a preprocessing algorithm, a registration algo­

rithm, and a validation method. The contributions of this work include: 
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• The incorporation of precise mammographic acquisition parameters in the genera­

tion of the MRPI. 

•	 The ability to manually override landmark detection in difficult cases. 

•	 The use of a robust and automated MI technique to refine registration. 

•	 A registration validation technique incorporating a simulated image and an FE 

model. 

•	 The development of a graphical framework for ease of parameter variation and 

instantaneous feedback. 
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Chapter 4 

Mammogram Reconstruction 

This chapter describes the methods used to estimate the 3D shape of the breast surface 

and the 3D locations of internal regions of interest using only CC and MLO mammo­

grams. The 3D breast surface will benefit TSAR imaging by allowing for the antenna 

scan pattern to be determined prior to patient arrival and by providing essential structure 

information for image formation from the EM signals. Similarly, prior knowledge of an 

internal region of interest will allow for both TSAR scanning and analysis to be targeted 

to a subsection of the breast volume. For this purpose and due to the centimetre-scale 

resolving power of TSAR, quadrant-level accuracy of internal lesion localization is suffi­

cient, where the quadrants of the breast are upper outer, lower outer, upper inner, and 

lower inner. 

To achieve these aims, the undistorted images resulting from the methods described in 

chapter 3, together with the corresponding edge contours and landmarks, are first aligned 

spatially to form a sparse wireframe breast model. The 3D surface is then estimated by 

fitting ellipses at evenly spaced intervals along the length of the breast from nipple to 

chest wall. Internal regions of interest are identified manually on the two images and 

backprojected to determine their location in 3D. This procedure is illustrated below in 

figure 4.1. 

4.1 Image, Contour, and Landmark Alignment 

The first step in establishing correspondence between the 2D mammograms and the 

3D breast is to accurately position the two mammograms relative to each other. In 
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Undistorted CC 
Mammogram 

Undistorted MLO 
Mammogram 

Spatial 
Alignment 

CC 
Features 

MLO 
Features 

Feature 
Backprojection 

Skin Surface 
Estimation 

3D 
Rendering 

Figure 4.1: Overview of the reconstruction algorithm (dotted lines indicate steps per­
formed only on data sets with visible features)

previous work, accuracy ranged from assuming a perfect right angle between images [28]

to performing calibration during image acquisition [31]. In this work, modifications to

standard imaging protocols were undesired; therefore, several assumptions were made in

order to align the images:

• The subject is standing perfectly vertical during mammogram acquisition.

• The midpoint of the chest wall landmarks on both images correspond to the same

location.

• The angle of obliquity contained in the medial­lateral oblique (MLO) metadata is

accurate relative to the cranial­caudal (CC) view.

In the global coordinate system, CC mammograms should be in the xz plane, whereas

MLO mammograms should be at an oblique angle between the xy and xz planes. In both

cases, however, the images are formed with coordinates local to an X­ray machine which

is rotated to the desired angle, resulting in images in the xy plane. Thus, both views

required rotation to regain their positions the world coordinate system.
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To properly align the images and skin contours, the CC data were rotated +90◦ 

about the x axis, ensuring that direction vectors were conserved (i.e. increasing values of 

y became increasing values of z). The MLO data were rotated to their oblique angle by 

applying a rotation of γ = θ − 90◦ for the right breast, or γ = θ + 90◦ for the left breast, 

where θ is the angle of the X-ray beam vector (figure 4.2). 

X-ray beam X-ray beam

0° vector vector 0°
 

MLO Plane γ θ	 θ γ MLO Plane 

z z 
x x 

y	 y 
(a) Right Breast	 (b) Left Breast 

Figure 4.2: Acquisition angles of MLO mammograms 

After rotation, the images were in the correct orientation relative to the breast, but 

not aligned to each other. To achieve this, several more assumptions were required: 

•	 The MLO data provide an accurate nipple location in the y axis. 

•	 The CC data provide an accurate nipple location in the z axis. 

•	 The nipples are in the same location along the x axis. 

•	 The midpoint between the two chest wall landmarks lies on the x axis for both 

data sets. 

•	 The contour of the mammogram, describing the largest edge or shadow of the 

breast, is located at the centre of the volume along the X-ray beam vector. 
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Using these assumptions as guidelines for alignment, the midpoint between the two 

chest wall landmarks was computed and the CC data were shifted such that the midpoint

was set to the origin at (0,0,0). This placed the CC nipple point close to but not

necessarily on the x axis, as the nipple is not usually precisely in the middle of the

breast.

The MLO data were also shifted to place the midpoint at the origin, but this resulted

in nipple misalignment relative to the CC landmark as the two midpoints are not guar­

anteed to be exactly the same location. To correct this, the CC data were first rotated

around the z axis to bring the nipple in line with the MLO landmark in the xy plane.

Next, the MLO data were shifted so that the nipple point was at the same Euclidean

distance from the origin as the CC nipple. Finally, the MLO data were rotated around

the y axis, bringing the two nipples in line.

The end result is a representation of the two imaging planes as they were acquired,

with the contours from each image forming a sparse wireframe of the 3D breast shape.

An example is shown in figure 4.3.

Figure 4.3: Sparse wireframe of the 3D breast shape 
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4.2 Skin Surface Estimation
 

The breast contours of the wireframe model of figure 4.3 intersect a given zy or coronal 

plane between the chest wall and nipple at four points. These points were determined 

by finding the locations along the contour splines that corresponded to the desired x 

coordinate, then used to construct an estimate of the coronal slice contour. 

Coronal slices of the breast are roughly elliptical in shape. However, four points are 

insufficient data for ellipse fitting, as a uniquely defined ellipse requires at least five data 

points [46]. Furthermore, these four points are not orthogonal to each other, resulting in 

an uneven distribution around the edge of the ellipse. To overcome these issues, three 

assumptions were made: 

1. The ellipse is centred on the centroid of the four points. 

2. The eccentric anomaly can be approximated by the angle formed between z and y. 

3. The ellipse is angled at no more than 30◦ . 

Ellipses can be described in parametric form as: 

z(t) =  zc + a cos t cos φ − b sin t sin φ
 

y(t) =  yc + a cos t sin φ + b sin t cos φ (4.1)
 

where the parameter t is the eccentric anomaly at location z(t), y(t) illustrated in figure 

4.4a; zc and yc are the coordinates of the centre of the ellipse; and φ is the angle of the 

major axis (at the contact point of the auxiliary) of the ellipse relative to the z axis. The 

ellipse of figure 4.4 is in canonical position, with φ = 0.  

To completely describe the ellipse, the parameters a, b, zc, yc and φ must be determined 

from the the four known points. As previously mentioned, the centre point is assumed to 

be equal to the centroid, computed by summing each coordinate of the four points and 

dividing by four. 
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z(t),y(t) 
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Minor 
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y 

∠zy 

Figure 4.4: Illustration of the eccentric anomaly (t) of an ellipse  

The canonical form of an ellipse has a rotation φ of zero and is centred at the origin. 

This reduces equation 4.1 to: 

z(t) =  a cos t
 

y(t) =  b sin t (4.2)
 

which can in turn be written in the linear form y = mx, with  x being replaced by cos t or 

sin t. This results in eight equations of the four known points (zi, yi): zi = a cos(ti), yi = 

b sin(ti), for i = [0, 3]. This allows for the a and b parameters to be solved by the method 

of least squares, which reduces to: 

�3 
i=0 xiyi m = (4.3)�3 2 
i=0 xi 

where m = a is found by setting xi = cos  ti and m = b is found with xi = sin  ti. 

For the ellipse with φ = 0◦, the  parameter  ti is estimated as the angle formed by z 

and y: �
|yi − yc|

� 

ti = tan−1 (4.4)|zi − zc| 
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where the absolute value is used to constrain the angle to the first quadrant. The angles 

resulting from equation 4.4 are then used in equation 4.3 to determine the best fit a and 

b parameters for the ellipse. 

Equation 4.4 uses assumption 2 to estimate the ti parameter. This is a reasonable 

assumption, as the ellipses that best fit the shape of the breast are close to being circular. 

The final parameter φ cannot be calculated directly using least squares minimization, 

as it is not possible to rewrite equation 4.1 as a linear function of φ. Therefore,  iterative  

methods are used. 

For every angle α of integer spacing from −30◦ to +30◦, a  rotation  around  the  centroid  

is applied to the four coordinates. This effectively rotates the coordinate system by α, 

allowing for the parameters a and b to be computed as if the ellipse were in canonical 

form. 

For each desired x location, the sum of squared errors between the actual coordinates 

of the four points and the coordinates resulting from the least squares fit a and b param­

eters was calculated for each angle α. The  angle  α resulting in the smallest average sum 

of squared errors was then set as φ. 

With all the parameters of equation 4.1 determined, an ellipse was created and dis­

played at the specified x location. This process was repeated for a total of twenty of 

ellipses along the x axis; figure 4.5 shows a sample skin surface reconstruction. 

4.3 Internal Feature Reconstruction 

After developing an estimate of the breast skin surface, internal regions of interest must 

be identified and located in 3D space. While there are a number of studies on automated 

or assisted identification of lesions in mammograms, this work focuses on visualizing 

features in 3D space relative to the surface estimate. Thus, corresponding regions of 
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Figure 4.5: Sample skin surface reconstruction (only five coronal slices shown for clarity) 

MLO Plane 

CC Plane z

y

x

Figure 4.6: Reconstruction of internal feature points
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interest on the CC and MLO views are identified manually as a proof of concept. 

For the purpose of identifying the general region of interest in space, lesions were 

modelled as simple spheres. Corresponding points on the CC and MLO views were 

identified and appropriate radii for 2D circles determined through an interactive display. 

These points were then located in 3D space by calculating the intersection of the two 

lines orthogonal to the imaging planes (figure 4.6). 

Mathematically, this is computed as follows: 

xcc + xmlo x = 
2 

zmlo − zcc y = ymlo + (4.5)
tan−1 γ 

z = zcc 

The radius of the sphere representing the 3D region of interest was calculated as the 

average of the radii of the two lesions identified on the mammogram views. 

4.4 Reconstruction Evaluation 

As mentioned in the previous chapter, quantification of results requires a ground truth. 

In the case of the reconstruction problem, the MR image volume is the only available 3D 

ground truth; therefore, errors are calculated with respect to features visible in the MR 

image. 

Correct alignment of the MR image relative to the mammogram data was subject 

to errors, as creation of the wireframe of figure 4.3 involved independent modification 

of the CC and MLO data sets as well as several assumptions (described in §4.1). As a 

result, only the shifting that was performed to align the centre points of the chest wall 

landmarks was applied to the MR image. 

To quantify the accuracy of the ellipse surface, the location of the skin surface on the 

MR image must first be determined. This was accomplished by applying a 3D version 
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the fuzzy connected region growing described in appendix B.1 to the background area of 

the MRI, resulting in segmentation regions representing air and breast. A binary median 

smoothing algorithm as previously described in §3.1.2 was used to remove outliers from 

these regions. 

To determine trends in errors around the contour of the breast, the error between 

the actual skin edge and the ellipse estimate was computed in the ±z and ±y directions 

at each of the ellipse contour x locations. Errors above and below the nipple (±y) were  

labelled cranial and caudal respectively, whereas errors to the left and right (±z) were  

labelled medial and lateral for the right breast and vice versa for the left. These directions 

are indicated in figure 2.6. 

The errors were calculated according to the following algorithm, recalling the defini­

tions of the a and b parameters of an ellipse (§4.2): 

1. Begin at the centre of the ellipse (zc, yc). 

2. Iterate through each pixel in the cranial direction (−y) until a pixel in the air region 

is reached at point p = (zp, yp). 

3. Calculate the error as e = yp − (yc − b). 

4. Return to the centre of the ellipse and iterate in the caudal (+y) direction.  

5. When an “air” pixel is reached, compute the error as e = (yc + b) − yp. 

6. Repeat steps 1-6 for the medial and lateral directions, substituting z for y and a 

for b. 

In this manner, negative errors are always representative of underestimation of the 

skin contour, and positive errors are always representative of overestimation, regardless 

of the direction of the axes. 
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4.5 Results

For the purposes of evaluating results, the original MR image used to create the MRPI of

chapter 3 was loaded, shifted, and displayed concurrently with the 3D surface and lesion

reconstructions.

Figure 4.7 shows a comparison between the sample data set (091208R) skin surface

estimation and slices from the original MR image at two coronal locations.

The maximum absolute errors for all data sets are tabulated in table 4.1, while the

average absolute errors are presented in table 4.2. For these data, the maximum and

average of the absolute values of the errors were taken to avoid averaging between under­

and over­estimation errors. The absolute errors were presented instead of relative errors

in order to compare between nipple and chest wall regions, as the small ellipses near the

nipple would appear to have exaggerated errors.

Error values are plotted on two graphs relative to location along the x axis, shown

in figure 4.8. Best fit quadratic curves for these data as well as the combined data along

each axis are also shown.

(a) Near Chest Wall (b) Near Breast Centre

Figure 4.7: Skin outline comparison at two slice locations
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Figure 4.8: Skin Reconstruction Errors vs. x location (nipple at −x, chest wall  at +x)
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Subject Breast Cranial Caudal Medial Lateral Average 
091208 L 23.0 10.4 4.9 12.0 12.6 
091208 R 23.7 15.4 13.3 9.9 15.6 
091210 L 27.4 21.5 12.1 9.1 17.5 
091210 R 23.1 17.6 15.5 13.7 17.5 
100201 L 16.3 15.8 16.9 14.5 15.9 
100201 R 16.0 15.4 10.3 12.4 13.5 
100704 L 29.4 8.2 18.7 21.8 19.5 
100704 R 11.8 22.7 8.7 4.5 11.9 
Average 21.3 15.9 12.6 12.2 15.5 

Table 4.1: Maximum absolute errors in mm for each data set and direction
 

Subject Breast Cranial Caudal Medial Lateral Average 
091208 L 13.1 11.7 9.4 4.2 9.6 
091208 R 16.5 6.6 3.0 8.9 8.7 
091210 L 14.7 9.9 6.3 5.4 9.1 
091210 R 17.4 14.4 8.4 9.9 12.5 
100201 L 12.5 7.1 11.3 4.7 8.9 
100201 R 10.2 6.8 3.3 3.9 6.0 
100704 L 21.7 4.6 8.7 7.3 10.6 
100704 R 5.5 13.9 6.5 2.8 7.2 
Average 14.0 9.4 7.1 5.9 9.1 

Table 4.2: Average absolute errors in mm for each data set and direction 

Comparison slices in the sagittal direction for all data sets, along with plots showing 

the trend of errors along the x axis and a short description, are presented in §4.5.1-§4.5.4. 
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4.5.1 Subject 091208

While the left breast of this data set appears to be a better fit than the right by visual

inspection, the error graphs indicate that the fit is close to equal for both sets. For the

right breast, a caudal shift is apparent, which is reflected in the error plot; this may be a

result of misalignment of the ground truth MR image rather than a true underestimation.
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Figure 4.9: Result of reconstructing data set 091208
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4.5.2 Subject 091210 

Like subject 091208 of §4.5.1, the left breast of subject 091210 appears to match the

ground truth better than the right at the slice shown. However, the largest error of the

left breast exceeds that of the right by almost five mm, and both are errors in the cranial

region near the chest wall. Both breast surfaces underestimate the ground truth with no

overestimation errors; this can also be observed in the original registration of §3.5.3 and

§3.5.4.
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Figure 4.10: Result of reconstructing data set 091210
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4.5.3 Subject 100201

Both breasts in this example show a caudal shift in the surface estimation similar to

that of figure 4.9c. However, the error plots are unusual in that all anatomical directions

follow a similar trend of shifting from negative to positive along the x axis. Again, this

may be indicative of errors resulting from the alignment assumptions of section 4.4.
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Figure 4.11: Result of reconstructing data set 100201
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4.5.4 Subject 100704

The final data set tested in this work exhibits a caudal shift relative to the ground truth

in the left breast (4.12a) and a cranial shift in the right (4.12c). This is reflected in the

error plots, where the caudal surface is significantly better than the cranial for the left

breast, and the inverse is true for the right. The error plot for the left breast shows a

positive shift in error at approximately x = −35, possibly corresponding to the distortion

of the breast observed at the edge of the MR RF coil.
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Figure 4.12: Result of reconstructing data set 100704
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Figure 4.13 shows a comparison between a reconstructed feature and the MR volume 

of the only data set containing a discrete feature visible in both modalities (100704­R).

The red sphere marks the estimated region of the lesion resulting from backprojection,

and the corresponding lesion on the MR is clearly visible as an opaque mass.

(a) Coronal View (b) Sagittal View

Figure 4.13: Comparison between feature reconstructed from mammograms (red sphere)
and corresponding feature seen on MR (white mass)

4.6 Discussion

The method used to generate 3D estimates of the skin surface was capable of producing

reasonable breast shapes such as the example shown in figure 4.5 for all data sets. This

indicates that the ellipse fitting algorithm is robust and unlikely to result in extreme

shapes, such as ellipses with the long axis at the MLO projection angle. In addition, the

average absolute error between the estimated and ground truth skin contours was less

than 10 mm (table 4.2), suggesting an excellent approximation given the limited data

available.

The skin reconstruction tended to underestimate the surface of the breast in all direc­



81 

tions. This can be seen visually by examining the sagittal comparison results of figures 

4.9-4.12, and is also evident numerically in the error graphs. The errors in the medial-

lateral (ML) axis were lower on average than those in the cranial-caudal (CC) axis; this 

can be seen in the graphs of the overall trends (figures 4.8a and 4.8b). 

Cranial errors showed a trend of increasing underestimation approaching the chest 

wall, while caudal errors exhibited the opposite trend (figure 4.8a). In addition, caudal 

errors tended to be lower than cranial, with average maxima of 15.9 mm and 21.3 mm 

respectively. The combined trend of both CC directions remained at a near constant 10 

mm underestimation, suggesting that an improved estimate in one direction resulted in 

increased error in the other. 

Medial and lateral errors tended to be roughly equal, following a trend of decreasing 

in error from the nipple to the chest wall (increasing x values in figure 4.8b). 

These trends are an expected result, given the limitations and assumptions of the 

processing methods. In the ML axis, information is obtained from all four a priori 

points, whereas CC information is only available from the MLO data; thus, it is logical 

that errors in the CC axis are greater. Furthermore, the cranial region tends to be the 

most asymmetric. 

The overall underestimation is largely a result of the tendency during registration 

(chapter 3) for the mammograms to underestimate the area of the MRPIs. The relative 

lack of data in the CC axis is also a factor, as it tends to be the longer axis of the elliptical 

cross-section. 

Of the eight data sets used in this work, only one had a lesion visible in both the 

mammograms and the MR image. This lesion was used as a test case for internal feature 

estimation. Visual inspection of the comparison between the 3D estimation and the 

corresponding region on the MR image (figure 4.13) shows that the feature reconstruction 

algorithm was successful in locating the feature within the same quadrant of the breast. 
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The centroid of the red sphere of figure 4.13 is misaligned by approximately 15 mm
 

in both the coronal and sagittal planes. This is well within the targeted quadrant-level 

accuracy, and is comparable to the centimetre level resolution of TSAR imaging. 

The misalignment error of the lesion can be attributed to several factors. First, the 

lesion of the MR image is not seen on either MRPI (figure 3.24), and thus did not have 

an effect in driving the registration. Secondly, inspection of figure 4.13b reveals that 

the landmark used to identify the chest wall of the MLO view is significantly misplaced, 

indicating that all the data may be somewhat shifted. Finally, as the lesion is close to 

the skin, any inaccuracies in the orthogonal projection scheme (e.g. slight variations in 

acquisition angle) are magnified. 

While the first factor could be improved by modifying the method used to generate 

the MRPI, it is important to note that the accuracy is still quite good despite the fact 

that the lesion itself did not influence the registration process. This indicates that the 

registration algorithm provides a means of comparing regions of interest even where 

corresponding features are not obvious. 

For all of the error measurements and visual comparisons, error introduced by inexact 

alignment of the reference MR image may be a factor due to the independent rotations 

required of the two mammograms (as described in §4.4). It is important to note that this 

does not affect the accuracy of the reconstruction; indeed, it indicates that the actual 

errors are likely to be smaller overall. 

Based on the literature review provided in §2.5, this work is the first to quantify the 

accuracy of mammographic skin surface estimation. While Kita and Yam et al. used a  

similar surface fitting technique, they did not have a ground truth skin surface available 

for comparison [30, 29]. 

As the internal feature localization accuracy is affected by the registration accuracy, 

this value can be used to compare the registration techniques used in this work to previous 
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methods. A major limitation of this work is that only one data set was available to test 

internal lesion localization, so it is this single result that is compared to average values 

presented in literature. 

As discussed in §2.4, the method developed by Behrenbruch et al. resulted in localiza­

tion errors averaging 20 % local deformation, or approximately 10 mm [25]. While this 

is an improvement over the 15 mm error resulting from this work, Behrenbruch points 

out that lesions were often used as landmarks for registration, while the intensity-based 

registration method described in §3.2 assumes no such correlation. 

Localization errors presented by Ruiter et al. are  approximately three  times  smaller  

than the errors resulting from the single lesion localization result of this work [27]. How­

ever, the patient-specific FE model technique employed by Ruiter is more complex and 

requires more user interaction than was desired for the applications of this work. Further­

more, the model-based technique was limited to mammograms undergoing 21% strain or 

less, excluding the majority of clinical mammograms. 

In summary, the average 10 mm error between estimated and true skin represents 

an excellent reconstruction from the two mammographic views. While previous work 

obtained internal feature localization accuracy in the 5-10 mm range, the estimated 

15 mm error of this work exceeds the goal of achieving quadrant-level accuracy and is 

therefore acceptable. Furthermore, the reconstruction method is fully automated and 

extremely fast, requiring only one or two seconds to reconstruct a complete data model. 

Contributions of this work to the literature are: 

•	 Development of an ellipse fitting algorithm from only four unequally spaced data 

points. 

•	 Quantification of breast surface estimation error as compared to a ground truth. 
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Chapter 5 

Conclusion 

The need for improved breast cancer diagnostics has driven research in many areas of 

breast image acquisition and analysis. In this thesis, two specific aims were achieved: 

registration of mammograms and magnetic resonance breast images, and estimation of 

three dimensional features from mammograms. 

An efficient and automated algorithm to register 2D mammograms to projection 

images created from MR image volumes was presented. This method was validated 

through the use of simulated images deformed via finite element modelling, and was 

shown to be robust to rotational errors of up to 10◦. Results  of  registering  sixteen  

pairs of images showed excellent external alignment with an average Dice’s coefficient of 

0.93, and mutual information metrics showed improvement over similar work found in 

literature. 

Following registration to MR projection images, each of the two mammogram views 

was considered undistorted; that is, the distortion introduced by mammographic com­

pression was undone. These images were treated as projections through an uncompressed 

breast and a skin surface estimate was computed by fitting ellipses to twenty equally 

spaced coronal slices. This reconstructed surface was then compared to the 3D MR 

surface and was found to have an average error of 10 mm in all orthogonal directions. 

The 3D location of internal lesions was estimated from the undistorted mammograms 

by backprojecting along an orthogonal trajectory from each of the two mammographic 

views and finding the intersection in 3D space. Only one data set with a visible lesion 

on both mammograms and the MR image was available, and the lesion localization error 

was determined to be approximately 15 mm. This is slightly worse than comparable 
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methods presented in literature, but is well within the targeted goal of obtaining an 

estimate of lesion location with quadrant-level accuracy. Furthermore, this degree of 

error is comparable to TSAR’s 1 cm resolving power, and therefore provides a reasonable 

estimate for TSAR purposes. 

5.1 Summary of Contributions 

The contributions of this work arising from the first specific aim are as follows: 

•	 The incorporation of precise mammographic acquisition parameters in the genera­

tion of synthetic mammograms for the purposes of image registration. 

•	 The ability to manually override landmark detection in difficult cases. 

•	 The use of a robust and automated intensity-based mutual information technique 

to refine registration of breast images. 

•	 A registration validation technique incorporating a simulated image and an FE 

model. 

Together, these three contributions suggest development of the most accurate, robust, 

and automated registration of mammograms and MR projection images reported to date. 

This observation is supported by quantification using Dice’s coefficient as well as mutual 

information. 

The second specific aim resulted in the following contributions: 

•	 Development of an ellipse fitting algorithm from only four unequally spaced data 

points, permitting computationally efficient estimation of the skin surface from two 

non-orthogonal 2D mammograms. 

•	 Quantification of breast surface estimation error as compared to a ground truth. 
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These two contributions suggest that a rapid method to estimate the skin surface has 

been developed. This method is accurate to an average of 10 mm, and errors are traceable 

to limitations in image registration and ground truth alignment. 

Achievement of the two specific aims resulted in the ability to track lesions in 3D 

space with errors on the centimetre scale. 

5.2 Limitations 

This work is limited in several respects. As mentioned in chapter 3, breast images ex­

hibiting significant deformation due to contact with the MR coil were rejected, indicating 

that this work only applies to breasts below a certain size threshold. Similarly, prelim­

inary landmark alignment was not always successful, as the landmarks were not clearly 

visible on all images. 

The reconstruction algorithm of chapter 4 was also not flawless. The ellipse fitting 

method to estimate the skin surface resulted in consistent errors in the cranial portion 

of the breast, indicating that improvements could by made by anticipating this error. 

Furthermore, alignment of the ground truth MR data was a challenge, and improvements 

to this procedure would likely improve validation results. 

The largest limitation of this work was the small number of data sets used for algo­

rithm development and testing. In particular, the internal feature reconstruction method 

could only be tested on a single data set. While the results from this example were sat­

isfactory, more data sets are required to prove robustness. 

5.3 Future Work and Potential Applications 

Registration of mammograms to MR images is a useful technique not only for undistorting 

mammograms but also for improved multimodal diagnostic power. Estimation of the 3D 



87 

location of features seen in mammograms also contributes to this end as well as providing 

a method of visualizing mammograms in 3D. However, perhaps the most significant 

contribution of this work is the information generated, which has the potential to assist 

in a number of other research and clinical applications. 

5.3.1 Statistical Deformation Model 

It may seem counter intuitive to attempt to estimate the surface of the breast based 

on two mammographic views, as the MR image provides this data with no estimation 

or processing necessary. The reconstruction methods of chapter 4 deliberately do not 

depend on MR data, as it is anticipated that in the future the use of MR information 

will be optional. 

MR imaging is not currently a standard procedure in Canadian breast cancer care 

[2]. While MR has the advantage of providing 3D information through the use of non­

ionizing radiation, it is considerably slower and more expensive than mammography, and 

mammography will likely remain the gold standard for the near future [2]. Researchers 

and clinicians alike stand to benefit from 3D information provided by breast imaging 

techniques, but if this information can be obtained from mammograms, the time and 

financial burdens on both the health care system and the patient can be reduced. 

The EBS (§3.2.1) and B-spline (§3.2.2) transforms used to deform the mammogram 

are defined by the translations of specific nodes: the landmark positions (EBS) and the 

regular warping grid (B-spline). Given a data set of sufficient size, it is conceivable that 

a statistical deformation model could be developed by determining average deformations  

for different breast types. This model could then be used to undistort mammograms 

without the need to acquire MR images, allowing for 3D estimation of mammographic 

features directly. 
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5.3.2 Applications to TSAR
 

As described in the introduction to this thesis, TSAR is an emerging microwave-based 

breast imaging technique [3]. While undergoing a TSAR scan, the patient lies prone on a 

table with her breast pendant into a tank of immersion medium such as canola oil [3]. An 

antenna is then placed close to the skin surface and scanned in a three dimensional pattern 

around the breast while emitting ultrawideband electromagnetic signals and measuring 

the reflections. As malignancies have been shown to affect these reflections, TSAR has 

the potential to detect cancer based on tissue properties in addition to structure [3]. 

Scanning the TSAR antenna around the breast requires prior knowledge of the breast 

size, shape, and location as the antenna must be in close proximity to the skin surface 

[12]. This can be estimated through the use of a “pre-scan” using either a laser or the 

TSAR antenna, but this introduces additional imaging and processing time, resulting in 

patient discomfort and possible motion artifacts [47]. Use of the mammographic skin 

surface estimate developed in this work would overcome these problems by allowing for 

the TSAR scanning pattern to be determined prior to patient arrival. Furthermore, 

image formation from the EM signals requires knowledge of the skin surface location, as 

assumed EM properties on the inside and outside the breast are used to calculate the 

distance between the antenna and the reconstructed pixel location. 

Like mammography and MR imaging, acquisition of a TSAR image results in a dis­

tortion of the breast shape. While patient positioning is similar to that of MR, the use 

of immersion medium counteracts the effects of gravity by introducing floatation. To 

account for these changes, an FE model capable of predicting the deformation due to 

floatation has been developed [45]. In the future, the skin surface estimation obtained 

from this work could be used as a starting point for this FE model. 

In addition to the skin surface prior knowledge, the ability to reconstruct the 3D 

location of internal regions of interest seen on mammograms has the potential to reduce 
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scanning time and improve precision of the TSAR system by targeting the microwave 

beam at a specific area of interest. Diagnostic power can also be increased by considering 

the joint information from multiple modalities. Finally, knowledge of the 3D location of 

features as seen in mammograms could serve as a validation tool for the TSAR system. 

This is illustrated in figure 5.1, where a TSAR image, the reconstructed tumour location 

superimposed on the corresponding MR slice, and the original mammograms from data 

set 100704R are shown. While it is evident that the largest feature seen in the TSAR 

image corresponds to the tumour as seen on the MR image and 3D estimate, the same 

position is difficult to locate and visualize from the 2D mammograms. 

5.3.3 Surgical Planning 

Current clinical guidelines prescribe either core biopsy, fine needle aspiration, or excision 

of suspected malignant regions detected through mammography [48]. Core biopsies and 

fine needle aspiration are performed by inserting a biopsy needle (large or fine gauge) into 

the region of interest and extracting cells or tissue, typically under ultrasound guidance 

[48]. However, not all lesions are visible under ultrasound, and the accuracy of these 

procedures depends on the expertise of the physician [48]. 

Excision of malignant regions involves placing fine wires into the lesion under ra­

diographic or ultrasound image guidance while consulting a radiologist and the original 

mammograms [48]. These wires remain in place until the lesion is surgically removed, 

after which another mammogram is obtained to verify removal [48]. 

Both lesion biopsy and excision procedures could benefit from 3D reconstructions of 

mammographic lesion location relative to the skin surface. By presenting this visualiza­

tion in conjunction with the original mammograms, there is the potential to reduce the 

inter-operator variability in accuracy of image-guided wire or needle placement. 
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(a) TSAR image (b) 3D estimate and MR slice

(c) CC mammogram (d) MLO mammogram

Figure 5.1: Images of data set 100704R from different modalities
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Appendix A 

Software Framework 

Figure A.1: The main program interface in reconstruction mode

To allow for processing parameter variation and ease of use, a graphical program was

developed. This software, called “Penumbra”, supports image viewing, preprocessing,

registration, and reconstruction modes. On the right hand side, loaded images are dis­

played, as shown in figure A.1. On the left hand side, controls for modifying pipeline

parameters are shown. Each of the images in the image display is a possible input for

the processing pipelines.

Penumbra was developed in C++ using a combination of open­source toolkits. wxWid­

gets 2.8 (www.wxwidgets.org) was used for the graphical interface components; the In­

sight toolkit (www.itk.org) was used for image processing algorithms; and the Visual­

http:www.itk.org
http:www.wxwidgets.org
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ization toolkit (www.vtk.org) was used for image display and 3D rendering. Figure A.2
 

shows an overview of the primary classes and interactions. 

The following section describes the major components of Penumbra. 

is the main user interface class, shown upon initial launch. It is 

the “glue” holding the program together, responsible for passing information between 

sub-classes and responding to program-wide (i.e. not image- or process-specific) user 

input. 

class handles reading of image files and series as well as writing of .png 

screenshots, vtkPolyData for curves and surfaces, and DICOM images. Only one in­

stance of this class is available to the entire program, ensuring only a single image is read 

or written at a time. 

is the base class for the display windows. It contains a vtkRenderer 

object that allows data to be displayed, and a wxVTKRenderWindowInteractor1 to in­

terface between the user, the renderer, and the wxWidgets GUI elements. Zoom, pan, 

and rotate are provided by this class. 

inherits from WindowBase and is responsible for displaying 2D images 

or slices from 3D images, as well as user interactions such as changing window/level of 

the display, scrolling through slices, and image saving operations. Functions specific to 

this work such as displaying contours and landmarks are also provided. 

also inherits from WindowBase, but  instead  of  a  2D  window  displaying  

images or slices, the render area is treated as a 3D space. This class contains specific 

functions for skin contour (ellipse) display, wireframe breast spline display, and internal 

features. Image slices can also be displayed, but they are shown as a 2D plane floating 

in 3D space. 

is a helper class that handles flexible layout of images, allow­

1Available from http://wxvtk.sourceforge.net/ 

http:http://wxvtk.sourceforge.net
http:www.vtk.org


99

User Interface 

Processing Backend 

PenumbraFrame 

ProcessUI 
m_reconui 

ProcessUI 
m_regui 

ProcessUI 
m_processui 

ImageWindowWrapper 

ImageWindow 
m_windowlist[0] 

ImageWindow 
m_windowlist[n] 

ImageIO RegistrationPipeline 

PreprocessPipeline 

ReconstructionPipeline 

Window3D 
m_resultwindow ... 

ImageWindow 
m_resultwindow 

ImageWindow
m_resultwindow 

Figure A.2: Software framework (Penumbra) overview 
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ing for loading and displaying as many images as can be held in memory. This class 

also keeps track of 3D window groups (i.e. multiple views) and performs intelligent 

destruction of ImageWindow objects. 

is a flexible widget generator for interacting with the ITK process pipelines. 

The only controls explicitly defined are for input image selection and pipeline execution; 

all others are created through various functions at run time. Each set of controls are 

contained in a pane and added to a wxListBook object, which displays the list of panes 

and allows for parameter editing on the selected item. ProcessUI is a “dumb” class, 

with no knowledge of the pipeline capabilities; it simply provides an interface allowing 

the user to modify parameters of the pipeline. 

contain the ITK 

pipelines implementing the algorithms described in chapters 3 and 4. For each pipeline, 

the list of required process objects (filters) is declared upon object instantiation, but 

creation (and memory allocation) does not occur until the process is enabled by the user 

via the corresponding ProcessUI. Values  for processing parameters  are  set when the  user  

enters a value, but connections between filters and pipeline execution is deferred until 

the “Run” button is pressed, thus preventing any lag while modifying parameters. 
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Appendix B 

Algorithms 

B.1 Fuzzy Connected Object Extraction 

The fuzzy connectivity between two pixels is determined by considering both the locations 

and the intensities of each pixel. In order to describe the algorithm used to determine 

connectedness, several definitions must first be made. 

For a given set of elements X, a  fuzzy subset  A of X is a set of ordered pairs: 

A = {x, µA(x)|x ∈ X}, where µA(x) :  X �→ [0, 1] (B.1) 

and µA(x) is  the  membership function of x in X. Similarly,  a  fuzzy  2-ary  relation  ρ in 

X can be defined as a subset of X × X: 

ρ = {(x, y), µρ(x, y)|(x, y) ∈ X × X}, where µρ(x, y) :  X × X �→ [0, 1] (B.2) 

A digital image in  Euclidean  space  Rn is divided into discrete units, or spels. The  

coordinates of the centres of each spel c are defined by an array of length n, where  the  

j’th coordinate of c is written as cj and 1 ≤ j ≤ n. The  set  of  all  spels  in  the  image  is  

referred to as the discrete space Zn . 

With this definition of a digital image, relations between spels can be found by treating 

Zn as the set X × X in equation B.2. One such relation, α, is  defined  as  the  fuzzy  

spel adjacency. While many different functions could be used, an example of the fuzzy 

adjacency between spels c and d is: 
 

1 , if 
�

i
n 
=1 |ci − di| ≤ n 

µω(c, d) =  
 

1 +  k1(
��

i
n 
=1(ci − di)2) (B.3) 0 otherwise 
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where k1 is a non negative constant. A commonly used simple form of equation B.3 is 

obtained by setting k1 = 0, resulting in a hard 8-connected adjacency. 

The pair (Zn , α), where α is an adjacency relation such as ω, is  referred  to  as  a  fuzzy 

digital space. 

A scene over (Zn , α) is  a pair  C = (C, f), where the scene domain C = {c| − bj ≤ 

cj ≤ bj for some b ∈ Zn }. Zn is the set of positive n-tuples; thus, C is the set of spels in + + 

(Zn , α) between plus and minus  b. f is some function of c, and  if  the  values  of  f are on 

the range [0, 1] it is referred to as a membership function. When the range of f is {0, 1}, 

C is a binary scene, or  segmentation.  

The fuzzy affinity κ between spels c and d in a scene C can be defined by any fuzzy 

relation, provided it is reflexive and symmetric (see Udupa et al. for definitions  [35]).  For  

breast background segmentation, a Gaussian function was used: 
2 

−( f (c)+f (d) 
+µ)2 

2σ2µκ(c, d) =  e (B.4) 

where µ and σ2 are the mean and variances of the object being segmented and f(c) and  

f(d) are  the  pixel  intensity  values.  µ and σ are determined by the average values of the 

neighbours of the seed pixel and the user at run-time, respectively. 

The final concept to be introduced prior to outlining the segmentation algorithm is 

that of the connectivity path. A path pcd from c to d is represented by a sequence of 

(1) (2) (1) (m)spels �c , c , . . . c(m)� where m ≥ 2 spels and  c = c, c = d. The  set  of  all  possible  

paths from c to d is represented by Pcd, and  the  set of all paths  in  C is PC . 

The strength of connectivity along a given path p is defined as the minimum affinity 

value between all spels along the path. Combining all strengths gives the κ-net N , defined  

for each p as: 

(1) (2)), µκ(c
(2) (m−1)µN (p) = min[µκ(c , c , c(3)), . . . µκ(c , c(m))] (B.5) 

From this concept of path strength we arrive at a measure of connectivity K between 
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spels c and d, simply  defined as  the strength of  the strongest  path:  

µK(c, d) =  max  [µN (p)] (B.6) 
p∈Pcd 

The algorithm to extract the background region, given the seed spel o (set to the 

top-left corner), is as follows: 

Inputs: C, o, σ2 and K 

Output: Ko-scene Co = (Co, fo) of  C; i.e. the scene describing the connectivity of all 

spels c in C to spel o 

Data Structures: an nD array to hold the result Co and a temporary queue Q 

begin 

calculate µ of equation B.4;
 

set all elements of Co to 0, except for o which is set to 1;
 

push all spels c of Co that satisfy µκ(o, c) > 0 to  Q;
 

while Q is not empty do:
 

remove a spel c from Q;
 

find fmax = maxd∈Co [min(fo(d), µκ(c, d))];
 

if fmax > fo(c) then:
 

set fo(c) to  fmax;
 

push all spels e such that µκ(c, e) > 0 to  Q;
 

end if 

end while 

end 

The resulting Ko scene is then thresholded based on a connectivity value, set by the 

user, to obtain a binary scene representing the background region of the image.
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B.2 Hermite Interpolation 

Hermite interpolation is a method of interpolating a polynomial function between two 

data points. This method requires knowledge of adjacent data points, as curve segments 

(Hermite polynomials) that share a data point also share tangent vectors. 

Given a set of points [P1(t), P2(t)] = [P (0), P (1)] and a pair of tangents [P1 
t, P2 

t], the 

Hermite polynomial P (t) is computed as  follows:  

P (t) =  at3 + bt2 + ct+ d, where  

a = 2P1 − 2P2 + P1 
t + P2 

t 

b = −3P1 + 3P2 − 2P1 
t − P2 

t 

c = P t 
1 

d = P1 

or, in matrix form: 

  
2 −2 1 1 P1  
−3 3 −2 1


P2


3 2

  
P (t) = (t , t , t, 1)   

(B.7) 
P t


0 0 0 0


1 
     

0 0 0 0 P2 
t 

B.3 The Elastic Body Spline Transformation 

The EBS transform is represented in two dimensions as: 

d�(�x) = [d1(�x) d2(�x)]
T (B.8) 

where �x = [x1 x2]T . At  N landmarks or control points, equation B.8 must exactly equal 

the displacement from the landmark point pi to its corresponding landmark qi on the 

other image; elsewhere in the image, the displacement is interpolated. 
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The underlying physical model for the EBS is the set of Navier partial differen­

tial equations (PDEs) describing the equilibrium displacements of a homogeneous and 

isotropic elastic material under load. The PDEs are as follows: 

µ∇2�u(�x) + (µ + λ)∇[∇ · �u(�x)] = f�(�x)  (B.9)  

where �u(�x) is the  displacement of a point from  the  unloaded to  the  loaded position;  f�(�x) 

is the force field; and µ and λ are the Lamé constants describing the properties of the 

material. 

The EBS parameters are determined by calculating an analytical solution to the PDEs 

of equation B.9 and imposing the constraint that the transform must relax to affine as 

the distance from the landmarks approaches infinity. To do this, a smooth deformation 

must be enforced, as a singularity could ensue otherwise. A method of enforcing this 

constraint is to assume a uniform force field such as: 

�f(�x) =  �c|�x| (B.10) 

where the coefficients �c = [c1 c2 c3]T are the strengths of the force field components. 

Solving equation B.9 using the forces of B.10 and representing as a matrix results in 

a solution  to the displacements  �u(�x): 

�u(�x) =  G(�x)�c 

G(�x) = [α|�x|2I − n�x�x T ]|�x| (B.11) 

where n is the number of dimensions, α = 12(1  − ν) − 1, ν = λ/[2λ + µ] is  Poisson’s  

ratio. This allows for the Lamé constants to be replaced by a single constant, assumed 

to be 0.25 for an elastic material. 

Equation B.11 was obtained using the Galerkin vector method, conveniently decou­

pling the Navier PDEs of equation B.9. As a result, the 3D model can be applied to the 
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2D task at hand. The EBS of equation B.8 is then found by applying the solution B.11 

to each landmark point and summing as follows: 

N

�i)c�p−x�(G
�

�

i + A�x+�b) = 
  (B.12)
d(�x


i=0 

are the spline coefficients, and A�x + �b is an affine
i� where G is now a 2 × 2 matrix,  c

transform accounting for the bulk displacement, rotation, and scaling of the image. 

i� coe fficient values cGiven the displacements between landmark points, the spline


and the matrix A can be solved computationally at any arbitrary location �x, yielding  a  

displacement value for each pixel of the image. This is explained in more detail by Davis 

et al [37]. 

B.4 B-Spline Interpolation 

B-splines or “basis-splines” of degree n form the basis of the subspace of all piecewise 

polynomial functions of degree n and of class Cn−1 [38]. B-splines may be computed for 

any non decreasing sequence of knots t = ti [49]; for this work, only the case of equally 

spaced knots will be addressed. 

To construct B-splines of order n, n+ 2  knots  are  required.  The  normalized  B-spline  

functions are then defined as: 

n+1
(−1)j 

�
n+ 1

� 

βn(x) =  
� 

(x− j)n µ(x− j)  (B.13)  
j=0 

n! j 

where 
�
n+1

� 
are the binomial coefficients: j 

�
n+ 1

� 
(n+ 1)!  

= 
j (n+ 1  − j)!j! 

and µ(x) is the  step function:  



1 for  x ≥ 0 
µ(x) =  

0 for  x < 0 
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Thus, the zero-order B-spline is simply the boxcar function β0(x) =  µ(x) − µ(x− 1). 

Discrete B-splines are obtained by sampling continuous spline functions with an ex­

pansion factor or step size m: 

n+1
n 

� 
k 
� 

1 � (−1)j 
�
n+ 1

� 

bm(k) =  βn = (k − jm)n µ(k − jm)  (B.14)  
m mn n! j

k=0 

Taking the z-transform of equation B.14 yields the expression: 

Bn 1 
Bn (z))n+1 

m(z) =  
mn 

(x)(B0 , where (B.15) 1 m

n+1
n −kB0 (z) =  

� 
b (k)zm 1 

k=0 

is the z-transform of the discrete signal obtained by sampling the B-spline at its knots, 

and where 
m−1� 

−kB0 (z) =  zm

k=0 

is the z-transform of a boxcar function of length m. 

A discrete signal  {f(k)} defined on k = −∞, . . . ,+∞ can be represented using B-

splines as a weighted sum or convolution: 

+∞
n nf(k) =  φn(k) =  

� 
c(i)b1 (k − i) =  b1 ∗ c(k)  (B.16)  

i=−∞ 

where n is both the degree of the polynomial functions connected at the knot points and 

the order of the B-spline. 

The goal of B-spline interpolation is to determine the coefficients c(i) of  equation  

B.16 such that φn(x) matches  of  the  values  of  {f(k)} at the knot points. Taking the 

z-transform of equation B.16 results in: 

F (z) =  B1 
n(z)C(z), (B.17) 

implying that c(k) can be obtained from inverse filtering. The corresponding linear space 

operator {sn(k)} to obtain these coefficients is called the direct spline filter of order n, 
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and has the transfer function: 

1 
n+1� 

=
Sn(z) =  B1 
n(z)−1 ,
 (B.18)
 

bn(k)z−k 
1 

k=0 

which has an infinite impulse response. 

Equation B.18 provides a direct method of obtaining filter coefficients for m = 1.  

However, to interpolate the signal {f(k)}, upsampling  by  a  factor  m is required, produc­

ing the new sequence: 

[f ]↑m(k
�) =  









f(k) for  k� = mk 

(B.19) 
0  otherwise  

Using a similar representation for c(k) yields  the  equivalent convolution for  equation 
  

B.16: 

fm(k
�) =  bn 

m ∗ [c]↑m(k
�)  (B.20)  

and finally, the z-transform: 

Fm(z) =  Bn 
1 (z) 

1 
mn 

(B0 
m(z))

n+1C(z m)  (B.21)  

Unser et al. show  that from equation  B.21,  signal interpolation can  be  achieved from  a  

cascade of n +1  moving  average  filters  of  size  m and an indirect spline filter {bn 
1 (k)} [38]. 

This has the advantage of having a finite impulse response, and is easily implemented in 

the spatial domain. 
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